1
|
Gomi F, Iida T, Mori R, Horita S, Nakamura H, Nakajima Y, Shiokawa A, Takahashi K. Phase I Study of Tivozanib Eye Drops in Healthy Volunteers and Patients with Neovascular Age-Related Macular Degeneration. OPHTHALMOLOGY SCIENCE 2024; 4:100553. [PMID: 39161751 PMCID: PMC11331923 DOI: 10.1016/j.xops.2024.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 04/11/2024] [Accepted: 05/13/2024] [Indexed: 08/21/2024]
Abstract
Purpose To evaluate the safety, pharmacokinetics, and exploratory efficacy of tivozanib eye drops in healthy volunteers and patients with neovascular age-related macular degeneration (nAMD). Design This multicenter group-sequential dose escalation phase I study consisted of a placebo-controlled double-masked study of healthy volunteers (cohorts 1 and 2) and an open-label study of patients with nAMD (cohort 3). Participants Healthy volunteers: Japanese or White men aged 20 to <50 years. Patients with nAMD with central subfield thickness (CST) ≥300 μm and best-corrected visual acuity score ≥23 letters in the study eye. Methods In the single-dose cohort of healthy men (cohort 1: steps 1-5), 1 or 2 tivozanib eye drops (30 μL/drop, 5-minute interval; 0.5, 1.0, and 2.0 w/v%) or placebo were administered in 1 eye once. In the multiple-dose cohort of healthy men (cohort 2: steps 1-6), 1 or 2 tivozanib eye drops (0.5, 1.0, and 2.0 w/v%) or placebo were administered 3 times daily in 1 eye for 21 days. In the multiple-dose cohort of patients with nAMD (cohort 3, steps 1-3), 1 or 2 tivozanib eye drops (0.5 and 1.0 w/v%) were administered 3 times daily in 1 affected eye for 21 days. Main Outcome Measures The safety outcome measures included adverse events (AEs). The pharmacokinetic outcome was serum tivozanib concentration. Among the exploratory efficacy outcomes, CST was evaluated. Results In total, 40, 48, and 28 participants were enrolled in cohorts 1, 2, and 3, respectively. Serious AEs did not occur in cohorts 1 to 3. The most frequent AE in multiple-dose cohorts was reversible punctate keratitis: placebo arm, 8.3% (healthy men, 1/12); tivozanib arm, 47.2% (healthy men, 17/36) and 14.3% (nAMD, 4/28). Serum tivozanib exposure increased dose-dependently and was similar in healthy men and patients with nAMD. In patients with nAMD, mean CST changes from baseline to day 22 were -27.6 ± 54.88 (0.5 w/v%; 1 drop, 3 times daily), -35.6 ± 49.64 (1.0 w/v%; 1 drop, 3 times daily), and -43.7 ± 55.19 μm (1.0 w/v%; 2 drops, 3 times daily). Conclusions Tivozanib eye drops showed a favorable safety profile in healthy Japanese and White men and Japanese patients with nAMD. Financial Disclosures Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.
Collapse
Affiliation(s)
- Fumi Gomi
- Department of Ophthalmology, Hyogo Medical University, Nishinomiya, Hyogo, Japan
| | - Tomohiro Iida
- Department of Ophthalmology, Tokyo Women's Medical University, Tokyo, Japan
| | - Ryusaburo Mori
- Division of Ophthalmology, Department of Visual Sciences, Nihon University School of Medicine, Tokyo, Japan
| | | | | | - Yu Nakajima
- R&D Division, Kyowa Kirin Co., Ltd., Tokyo, Japan
| | | | - Kanji Takahashi
- Department of Ophthalmology, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
2
|
Meng X, Kong X, Wu R, Yang Z. Total Body PET/CT: A Role in Drug Development? Semin Nucl Med 2024:S0001-2998(24)00081-3. [PMID: 39389888 DOI: 10.1053/j.semnuclmed.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Nowadays, total body PET has already entered the medical centers and enabled various clinical applications due to its superior imaging capabilities, especially the high sensitivity. However, the potential of the total body PET in the clinical evaluation of radiopharmaceuticals remains underexplored. The development and regulatory processes for radiopharmaceuticals present unique challenges that total body PET could address. In the safety evaluation of radiopharmaceuticals, the internal radiation dosimetry demands images with high quality and quantitative accuracy, which can be achieved using the total body PET. The current clinical pharmacokinetic study for radiopharmaceuticals still relies on invasively sampling of blood and other body fluid, causing discomfort of participant and difficulty in implementation. With the total body PET, the radioactive concentration of the drug in various blood vessels can be assessed noninvasively, facilitating the pharmacokinetic study. The parametric analysis over the total body based on compartment models also sheds light on the pharmacokinetics of the radiopharmaceutical. A special requirement for multi-center clinical research involving PET and SPECT is the harmonization of the quantitative performance among different imaging equipment, and the discrepancy between the total body PET and short axial field of view PET scanners may add to the complexity. To date, there are several successful examples of clinical trials of innovative radiopharmaceuticals using the total body PET, involving different types of tracers ranging from small molecules, peptides, nanobodies, minibodies, and aptamers. In conclusion, total body PET has the potential to revolutionize the clinical evaluation of radiopharmaceuticals and will play a crucial role in future drug development.
Collapse
Affiliation(s)
- Xiangxi Meng
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Xiangxing Kong
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Runze Wu
- Beijing United Imaging Research Institute of Intelligent Imaging, Beijing 100094, China
| | - Zhi Yang
- Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| |
Collapse
|
3
|
Wiese BM, Bondarenko E, Feldman JL. Proof of Concept for High-Dose Cannabidiol Pretreatment to Antagonize Opioid Induced Persistent Apnea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612358. [PMID: 39314412 PMCID: PMC11419143 DOI: 10.1101/2024.09.13.612358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Using a mouse equivalent of FDA-approved cannabidiol (CBD) dosing, we found high dose CBD affects opioid induced persistent apnea (OIPA), the principal cause of opioid related fatalities. CBD pretreatment mitigated respiratory depression from fentanyl in awake mice and significantly delayed OIPA onset in anesthetized mice, effective as the opioid antagonist naloxone. The powerful effect of CBD pretreatment on OIPA suggests a novel therapeutic strategy to reduce fatal opioid overdose incidence.
Collapse
|
4
|
Wilson E, Leventer R, Cunningham C, de Silva MG, Hodgson J, Uebergang E. Anything is better than nothing': exploring attitudes towards novel therapies in leukodystrophy clinical trials. Orphanet J Rare Dis 2024; 19:322. [PMID: 39237961 PMCID: PMC11378604 DOI: 10.1186/s13023-024-03320-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND/AIM Leukodystrophies comprise a group of genetic white matter disorders that lead to progressive motor and cognitive impairment. Recent development of novel therapies has led to an increase in clinical trials for leukodystrophies. To enable recruitment of individuals with a leukodystrophy into clinical trials, clinical trial acceptability should be ascertained. We sought therefore, to identify the motivations for and barriers to clinical trial participation in addition to clinical trial features that may be of concern to individuals with a leukodystrophy and/or their carers. METHODS Adults with a leukodystrophy and parents/carers of individuals with a leukodystrophy were recruited through the Australian Leukodystrophy Registry and through online advertisements. Qualitative semi-structured interviews were used to explore participants views on what clinical trials involve, the perceived risks and benefits of clinical trials, their desire to participate in clinical trials and their personal experience with leukodystrophy. Thematic analysis of data was performed with co-coding of interview transcripts. RESULTS 5 interviews were held with parents of children with leukodystrophy, 4 with parents of adults with leukodystrophy and 3 with adults diagnosed with leukodystrophy. Motivations for clinical trial enrolment include access to potentially lifesaving novel treatments and improved prognostic outcomes. Participants were concerned about adverse clinical trial outcomes, including side effects and exacerbation of illness. Despite this, majority of participants were willing to try anything in clinical trials, demonstrating a high tolerance for first in human trials and trials utilising invasive treatment options. CONCLUSIONS Interviewees communicated a strong desire to participate in interventional clinical trials involving novel therapies. To support enrolment into future leukodystrophy clinical trials we suggest the provision of transparent information regarding clinical trial treatments, consideration of alternative trial control measures, and inclusion of treating clinicians in the trial recruitment process. Clinicians play an integral role in initiating transparent conversations regarding trial risks and adverse outcomes.
Collapse
Affiliation(s)
- Ella Wilson
- The University of Melbourne, Melbourne, VIC, Australia.
| | - Richard Leventer
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
- Royal Children's Hospital, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Chloe Cunningham
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Royal Children's Hospital, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Michelle G de Silva
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Victorian Clinical Genetics Services, Melbourne, VIC, Australia
- The University of Melbourne, Melbourne, VIC, Australia
| | - Jan Hodgson
- The University of Melbourne, Melbourne, VIC, Australia
| | - Eloise Uebergang
- Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Australian Genomics, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Schmidt WK, Cortés‐Puch I, McReynolds CB, Croston GE, Hwang SH, Yang J, Pedersen TL, Wagner KM, Pham TT, Hunt T, Hammock BD. Randomized, double-blind, phase 1a single-ascending dose and food effect studies assessing safety and pharmacokinetics of EC5026 in healthy volunteers. Clin Transl Sci 2024; 17:e70033. [PMID: 39300734 PMCID: PMC11413051 DOI: 10.1111/cts.70033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 09/01/2024] [Indexed: 09/22/2024] Open
Abstract
Chronic pain represents a significant unmet medical need, affecting one-fifth of the U.S. population. EC5026 is a small molecule inhibitor of the enzyme soluble epoxide hydrolase (sEH) which is being developed as a novel non-opioid, non-NSAID analgesic. EC5026 prolongs the action of epoxy fatty acids, endogenous analgesic lipid mediators that are rapidly metabolized by sEH. We evaluated the safety and pharmacokinetic profile of EC5026 in two phase I trials, a single-ascending dose (SAD) study and a fed-fasted study. The SAD study evaluated EC5026 doses ranging from 0.5 to 24 mg in healthy volunteers. EC5026 was well tolerated. No treatment-emergent adverse events were considered related to EC5026. No apparent treatment- or dose-related trends in laboratory results, vital signs, physical examinations, or electrocardiograms were observed. A linear, near-dose-proportional increase in exposure was observed with progressive doses in the SAD study; plasma exposure was below or near the lower limit of quantification after 0.5-2 mg doses. Mean half-lives ranged from 41.8 to 59.1 h. for doses of 8-24 mg, supporting a once-daily dosing regimen. In the fed-fasted study using 8 mg EC5026 tablets, higher peak concentrations (66%) and total exposures (53%) were observed under the fed condition. Plasma concentrations declined in a monoexponential manner with mean half-lives of 59.5 h. in the fed state and 66.9 h. in the fasted state. Future clinical trials using EC5026 for the treatment of pain are justified based on the favorable outcomes from both clinical trials along with preclinical evidence of analgesic activity.
Collapse
Affiliation(s)
- William K. Schmidt
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| | - Irene Cortés‐Puch
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| | | | - Glenn E. Croston
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
- Present address:
Focal BiosciencesMontereyCaliforniaUSA
| | - Sung Hee Hwang
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| | - Jun Yang
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| | | | - Karen M. Wagner
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| | - Theresa T. Pham
- PPD Development, LPAustinTexasUSA
- Present address:
Cerevel TherapeuticsCambridgeMassachusettsUSA
| | | | - Bruce D. Hammock
- EicOsis Human Health Inc., a Subsidiary of EicOsis LLCDavisCaliforniaUSA
| |
Collapse
|
6
|
Cao G, Yang H, Wang J, Ishida M, Thoma C, Haeufel T, Bossert S, Zhang J. Pharmacokinetics and Safety of Spesolimab in Healthy Chinese Subjects: An Open-Label, Phase I Study. Adv Ther 2024; 41:3557-3568. [PMID: 39039387 DOI: 10.1007/s12325-024-02940-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Generalized pustular psoriasis (GPP) is a rare and potentially life-threatening inflammatory skin disease. Interleukin (IL)-36 signalling may play a central role in GPP pathogenesis. Spesolimab is a humanized anti-IL-36 monoclonal antibody inhibiting the IL-36 signalling pathway. Here, we investigated the pharmacokinetics and safety of spesolimab in healthy Chinese subjects. METHODS In this Phase 1, single-dose, parallel-group, open-label study, healthy Chinese subjects aged 18-45 years received a single spesolimab dose by intravenous infusion (IV; 450 mg, 900 mg, or 1200 mg) or subcutaneous (SC) administration (300 mg or 600 mg). Primary endpoints were spesolimab exposure (area under the plasma concentration-time curve and maximum plasma concentration); secondary endpoints were treatment-emergent adverse events (TEAEs) and drug-related adverse events (AEs). RESULTS Fifty subjects received IV (n = 30) or SC (n = 20) spesolimab (n = 10 per dose group); 60.0% were male, mean ± standard deviation age was 31.5 ± 6.6 and 31.0 ± 6.5 years in the IV and SC groups, respectively. Spesolimab exposure increased in a dose-proportional manner in both groups. TEAEs were reported in 83.3% and 80.0% of subjects in the IV and SC groups, the most common TEAE was upper respiratory tract infection (20.0% and 25.0%, respectively). One serious AE of hand fracture was reported in the 900 mg IV group that was not considered drug-related. Drug-related AEs were reported in 53.3% and 55.0% of subjects in the IV and SC groups. All laboratory-related AEs were mild and resolved. CONCLUSION Spesolimab exposure increased in a dose-proportional manner after a single dose by IV and SC administration. Spesolimab was well tolerated in healthy Chinese subjects. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov registration: NCT04390568.
