1
|
Castillo-González J, González-Rey E. Beyond wrecking a wall: revisiting the concept of blood-brain barrier breakdown in ischemic stroke. Neural Regen Res 2025; 20:1944-1956. [PMID: 39254550 DOI: 10.4103/nrr.nrr-d-24-00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/04/2024] [Indexed: 09/11/2024] Open
Abstract
The blood-brain barrier constitutes a dynamic and interactive boundary separating the central nervous system and the peripheral circulation. It tightly modulates the ion transport and nutrient influx, while restricting the entry of harmful factors, and selectively limiting the migration of immune cells, thereby maintaining brain homeostasis. Despite the well-established association between blood-brain barrier disruption and most neurodegenerative/neuroinflammatory diseases, much remains unknown about the factors influencing its physiology and the mechanisms underlying its breakdown. Moreover, the role of blood-brain barrier breakdown in the translational failure underlying therapies for brain disorders is just starting to be understood. This review aims to revisit this concept of "blood-brain barrier breakdown," delving into the most controversial aspects, prevalent challenges, and knowledge gaps concerning the lack of blood-brain barrier integrity. By moving beyond the oversimplistic dichotomy of an "open"/"bad" or a "closed"/"good" barrier, our objective is to provide a more comprehensive insight into blood-brain barrier dynamics, to identify novel targets and/or therapeutic approaches aimed at mitigating blood-brain barrier dysfunction. Furthermore, in this review, we advocate for considering the diverse time- and location-dependent alterations in the blood-brain barrier, which go beyond tight-junction disruption or brain endothelial cell breakdown, illustrated through the dynamics of ischemic stroke as a case study. Through this exploration, we seek to underscore the complexity of blood-brain barrier dysfunction and its implications for the pathogenesis and therapy of brain diseases.
Collapse
Affiliation(s)
- Julia Castillo-González
- Institute of Parasitology and Biomedicine Lopez-Neyra (IPBLN), CSIC, PT Salud, Granada, Spain
| | | |
Collapse
|
2
|
Mo H, Zhang X, Ren L. Analysis of neuroglia and immune cells in the tumor microenvironment of breast cancer brain metastasis. Cancer Biol Ther 2024; 25:2398285. [PMID: 39238191 PMCID: PMC11382727 DOI: 10.1080/15384047.2024.2398285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Breast cancer stands as the most prevalent cancer diagnosed worldwide, often leading to brain metastasis, a challenging complication characterized by high mortality rates and a grim prognosis. Understanding the intricate mechanisms governing breast cancer brain metastasis (BCBM) remains an ongoing challenge. The unique microenvironment in the brain fosters an ideal setting for the colonization of breast cancer cells. The tumor microenvironment (TME) in brain metastases plays a pivotal role in the initiation and progression of BCBM, shaping the landscape for targeted therapeutic interventions. Current research primarily concentrates on unraveling the complexities of the TME in BCBM, with a particular emphasis on neuroglia and immune cells, such as microglia, monocyte-derived macrophages (MDMs), astrocytes and T cells. This comprehensive review delves deeply into these elements within the TME of BCBM, shedding light on their interplay, mechanisms, and potential as therapeutic targets to combat BCBM.
Collapse
Affiliation(s)
- Haixin Mo
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
- Collaborative Innovation Center for Antitumor Active Substance Research and Development, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liangliang Ren
- Clinical Experimental Center, Jiangmen Engineering Technology Research Center of Clinical Biobank and Translational Research, Jiangmen Central Hospital, Jiangmen, China
| |
Collapse
|
3
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
4
|
Schroeder ME, McCormack DM, Metzner L, Kang J, Li KX, Yu E, Levandowski KM, Zaniewski H, Zhang Q, Boyden E, Krienen FM, Feng G. Astrocyte regional specialization is shaped by postnatal development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617802. [PMID: 39416060 PMCID: PMC11482951 DOI: 10.1101/2024.10.11.617802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Astrocytes are an abundant class of glial cells with critical roles in neural circuit assembly and function. Though many studies have uncovered significant molecular distinctions between astrocytes from different brain regions, how this regionalization unfolds over development is not fully understood. We used single-nucleus RNA sequencing to characterize the molecular diversity of brain cells across six developmental stages and four brain regions in the mouse and marmoset brain. Our analysis of over 170,000 single astrocyte nuclei revealed striking regional heterogeneity among astrocytes, particularly between telencephalic and diencephalic regions, at all developmental time points surveyed in both species. At the stages sampled, most of the region patterning was private to astrocytes and not shared with neurons or other glial types. Though astrocytes were already regionally patterned in late embryonic stages, this region-specific astrocyte gene expression signature changed dramatically over postnatal development, and its composition suggests that regional astrocytes further specialize postnatally to support their local neuronal circuits. Comparing across species, we found divergence in the expression of astrocytic region- and age-differentially expressed genes and the timing of astrocyte maturation relative to birth between mouse and marmoset, as well as hundreds of species differentially expressed genes. Finally, we used expansion microscopy to show that astrocyte morphology is largely conserved across gray matter regions of prefrontal cortex, striatum, and thalamus in the mouse, despite substantial molecular divergence.
Collapse
|
5
|
Song Q, E S, Zhang Z, Liang Y. Neuroplasticity in the transition from acute to chronic pain. Neurotherapeutics 2024:e00464. [PMID: 39438166 DOI: 10.1016/j.neurot.2024.e00464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/10/2024] [Accepted: 09/27/2024] [Indexed: 10/25/2024] Open
Abstract
Acute pain is a transient sensation that typically serves as part of the body's defense mechanism. However, in certain patients, acute pain can evolve into chronic pain, which persists for months or even longer. Neuroplasticity refers to the capacity for variation and adaptive alterations in the morphology and functionality of neurons and synapses, and it plays a significant role in the transmission and modulation of pain. In this paper, we explore the molecular mechanisms and signaling pathways underlying neuroplasticity during the transition of pain. We also examine the effects of neurotransmitters, inflammatory mediators, and central sensitization on neuroplasticity, as well as the potential of neuroplasticity as a therapeutic strategy for preventing chronic pain. The aims of this article is to clarify the role of neuroplasticity in the transformation from acute pain to chronic pain, with the hope of providing a novel theoretical basis for unraveling the pathogenesis of chronic pain and offering more effective strategies and approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Qingbiao Song
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Sihan E
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China
| | - Zhiyu Zhang
- Department of Orthopedics, Affiliated Hospital of Shandong Second Medical University, Weifang 261035, China
| | - Yingxia Liang
- School of Anesthesiology, Shandong Second Medical University, Weifang 261053, China.
| |
Collapse
|
6
|
Zhang AY, Elias E, Manners MT. Sex-dependent astrocyte reactivity: Unveiling chronic stress-induced morphological changes across multiple brain regions. Neurobiol Dis 2024; 200:106610. [PMID: 39032799 PMCID: PMC11500746 DOI: 10.1016/j.nbd.2024.106610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024] Open
Abstract
Chronic stress is a major precursor to various neuropsychiatric disorders and is linked with increased inflammation in the brain. However, the bidirectional association between inflammation and chronic stress has yet to be fully understood. Astrocytes are one of the key inflammatory regulators in the brain, and the morphological change in reactive astrocytes serves as an important indicator of inflammation. In this study, we evaluated the sex-specific astrocyte response to chronic stress or systemic inflammation in key brain regions associated with mood disorders. We conducted the unpredictable chronic mild stress (UCMS) paradigm to model chronic stress, or lipopolysaccharide (LPS) injection to model systemic inflammation. To evaluate stress-induced morphological changes in astrocyte complexity, we measured GFAP fluorescent intensity for astrocyte expression, branch bifurcation by quantifying branch points and terminal points, branch arborization by conducting Sholl analysis, and calculated the ramification index. Our analysis indicated that chronic stress-induced morphological changes in astrocytes in all brain regions investigated. The effects of chronic stress were region and sex specific. Notably, females had greater stress or inflammation-induced astrocyte activation in the hypothalamus (HYPO), CA1, CA3, and amygdala (AMY) than males. These findings indicate that chronic stress induces astrocyte activation that may drive sex and region-specific effects in females, potentially contributing to sex-dependent mechanisms of disease.
Collapse
Affiliation(s)
- Ariel Y Zhang
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Elias Elias
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| | - Melissa T Manners
- Department of Biological and Biomedical Sciences, Rowan University, Glassboro, NJ 08028, USA.
| |
Collapse
|
7
|
Yamamoto T, Yoshida Y, Ose T, Murata Y, Hayashi T, Higo N. Cerebellar Molecular Signatures in Non-Human Primates. J Comp Neurol 2024; 532:e25678. [PMID: 39439015 DOI: 10.1002/cne.25678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024]
Abstract
Cerebellar molecular signatures in primates remain largely unexplored. Here, we investigated the immunoreactivity of neuroplasticity-related molecular markers, including aldolase C (Aldoc), phospholipase C beta 3 (PLCB3), and phospholipase C beta 4 (PLCB4) in the cerebellar cortex and associated nuclei of rhesus macaque monkeys (Macaca mulatta). Our main findings are as follows: First, the cerebellar vermis in macaques exhibited striped compartmentalization for all markers, with the striped expression boundary of PLCB3 being less distinct than those of Aldoc and PLCB4. Second, the striped pattern was less pronounced in the cerebellar hemisphere compared to the vermis, with signals in the hemisphere being predominantly intense throughout. Third, distinct zonal patterns and elevated signals for Aldoc and PLCB3 were observed in the cerebellar deep nuclei. Specifically, the fastigial nucleus displayed intense Aldoc signals in both caudal and rostral regions, while the dentate nucleus displayed strong Aldoc signals in both ventral and dorsal regions. Compared to previous rodent studies, the macaque cerebellum demonstrated a higher proportion of intense signal areas and distinct compartmentalization patterns in both cortical and deep nuclei. These findings offer crucial insights into the unique molecular organization of the primate cerebellum, enhancing our understanding of the advanced neuroplasticity, cognitive, and motor capabilities in primates.
Collapse
Grants
- JP18dm0307006 Japan Agency for Medical Research and Development
- JP19wm0525006 Japan Agency for Medical Research and Development
- JP21wm0525006 Japan Agency for Medical Research and Development
- JP23wm0625001 Japan Agency for Medical Research and Development
- 16H03300 Ministry of Education, Culture, Sports, Science and Technology
- 18K17683 Ministry of Education, Culture, Sports, Science and Technology
- 20H04061 Ministry of Education, Culture, Sports, Science and Technology
- 20H05490 Ministry of Education, Culture, Sports, Science and Technology
- 22K11318 Ministry of Education, Culture, Sports, Science and Technology
Collapse
Affiliation(s)
- Tatsuya Yamamoto
- Faculty of Medical and Health Sciences, Tsukuba International University, Tsuchiura, Ibaraki, Japan
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Yuko Yoshida
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takayuki Ose
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Yumi Murata
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Takuya Hayashi
- Laboratory for Brain Connectomics Imaging, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo, Japan
| | - Noriyuki Higo
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| |
Collapse
|
8
|
Thomas CI, Ryan MA, McNabb MC, Kamasawa N, Scholl B. Astrocyte coverage of excitatory synapses correlates to measures of synapse structure and function in ferret primary visual cortex. Glia 2024; 72:1785-1800. [PMID: 38856149 PMCID: PMC11324397 DOI: 10.1002/glia.24582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/25/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
Most excitatory synapses in the mammalian brain are contacted or ensheathed by astrocyte processes, forming tripartite synapses. Astrocytes are thought to be critical regulators of the structural and functional dynamics of synapses. While the degree of synaptic coverage by astrocytes is known to vary across brain regions and animal species, the reason for and implications of this variability remains unknown. Further, how astrocyte coverage of synapses relates to in vivo functional properties of individual synapses has not been investigated. Here, we characterized astrocyte coverage of synapses of pyramidal neurons in the ferret visual cortex and, using correlative light and electron microscopy, examined their relationship to synaptic strength and sensory-evoked Ca2+ activity. Nearly, all synapses were contacted by astrocytes, and most were contacted along the axon-spine interface. Structurally, we found that the degree of synaptic astrocyte coverage directly scaled with synapse size and postsynaptic density complexity. Functionally, we found that the amount of astrocyte coverage scaled with how selectively a synapse responds to a particular visual stimulus and, at least for the largest synapses, scaled with the reliability of visual stimuli to evoke postsynaptic Ca2+ events. Our study shows astrocyte coverage is highly correlated with structural metrics of synaptic strength of excitatory synapses in the visual cortex and demonstrates a previously unknown relationship between astrocyte coverage and reliable sensory activation.
