1
|
Quaresima B, Scicchitano S, Faniello MC, Mesuraca M. Role of solute carrier transporters in ovarian cancer (Review). Int J Mol Med 2025; 55:24. [PMID: 39611477 PMCID: PMC11637498 DOI: 10.3892/ijmm.2024.5465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/30/2024] Open
Abstract
Solute carrier (SLC) transporters are involved in various biological processes associated with metabolic reprogramming and cancer, supporting the increased requirement of nutrients and energy. Over the past decade, there have been significant advancements in understanding the expression and function of SLCs in ovarian cancer (OC). This gynecological condition has a high mortality rate and limited treatment options; thus, early diagnosis remains a target clinically. OC exhibits complexity and heterogeneity, resulting in different clinical characteristics, resistance to chemotherapy drugs and poor prognosis. Additionally, SLCs have a different expression pattern between healthy and tumor tissue, and consequently, their inhibition or activation could modify signaling pathways involved in the tumor growth process, such as cell proliferation, apoptosis and drug accumulation. The present review aims to consolidate current data to provide a comprehensive understanding of the potential importance of SLCs in OC. Additionally, it seeks to offer guidance for further research on utilizing SLCs as prognostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Barbara Quaresima
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | - Stefania Scicchitano
- Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, I-88100 Catanzaro, Italy
| | | | - Maria Mesuraca
- Correspondence to: Dr Maria Mesuraca or Dr Barbara Quaresima, Department of Experimental and Clinical Medicine, 'Magna Graecia' University of Catanzaro, Viale Europa, I-88100 Catanzaro, Italy, E-mail: , E-mail:
| |
Collapse
|
2
|
Wang X, Wang L, Hao Q, Cai M, Wang X, An W. Harnessing glucose metabolism with nanomedicine for cancer treatment. Theranostics 2024; 14:6831-6882. [PMID: 39479443 PMCID: PMC11519798 DOI: 10.7150/thno.100036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/28/2024] [Indexed: 11/02/2024] Open
Abstract
The significance of metabolic processes in cancer biology has garnered substantial attention, as they are essential for meeting the anabolic demands and maintaining the redox balance of rapidly dividing cancer cells. A distinctive feature of tumors is that cancer cells, unlike normal cells, exhibit an increased rate of glucose metabolism. They predominantly relying on aerobic glycolysis to metabolize glucose, which enables these cells to supply energy and produce the necessary building blocks for growth. Targeting glucose metabolism has led to the development of various cancer treatments. However, these agents often have limited efficacy due to factors such as poor stability and solubility, rapid clearance and an insufficient amount of the drug reaching the target site. These limitations can be overcome by preparing nano dosage forms through nanotechnology, which leverages the unique properties of nanomaterials to deliver drugs more precisely to target tissues with controlled release. In this review, we provide a comprehensive overview of the latest advancements in nanomedicine, focusing on the modulation of glucose metabolism in cancer cells. We discuss the design and application of various strategies that have been engineered to target the metabolic hallmarks of cancer. These nanomedicine strategies aim to exploit the metabolic vulnerabilities of cancer cells, thereby offering novel approaches to cancer therapy. The review highlights the innovative nanomaterials and their potential to deliver therapeutic agents more effectively, as well as the challenges and considerations in translating these nanomedicines from bench to bedside. By targeting the glucose metabolism of cancer cells, these nanoscale interventions hold promise for improving treatment outcomes and potentially overcoming the resistance that often plagues conventional cancer therapies.
Collapse
Affiliation(s)
- Xudong Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Liping Wang
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Qingyi Hao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211195, China
| | - Meng Cai
- China National Pharmaceutical Group Co Ltd., Sinopharm Plaza, No 20 Zhichun Road, Haidian district, Beijing 100191, China
| | - Xueting Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Wenlin An
- National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
3
|
Hotiana HA, Nordlin KP, Gotfryd K, Pedersen PA, Gourdon P. Isolation of Functional Human MCT Transporters in Saccharomyces cerevisiae. Cells 2024; 13:1585. [PMID: 39329766 PMCID: PMC11430032 DOI: 10.3390/cells13181585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Human monocarboxylate transporters (hMCTs) belong to the solute carrier 16 (SLC16) family of proteins and are responsible for the bi-directional transport of various metabolites, including monocarboxylates, hormones, and aromatic amino acids. Hence, the metabolic role of hMCTs is undisputable, as they are directly involved in providing nutrients for oxidation and gluconeogenesis as well as participate in circulation of iodothyronines. However, due to the difficulty in obtaining suitable amounts of stable hMCT samples, the structural information available for these transporters is limited, hindering the development of effective therapeutics. Here we provide a straightforward, cost-effective strategy for the overproduction of hMCTs using a whole-cell Saccharomyces cerevisiae-based system. Our results indicate that this platform is able to provide three hMCTs, i.e., hMCT1 and hMCT4 (monocarboxylate transporters), and hMCT10 (an aromatic amino acid transporter). hMCT1 and hMCT10 are recovered in the quantity and quality required for downstream structural and functional characterization. Overall, our findings demonstrate the suitability of this platform to deliver physiologically relevant membrane proteins for biophysical studies.
Collapse
Affiliation(s)
- Hajira Ahmed Hotiana
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark
| | - Karl Patric Nordlin
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark
| | - Kamil Gotfryd
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark
| | - Per Amstrup Pedersen
- Department of Biology, Faculty of Science, University of Copenhagen, Universitetsparken 13, DK-2100 Copenhagen OE, Denmark
| | - Pontus Gourdon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Maersk Tower 7-9, DK-2200 Copenhagen N, Denmark
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Sölvegatan 19, SE-221 84 Lund, Sweden
| |
Collapse
|
4
|
Jia S, Bode AM, Chen X, Luo X. Unlocking the potential: Targeting metabolic pathways in the tumor microenvironment for Cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189166. [PMID: 39111710 DOI: 10.1016/j.bbcan.2024.189166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Cancer incidence and mortality are increasing and impacting global life expectancy. Metabolic reprogramming in the tumor microenvironment (TME) is intimately related to tumorigenesis, progression, metastasis and drug resistance. Tumor cells drive metabolic reprogramming of other cells in the TME through metabolic induction of cytokines and metabolites, and metabolic substrate competition. Consequently, this boosts tumor cell growth by providing metabolic support and facilitating immunosuppression and angiogenesis. The metabolic interplay in the TME presents potential therapeutic targets. Here, we focus on the metabolic reprogramming of four principal cell subsets in the TME: CAFs, TAMs, TILs and TECs, and their interaction with tumor cells. We also summarize medications and therapies targeting these cells' metabolic pathways, particularly in the context of immune checkpoint blockade therapy.
Collapse
Affiliation(s)
- Siyuan Jia
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Xue Chen
- Early Clinical Trial Center, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China.
| | - Xiangjian Luo
- Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, PR China; Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan 410078, PR China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan 410078, China.
| |
Collapse
|
5
|
Sugiyama K, Shimano H, Takahashi M, Shimura Y, Shimura A, Furuya T, Tomabechi R, Shirasaka Y, Higuchi K, Kishimoto H, Inoue K. The Use of Carboxyfluorescein Reveals the Transport Function of MCT6/SLC16A5 Associated with CD147 as a Chloride-Sensitive Organic Anion Transporter in Mammalian Cells. J Pharm Sci 2024; 113:1113-1120. [PMID: 38160712 DOI: 10.1016/j.xphs.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/25/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Oral drug absorption involves drug permeation across the apical and basolateral membranes of enterocytes. Although transporters mediating the influx of anionic drugs in the apical membranes have been identified, transporters responsible for efflux in the basolateral membranes remain unclear. Monocarboxylate transporter 6 (MCT6/SLC16A5) has been reported to localize to the apical and basolateral membranes of human enterocytes and to transport organic anions such as bumetanide and nateglinide in the Xenopus oocyte expression system; however, its transport functions have not been elucidated in detail. In this study, we characterized the function of MCT6 expressed in HEK293T cells and explored fluorescent probes to more easily evaluate MCT6 function. The results illustrated that MCT6 interacts with CD147 to localize at the plasma membrane. When the uptake of various fluorescein derivatives was examined in NaCl-free uptake buffer (pH 5.5), the uptake of 5-carboxyfluorescein (5-CF) was significantly greater in MCT6 and CD147-expressing cells. MCT6-mediated 5-CF uptake was saturable with a Km of 1.07 mM and inhibited by several substrates/inhibitors of organic anion transporters and extracellular Cl ion with an IC50 of 53.7 mM. These results suggest that MCT6 is a chloride-sensitive organic anion transporter that can be characterized using 5-CF as a fluorescent probe.
Collapse
Affiliation(s)
- Koki Sugiyama
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroe Shimano
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masaki Takahashi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuta Shimura
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Asuka Shimura
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Takahito Furuya
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Ryuto Tomabechi
- Laboratory of Pharmaceutics, Kitasato University School of Pharmacy, Tokyo, Japan
| | - Yoshiyuki Shirasaka
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kei Higuchi
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hisanao Kishimoto
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Katsuhisa Inoue
- Department of Biopharmaceutics, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
6
|
Zhou P, Yu ZC, Cao C, Cui HR, Ding MC, Yang CX, Liao M. Pyruvate maintains and enhances the pro-inflammatory response of microglia caused by glucose deficiency in early stroke. J Cell Biochem 2024; 125:e30524. [PMID: 38226453 DOI: 10.1002/jcb.30524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Pro-inflammatory microglia mainly rely on glycolysis to maintain cytokine production during ischemia, accompanied by an increase in inducible nitric oxide synthase (iNOS) and monocarboxylate transporter 1 (MCT1). The role of energy metabolism in the pro-inflammatory response of microglia is currently unclear. In this study, we tested the response of microglia in mice after cerebral ischemia and simulated an energy environment in vitro using low glucose culture medium. The research results indicate that the expression levels of iNOS and arginase 1 (ARG1) increase in the ischemic mouse brain, but the upregulation of MCT1 expression is mainly present in iNOS positive microglia. In microglia exposed to low glucose conditions, iNOS and MCT1 levels increased, while ARG1 levels decreased. Under the same conditions, knocking down MCT1 in microglia leads to a decrease in iNOS levels, while overexpression of MCT1 leads to the opposite result. The use of NF-κB inhibitors reduced the expression levels of iNOS and MCT1 in microglia. In summary, our data indicate that pyruvate maintains and enhances the NF-κB regulated pro-inflammatory response of microglia induced by low glucose.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Cheng Yu
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Cong Cao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Huai-Rui Cui
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Mao-Chao Ding
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chao-Xian Yang
- Department of Anatomy, Southwest Medical University, Luzhou, China
| | - Min Liao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Talvi S, Jokinen J, Sipilä K, Rappu P, Zhang FP, Poutanen M, Rantakari P, Heino J. Embigin deficiency leads to delayed embryonic lung development and high neonatal mortality in mice. iScience 2024; 27:108914. [PMID: 38318368 PMCID: PMC10839689 DOI: 10.1016/j.isci.2024.108914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/20/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Embigin (Gp70), a receptor for fibronectin and an ancillary protein for monocarboxylate transporters, is known to regulate stem cell niches in sebaceous gland and bone marrow. Here, we show that embigin expression is at high level during early mouse embryogenesis and that embigin is essential for lung development. Markedly increased neonatal mortality of Emb-/- mice can be explained by the compromised lung maturation: in Emb-/- mice (E17.5) the number and the size of the small airways and distal airspace are significantly smaller, there are fewer ATI and ATII cells, and the alkaline phosphatase activity in amniotic fluid is lower. Emb-/- lungs show less peripheral branching already at E12.5, and embigin is highly expressed in lung primordium. Thus, embigin function is essential at early pseudoglandular stage or even earlier. Furthermore, our RNA-seq analysis and Ki67 staining results support the idea that the development of Emb-/- lungs is rather delayed than defected.