Collapse
Affiliation(s)
- Guoying Cao
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Haijing Yang
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | - Jingjing Wang
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China
| | | | | | - Thomas Haeufel
- Boehringer Ingelheim International GmbH, Ingelheim, Germany
| | | | - Jing Zhang
- Clinical Pharmacology Research Center, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Jingan District, Shanghai, 200040, China.
| |
Collapse
|
7
|
Freitag J, Chamberlain M, Wickham J, Shah K, Cicuttini F, Wang Y, Solterbeck A. Safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation in the treatment of knee osteoarthritis: A Phase I/IIa randomised controlled trial. OSTEOARTHRITIS AND CARTILAGE OPEN 2024; 6:100500. [PMID: 39161739 PMCID: PMC11331931 DOI: 10.1016/j.ocarto.2024.100500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Objectives To assess the safety and efficacy of an allogeneic adipose-derived mesenchymal stem cell preparation (MAG200) in the treatment of knee osteoarthritis over 12 months. Design A single-centre, double-blind, ascending dose, randomised controlled trial. 40 participants with moderate knee osteoarthritis were randomised to receive a single intra-articular injection of MAG200 (dose cohorts:10, 20, 50, 100 × 106 cells) or placebo. Primary objectives were safety and efficacy according to a compound responder analysis of minimal clinically important difference in pain (numerical pain rating scale [NPRS]) and function (Knee Injury and Osteoarthritis Outcome Score - Function in Daily Living subscale [KOOSADL]) at month 12. Secondary efficacy outcomes included changes from baseline in patient reported outcome measures and evaluation of disease-modification using quantitative MRI. Results Treatment was well tolerated with no treatment-related serious adverse events. MAG200 cohorts reported a greater proportion of responders than placebo and demonstrated clinical and statistically significant improvement in pain and clinically relevant improvement in all KOOS subscales. MAG200 demonstrated a reproducible treatment effect over placebo, which was clinically relevant for pain in the 10 × 106 dose cohort (mean difference NPRS:-2.25[95%CI:-4.47,-0.03, p = 0.0468]) and for function in the 20 × 106 and 100 × 106 dose cohorts (mean difference KOOSADL:10.12[95%CI:-1.51,21.76, p = 0.0863] and 10.81[95%CI:-1.42,23.04, p = 0.0810] respectively). A trend in disease-modification was observed with improvement in total knee cartilage volume in MAG200 10, 20, and 100 × 106 dose cohorts, with progression of osteoarthritis in placebo, though this was not statistically significant. No clear dose response was observed. Conclusion This early-phase study provides supportive safety and efficacy evidence to progress MAG200 to later-stage trial development. Trial registration ACTRN12617001095358/ACTRN12621000622808.
Collapse
Affiliation(s)
- Julien Freitag
- School of Rural Medicine, Charles Sturt University, Orange, NSW, 2800, Australia
- Melbourne Stem Cell Centre Research, Box Hill, VIC, 3128, Australia
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | | | - James Wickham
- School of Dentistry & Medical Sciences, Charles Sturt University, Orange, NSW, 2800, Australia
| | - Kiran Shah
- Magellan Stem Cells, 9A Sugar Gum Court, Braeside, VIC, 3195, Australia
| | - Flavia Cicuttini
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
- Department of Rheumatology, Alfred Hospital, Melbourne, VIC, 3004, Australia
| | - Yuanyuan Wang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Ann Solterbeck
- Statistical Revelations Pty Ltd, Ocean Grove, VIC, 3226, Australia
| |
Collapse
|
8
|
Rahman A, Shah M, Shord SS. Dosage Optimization: A Regulatory Perspective for Developing Oncology Drugs. Clin Pharmacol Ther 2024; 116:577-591. [PMID: 39072758 DOI: 10.1002/cpt.3373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024]
Abstract
Optimized dosages provide a secure foundation for the development of well-tolerated and effective oncology drugs. Project Optimus, an initiative within the Oncology Center of Excellence, strives to reform the dosage optimization and dosage selection paradigm in oncology. This initiative stems from the availability of targeted drugs and from the demand for more tolerable dosages from patients, caregivers, and advocates. Reforming dosage optimization for oncology drugs requires a paradigm shift from the one employed for cytotoxic chemotherapy to one that understands and considers the unique attributes of targeted therapy, immunotherapy, and cellular therapy. Limited characterization of dosage during drug development may result in (1) patients not staying on a therapy long-term due to poor tolerability, (2) failure to establish positive benefit-risk in clinical trials for regulatory approval (3) withdrawal of drugs from the market (4) removal of indications of drugs from the market. Timely access to drugs is important for all patients with cancer, so it is vital to iteratively analyze all nonclinical and clinically relevant data at each stage of development and leverage quantitative approaches, innovative trial designs, and regulatory support to arrive at dosages with favorable benefit-risk. This review highlights the key challenges and opportunities to embracing this new paradigm and realizing the full potential of new oncology therapies.
Collapse
Affiliation(s)
- Atiqur Rahman
- Division of Cancer Pharmacology II, Office of Clinical Pharmacology, Office of Translational Sciences, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mirat Shah
- Division of Oncology I, Office of Oncologic Diseases, Office of New Drugs, CDER, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Stacy S Shord
- Division of Cancer Pharmacology II, Office of Clinical Pharmacology, Office of Translational Sciences, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
9
|
Hoog CJPO', Mehra N, Maliepaard M, Bol K, Gelderblom H, Sonke GS, de Langen AJ, van de Donk NWCJ, Janssen JJWM, Minnema MC, van Erp NP, Boerrigter E. Dose selection of novel anticancer drugs: exposing the gap between selected and required doses. Lancet Oncol 2024; 25:e340-e351. [PMID: 39089312 DOI: 10.1016/s1470-2045(24)00134-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 08/03/2024]
Abstract
Historically, dose selection of anticancer drugs has mainly been based on establishing the maximum tolerated dose in phase 1 clinical trials with a traditional 3 plus 3 design. In the era of targeted therapies and immune-modulating agents, this approach does not necessarily lead to selection of the most favourable dose. This strategy can introduce potentially avoidable toxicity or inconvenience for patients. Multiple changes in drug development could lead to more rational dose selection, such as use of better predictive preclinical models, adaptive and randomised trial design, evaluation of multiple dose levels in late-phase development, assessment of target activity and saturation, and early biomarker use for efficacy and safety evaluation. In this Review, we evaluate the rationale and validation of dose selection in each phase of drug development for anticancer drugs approved by the European Medicines Agency and US Food and Drug Administration from Jan 1, 2020, to June 30, 2023, and give recommendations for dose optimisation to improve safety and patient convenience. In our evaluation, we classified 20 (65%) of the 31 recently registered anticancer agents as potential candidates for dose optimisation, which could be achieved either by reducing the dose (n=10 [32%]) or adjusting the dosage regimen (n=10 [32%]). Dose selection seemed to be adequately justified for nine (29%) of the drugs, whereas the reviewed data were inconclusive for formulating a recommendation on dose optimisation for two (6%) of the drugs.
Collapse
Affiliation(s)
| | - Niven Mehra
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marc Maliepaard
- Department of Pharmacology and Toxicology, Radboud University Medical Center, Nijmegen, Netherlands; Dutch Medicines Evaluation Board (CBG-MEB), Utrecht, Netherlands
| | - Kalijn Bol
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hans Gelderblom
- Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Adrianus J de Langen
- Department of Thoracic Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Niels W C J van de Donk
- Department of Hematology, Amsterdam University Medical Center, location Vrije Universiteit Amsterdam, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jeroen J W M Janssen
- Department of Hematology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Monique C Minnema
- Department of Hematology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Nielka P van Erp
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Emmy Boerrigter
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
10
|
Takakura Y, Hanayama R, Akiyoshi K, Futaki S, Hida K, Ichiki T, Ishii-Watabe A, Kuroda M, Maki K, Miura Y, Okada Y, Seo N, Takeuchi T, Yamaguchi T, Yoshioka Y. Quality and Safety Considerations for Therapeutic Products Based on Extracellular Vesicles. Pharm Res 2024; 41:1573-1594. [PMID: 39112776 PMCID: PMC11362369 DOI: 10.1007/s11095-024-03757-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/28/2024] [Indexed: 08/30/2024]
Abstract
Extracellular vesicles (EVs) serve as an intrinsic system for delivering functional molecules within our body, playing significant roles in diverse physiological phenomena and diseases. Both native and engineered EVs are currently the subject of extensive research as promising therapeutics and drug delivery systems, primarily due to their remarkable attributes, such as targeting capabilities, biocompatibility, and low immunogenicity and mutagenicity. Nevertheless, their clinical application is still a long way off owing to multiple limitations. In this context, the Science Board of the Pharmaceuticals and Medical Devices Agency (PMDA) of Japan has conducted a comprehensive assessment to identify the current issues related to the quality and safety of EV-based therapeutic products. Furthermore, we have presented several examples of the state-of-the-art methodologies employed in EV manufacturing, along with guidelines for critical processes, such as production, purification, characterization, quality evaluation and control, safety assessment, and clinical development and evaluation of EV-based therapeutics. These endeavors aim to facilitate the clinical application of EVs and pave the way for their transformative impact in healthcare.
Collapse
Affiliation(s)
- Yoshinobu Takakura
- Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.
| | - Rikinari Hanayama
- WPI Nano Life Science Institute (NanoLSI), Kanazawa University, Kanazawa, Japan.
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Kyoto, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Kyoto, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Biology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Takanori Ichiki
- Department of Materials Engineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Shinjuku, Japan
| | - Kazushige Maki
- Pharmaceuticals and Medical Devices Agency, Chiyoda-ku, Japan
| | - Yasuo Miura
- Department of Transfusion Medicine and Cell Therapy, School of Medicine, Fujita Health University, Toyoake, Japan
| | - Yoshiaki Okada
- Department of Transfusion Medicine and Cell Transplantation, Saitama Medical University Hospital, Kawagoe, Japan
| | - Naohiro Seo
- Department of Bioengineering, School of Engineering, The University of Tokyo, Bunkyō, Japan
| | - Toshihide Takeuchi
- Life Science Research Institute, Kindai University, Higashi-osaka, Japan
| | | | - Yusuke Yoshioka
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Shinjuku, Japan
| |
Collapse
|
11
|
Filippi-Arriaga F, Molina P, Delgado-Espinoza CE, Antonijoan R. A cross-sectional study of Phase I Clinical Trials authorized in Spain: An analysis of characteristics and times of execution based on experience. Med Clin (Barc) 2024:S0025-7753(24)00406-8. [PMID: 39043476 DOI: 10.1016/j.medcli.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/25/2024]
Affiliation(s)
- Francesca Filippi-Arriaga
- Centre Investigació Medicaments (CIM), Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain.
| | - Pol Molina
- Centre Investigació Medicaments (CIM), Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain
| | - Claudia Erika Delgado-Espinoza
- Department of Clinical Pharmacology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain; Comitè Ètic per a la Investigació amb medicaments (CEIm) del Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Rosa Antonijoan
- Centre Investigació Medicaments (CIM), Institut de Recerca Sant Pau (IR-Sant Pau), Barcelona, Spain; Department of Clinical Pharmacology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain; Department of Pharmacology and Therapeutics, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
12
|
Słyk Ż, Stachowiak N, Małecki M. Recombinant Adeno-Associated Virus Vectors for Gene Therapy of the Central Nervous System: Delivery Routes and Clinical Aspects. Biomedicines 2024; 12:1523. [PMID: 39062095 PMCID: PMC11274884 DOI: 10.3390/biomedicines12071523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/23/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The Central Nervous System (CNS) is vulnerable to a range of diseases, including neurodegenerative and oncological conditions, which present significant treatment challenges. The blood-brain barrier (BBB) restricts molecule penetration, complicating the achievement of therapeutic concentrations in the CNS following systemic administration. Gene therapy using recombinant adeno-associated virus (rAAV) vectors emerges as a promising strategy for treating CNS diseases, demonstrated by the registration of six gene therapy products in the past six years and 87 ongoing clinical trials. This review explores the implementation of rAAV vectors in CNS disease treatment, emphasizing AAV biology and vector engineering. Various administration methods-such as intravenous, intrathecal, and intraparenchymal routes-and experimental approaches like intranasal and intramuscular administration are evaluated, discussing their advantages and limitations in different CNS contexts. Additionally, the review underscores the importance of optimizing therapeutic efficacy through the pharmacokinetics (PK) and pharmacodynamics (PD) of rAAV vectors. A comprehensive analysis of clinical trials reveals successes and challenges, including barriers to commercialization. This review provides insights into therapeutic strategies using rAAV vectors in neurological diseases and identifies areas requiring further research, particularly in optimizing rAAV PK/PD.