Collapse
Affiliation(s)
- Connon I Thomas
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Melissa A Ryan
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Micaiah C McNabb
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Naomi Kamasawa
- Electron Microscopy Core Facility, Max Planck Florida Institute for Neuroscience, Jupiter, Florida, USA
| | - Benjamin Scholl
- Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
9
|
Sun J, Xie Y, Li T, Zhao Y, Zhao W, Yu Z, Wang S, Zhang Y, Xue H, Chen Y, Sun Z, Zhang Z, Liu Y, Zhang N, Liu F. Causal relationships of grey matter structures in multiple sclerosis and neuromyelitis optica spectrum disorder: insights from Mendelian randomization. Brain Commun 2024; 6:fcae308. [PMID: 39318784 PMCID: PMC11420985 DOI: 10.1093/braincomms/fcae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Multiple sclerosis and neuromyelitis optica spectrum disorder are two debilitating inflammatory demyelinating diseases of the CNS. Although grey matter alterations have been linked to both multiple sclerosis and neuromyelitis optica spectrum disorder in observational studies, it is unclear whether these associations indicate causal relationships between these diseases and grey matter changes. Therefore, we conducted a bidirectional two-sample Mendelian randomization analysis to investigate the causal relationships between 202 grey matter imaging-derived phenotypes (33 224 individuals) and multiple sclerosis (47 429 cases and 68 374 controls) as well as neuromyelitis optica spectrum disorder (215 cases and 1244 controls). Our results suggested that genetically predicted multiple sclerosis was positively associated with the surface area of the left parahippocampal gyrus (β = 0.018, P = 2.383 × 10-4) and negatively associated with the volumes of the bilateral caudate (left: β = -0.020, P = 7.203 × 10-5; right: β = -0.021, P = 3.274 × 10-5) and putamen nuclei (left: β = -0.030, P = 2.175 × 10-8; right: β = -0.024, P = 1.047 × 10-5). In addition, increased neuromyelitis optica spectrum disorder risk was associated with an increased surface area of the left paracentral gyrus (β = 0.023, P = 1.025 × 10-4). Conversely, no evidence was found for the causal impact of grey matter imaging-derived phenotypes on disease risk in the opposite direction. We provide suggestive evidence that genetically predicted multiple sclerosis and neuromyelitis optica spectrum disorder are associated with increased cortical surface area and decreased subcortical volume in specific regions. Our findings shed light on the associations of grey matter alterations with the risk of multiple sclerosis and neuromyelitis optica spectrum disorder.
Collapse
Affiliation(s)
- Jie Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yingying Xie
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fujian 350005, China
| | - Tongli Li
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yunfei Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Wenjin Zhao
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zeyang Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Shaoying Wang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yujie Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Hui Xue
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yayuan Chen
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zuhao Sun
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Zhang Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yaou Liu
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Ningnannan Zhang
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
10
|
Xiao Y, Wang G, He G, Qin W, Shi Y. Rab8a/SNARE complex activation promotes vesicle anchoring and transport in spinal astrocytes to drive neuropathic pain. BIOMOLECULES & BIOMEDICINE 2024; 24:1290-1300. [PMID: 38691557 PMCID: PMC11379012 DOI: 10.17305/bb.2024.10441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
Neuropathic pain (NPP) remains a clinically challenging condition, driven by the activation of spinal astrocytes and the complex release of inflammatory mediators. This study aimed to examine the roles of Rab8a and SNARE complex proteins in activated astrocytes to uncover the underlying mechanisms of NPP. The research was conducted using a rat model with chronic constriction injury (CCI) of the sciatic nerve and primary astrocytes treated with lipopolysaccharide. Enhanced expression of Rab8a was noted specifically in spinal dorsal horn astrocytes through immunofluorescence. Electron microscopy observations showed increased vesicular transport and exocytic activity in activated astrocytes, which was corroborated by elevated levels of inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α detected through quantitative PCR. Western blot analyses confirmed significant upregulation of Rab8a, VAMP2, and Syntaxin16 in these cells. Furthermore, the application of botulinum neurotoxin type A (BONT/A) reduced the levels of vesicle transport-associated proteins, inhibiting vesicular transport in activated astrocytes. These findings suggest that the Rab8a/SNARE pathway in astrocytes enhances vesicle transport and anchoring, increasing the secretion of bioactive molecules that may play a crucial role in the pathophysiology of NPP. Inhibiting this pathway with BONT/A offers a novel therapeutic target for managing NPP, highlighting its potential utility in clinical interventions.
Collapse
Affiliation(s)
- Yunqiao Xiao
- University-Town Hospital of Chongqing Medical University, Chongqing, China
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Gengyi Wang
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Guiqiong He
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China
| | - Wanxiang Qin
- Department of Pain Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ying Shi
- Department of Pain Care, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Shen FS, Liu C, Sun HZ, Chen XY, Xue Y, Chen L. Emerging evidence of context-dependent synapse elimination by phagocytes in the CNS. J Leukoc Biol 2024; 116:511-522. [PMID: 38700080 DOI: 10.1093/jleuko/qiae098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/09/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Precise synapse elimination is essential for the establishment of a fully developed neural circuit during brain development and higher function in adult brain. Beyond immune and nutrition support, recent groundbreaking studies have revealed that phagocytic microglia and astrocytes can actively and selectively eliminate synapses in normal and diseased brains, thereby mediating synapse loss and maintaining circuit homeostasis. Multiple lines of evidence indicate that the mechanisms of synapse elimination by phagocytic glia are not universal but rather depend on specific contexts and detailed neuron-glia interactions. The mechanism of synapse elimination by phagocytic glia is dependent on neuron-intrinsic factors and many innate immune and local apoptosis-related molecules. During development, microglial synapse engulfment in the visual thalamus is primarily influenced by the classic complement pathway, whereas in the barrel cortex, the fractalkine pathway is dominant. In Alzheimer's disease, microglia employ complement-dependent mechanisms for synapse engulfment in tauopathy and early β-amyloid pathology, but microglia are not involved in synapse loss at late β-amyloid stages. Phagocytic microglia also engulf synapses in a complement-dependent way in schizophrenia, anxiety, and stress. In addition, phagocytic astrocytes engulf synapses in a MEGF10-dependent way during visual development, memory, and stroke. Furthermore, the mechanism of a phenomenon that phagocytes selectively eliminate excitatory and inhibitory synapses is also emphasized in this review. We hypothesize that elucidating context-dependent synapse elimination by phagocytic microglia and astrocytes may reveal the molecular basis of synapse loss in neural disorders and provide a rationale for developing novel candidate therapies that target synapse loss and circuit homeostasis.
Collapse
Affiliation(s)
- Fang-Shuai Shen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Cui Liu
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Hui-Zhe Sun
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Xin-Yi Chen
- Department of International Medicine, No. 16 Jiangsu Road, Shinan District, Affiliated Hospital of Qingdao University 266000, Qingdao, China
| | - Yan Xue
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| | - Lei Chen
- Department of Physiology and Pathophysiology, School of Basic Medicine, No. 308 Ningxia Road, Shinan District, Qingdao University 266071, Qingdao, China
| |
Collapse
|
12
|
Pan Z, Yu X, Wang W, Shen K, Chen J, Zhang Y, Huang R. Sestrin2 remedies neuroinflammatory response by inhibiting A1 astrocyte conversion via autophagy. J Neurochem 2024; 168:2640-2653. [PMID: 38761015 DOI: 10.1111/jnc.16126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/20/2024]
Abstract
Most central nervous diseases are accompanied by astrocyte activation. Autophagy, an important pathway for cells to protect themselves and maintain homeostasis, is widely involved in regulation of astrocyte activation. Reactive astrocytes may play a protective or harmful role in different diseases due to different phenotypes of astrocytes. It is an urgent task to clarify the formation mechanisms of inflammatory astrocyte phenotype, A1 astrocytes. Sestrin2 is a highly conserved protein that can be induced under a variety of stress conditions as a potential protective role in oxidative damage process. However, whether Sestrin2 can affect autophagy and involve in A1 astrocyte conversion is still uncovered. In this study, we reported that Sestrin2 and autophagy were significantly induced in mouse hippocampus after multiple intraperitoneal injections of lipopolysaccharide, with the elevation of A1 astrocyte conversion and inflammatory mediators. Knockdown Sestrin2 in C8-D1A astrocytes promoted the levels of A1 astrocyte marker C3 mRNA and inflammatory factors, which was rescued by autophagy inducer rapamycin. Overexpression of Sestrin2 in C8-D1A astrocytes attenuated A1 astrocyte conversion and reduced inflammatory factor levels via abundant autophagy. Moreover, Sestrin2 overexpression improved mitochondrial structure and morphology. These results suggest that Sestrin2 can suppress neuroinflammation by inhibiting A1 astrocyte conversion via autophagy, which is a potential drug target for treating neuroinflammation.
Collapse
Affiliation(s)
- Zhenguo Pan
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
- Department of Neurology, People's Hospital of Xiangshui County, Yancheng, China
| | - Xiaoyu Yu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Weiwei Wang
- Department of Pathology, Qingdao Eighth People's Hospital, Qingdao, China
| | - Kai Shen
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Jianwei Chen
- Interventional Medicine Center, Xi'an People's Hospital, Xi'an, China
| | - Yunfeng Zhang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| | - Rongrong Huang
- Stroke Center and Department of Neurology, Department of Pharmacy, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, China
| |
Collapse
|
13
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
14
|
Spennato D, Leone J, Gundhardt C, Varnavski O, Fabbri R, Caprini M, Zamboni R, Benfenati V, Goodson T. Investigations of Astrocyte Calcium Signaling and Imaging with Classical and Nonclassical Light. J Phys Chem B 2024; 128:7966-7977. [PMID: 39133203 DOI: 10.1021/acs.jpcb.4c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The application of light in studying and influencing cellular behavior with improved temporal and spatial resolution remains a key objective in fields such as chemistry, physics, medicine, and engineering. In the brain, nonexcitable cells called astrocytes play essential roles in regulating homeostasis and cognitive function through complex calcium signaling pathways. Understanding these pathways is vital for deciphering brain physiology and neurological disorders like Parkinson's and Alzheimer's. Despite challenges in selectively targeting astrocyte signaling pathways due to shared molecular equipment with neurons, recent advancements in laser technology offer promising avenues. However, the effort to use laser light properties to study astroglial cell function is still limited. This work aims to exploit an in-depth pharmacological analysis of astrocyte calcium channels to determine the physiological mechanism induced by exposure to classical nanosecond-pulsed light. We herein report molecular clues supporting the use of visible-nanosecond laser pulses as a promising approach to excite primary rat neocortical astrocytes and unprecedentedly report on the implementation of entangled two-photon microscopy to image them.