Collapse
Affiliation(s)
- Salli Talvi
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Johanna Jokinen
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Kalle Sipilä
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Centre for Stem Cells and Regenerative Medicine, King’s College London, London WC2R2LS, UK
| | - Pekka Rappu
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Fu-Ping Zhang
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Matti Poutanen
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, 20014 Turku, Finland
- Turku Center for Disease Modeling, University of Turku, 20014 Turku, Finland
| | - Pia Rantakari
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
- Institute of Biomedicine, University of Turku, 20014 Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20014 Turku, Finland
| | - Jyrki Heino
- Department of Life Technologies, University of Turku, 20014 Turku, Finland
- Medicity Research Laboratory, University of Turku, 20014 Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| |
Collapse
|
8
|
Le J, Chen Y, Yang W, Chen L, Ye J. Metabolic basis of solute carrier transporters in treatment of type 2 diabetes mellitus. Acta Pharm Sin B 2024; 14:437-454. [PMID: 38322335 PMCID: PMC10840401 DOI: 10.1016/j.apsb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 02/08/2024] Open
Abstract
Solute carriers (SLCs) constitute the largest superfamily of membrane transporter proteins. These transporters, present in various SLC families, play a vital role in energy metabolism by facilitating the transport of diverse substances, including glucose, fatty acids, amino acids, nucleotides, and ions. They actively participate in the regulation of glucose metabolism at various steps, such as glucose uptake (e.g., SLC2A4/GLUT4), glucose reabsorption (e.g., SLC5A2/SGLT2), thermogenesis (e.g., SLC25A7/UCP-1), and ATP production (e.g., SLC25A4/ANT1 and SLC25A5/ANT2). The activities of these transporters contribute to the pathogenesis of type 2 diabetes mellitus (T2DM). Notably, SLC5A2 has emerged as a valid drug target for T2DM due to its role in renal glucose reabsorption, leading to groundbreaking advancements in diabetes drug discovery. Alongside SLC5A2, multiple families of SLC transporters involved in the regulation of glucose homeostasis hold potential applications for T2DM therapy. SLCs also impact drug metabolism of diabetic medicines through gene polymorphisms, such as rosiglitazone (SLCO1B1/OATP1B1) and metformin (SLC22A1-3/OCT1-3 and SLC47A1, 2/MATE1, 2). By consolidating insights into the biological activities and clinical relevance of SLC transporters in T2DM, this review offers a comprehensive update on their roles in controlling glucose metabolism as potential drug targets.
Collapse
Affiliation(s)
- Jiamei Le
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yilong Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Wei Yang
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
| | - Ligong Chen
- School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China
| | - Jianping Ye
- Metabolic Disease Research Center, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China
- Research Center for Basic Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
9
|
Yamaguchi A, Mukai Y, Sakuma T, Suganuma Y, Furugen A, Narumi K, Kobayashi M. Molecular characteristic analysis of single-nucleotide polymorphisms in SLC16A9/hMCT9. Life Sci 2023; 334:122205. [PMID: 37879602 DOI: 10.1016/j.lfs.2023.122205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
AIMS Human monocarboxylate transporter 9 (hMCT9), encoded by SLC16A9, is a transporter that mediates creatine transport across the transmembrane. Previously, we reported that hMCT9 is an extracellular pH- and Na+-sensitive creatine transporter with two kinetic components. Recently, some variants of hMCT9 have been found to be associated with serum uric acid levels, hyperuricemia, and gout. Among these, two single-nucleotide polymorphisms (SNPs) have also been reported: rs550527563 (L93M) and rs2242206 (T258K). However, the effect of these SNPs on hMCT9 transport activity remains unclear. This study aimed to determine the influence of hMCT9 L93M and T258K on transport characteristics. MAIN METHODS hMCT9 L93M and T258K were constructed by site-directed mutagenesis and expressed in Xenopus laevis oocyte. Transport activity of uric acid and creatine via hMCT9 were measured by using a Xenopus laevis oocyte heterologous expression system. KEY FINDINGS We assessed the transport activity of uric acid and creatine, and observed that hMCT9-expressing oocytes transported uric acid approximately 3- to 4-fold more than water-injected oocytes. hMCT9 L93M slightly reduced the transport activity of creatine, whereas hMCT9 T258K did not affect the transport activity. Interestingly, hMCT9 T258K abolished Na+ sensitivity and altered the substrate affinity from two components to one. SIGNIFICANCE In conclusion, hMCT9 SNPs affect transport activity and characteristics. hMCT9 L93M and T258K may induce dysfunction and contribute to pathologies such as hyperuricemia and gout. This is a first study to evaluate molecular characteristics of hMCT9 SNPs.
Collapse
Affiliation(s)
- Atsushi Yamaguchi
- Department of Pharmacy, Hokkaido University Hospital, Kita-14-Jo, Nishi-5-Chome, Kita-ku, Sapporo 060-8648, Japan; Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yuto Mukai
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Tomoya Sakuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yudai Suganuma
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-Jo, Nishi-6-Chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
10
|
Manisha DS, Ratheesh AK, Benny S, Presanna AT. Heterocyclic and non-heterocyclic arena of monocarboxylate transporter inhibitors to battle tumorigenesis. Chem Biol Drug Des 2023; 102:1604-1617. [PMID: 37688395 DOI: 10.1111/cbdd.14342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Monocarboxylate transporters (MCTs) have gained significant attention in cancer research due to their critical role in tumour metabolism. MCTs are legends for transporting lactate molecules in cancer cells, an oncometabolite and waste product of glycolysis, acting as an indispensable factor of tumour proliferation. Targeting MCTs with inhibitors has emerged as a promising strategy to combat tumorigenesis. This article summarizes the most recent research on MCT inhibitors in preventing carcinogenesis, covering both heterocyclic and non-heterocyclic compounds. Heterocyclic and non-heterocyclic compounds such as pteridine, pyrazole, indole, flavonoids, coumarin derivatives and cyanoacetic acid derivatives have been reported as potent MCT inhibitors. We examine the molecular underpinnings of MCTs in cancer metabolism, the design and synthesis of heterocyclic and non-heterocyclic MCT inhibitors, their impact on tumour cells and the microenvironment and their potential as therapeutic agents. Moreover, we explore the challenges associated with MCT inhibitor development and propose future directions for advancing this field. This write-up aims to provide researchers, scientists and clinicians with a comprehensive understanding of the heterocyclic and non-heterocyclic MCT inhibitors and their potential in combating tumorigenesis.
Collapse
Affiliation(s)
- Deepthi S Manisha
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Anandu Kizhakkedath Ratheesh
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Sonu Benny
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| | - Aneesh Thankappan Presanna
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, Kerala, India
| |
Collapse
|
11
|
Chatterjee P, Bhowmik D, Roy SS. A systemic analysis of monocarboxylate transporters in ovarian cancer and possible therapeutic interventions. Channels (Austin) 2023; 17:2273008. [PMID: 37934721 PMCID: PMC10631444 DOI: 10.1080/19336950.2023.2273008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Monocarboxylate transporters (MCTs) play an immense role in metabolically active solid tumors by regulating concentration-dependent transport of different important monocarboxylates including pyruvate and lactate and are encoded by the SLC16A family of genes. Given the vast array of functions, these transporters play in oncogenesis, our objective was to look into the association of MCT1 (SLC16A1), MCT2 (SLC16A7), MCT3 (SLC16A8), and MCT4 (SLC16A3) with Epithelial ovarian cancer (EOC) pathophysiology by exploiting various publicly available databases and web resources. Few of the in silico findings were confirmed via in vitro experiments in EOC cell lines, SKOV3 and OAW-42. MCT1 and MCT4 were found to be upregulated at the mRNA level in OC tissues compared to normal. However, only higher level of MCT4 mRNA was found to be associated with poor patient survival. MCT4 was positively correlated with gene families responsible for invasion, migration, and immune modification, proving it to be one of the most important MCTs for therapeutic intervention. We compared the effects of MCT1/2 blocker SR13800 and a broad-spectrum MCT blocker α-Cyano Hydroxy Cinnamic Acid (α-CHCA) and discovered that α-CHCA has a greater effect on diminishing the invasive behavior of the cancer cells than MCT1/2 blocker SR13800. From our study, MCT4 has emerged as a prospective marker for predicting poor patient outcomes and a potential therapeutic target.
Collapse
Affiliation(s)
- Priti Chatterjee
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
| | - Debaleena Bhowmik
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| | - Sib Sankar Roy
- Cell Biology and Physiology Division, CSIR‐Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
12
|
Newton S, Aguilar C, Bunton-Stasyshyn RK, Flook M, Stewart M, Marcotti W, Brown S, Bowl MR. Absence of Embigin accelerates hearing loss and causes sub-viability, brain and heart defects in C57BL/6N mice due to interaction with Cdh23ahl. iScience 2023; 26:108056. [PMID: 37854703 PMCID: PMC10579432 DOI: 10.1016/j.isci.2023.108056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 09/22/2023] [Indexed: 10/20/2023] Open
Abstract
Mouse studies continue to help elaborate upon the genetic landscape of mammalian disease and the underlying molecular mechanisms. Here, we have investigated an Embigintm1b allele maintained on a standard C57BL/6N background and on a co-isogenic C57BL/6N background in which the Cdh23ahl allele has been "repaired." The hypomorphic Cdh23ahl allele is present in several commonly used inbred mouse strains, predisposing them to progressive hearing loss, starting in high-frequency regions. Absence of the neural cell adhesion molecule Embigin on the standard C57BL/6N background leads to accelerated hearing loss and causes sub-viability, brain and cardiac defects. Contrastingly, Embigintm1b/tm1b mice maintained on the co-isogenic "repaired" C57BL/6N background exhibit normal hearing and viability. Thus Embigin genetically interacts with Cdh23. Importantly, our study is the first to demonstrate an effect of the common Cdh23ahl allele outside of the auditory system, which has important ramifications for genetic studies involving inbred strains carrying this allele.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Carlos Aguilar
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | | | - Marisa Flook
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| | - Michelle Stewart
- The Mary Lyon Centre, Medical Research Council Harwell Institute, Oxford, Oxfordshire OX11 0RD, UK
| | - Walter Marcotti
- School of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Steve Brown
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
| | - Michael R. Bowl
- Mammalian Genetics Unit, Medical Research Council Harwell Institute, Harwell Oxford, Oxfordshire OX11 0RD, UK
- UCL Ear Institute, University College London, 332 Gray’s Inn Road, London WC1X 8EE, UK
| |
Collapse
|
13
|
Raimundo JRS, da Costa Aguiar Alves B, Encinas JFA, Siqueira AM, de Gois KC, Perez MM, Petri G, Dos Santos JFR, Fonseca FLA, da Veiga GL. Expression of TNFR1, VEGFA, CD147 and MCT1 as early biomarkers of diabetes complications and the impact of aging on this profile. Sci Rep 2023; 13:17927. [PMID: 37863950 PMCID: PMC10589356 DOI: 10.1038/s41598-023-41061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 08/21/2023] [Indexed: 10/22/2023] Open
Abstract
Hyperglycemia leads to microvascular lesions in various tissues. In diabetic nephropathy-DN, alterations in usual markers reflect an already installed disease. The study of new biomarkers for the early detection of diabetic complications can bring new prevention perspectives. Rats were divided into diabetic adult-DMA-or elderly-DME and control sham adult-CSA-or control sham elderly-CSE. Blood and urine samples were collected for biochemical analysis. Bulbar region, cardiac, hepatic and renal tissues were collected for target gene expression studies. As result, DMA showed decreased TNFR1, MCT1 and CD147 expression in the bulbar region, TNFR1 in the heart, VEGFA and CD147 in the kidney and TNFR1 in blood. Positive correlations were found between TNFR1 and MCT1 in the bulbar region and HbA1c and plasma creatinine, respectively. DME showed positive correlation in the bulbar region between TNFR1 and glycemia, in addition to negative correlations between CD147 in the heart versus glycemia and urea. We concluded that the initial hyperglycemic stimulus already promotes changes in the expression of genes involved in the inflammatory and metabolic pathways, and aging alters this profile. These changes prior to the onset of diseases such as DN, show that they have potential for early biomarkers studies.