Collapse
Affiliation(s)
- Żaneta Słyk
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Natalia Stachowiak
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Maciej Małecki
- Department of Applied Pharmacy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
- Laboratory of Gene Therapy, Faculty of Pharmacy, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
13
|
Sun ALA, Gillies JD, Shen Y, Deng H, Xue F, Ma Y, Song L. A phase I randomized study to evaluate safety, pharmacokinetics, and pharmacodynamics of SIR2446M, a selective RIPK1 inhibitor, in healthy participants. Clin Transl Sci 2024; 17:e13857. [PMID: 38949195 PMCID: PMC11215690 DOI: 10.1111/cts.13857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024] Open
Abstract
Activation of receptor-interacting protein kinase 1 (RIPK1), a broadly expressed serine/threonine protein kinase, by pro-inflammatory cytokines and pathogens can result in apoptosis, necroptosis, or inflammation. RIPK1 inhibition has been shown to reduce inflammation and cell damage in preclinical studies and may have therapeutic potential for degenerative and inflammatory diseases. SIR2446 is a potent and selective novel small molecule RIPK1 kinase inhibitor. This phase I, randomized, double-blind, placebo-controlled study in Australia (ACTRN12621001621808) evaluated the safety (primary objective), pharmacokinetics, and pharmacodynamics of single (3-600 mg) and multiple (5-400 mg for 10 days) ascending oral doses of SIR2446M (SIR2446 magnesium salt form) in healthy adults from Nov 24, 2021, until May 01, 2023. All treatment-emergent adverse events (TEAEs) were mild/moderate. The most reported TEAEs were vascular access site pain, headache, and rash morbilliform. SIR2446M plasma half-lives ranged from 11 to 19 h and there were no major deviations from dose proportionality for maximum concentration and area under the curve across doses. Renal excretion of unchanged SIR2446 was minimal. No marked accumulation was observed (mean accumulation ratio, 1.2-1.6) after multiple daily doses. A high-fat meal mildly reduced the exposure but was not considered clinically significant. SIR2446M had a rapid and sustained inhibitory effect on the activity of RIPK1, with an overall 90% target engagement at repeated doses ranging from 30 to 400 mg in peripheral blood mononuclear cells ex vivo stimulated to undergo necroptosis. The favorable safety, pharmacokinetic, and pharmacodynamic profile of SIR2446M in healthy participants supports its further clinical development in patients with degenerative and inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Yang Shen
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Huajun Deng
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Fenchao Xue
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Yongfen Ma
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| | - Linan Song
- Sironax Aus Pty Ltd, a Subsidiary of Sironax, Ltd (Sironax)SydneyNew South WalesAustralia
| |
Collapse
|
14
|
Fereshtenejad N, Saberi S, Pol F, Yeowell G, Sadeghi-Demneh E. Intersession reliability of center of pressure measurement during bipedal standing with different foot placement angles. J Bodyw Mov Ther 2024; 39:410-414. [PMID: 38876660 DOI: 10.1016/j.jbmt.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 06/16/2024]
Abstract
INTRODUCTION The foot placement is a determinant of the base of support and influences standing balance. The reliability of postural stability tests with different foot placement angles is unclear. RESEARCH QUESTION To determine and compare the intra- and inter-day reliability of the center of pressure-based postural stability while standing with different foot placement angles. METHOD Twenty-five healthy adults (16 females and 9 males; age: 29 ± 6 years) completed 70 s trials of eyes open and eyes closed stability tests with 0°, 15°, 30°, and 45° angles between the feet while standing on a forceplate in three sessions: two sessions were in the same day, and the third session was one-week apart. The repeatability of measurements was tested using analysis of variance, interclass correlation, and standard error of measurements. RESULT Throughout the three study sessions, there was no difference in postural stability while participants stood with different foot placement angles. The interclass correlation scores ranged from 0.71 to 0.96, the standard error of measurements ranged from 2.1% to 12.9%, and no significant systematic changes (p < 0.05) occurred between the testing sessions for any foot placements. Standing with a 45° angle between the feet with closed eyes showed higher reliability values than other conditions. The intra-day reliability scores were greater than inter-day reliability. DISCUSSION The relative reliability of postural stability could be impacted by foot placement angles, which might alter ankle mobility and base of support dimensions. The advantages of larger foot placement angles on improving the relative reliability of postural stability could be better demonstrated in healthy people under challenging conditions such as standing with closed eyes. CONCLUSION Standing with foot placement angles between 0° and 45° are reliable and a quantitative assessment of the center of pressure could be used to monitor the changes in postural stability between sessions.
Collapse
Affiliation(s)
- Niloufar Fereshtenejad
- Musculoskeletal Research Center, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Saberi
- Musculoskeletal Research Center, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Pol
- Musculoskeletal Research Center, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gillian Yeowell
- Department of Health Professions, Manchester Metropolitan University, Manchester, UK
| | - Ebrahim Sadeghi-Demneh
- Musculoskeletal Research Center, School of Rehabilitation Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
15
|
Chen C, Lavezzi SM, McDougall D. The estimation and translation uncertainties in applying NOAEL to clinical dose escalation. Clin Transl Sci 2024; 17:e13831. [PMID: 38808564 PMCID: PMC11134224 DOI: 10.1111/cts.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/08/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024] Open
Abstract
The systemic exposure at the no-observed-adverse-effect-level (NOAEL) estimated from animals is an important criterion commonly applied to guard the safety of participants in clinical trials of investigational drugs. However, the discrepancy in toxicity profile between species is widely recognized. The objective of the work reported here was to assess, via simulation, the level of uncertainty in the NOAEL estimated from an animal species and the effectiveness of applying its associated exposure value to minimizing the toxicity risk to human. Simulations were conducted for dose escalation of an investigational new chemical entity with hypothetical exposure-response models for the dose-limiting toxicity under a variety of conditions, in terms of between-species relative sensitivity to the toxicity and the between-subject variability in the key parameters determining the sensitivity and pharmacokinetics. Results show a high uncertainty in the NOAEL estimation. Notably, even when the animal species and humans are assumed to have the same sensitivity, which may not be realistic, limiting clinical dose to the exposure at the NOAEL that has been identified in the animals carries a high risk of either causing toxicity or under-dosing, hence undermining the therapeutic potential of the drug candidate. These findings highlight the importance of understanding the mechanism of the toxicity profile and its cross-species translatability, as well as the importance of understanding the dose requirement for achieving adequate pharmacology.
Collapse
Affiliation(s)
- Chao Chen
- Clinical Pharmacology Modelling and SimulationGSKLondonUK
| | - Silvia Maria Lavezzi
- Clinical Pharmacology, Modelling and SimulationParexel InternationalDublinIreland
| | - David McDougall
- Clinical Pharmacology, Modelling and SimulationParexel InternationalBrisbaneQueenslandAustralia
| |
Collapse
|
16
|
Issa H, Loubaki L, Al Amri A, Zibara K, Almutairi MH, Rouabhia M, Semlali A. Eugenol as a potential adjuvant therapy for gingival squamous cell carcinoma. Sci Rep 2024; 14:10958. [PMID: 38740853 DOI: 10.1038/s41598-024-60754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Adoption of plant-derived compounds for the management of oral cancer is encouraged by the scientific community due to emerging chemoresistance and conventional treatments adverse effects. Considering that very few studies investigated eugenol clinical relevance for gingival carcinoma, we ought to explore its selectivity and performance according to aggressiveness level. For this purpose, non-oncogenic human oral epithelial cells (GMSM-K) were used together with the Tongue (SCC-9) and Gingival (Ca9-22) squamous cell carcinoma lines to assess key tumorigenesis processes. Overall, eugenol inhibited cell proliferation and colony formation while inducing cytotoxicity in cancer cells as compared to normal counterparts. The recorded effect was greater in gingival carcinoma and appears to be mediated through apoptosis induction and promotion of p21/p27/cyclin D1 modulation and subsequent Ca9-22 cell cycle arrest at the G0/G1 phase, in a p53-independent manner. At these levels, distinct genetic profiles were uncovered for both cell lines by QPCR array. Moreover, it seems that our active component limited Ca9-22 and SCC-9 cell migration respectively through MMP1/3 downregulation and stimulation of inactive MMPs complex formation. Finally, Ca9-22 behaviour appears to be mainly modulated by the P38/STAT5/NFkB pathways. In summary, we can disclose that eugenol is cancer selective and that its mediated anti-cancer mechanisms vary according to the cell line with gingival squamous cell carcinoma being more sensitive to this phytotherapy agent.
Collapse
Affiliation(s)
- Hawraa Issa
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Lionel Loubaki
- Héma-Québec, Medical Affairs and Innovation, Québec, Canada
| | - Abdullah Al Amri
- Biochemistry Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Kazem Zibara
- PRASE and Biology Department, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| | - Mikhlid H Almutairi
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Rouabhia
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada
| | - Abdelhabib Semlali
- GREB Research Group, Faculty of Dentistry, Laval University, Québec, Canada.
| |
Collapse
|
17
|
Boulet S, Ursino M, Michelet R, Aulin LB, Kloft C, Comets E, Zohar S. Bayesian framework for multi-source data integration-Application to human extrapolation from preclinical studies. Stat Methods Med Res 2024; 33:574-588. [PMID: 38446999 DOI: 10.1177/09622802241231493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In preclinical investigations, for example, in in vitro, in vivo, and in silico studies, the pharmacokinetic, pharmacodynamic, and toxicological characteristics of a drug are evaluated before advancing to first-in-man trial. Usually, each study is analyzed independently and the human dose range does not leverage the knowledge gained from all studies. Taking into account all preclinical data through inferential procedures can be particularly interesting in obtaining a more precise and reliable starting dose and dose range. Our objective is to propose a Bayesian framework for multi-source data integration, customizable, and tailored to the specific research question. We focused on preclinical results extrapolated to humans, which allowed us to predict the quantities of interest (e.g. maximum tolerated dose, etc.) in humans. We build an approach, divided into four steps, based on a sequential parameter estimation for each study, extrapolation to human, commensurability checking between posterior distributions and final information merging to increase the precision of estimation. The new framework is evaluated via an extensive simulation study, based on a real-life example in oncology. Our approach allows us to better use all the information compared to a standard framework, reducing uncertainty in the predictions and potentially leading to a more efficient dose selection.
Collapse
Affiliation(s)
- Sandrine Boulet
- Inria, HeKA, Paris, France
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| | - Moreno Ursino
- Inria, HeKA, Paris, France
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
- Unit of Clinical Epidemiology, Assistance Publique - Hopitaux de Paris, CHU Robert Debré, INSERM CIC-EC 1426, Paris, France
| | - Robin Michelet
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Linda Bs Aulin
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Charlotte Kloft
- Department of Clinical Pharmacy & Biochemistry, Institute of Pharmacy, Freie Universitaet Berlin, Berlin, Germany
| | - Emmanuelle Comets
- INSERM, Univ Rennes, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMRS 1085, Rennes, France
- INSERM, Université Paris Cité, IAME, Paris, France Sandrine Boulet and Moreno Ursino made equal contributions and are co-first authors. Emmanuelle Comets and Sarah Zohar made equal contributions and are co-last authors
| | - Sarah Zohar
- Inria, HeKA, Paris, France
- INSERM, Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Paris, France
| |
Collapse
|
18
|
Milliken RL, Quinten T, Andersen SK, Lamprou DA. Application of 3D printing in early phase development of pharmaceutical solid dosage forms. Int J Pharm 2024; 653:123902. [PMID: 38360287 DOI: 10.1016/j.ijpharm.2024.123902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Three-dimensional printing (3DP) is an emerging technology, offering the possibility for the development of dose-customized, effective, and safe solid oral dosage forms (SODFs). Although 3DP has great potential, it does come with certain limitations, and the traditional drug manufacturing platforms remain the industry standard. The consensus appears to be that 3DP technology is expected to benefit personalized medicine the most, but that it is unlikely to replace conventional manufacturing for mass production. The 3DP method, on the other hand, could prove well-suited for producing small batches as an adaptive manufacturing technique for enabling adaptive clinical trial design for early clinical studies. The purpose of this review is to discuss recent advancements in 3DP technologies for SODFs and to focus on the applications for SODFs in the early clinical development stages, including a discussion of current regulatory challenges and quality controls.
Collapse
Affiliation(s)
- Rachel L Milliken
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thomas Quinten
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Sune K Andersen
- Janssen Pharmaceutica, Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Dimitrios A Lamprou
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
19
|
Zhang L, Feng F, Wang X, Liang H, Yao X, Liu D. Dose Prediction and Pharmacokinetic Simulation of XZP-5610, a Small Molecule for NASH Therapy, Using Allometric Scaling and Physiologically Based Pharmacokinetic Models. Pharmaceuticals (Basel) 2024; 17:369. [PMID: 38543155 PMCID: PMC10975475 DOI: 10.3390/ph17030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/22/2024] [Accepted: 03/03/2024] [Indexed: 04/01/2024] Open
Abstract
The objectives of this study were to support dose selection of a novel FXR agonist XZP-5610 in first-in-human (FIH) trials and to predict its liver concentrations in Chinese healthy adults. Key parameters for extrapolation were measured using in vitro and in vivo models. Allometric scaling methods were employed to predict human pharmacokinetics (PK) parameters and doses for FIH clinical trials. To simulate the PK profiles, a physiologically based pharmacokinetic (PBPK) model was developed using animal data and subsequently validated with clinical data. The PBPK model was employed to simulate XZP-5610 concentrations in the human liver across different dose groups. XZP-5610 exhibited high permeability, poor solubility, and extensive binding to plasma proteins. After a single intravenous or oral administration of XZP-5610, the PK parameters obtained from rats and beagle dogs were used to extrapolate human parameters, resulting in a clearance of 138 mL/min and an apparent volume of distribution of 41.8 L. The predicted maximum recommended starting dose (MRSD), minimal anticipated biological effect level (MABEL), and maximum tolerated dose (MTD) were 0.15, 2, and 3 mg, respectively. The PK profiles and parameters of XZP-5610, predicted using the PBPK model, demonstrated good consistency with the clinical data. By using allometric scaling and PBPK models, the doses, PK profile, and especially the liver concentrations were successfully predicted in the FIH study.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China;
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Feifei Feng
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xiaohan Wang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
| | - Hao Liang
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Xueting Yao
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China; (F.F.); (X.W.); (H.L.)
- Center of Clinical Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
20
|
Gendy JM, Nomura N, Stuart JN, Blumenthal G. US FDA's Dose Optimization Postmarketing Requirements and Commitments of Oncology Approvals and the Impact on Product Labels from 2010 to 2022: An Emerging Landscape from Traditional to Novel Therapies. Ther Innov Regul Sci 2024; 58:380-386. [PMID: 38182940 PMCID: PMC10850176 DOI: 10.1007/s43441-023-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/01/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Dose optimization is a focal point of many US Food and Drug Administration (FDA) drug approvals. We sought to understand the impact of the FDA's Postmarketing Commitments/Postmarketing Requirements (PMCs/PMRs) on dose optimization and prescriber labeling for oncology drugs. METHODS Publicly available information was aggregated for all FDA oncology drug approvals between January 1, 2010, and December 31, 2022. Study completion dates were compared to product labeling before and after PMC/PMR fulfillment dates to evaluate labeling changes associated with dose-related PMCs/PMRs. Data were analyzed individually (2010-2015 and 2016-2022) due to differences in available information. RESULTS From 2010 to 2015, 14 of 42 (33.3%) new molecular entities (NMEs) had dose-related PMCs/PMRs, with 6 of 14 (42.9%) resulting in a relevant label change. From 2016 to 2022, of the 314 new or supplemental applications approved, 21 had dose-related PMCs/PMRs (6.7%), which trended upward over time; 71.4% of dose-related PMCs/PMRs were NMEs. Kinase inhibitors (KIs) and antibody/peptide drug conjugates (ADCs/PDCs) were the most affected drug classes. Ten of the 21 approvals with dose-related PMCs/PMRs fulfilled their dosing PMCs/PMRs, and 3 of the 10 (30%) had relevant label changes. CONCLUSION Most dose-related PMRs/PMCs were issued for NMEs. Of these, KIs and ADCs/PDCs were highly represented, reflecting their novelty and greater uncertainty around their safety profile. PMC/PMR issuance broadly increased over time. With the implementation of the FDA's Project Optimus in 2021, it remains to be seen whether fewer dose-related PMCs/PMRs emerge in future due to enhanced dose optimization in the premarketing setting.