Collapse
Affiliation(s)
- Diletta Spennato
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Josephine Leone
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Carolyn Gundhardt
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Oleg Varnavski
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Roberta Fabbri
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Marco Caprini
- Dipartimento di Farmacia e Biotecnologie, Università di Bologna, 40126 Bologna, Italy
| | - Roberto Zamboni
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Valentina Benfenati
- Istituto per la Sintesi Organica e Fotoreattività, Consiglio Nazionale delle Ricerche, via Gobetti 101, 40129 Bologna, Italy
| | - Theodor Goodson
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Saadh MJ, Muhammad FA, Singh A, Mustafa MA, Al Zuhairi RAH, Ghildiyal P, Hashim G, Alsaikhan F, Khalilollah S, Akhavan-Sigari R. MicroRNAs Modulating Neuroinflammation in Parkinson's disease. Inflammation 2024:10.1007/s10753-024-02125-z. [PMID: 39162871 DOI: 10.1007/s10753-024-02125-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/20/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Parkinson's disease (PD) is one of the most frequent age-associated neurodegenerative disorder. Presence of α-synuclein-containing aggregates in the substantia nigra pars compacta (SNpc) and loss of dopaminergic (DA) neurons are among the characteristic of PD. One of the hallmarks of PD pathophysiology is chronic neuroinflammation. Activation of glial cells and elevated levels of pro-inflammatory factors are confirmed as frequent features of the PD brain. Chronic secretion of pro-inflammatory cytokines by activated astrocytes and microglia exacerbates DA neuron degeneration in the SNpc. MicroRNAs (miRNAs) are among endogenous non-coding small RNA with the ability to perform post-transcriptional regulation in target genes. In that regard, the capability of miRNAs for modulating inflammatory signaling is the center of attention in many investigations. MiRNAs could enhance or limit inflammatory signaling, exacerbating or ameliorating the pathological consequences of extreme neuroinflammation. This review summarizes the importance of inflammation in the pathophysiology of PD. Besides, we discuss the role of miRNAs in promoting or protecting neural cell injury in the PD model by controlling the inflammatory pathway. Modifying the neuroinflammation by miRNAs could be considered a primary therapeutic strategy for PD.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Anamika Singh
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mohammed Ahmed Mustafa
- School of Pharmacy-Adarsh Vijendra Institute of Pharmaceutical Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Pharmacy, Arka Jain University, Jamshedpur,, Jamshedpur,, India, Jharkhand, 831001
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ghassan Hashim
- Department of Nursing, Al-Zahrawi University College, Karbala, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Shayan Khalilollah
- Department of Neurosurgery, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany
- Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University Warsaw, Warszawa, Poland
| |
Collapse
|
16
|
Medina BNSP, Portal TM, de Andrade Gomes CAB, Nunes-da-Fonseca R, Allodi S, Monteiro-de-Barros C. Identification of astrocyte-like cells in an adult ascidian during regeneration of the central nervous system. Glia 2024. [PMID: 39152717 DOI: 10.1002/glia.24605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/30/2024] [Accepted: 08/01/2024] [Indexed: 08/19/2024]
Abstract
The mechanisms underlying regeneration of the central nervous system (CNS) following lesions have been studied extensively in both vertebrate and invertebrate models. To shed light on regeneration, ascidians, a sister group of vertebrates and with remarkable ability to regenerate their brains, constitute an appropriate model system. Glial cells have been implicated in regeneration in vertebrates; however, their role in the adult ascidian CNS regeneration is unknown. A model of degeneration and regeneration using the neurotoxin 3-acetylpyridine (3AP) in the brain of the ascidian Styela plicata was used to identify astrocyte-like cells and investigate their role. We studied the CNS of control ascidians (injected with artificial sea water) and of ascidians whose CNS was regenerating (1 and 10 days after the injection with 3AP). Our results show that the mRNA of the ortholog of glutamine synthetase (GS), a glial-cell marker in vertebrates, is increased during the early stages of regeneration. Confirming the identity of GS, the protein was identified via immunostaining in a cell population during the same regeneration stage. Last, a single ortholog of GS (GSII) is present in ascidian and amphioxus genomes, while two types exist in fungi, some invertebrates, and vertebrates, suggesting that ascidians have lost the GSI type. Taken together, our findings revealed that a cell population expressing glial-cell markers may play a role in regeneration in adult ascidians. This is the first report of astrocyte-like cells in the adult ascidian CNS, and contributes to understanding of the evolution of glial cells among metazoans.
Collapse
Affiliation(s)
- Bianca Nicole Santos Paes Medina
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Ciências Morfológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Taynan Motta Portal
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Carlos Augusto Borges de Andrade Gomes
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Nunes-da-Fonseca
- Laboratório Integrado de Ciências Morfofuncionais, Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro -, Macaé, RJ, Brazil
| | - Silvana Allodi
- Laboratório de Neurobiologia Comparativa e do Desenvolvimento, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Ciências Biológicas - Biofísica, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Cintia Monteiro-de-Barros
- Laboratório Integrado de Biociências Translacionais Instituto de Biodiversidade e Sustentabilidade, NUPEM, Universidade Federal do Rio de Janeiro, Macaé, RJ, Brazil
- Programa de Pós-Graduação em Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
17
|
Jin B, Han Y, Xu F, Wang J, Zhao Y, Liu H, Wang F, Wang Z, Lu W, Wang M, Cui L, Zhao Y, Hao J, Chai G. Translatome analysis in acute ischemic stroke: Astrocytes and microglia exhibit differences in poststroke alternative splicing of expressed transcripts. FASEB J 2024; 38:e23855. [PMID: 39096134 DOI: 10.1096/fj.202400341r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 07/21/2024] [Indexed: 08/04/2024]
Abstract
Astrocytes and microglia undergo dynamic and complex morphological and functional changes following ischemic stroke, which are instrumental in both inflammatory responses and neural repair. While gene expression alterations poststroke have been extensively studied, investigations into posttranscriptional regulatory mechanisms, specifically alternative splicing (AS), remain limited. Utilizing previously reported Ribo-Tag-seq data, this study analyzed AS alterations in poststroke astrocytes and microglia from young adult male and female mice. Our findings reveal that in astrocytes, compared to the sham group, 109 differential alternative splicing (DAS) events were observed at 4 h poststroke, which increased to 320 at day 3. In microglia, these numbers were 316 and 266, respectively. Interestingly, the disparity between DAS genes and differentially expressed genes is substantial, with fewer than 10 genes shared at both poststroke time points in astrocytes and microglia. Gene ontology enrichment analysis revealed the involvement of these DAS genes in diverse functions, encompassing immune response (Adam8, Ccr1), metabolism (Acsl6, Pcyt2, Myo5a), and developmental cell growth (App), among others. Selective DAS events were further validated by semiquantitative RT-PCR. Overall, this study comprehensively describes the AS alterations in astrocytes and microglia during the hyperacute and acute phases of ischemic stroke and underscores the significance of certain hub DAS events in neuroinflammatory processes.
Collapse
Affiliation(s)
- Bingxue Jin
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yilai Han
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fang Xu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Junjie Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yunzhi Zhao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Haijie Liu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Fei Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Ze Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Wanting Lu
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Mingyang Wang
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Lili Cui
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Yinan Zhao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Junwei Hao
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
| | - Guoliang Chai
- Department of Neurology, National Center for Neurological Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- Beijing Municipal Geriatric Medical Research Center, Beijing, China
- Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
18
|
Yang C, Xu T, Lu Y, Liu J, Chen C, Wang H, Chen X. Quercetin-loaded Human Umbilical cord Mesenchymal Stem Cell-derived sEVs for Spinal Cord Injury Recovery. Neuroscience 2024; 552:14-28. [PMID: 38806069 DOI: 10.1016/j.neuroscience.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/03/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Following spinal cord injury, the inflammatory environment at the injury site causes local microglia and astrocytes to activate, which worsens the nerve damage in the affected area. Quercetin, an anti-inflammatory agent, has been limited in spinal cord injury due to its poor water solubility and easy degradation. Stem cell-derived extracellular vesicles can go through the blood-brain barrier and are an ideal drug delivery system. In this study, umbilical cord mesenchymal stem cell-derived extracellular vesicles were used to load quercetin to prevent its degradation and allow it to accumulate at the site of spinal cord injury. Our results showed that quercetin-loaded extracellular vesicles could inhibit the activation of microglia to M1 phenotype through the TLR4/NF-κB pathway, and the activation of astrocytes to A1 phenotype through the JAK2/STAT3 pathway. This reduced the production of inflammatory factors, mitigated neuronal damage, and inhibited the growth of astroglial scar, but promoted the recovery of motor function in rats with spinal cord injury.
Collapse
Affiliation(s)
- Changwei Yang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Tao Xu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Yang Lu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Jianhang Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Cheng Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Heng Wang
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China
| | - Xiaoqing Chen
- Department of Orthopedics, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong 226001, China.
| |
Collapse
|
19
|
Franklin JP, Testen A, Mieczkowski PA, Hepperla A, Crynen G, Simon JM, Wood JD, Harder EV, Bellinger TJ, Witt EA, Powell NL, Reissner KJ. Investigating cocaine- and abstinence-induced effects on astrocyte gene expression in the nucleus accumbens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606656. [PMID: 39149305 PMCID: PMC11326167 DOI: 10.1101/2024.08.05.606656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In recent years, astrocytes have been increasingly implicated in cellular mechanisms of substance use disorders (SUD). Astrocytes are structurally altered following exposure to drugs of abuse; specifically, astrocytes within the nucleus accumbens (NAc) exhibit significantly decreased surface area, volume, and synaptic colocalization after operant self-administration of cocaine and extinction or protracted abstinence (45 days). However, the mechanisms that elicit these morphological modifications are unknown. The current study aims to elucidate the molecular modifications that lead to observed astrocyte structural changes in rats across cocaine abstinence using astrocyte-specific RiboTag and RNA-seq, as an unbiased, comprehensive approach to identify genes whose transcription or translation change within NAc astrocytes following cocaine self-administration and extended abstinence. Using this method, our data reveal cellular processes including cholesterol biosynthesis that are altered specifically by cocaine self-administration and abstinence, suggesting that astrocyte involvement in these processes is changed in cocaine-abstinent rats. Overall, the results of this study provide insight into astrocyte functional adaptations that occur due to cocaine exposure or during cocaine withdrawal, which may pinpoint further mechanisms that contribute to cocaine-seeking behavior.
Collapse
Affiliation(s)
- Janay P Franklin
- Neuroscience Center, University of North Carolina at Chapel Hill
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Anze Testen
- Department of Neuroscience, Medical University of South Carolina
| | | | - Austin Hepperla
- Department of Genetics, University of North Carolina at Chapel Hill
| | - Gogce Crynen
- Bioinformatics and Statistics Core, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology
| | - Jeremy M Simon
- Department of Data Science, Dana-Farber Institute Department of Biostatistics, Harvard T.H. Chan School of Public Health
| | - Jonathan D Wood
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Eden V Harder
- Neuroscience Center, University of North Carolina at Chapel Hill
| | - Tania J Bellinger
- Department of Pharmacology, University of North Carolina at Chapel Hill
| | - Emily A Witt
- Department of Medical Neuroscience, Dalhousie University
| | - N LaShae Powell
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| | - Kathryn J Reissner
- Neuroscience Center, University of North Carolina at Chapel Hill
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill
| |
Collapse
|
20
|
Cleland NRW, Bruce KD. Fatty acid sensing in the brain: The role of glial-neuronal metabolic crosstalk and horizontal lipid flux. Biochimie 2024; 223:166-178. [PMID: 35998849 DOI: 10.1016/j.biochi.2022.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/01/2022] [Accepted: 08/17/2022] [Indexed: 11/15/2022]
Abstract
The central control of energy homeostasis is a regulatory axis that involves the sensing of nutrients, signaling molecules, adipokines, and neuropeptides by neurons in the metabolic centers of the hypothalamus. However, non-neuronal glial cells are also abundant in the hypothalamus and recent findings have underscored the importance of the metabolic crosstalk and horizontal lipid flux between glia and neurons to the downstream regulation of systemic metabolism. New transgenic models and high-resolution analyses of glial phenotype and function have revealed that glia sit at the nexus between lipid metabolism and neural function, and may markedly impact the brain's response to dietary lipids or the supply of brain-derived lipids. Glia comprise the main cellular compartment involved in lipid synthesis, lipoprotein production, and lipid processing in the brain. In brief, tanycytes provide an interface between peripheral lipids and neurons, astrocytes produce lipoproteins that transport lipids to neurons and other glia, oligodendrocytes use brain-derived and dietary lipids to myelinate axons and influence neuronal function, while microglia can remove unwanted lipids in the brain and contribute to lipid re-utilization through cholesterol efflux. Here, we review recent findings regarding glial-lipid transport and highlight the specific molecular factors necessary for lipid processing in the brain, and how dysregulation of glial-neuronal metabolic crosstalk contributes to imbalanced energy homeostasis. Furthering our understanding of glial lipid metabolism will guide the design of future studies that target horizontal lipid processing in the brain to ameliorate the risk of developing obesity and metabolic disease.