Collapse
Affiliation(s)
- Joyce Regina Santos Raimundo
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Jéssica Freitas Araujo Encinas
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Andressa Moreira Siqueira
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Katharyna Cardoso de Gois
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Matheus Moreira Perez
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Giuliana Petri
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - José Francisco Ramos Dos Santos
- Vivarium and Animal Experimentation Laboratory-Faculdade de Medicina Do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| | - Fernando Luiz Affonso Fonseca
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
- Departamento de Ciências Farmacêuticas da Universidade Federal de São Paulo/UNIFESP, Campus Diadema, Rua Prof. Artur Riedel, 275, Diadema, SP, 09972-270, Brazil
| | - Glaucia Luciano da Veiga
- Laboratório de Análises Clínicas do Centro Universitário-Faculdade de Medicina do ABC (FMABC), Avenida Lauro Gomes, 2000, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
14
|
Lv W, Sha Y, Liu X, He Y, Hu J, Wang J, Li S, Guo X, Shao P, Zhao F, Li M. Interaction between Rumen Epithelial miRNAs-Microbiota-Metabolites in Response to Cold-Season Nutritional Stress in Tibetan Sheep. Int J Mol Sci 2023; 24:14489. [PMID: 37833936 PMCID: PMC10572940 DOI: 10.3390/ijms241914489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/16/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
Tibetan sheep are already well adapted to cold season nutrient stress on the Tibetan Plateau. Rumen, an important nutrient for metabolism and as an absorption organ in ruminants, plays a vital role in the cold stress adaptations of Tibetan sheep. Ruminal microbiota also plays an indispensable role in rumen function. In this study, combined multiomics data were utilized to comprehensively analyze the interaction mechanism between rumen epithelial miRNAs and microbiota and their metabolites in Tibetan sheep under nutrient stress in the cold season. A total of 949 miRNAs were identified in the rumen epithelium of both cold and warm seasons. A total of 62 differentially expressed (DE) miRNAs were screened using FC > 1.5 and p value < 0.01, and a total of 20,206 targeted genes were predicted by DE miRNAs. KEGG enrichment analysis revealed that DE miRNA-targeted genes were mainly enriched in axon guidance(ko04360), tight junction(ko04530), inflammatory mediator regulation of TRP channels(ko04750) and metabolism-related pathways. Correlation analysis revealed that rumen microbiota, rumen VFAs and DE miRNAs were all correlated. Further study revealed that the targeted genes of cold and warm season rumen epithelial DE miRNAs were coenriched with differential metabolites of microbiota in glycerophospholipid metabolism (ko00564), apoptosis (ko04210), inflammatory mediator regulation of TRP channels (ko04750), small cell lung cancer (ko05222), and choline metabolism in cancer (ko05231) pathways. There are several interactions between Tibetan sheep rumen epithelial miRNAs, rumen microbiota, and microbial metabolites, mainly through maintaining rumen epithelial barrier function and host homeostasis of choline and cholesterol, improving host immunity, and promoting energy metabolism pathways, thus enabling Tibetan sheep to effectively respond to cold season nutrient stress. The results also suggest that rumen microbiota have coevolved with their hosts to improve the adaptive capacity of Tibetan sheep to cold season nutrient stress, providing a new perspective for the study of cold season nutritional stress adaptation in Tibetan sheep.
Collapse
Affiliation(s)
- Weibing Lv
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yuzhu Sha
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xiu Liu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Yanyu He
- School of Fundamental Sciences, Massey University, Palmerston North 4410, New Zealand;
| | - Jiang Hu
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Jiqing Wang
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Shaobin Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Xinyu Guo
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Pengyang Shao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Fangfang Zhao
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| | - Mingna Li
- College of Animal Science and Technology/Gansu Key Laboratory of Herbivorous Animal Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (W.L.); (Y.S.); (J.H.); (J.W.); (S.L.); (X.G.); (P.S.); (F.Z.); (M.L.)
| |
Collapse
|
15
|
Lobel GP, Jiang Y, Simon MC. Tumor microenvironmental nutrients, cellular responses, and cancer. Cell Chem Biol 2023; 30:1015-1032. [PMID: 37703882 PMCID: PMC10528750 DOI: 10.1016/j.chembiol.2023.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Over the last two decades, the rapidly expanding field of tumor metabolism has enhanced our knowledge of the impact of nutrient availability on metabolic reprogramming in cancer. Apart from established roles in cancer cells themselves, various nutrients, metabolic enzymes, and stress responses are key to the activities of tumor microenvironmental immune, fibroblastic, endothelial, and other cell types that support malignant transformation. In this article, we review our current understanding of how nutrient availability affects metabolic pathways and responses in both cancer and "stromal" cells, by dissecting major examples and their regulation of cellular activity. Understanding the relationship of nutrient availability to cellular behaviors in the tumor ecosystem will broaden the horizon of exploiting novel therapeutic vulnerabilities in cancer.
Collapse
Affiliation(s)
- Graham P Lobel
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yanqing Jiang
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Zhang S, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Bram Y, Kidane Y, Priebe W, Emmett MR, Meller R, Demharter S, Stentoft-Hansen V, Salvatore M, Galeano D, Enguita FJ, Grabham P, Trovao NS, Singh U, Haltom J, Heise MT, Moorman NJ, Baxter VK, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, Wallace DC. Core mitochondrial genes are down-regulated during SARS-CoV-2 infection of rodent and human hosts. Sci Transl Med 2023; 15:eabq1533. [PMID: 37556555 PMCID: PMC11624572 DOI: 10.1126/scitranslmed.abq1533] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/20/2023] [Indexed: 08/11/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral proteins bind to host mitochondrial proteins, likely inhibiting oxidative phosphorylation (OXPHOS) and stimulating glycolysis. We analyzed mitochondrial gene expression in nasopharyngeal and autopsy tissues from patients with coronavirus disease 2019 (COVID-19). In nasopharyngeal samples with declining viral titers, the virus blocked the transcription of a subset of nuclear DNA (nDNA)-encoded mitochondrial OXPHOS genes, induced the expression of microRNA 2392, activated HIF-1α to induce glycolysis, and activated host immune defenses including the integrated stress response. In autopsy tissues from patients with COVID-19, SARS-CoV-2 was no longer present, and mitochondrial gene transcription had recovered in the lungs. However, nDNA mitochondrial gene expression remained suppressed in autopsy tissue from the heart and, to a lesser extent, kidney, and liver, whereas mitochondrial DNA transcription was induced and host-immune defense pathways were activated. During early SARS-CoV-2 infection of hamsters with peak lung viral load, mitochondrial gene expression in the lung was minimally perturbed but was down-regulated in the cerebellum and up-regulated in the striatum even though no SARS-CoV-2 was detected in the brain. During the mid-phase SARS-CoV-2 infection of mice, mitochondrial gene expression was starting to recover in mouse lungs. These data suggest that when the viral titer first peaks, there is a systemic host response followed by viral suppression of mitochondrial gene transcription and induction of glycolysis leading to the deployment of antiviral immune defenses. Even when the virus was cleared and lung mitochondrial function had recovered, mitochondrial function in the heart, kidney, liver, and lymph nodes remained impaired, potentially leading to severe COVID-19 pathology.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Joseph M. Dybas
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Hossein Fazelinia
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Man S. Kim
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | - Justin Frere
- Icahn School of Medicine at Mount Sinai, New York, NY 10023, USA
| | - Yuanchao Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Yentli Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Deborah G. Murdock
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Larry N. Singh
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Scott L. Weiss
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sonja M. Best
- COVID-19 International Research Team, Medford, MA 02155, USA
- Rocky Mountain Laboratory, National Institute of Allergy and Infectious Disease, NIH, Hamilton, MT 59840, USA
| | - Marie T. Lott
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shiping Zhang
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Henry Cope
- University of Nottingham, Nottingham, UK
| | - Victoria Zaksas
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Chicago, Chicago, IL 60615, USA
- Clever Research Lab, Springfield, IL 62704, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team, Medford, MA 02155, USA
- Logyx, LLC, Mountain View, CA 94043, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | | | | | - Yaron Bram
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Yared Kidane
- COVID-19 International Research Team, Medford, MA 02155, USA
- Texas Scottish Rite Hospital for Children, Dallas, TX 75219, USA
| | - Waldemar Priebe
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark R. Emmett
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Meller
- COVID-19 International Research Team, Medford, MA 02155, USA
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | | | | | | | - Diego Galeano
- COVID-19 International Research Team, Medford, MA 02155, USA
- Facultad de Ingeniería, Universidad Nacional de Asunción, San Lorenzo, Central, Paraguay
| | - Francisco J. Enguita
- COVID-19 International Research Team, Medford, MA 02155, USA
- Faculdade de Medicina, Universidade de Lisboa, Instituto de Medicina Molecular João Lobo Antunes, 1649-028 Lisboa, Portugal
| | - Peter Grabham
- College of Physicians and Surgeons, Columbia University, New York, NY 19103, USA
| | - Nidia S. Trovao
- COVID-19 International Research Team, Medford, MA 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | - Urminder Singh
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Haltom
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Mark T. Heise
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Emily A. Madden
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | - Wes A. Sanders
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Stephen B. Baylin
- COVID-19 International Research Team, Medford, MA 02155, USA
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team, Medford, MA 02155, USA
- Iowa State University, Ames, IA 50011, USA
| | - Pedro M. Moraes-Vieira
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of Campinas, Campinas, SP, Brazil
| | - Deanne Taylor
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Christopher E. Mason
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
- New York Genome Center, New York, NY 10013, USA
| | - Jonathan C. Schisler
- COVID-19 International Research Team, Medford, MA 02155, USA
- University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Robert E. Schwartz
- COVID-19 International Research Team, Medford, MA 02155, USA
- Weill Cornell Medicine, New York, NY 10065, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Douglas C. Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
- Division of Human Genetics, Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
17
|
Chu YD, Chen CW, Lai MW, Lim SN, Lin WR. Bioenergetic alteration in gastrointestinal cancers: The good, the bad and the ugly. World J Gastroenterol 2023; 29:4499-4527. [PMID: 37621758 PMCID: PMC10445009 DOI: 10.3748/wjg.v29.i29.4499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/23/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, utilizing glucose fermentation for energy production, known as the Warburg effect. However, there are a lack of comprehensive reviews summarizing the metabolic reprogramming, bioenergetic alteration, and their oncogenetic links in gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of emerging anticancer drugs targeting these alterations in GI cancers require further evaluation. This review highlights the interplay between aerobic glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in cancer cells, as well as hypotheses on the molecular mechanisms that trigger this alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, and GI cancer are also discussed. This review emphasizes the potential of targeting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. Emphasizing the potential of targeting bioenergetic regulators for GI cancer therapy, the review categorizes these regulators into aerobic glycolysis/ lactate biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail various anti-cancer drugs and strategies that have produced pre-clinical and/or clinical evidence in treating GI cancers, as well as the challenges posed by these drugs. Here we highlight that understanding dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.
Collapse
Affiliation(s)
- Yu-De Chu
- Liver Research Center, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chun-Wei Chen
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Ming-Wei Lai
- Department of Pediatrics, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Siew-Na Lim
- Department of Neurology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Wey-Ran Lin
- Department of Gastroenterology and Hepatology, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
18
|
Huang W, Su J, Chen X, Li Y, Xing Z, Guo L, Li S, Zhang J. High-Intensity Interval Training Induces Protein Lactylation in Different Tissues of Mice with Specificity and Time Dependence. Metabolites 2023; 13:metabo13050647. [PMID: 37233688 DOI: 10.3390/metabo13050647] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023] Open
Abstract
Protein lysine lactylation (Kla) is a novel protein acylation reported in recent years, which plays an important role in the development of several diseases with pathologically elevated lactate levels, such as tumors. The concentration of lactate as a donor is directly related to the Kla level. High-intensity interval training (HIIT) is a workout pattern that has positive effects in many metabolic diseases, but the mechanisms by which HIIT promotes health are not yet clear. Lactate is the main metabolite of HIIT, and it is unknown as to whether high lactate during HIIT can induce changes in Kla levels, as well as whether Kla levels differ in different tissues and how time-dependent Kla levels are. In this study, we observed the specificity and time-dependent effects of a single HIIT on the regulation of Kla in mouse tissues. In addition, we aimed to select tissues with high Kla specificity and obvious time dependence for lactylation quantitative omics and analyze the possible biological targets of HIIT-induced Kla regulation. A single HIIT induces Kla in tissues with high lactate uptake and metabolism, such as iWAT, BAT, soleus muscle and liver proteins, and Kla levels peak at 24 h after HIIT and return to steady state at 72 h. Kla proteins in iWAT may affect pathways related to glycolipid metabolism and are highly associated with de novo synthesis. It is speculated that the changes in energy expenditure, lipolytic effects and metabolic characteristics during the recovery period after HIIT may be related to the regulation of Kla in iWAT.
Collapse
Affiliation(s)
- Wenhua Huang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jie Su
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Xuefei Chen
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Yanjun Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Zheng Xing
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Lanlan Guo
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
- Department of Physical Education, University of International Business and Economics, Beijing 100029, China
| | - Shitian Li
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| | - Jing Zhang
- School of P.E. and Sports Science, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
19
|
Lin J, Chin SY, Tan SPF, Koh HC, Cheong EJY, Chan ECY, Chan JCY. Mechanistic Middle-Out Physiologically Based Toxicokinetic Modeling of Transporter-Dependent Disposition of Perfluorooctanoic Acid in Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:6825-6834. [PMID: 37072124 PMCID: PMC10157889 DOI: 10.1021/acs.est.2c05642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Perfluorooctanoic acid (PFOA) is an environmental toxicant exhibiting a years-long biological half-life (t1/2) in humans and is linked with adverse health effects. However, limited understanding of its toxicokinetics (TK) has obstructed the necessary risk assessment. Here, we constructed the first middle-out physiologically based toxicokinetic (PBTK) model to mechanistically explain the persistence of PFOA in humans. In vitro transporter kinetics were thoroughly characterized and scaled up to in vivo clearances using quantitative proteomics-based in vitro-to-in vivo extrapolation. These data and physicochemical parameters of PFOA were used to parameterize our model. We uncovered a novel uptake transporter for PFOA, highly likely to be monocarboxylate transporter 1 which is ubiquitously expressed in body tissues and may mediate broad tissue penetration. Our model was able to recapitulate clinical data from a phase I dose-escalation trial and divergent half-lives from clinical trial and biomonitoring studies. Simulations and sensitivity analyses confirmed the importance of renal transporters in driving extensive PFOA reabsorption, reducing its clearance and augmenting its t1/2. Crucially, the inclusion of a hypothetical, saturable renal basolateral efflux transporter provided the first unified explanation for the divergent t1/2 of PFOA reported in clinical (116 days) versus biomonitoring studies (1.3-3.9 years). Efforts are underway to build PBTK models for other perfluoroalkyl substances using similar workflows to assess their TK profiles and facilitate risk assessments.