Collapse
Affiliation(s)
- Joseph M Gendy
- Global Regulatory Affairs, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA.
| | - Naomi Nomura
- Global Regulatory Affairs, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Jeffrey N Stuart
- Global Regulatory Affairs, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| | - Gideon Blumenthal
- Global Regulatory Affairs, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, NJ, 07065, USA
| |
Collapse
|
21
|
Kenney RT, Cini JK, Dexter S, DaFonseca M, Bingham J, Kuan I, Chawla SP, Polasek TM, Lickliter J, Ryan PJ. A phase I trial of SON-1010, a tumor-targeted, interleukin-12-linked, albumin-binding cytokine, shows favorable pharmacokinetics, pharmacodynamics, and safety in healthy volunteers. Front Immunol 2024; 15:1362775. [PMID: 38487528 PMCID: PMC10937388 DOI: 10.3389/fimmu.2024.1362775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/09/2024] [Indexed: 03/17/2024] Open
Abstract
Background The benefits of recombinant interleukin-12 (rIL-12) as a multifunctional cytokine and potential immunotherapy for cancer have been sought for decades based on its efficacy in multiple mouse models. Unexpected toxicity in the first phase 2 study required careful attention to revised dosing strategies. Despite some signs of efficacy since then, most rIL-12 clinical trials have encountered hurdles such as short terminal elimination half-life (T½), limited tumor microenvironment targeting, and substantial systemic toxicity. We developed a strategy to extend the rIL-12 T½ that depends on binding albumin in vivo to target tumor tissue, using single-chain rIL-12 linked to a fully human albumin binding (FHAB) domain (SON-1010). After initiating a dose-escalation trial in patients with cancer (SB101), a randomized, double-blind, placebo-controlled, single-ascending dose (SAD) phase 1 trial in healthy volunteers (SB102) was conducted. Methods SB102 (NCT05408572) focused on safety, tolerability, pharmacokinetic (PK), and pharmacodynamic (PD) endpoints. SON-1010 at 50-300 ng/kg or placebo administered subcutaneously on day 1 was studied at a ratio of 6:2, starting with two sentinels; participants were followed through day 29. Safety was reviewed after day 22, before enrolling the next cohort. A non-compartmental analysis of PK was performed and correlations with the PD results were explored, along with a comparison of the SON-1010 PK profile in SB101. Results Participants receiving SON-1010 at 100 ng/kg or higher tolerated the injection but generally experienced more treatment-emergent adverse effects (TEAEs) than those receiving the lowest dose. All TEAEs were transient and no other dose relationship was noted. As expected with rIL-12, initial decreases in neutrophils and lymphocytes returned to baseline by days 9-11. PK analysis showed two-compartment elimination in SB102 with mean T½ of 104 h, compared with one-compartment elimination in SB101, which correlated with prolonged but controlled and dose-related increases in interferon-gamma (IFNγ). There was no evidence of cytokine release syndrome based on minimal participant symptoms and responses observed with other cytokines. Conclusion SON-1010, a novel presentation for rIL-12, was safe and well-tolerated in healthy volunteers up to 300 ng/kg. Its extended half-life leads to a prolonged but controlled IFNγ response, which may be important for tumor control in patients. Clinical trial registration https://clinicaltrials.gov/study/NCT05408572, identifier NCT05408572.
Collapse
Affiliation(s)
| | - John K. Cini
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | - Susan Dexter
- Sonnet BioTherapeutics, Inc, Princeton, NJ, United States
| | | | | | | | - Sant P. Chawla
- Sarcoma Oncology Center, Santa Monica, CA, United States
| | - Thomas M. Polasek
- Centre for Medicine Use and Safety, Monash University, Melbourne, VIC, Australia
- InClin, Inc, San Mateo, CA, United States
| | | | | |
Collapse
|
22
|
Ailabouni AS, Mettu VS, Thakur A, Singh DK, Prasad B. Effect of Cimetidine on Metformin Pharmacokinetics and Endogenous Metabolite Levels in Rats. Drug Metab Dispos 2024; 52:86-94. [PMID: 38049999 PMCID: PMC10801632 DOI: 10.1124/dmd.123.001470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Tubular secretion is a primary mechanism along with glomerular filtration for renal elimination of drugs and toxicants into urine. Organic cation transporters (OCTs) and multidrug and toxic extrusion (MATE) transporters facilitate the active secretion of cationic substrates, including drugs such as metformin and endogenous cations. We hypothesized that administration of cimetidine, an Oct/Mate inhibitor, will result in increased plasma levels and decreased renal clearance of metformin and endogenous Oct/Mate substrates in rats. A paired rat pharmacokinetic study was carried out in which metformin (5 mg/kg, intravenous) was administered as an exogenous substrate of Oct/Mate transporters to six Sprague-Dawley rats with and without cimetidine (100 mg/kg, intraperitoneal). When co-administered with cimetidine, metformin area under the curve increased significantly by 3.2-fold, and its renal clearance reduced significantly by 73%. Untargeted metabolomics was performed to investigate the effect of cimetidine on endogenous metabolome in the blood and urine samples. Over 8,000 features (metabolites) were detected in the blood, which were shortlisted using optimized criteria, i.e., a significant increase (P value < 0.05) in metabolite peak intensity in the cimetidine-treated group, reproducible retention time, and quality of chromatogram peak. The metabolite hits were classified into three groups that can potentially distinguish inhibition of i) extra-renal uptake transport or catabolism, ii) renal Octs, and iii) renal efflux transporters or metabolite formation. The metabolomics approach identified novel putative endogenous substrates of cationic transporters that could be tested as potential biomarkers to predict Oct/Mate transporter mediated drug-drug interactions in the preclinical stages. SIGNIFICANCE STATEMENT: Endogenous substrates of renal transporters in animal models could be used as potential biomarkers to predict renal drug-drug interactions in early drug development. Here we demonstrated that cimetidine, an inhibitor of organic cation transporters (Oct/Mate), could alter the pharmacokinetics of metformin and endogenous cationic substrates in rats. Several putative endogenous metabolites of Oct/Mate transporters were identified using metabolomics approach, which could be tested as potential transporter biomarkers to predict renal drug-drug interaction of Oct/Mate substrates.
Collapse
Affiliation(s)
| | - Vijaya Saradhi Mettu
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Aarzoo Thakur
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
23
|
Sabu ST, Venkatraman S, Cherian JJ, Das S, Pahuja M, Adhikari T, Mukherjee S, Chatterjee NS, Kshirsagar NA. A review of clinical trials registered in India from 2008 to 2022 to describe the first-in-human trials. Perspect Clin Res 2024; 15:18-23. [PMID: 38282636 PMCID: PMC10810051 DOI: 10.4103/picr.picr_124_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 01/30/2024] Open
Abstract
Aim This analysis was conducted to review the number, and describe the characteristics of first-in-human (FIH) Phase 1 clinical trials registered in India from 2008 to 2022. Materials and Methods The data were extracted from the Clinical Trials Registry - India database for all FIH Phase 1 clinical trials registered between 2008 and 2022. Early-phase trials that were not FIH trials (e.g., pharmacokinetic studies and drug-drug interaction studies) were excluded from the study. Results A total of 1891 trials were retrieved and 220 were included in the analysis. Most of the investigational products were drugs (55%) followed by vaccines (38.2%). The most common therapeutic class of drugs was cancer chemotherapy (19.8%), followed by antimicrobial chemotherapy and endocrinology (18.2% each). The most common vaccine was the influenza vaccine (21.4%), followed by the measles-mumps-rubella vaccine (15.5%). The pharmaceutical industry was the predominant sponsor for most (91%) of the Phase 1 trials. Of the top five sites where most of the Phase 1 trials were conducted, three were private nonacademic centers (cumulatively 31%) and two were tertiary care medical colleges (cumulatively 9%). Conclusion Phase 1 clinical trials seem to be conducted in India predominantly with industry sponsorship. There is a need to have an alternate ecosystem to take forward molecules that do not receive adequate attention from the industry and molecules that are of national health priority other than areas such as chemotherapy, antimicrobials, and endocrinology. The Indian Council of Medical Research is setting up Phase 1 clinical trial capacity for molecules that predominantly may arise from nonindustry channels.
Collapse
Affiliation(s)
- Sowparnika Treasa Sabu
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Shravan Venkatraman
- Department of Clinical Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research, Puducherry, India
| | - Jerin Jose Cherian
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Saibal Das
- Indian Council of Medical Research-Centre for Ageing and Mental Health, Kolkata, India
- Department of Global Public Health, Karolinska Institutet, Stockholm, Sweden
| | - Monika Pahuja
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| | - Tulsi Adhikari
- Indian Council of Medical Research-National Institute of Medical Statistics, New Delhi, India
| | - Shoibal Mukherjee
- Consultant, Clinical Pharmacology and Drug Development, Gumkhal, Uttarakhand, India
| | | | - Nilima Arun Kshirsagar
- Division of Basic Medical Sciences, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|
24
|
Duncan KE, Li R, Maganti L, Kumar A, Stoch SA, Walford GA. Pooled analysis of routine safety parameters observed in healthy participants at baseline and following placebo administration in early phase clinical studies. Clin Transl Sci 2024; 17:e13715. [PMID: 38266056 PMCID: PMC10777607 DOI: 10.1111/cts.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024] Open
Abstract
Phase I trials inform on the initial safety profile of a new molecule and impact whether further development is pursued or not. Understanding the effect of non-pharmacological factors on the variability of routine safety parameters could improve decision making in these early clinical trials, helping to separate signals related to the new molecule from background "noise." To understand the impact of non-pharmacological factors on routine safety parameters, we evaluated pooled safety data from over 1000 healthy participants treated with placebo in phase I trials between 2009 and 2018. The phase I participants were predominantly men, less than or equal to 50 years, White, and non-Hispanic; and approximately an equal proportion had body mass index in the normal and overweight/obese range. Following administration of placebo, vital signs, electrocardiogram, and laboratory parameters remained near predose baseline values. Large changes from baseline were observed for many safety parameters, but these occurred in a relatively small number of participants. At least one adverse event (AE) occurred in 49.7% of participants receiving placebo in single ascending dose (SAD) studies and in 72.4% of participants receiving placebo in multiple ascending dose (MAD) studies, with headache being the most commonly reported AE (18.7% in SAD and 28.3% in MAD studies). Overall, these analyses are consistent with non-pharmacological factors having a small impact on routine safety parameters in a phase I trial. The provided supplemental data may be used to contextualize the magnitude and frequency of abnormal safety values and AEs observed in phase I trials.
Collapse
|
25
|
Li Y, Zheng Y, Xu B, Cai L, Feng S, Liu Y, Zhu Z, Yu Q, Guo H. Safety, Pharmacokinetics, and Pharmacodynamics of SHR7280, a Non-peptide GnRH Antagonist in Premenopausal Women with Endometriosis: A Randomized, Double-Blind, Placebo-Controlled Phase 1 Study. Clin Pharmacokinet 2023; 62:1739-1748. [PMID: 37838623 DOI: 10.1007/s40262-023-01315-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
BACKGROUND Oral gonadotropin-releasing hormone (GnRH) antagonists are promising agents in the treatment of endometriosis-related pain. Here we assessed the safety, pharmacokinetics (PK), and pharmacodynamics (PD) of SHR7280, an oral non-peptide GnRH antagonist in premenopausal women with endometriosis. METHODS In the Phase 1 part of the randomized, double-blinded, placebo-controlled, dose-ascending, Phase 1/2 trial, premenopausal women with endometriosis were randomized (4:1) to receive SHR7280 or placebo treatment for 21 consecutive days. The treatment dose started from 200 mg QD, and then increased to 300 mg QD and 200 mg BID. Safety, PK, and PD parameters were assessed. RESULTS In total, 30 patients received assigned treatment, 24 with SHR7280 and 6 with placebo. SHR7280 was well tolerated. Adverse events (AEs) were reported in 19 (79.2%, 19/24) patients in the SHR7280 group and 5 (83.3%, 5/6) patients in the placebo group. Most AEs were mild and no severe AEs occurred. SHR7280 showed a rapid absorption, with a time to maximum plasma concentration (Tmax) of 1.0 h, 1.0 h, and 0.8 h for the 200 mg QD, 300 mg QD, and 200 mg BID regimens, respectively. Plasma concentration of SHR7280 was dose dependent. The mean half-life (t1/2) at steady state was 6.9 h, 7.4 h, and 2.8 h, respectively, and little or no accumulation was observed. Pharmacodynamic analysis showed that SHR7280 could effectively suppress estradiol and luteinizing hormone concentrations and prevent progesterone increase in a dose-dependent manner. SHR7280 at doses of 300 mg QD and 200 mg BID could suppress estradiol levels within the desired therapeutic window of 20-50 pg/mL throughout the treatment period. CONCLUSIONS SHR7280 showed favorable safety, PK, and PD profiles in the doses of 200 mg QD, 300 mg QD, and 200 mg BID. The results of this study provide evidence to support the further development of SHR7280 as a GnRH antagonist for the treatment of endometriosis-related pain in the subsequent Phase 2 trial. TRIAL REGISTRY Trial registration number: Clinicaltrials.gov, identifier: NCT04417972. Trial registration date: 5 June 2020.
Collapse
Affiliation(s)
- Yuan Li
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100000, China
| | - Ying Zheng
- Department of Gynecologic Oncology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Bing Xu
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100000, China
| | - Linrui Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- National Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610000, China
- National Drug Clinical Trial Institution of West China Second Hospital, Chengdu, China
- NMPA Key Laboratory for Technical Resarch on Drug Products In Vitro and In Vivo Correlation, Chengdu, China
| | - Sheng Feng
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yiming Liu
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Zhenyi Zhu
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Qin Yu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.
- National Drug Clinical Trial Institute, West China Second University Hospital, Sichuan University, No. 20, Section 3, South Renmin Road, Chengdu, 610000, China.
- National Drug Clinical Trial Institution of West China Second Hospital, Chengdu, China.
- NMPA Key Laboratory for Technical Resarch on Drug Products In Vitro and In Vivo Correlation, Chengdu, China.