Collapse
Affiliation(s)
- Nicholas R W Cleland
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kimberley D Bruce
- Division of Endocrinology Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Man JHK, Breur M, van Gelder CAGH, Marcon G, Maderna E, Giaccone G, Altelaar M, van der Knaap MS, Bugiani M. Region-specific and age-related differences in astrocytes in the human brain. Neurobiol Aging 2024; 140:102-115. [PMID: 38763075 DOI: 10.1016/j.neurobiolaging.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/21/2024]
Abstract
Astrocyte heterogeneity and its relation to aging in the normal human brain remain poorly understood. We here analyzed astrocytes in gray and white matter brain tissues obtained from donors ranging in age between the neonatal period to over 100 years. We show that astrocytes are differently distributed with higher density in the white matter. This regional difference in cellular density becomes less prominent with age. Additionally, we confirm the presence of morphologically distinct astrocytes, with gray matter astrocytes being morphologically more complex. Notably, gray matter astrocytes morphologically change with age, while white matter astrocytes remain relatively consistent in morphology. Using regional mass spectrometry-based proteomics, we did, however, identify astrocyte specific proteins with regional differences in abundance, reflecting variation in cellular density or expression level. Importantly, the expression of some astrocyte specific proteins region-dependently decreases with age. Taken together, we provide insights into region- and age-related differences in astrocytes in the human brain.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Gabriella Marcon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; DAME, University of Udine, Udine, Italy
| | - Emanuela Maderna
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Luo S, Tamada A, Saikawa Y, Wang Y, Yu Q, Hisatsune T. P2Y1R silencing in Astrocytes Protected Neuroinflammation and Cognitive Decline in a Mouse Model of Alzheimer's Disease. Aging Dis 2024; 15:1969-1988. [PMID: 37962465 PMCID: PMC11272185 DOI: 10.14336/ad.2023.1006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/06/2023] [Indexed: 11/15/2023] Open
Abstract
Astrocytes, the major non-dividing glial cells in the central nervous system, exhibit hyperactivation in Alzheimer's disease (AD), leading to neuroinflammation and cognitive impairments. P2Y1-receptor (P2Y1R) in AD brain has been pointed out some contribution to AD pathogenesis, therefore, this study aims to elucidate how astrocytic P2Y1R affects the progression of AD and explore its potential as a new target for AD therapy. In this study, we performed the two-steps verification to assess P2Y1R inhibition in AD progression: P2Y1R-KO AD mice and AD mice treated with astrocyte-specific P2Y1R gene knockdown by using shRNAs for P2Y1R in adeno-associated virus vector. Histochemistry was conducted for the assessment of amyloid-beta accumulation, neuroinflammation and blood brain barrier function. Expression of inflammatory cytokines was evaluated by qPCR after the separation of astrocytes. Cognitive function was assessed through the Morris water maze, Y maze, and contextual fear conditioning tests. P2Y1R inhibition not only by gene knockout but also by astrocyte-specific knockdown reduced amyloid-beta accumulation, glial neuroinflammation, blood brain barrier dysfunction, and cognitive impairment in an AD mice model. Reduced neuroinflammation by astrocytic P2Y1R silencing in AD was further confirmed by the reduction of IL-6 gene expression after the separation of astrocytes from AD mouse brain, which may relate to the amelioration of blood brain barrier as well as cognitive functions. Our results clearly note that P2Y1R in astrocyte contributes to the progression of AD pathology through the acceleration of neuroinflammation, and one-time gene therapy for silencing astrocytic P2Y1R may offer a new therapeutic target for AD.
Collapse
Affiliation(s)
- Shan Luo
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Ami Tamada
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuichi Saikawa
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yifei Wang
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Qing Yu
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
23
|
Yang MF, Ren DX, Pan X, Li CX, Xu SY. The Role of Astrocytes in Migraine with Cortical Spreading Depression: Protagonists or Bystanders? A Narrative Review. Pain Ther 2024; 13:679-690. [PMID: 38743247 PMCID: PMC11255162 DOI: 10.1007/s40122-024-00610-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024] Open
Abstract
Cortical spreading depression (CSD) is a slow wave of cortical depolarization closely associated with migraines with an aura. Previously, it was thought that CSD depolarization was mainly driven by neurons, with characteristic changes in neuronal swelling and increased extracellular potassium (K+) and glutamate. However, the role of astrocytes, a member of the neurovascular unit, in migraine with CSD has recently received increasing attention. In the early stages of CSD, astrocytes provide neurons with energy support and clear K+ and glutamate from synaptic gaps. However, in the late stages of CSD, astrocytes release large amounts of lactic acid to exacerbate hypoxia when the energy demand exceeds the astrocytes' compensatory capacity. Astrocyte endfoot swelling is a characteristic of CSD, and neurons are not similarly altered. It is primarily due to K+ influx and abnormally active calcium (Ca2+) signaling. Aquaporin 4 (AQP-4) only mediates K+ influx and has little role as an aquaporin. Astrocytes endfoot swelling causes perivascular space closure, slowing the glymphatic system flow and exacerbating neuroinflammation, leading to persistent CSD. Astrocytes are double-edged swords in migraine with CSD and may be potential targets for CSD interventions.
Collapse
Affiliation(s)
- Meng-Fan Yang
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan,, 030001, Shanxi, China
| | - Dong-Xue Ren
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan,, 030001, Shanxi, China
| | - Xue Pan
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan,, 030001, Shanxi, China
| | - Chang-Xin Li
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan,, 030001, Shanxi, China
| | - Sui-Yi Xu
- Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Jiefangnan 85 Road, Taiyuan,, 030001, Shanxi, China.
- Research Center for Neurological Diseases, Center for Cerebrovascular Diseases Research, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
24
|
Chen W, Qu Y, Liu Y, Zhang G, Sharhan HM, Zhang X, Zhang K, Cao B. Effects of fasudil on glial cell activation induced by tooth movement. Prog Orthod 2024; 25:33. [PMID: 39034361 PMCID: PMC11265063 DOI: 10.1186/s40510-024-00518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/14/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Orthodontic pain affects the physical and mental health of patients. The spinal trigeminal subnucleus caudalis (SPVC) contributes to the transmission of pain information and serves as a relay station for integrating orofacial damage information. Recently, glial cells have been found to be crucial for both acute and maintenance phases of pain. It has also been demonstrated that rho kinase (ROCK) inhibitors can manage different pain models by inhibiting glial cell activation. Here, we hypothesized that orthodontic pain is related to glial cells in the SPVC, and Fasudil, a representative rho/rock kinase inhibitor, can relieve orthodontic pain by regulating the function of glial cells and the related inflammatory factors. In this study, we constructed a rat model of tooth movement pain and used immunofluorescence staining to evaluate the activation of microglia and astrocytes. Quantitative real-time PCR was used to detect the release of related cytokines and the expression of pain-related genes in the SPVC. Simultaneously, we investigated the effect of Fasudil on the aforementioned indicators. RESULTS In the SPVC, the expression of c-Fos peaked on day 1 along with the expression of OX42 (related to microglial activation), CD16 (a pro-inflammatory factor), and CD206 (an anti-inflammatory factor) on day 3 after tooth movement, followed by a gradual decrease. GFAP-staining showed that the number of activated astrocytes was the highest on day 5 and that cell morphology became complex. After Fasudil treatment, the expression of these proteins showed a downward trend. The mRNA levels of pro-inflammatory factors (IL-1β and TNF-α) peaked on day 3, and the mRNA expression of the anti-inflammatory factor TGF-β was the lowest 3 days after tooth movement. Fasudil inhibited the mRNA expression of pain-related genes encoding CSF-1, t-PA, CTSS, and BDNF. CONCLUSION This study shows that tooth movement can cause the activation of glial cells in SPVC, and ROCK inhibitor Fasudil can inhibit the activation of glial cells and reduce the expression of the related inflammatory factors. This study presents for the first time the potential application of Fasudil in othodontic pain.
Collapse
Affiliation(s)
- Wenyuanfeng Chen
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Yuan Qu
- International Campus, Zhejiang University-University of Edinburgh Institute, Zhejiang University, Haining, 314400, China
| | - Yining Liu
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Guorui Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Hasan M Sharhan
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Xinzhu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Kunwu Zhang
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China
| | - Baocheng Cao
- Department of Orthodontics and Dentofacial Orthopedics, School of Stomatology, Lanzhou University, 222 TianShui South Road, Lanzhou City, 730000, China.
| |
Collapse
|
25
|
Chen T, Dai Y, Hu C, Lin Z, Wang S, Yang J, Zeng L, Li S, Li W. Cellular and molecular mechanisms of the blood-brain barrier dysfunction in neurodegenerative diseases. Fluids Barriers CNS 2024; 21:60. [PMID: 39030617 PMCID: PMC11264766 DOI: 10.1186/s12987-024-00557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/20/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Maintaining the structural and functional integrity of the blood-brain barrier (BBB) is vital for neuronal equilibrium and optimal brain function. Disruptions to BBB performance are implicated in the pathology of neurodegenerative diseases. MAIN BODY Early indicators of multiple neurodegenerative disorders in humans and animal models include impaired BBB stability, regional cerebral blood flow shortfalls, and vascular inflammation associated with BBB dysfunction. Understanding the cellular and molecular mechanisms of BBB dysfunction in brain disorders is crucial for elucidating the sustenance of neural computations under pathological conditions and for developing treatments for these diseases. This paper initially explores the cellular and molecular definition of the BBB, along with the signaling pathways regulating BBB stability, cerebral blood flow, and vascular inflammation. Subsequently, we review current insights into BBB dynamics in Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The paper concludes by proposing a unified mechanism whereby BBB dysfunction contributes to neurodegenerative disorders, highlights potential BBB-focused therapeutic strategies and targets, and outlines lessons learned and future research directions. CONCLUSIONS BBB breakdown significantly impacts the development and progression of neurodegenerative diseases, and unraveling the cellular and molecular mechanisms underlying BBB dysfunction is vital to elucidate how neural computations are sustained under pathological conditions and to devise therapeutic approaches.
Collapse
Affiliation(s)
- Tongli Chen
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Yan Dai
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Chenghao Hu
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Zihao Lin
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Shengzhe Wang
- School of Medicine, Hangzhou City University, Hangzhou, China
| | - Jing Yang
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Linghui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Shanshan Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| | - Weiyun Li
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, China.
- Institute of Brain and Cognitive Science, Hangzhou City University, Hangzhou, China.
| |
Collapse
|
26
|
Lorin C, Guiet R, Chiaruttini N, Ambrosini G, Boci E, Abdellah M, Markram H, Keller D. Structural and molecular characterization of astrocyte and vasculature connectivity in the mouse hippocampus and cortex. Glia 2024. [PMID: 39007459 DOI: 10.1002/glia.24594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024]
Abstract
The relation of astrocytic endfeet to the vasculature plays a key functional role in the neuro-glia-vasculature unit. We characterize the spatial organization of astrocytes and the structural aspects that facilitate their involvement in molecular exchanges. Using double transgenic mice, we performed co-immunostaining, confocal microscopy, and three-dimensional digital segmentation to investigate the biophysical and molecular organization of astrocytes and their intricate endfoot network at the micrometer level in the isocortex and hippocampus. The results showed that hippocampal astrocytes had smaller territories, reduced endfoot dimensions, and fewer contacts with blood vessels compared with those in the isocortex. Additionally, we found that both connexins 43 and 30 have a higher density in the endfoot and the former is overexpressed relative to the latter. However, due to the limitations of the method, further studies are needed to determine the exact localization on the endfoot. The quantitative information obtained in this study will be useful for modeling the interactions of astrocytes with the vasculature.