Collapse
Affiliation(s)
- Jieying Lin
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore
| | - Sheng Yuan Chin
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Republic of Singapore
| | - Shawn Pei Feng Tan
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore
| | - Hor Cheng Koh
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Republic of Singapore
| | - Eleanor Jing Yi Cheong
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Republic of Singapore
| | - Eric Chun Yong Chan
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- Department of Pharmacy, Faculty of Science, National University of Singapore, 18 Science Drive 4, Singapore 117543, Republic of Singapore
| | - James Chun Yip Chan
- Innovations in Food and Chemical Safety (IFCS) Programme, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, Matrix #07-01, Singapore 138671, Republic of Singapore
- A*STAR Skin Research Labs (A*SRL), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos #06-06, Singapore 138648 , Republic of Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Nanos #01-02, Singapore 138669, Republic of Singapore
| |
Collapse
|
20
|
Singh M, Afonso J, Sharma D, Gupta R, Kumar V, Rani R, Baltazar F, Kumar V. Targeting monocarboxylate transporters (MCTs) in cancer: How close are we to the clinics? Semin Cancer Biol 2023; 90:1-14. [PMID: 36706846 DOI: 10.1016/j.semcancer.2023.01.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
As a result of metabolic reprogramming, cancer cells display high rates of glycolysis, causing an excess production of lactate along with an increase in extracellular acidity. Proton-linked monocarboxylate transporters (MCTs) are crucial in the maintenance of this metabolic phenotype, by mediating the proton-coupled lactate flux across cell membranes, also contributing to cancer cell pH regulation. Among the proteins codified by the SLC16 gene family, MCT1 and MCT4 isoforms are the most explored in cancers, being overexpressed in many cancer types, from solid tumours to haematological malignancies. Similarly to what occurs in particular physiological settings, MCT1 and MCT4 are able to mediate lactate shuttles among cancer cells, and also between cancer and stromal cells in the tumour microenvironment. This form of metabolic cooperation is responsible for important cancer aggressiveness features, such as cell proliferation, survival, angiogenesis, migration, invasion, metastasis, immune tolerance and therapy resistance. The growing understanding of MCT functions and regulation is offering a new path to the design of novel inhibitors that can be foreseen in clinical practices. This review provides an overview of the role of MCT isoforms in cancer and summarizes the recent advances in their pharmacological targeting, highlighting the potential of new potent and selective MCT1 and/or MCT4 inhibitors in cancer therapeutics, and anticipating its inclusion in clinical practice.
Collapse
Affiliation(s)
- Mamta Singh
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Julieta Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal
| | - Dolly Sharma
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India; Amity Institute of Biotechnology, Amity University UP, Sector-125, Noida, India-201313
| | - Rajat Gupta
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India
| | - Vivek Kumar
- Department of Chemistry, DBG College, Sector-18, Panipat, Haryana, India
| | - Reshma Rani
- Drug Discovery, Jubilant Biosys, Greater Noida 201306, UP, India.
| | - Fátima Baltazar
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Portugal.
| | - Vinit Kumar
- Amity Institute of Molecular Medicine and Stem Cell Research Amity, University UP, Sector-125, Noida 201313, India.
| |
Collapse
|
21
|
Halford S, Veal GJ, Wedge SR, Payne GS, Bacon CM, Sloan P, Dragoni I, Heinzmann K, Potter S, Salisbury BM, Chenard-Poirier M, Greystoke A, Howell EC, Innes WA, Morris K, Plummer C, Rata M, Petrides G, Keun HC, Banerji U, Plummer R. A Phase I Dose-escalation Study of AZD3965, an Oral Monocarboxylate Transporter 1 Inhibitor, in Patients with Advanced Cancer. Clin Cancer Res 2023; 29:1429-1439. [PMID: 36652553 PMCID: PMC7614436 DOI: 10.1158/1078-0432.ccr-22-2263] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/20/2022] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
PURPOSE Inhibition of monocarboxylate transporter (MCT) 1-mediated lactate transport may have cytostatic and/or cytotoxic effects on tumor cells. We report results from the dose-escalation part of a first-in-human trial of AZD3965, a first-in-class MCT1 inhibitor, in advanced cancer. PATIENTS AND METHODS This multicentre, phase I, dose-escalation and dose-expansion trial enrolled patients with advanced solid tumors or lymphoma and no standard therapy options. Exclusion criteria included history of retinal and/or cardiac disease, due to MCT1 expression in the eye and heart. Patients received daily oral AZD3965 according to a 3+3 then rolling six design. Primary objectives were to assess safety and determine the MTD and/or recommended phase II dose (RP2D). Secondary objectives for dose escalation included measurement of pharmacokinetic and pharmacodynamic activity. Exploratory biomarkers included tumor expression of MCT1 and MCT4, functional imaging of biological impact, and metabolomics. RESULTS During dose escalation, 40 patients received AZD3965 at 5-30 mg once daily or 10 or 15 mg twice daily. Treatment-emergent adverse events were primarily grade 1 and/or 2, most commonly electroretinogram changes (retinopathy), fatigue, anorexia, and constipation. Seven patients receiving ≥20 mg daily experienced dose-limiting toxicities (DLT): grade 3 cardiac troponin rise (n = 1), asymptomatic ocular DLTs (n = 5), and grade 3 acidosis (n = 1). Plasma pharmacokinetics demonstrated attainment of target concentrations; pharmacodynamic measurements indicated on-target activity. CONCLUSIONS AZD3965 is tolerated at doses that produce target engagement. DLTs were on-target and primarily dose-dependent, asymptomatic, reversible ocular changes. An RP2D of 10 mg twice daily was established for use in dose expansion in cancers that generally express high MCT1/low MCT4).
Collapse
Affiliation(s)
- Sarah Halford
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Gareth J Veal
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
| | - Stephen R Wedge
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Geoffrey S Payne
- Cancer Research UK Imaging Centre, The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Chris M Bacon
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Philip Sloan
- Department of Cellular Pathology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Ilaria Dragoni
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Kathrin Heinzmann
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Sarah Potter
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Becky M Salisbury
- Cancer Research UK Centre for Drug Development, London, United Kingdom
| | - Maxime Chenard-Poirier
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Alastair Greystoke
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Elizabeth C Howell
- Newcastle University Centre for In Vivo Imaging, Newcastle, United Kingdom
| | - William A Innes
- Newcastle University, Newcastle upon Tyne, United Kingdom
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Type, United Kingdom
| | - Karen Morris
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, Manchester, United Kingdom
| | - Chris Plummer
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| | - Mihaela Rata
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | | | | | - Udai Banerji
- The Institute of Cancer Research and The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Ruth Plummer
- Newcastle University Centre for Cancer, Newcastle upon Tyne, United Kingdom
- Freeman Hospital, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
22
|
Liu Y, Feng Z, Zhang P, Chen H, Zhu S, Wang X. Advances in the study of aerobic glycolytic effects in resistance to radiotherapy in malignant tumors. PeerJ 2023; 11:e14930. [PMID: 36811010 PMCID: PMC9939019 DOI: 10.7717/peerj.14930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Aerobic glycolysis is a metabolic mode of tumor cells different from normal cells that plays an important role in tumor proliferation and distant metastasis. Radiotherapy has now become a routine and effective treatment for many malignancies, however, resistance to radiotherapy remains a major challenge in the treatment of malignant tumors. Recent studies have found that the abnormal activity of the aerobic glycolysis process in tumor cells is most likely involved in regulating chemoresistance and radiation therapy resistance in malignant tumors. However, research on the functions and mechanisms of aerobic glycolysis in the molecular mechanisms of resistance to radiotherapy in malignant tumors is still in its early stages. This review collects recent studies on the effects of aerobic glycolysis and radiation therapy resistance in malignant tumors, to further understand the progress in this area. This research may more effectively guide the clinical development of more powerful treatment plans for radiation therapy resistant subtypes of cancer patients, and take an important step to improve the disease control rate of radiation therapy resistant subtypes of cancer patients.
Collapse
|
23
|
Boutet I, Alves Monteiro HJ, Baudry L, Takeuchi T, Bonnivard E, Billoud B, Farhat S, Gonzales‐Araya R, Salaun B, Andersen AC, Toullec J, Lallier FH, Flot J, Guiglielmoni N, Guo X, Li C, Allam B, Pales‐Espinosa E, Hemmer‐Hansen J, Moreau P, Marbouty M, Koszul R, Tanguy A. Chromosomal assembly of the flat oyster ( Ostrea edulis L.) genome as a new genetic resource for aquaculture. Evol Appl 2022; 15:1730-1748. [PMID: 36426129 PMCID: PMC9679248 DOI: 10.1111/eva.13462] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 12/01/2022] Open
Abstract
The European flat oyster (Ostrea edulis L.) is a native bivalve of the European coasts. Harvest of this species has declined during the last decades because of the appearance of two parasites that have led to the collapse of the stocks and the loss of the natural oyster beds. O. edulis has been the subject of numerous studies in population genetics and on the detection of the parasites Bonamia ostreae and Marteilia refringens. These studies investigated immune responses to these parasites at the molecular and cellular levels. Several genetic improvement programs have been initiated especially for parasite resistance. Within the framework of a European project (PERLE 2) that aims to produce genetic lines of O. edulis with hardiness traits (growth, survival, resistance) for the purpose of repopulating natural oyster beds in Brittany and reviving the culture of this species in the foreshore, obtaining a reference genome becomes essential as done recently in many bivalve species of aquaculture interest. Here, we present a chromosome-level genome assembly and annotation for the European flat oyster, generated by combining PacBio, Illumina, 10X linked, and Hi-C sequencing. The finished assembly is 887.2 Mb with a scaffold-N50 of 97.1 Mb scaffolded on the expected 10 pseudochromosomes. Annotation of the genome revealed the presence of 35,962 protein-coding genes. We analyzed in detail the transposable element (TE) diversity in the flat oyster genome, highlighted some specificities in tRNA and miRNA composition, and provided the first insight into the molecular response of O. edulis to M. refringens. This genome provides a reference for genomic studies on O. edulis to better understand its basic physiology and as a useful resource for genetic breeding in support of aquaculture and natural reef restoration.
Collapse
Affiliation(s)
- Isabelle Boutet
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Lyam Baudry
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Takeshi Takeuchi
- Marine Genomics UnitOkinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Eric Bonnivard
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Bernard Billoud
- Sorbonne Université, CNRSUMR 8227, Station Biologique de RoscoffRoscoffFrance
| | - Sarah Farhat
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | | | - Benoit Salaun
- Centre Régional de la Conchyliculture Bretagne NordMorlaixFrance
| | - Ann C. Andersen
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐Yves Toullec
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - François H. Lallier
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Jean‐François Flot
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Nadège Guiglielmoni
- Evolutionary Biology and EcologyUniversité Libre de BruxellesBrusselsBelgium
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal SciencesRutgers UniversityPort NorrisNew JerseyUSA
| | - Cui Li
- Department of Marine Organism Taxonomy and Phylogeny, Institute of OceanologyChinese Academy of SciencesQingdaoChina
| | - Bassem Allam
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Emmanuelle Pales‐Espinosa
- Marine Animal Disease Laboratory, School of Marine and Atmospheric SciencesStony Brook UniversityStony BrookNew YorkUSA
| | - Jakob Hemmer‐Hansen
- National Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Pierrick Moreau
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Martial Marbouty
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Romain Koszul
- Institut PasteurUnité Régulation Spatiale des Génomes, CNRSParisFrance
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144Station Biologique de RoscoffRoscoffFrance
| |
Collapse
|
24
|
Jang G, Oh J, Jun E, Lee J, Kwon JY, Kim J, Lee SH, Kim SC, Cho SY, Lee C. Direct cell-to-cell transfer in stressed tumor microenvironment aggravates tumorigenic or metastatic potential in pancreatic cancer. NPJ Genom Med 2022; 7:63. [PMID: 36302783 PMCID: PMC9613679 DOI: 10.1038/s41525-022-00333-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022] Open
Abstract
Pancreatic cancer exhibits a characteristic tumor microenvironment (TME) due to enhanced fibrosis and hypoxia and is particularly resistant to conventional chemotherapy. However, the molecular mechanisms underlying TME-associated treatment resistance in pancreatic cancer are not fully understood. Here, we developed an in vitro TME mimic system comprising pancreatic cancer cells, fibroblasts and immune cells, and a stress condition, including hypoxia and gemcitabine. Cells with high viability under stress showed evidence of increased direct cell-to-cell transfer of biomolecules. The resulting derivative cells (CD44high/SLC16A1high) were similar to cancer stem cell-like-cells (CSCs) with enhanced anchorage-independent growth or invasiveness and acquired metabolic reprogramming. Furthermore, CD24 was a determinant for transition between the tumorsphere formation or invasive properties. Pancreatic cancer patients with CD44low/SLC16A1low expression exhibited better prognoses compared to other groups. Our results suggest that crosstalk via direct cell-to-cell transfer of cellular components foster chemotherapy-induced tumor evolution and that targeting of CD44 and MCT1(encoded by SLC16A1) may be useful strategy to prevent recurrence of gemcitabine-exposed pancreatic cancers.