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, 49 Huayuan North Road, Beijing, 100000, China.
| |
Collapse
|
26
|
Sazzad F, Tan YK, Chan LXB, Moideen ISBM, Gohary AE, Stevens JC, Ramanathan KR, Kofidis T. Systematic review of first-in-human and early phase clinical trials for surgically implantable biological mitral valve substitutes. J Cardiothorac Surg 2023; 18:348. [PMID: 38037117 PMCID: PMC10688009 DOI: 10.1186/s13019-023-02464-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND The aim of this review was the creation of uniform protocols to carry out and disclose First-In-Human and preliminary clinical trials of biological mitral valve replacement. The need for consistent methodology in these early trials was highlighted by the observation of significant variability in the methods and protocols used across different research. METHODS An extensive search through six major databases was carried out to retrieve First-In-Human (FIH) clinical studies evaluating surgically implanted bio-prostheses in the mitral position. RESULTS Following the PRISMA guideline, a systematic search identified 2082 published articles until March 2023. After removing duplicates (189), 1862 citations were screened, resulting in 22 eligible studies with 3332 patients for analysis. The mitral valve prostheses in these studies ranged from 21 to 37 mm, with the 29 mm size being most prevalent. Patient numbers varied, with the FIH subgroup including 31 patients and the older subgroup including 163 patients. Average study durations differed: the older subgroup lasted 4.57 years, the FIH subgroup 2.85 years, and the early phase studies spanned 8.05 years on average. CONCLUSION FIH clinical report is essential to assess the significance of clinical data required for a "de novo" surgical implant. In addition, understanding the performance of the device, and recognizing the difficulties associated with the innovation constitute important lessons. These insights could be beneficial for the development of bioprosthetic heart valves and formulating a protocol for an FIH clinical trial.
Collapse
Affiliation(s)
- Faizus Sazzad
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore.
| | - Ying Kiat Tan
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
| | - Li Xuan Beverly Chan
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
| | - Irwan Shah Bin Mohd Moideen
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
| | - Abdulrahman El Gohary
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
| | - John C Stevens
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
| | - K R Ramanathan
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Hospital, Singapore, Singapore
| | - Theo Kofidis
- Department of Surgery, Yong Loo Lin School of Medicine, Centre for Translational Medicine, National University of Singapore, MD6, 14 Medical Drive, Level-8 (South), Singapore, 117599, Singapore
- Department of Cardiac, Thoracic and Vascular Surgery, National University Heart Centre, National University Hospital, Singapore, Singapore
| |
Collapse
|
27
|
Yadav R, Sukumaran S, Lutman J, Mitra MS, Halpern W, Sun T, Setiadi AF, Neighbors M, Sheng XR, Yip V, Shen BQ, Liu C, Han L, Ovacik AM, Wu Y, Glickstein S, Kunder R, Arron JR, Pan L, Kamath AV, Stefanich EG. Utilizing PK and PD Biomarkers to Guide the First-in-Human Starting Dose Selection of MTBT1466A: A Novel Humanized Monoclonal Anti-TGFβ3 Antibody for the Treatment of Fibrotic Diseases. J Pharm Sci 2023; 112:2910-2920. [PMID: 37429356 DOI: 10.1016/j.xphs.2023.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
MTBT1466A is a high-affinity TGFβ3-specific humanized IgG1 monoclonal antibody with reduced Fc effector function, currently under investigation in clinical trials as a potential anti-fibrotic therapy. Here, we characterized the pharmacokinetics (PK) and pharmacodynamics (PD) of MTBT1466A in mice and monkeys and predicted the PK/PD of MTBT1466A in humans to guide the selection of the first-in-human (FIH) starting dose. MTBT1466A demonstrated a typical IgG1-like biphasic PK profile in monkeys, and the predicted human clearance of 2.69 mL/day/kg and t1/2 of 20.4 days are consistent with those expected for a human IgG1 antibody. In a mouse model of bleomycin-induced lung fibrosis, changes in expression of TGFβ3-related genes, serpine1, fibronectin-1, and collagen 1A1 were used as PD biomarkers to determine the minimum pharmacologically active dose of 1 mg/kg. Unlike in the fibrosis mouse model, evidence of target engagement in healthy monkeys was only observed at higher doses. Using a PKPD-guided approach, the recommended FIH dose of 50 mg, IV, provided exposures that were shown to be safe and well tolerated in healthy volunteers. MTBT1466A PK in healthy volunteers was predicted reasonably well using a PK model with allometric scaling of PK parameters from monkey data. Taken together, this work provides insights into the PK/PD behavior of MTBT1466A in preclinical species, and supports the translatability of the preclinical data into the clinic.
Collapse
Affiliation(s)
- Rajbharan Yadav
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA.
| | - Siddharth Sukumaran
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Jeff Lutman
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Mayur S Mitra
- Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Wendy Halpern
- Safety Assessment, Genentech Inc., South San Francisco, CA, USA
| | - Tianhe Sun
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | | | | | - X Rebecca Sheng
- Translational Medicine, Genentech Inc., South San Francisco, CA, USA
| | - Victor Yip
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Ben-Quan Shen
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Chang Liu
- BioAnalytical Sciences, Genentech Inc., South San Francisco, CA, USA
| | - Lyrialle Han
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Ayse Meric Ovacik
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Yan Wu
- Antibody Engineering, Genentech Inc., South San Francisco, CA, USA
| | - Sara Glickstein
- Early Clinical Development, Genentech Inc, South San Francisco, CA, USA
| | - Rebecca Kunder
- Early Clinical Development, Genentech Inc, South San Francisco, CA, USA
| | - Joseph R Arron
- Immunology Discovery, Genentech Inc., South San Francisco, CA, USA
| | - Lin Pan
- Clinical Pharmacology, Genentech Inc., South San Francisco, CA, USA
| | - Amrita V Kamath
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA
| | - Eric G Stefanich
- Preclinical and Translational Pharmacokinetics and Pharmacodynamics, Genentech Inc., South San Francisco, CA, USA.
| |
Collapse
|
28
|
Yap C, Solovyeva O, de Bono J, Rekowski J, Patel D, Jaki T, Mander A, Evans TRJ, Peck R, Hayward KS, Hopewell S, Ursino M, Rantell KR, Calvert M, Lee S, Kightley A, Ashby D, Chan AW, Garrett-Mayer E, Isaacs JD, Golub R, Kholmanskikh O, Richards D, Boix O, Matcham J, Seymour L, Ivy SP, Marshall LV, Hommais A, Liu R, Tanaka Y, Berlin J, Espinasse A, Dimairo M, Weir CJ. Enhancing reporting quality and impact of early phase dose-finding clinical trials: CONSORT Dose-finding Extension (CONSORT-DEFINE) guidance. BMJ 2023; 383:e076387. [PMID: 37863501 PMCID: PMC10583500 DOI: 10.1136/bmj-2023-076387] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/05/2023] [Indexed: 10/22/2023]
Affiliation(s)
| | | | - Johann de Bono
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Jan Rekowski
- Institute of Cancer Research, London SM2 5NG, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | - Adrian Mander
- Centre For Trials Research, Cardiff University, Heath Park, Cardiff, UK
| | - Thomas R Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | - Kathryn S Hayward
- Departments of Physiotherapy, and Medicine (Royal Melbourne Hospital), University of Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, Australia
| | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - Moreno Ursino
- ReCAP/F CRIN, INSERM, Paris, France
- Unit of Clinical Epidemiology, CHU Robert Debré, APHP, URC, INSERM CIC-EC 1426, Reims, France
- INSERM Centre de Recherche des Cordeliers, Sorbonne University, Paris Cité University, Paris, France
- Health data and model driven approaches for Knowledge Acquisition team, Centre Inria, Paris, France
| | | | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research (NIHR) Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- NIHR Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Edgbaston, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Deborah Ashby
- School of Public Health, Imperial College London, London, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Garrett-Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - John D Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Robert Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, 633 Clark Street, Evanston, IL, USA
| | - Olga Kholmanskikh
- Federal Agency for Medicines and Health Products, Brussels, Belgium
- European Medicines Agency, Amsterdam, Netherlands
| | - Dawn Richards
- Clinical Trials Ontario, MaRS Centre, Toronto, ON, Canada
| | | | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Lesley Seymour
- Investigational New Drug Programme, Canadian Cancer Trials Group, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Lynley V Marshall
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Antoine Hommais
- Department of Clinical Research, National Cancer Institute, Boulogne-Billancourt, France
| | - Rong Liu
- Bristol Myers Squibb, New York, NY, USA
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
29
|
Yap C, Rekowski J, Ursino M, Solovyeva O, Patel D, Dimairo M, Weir CJ, Chan AW, Jaki T, Mander A, Evans TRJ, Peck R, Hayward KS, Calvert M, Rantell KR, Lee S, Kightley A, Hopewell S, Ashby D, Garrett-Mayer E, Isaacs J, Golub R, Kholmanskikh O, Richards DP, Boix O, Matcham J, Seymour L, Ivy SP, Marshall LV, Hommais A, Liu R, Tanaka Y, Berlin J, Espinasse A, de Bono J. Enhancing quality and impact of early phase dose-finding clinical trial protocols: SPIRIT Dose-finding Extension (SPIRIT-DEFINE) guidance. BMJ 2023; 383:e076386. [PMID: 37863491 DOI: 10.1136/bmj-2023-076386] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Affiliation(s)
| | - Jan Rekowski
- Institute of Cancer Research, London SM2 5NG, UK
| | - Moreno Ursino
- ReCAP/F CRIN, INSERM, Paris, France
- Unit of Clinical Epidemiology, University Hospital Centre Robert Debré, Reims, France
- INSERM Centre de Recherche des Cordeliers, Sorbonne University, Paris, France
- Health data and model driven approaches for Knowledge Acquisition team, Centre Inria, Paris, France
| | | | | | - Munyaradzi Dimairo
- Division of Population Health, Sheffield Centre for Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | - Thomas Jaki
- MRC Biostatistics Unit, Cambridge University, Cambridge, UK
- Computational Statistics Group, University of Regensburg, Regensburg, Germany
| | - Adrian Mander
- Centre For Trials Research, Cardiff University, Cardiff, UK
| | - Thomas R Jeffry Evans
- Institute of Cancer Sciences, CR-UK Beatson Institute, University of Glasgow, Glasgow, UK
| | - Richard Peck
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Hoffmann-La Roche, Basel, Switzerland
| | - Kathryn S Hayward
- Departments of Physiotherapy, and Medicine (Royal Melbourne Hospital), University of Melbourne, Parkville, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - Melanie Calvert
- Centre for Patient Reported Outcomes Research, Institute of Applied Health Research, University of Birmingham, Birmingham, UK
- Birmingham Health Partners Centre for Regulatory Science and Innovation, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Applied Research Collaboration West Midlands, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Blood and Transplant Research Unit in Precision Transplant and Cellular Therapeutics, University of Birmingham, Birmingham, UK
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, NIHR Birmingham Biomedical Research Centre, Institute of Translational Medicine, University Hospital NHS Foundation Trust, Birmingham, UK
| | | | - Shing Lee
- Columbia University Mailman School of Public Health, New York, NY, USA
| | | | - Sally Hopewell
- Oxford Clinical Research Unit, NDORMS, University of Oxford, Oxford, UK
| | - Deborah Ashby
- School of Public Health, Imperial College London, St Mary's Hospital, London, UK
| | - Elizabeth Garrett-Mayer
- Center for Research and Analytics, American Society of Clinical Oncology, Alexandria, VA, USA
| | - John Isaacs
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Musculoskeletal Unit, Newcastle upon Tyne Hospitals NHS Foundation Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Robert Golub
- Department of Medicine, Northwestern University Feinberg School of Medicine, Evanston, IL, USA
| | | | | | | | - James Matcham
- Strategic Consulting, Cytel (Australia), Perth, WA, Australia
| | - Lesley Seymour
- Investigational New Drug Programme, Canadian Cancer Trials Group, Cancer Research Institute, Queen's University, Kingston, ON, Canada
| | - S Percy Ivy
- Investigational Drug Branch, Cancer Therapy Evaluation Program, Division of Cancer Treatment and Diagnosis, National Institute of Health, Bethesda, MD, USA
| | - Lynley V Marshall
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| | - Antoine Hommais
- Department of Clinical Research, National Cancer Institute, Boulogne-Billancourt, France
| | - Rong Liu
- Bristol Myers Squibb, New York, NY, USA
| | - Yoshiya Tanaka
- First Department of Internal Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | - Johann de Bono
- Institute of Cancer Research, London SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
30
|
Tognoli E, Luigi M. Using the TI.VA algorithm to titrate the depth of general anaesthesia: a first-in-humans study. BJA OPEN 2023; 7:100203. [PMID: 37638086 PMCID: PMC10457467 DOI: 10.1016/j.bjao.2023.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/26/2023] [Indexed: 08/29/2023]
Abstract
Background The dose of anaesthetic and opioid drugs must be continuously adjusted after the induction of general anaesthesia to maintain an adequate depth of anaesthesia. The TI.VA algorithm is a multiple-input/multiple-output algorithm designed to optimise the balance between anaesthetic and opioid concentrations during general anaesthesia. It applies vector analysis to a two-dimensional matrix to quantify any inadequacy of the depth of anaesthesia at any given moment and determine any drug dose adjustments required to achieve an adequate depth of anaesthesia. This study aimed to capture preliminary data on the performance and safety of the TI.VA algorithm during total i.v. anaesthesia in patients. Methods This prospective study enrolled nine patients with breast cancer scheduled to undergo surgery. General anaesthesia was induced under manual control using propofol and remifentanil. Anaesthesia was guided using the TI.VA algorithm from skin incision until surgical resection was completed. The quality of anaesthesia was assessed through an analysis of performance errors. A bispectral index global score (GSBIS) <50 was considered an acceptable target for algorithm performance. Results All nine procedures were completed without any adverse events and none of the patients recalled any intraoperative event. Overall, we analysed 3417 monitoring points corresponding to 285 min of surgery. All patients presented a GSBIS below the cut-off value of 50. Conclusions The TI.VA algorithm provides adequate control of clinical anaesthesia. A more sophisticated prototype needs to be developed before the trial is expanded to include larger patient populations. Clinical trial registration NCT05199883.