Collapse
Affiliation(s)
- Charlotte Lorin
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Romain Guiet
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Nicolas Chiaruttini
- Bioimaging and Optics Platform, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
| | - Elvis Boci
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Marwan Abdellah
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| | - Daniel Keller
- Blue Brain Project, Swiss Federal Institute of Technology Lausanne (EPFL), Campus Biotech, Geneva, Switzerland
| |
Collapse
|
27
|
C Benincasa J, Madias MI, Kandell RM, Delgado-Garcia LM, Engler AJ, Kwon EJ, Porcionatto MA. Mechanobiological Modulation of In Vitro Astrocyte Reactivity Using Variable Gel Stiffness. ACS Biomater Sci Eng 2024; 10:4279-4296. [PMID: 38870483 PMCID: PMC11234334 DOI: 10.1021/acsbiomaterials.4c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
After traumatic brain injury, the brain extracellular matrix undergoes structural rearrangement due to changes in matrix composition, activation of proteases, and deposition of chondroitin sulfate proteoglycans by reactive astrocytes to produce the glial scar. These changes lead to a softening of the tissue, where the stiffness of the contusion "core" and peripheral "pericontusional" regions becomes softer than that of healthy tissue. Pioneering mechanotransduction studies have shown that soft substrates upregulate intermediate filament proteins in reactive astrocytes; however, many other aspects of astrocyte biology remain unclear. Here, we developed a platform for the culture of cortical astrocytes using polyacrylamide (PA) gels of varying stiffness (measured in Pascal; Pa) to mimic injury-related regions in order to investigate the effects of tissue stiffness on astrocyte reactivity and morphology. Our results show that substrate stiffness influences astrocyte phenotype; soft 300 Pa substrates led to increased GFAP immunoreactivity, proliferation, and complexity of processes. Intermediate 800 Pa substrates increased Aggrecan+, Brevican+, and Neurocan+ astrocytes. The stiffest 1 kPa substrates led to astrocytes with basal morphologies, similar to a physiological state. These results advance our understanding of astrocyte mechanotransduction processes and provide evidence of how substrates with engineered stiffness can mimic the injury microenvironment.
Collapse
Affiliation(s)
- Julia C Benincasa
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Marianne I Madias
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Rebecca M Kandell
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lina M Delgado-Garcia
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| | - Adam J Engler
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marimelia A Porcionatto
- Department of Biochemistry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039032, Brazil
| |
Collapse
|
28
|
Ferreira AFF, Ulrich H, Feng ZP, Sun HS, Britto LR. Neurodegeneration and glial morphological changes are both prevented by TRPM2 inhibition during the progression of a Parkinson's disease mouse model. Exp Neurol 2024; 377:114780. [PMID: 38649091 DOI: 10.1016/j.expneurol.2024.114780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by dopaminergic neuron death and neuroinflammation. Emerging evidence points to the involvement of the transient receptor potential melastatin 2 (TRPM2) channel in neuron death and glial activation in several neurodegenerative diseases. However, the involvement of TRPM2 in PD and specifically its relation to the neuroinflammation aspect of the disease remains poorly understood. Here, we hypothesized that AG490, a TRPM2 inhibitor, can be used as a treatment in a mouse model of PD. Mice underwent stereotaxic surgery for 6-hydroxydopamine (6-OHDA) administration in the right striatum. Motor behavioral tests (apomorphine, cylinder, and rotarod) were performed on day 3 post-injection to confirm the PD model induction. AG490 was then daily injected i.p. between days 3 to 6 after surgery. On day 6, motor behavior was assessed again. Substantia nigra (SNc) and striatum (CPu) were collected for immunohistochemistry, immunoblotting, and RT-qPCR analysis on day 7. Our results revealed that AG490 post-treatment reduced motor behavior impairment and nigrostriatal neurodegeneration. In addition, the compound prevented TRPM2 upregulation and changes of the Akt/GSK-3β/caspase-3 signaling pathway. The TRPM2 inhibition also avoids the glial morphology changes observed in the PD group. Remarkably, the morphometrical analysis revealed that the ameboid-shaped microglia, found in 6-OHDA-injected animals, were no longer present in the AG490-treated group. These results indicate that AG490 treatment can reduce dopaminergic neuronal death and suppress neuroinflammation in a PD mouse model. Inhibition of TRPM2 by AG490 could then represent a potential therapeutical strategy to be evaluated for PD treatment.
Collapse
Affiliation(s)
- Ana Flavia F Ferreira
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Hong-Shuo Sun
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada; Department of Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Luiz Roberto Britto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
29
|
Baldwin KT, Murai KK, Khakh BS. Astrocyte morphology. Trends Cell Biol 2024; 34:547-565. [PMID: 38180380 DOI: 10.1016/j.tcb.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 01/06/2024]
Abstract
Astrocytes are predominant glial cells that tile the central nervous system (CNS). A cardinal feature of astrocytes is their complex and visually enchanting morphology, referred to as bushy, spongy, and star-like. A central precept of this review is that such complex morphological shapes evolved to allow astrocytes to contact and signal with diverse cells at a range of distances in order to sample, regulate, and contribute to the extracellular milieu, and thus participate widely in cell-cell signaling during physiology and disease. The recent use of improved imaging methods and cell-specific molecular evaluations has revealed new information on the structural organization and molecular underpinnings of astrocyte morphology, the mechanisms of astrocyte morphogenesis, and the contributions to disease states of reduced morphology. These insights have reignited interest in astrocyte morphological complexity as a cornerstone of fundamental glial biology and as a critical substrate for multicellular spatial and physiological interactions in the CNS.
Collapse
Affiliation(s)
- Katherine T Baldwin
- Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Keith K Murai
- Centre for Research in Neuroscience, Department of Neurology and Neurosurgery, Brain Repair and Integrative Neuroscience Program, The Research Institute of the McGill University Health Centre, Montreal General Hospital, 1650 Cedar Avenue, Montreal, QC H3G 1A4, Canada.
| | - Baljit S Khakh
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA; Department of Neurobiology, David Geffen School of Medicine, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90034, USA.
| |
Collapse
|
30
|
Alhadidi QM, Bahader GA, Arvola O, Kitchen P, Shah ZA, Salman MM. Astrocytes in functional recovery following central nervous system injuries. J Physiol 2024; 602:3069-3096. [PMID: 37702572 PMCID: PMC11421637 DOI: 10.1113/jp284197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/07/2023] [Indexed: 09/14/2023] Open
Abstract
Astrocytes are increasingly recognised as partaking in complex homeostatic mechanisms critical for regulating neuronal plasticity following central nervous system (CNS) insults. Ischaemic stroke and traumatic brain injury are associated with high rates of disability and mortality. Depending on the context and type of injury, reactive astrocytes respond with diverse morphological, proliferative and functional changes collectively known as astrogliosis, which results in both pathogenic and protective effects. There is a large body of research on the negative consequences of astrogliosis following brain injuries. There is also growing interest in how astrogliosis might in some contexts be protective and help to limit the spread of the injury. However, little is known about how astrocytes contribute to the chronic functional recovery phase following traumatic and ischaemic brain insults. In this review, we explore the protective functions of astrocytes in various aspects of secondary brain injury such as oedema, inflammation and blood-brain barrier dysfunction. We also discuss the current knowledge on astrocyte contribution to tissue regeneration, including angiogenesis, neurogenesis, synaptogenesis, dendrogenesis and axogenesis. Finally, we discuss diverse astrocyte-related factors that, if selectively targeted, could form the basis of astrocyte-targeted therapeutic strategies to better address currently untreatable CNS disorders.
Collapse
Affiliation(s)
- Qasim M Alhadidi
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA, USA
- Department of Pharmacy, Al-Yarmok University College, Diyala, Iraq
| | - Ghaith A Bahader
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Oiva Arvola
- Division of Anaesthesiology, Jorvi Hospital, Department of Anaesthesiology, Intensive Care and Pain Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Stem Cells and Metabolism Research Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Philip Kitchen
- College of Health and Life Sciences, Aston University, Birmingham, UK
| | - Zahoor A Shah
- Department of Medicinal and Biological Chemistry, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH, USA
| | - Mootaz M Salman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Kavli Institute for NanoScience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Bansal Y, Codeluppi SA, Banasr M. Astroglial Dysfunctions in Mood Disorders and Rodent Stress Models: Consequences on Behavior and Potential as Treatment Target. Int J Mol Sci 2024; 25:6357. [PMID: 38928062 PMCID: PMC11204179 DOI: 10.3390/ijms25126357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/30/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Astrocyte dysfunctions have been consistently observed in patients affected with depression and other psychiatric illnesses. Although over the years our understanding of these changes, their origin, and their consequences on behavior and neuronal function has deepened, many aspects of the role of astroglial dysfunction in major depressive disorder (MDD) and post-traumatic stress disorder (PTSD) remain unknown. In this review, we summarize the known astroglial dysfunctions associated with MDD and PTSD, highlight the impact of chronic stress on specific astroglial functions, and how astroglial dysfunctions are implicated in the expression of depressive- and anxiety-like behaviors, focusing on behavioral consequences of astroglial manipulation on emotion-related and fear-learning behaviors. We also offer a glance at potential astroglial functions that can be targeted for potential antidepressant treatment.
Collapse
Affiliation(s)
- Yashika Bansal
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
| | - Sierra A. Codeluppi
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
| | - Mounira Banasr
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON M5T 1R8, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5G 2C8, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M2J 4A6, Canada
| |
Collapse
|
32
|
Liu S, Yang X, Yuan M, Wang S, Fan H, Zou Q, Pu Y, Cai Z. High salt diet induces cognitive impairment and is linked to the activation of IGF1R/mTOR/p70S6K signaling. Metab Brain Dis 2024; 39:803-819. [PMID: 38771412 DOI: 10.1007/s11011-024-01358-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
A high-salt diet (HSD) has been associated with various health issues, including hypertension and cardiovascular diseases. However, recent studies have revealed a potential link between high salt intake and cognitive impairment. This study aims to investigate the effects of high salt intake on autophagy, tau protein hyperphosphorylation, and synaptic function and their potential associations with cognitive impairment. To explore these mechanisms, 8-month-old male C57BL/6 mice were fed either a normal diet (0.4% NaCl) or an HSD (8% NaCl) for 3 months, and Neuro-2a cells were incubated with normal medium or NaCl medium (80 mM). Behavioral tests revealed learning and memory deficits in mice fed the HSD. We further discovered that the HSD decreased autophagy, as indicated by diminished levels of the autophagy-associated proteins Beclin-1 and LC3, along with an elevated p62 protein level. HSD feeding significantly decreased insulin-like growth factor-1 receptor (IGF1R) expression in the brain of C57BL/6 mice and activated mechanistic target of rapamycin (mTOR) signaling. In addition, the HSD reduced synaptophysin and postsynaptic density protein 95 (PSD95) expression in the hippocampus and caused synaptic loss in mice. We also found amyloid β accumulation and hyperphosphorylation of tau protein at different loci both in vivo and in vitro. Overall, this study highlights the clinical significance of understanding the impact of an HSD on cognitive function. By targeting the IGF1R/mTOR/p70S6K pathway or promoting autophagy, it may be possible to mitigate the negative effects of high salt intake on cognitive function.
Collapse
Affiliation(s)
- Shu Liu
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Xu Yang
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
- Department of Neurology, Affiliated Hospital of Southwest Medical University, 646000, Sichuan, China
| | - Minghao Yuan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Shengyuan Wang
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Haixia Fan
- Chongqing Medical University, 400042, Chongqing, China
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Qian Zou
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Yinshuang Pu
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China
| | - Zhiyou Cai
- Chongqing Medical University, 400042, Chongqing, China.
- Chongqing institute Green and Intelligent Technology, Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Chongqing School, University of Chinese Academy of Sciences, 400714, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing General Hospital, 400013, Chongqing, Chongqing, China.