Collapse
Affiliation(s)
- Giyong Jang
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Jaeik Oh
- Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.,Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Eunsung Jun
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Jieun Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Surgery, Seoul National University Bundang Hospital, Gyeonggi-do, 13620, Republic of Korea
| | - Jee Young Kwon
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA
| | - Jaesang Kim
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Sang-Hyuk Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea.,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea.,Department of Bio-Information Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Song Cheol Kim
- Department of Surgery, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Asan Medical Institute of Convergence Science and Technology (AMIST), Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.,Department of Convergence Medicine, Asan Institute for Life Sciences, University of Ulsan College of Medicine and Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Sung-Yup Cho
- Medical Research Center, Genomic Medicine Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Translational Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea. .,Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea.
| | - Charles Lee
- Department of Life Science, Ewha Womans University, Seoul, 03760, Republic of Korea. .,Ewha-JAX Cancer Immunotherapy Research Center, Ewha Womans University, Seoul, 03760, Republic of Korea. .,The Jackson Laboratory for Genomic Medicine, Farmington, CT, 06032, USA.
| |
Collapse
|
25
|
Shrestha P, Whelchel AE, Nicholas SE, Liang W, Ma JX, Karamichos D. Monocarboxylate Transporters: Role and Regulation in Corneal Diabetes. Anal Cell Pathol (Amst) 2022; 2022:6718566. [PMID: 36340268 PMCID: PMC9629935 DOI: 10.1155/2022/6718566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/01/2022] [Indexed: 03/23/2024] Open
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases that is known to cause structural and functional ocular complications. In the human cornea, DM-related complications affect the epithelium, stroma, and nerves. Monocarboxylate transporters (MCTs) are a family of proton-linked plasma membrane transporters that carry monocarboxylates across plasma membranes. In the context of corneal health and disease, their role, presence, and function are largely undetermined and solely focused on the most common MCT isoforms, 1 through 4. In this study, we investigated the regulation of MCT1, 2, 4, 5, 8, and 10, in corneal DM, using established 3D self-assembled extracellular matrix (ECM) in vitro models. Primary stromal corneal fibroblasts were isolated from healthy (HCFs), type I (T1DMs), and type II (T2DMs) DM donors. Monoculture 3D constructs were created by stimulating stromal cells on transwells with stable vitamin C for two or four weeks. Coculture 3D constructs were created by adding SH-SY5Y neurons at two different densities, 12 k and 500 k, on top of the monocultures. Our data showed significant upregulation of MCT1 at 4 weeks for HCF, T1DM, and T2DM monocultures, as well as the 500 k nerve cocultures. MCT8 was significantly upregulated in HCF and T1DM monocultures and all of the 500 k nerve cocultures. Further, MCT10 was only expressed at 4 weeks for all cocultures and was limited to HCFs and T1DMs in monocultures. Immunofluorescence analysis showed cytoplasmic MCT expression for all cell types and significant downregulation of both MCT2 and MCT4 in HCFs, when compared to T1DMs and T2DMs. Herein, we reveal the existence and modulation of MCTs in the human diabetic cornea in vitro. Changes appeared dependent on neuronal density, suggesting that MCTs are very likely critical to the neuronal defects observed in diabetic keratopathy/neuropathy. Further studies are warranted in order to fully delineate the role of MCTs in corneal diabetes.
Collapse
Affiliation(s)
- Pawan Shrestha
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Amy E. Whelchel
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| | - Wentao Liang
- Department of Physiology, University of Oklahoma Health Sciences Center, 940 Stanton L Young Blvd, Oklahoma City, OK 73104, USA
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Jian-Xing Ma
- Department of Biochemistry, Wake Forest University School of Medicine, 575 N Patterson Ave, Winston-Salem, NC 27101, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd, Fort Worth, TX 76107, USA
| |
Collapse
|
26
|
Mukai Y, Yamaguchi A, Sakuma T, Nadai T, Furugen A, Narumi K, Kobayashi M. Involvement of
SLC16A1
/MCT1 and
SLC16A3
/MCT4 in
l
‐lactate transport in the hepatocellular carcinoma cell line. Biopharm Drug Dispos 2022; 43:183-191. [DOI: 10.1002/bdd.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yuto Mukai
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| | - Atsushi Yamaguchi
- Department of Pharmacy Hokkaido University Hospital Kita‐14‐jo, Nishi ‐5‐chome, Kita‐ku Sapporo 060‐8648 Japan
| | - Tomoya Sakuma
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| | - Takanobu Nadai
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics Division of Pharmasciences Faculty of Pharmaceutical Sciences Hokkaido University Kita‐12‐jo, Nishi‐6‐chome, Kita‐ku Sapporo 060‐0812 Japan
| |
Collapse
|
27
|
Jiang X, Yan N, Deng D, Yan C. Structural aspects of the glucose and monocarboxylate transporters involved in the Warburg effect. IUBMB Life 2022; 74:1180-1199. [PMID: 36082803 DOI: 10.1002/iub.2668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022]
Abstract
Cancer cells shift their glucose catabolism from aerobic respiration to lactic fermentation even in the presence of oxygen, and this is known as the "Warburg effect". To accommodate the high glucose demands and to avoid lactate accumulation, the expression levels of human glucose transporters (GLUTs) and human monocarboxylate transporters (MCTs) are elevated to maintain metabolic homeostasis. Therefore, inhibition of GLUTs and/or MCTs provides potential therapeutic strategies for cancer treatment. Here, we summarize recent advances in the structural characterization of GLUTs and MCTs, providing a comprehensive understanding of their transport and inhibition mechanisms to facilitate further development of anticancer therapies.
Collapse
Affiliation(s)
- Xin Jiang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, Australia
| | - Nieng Yan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Dong Deng
- Department of Obstetrics, Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, Chengdu, China
| | - Chuangye Yan
- Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
28
|
Rios-Morales M, Vieira-Lara MA, Homan E, Langelaar-Makkinje M, Gerding A, Li Z, Huijkman N, Rensen PCN, Wolters JC, Reijngoud DJ, Bakker BM. Butyrate oxidation attenuates the butyrate-induced improvement of insulin sensitivity in myotubes. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166476. [PMID: 35811030 DOI: 10.1016/j.bbadis.2022.166476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/31/2022] [Accepted: 06/25/2022] [Indexed: 11/25/2022]
Abstract
Skeletal muscle insulin resistance is a key pathophysiological process that precedes the development of type 2 diabetes. Whereas an overload of long-chain fatty acids can induce muscle insulin resistance, butyrate, a short-chain fatty acid (SCFA) produced from dietary fibre fermentation, prevents it. This preventive role of butyrate has been attributed to histone deacetylase (HDAC)-mediated transcription regulation and activation of mitochondrial fatty-acid oxidation. Here we address the interplay between butyrate and the long-chain fatty acid palmitate and investigate how transcription, signalling and metabolism are integrated to result in the butyrate-induced skeletal muscle metabolism remodelling. Butyrate enhanced insulin sensitivity in palmitate-treated, insulin-resistant C2C12 cells, as shown by elevated insulin receptor 1 (IRS1) and pAKT protein levels and Slc2a4 (GLUT4) mRNA, which led to a higher glycolytic capacity. Long-chain fatty-acid oxidation capacity and other functional respiration parameters were not affected. Butyrate did upregulate mitochondrial proteins involved in its own oxidation, as well as concentrations of butyrylcarnitine and hydroyxybutyrylcarnitine. By knocking down the gene encoding medium-chain 3-ketoacyl-CoA thiolase (MCKAT, Acaa2), butyrate oxidation was inhibited, which amplified the effects of the SCFA on insulin sensitivity and glycolysis. This response was associated with enhanced HDAC inhibition, based on histone 3 acetylation levels. Butyrate enhances insulin sensitivity and induces glycolysis, without the requirement of upregulated long-chain fatty acid oxidation. Butyrate catabolism functions as an escape valve that attenuates HDAC inhibition. Thus, inhibition of butyrate oxidation indirectly prevents insulin resistance and stimulates glycolytic flux in myotubes treated with butyrate, most likely via an HDAC-dependent mechanism.
Collapse
Affiliation(s)
- Melany Rios-Morales
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Marcel A Vieira-Lara
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Esther Homan
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Miriam Langelaar-Makkinje
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Albert Gerding
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands; Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Zhuang Li
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Nicolette Huijkman
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands; Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Justina C Wolters
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Dirk-Jan Reijngoud
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands
| | - Barbara M Bakker
- Laboratory of Pediatrics, Center for Liver, Digestive, and Metabolic Diseases, University of Groningen, University Medical Center Groningen, the Netherlands.
| |
Collapse
|
29
|
Stanescu S, Bravo-Alonso I, Belanger-Quintana A, Pérez B, Medina-Diaz M, Ruiz-Sala P, Flores NP, Buenache R, Arrieta F, Rodríguez-Pombo P. Mitochondrial bioenergetic is impaired in Monocarboxylate transporter 1 deficiency: a new clinical case and review of the literature. Orphanet J Rare Dis 2022; 17:243. [PMID: 35729663 PMCID: PMC9215049 DOI: 10.1186/s13023-022-02389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/06/2022] [Indexed: 12/03/2022] Open
Abstract
Background Monocarboxylate transporter 1 (MCT1) deficiency has recently been described as a rare cause of recurrent ketosis, the result of impaired ketone utilization in extrahepatic tissues. To date, only six patients with this condition have been identified, and clinical and biochemical details remain incomplete. Results The present work reports a patient suffering from severe, recurrent episodes of metabolic acidosis and psychomotor delay, showing a pathogenic loss-of-function variation c.747_750del in homozygosity in SLC16A1 (which codes for MCT1). Persistent ketotic and lactic acidosis was accompanied by an abnormal excretion of organic acids related to redox balance disturbances. Together with an altered bioenergetic profile detected in patient-derived fibroblasts, this suggests possible mitochondrial dysfunction. Brain MRI revealed extensive, diffuse bilateral, symmetric signal alterations for the subcortical white matter and basal ganglia, together with corpus callosum agenesia. Conclusions These findings suggest that the clinical spectrum of MCT1 deficiency not only involves recurrent atacks of ketoacidosis, but may also cause lactic acidosis and neuromotor delay with a distinctive neuroimaging pattern including agenesis of corpus callosum and other brain signal alterations. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-022-02389-4.
Collapse
Affiliation(s)
- Sinziana Stanescu
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain.
| | - Irene Bravo-Alonso
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Belen Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Montserrat Medina-Diaz
- Department of Neuroradiology, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pedro Ruiz-Sala
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular, Universidad Autónoma de Madrid, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| | - Nathaly Paola Flores
- Paediatric Department, Hospital General La Mancha Centro, Av. Constitución, 3, 13600, Alcázar de San Juan, Ciudad Real, Spain
| | - Raquel Buenache
- Neuropediatric Department, Hospital Universitario Ramón y Cajal, IRYCIS, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Francisco Arrieta
- Unidad de Enfermedades Metabólicas, Hospital Universitario Ramón y Cajal, IRYCIS, CIBER-OBN, Crta de Colmenar Viejo, km 9,100, 28034, Madrid, Spain
| | - Pilar Rodríguez-Pombo
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa, UAM-CSIC, CIBERER, IdiPAZ, C/Francisco Tomás y Valiente, 7, 28049, Madrid, Spain
| |
Collapse
|
30
|
Huttunen J, Adla SK, Markowicz-Piasecka M, Huttunen KM. Increased/Targeted Brain (Pro)Drug Delivery via Utilization of Solute Carriers (SLCs). Pharmaceutics 2022; 14:pharmaceutics14061234. [PMID: 35745806 PMCID: PMC9228667 DOI: 10.3390/pharmaceutics14061234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane transporters have a crucial role in compounds’ brain drug delivery. They allow not only the penetration of a wide variety of different compounds to cross the endothelial cells of the blood–brain barrier (BBB), but also the accumulation of them into the brain parenchymal cells. Solute carriers (SLCs), with nearly 500 family members, are the largest group of membrane transporters. Unfortunately, not all SLCs are fully characterized and used in rational drug design. However, if the structural features for transporter interactions (binding and translocation) are known, a prodrug approach can be utilized to temporarily change the pharmacokinetics and brain delivery properties of almost any compound. In this review, main transporter subtypes that are participating in brain drug disposition or have been used to improve brain drug delivery across the BBB via the prodrug approach, are introduced. Moreover, the ability of selected transporters to be utilized in intrabrain drug delivery is discussed. Thus, this comprehensive review will give insights into the methods, such as computational drug design, that should be utilized more effectively to understand the detailed transport mechanisms. Moreover, factors, such as transporter expression modulation pathways in diseases that should be taken into account in rational (pro)drug development, are considered to achieve successful clinical applications in the future.