Collapse
Affiliation(s)
- Emiliano Tognoli
- Department of Anaesthesiology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Mariani Luigi
- Unit of Clinical Epidemiology and Trial Organisation, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| |
Collapse
|
31
|
Maynard G, Kannan R, Liu J, Wang W, Lam TKT, Wang X, Adamson C, Hackett C, Schwab JM, Liu C, Leslie DP, Chen D, Marino R, Zafonte R, Flanders A, Block G, Smith E, Strittmatter SM. Soluble Nogo-Receptor-Fc decoy (AXER-204) in patients with chronic cervical spinal cord injury in the USA: a first-in-human and randomised clinical trial. Lancet Neurol 2023; 22:672-684. [PMID: 37479373 PMCID: PMC10410101 DOI: 10.1016/s1474-4422(23)00215-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/13/2023] [Accepted: 06/02/2023] [Indexed: 07/23/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) causes neural disconnection and persistent neurological deficits, so axon sprouting and plasticity might promote recovery. Soluble Nogo-Receptor-Fc decoy (AXER-204) blocks inhibitors of axon growth and promotes recovery of motor function after SCI in animals. This first-in-human and randomised trial sought to determine primarily the safety and pharmacokinetics of AXER-204 in individuals with chronic SCI, and secondarily its effect on recovery. METHODS We conducted a two-part study in adults (aged 18-65 years) with chronic (>1 year) cervical traumatic SCI at six rehabilitation centres in the USA. In part 1, AXER-204 was delivered open label as single intrathecal doses of 3 mg, 30 mg, 90 mg, or 200 mg, with primary outcomes of safety and pharmacokinetics. Part 2 was a randomised, parallel, double-blind comparison of six intrathecal doses of 200 mg AXER-204 over 104 days versus placebo. Participants were randomly allocated (1:1) by investigators using a central electronic system, stratified in blocks of four by American Spinal Injury Association Impairment Scale grade and receipt of AXER-204 in part 1. All investigators and patients were masked to treatment allocation until at least day 169. The part 2 primary objectives were safety and pharmacokinetics, with a key secondary objective to assess change in International Standards for Neurological Classification of SCI (ISNCSCI) Upper Extremity Motor Score (UEMS) at day 169 for all enrolled participants. This trial is registered with ClinicalTrials.gov, NCT03989440, and is completed. FINDINGS We treated 24 participants in part 1 (six per dose; 18 men, six women), and 27 participants in part 2 (13 placebo, 14 AXER-204; 23 men, four women), between June 20, 2019, and June 21, 2022. There were no deaths and no discontinuations from the study due to an adverse event in part 1 and 2. In part 2, treatment-related adverse events were of similar incidence in AXER-204 and placebo groups (ten [71%] vs nine [69%]). Headache was the most common treatment-related adverse event (five [21%] in part 1, 11 [41%] in part 2). In part 1, AXER-204 reached mean maximal CSF concentration 1 day after dosing with 200 mg of 412 000 ng/mL (SD 129 000), exceeding those concentrations that were efficacious in animal studies. In part 2, mean changes from baseline to day 169 in ISNCSCI UEMS were 1·5 (SD 3·3) for AXER-204 and 0·9 (2·3) for placebo (mean difference 0·54, 95% CI -1·48 to 2·55; p=0·59). INTERPRETATION This study delivers the first, to our knowledge, clinical trial of a rationally designed pharmacological treatment intended to promote neural repair in chronic SCI. AXER-204 appeared safe and reached target CSF concentrations; exploratory biomarker results were consistent with target engagement and synaptic stabilisation. Post-hoc subgroup analyses suggest that future trials could investigate efficacy in patients with moderately severe SCI without prior AXER-204 exposure. FUNDING Wings for Life Foundation, National Institute of Neurological Disorders and Stroke, National Center for Advancing Translational Sciences, National Institute on Drug Abuse, and ReNetX Bio.
Collapse
Affiliation(s)
| | - Ramakrishnan Kannan
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Jian Liu
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Weiwei Wang
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA
| | - Tu Kiet T Lam
- Keck MS and Proteomic Resource, Yale School of Medicine, New Haven, CT, USA; Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Xingxing Wang
- Departments of Neuroscience and Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Jan M Schwab
- Belford Center for Spinal Cord Injury and Departments of Neurology and Neuroscience, The Ohio State University, Wexner Medical Center, Columbus, OH, USA
| | - Charles Liu
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - David Chen
- Shirley Ryan AbilityLab, Chicago, IL, USA
| | - Ralph Marino
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ross Zafonte
- Spaulding Rehabilitation Hospital, Massachusetts General Hospital, Brigham and Womens Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam Flanders
- Department of Rehabilitation Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | |
Collapse
|
32
|
Polasek TM, Schuck V. Improving the Efficiency of Clinical Pharmacology Studies. Clin Pharmacol Drug Dev 2023; 12:771-774. [PMID: 37350534 DOI: 10.1002/cpdd.1274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/02/2023] [Indexed: 06/24/2023]
Affiliation(s)
- Thomas M Polasek
- Certara, Princeton, New Jersey, USA
- Centre for Medicines Use and Safety, Monash University, Melbourne, Australia
| | - Virna Schuck
- Ribon Therapeutics Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
33
|
Solovyeva O, Dimairo M, Weir CJ, Hee SW, Espinasse A, Ursino M, Patel D, Kightley A, Hughes S, Jaki T, Mander A, Evans TRJ, Lee S, Hopewell S, Rantell KR, Chan AW, Bedding A, Stephens R, Richards D, Roberts L, Kirkpatrick J, de Bono J, Yap C. Development of consensus-driven SPIRIT and CONSORT extensions for early phase dose-finding trials: the DEFINE study. BMC Med 2023; 21:246. [PMID: 37408015 PMCID: PMC10324137 DOI: 10.1186/s12916-023-02937-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Early phase dose-finding (EPDF) trials are crucial for the development of a new intervention and influence whether it should be investigated in further trials. Guidance exists for clinical trial protocols and completed trial reports in the SPIRIT and CONSORT guidelines, respectively. However, both guidelines and their extensions do not adequately address the characteristics of EPDF trials. Building on the SPIRIT and CONSORT checklists, the DEFINE study aims to develop international consensus-driven guidelines for EPDF trial protocols (SPIRIT-DEFINE) and reports (CONSORT-DEFINE). METHODS The initial generation of candidate items was informed by reviewing published EPDF trial reports. The early draft items were refined further through a review of the published and grey literature, analysis of real-world examples, citation and reference searches, and expert recommendations, followed by a two-round modified Delphi process. Patient and public involvement and engagement (PPIE) was pursued concurrently with the quantitative and thematic analysis of Delphi participants' feedback. RESULTS The Delphi survey included 79 new or modified SPIRIT-DEFINE (n = 36) and CONSORT-DEFINE (n = 43) extension candidate items. In Round One, 206 interdisciplinary stakeholders from 24 countries voted and 151 stakeholders voted in Round Two. Following Round One feedback, one item for CONSORT-DEFINE was added in Round Two. Of the 80 items, 60 met the threshold for inclusion (≥ 70% of respondents voted critical: 26 SPIRIT-DEFINE, 34 CONSORT-DEFINE), with the remaining 20 items to be further discussed at the consensus meeting. The parallel PPIE work resulted in the development of an EPDF lay summary toolkit consisting of a template with guidance notes and an exemplar. CONCLUSIONS By detailing the development journey of the DEFINE study and the decisions undertaken, we envision that this will enhance understanding and help researchers in the development of future guidelines. The SPIRIT-DEFINE and CONSORT-DEFINE guidelines will allow investigators to effectively address essential items that should be present in EPDF trial protocols and reports, thereby promoting transparency, comprehensiveness, and reproducibility. TRIAL REGISTRATION SPIRIT-DEFINE and CONSORT-DEFINE are registered with the EQUATOR Network ( https://www.equator-network.org/ ).
Collapse
Affiliation(s)
| | - Munyaradzi Dimairo
- Clinical Trials Research Unit, School of Health and Related Research, University of Sheffield, Sheffield, UK
| | - Christopher J Weir
- Edinburgh Clinical Trials Unit, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Siew Wan Hee
- University Hospitals Coventry & Warwickshire NHS Trust, Coventry, UK
- University of Warwick, Coventry, UK
| | | | - Moreno Ursino
- Inserm, Centre de Recherche Des Cordeliers, Sorbonne UniversitéUniversité Paris Cité, 75006, Paris, France
- HeKA, Inria Paris, 75015, Paris, France
- Unit of Clinical Epidemiology, AP-HP, CHU Robert Debré, CIC-EC 1426, Paris, France
- RECaP/F-CRIN, Inserm, 5400, Nancy, France
| | | | - Andrew Kightley
- Patient and Public Involvement and Engagement (PPIE) Lead, Lichfield, UK
| | | | - Thomas Jaki
- MRC Biostatistics Unit, University of Cambridge, Cambridge, UK
- University of Regensburg, Regensburg, Germany
| | | | | | - Shing Lee
- Columbia University, Mailman School of Public Health, New York, USA
| | - Sally Hopewell
- Oxford Clinical Trials Research Unit, University of Oxford, Oxford, UK
| | | | - An-Wen Chan
- Department of Medicine, Women's College Research Institute, University of Toronto, Toronto, Canada
| | | | | | | | | | | | - Johann de Bono
- The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | | |
Collapse
|
34
|
Barrett JS, Azer K. Opportunities for Systems Biology and Quantitative Systems Pharmacology to Address Knowledge Gaps for Drug Development in Pregnancy. J Clin Pharmacol 2023; 63 Suppl 1:S96-S105. [PMID: 37317502 DOI: 10.1002/jcph.2265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/25/2023] [Indexed: 06/16/2023]
Abstract
Pregnant women are still viewed as therapeutic orphans to the extent that they are avoided as participants in mainstream clinical trials and not considered a priority for targeted drug research despite the fact that many clinical conditions exist during pregnancy for which pharmacotherapy is warranted. Part of the challenge is the uncertain risk potential that pregnant women represent in the absence of timely and costly toxicology and developmental pharmacology studies, which only partly mitigate such risks. Even when clinical trials are conducted in pregnant women, they are often underpowered and absent biomarkers and exclude evaluation across multiple stages of pregnancy where relevant development risk could have been assessed. Quantitative systems pharmacology model development has been proposed as one solution to fill knowledge gaps, make earlier and perhaps more informed risk assessment, and design more informative trials with better recommendations for biomarker and end point selection including design and sample size optimality. Funding for translational research in pregnancy is limited but will fill some of these gaps, especially when joined with ongoing clinical trials in pregnancy that also fill certain knowledge gaps, especially biomarker and end point evaluation across pregnancy states linked to clinical outcomes. Opportunities exist for further advances in quantitative systems pharmacology model development with the inclusion of real-world data sources and complimentary artificial intelligence/machine learning approaches. The successful coordination of the approach reliant on these new data sources will require commitments to share data and a diverse multidisciplinary group that seeks to develop open science models that benefit the entire research community, ensuring that such models can be used with high fidelity. New data opportunities and computational resources are highlighted in an effort to project how these efforts can move forward.
Collapse
Affiliation(s)
| | - Karim Azer
- Axcella Therapeutics, Cambridge, Massachusetts, USA
| |
Collapse
|
35
|
Yang J, Jiao J, Draheim KM, Yang G, Yang H, Yao LC, Shultz LD, Greiner DL, Rajagopal D, Vessillier S, Maier CC, Mohanan S, Cai D, Cheng M, Brehm MA, Keck JG. Simultaneous evaluation of treatment efficacy and toxicity for bispecific T-cell engager therapeutics in a humanized mouse model. FASEB J 2023; 37:e22995. [PMID: 37219526 PMCID: PMC10242584 DOI: 10.1096/fj.202300040r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/18/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treatment of several cancer indications. However, these therapies can result in the development of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our findings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experiments. The PBMC humanized mouse model described here is a sensitive and reproducible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications.
Collapse
Affiliation(s)
- Jiwon Yang
- The Jackson Laboratory; Sacramento, CA, USA
| | - Jing Jiao
- The Jackson Laboratory; Sacramento, CA, USA
| | | | | | | | | | | | - Dale L. Greiner
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | - Deepa Rajagopal
- National Institute for Biological Standards and Control, Biotherapeutics Division; Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Sandrine Vessillier
- National Institute for Biological Standards and Control, Biotherapeutics Division; Blanche Lane, South Mimms, Hertfordshire EN6 3QG, UK
| | - Curtis C. Maier
- Non Clinical Safety, GlaxoSmithKline plc; Collegeville, PA, USA
| | - Sunish Mohanan
- NonClinical Safety and Pathobiology, Gilead Sciences Inc’ Foster City, CA, USA
| | | | | | - Michael A. Brehm
- Program in Molecular Medicine, Diabetes Center of Excellence, University of Massachusetts Chan Medical School; Worcester, MA, USA
| | | |
Collapse
|
36
|
Heise T, Chien J, Beals JM, Benson C, Klein O, Moyers JS, Haupt A, Pratt EJ. Pharmacokinetic and pharmacodynamic properties of the novel basal insulin Fc (insulin efsitora alfa), an insulin fusion protein in development for once-weekly dosing for the treatment of patients with diabetes. Diabetes Obes Metab 2023; 25:1080-1090. [PMID: 36541037 DOI: 10.1111/dom.14956] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
AIM To assess the safety, tolerability, pharmacokinetics (PK) and pharmacodynamics (PD) of basal insulin Fc (BIF; LY3209590), a fusion protein combining a novel single-chain insulin variant together with human IgG2 Fc domain, following single and multiple once-weekly BIF administration. MATERIALS AND METHODS The single ascending dose, 15-day study assessed four BIF doses (5-35 mg) in healthy participants and people with type 2 diabetes (T2D). In the 6-week multiple ascending dose study, people with T2D, previously treated with basal insulin, received insulin glargine daily or a one-time loading dose of BIF followed by 5 weeks of once-weekly dosing (1-10 mg). Safety, tolerability and PK and glucose PD were examined. RESULTS Mean ages of people with T2D (N = 57) and healthy participants (N = 16) in the single-dose study were 58.4 and 35.8 years, respectively; mean body mass index values were 29.5 and 26.1 kg/m2 . BIF had a PK half-life of approximately 17 days, which led to a sustained, dose-dependent decrease in fasting blood glucose for 5 days or longer. No severe hypoglycaemia was observed. The 6-week ascending dose study included 33 people with T2D aged 40-69 years. BIF showed a low peak-to-trough ratio of 1.14 after the last dose at week 6 (steady state). Over 6 weeks, BIF seven-point glucose profiles remained constant and were similar to insulin glargine. Rates and duration of BIF hypoglycaemic events were similar to insulin glargine. CONCLUSIONS BIF was well tolerated and the PK/PD profile enabled once-weekly dosing with minimal variation in exposure in a treatment interval of 1 week. The findings suggest BIF is suitable for further development as a weekly basal insulin in people with diabetes.