- Department of Neurology, Chongqing Medical University, No. 1, Medical College Road, Yuzhong District, 400016, Chongqing, Chongqing, China.
| |
Collapse
|
33
|
Santiago-Balmaseda A, Aguirre-Orozco A, Valenzuela-Arzeta IE, Villegas-Rojas MM, Pérez-Segura I, Jiménez-Barrios N, Hurtado-Robles E, Rodríguez-Hernández LD, Rivera-German ER, Guerra-Crespo M, Martinez-Fong D, Ledesma-Alonso C, Diaz-Cintra S, Soto-Rojas LO. Neurodegenerative Diseases: Unraveling the Heterogeneity of Astrocytes. Cells 2024; 13:921. [PMID: 38891053 PMCID: PMC11172252 DOI: 10.3390/cells13110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
The astrocyte population, around 50% of human brain cells, plays a crucial role in maintaining the overall health and functionality of the central nervous system (CNS). Astrocytes are vital in orchestrating neuronal development by releasing synaptogenic molecules and eliminating excessive synapses. They also modulate neuronal excitability and contribute to CNS homeostasis, promoting neuronal survival by clearance of neurotransmitters, transporting metabolites, and secreting trophic factors. Astrocytes are highly heterogeneous and respond to CNS injuries and diseases through a process known as reactive astrogliosis, which can contribute to both inflammation and its resolution. Recent evidence has revealed remarkable alterations in astrocyte transcriptomes in response to several diseases, identifying at least two distinct phenotypes called A1 or neurotoxic and A2 or neuroprotective astrocytes. However, due to the vast heterogeneity of these cells, it is limited to classify them into only two phenotypes. This review explores the various physiological and pathophysiological roles, potential markers, and pathways that might be activated in different astrocytic phenotypes. Furthermore, we discuss the astrocyte heterogeneity in the main neurodegenerative diseases and identify potential therapeutic strategies. Understanding the underlying mechanisms in the differentiation and imbalance of the astrocytic population will allow the identification of specific biomarkers and timely therapeutic approaches in various neurodegenerative diseases.
Collapse
Affiliation(s)
- Alberto Santiago-Balmaseda
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Annai Aguirre-Orozco
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Irais E. Valenzuela-Arzeta
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Marcos M. Villegas-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de Mexico 11340, Mexico
| | - Isaac Pérez-Segura
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Natalie Jiménez-Barrios
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Ernesto Hurtado-Robles
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Luis Daniel Rodríguez-Hernández
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Erick R. Rivera-German
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| | - Magdalena Guerra-Crespo
- Laboratorio de Medicina Regenerativa, Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico;
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico; (I.E.V.-A.); (N.J.-B.); (D.M.-F.)
| | - Carlos Ledesma-Alonso
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Sofía Diaz-Cintra
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de Mexico, Querétaro 76230, Mexico;
| | - Luis O. Soto-Rojas
- Laboratorio de Patogénesis Molecular, Laboratorio 4 Edificio A4, Carrera Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City 54090, Mexico; (A.S.-B.); (A.A.-O.); (M.M.V.-R.); (I.P.-S.); (E.H.-R.); (L.D.R.-H.); (E.R.R.-G.)
| |
Collapse
|
34
|
Mota B, Brás AR, Araújo-Andrade L, Silva A, Pereira PA, Madeira MD, Cardoso A. High-Caloric Diets in Adolescence Impair Specific GABAergic Subpopulations, Neurogenesis, and Alter Astrocyte Morphology. Int J Mol Sci 2024; 25:5524. [PMID: 38791562 PMCID: PMC11122083 DOI: 10.3390/ijms25105524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
We compared the effects of two different high-caloric diets administered to 4-week-old rats for 12 weeks: a diet rich in sugar (30% sucrose) and a cafeteria diet rich in sugar and high-fat foods. We focused on the hippocampus, particularly on the gamma-aminobutyric acid (GABA)ergic system, including the Ca2+-binding proteins parvalbumin (PV), calretinin (CR), calbindin (CB), and the neuropeptides somatostatin (SST) and neuropeptide Y (NPY). We also analyzed the density of cholinergic varicosities, brain-derived neurotrophic factor (BDNF), reelin (RELN), and cyclin-dependent kinase-5 (CDK-5) mRNA levels, and glial fibrillary acidic protein (GFAP) expression. The cafeteria diet reduced PV-positive neurons in the granular layer, hilus, and CA1, as well as NPY-positive neurons in the hilus, without altering other GABAergic populations or overall GABA levels. The high-sugar diet induced a decrease in the number of PV-positive cells in CA3 and an increase in CB-positive cells in the hilus and CA1. No alterations were observed in the cholinergic varicosities. The cafeteria diet also reduced the relative mRNA expression of RELN without significant changes in BDNF and CDK5 levels. The cafeteria diet increased the number but reduced the length of the astrocyte processes. These data highlight the significance of determining the mechanisms mediating the observed effects of these diets and imply that the cognitive impairments previously found might be related to both the neuroinflammation process and the reduction in PV, NPY, and RELN expression in the hippocampal formation.
Collapse
Affiliation(s)
- Bárbara Mota
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Rita Brás
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
| | - Leonardo Araújo-Andrade
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ana Silva
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Pedro A. Pereira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - M. Dulce Madeira
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Armando Cardoso
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal; (B.M.)
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Dr. Plácido da Costa, 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
35
|
Li D, Wang Y, Guo Y, Wang W. Bioinformatics analysis reveals multiple functional changes in astrocytes in temporal lobe epilepsy. Brain Res 2024; 1831:148820. [PMID: 38417653 DOI: 10.1016/j.brainres.2024.148820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Epilepsy is a prevalent chronic neurological disorder characterized by recurrent seizures and brain dysfunction. Existing antiepileptic drugs (AEDs) mainly act on neurons and provide symptomatic control of seizures, but they do not modify the progression of epilepsy and may cause serious adverse effects. Increasing evidence suggests that reactive astrogliosis is critical in the pathophysiology of epilepsy. However, the function of reactive astrocytes in epilepsy has not been thoroughly explored. To provide a new perspective on the role of reactive astrocytes in epileptogenesis, we identified human astrocyte-specific genes and found 131 of these genes significantly differentially expressed in human temporal lobe epilepsy (TLE) datasets. Multiple astrocytic functions, such as cell adhesion, cell morphogenesis, actin filament-based process, apoptotic cell clearance and response to oxidative stress, were found to be promoted. Moreover, multiple altered astrocyte-specific genes were enriched in phagocytosis, perisynaptic astrocyte processes (PAPs), plasticity, and synaptic functions. Nine hub genes (ERBB2, GFAP, NOTCH2, ITGAV, ABCA1, AQP4, LRP1, GJA1, and YAP1) were identified by protein-protein interaction (PPI) network analysis. The correlation between the expression of these hub genes and seizure frequency, as well as epilepsy-related factors, including inflammatory mediators, complement factors, glutamate excitotoxicity and astrocyte reactivity, were analyzed. Additionally, upstream transcription factors of the hub genes were predicted. Finally, astrogliosis and the expression of the hub genes were validated in an epileptic rat model. Our findings reveal the various changes in astrocyte function associated with epilepsy and provide candidate astrocyte-specific genes that could be potential antiepileptogenic targets.
Collapse
Affiliation(s)
- Dongxiao Li
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China; Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China
| | - Yufeng Wang
- Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yansu Guo
- Beijing Geriatric Healthcare Center, Xuanwu Hospital, Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing, China
| | - Weiping Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China; Neurological Laboratory of Hebei Province, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, Hebei 050000, China.
| |
Collapse
|
36
|
Leventoux N, Morimoto S, Ishikawa M, Nakamura S, Ozawa F, Kobayashi R, Watanabe H, Supakul S, Okamoto S, Zhou Z, Kobayashi H, Kato C, Hirokawa Y, Aiba I, Takahashi S, Shibata S, Takao M, Yoshida M, Endo F, Yamanaka K, Kokubo Y, Okano H. Aberrant CHCHD2-associated mitochondriopathy in Kii ALS/PDC astrocytes. Acta Neuropathol 2024; 147:84. [PMID: 38750212 DOI: 10.1007/s00401-024-02734-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/28/2024] [Accepted: 04/15/2024] [Indexed: 05/25/2024]
Abstract
Amyotrophic Lateral Sclerosis/Parkinsonism-Dementia Complex (ALS/PDC), a rare and complex neurological disorder, is predominantly observed in the Western Pacific islands, including regions of Japan, Guam, and Papua. This enigmatic condition continues to capture medical attention due to affected patients displaying symptoms that parallel those seen in either classical amyotrophic lateral sclerosis (ALS) or Parkinson's disease (PD). Distinctly, postmortem examinations of the brains of affected individuals have shown the presence of α-synuclein aggregates and TDP-43, which are hallmarks of PD and classical ALS, respectively. These observations are further complicated by the detection of phosphorylated tau, accentuating the multifaceted proteinopathic nature of ALS/PDC. The etiological foundations of this disease remain undetermined, and genetic investigations have yet to provide conclusive answers. However, emerging evidence has implicated the contribution of astrocytes, pivotal cells for maintaining brain health, to neurodegenerative onset, and likely to play a significant role in the pathogenesis of ALS/PDC. Leveraging advanced induced pluripotent stem cell technology, our team cultivated multiple astrocyte lines to further investigate the Japanese variant of ALS/PDC (Kii ALS/PDC). CHCHD2 emerged as a significantly dysregulated gene when disease astrocytes were compared to healthy controls. Our analyses also revealed imbalances in the activation of specific pathways: those associated with astrocytic cilium dysfunction, known to be involved in neurodegeneration, and those related to major neurological disorders, including classical ALS and PD. Further in-depth examinations revealed abnormalities in the mitochondrial morphology and metabolic processes of the affected astrocytes. A particularly striking observation was the reduced expression of CHCHD2 in the spinal cord, motor cortex, and oculomotor nuclei of patients with Kii ALS/PDC. In summary, our findings suggest a potential reduction in the support Kii ALS/PDC astrocytes provide to neurons, emphasizing the need to explore the role of CHCHD2 in maintaining mitochondrial health and its implications for the disease.
Collapse
Affiliation(s)
- Nicolas Leventoux
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoru Morimoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Mitsuru Ishikawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Shiho Nakamura
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Fumiko Ozawa
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Reona Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hirotaka Watanabe
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
| | - Sopak Supakul
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Satoshi Okamoto
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Zhi Zhou
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroya Kobayashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Chris Kato
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan
| | - Yoshifumi Hirokawa
- Department of Oncologic Pathology, Mie University Graduate School of Medicine, Mie, Japan
| | - Ikuko Aiba
- Department of Neurology, NHO, Higashinagoya National Hospital, Aichi, Japan
| | - Shinichi Takahashi
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan
- Department of Neurology and Stroke, International Medical Centre, Saitama Medical University, Saitama, Japan
| | - Shinsuke Shibata
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaki Takao
- Department of Clinical Laboratory, National Centre of Neurology and Psychiatry (NCNP), Tokyo, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Fumito Endo
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Aichi, Japan
| | - Yasumasa Kokubo
- Kii ALS/PDC Research Centre, Mie University Graduate School of Regional Innovation Studies, Mie, Japan.
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
- Keio Regenerative Medicine Research Centre, Keio University, Kanagawa, Japan.
- Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo, Japan.
| |
Collapse
|
37
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
38
|
Wang X, Li A, Fan H, Li Y, Yang N, Tang Y. Astrocyte-Derived Extracellular Vesicles for Ischemic Stroke: Therapeutic Potential and Prospective. Aging Dis 2024; 15:1227-1254. [PMID: 37728588 PMCID: PMC11081164 DOI: 10.14336/ad.2023.0823-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Stroke is a leading cause of death and disability in the world. Astrocytes are special glial cells within the central nervous system and play important roles in mediating neuroprotection and repair processes during stroke. Extracellular vesicles (EVs) are lipid bilayer particles released from cells that facilitate intercellular communication in stroke by delivering proteins, lipids, and RNA to target cells. Recently, accumulating evidence suggested that astrocyte-derived EVs (ADEVs) are actively involved in mediating numerous biological processes including neuroprotection and neurorepair in stroke and they are realized as an excellent therapeutic approach for treating stroke. In this review we systematically summarize the up-to-date research on ADEVs in stroke, and prospects for its potential as a novel therapeutic target for stroke. We also provide an overview of the effects and functions of ADEVs on stroke recovery, which may lead to developing clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Xianghui Wang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Aihua Li
- Department of rehabilitation medicine, Jinan Hospital, Jinan, China
| | - Huaju Fan
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Yanyan Li
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
| | - Nana Yang
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, China.