Collapse
Affiliation(s)
- Johanna Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
| | - Santosh Kumar Adla
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Institute of Organic Chemistry and Biochemistry (IOCB), Czech Academy of Sciences, Flemingovo Namesti 542/2, 160 00 Prague, Czech Republic
| | - Magdalena Markowicz-Piasecka
- Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, ul. Muszyńskiego 1, 90-151 Lodz, Poland;
| | - Kristiina M. Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (J.H.); (S.K.A.)
- Correspondence:
| |
Collapse
|
31
|
Mornagui B, Rezg R, Repond C, Pellerin L. Bisphenol S favors hepatic steatosis development via an upregulation of liver MCT1 expression and an impairment of the mitochondrial respiratory system. J Cell Physiol 2022; 237:3057-3068. [PMID: 35561261 DOI: 10.1002/jcp.30771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/05/2022] [Accepted: 04/25/2022] [Indexed: 12/13/2022]
Abstract
Bisphenol S (BPS) is a common substitute of bisphenol A (BPA). Recent data suggest that BPS acts as an obesogenic endocrine disruptor with emerging implications in the physiopathology of metabolic syndrome. However, the effects of BPS on monocarboxylate transporters (acting as carriers for lactate, pyruvate, and ketone bodies) and the mitochondrial respiratory system in the liver remain limited. For this purpose, male Swiss mice were treated with BPS at 100 µg/kg/day for 10 weeks, in drinking water. An increase in body weight and food intake was observed with no increase in locomotor activity. Moreover, data show that BPS increases hepatic MCT1 (a key energetic fuel transporter) mRNA expression accompanied by hepatic steatosis initiation and lipid accumulation, while disrupting mitochondrial function and oxidative stress parameters. Furthermore, BPS produced a significant increase in lactate dehydrogenase and creatine kinase activities. We can suggest that BPS contributes to hepatic steatosis in mice by upregulating monocarboxylate transporters and affecting the bioenergetic status characterized by an impaired mitochondrial respiratory system. Thus, our data highlight a new mechanism putatively implicated in hepatic steatosis development during BPS-induced obesity involving lactate metabolism.
Collapse
Affiliation(s)
- Bessem Mornagui
- Faculty of Sciences of Gabes, University of Gabes, Gabes, Tunisia
| | - Raja Rezg
- Higher Institute of Biotechnology of Monastir, University of Monastir, Monastir, Tunisia
| | - Cendrine Repond
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Inserm U1313, Faculté de Médecine et de Pharmacie, Université et CHU de Poitiers, Poitiers Cedex, France
| |
Collapse
|
32
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 164] [Impact Index Per Article: 54.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
33
|
Guarnieri JW, Dybas JM, Fazelinia H, Kim MS, Frere J, Zhang Y, Albrecht YS, Murdock DG, Angelin A, Singh LN, Weiss SL, Best SM, Lott MT, Cope H, Zaksas V, Saravia-Butler A, Meydan C, Foox J, Mozsary C, Kidane YH, Priebe W, Emmett MR, Meller R, Singh U, Bram Y, tenOever BR, Heise MT, Moorman NJ, Madden EA, Taft-Benz SA, Anderson EJ, Sanders WA, Dickmander RJ, Baxter VK, Baylin SB, Wurtele ES, Moraes-Vieira PM, Taylor D, Mason CE, Schisler JC, Schwartz RE, Beheshti A, Wallace DC. TARGETED DOWN REGULATION OF CORE MITOCHONDRIAL GENES DURING SARS-COV-2 INFECTION. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.19.481089. [PMID: 35233572 PMCID: PMC8887073 DOI: 10.1101/2022.02.19.481089] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Defects in mitochondrial oxidative phosphorylation (OXPHOS) have been reported in COVID-19 patients, but the timing and organs affected vary among reports. Here, we reveal the dynamics of COVID-19 through transcription profiles in nasopharyngeal and autopsy samples from patients and infected rodent models. While mitochondrial bioenergetics is repressed in the viral nasopharyngeal portal of entry, it is up regulated in autopsy lung tissues from deceased patients. In most disease stages and organs, discrete OXPHOS functions are blocked by the virus, and this is countered by the host broadly up regulating unblocked OXPHOS functions. No such rebound is seen in autopsy heart, results in severe repression of genes across all OXPHOS modules. Hence, targeted enhancement of mitochondrial gene expression may mitigate the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Joseph M. Dybas
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Hossein Fazelinia
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Man S. Kim
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
- Kyung Hee University Hospital at Gangdong, Kyung Hee University, Seoul, South Korea
| | | | - Yuanchao Zhang
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Yentli Soto Albrecht
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | | | - Alessia Angelin
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Larry N. Singh
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Scott L. Weiss
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Sonja M. Best
- COVID-19 International Research Team
- Rocky Mountain Laboratories NIAID, Hamilton, MT 59840
| | - Marie T. Lott
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
| | - Henry Cope
- University of Nottingham, Nottingham, UK
| | - Viktorija Zaksas
- COVID-19 International Research Team
- University of Chicago, Chicago, IL, 60615, USA
| | - Amanda Saravia-Butler
- COVID-19 International Research Team
- Logyx, LLC, Mountain View, CA 94043, USA
- NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Cem Meydan
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
| | | | | | - Yared H. Kidane
- COVID-19 International Research Team
- Scottish Rite for Children, Dallas, TX 75219, USA
| | - Waldemar Priebe
- COVID-19 International Research Team
- University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Mark R. Emmett
- COVID-19 International Research Team
- University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Robert Meller
- COVID-19 International Research Team
- Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Urminder Singh
- COVID-19 International Research Team
- Iowa State University, Ames, IA 50011, USA
| | | | | | - Mark T. Heise
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | - Emily A. Madden
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Wes A. Sanders
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | | | | | - Stephen B. Baylin
- COVID-19 International Research Team
- Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Eve Syrkin Wurtele
- COVID-19 International Research Team
- Iowa State University, Ames, IA 50011, USA
| | | | - Deanne Taylor
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
| | - Christopher E. Mason
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
- New York Genome Center, NY, USA
| | - Jonathan C. Schisler
- COVID-19 International Research Team
- University of North Carolina, Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert E. Schwartz
- COVID-19 International Research Team
- Weill Cornell Medicine, NY, 10065, USA
| | - Afshin Beheshti
- COVID-19 International Research Team
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- KBR, NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Douglas C. Wallace
- The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 USA
- COVID-19 International Research Team
- University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
34
|
Gyawali A, Latif S, Choi SH, Hyeon SJ, Ryu H, Kang YS. Monocarboxylate transporter functions and neuroprotective effects of valproic acid in experimental models of amyotrophic lateral sclerosis. J Biomed Sci 2022; 29:2. [PMID: 35012534 PMCID: PMC8744235 DOI: 10.1186/s12929-022-00785-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
Background Amyotrophic lateral sclerosis (ALS) is a devasting neurodegenerative disorder for which no successful therapeutics are available. Valproic acid (VPA), a monocarboxylate derivative, is a known antiepileptic drug and a histone deacetylase inhibitor.
Methods To investigate whether monocarboxylate transporter 1 (MCT1) and sodium-coupled MCT1 (SMCT1) are altered in ALS cell and mouse models, a cellular uptake study, quantitative real time polymerase chain reaction and western blot parameters were used. Similarly, whether VPA provides a neuroprotective effect in the wild-type (WT; hSOD1WT) and ALS mutant-type (MT; hSOD1G93A) NSC-34 motor neuron-like cell lines was determined through the cell viability assay.
Results [3H]VPA uptake was dependent on time, pH, sodium and concentration, and the uptake rate was significantly lower in the MT cell line than the WT cell line. Interestingly, two VPA transport systems were expressed, and the VPA uptake was modulated by SMCT substrates/inhibitors in both cell lines. Furthermore, MCT1 and SMCT1 expression was significantly lower in motor neurons of ALS (G93A) model mice than in those of WT mice. Notably, VPA ameliorated glutamate- and hydrogen peroxide-induced neurotoxicity in both the WT and MT ALS cell lines. Conclusions Together, the current findings demonstrate that VPA exhibits a neuroprotective effect regardless of the dysfunction of an MCT in ALS, which could help develop useful therapeutic strategies for ALS.
Collapse
Affiliation(s)
- Asmita Gyawali
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Sana Latif
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Seung Jae Hyeon
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Young-Sook Kang
- College of Pharmacy and Drug Information Research Institute, Sookmyung Women's University, Cheongpa-ro 47-gil 100 (Cheongpa-dong 2ga), Yongsan-gu, Seoul, 04310, Republic of Korea.
| |
Collapse
|
35
|
Neumann E, Schreeck F, Herberg J, Jacqz Aigrain E, Maitland-van der Zee AH, Pérez-Martínez A, Hawcutt DB, Schaeffeler E, Rane A, de Wildt SN, Schwab M. How paediatric drug development and use could benefit from OMICs: a c4c expert group white paper. Br J Clin Pharmacol 2022; 88:5017-5033. [PMID: 34997627 DOI: 10.1111/bcp.15216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 12/11/2021] [Accepted: 12/14/2021] [Indexed: 12/01/2022] Open
Abstract
The safety and efficacy of pharmacotherapy in children, particularly preterms, neonates, and infants, is limited by a paucity of good quality data from prospective clinical drug trials. A specific challenge is the establishment of valid biomarkers. OMICs technologies may support these efforts, by complementary information about targeted and non-targeted molecules through systematic characterization and quantitation of biological samples. OMICs technologies comprise at least genomics, epigenomics, transcriptomics, proteomics, metabolomics, and microbiomics in addition to the patient's phenotype. OMICs technologies are in part hypothesis-generating allowing an in depth understanding of disease pathophysiology and pharmacological mechanisms. Application of OMICs technologies in paediatrics faces major challenges before routine adoption. First, developmental processes need to be considered, including a sub-division into specific age groups as developmental changes clearly impact OMICs data. Second, compared to the adult population, the number of patients is limited as well as type and amount of necessary biomaterial, especially in neonates and preterms. Thus, advanced trial designs and biostatistical methods, non-invasive biomarkers, innovative biobanking concepts including data and samples from healthy children, as well as analytical approaches (e.g. liquid biopsies) should be addressed to overcome these obstacles. The ultimate goal is to link OMICs technologies with innovative analysis tools, like artificial intelligence at an early stage. The use of OMICs data based on a feasible approach will contribute to identify complex phenotypes and subpopulations of patients to improve development of medicines for children with potential economic advantages.