Collapse
Affiliation(s)
| | - Jenny Chien
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - John M Beals
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Charles Benson
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Julie S Moyers
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Axel Haupt
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| | - Edward John Pratt
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana, USA
| |
Collapse
|
37
|
Approaches for estimating the clinical starting dose of new dosage forms: An example of a long-acting injectable formulation of finasteride. Int J Pharm 2023; 631:122510. [PMID: 36549406 DOI: 10.1016/j.ijpharm.2022.122510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
In our previous study, a long-acting injectable (LAI) formulation of finasteride was prepared as a new dosage form of PROPECIA®, and in vivo pharmacokinetics (PKs)-pharmacodynamics (PDs) was evaluated in beagle dogs. The resulting PK-PD profiles of the formulation showed pharmacological effects and achievability for monthly delivery. In this study, a first-in-human (FIH) dose of the LAI formulation loaded with finasteride was predicted. The three approaches were used for estimating a FIH dose of the LAI formulation: (1) No observed adverse effect level (NOAEL)-based approach; (2) Pharmacokinetically-guided approach; (3) Pharmacokinetic/pharmacodynamic model-based approach. The advantage, assumptions, limitations, and estimated FIH dose from each approach was discussed and compared since there is no consensus on the best approach. For the prediction of clinical exposures and estimation of FIH doses, the clinical PK-PD parameters were allometrically scaled from the nonclinical data, extracted from reported clinical studies, or fixed from published literature. The starting dose range of the LAI formulation (as finasteride) was estimated to be 16.80-81.06 mg from the three approaches, and the PK/PD model-based approach suggests the most optimal starting dose (16.80 mg) of the LAI formulation. The approaches for estimating starting doses presented in the study could be used as a basis for an Investigational New Drug (IND) application of new dosage forms.
Collapse
|
38
|
English BA, Ereshefsky L. Experimental Medicine Approaches in Early-Phase CNS Drug Development. ADVANCES IN NEUROBIOLOGY 2023; 30:417-455. [PMID: 36928860 DOI: 10.1007/978-3-031-21054-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Traditionally, Phase 1 clinical trials were largely conducted in healthy normal volunteers and focused on collection of safety, tolerability, and pharmacokinetic data. However, in the CNS therapeutic area, with more drugs failing in later phase development, Phase 1 trials have undergone an evolution that includes incorporation of novel approaches involving novel study designs, inclusion of biomarkers, and early inclusion of patients to improve the pharmacologic understanding of novel CNS-active compounds early in clinical development with the hope of improving success in later phase pivotal trials. In this chapter, the authors will discuss the changing landscape of Phase 1 clinical trials in CNS, including novel trial methodology, inclusion of pharmacodynamic biomarkers, and experimental medicine approaches to inform early decision-making in clinical development.
Collapse
|
39
|
Xu Y, Hu W, Li J, Jiang X, Shi P, Shen K, Shen Y, Ma L, Cao Y. Safety, pharmacokinetics, and pharmacodynamics of SHR7280, an oral gonadotropin-releasing hormone antagonist in healthy premenopausal women. Front Pharmacol 2022; 13:1027648. [PMID: 36506562 PMCID: PMC9727091 DOI: 10.3389/fphar.2022.1027648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Treatment with gonadotropin-releasing hormone (GnRH) antagonists is a powerful strategy to suppress gonadotropin activity in women with sex hormone-dependent disorders. Herein, we provide the safety, pharmacokinetics (PK), and pharmacodynamics (PD) profiles of SHR7280, an oral non-peptide GnRH antagonist in healthy premenopausal women. Methods: In this randomized, double-blinded, placebo-controlled, dose-ascending, phase 1 trial, healthy premenopausal women were randomized to receive SHR7280 or placebo orally. Four doses of SHR7280 (200, 300, 400, and 500 mg BID) were planned. Safety, PK, and PD parameters were evaluated. Results: SHR7280 presented tolerable toxicity and most adverse events were mild in severity. SHR7280 showed rapid onset of action (median Tmax ranged from 1.0 to 1.2 h for each dose), and plasma exposure was dose-dependent. PD results showed that SHR7280 300 mg BID and above suppressed estrogen concentration within the estradiol (E2) treatment window for endometriosis (20-50 pg/ml), inhibited the emergence of the peak of luteinizing hormone (LH) and the concentration of follicle stimulating hormone (FSH), and maintained the concentration of progesterone (P) in an anovulatory state (2 nmol/L). Conclusion: SHR7280 showed favorable safety, PK, and PD profiles in the dose range of 200-500 mg BID in healthy premenopausal women. This study supports the continued clinical development of SHR7280 as a GnRH antagonist for sex hormone-dependent disorders in women. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT04554043, Identifier NCT04554043.
Collapse
Affiliation(s)
- Yi Xu
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei, China
| | - Jian Li
- Early Clinical Trial Centre, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xin Jiang
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ping Shi
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kai Shen
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yu Shen
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Lingyu Ma
- Jiangsu Hengrui Pharmaceuticals Co., Ltd., Shanghai, China
| | - Yu Cao
- Phase I Clinical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China,*Correspondence: Yu Cao,
| |
Collapse
|
40
|
Neary M, Owen A, Olagunju A. A Holistic Review of the Preclinical Landscape for Long-Acting Anti-infective Drugs Using HIV as a Paradigm. Clin Infect Dis 2022; 75:S490-S497. [PMID: 36410386 PMCID: PMC10200324 DOI: 10.1093/cid/ciac685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lack of predictive preclinical models is a key contributor to the steep attrition rate in drug development. Successful clinical translation may be higher for new chemical entities or existing approved drugs reformulated for long-acting (LA) administration if preclinical studies designed to identify any new uncertainties are predictive of human exposure and response. In this review, we present an overview of standard preclinical assessments deployed for LA formulations and delivery systems, using human immunodeficiency virus LA therapeutics preclinical development as a paradigm. Key progress in the preclinical development of novel LA antiretrovirals formulations and delivery systems are summarized, including bispecific broadly neutralizing monoclonal antibody and small molecule technologies for codelivery of multiple drugs with disparate solubility properties. There are new opportunities to take advantage of recent developments in tissue engineering and 3-dimensional in vitro modeling to advance preclinical modeling of anti-infective activity, developmental and reproductive toxicity assessment, and to apply quantitative modeling and simulation strategies. These developments are likely to drive the progression of more LA anti-infective drugs and multipurpose technologies into clinical development in the coming years.
Collapse
Affiliation(s)
- Megan Neary
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| | - Adeniyi Olagunju
- Department of Pharmacology and Therapeutics, Centre of Excellence for Long-acting Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, Merseyside, United Kingdom
| |
Collapse
|
41
|
Nakamura K, Fujimoto K, Hasegawa C, Aoki I, Yoshitsugu H, Ugai H, Yatsuzuka N, Tanaka Y, Furihata K, Maas BM, Wickremasingha PK, Duncan KE, Iwamoto M, Stoch SA, Uemura N. A phase I, randomized, placebo-controlled study of molnupiravir in healthy Japanese to support special approval in Japan to treat COVID-19. Clin Transl Sci 2022; 15:2697-2708. [PMID: 36053806 PMCID: PMC9538808 DOI: 10.1111/cts.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/28/2022] [Accepted: 07/30/2022] [Indexed: 01/26/2023] Open
Abstract
Molnupiravir (MK-4482) is an oral prodrug of the antiviral ribonucleoside analog, N-hydroxycytidine (NHC), which has activity against RNA viruses, including severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2). We conducted a phase I safety and pharmacokinetic study of molnupiravir in healthy Japanese adult participants. A sample size larger than typically used in pharmacokinetic studies was implemented to collect additional safety data in the Japanese population to support special approval for emergency use in Japan. Single doses of molnupiravir up to 1600 mg and multiple doses of 400 and 800 mg administered every 12 h (q12h) for 5.5 days were generally well-tolerated. NHC appeared rapidly in plasma and reached maximum concentration (Cmax ), with a median time to Cmax (Tmax ) between 1.00 and 2.00 h. Area under the concentration versus time curve from zero to infinity (AUC0-inf ), area under the concentration versus time curve from zero to 12 h (AUC0-12 ), and Cmax of plasma NHC increased approximately dose proportionally. With q12h dosing, the geometric mean (GM) accumulation ratios for NHC AUC0-12 and Cmax were ~1 for 400 and 800 mg. Pharmacokinetics of NHC triphosphate (NHC-TP), the active metabolite of NHC was assessed in peripheral blood mononuclear cells and also demonstrated roughly dose proportional pharmacokinetics. The GM accumulation ratios for NHC-TP AUC0-12 and Cmax were ~2.5 for 400 and 800 mg. Following administration with food, only a modest reduction (24%) in plasma NHC Cmax with comparable AUC0-inf was seen, supporting administration without regard to food.
Collapse
|
42
|
Di Tonno D, Perlin C, Loiacono AC, Giordano L, Martena L, Lagravinese S, Rossi F, Marsigliante S, Maffia M, Falco A, Piscitelli P, Miani A, Esposito S, Distante A, Argentiero A. Trends of Phase I Clinical Trials in the Latest Ten Years across Five European Countries. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14023. [PMID: 36360902 PMCID: PMC9658046 DOI: 10.3390/ijerph192114023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phase 1 clinical trials represent a critical phase of drug development because new candidate therapeutic agents are tested for the first time on humans. Therefore, international guidelines and local laws have been released to mitigate and control possible risks for human health in agreement with the declaration of Helsinki and the international Good Clinical Practice principles. Despite numerous scientific works characterizing the registered clinical trials on ClinicalTrials.gov, the main features and trends of registered phase 1 clinical trials in Europe have not been investigated. This study is aimed at assessing the features and the temporal trend of distribution of phase 1 clinical studies, carried out in the five largest European countries over a ten-year period (2012-2021), and to evaluate the impact of the Italian regulatory framework on the activation of such studies. METHODS The main data and characteristics of phase 1 clinical studies registered on the ClinicalTrials.gov database for France, Germany, Italy, Spain and the United Kingdom have been investigated and subsequently compared. The above-mentioned countries were selected based on similarities in terms of demographic and Gross Domestic Product (GDP) data available on official government websites. (3) Results: A total number of 6878 phase 1 clinical trials were registered for the five selected countries in the ClinicalTrials.gov database during the ten years analyzed; the studies were predominantly randomized (39.33%) and for-profit (76.64%). The most represented area of investigations was oncology (52.15%), followed by hematology (24.99%) and immunology (12.04%). The variability observed between the analyzed countries showed that the UK, Germany and France presented the highest reduction in the number of phase 1 clinical trials, while for Spain and Italy, a stable/increased trend was observed, although with a lower number of trials registered on the ClinicalTrials.gov database. (4) Conclusions: Italy displayed the lowest number of registered phase 1 clinical trials, even though it showed a stable trend over the years. In this regard, the Italian regulatory framework must urgently be adapted to that of other European countries (Spain has been the first country to implement the new Regulation (EU) No 536/2014) and streamline the process of clinical trial application to increase the attractiveness of the country. Moreover, nonprofit phase 1 clinical trials (which represent 19.81% of the total number of phase 1 clinical trials registered in Italy vs. 80.19% of profit phase 1 clinical studies) should be promoted and supported by the institutions, even from a financial point of view, to allow independent researchers to develop new therapeutic drugs.