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Yaohui Tang
- School of Biomedical Engineering and Affiliated Sixth People’s Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
39
|
Bachmann H, Vandemoortele B, Vermeirssen V, Carrette E, Vonck K, Boon P, Raedt R, Laureys G. Vagus nerve stimulation enhances remyelination and decreases innate neuroinflammation in lysolecithin-induced demyelination. Brain Stimul 2024; 17:575-587. [PMID: 38648972 DOI: 10.1016/j.brs.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Current treatments for Multiple Sclerosis (MS) poorly address chronic innate neuroinflammation nor do they offer effective remyelination. The vagus nerve has a strong regulatory role in inflammation and Vagus Nerve Stimulation (VNS) has potential to affect both neuroinflammation and remyelination in MS. OBJECTIVE This study investigated the effects of VNS on demyelination and innate neuroinflammation in a validated MS rodent model. METHODS Lysolecithin (LPC) was injected in the corpus callosum (CC) of 46 Lewis rats, inducing a demyelinated lesion. 33/46 rats received continuously-cycled VNS (cVNS) or one-minute per day VNS (1minVNS) or sham VNS from 2 days before LPC-injection until perfusion at 3 days post-injection (dpi) (corresponding with a demyelinated lesion with peak inflammation). 13/46 rats received cVNS or sham from 2 days before LPC-injection until perfusion at 11 dpi (corresponding with a partial remyelinated lesion). Immunohistochemistry and proteomics analyses were performed to investigate the extend of demyelination and inflammation. RESULTS Immunohistochemistry showed that cVNS significantly reduced microglial and astrocytic activation in the lesion and lesion border, and significantly reduced the Olig2+ cell count at 3 dpi. Furthermore, cVNS significantly improved remyelination with 57.4 % versus sham at 11 dpi. Proteomic gene set enrichment analyses showed increased activation of (glutamatergic) synapse pathways in cVNS versus sham, most pronounced at 3 dpi. CONCLUSION cVNS improved remyelination of an LPC-induced lesion. Possible mechanisms might include modulation of microglia and astrocyte activity, increased (glutamatergic) synapses and enhanced oligodendrocyte clearance after initial injury.
Collapse
Affiliation(s)
- Helen Bachmann
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium.
| | - Boris Vandemoortele
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Vanessa Vermeirssen
- Laboratory for Computational Biology, Integromics and Gene Regulation (CBIGR), Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Evelien Carrette
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Kristl Vonck
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Paul Boon
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Robrecht Raedt
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| | - Guy Laureys
- Ghent University, 4 Brain, Department of Neurology, Ghent University Hospital, Belgium
| |
Collapse
|
40
|
Yakovlev EV, Simkin IV, Shirokova AA, Kolotieva NA, Novikova SV, Nasyrov AD, Denisenko IR, Gursky KD, Shishkov IN, Narzaeva DE, Salmina AB, Yurchenko SO, Kryuchkov NP. Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy. Sci Rep 2024; 14:9846. [PMID: 38684715 PMCID: PMC11059356 DOI: 10.1038/s41598-024-59773-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Astrocytes are glycolytically active cells in the central nervous system playing a crucial role in various brain processes from homeostasis to neurotransmission. Astrocytes possess a complex branched morphology, frequently examined by fluorescent microscopy. However, staining and fixation may impact the properties of astrocytes, thereby affecting the accuracy of the experimental data of astrocytes dynamics and morphology. On the other hand, phase contrast microscopy can be used to study astrocytes morphology without affecting them, but the post-processing of the resulting low-contrast images is challenging. The main result of this work is a novel approach for recognition and morphological analysis of unstained astrocytes based on machine-learning recognition of microscopic images. We conducted a series of experiments involving the cultivation of isolated astrocytes from the rat brain cortex followed by microscopy. Using the proposed approach, we tracked the temporal evolution of the average total length of branches, branching, and area per astrocyte in our experiments. We believe that the proposed approach and the obtained experimental data will be of interest and benefit to the scientific communities in cell biology, biophysics, and machine learning.
Collapse
Affiliation(s)
- Egor V Yakovlev
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| | - Ivan V Simkin
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Anastasiya A Shirokova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nataliya A Kolotieva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Svetlana V Novikova
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Artur D Nasyrov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ilya R Denisenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Konstantin D Gursky
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Ivan N Shishkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Diana E Narzaeva
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Alla B Salmina
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
- Research Center of Neurology, 80 Volokolamskoye Shosse, Moscow, 125367, Russia
| | - Stanislav O Yurchenko
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia
| | - Nikita P Kryuchkov
- Scientific-Educational Centre "Soft matter and physics of fluids", Bauman Moscow State Technical University, 2nd Baumanskaya Street 5, Moscow, 105005, Russia.
| |
Collapse
|
41
|
Yang C, Jiang Z, Gao X, Yang H, Su J, Weng R, Ni W, Gu Y. Taurine ameliorates sensorimotor function by inhibiting apoptosis and activating A2 astrocytes in mice after subarachnoid hemorrhage. Amino Acids 2024; 56:31. [PMID: 38616233 PMCID: PMC11016520 DOI: 10.1007/s00726-024-03387-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024]
Abstract
Subarachnoid hemorrhage (SAH) is a form of severe acute stroke with very high mortality and disability rates. Early brain injury (EBI) and delayed cerebral ischemia (DCI) contribute to the poor prognosis of patients with SAH. Currently, some researchers have started to focus on changes in amino acid metabolism that occur in brain tissues after SAH. Taurine is a sulfur-containing amino acid that is semi-essential in animals, and it plays important roles in various processes, such as neurodevelopment, osmotic pressure regulation, and membrane stabilization. In acute stroke, such as cerebral hemorrhage, taurine plays a neuroprotective role. However, the role of taurine after subarachnoid hemorrhage has rarely been reported. In the present study, we established a mouse model of SAH. We found that taurine administration effectively improved the sensorimotor function of these mice. In addition, taurine treatment alleviated sensorimotor neuron damage and reduced the proportion of apoptotic cells. Furthermore, taurine treatment enhanced the polarization of astrocytes toward the neuroprotective phenotype while inhibiting their polarization toward the neurotoxic phenotype. This study is the first to reveal the relationship between taurine and astrocyte polarization and may provide a new strategy for SAH research and clinical treatment.
Collapse
Affiliation(s)
- Chunlei Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Zhiwen Jiang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Ruiyuan Weng
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
- National Center for Neurological Disorders, Shanghai, 201107, China
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 201107, China.
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- National Center for Neurological Disorders, Shanghai, 201107, China.
- Neurosurgical Institute of Fudan University, Shanghai, 201107, China.
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, 200052, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Leal-Nazaré CG, Arrifano GP, Lopes-Araújo A, Santos-Sacramento L, Barthelemy JL, Soares-Silva I, Crespo-Lopez ME, Augusto-Oliveira M. Methylmercury neurotoxicity: Beyond the neurocentric view. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170939. [PMID: 38365040 DOI: 10.1016/j.scitotenv.2024.170939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 02/18/2024]
Abstract
Mercury is a highly toxic metal widely used in human activities worldwide, therefore considered a global public health problem. Many cases of mercury intoxication have occurred in history and represent a huge challenge nowadays. Of particular importance is its methylated form, methylmercury (MeHg). This mercurial species induces damage to several organs in the human body, especially to the central nervous system. Neurological impairments such as executive, memory, motor and visual deficits are associated with MeHg neurotoxicity. Molecular mechanisms involved in MeHg-induced neurotoxicity include excitotoxicity due to glutamatergic imbalance, disturbance in calcium homeostasis and oxidative balance, failure in synaptic support, and inflammatory response. Although neurons are largely affected by MeHg intoxication, they only represent half of the brain cells. Glial cells represent roughly 50 % of the brain cells and are key elements in the functioning of the central nervous system. Particularly, astrocytes and microglia are deeply involved in MeHg-induced neurotoxicity, resulting in distinct neurological outcomes depending on the context. In this review, we discuss the main findings on astroglial and microglial involvement as mediators of neuroprotective and neurotoxic responses to MeHg intoxication. The literature shows that these responses depend on chemical and morphophysiological features, thus, we present some insights for future investigations, considering the particularities of the context, including time and dose of exposure, brain region, and species of study.
Collapse
Affiliation(s)
- Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Gabriela P Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Amanda Lopes-Araújo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Jean Ludger Barthelemy
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Isabela Soares-Silva
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| | - Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil.
| |
Collapse
|
43
|
Zhou C, Huang M, Wang S, Chu S, Zhang Z, Chen N. Tunneling nanotubes: The transport highway for astrocyte-neuron communication in the central nervous system. Brain Res Bull 2024; 209:110921. [PMID: 38447659 DOI: 10.1016/j.brainresbull.2024.110921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/08/2024]
Abstract
Tunneling nanotubes (TNTs) have emerged as pivotal structures for intercellular communication, enabling the transfer of cellular components across distant cells. Their involvement in neurological disorders has attracted considerable scientific interest. This review delineates the functions of TNTs within the central nervous system, examining their role in the transmission of bioenergetic substrates, and signaling molecules, and their multifaceted impact on both physiological and pathological processes, with an emphasis on neurodegenerative diseases. The review highlights the selectivity and specificity of TNTs as dedicated pathways for intercellular cargo delivery, particularly under stress conditions that provoke increased TNT formation. The potential of TNTs as therapeutic targets is explored in depth. We pay particular attention to the interactions between astrocytes and neurons mediated by TNTs, which are fundamental to brain architecture and function. Dysfunctions in these interactions are implicated in the spread of protein aggregates and mitochondrial anomalies, contributing to the pathogenesis of neurodegenerative diseases. The review culminates with a synthesis of the current understanding of TNT biology and identifies research gaps, advocating for intensified exploration into TNTs as a promising therapeutic frontier.
Collapse
Affiliation(s)
- Cuixiang Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Min Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shasha Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Naihong Chen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China; Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| |
Collapse
|
44
|
Pan MT, Zhang H, Li XJ, Guo XY. Genetically modified non-human primate models for research on neurodegenerative diseases. Zool Res 2024; 45:263-274. [PMID: 38287907 PMCID: PMC11017080 DOI: 10.24272/j.issn.2095-8137.2023.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/25/2024] [Indexed: 01/31/2024] Open
Abstract
Neurodegenerative diseases (NDs) are a group of debilitating neurological disorders that primarily affect elderly populations and include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Currently, there are no therapies available that can delay, stop, or reverse the pathological progression of NDs in clinical settings. As the population ages, NDs are imposing a huge burden on public health systems and affected families. Animal models are important tools for preclinical investigations to understand disease pathogenesis and test potential treatments. While numerous rodent models of NDs have been developed to enhance our understanding of disease mechanisms, the limited success of translating findings from animal models to clinical practice suggests that there is still a need to bridge this translation gap. Old World non-human primates (NHPs), such as rhesus, cynomolgus, and vervet monkeys, are phylogenetically, physiologically, biochemically, and behaviorally most relevant to humans. This is particularly evident in the similarity of the structure and function of their central nervous systems, rendering such species uniquely valuable for neuroscience research. Recently, the development of several genetically modified NHP models of NDs has successfully recapitulated key pathologies and revealed novel mechanisms. This review focuses on the efficacy of NHPs in modeling NDs and the novel pathological insights gained, as well as the challenges associated with the generation of such models and the complexities involved in their subsequent analysis.