Collapse
Affiliation(s)
- Eva Neumann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Filippa Schreeck
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Jethro Herberg
- Department of Paediatric Infectious Disease, Faculty of Medicine, Imperial College London, London, UK
| | - Evelyne Jacqz Aigrain
- Pediatric Pharmacology and Pharmacogenetics, Hopital Universitaire Saint-Louis, Paris, France.,Clinical Investigation Center CIC1426, Hôpital Robert Debre, Paris, France.,Pharmacology, University of Paris, Paris, France
| | | | - Antonio Pérez-Martínez
- Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain.,Pediatric Onco-Hematology Department, La Paz University Hospital, Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Daniel B Hawcutt
- Department of Women's and Children's Health, University of Liverpool, UK.,NIHR Alder Hey Clinical Research Facility, Alder Hey Children's Hospital, Liverpool, UK
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany
| | - Anders Rane
- Division of Clinical Pharmacology, Department of Laboratory Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Saskia N de Wildt
- Department of Pharmacology and Toxicology, Radboud Institute for Health Sciences, Radboud university medical center, Nijmegen, The Netherlands.,Intensive Care and Department of Paediatric Surgery, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, and University of Tuebingen, Tuebingen, Germany.,Departments of Clinical Pharmacology, and of Biochemistry and Pharmacy, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
36
|
Skaripa-Koukelli I, Hauton D, Walsby-Tickle J, Thomas E, Owen J, Lakshminarayanan A, Able S, McCullagh J, Carlisle RC, Vallis KA. 3-Bromopyruvate-mediated MCT1-dependent metabolic perturbation sensitizes triple negative breast cancer cells to ionizing radiation. Cancer Metab 2021; 9:37. [PMID: 34649623 PMCID: PMC8515664 DOI: 10.1186/s40170-021-00273-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 09/18/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Triple negative breast cancer (TNBC) poses a serious clinical challenge as it is an aggressive form of the disease that lacks estrogen receptor, progesterone receptor, and ERBB2 (formerly HER2) gene amplification, which limits the treatment options. The Warburg phenotype of upregulated glycolysis in the presence of oxygen has been shown to be prevalent in TNBC. Elevated glycolysis satisfies the energy requirements of cancer cells, contributes to resistance to treatment by maintaining redox homeostasis and generating nucleotide precursors required for cell proliferation and DNA repair. Expression of the monocarboxylate transporter 1 (MCT1), which is responsible for the bidirectional transport of lactate, correlates with an aggressive phenotype and poor outcome in several cancer types, including breast cancer. In this study, 3-bromopyruvate (3BP), a lactate/pyruvate analog, was used to selectively target TNBC cells that express MCT1. METHODS The cytotoxicity of 3BP was tested in MTT assays using human TNBC cell lines: BT20 (MCT1+/MCT4-), MDA-MB-23 (MCT1-/MCT4+), and BT20 in which MCT1 was knocked down (siMCT1-BT20). The metabolite profile of 3BP-treated and 3BP-untreated cells was investigated using LC-MS/MS. The extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) of BT20 and MDA-MB-231 cells treated with 3BP were measured using a Seahorse XF96 extracellular flux analyzer. The impact of ionizing radiation on cell survival, alone or in combination with 3BP pre-treatment, was evaluated using clonogenic assays. RESULTS Metabolomic analyses showed that 3BP causes inhibition of glycolysis, disturbance of redox homeostasis, decreased nucleotide synthesis, and was accompanied by a reduction in medium acidification. In addition, 3BP potentiated the cytotoxic effect of ionizing radiation, a treatment that is frequently used in the management of TNBC. CONCLUSIONS Overall, MCT1-mediated metabolic perturbation in combination with radiotherapy is shown to be a promising strategy for the treatment of glycolytic tumors such as TNBC, overcoming the selectivity challenges of targeting glycolysis with glucose analogs.
Collapse
Affiliation(s)
- Irini Skaripa-Koukelli
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - David Hauton
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - John Walsby-Tickle
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Eloïse Thomas
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Joshua Owen
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Abirami Lakshminarayanan
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Sarah Able
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - James McCullagh
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, OX1 3TA, UK
| | - Robert C Carlisle
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, UK
| | - Katherine A Vallis
- Department of Oncology, Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.
| |
Collapse
|
37
|
Nguyen KTL, Chiou JY, Liu YC, Cheng FJ, Shen YC, Chen CJ, Tang CH, Huang WC, Chen CH, Tu CY. l-lactic acidosis confers insensitivity to PKC inhibitors by competing for uptake via monocarboxylate transporters. J Cell Physiol 2021; 237:934-948. [PMID: 34472101 DOI: 10.1002/jcp.30570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/28/2021] [Accepted: 08/20/2021] [Indexed: 11/06/2022]
Abstract
Targeting protein kinase C (PKC) family was found to repress the migration and resistance of non-small cell lung cancer cells to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs). However, none of the PKC inhibitors has been approved for anticancer therapy yet due to the limited efficacy in clinical trials, and the underlying mechanisms remain unclear. l-lactic acidosis, a common condition comprising high l-lactate concentration and acidic pH in the tumor microenvironment, has been known to induce tumor metastasis and drug resistance. In this study, l-lactic acid was found to reverse the inhibitory effects of pan-PKC inhibitors GO6983 on PKC activity, cell migration, and EGFR-TKI resistance, but these effects were not affected by the modulators of lactate receptor GPR81. Interestingly, blockade of lactate transporters, monocarboxylate transporter-1 and -4 (MCT1 and MCT4), attenuated the intracellular level of GO6983, and its inhibitory effect on PKC activity, suggesting that lactic acid promotes the resistance to PKC inhibitors by competing for the uptake through these transporters rather than by activating its receptor, GPR81. Our findings explain the underlying mechanisms of the limited response of PKC inhibitors in clinical trials.
Collapse
Affiliation(s)
- Khuong T L Nguyen
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Jhih-Yi Chiou
- Stella Matutina Girls' High School, Taichung, Taiwan
| | - You-Chi Liu
- Program in Quantitative Social Science, Dartmouth College, Hanover, New Hampshire, USA
| | - Fang-Ju Cheng
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Yi-Cheng Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Department of Medical Research, Proteomics Core Laboratory, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Hsin Tang
- Graduate Institute of Basic Medical Sciences, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Wei-Chien Huang
- Center for Molecular Medicine, Research Center for Cancer Biology, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,The PhD Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Chia-Hung Chen
- Drug Development Center, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - Chih-Yen Tu
- Drug Development Center, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
38
|
Heinrich T, Sala-Hojman A, Ferretti R, Petersson C, Minguzzi S, Gondela A, Ramaswamy S, Bartosik A, Czauderna F, Crowley L, Wahra P, Schilke H, Böpple P, Dudek Ł, Leś M, Niedziejko P, Olech K, Pawlik H, Włoszczak Ł, Zuchowicz K, Suarez Alvarez JR, Martyka J, Sitek E, Mikulski M, Szczęśniak J, Jäckel S, Krier M, Król M, Wegener A, Gałęzowski M, Nowak M, Becker F, Herhaus C. Discovery of 5-{2-[5-Chloro-2-(5-ethoxyquinoline-8-sulfonamido)phenyl]ethynyl}-4-methoxypyridine-2-carboxylic Acid, a Highly Selective in Vivo Useable Chemical Probe to Dissect MCT4 Biology. J Med Chem 2021; 64:11904-11933. [PMID: 34382802 DOI: 10.1021/acs.jmedchem.1c00448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to increased lactate production during glucose metabolism, tumor cells heavily rely on efficient lactate transport to avoid intracellular lactate accumulation and acidification. Monocarboxylate transporter 4 (MCT4/SLC16A3) is a lactate transporter that plays a central role in tumor pH modulation. The discovery and optimization of a novel class of MCT4 inhibitors (hit 9a), identified by a cellular screening in MDA-MB-231, is described. Direct target interaction of the optimized compound 18n with the cytosolic domain of MCT4 was shown after solubilization of the GFP-tagged transporter by fluorescence cross-correlation spectroscopy and microscopic studies. In vitro treatment with 18n resulted in lactate efflux inhibition and reduction of cellular viability in MCT4 high expressing cells. Moreover, pharmacokinetic properties of 18n allowed assessment of lactate modulation and antitumor activity in a mouse tumor model. Thus, 18n represents a valuable tool for investigating selective MCT4 inhibition and its effect on tumor biology.
Collapse
Affiliation(s)
- Timo Heinrich
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ada Sala-Hojman
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Roberta Ferretti
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Carl Petersson
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Stefano Minguzzi
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | | | - Shivapriya Ramaswamy
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Anna Bartosik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Czauderna
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Lindsey Crowley
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Pamela Wahra
- EMD Serono Research & Development Institute, Inc., 45A Middlesex Turnpike, Billerica, Massachusetts 01821, United States
| | - Heike Schilke
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Pia Böpple
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Łukasz Dudek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Marcin Leś
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | - Kamila Olech
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Henryk Pawlik
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | | | | | - Ewa Sitek
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | | | | | - Sven Jäckel
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Mireille Krier
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Marcin Król
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Ansgar Wegener
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | | | - Mateusz Nowak
- Ryvu Therapeutics, Sternbacha 2, 30-394 Kraków, Poland
| | - Frank Becker
- Intana, Bioscience GmbH, Lochhamer Str. 29a, 82152 Planegg, Martinsried, Germany
| | - Christian Herhaus
- Merck Healthcare KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| |
Collapse
|
39
|
Pasquariello KZ, Dey JM, Sprowl JA. Current Understanding of Membrane Transporters as Regulators or Targets for Cisplatin-Induced Hearing Loss. Mol Pharmacol 2021; 100:348-355. [PMID: 34330821 DOI: 10.1124/molpharm.121.000274] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/22/2021] [Indexed: 11/22/2022] Open
Abstract
Cisplatin is a platinum-based drug which remains among the most efficacious anticancer treatment options. Unfortunately, use of cisplatin is hindered by dose-limiting toxicities, including irreversible hearing loss, which can grossly affect patient quality of life. Cisplatin-induced ototoxicity is the result of cochlear hair cell damage through a mechanism that is poorly understood. However, cisplatin cytotoxicity is reliant on intracellular accumulation, a process that is largely dependent on the presence of particular membrane transporters. This review will provide an update on our current understanding of the various transporters known to be involved in the disposition and cytotoxicity of platinum drugs or their metabolites, as well as their role in mediating cisplatin-induced hearing loss. We also provide a summary of the successes and opportunities in therapeutically targeting membrane transporters to alleviate platinum-induced hearing loss. Moreover, we describe how this approach could be used to reduce the severity or onset of other adverse events associated with exposure to various forms of platinum drugs, without diminishing anti-tumor efficacy. Significance Statement Cisplatin-induced hearing loss is a dose limiting and irreversible adverse event with no current preventative or curative treatment measures. Pharmacological targeting of membrane transporters that regulate platinum uptake into cochlear hair cells, if conducted appropriately, may alleviate this devastating side effect and could be applied to alleviate other platinum-induced toxicities.
Collapse
Key Words
- Uptake transporters (OATP, OAT, OCT, PEPT, MCT, NTCP, ASBT, etc.)
- cancer chemotherapy
- efflux transporters (P-gp, BCRP, MRP, MATE, BSEP, etc)
- ototoxicity
Collapse
Affiliation(s)
| | | | - Jason A Sprowl
- School of Pharmacy, University of Buffalo, United States
| |
Collapse
|
40
|
Manoharan I, Prasad PD, Thangaraju M, Manicassamy S. Lactate-Dependent Regulation of Immune Responses by Dendritic Cells and Macrophages. Front Immunol 2021; 12:691134. [PMID: 34394085 PMCID: PMC8358770 DOI: 10.3389/fimmu.2021.691134] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/14/2021] [Indexed: 12/28/2022] Open
Abstract
For decades, lactate has been considered an innocuous bystander metabolite of cellular metabolism. However, emerging studies show that lactate acts as a complex immunomodulatory molecule that controls innate and adaptive immune cells’ effector functions. Thus, recent advances point to lactate as an essential and novel signaling molecule that shapes innate and adaptive immune responses in the intestine and systemic sites. Here, we review these recent advances in the context of the pleiotropic effects of lactate in regulating diverse functions of immune cells in the tissue microenvironment and under pathological conditions.
Collapse
Affiliation(s)
- Indumathi Manoharan
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Puttur D Prasad
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Muthusamy Thangaraju
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Santhakumar Manicassamy
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
41
|
Rojo Arias JE, Jászai J. Gene expression profile of the murine ischemic retina and its response to Aflibercept (VEGF-Trap). Sci Rep 2021; 11:15313. [PMID: 34321516 PMCID: PMC8319207 DOI: 10.1038/s41598-021-94500-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Ischemic retinal dystrophies are leading causes of acquired vision loss. Although the dysregulated expression of the hypoxia-responsive VEGF-A is a major driver of ischemic retinopathies, implication of additional VEGF-family members in their pathogenesis has led to the development of multivalent anti-angiogenic tools. Designed as a decoy receptor for all ligands of VEGFR1 and VEGFR2, Aflibercept is a potent anti-angiogenic agent. Notwithstanding, the molecular mechanisms mediating Aflibercept's efficacy remain only partially understood. Here, we used the oxygen-induced retinopathy (OIR) mouse as a model system of pathological retinal vascularization to investigate the transcriptional response of the murine retina to hypoxia and of the OIR retina to Aflibercept. While OIR severely impaired transcriptional changes normally ensuing during retinal development, analysis of gene expression patterns hinted at alterations in leukocyte recruitment during the recovery phase of the OIR protocol. Moreover, the levels of Angiopoietin-2, a major player in the progression of diabetic retinopathy, were elevated in OIR tissues and consistently downregulated by Aflibercept. Notably, GO term, KEGG pathway enrichment, and expression dynamics analyses revealed that, beyond regulating angiogenic processes, Aflibercept also modulated inflammation and supported synaptic transmission. Altogether, our findings delineate novel mechanisms potentially underlying Aflibercept's efficacy against ischemic retinopathies.