Collapse
Affiliation(s)
- Ming-Tian Pan
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Han Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China
| | - Xiang-Yu Guo
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
45
|
Li Y, Li P, Tao Q, Abuqeis IJA, Xiyang Y. Role and limitation of cell therapy in treating neurological diseases. IBRAIN 2024; 10:93-105. [PMID: 38682022 PMCID: PMC11045202 DOI: 10.1002/ibra.12152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 05/01/2024]
Abstract
The central role of the brain in governing systemic functions within human physiology underscores its paramount significance as the focal point of physiological regulation. The brain, a highly sophisticated organ, orchestrates a diverse array of physiological processes encompassing motor control, sensory perception, cognition, emotion, and the regulation of vital functions, such as heartbeat, respiration, and hormonal equilibrium. A notable attribute of neurological diseases manifests as the depletion of neurons and the occurrence of tissue necrosis subsequent to injury. The transplantation of neural stem cells (NSCs) into the brain exhibits the potential for the replacement of lost neurons and the reconstruction of neural circuits. Furthermore, the transplantation of other types of cells in alternative locations can secrete nutritional factors that indirectly contribute to the restoration of nervous system equilibrium and the mitigation of neural inflammation. This review summarized a comprehensive investigation into the role of NSCs, hematopoietic stem cells, mesenchymal stem cells, and support cells like astrocytes and microglia in alleviating neurological deficits after cell infusion. Moreover, a thorough assessment was undertaken to discuss extant constraints in cellular transplantation therapies, concurrently delineating indispensable model-based methodologies, specifically on organoids, which were essential for guiding prospective research initiatives in this specialized field.
Collapse
Affiliation(s)
- Yu‐Qi Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Peng‐Fei Li
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | - Qian Tao
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
| | | | - Yan‐Bin Xiyang
- School of Basic MedicineKunming Medical UniversityKunmingChina
- Department of Pharmacology and Toxicology, College of PharmacologyUniversity of ArizonaTucsonArizonaUSA
| |
Collapse
|
46
|
He L, Ma S, Ding Z, Huang Z, Zhang Y, Xi C, Zou K, Deng Q, Huang WJM, Guo Q, Huang C. Inhibition of NFAT5-Dependent Astrocyte Swelling Alleviates Neuropathic Pain. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302916. [PMID: 38195869 PMCID: PMC10953562 DOI: 10.1002/advs.202302916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 12/03/2023] [Indexed: 01/11/2024]
Abstract
Astrocyte swelling is implicated in various neurological disorders. However, whether astrocyte swelling contributes to neuropathic pain remains elusive. This study elucidates the pivotal role of the nuclear factor of activated T-cells 5 (NFAT5) emerges as a master regulator of astrocyte swelling in the spinal dorsal horn (SDH) during neuropathic pain. Despite the ubiquitous expression of NFAT5 protein in SDH cell types, it selectively induces swelling specifically in astrocytes, not in microglia. Mechanistically, NFAT5 directly controls the expression of the water channel aquaporin-4 (AQP4), a key regulator exclusive to astrocytes. Additionally, aurora kinase B (AURKB) orchestrates NFAT5 phosphorylation, enhancing its protein stability and nuclear translocation, thereby regulating AQP4 expression. The findings establish NFAT5 as a crucial regulator for neuropathic pain through the modulation of astrocyte swelling. The AURKB-NFAT5-AQP4 pathway in astrocytes emerges as a potential therapeutic target to combat neuropathic pain.
Collapse
Affiliation(s)
- Liqiong He
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Shengyun Ma
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Zijin Ding
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Zhifeng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Yu Zhang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Caiyun Xi
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Kailu Zou
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Qingwei Deng
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
| | - Wendy Jia Men Huang
- Department of Cellular and Molecular MedicineUniversity of California San DiegoSan DiegoCA92093USA
| | - Qulian Guo
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| | - Changsheng Huang
- Department of AnesthesiologyXiangya HospitalCentral South UniversityChangsha410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410008China
| |
Collapse
|
47
|
Niu B, Zhao M, Gao X, Xu J, Yu L. TMT-based quantitative proteomics analysis of neuroprotective effects of Forsythoside A on the MPTP-induced Parkinson's disease mouse model. Exp Neurol 2024; 373:114642. [PMID: 38056584 DOI: 10.1016/j.expneurol.2023.114642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/26/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder characteristized by the presence of dyskinesia and the progressive loss of dopaminergic neurons. Although certain drugs can mitigate the symptoms of PD, they are unable to delay the disease progression, and their prolonged use may result in complications. Therefore, there exists an urgent necessity to identify potential agents that can effectively delay PD progression with fewer side effects. Recent research has unveiled that several traditional Chinese medicines (TCM) exhibit neuroprotective properties in various models pertinent to PD. Forsythoside A (FSA), the primary bioactive compound derived from TCM Lianqiao, has undergone extensive research in animal models of Alzheimer's disease and cerebral ischemia. However, the investigation into the impact of FSA on PD is limited in existing research. In this study, we aimed to evaluate the neuroprotective effects of FSA on MPTP-induced PD mouse model. FSA demonstrated significant improvements in the behavioral and neuropathological changes triggered by MPTP in mice. Furthermore, it exerted a suppressive effect on the activations of astrocyte and microglia. Meanwhile, Tandem mass tag (TMT)-based quantitative proteomics of striatal tissue and bioinformatics analysis were performed to elucidate the underlying mechanisms of FSA on PD mouse model. Proteomics demonstrated a total of 68 differentially expressed proteins (DEPs) were identified between HFSA and MPTP groups including 26 upregulated and 42 downregulated. Systematic bioinformatics analysis of the 68 DEPs illustrated that they were predominantly related to estrogen signaling pathway and calcium signaling pathway. The related DEPs (PLCβ4, Grm2, HPAC and Cox4i1) expression levels were verified by Western blot. FSA effectively restored the altered expression of the four DEPs induced by MPTP. Summarily, FSA exerted remarkable neuroprotective effects in MPTP-induced mice. Further, our research may provide proteomics insights that contribute to the further exploration of FSA as a potential treatment for PD.
Collapse
Affiliation(s)
- Bo Niu
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Minhong Zhao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Xiu'an Gao
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China.
| | - Jiangping Xu
- School of Pharmaceutical Sciences, Southern Medical University, Key Laboratory of Mental Health of the Ministry of Education, Guangzhou 510515, China.
| | - Linzhong Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
48
|
Li M, Liu Z, Wu Y, Zheng N, Liu X, Cai A, Zheng D, Zhu J, Wu J, Xu L, Li X, Zhu LQ, Manyande A, Xu F, Wang J. In vivo imaging of astrocytes in the whole brain with engineered AAVs and diffusion-weighted magnetic resonance imaging. Mol Psychiatry 2024; 29:545-552. [PMID: 35484244 DOI: 10.1038/s41380-022-01580-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/16/2022]
Abstract
Astrocytes constitute a major part of the central nervous system and the delineation of their activity patterns is conducive to a better understanding of brain network dynamics. This study aimed to develop a magnetic resonance imaging (MRI)-based method in order to monitor the brain-wide or region-specific astrocytes in live animals. Adeno-associated virus (AAVs) vectors carrying the human glial fibrillary acidic protein (GFAP) promoter driving the EGFP-AQP1 (Aquaporin-1, an MRI reporter) fusion gene were employed. The following steps were included: constructing recombinant AAV vectors for astrocyte-specific expression, detecting MRI reporters in cell culture, brain regions, or whole brain following cell transduction, stereotactic injection, or tail vein injection. The astrocytes were detected by both fluorescent imaging and Diffusion-weighted MRI. The novel AAV mutation (Site-directed mutagenesis of surface-exposed tyrosine (Y) residues on the AAV5 capsid) significantly increased fluorescence intensity (p < 0.01) compared with the AAV5 wild type. Transduction of the rAAV2/5 carrying AQP1 induced the titer-dependent changes in MRI contrast in cell cultures (p < 0.05) and caudate-putamen (CPu) in the brain (p < 0.05). Furthermore, the MRI revealed a good brain-wide alignment between AQP1 levels and ADC signals, which increased over time in most of the transduced brain regions. In addition, the rAAV2/PHP.eB serotype efficiently introduced AOP1 expression in the whole brain via tail vein injection. This study provides an MRI-based approach to detect dynamic changes in astrocytes in live animals. The novel in vivo tool could help us to understand the complexity of neuronal and glial networks in different pathophysiological conditions.
Collapse
Affiliation(s)
- Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Zhuang Liu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Danhao Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Jinpiao Zhu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Lingling Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China
| | - Xihai Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, PR China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, PR China.
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, 430071, Wuhan, PR of China.
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China.
| |
Collapse
|
49
|
Shukla M, Bhowmick R, Ganguli P, Sarkar RR. Metabolic reprogramming and signalling cross-talks in tumour-immune interaction: a system-level exploration. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231574. [PMID: 38481985 PMCID: PMC10933535 DOI: 10.1098/rsos.231574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 04/26/2024]
Abstract
Tumour-immune microenvironment (TIME) is pivotal in tumour progression and immunoediting. Within TIME, immune cells undergo metabolic adjustments impacting nutrient supply and the anti-tumour immune response. Metabolic reprogramming emerges as a promising approach to revert the immune response towards a pro-inflammatory state and conquer tumour dominance. This study proposes immunomodulatory mechanisms based on metabolic reprogramming and employs the regulatory flux balance analysis modelling approach, which integrates signalling, metabolism and regulatory processes. For the first time, a comprehensive system-level model is constructed to capture signalling and metabolic cross-talks during tumour-immune interaction and regulatory constraints are incorporated by considering the time lag between them. The model analysis identifies novel features to enhance the immune response while suppressing tumour activity. Particularly, altering the exchange of succinate and oxaloacetate between glioma and macrophage enhances the pro-inflammatory response of immune cells. Inhibition of glutamate uptake in T-cells disrupts the antioxidant mechanism of glioma and reprograms metabolism. Metabolic reprogramming through adenosine monophosphate (AMP)-activated protein kinase (AMPK), coupled with glutamate uptake inhibition, was identified as the most impactful combination to restore T-cell function. A comprehensive understanding of metabolism and gene regulation represents a favourable approach to promote immune cell recovery from tumour dominance.
Collapse
Affiliation(s)
- Mudita Shukla
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Rupa Bhowmick
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Piyali Ganguli
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Ram Rup Sarkar
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
50
|
Nazeri Z, Abdeveiszadeh N, Zarezade V, Azizidoost S, Cheraghzadeh M, Aberumand M, Kheirollah A. Investigating the Effect of Aspirin on apoAI-Induced ATP Binding Cassette Transporter 1 Protein Expression and Cholesterol Efflux in Human Astrocytes. Adv Biomed Res 2024; 13:16. [PMID: 38525390 PMCID: PMC10958728 DOI: 10.4103/abr.abr_417_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 03/26/2024] Open
Abstract
Background Neurons need a high amount of cholesterol to maintain the stability of their membrane-rich structures. Astrocytes synthesize and distribute cholesterol to neurons, and ABCA1 is a key mediator of cholesterol efflux to generate HDL for cholesterol transport in the brain. Several studies imply the effect of aspirin on ABCA1 expression in peripheral cells such as macrophages. Here, we compared the effect of aspirin with apoA-I on ABCA1 protein expression and cholesterol efflux in human astrocytes. Materials and Methods Human astrocytes were cultured, and the effects of aspirin on the expression and protein levels of ABCA1 were investigated through RT-PCR and Western blot analysis. Additionally, the effect of co-treatment with apoA-I and aspirin on ABCA1 protein level and cholesterol efflux was evaluated. Results Dose and time-course experiments showed that the maximum effect of aspirin on ABCA1 expression occurred at a concentration of 0.5 mM after 12 h of incubation. RT-PCR and western blot data showed that aspirin upregulates ABCA1 expression by up to 4.7-fold and its protein level by 67%. Additionally, co-treatment with aspirin and apoA-I increased cholesterol release from astrocytes, indicating an additive effect of aspirin on apoAI-mediated cholesterol efflux. Conclusions The results suggest a potential role of aspirin in increasing ABCA1 expression and cholesterol efflux in astrocytes, similar to the effect of apoA-I. This indicates that aspirin could potentially regulate brain cholesterol balance and can be considered in certain neurological diseases, in particular in some neurological disorders related to cholesterol accumulation such as Alzheimer's disease.
Collapse
Affiliation(s)
- Zahra Nazeri
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Abdeveiszadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Zarezade
- Department of Biochemistry, School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Cheraghzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Aberumand
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Alireza Kheirollah
- Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- 548-E Borwell Research Building, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| |
Collapse
|