Collapse
Affiliation(s)
- Jesús Eduardo Rojo Arias
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany ,grid.5335.00000000121885934Present Address: Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - József Jászai
- grid.4488.00000 0001 2111 7257Department of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Saxony, Germany
| |
Collapse
|
42
|
Matheux A, Gassiot M, Fromont G, Leenhardt F, Boulahtouf A, Fabbrizio E, Marchive C, Garcin A, Agherbi H, Combès E, Evrard A, Houédé N, Balaguer P, Gongora C, Mbatchi LC, Pourquier P. PXR Modulates the Prostate Cancer Cell Response to Afatinib by Regulating the Expression of the Monocarboxylate Transporter SLC16A1. Cancers (Basel) 2021; 13:cancers13143635. [PMID: 34298852 PMCID: PMC8305337 DOI: 10.3390/cancers13143635] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 01/12/2023] Open
Abstract
Simple Summary Many kinase inhibitors have been tested as potential alternatives for the treatment of castration-resistant prostate cancers. However, none of these clinical trials led to drug approval despite interesting responses. Our study reveals that genes involved in drug metabolism and their master regulator PXR (Pregnane X Receptor) could be responsible, at least in part, for these disappointing results as they can modulate tumor cell response to specific kinase inhibitors. We found that stable expression of PXR sensitized prostate cancer cells to erlotinib, dabrafenib, and afatinib, while it rendered cells resistant to dasatinib and had no effect for other inhibitors tested. We also report for the first time that sensitization to afatinib is due to an alteration in drug transport that involves the SLC16A1 monocarboxylate transporter. Together, our results further indicate that PXR might be considered as a biomarker of response to kinase inhibitors in castration-resistant prostate cancers. Abstract Resistance to castration is a crucial issue in the treatment of metastatic prostate cancer. Kinase inhibitors (KIs) have been tested as potential alternatives, but none of them are approved yet. KIs are subject of extensive metabolism at both the hepatic and the tumor level. Here, we studied the role of PXR (Pregnane X Receptor), a master regulator of metabolism, in the resistance to KIs in a prostate cancer setting. We confirmed that PXR is expressed in prostate tumors and is more frequently detected in advanced forms of the disease. We showed that stable expression of PXR in 22Rv1 prostate cancer cells conferred a resistance to dasatinib and a higher sensitivity to erlotinib, dabrafenib, and afatinib. Higher sensitivity to afatinib was due to a ~ 2-fold increase in its intracellular accumulation and involved the SLC16A1 transporter as its pharmacological inhibition by BAY-8002 suppressed sensitization of 22Rv1 cells to afatinib and was accompanied with reduced intracellular concentration of the drug. We found that PXR could bind to the SLC16A1 promoter and induced its transcription in the presence of PXR agonists. Together, our results suggest that PXR could be a biomarker of response to kinase inhibitors in castration-resistant prostate cancers.
Collapse
Affiliation(s)
- Alice Matheux
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
| | - Matthieu Gassiot
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Gaëlle Fromont
- Département de Pathologie, CHU de Tours, Université François Rabelais, Inserm UMR 1069, F-37044 Tours, France;
| | - Fanny Leenhardt
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eric Fabbrizio
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Candice Marchive
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Aurélie Garcin
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Hanane Agherbi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Eve Combès
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Alexandre Evrard
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Nadine Houédé
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Département d’Oncologie Médicale, Institut de Cancérologie du Gard—CHU Carémeau, F-30029 Nîmes, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Céline Gongora
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
| | - Litaty C. Mbatchi
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Laboratoire de Biochimie et Biologie Moléculaire, CHU Carémeau, F-30029 Nîmes, France
- Laboratoire de Pharmacocinétique, Faculté de Pharmacie, Université de Montpellier, F-34090 Montpellier, France
| | - Philippe Pourquier
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, ICM, F-34298 Montpellier, France; (A.M.); (M.G.); (F.L.); (A.B.); (E.F.); (C.M.); (A.G.); (H.A.); (E.C.); (A.E.); (N.H.); (P.B.); (C.G.); (L.C.M.)
- Correspondence: ; Tel.: +33-4-66-68-32-31
| |
Collapse
|
43
|
Chandel V, Kumar D. Targeting Signalling Cross-Talk between Cancer Cells and Cancer-Associated Fibroblast through Monocarboxylate Transporters in Head and Neck Cancer. Anticancer Agents Med Chem 2021; 21:1369-1378. [PMID: 32698754 DOI: 10.2174/1871520620666200721135230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 11/22/2022]
Abstract
Head and Neck Squamous Cell Carcinoma (HNSCC) is an aggressive malignancy affecting more than 600,000 cases worldwide annually, associated with poor prognosis and significant morbidity. HNSCC tumors are dysplastic, with up to 80% fibroblasts. It has been reported that Cancer-Associated Fibroblasts (CAFs) facilitate HNSCC progression. Unlike normal cells, malignant cells often display increased glycolysis, even in the presence of oxygen; a phenomenon known as the Warburg effect. As a consequence, there is an increase in Lactic Acid (LA) production. Earlier, it has been reported that HNSCC tumors exhibit high LA levels that correlate with reduced survival. It has been reported that the activation of the receptor tyrosine kinase, c- MET, by CAF-secreted Hepatocyte Growth Factor (HGF) is a major contributing event in the progression of HNSCC. In nasopharyngeal carcinoma, c-MET inhibition downregulates the TP53-Induced Glycolysis and Apoptosis Regulator (TIGAR) and NADPH production resulting in apoptosis. Previously, it was demonstrated that HNSCC tumor cells are highly glycolytic. Further, CAFs show a higher capacity to utilize LA as a carbon source to fuel mitochondrial respiration than HNSCC. Earlier, we have reported that in admixed cultures, both cell types increase the expression of Monocarboxylate Transporters (MCTs) for a bidirectional LA transporter. Consequently, MCTs play an important role in signalling cross-talk between cancer cells and cancer associate fibroblast in head and neck cancer, and targeting MCTs would lead to the development of a potential therapeutic approach for head and neck cancer. In this review, we focus on the regulation of MCTs in head and neck cancer through signalling cross-talk between cancer cells and cancer-associated fibroblasts, and targeting this signalling cross talk would lead to the development of a potential therapeutic approach for head and neck cancer.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida-201313, (UP), India
| |
Collapse
|
44
|
Chandel V, Maru S, Kumar A, Kumar A, Sharma A, Rathi B, Kumar D. Role of monocarboxylate transporters in head and neck squamous cell carcinoma. Life Sci 2021; 279:119709. [PMID: 34102188 DOI: 10.1016/j.lfs.2021.119709] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/29/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
Head and Neck tumors are metabolically highly altered solid tumors. Head and Neck cancer cells may utilise different metabolic pathways for energy production. Whereas, glycolysis is the major source coupled with oxidative phosphorylation in a metabolic symbiosis manner that results in the proliferation and metastasis in Head and Neck Cancer. The monocarboxylate transporters (MCTs) constitute a family of 14 members among which MCT1-4 are responsible for transporting monocarboxylates such as l-lactate and pyruvate, and ketone bodies across the plasma membrane. Additionally, MCTs mediate absorption and distribution of monocarboxylates across the cell membrane. Head and Neck cancer cells are highly glycolytic in nature and generate significant amount of lactic acid in the extracellular environment. In such condition, MCTs play a critical role in the regulation of pH, and lactate shuttle maintenance. The intracellular lactate accumulation is harmful for the cells since it drastically lowers the intracellular pH. MCTs facilitate the export of lactate out of the cell. The lactate export mediated by MCTs is crucial for the cancer cells survival. Therefore, targeting MCTs is important and could be a potential therapeutic approach to control growth of the tumor.
Collapse
Affiliation(s)
- Vaishali Chandel
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida 201313, UP, India
| | - Saurabh Maru
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed to be University, Shirpur, Maharashtra, India
| | - Arun Kumar
- Mahavir Cancer Institute & Research Centre, Phulwarisharif, Patna 801505, Bihar, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal 462 020, Madhya Pradesh, India
| | - Ashok Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Ansari Nagar, New Delhi 110029, Bharat, India
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Department of Chemistry, Hansraj College, University of Delhi, Delhi, India; Laboratory of Computational Modelling of Drugs, South Ural State University, Chelyabinsk, Russia
| | - Dhruv Kumar
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sec-125, Noida 201313, UP, India.
| |
Collapse
|
45
|
Abstract
Colorectal cancer has served as a genetic and biological paradigm for the evolution of solid tumors, and these insights have illuminated early detection, risk stratification, prevention, and treatment principles. Employing the hallmarks of cancer framework, we provide a conceptual framework to understand how genetic alterations in colorectal cancer drive cancer cell biology properties and shape the heterotypic interactions across cells in the tumor microenvironment. This review details research advances pertaining to the genetics and biology of colorectal cancer, emerging concepts gleaned from immune and single-cell profiling, and critical advances and remaining knowledge gaps influencing the development of effective therapies for this cancer that remains a major public health burden.
Collapse
Affiliation(s)
- Jiexi Li
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Xingdi Ma
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Deepavali Chakravarti
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shabnam Shalapour
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Ronald A DePinho
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
46
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
47
|
Kobayashi M, Narumi K, Furugen A, Iseki K. Transport function, regulation, and biology of human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4). Pharmacol Ther 2021; 226:107862. [PMID: 33894276 DOI: 10.1016/j.pharmthera.2021.107862] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 12/20/2022]
Abstract
Human monocarboxylate transporter 1 (hMCT1) and 4 (hMCT4) are involved in the proton-dependent transport of monocarboxylates such as L-lactate, which play an essential role in cellular metabolism and pH regulation. hMCT1 and 4 are overexpressed in a number of cancers, and polymorphisms in hMCT1 have been reported to be associated with the prognosis of some cancers. Accordingly, recent advances have focused on the inhibition of these transporters as a novel therapeutic strategy in cancers. To screen for MCT inhibitors for clinical application, it is important to study MCT function and regulation, and the effect of compounds on them, using human-derived cells. In this review, we focus on the transport function, regulation, and biology of hMCT1 and hMCT4, and the effects of genetic variation in these transporters in humans.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan; Education Research Center for Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokkaido University, Japan.
| | - Katsuya Narumi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12-jo, Nishi-6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
48
|
Mynott RL, Wallington-Beddoe CT. Drug and Solute Transporters in Mediating Resistance to Novel Therapeutics in Multiple Myeloma. ACS Pharmacol Transl Sci 2021; 4:1050-1065. [PMID: 34151200 DOI: 10.1021/acsptsci.1c00074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Indexed: 02/06/2023]
Abstract
Multiple myeloma remains an incurable malignancy of plasma cells. Novel therapies, notably proteasome inhibitors and immunomodulatory drugs, have improved the survival of multiple myeloma patients; however, patients either present with, or develop resistance to, these therapies. Resistance to traditional chemotherapeutic agents can be caused by cellular drug efflux via adenosine triphosphate (ATP)-binding cassette (ABC) transporters, but it is still not clear whether these transporters mediate resistance to proteasome inhibitors and immunomodulatory drugs in multiple myeloma. Solute carrier (SLC) transporters also play a role in cancer drug resistance due to changes in cell homeostasis caused by their abnormal expression and changes in the solutes they transport. In this review, we evaluate resistance to novel therapies used to treat multiple myeloma, as mediated by drug and solute transporters.
Collapse
Affiliation(s)
- Rachel L Mynott
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Craig T Wallington-Beddoe
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia 5042, Australia.,Flinders Medical Centre, Bedford Park, South Australia 5042, Australia.,Centre for Cancer Biology, University of South Australia and SA Pathology, UniSA CRI Building, North Tce, Adelaide, South Australia 5000, Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia 5000, Australia
| |
Collapse
|
49
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
50
|
Sinnott-Armstrong N, Naqvi S, Rivas M, Pritchard JK. GWAS of three molecular traits highlights core genes and pathways alongside a highly polygenic background. eLife 2021; 10:e58615. [PMID: 33587031 PMCID: PMC7884075 DOI: 10.7554/elife.58615] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 01/18/2021] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies (GWAS) have been used to study the genetic basis of a wide variety of complex diseases and other traits. We describe UK Biobank GWAS results for three molecular traits-urate, IGF-1, and testosterone-with better-understood biology than most other complex traits. We find that many of the most significant hits are readily interpretable. We observe huge enrichment of associations near genes involved in the relevant biosynthesis, transport, or signaling pathways. We show how GWAS data illuminate the biology of each trait, including differences in testosterone regulation between females and males. At the same time, even these molecular traits are highly polygenic, with many thousands of variants spread across the genome contributing to trait variance. In summary, for these three molecular traits we identify strong enrichment of signal in putative core gene sets, even while most of the SNP-based heritability is driven by a massively polygenic background.
Collapse
Affiliation(s)
| | - Sahin Naqvi
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Chemical and Systems Biology, Stanford UniversityStanfordUnited States
| | - Manuel Rivas
- Department of Biomedical Data Sciences, Stanford UniversityStanfordUnited States
| | - Jonathan K Pritchard
- Department of Genetics, Stanford UniversityStanfordUnited States
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|