Collapse
Affiliation(s)
- Davide Di Tonno
- ClinOpsHub s.r.l., 72023 Mesagne, Italy
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Caterina Perlin
- ClinOpsHub s.r.l., 72023 Mesagne, Italy
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Anna Chiara Loiacono
- ClinOpsHub s.r.l., 72023 Mesagne, Italy
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Luca Giordano
- ClinOpsHub s.r.l., 72023 Mesagne, Italy
- Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, Via Loredan 18, 35121 Padova, Italy
| | | | | | | | - Santo Marsigliante
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Michele Maffia
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Andrea Falco
- Department of Public Health, European University of Madrid, 28670 Madrid, Spain
| | - Prisco Piscitelli
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Alessandro Miani
- Department of Environmental Science and Policy, University of Milan, 10123 Milan, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy
| | - Alessandro Distante
- Euro Mediterranean Scientific Biomedical Institute (ISBEM), 72023 Mesagne, Italy
| | - Alberto Argentiero
- Department of Biological and Environmental Science and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
- Centro Ricerca Clinica Salentino (CERICSAL), Veris delli Ponti Hospital, 73020 Scorrano, Italy
| |
Collapse
|
43
|
Smit JW, Basile P, Prato MK, Detalle L, Mathy F, Schmidt A, Lalla M, Germani M, Domange C, Biere A, Bani M, Carson S, Genius J. Phase 1/1b Studies of UCB0599, an Oral Inhibitor of α-Synuclein Misfolding, Including a Randomized Study in Parkinson's Disease. Mov Disord 2022; 37:2045-2056. [PMID: 35959805 PMCID: PMC9804489 DOI: 10.1002/mds.29170] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/26/2022] [Accepted: 06/27/2022] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) and its progression are thought to be caused and driven by misfolding of α-synuclein (ASYN). UCB0599 is an oral, small-molecule inhibitor of ASYN misfolding, aimed at slowing disease progression. OBJECTIVE The aim was to investigate safety/tolerability and pharmacokinetics (PK) of single and multiple doses of UCB0599. METHODS Safety/tolerability and PK of single and multiple doses of UCB0599 and its metabolites were investigated in two phase 1 studies in healthy participants (HPs), where food effect and possible interaction with itraconazole (ITZ) were assessed (UP0030 [randomized, placebo-controlled, dose-escalation, crossover study, N = 65] and UP0078 [open-label study, N = 22]). Safety/tolerability and multi-dose PK of UCB0599 were subsequently investigated in a phase 1b randomized, double-blind, placebo-controlled study of participants with PD (UP0077 [NCT04875962], N = 31). RESULTS Across all studies, UCB0599 displayed rapid absorption with linear, time-independent PK properties; PK of multiple doses of UCB0599 were predictable from single-dose exposures. No notable food-effect was observed; co-administration with ITZ affected UCB0599 disposition (maximum plasma concentration and area under the curve increased ~1.3- and ~2 to 3-fold, respectively) however, this did not impact the safety profile. Hypersensitivity reactions were reported in UP0030 (n = 2) and UP0077 (n = 2). Treatment-related adverse events occurred in 43% (UCB0599), and 30% (placebo) of participants with PD were predominantly mild-to-moderate in intensity and were not dose related. CONCLUSIONS Seventy-three HPs and 21 participants with PD received UCB0599 doses; an acceptable safety/tolerability profile and predictable PK support continued development of UCB0599 for the slowing of PD progression. A phase 2 study in early-stage PD is underway (NCT04658186). © 2022 UCB Pharma. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Massimo Bani
- UCB PharmaBraine‐l'AlleudBelgium,Present address:
Bergmapharm ConsultingVeronaItaly
| | | | - Just Genius
- UCB PharmaBraine‐l'AlleudBelgium,Present address:
Genius Biotech Solutions, LtdVictoriaMalta
| |
Collapse
|
44
|
Kim DJ, Kil SY, Son J, Lee HS. How to conduct well-designed clinical research. KOSIN MEDICAL JOURNAL 2022. [DOI: 10.7180/kmj.22.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Clinicians and healthcare decision-makers conduct their clinical practice based on the results of clinical trials. However, some health problems remain unresolved; in such cases, further research is required. To ensure reliable research results, it is important to understand the study design and conduct well-designed clinical trials. Many study designs can be chosen within the two broad categories of observational and interventional. Clinical studies have a variety of designs, including case series, case-control, cross-sectional, and prospective and retrospective cohort studies. Well-designed clinical studies can clarify important differences between treatment options and provide data on long-term drug efficacy and safety. Interpreting the results of clinical trials can be difficult because weaknesses in research design, data collection methods, analytic methods, and reporting can compromise their value and usefulness. However, although randomized controlled trials are limited owing to ethical and practical issues, they are optimal for investigating the effects of therapy and establishing causality. Here we present an overview of different clinical research designs and review their advantages and limitations.
Collapse
|
45
|
Callahan M, Treston AM, Lin G, Smith M, Kaufman B, Khaliq M, Evans DeWald L, Spurgers K, Warfield KL, Lowe P, Duchars M, Sampath A, Ramstedt U. Randomized single oral dose phase 1 study of safety, tolerability, and pharmacokinetics of Iminosugar UV-4 Hydrochloride (UV-4B) in healthy subjects. PLoS Negl Trop Dis 2022; 16:e0010636. [PMID: 35939501 PMCID: PMC9387934 DOI: 10.1371/journal.pntd.0010636] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 08/18/2022] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background
UV-4 (N-(9’-methoxynonyl)-1-deoxynojirimycin, also called MON-DNJ) is an iminosugar small-molecule oral drug candidate with in vitro antiviral activity against diverse viruses including dengue, influenza, and filoviruses and demonstrated in vivo efficacy against both dengue and influenza viruses. The antiviral mechanism of action of UV-4 is through inhibition of the host endoplasmic reticulum-resident α-glucosidase 1 and α-glucosidase 2 enzymes. This inhibition prevents proper glycan processing and folding of virus glycoproteins, thereby impacting virus assembly, secretion, and the fitness of nascent virions.
Methodology/Principal findings
Here we report a first-in-human, single ascending dose Phase 1a study to evaluate the safety, tolerability, and pharmacokinetics of UV-4 hydrochloride (UV-4B) in healthy subjects (ClinicalTrials.gov Identifier NCT02061358). Sixty-four subjects received single oral doses of UV-4 as the hydrochloride salt equivalent to 3, 10, 30, 90, 180, 360, 720, or 1000 mg of UV-4 (6 subjects per cohort), or placebo (2 subjects per cohort). Single doses of UV-4 hydrochloride were well tolerated with no serious adverse events or dose-dependent increases in adverse events observed. Clinical laboratory results, vital signs, and physical examination data did not reveal any safety signals. Dose-limiting toxicity was not observed; the maximum tolerated dose of UV-4 hydrochloride in humans has not yet been determined (>1000 mg). UV-4 was rapidly absorbed and distributed after dosing with the oral solution formulation used in this study. Median time to reach maximum plasma concentration ranged from 0.5–1 hour and appeared to be independent of dose. Exposure increased approximately in proportion with dose over the 333-fold dose range. UV-4 was quantifiable in pooled urine over the entire collection interval for all doses.
Conclusions/Significance
UV-4 is a host-targeted broad-spectrum antiviral drug candidate. At doses in humans up to 1000 mg there were no serious adverse events reported and no subjects were withdrawn from the study due to treatment-emergent adverse events. These data suggest that therapeutically relevant drug levels of UV-4 can be safely administered to humans and support further clinical development of UV-4 hydrochloride or other candidate antivirals in the iminosugar class.
Trial registration
ClinicalTrials.gov NCT02061358 https://clinicaltrials.gov/ct2/show/NCT02061358.
Collapse
Affiliation(s)
- Michael Callahan
- Division of Infectious Diseases, Massachusetts General Hospital, Massachusetts, United States of America
| | - Anthony M. Treston
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Grace Lin
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Marla Smith
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Brian Kaufman
- AbViro, Bethesda, Maryland, United States of America
| | - Mansoora Khaliq
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Lisa Evans DeWald
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Kevin Spurgers
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Kelly L. Warfield
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
- * E-mail:
| | - Preeya Lowe
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Matthew Duchars
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | - Aruna Sampath
- Emergent BioSolutions Inc, Gaithersburg, Maryland, United States of America
| | | |
Collapse
|
46
|
Improving Development of Drug Treatments for Pregnant Women and the Fetus. Ther Innov Regul Sci 2022; 56:976-990. [PMID: 35881237 PMCID: PMC9315086 DOI: 10.1007/s43441-022-00433-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/30/2022] [Indexed: 12/12/2022]
Abstract
The exclusion of pregnant populations, women of reproductive age, and the fetus from clinical trials of therapeutics is a major global public health issue. It is also a problem of inequity in medicines development, as pregnancy is a protected characteristic. The current regulatory requirements for drugs in pregnancy are being analyzed by a number of agencies worldwide. There has been considerable investment in developing expertise in pregnancy clinical trials (for the pregnant person and the fetus) such as the Obstetric-Fetal Pharmacology Research Centers funded by the National Institute of Child Health and Human Development. Progress has also been made in how to define and grade clinical trial safety in pregnant women, the fetus, and neonate. Innovative methods to model human pregnancy physiology and pharmacology using computer simulations are also gaining interest. Novel ways to assess fetal well-being and placental function using magnetic resonance imaging, computerized cardiotocography, serum circulating fetoplacental proteins, and mRNA may permit better assessment of the safety and efficacy of interventions in the mother and fetus. The core outcomes in women’s and newborn health initiative is facilitating the consistent reporting of data from pregnancy trials. Electronic medical records integrated with pharmacy services should improve the strength of pharmacoepidemiologic and pharmacovigilance studies. Incentives such as investigational plans and orphan disease designation have been taken up for obstetric, fetal, and neonatal diseases. This review describes the progress that is being made to better understand the extent of the problem and to develop applicable solutions.
Collapse
|
47
|
Essential oil nebulization in mild COVID-19(EONCO): Early phase exploratory clinical trial. J Ayurveda Integr Med 2022; 13:100626. [PMID: 35813974 PMCID: PMC9257088 DOI: 10.1016/j.jaim.2022.100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
Background Medications studied for therapeutic benefits in coronavirus disease 2019 (COVID-19) have produced inconclusive efficacy results except for steroids. Objective A prospective randomized open-label, parallel-arm Phase I/II clinical trial was planned to compare essential oil (EO) blend versus placebo nebulization in mild COVID-19. Methods A Phase I safety evaluation was carried out in a single ascending and multiple ascending dose study designs. We assessed Phase II therapeutic efficacy on COVID-19 and general respiratory symptoms on days 0, 3, 5, 7, 10, and 14 on the predesigned case record form. Viremia was evaluated on day 0, day 5, and day 10. Results Dose-limiting toxicities were not reached with the doses, frequencies, and duration studied, thus confirming the formulation's preliminary safety. General respiratory symptoms (p < 0.001), anosmia (p < 0.05), and dysgeusia (p < 0.001) benefited significantly with the use of EO blend nebulization compared to placebo. Symptomatic COVID-19 participants with mild disease did not show treatment benefits in terms of symptomatic relief (p = 1.0) and viremia clearance (p = 0.74) compared to the placebo. EO blend was found to be associated with the reduced evolution of symptoms in previously asymptomatic reverse transcription polymerase chain reaction (RT-PCR)-positive study participants (p = 0.034). Conclusion EO nebulization appears to be a safer add-on symptomatic relief approach for mild COVID-19. However, the direct antiviral action of the EO blend needs to be assessed with different concentrations of combinations of individual phytochemicals in the EO blend.
Collapse
|
48
|
Wu X, Zhang F, Yu M, Wang H. Review of the Chinese Landscape in Phase I Clinical Trials for Noncancer Innovative Drugs Over 2015 to 2020. Clin Pharmacol Drug Dev 2022; 11:903-909. [PMID: 35711154 DOI: 10.1002/cpdd.1131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
In recent years, the research and development (R&D) of innovative drugs in China has been dramatically accelerated. And the early clinical study is crucial for drug R&D. However, little is known involving the change of phase I trials for noncancer drugs. We retrieved the data of phase I clinical trials for noncancer innovative drugs on the Registration and Information Disclosure Platform for Drug Clinical Studies on the Center for Drug Evaluation. The number of clinical trials proliferating in recent years and the average annual growth rates of chemical and biological drugs were 55.5% and 42.1%, respectively. Most trials were distributed in Beijing, Shanghai, and other developed coastal cities. Moreover, the clinical trials of innovative drugs in China were focused on the digestive and endocrine systems, whereas the pediatric and orphan drugs were scarce. Based on the data assessment, this work provided comprehensive analysis and suggestions about Chinese drug R&D. Significant advancement has been made in mainland China with the implementation of available policies and the emergence of advanced technologies. Though shortcomings, including uneven geographic distribution and lack of pediatric and orphan drugs, still exist, we believe progress will continue to be made in mainland China.
Collapse
Affiliation(s)
- Xiaofei Wu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Fan Zhang
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Mengyang Yu
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| | - Hongyun Wang
- Clinical Pharmacology Research Center, State Key Laboratory of Complex Severe and Rare Diseases, NMPA Key Laboratory for Clinical Research and Evaluation of Drug, Beijing Key Laboratory of Clinical PK & PD Investigation for Innovative Drugs, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, No.1 Shuaifuyuan, Beijing, 100730, China
| |
Collapse
|
49
|
Marcantonio DH, Matteson A, Presler M, Burke JM, Hagen DR, Hua F, Apgar JF. Early Feasibility Assessment: A Method for Accurately Predicting Biotherapeutic Dosing to Inform Early Drug Discovery Decisions. Front Pharmacol 2022; 13:864768. [PMID: 35754500 PMCID: PMC9214263 DOI: 10.3389/fphar.2022.864768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/18/2022] Open
Abstract
The application of model-informed drug discovery and development (MID3) approaches in the early stages of drug discovery can help determine feasibility of drugging a target, prioritize between targets, or define optimal drug properties for a target product profile (TPP). However, applying MID3 in early discovery can be challenging due to the lack of pharmacokinetic (PK) and pharmacodynamic (PD) data at this stage. Early Feasibility Assessment (EFA) is the application of mechanistic PKPD models, built from first principles, and parameterized by data that is readily available early in drug discovery to make effective dose predictions. This manuscript demonstrates the ability of EFA to make accurate predictions of clinical effective doses for nine approved biotherapeutics and outlines the potential of extending this approach to novel therapeutics to impact early drug discovery decisions.
Collapse
|
50
|
Vissers MFJM, Heuberger JAAC, Groeneveld GJ, Oude Nijhuis J, De Deyn PP, Hadi S, Harris J, Tsai RM, Cruz-Herranz A, Huang F, Tong V, Erickson R, Zhu Y, Scearce-Levie K, Hsiao-Nakamoto J, Tang X, Chang M, Fox BM, Pomponio RJ, Alonso-Alonso M, Zilberstein M, Atassi N, Troyer MD, Ho C. Safety, pharmacokinetics and target engagement of novel RIPK1 inhibitor SAR443060 (DNL747) for neurodegenerative disorders: Randomized, placebo-controlled, double-blind phase I/Ib studies in healthy subjects and patients. Clin Transl Sci 2022; 15:2010-2023. [PMID: 35649245 PMCID: PMC9372423 DOI: 10.1111/cts.13317] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/29/2022] [Accepted: 05/12/2022] [Indexed: 01/15/2023] Open
Abstract
RIPK1 is a master regulator of inflammatory signaling and cell death and increased RIPK1 activity is observed in human diseases, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). RIPK1 inhibition has been shown to protect against cell death in a range of preclinical cellular and animal models of diseases. SAR443060 (previously DNL747) is a selective, orally bioavailable, central nervous system (CNS)–penetrant, small‐molecule, reversible inhibitor of RIPK1. In three early‐stage clinical trials in healthy subjects and patients with AD or ALS (NCT03757325 and NCT03757351), SAR443060 distributed into the cerebrospinal fluid (CSF) after oral administration and demonstrated robust peripheral target engagement as measured by a reduction in phosphorylation of RIPK1 at serine 166 (pRIPK1) in human peripheral blood mononuclear cells compared to baseline. RIPK1 inhibition was generally safe and well‐tolerated in healthy volunteers and patients with AD or ALS. Taken together, the distribution into the CSF after oral administration, the peripheral proof‐of‐mechanism, and the safety profile of RIPK1 inhibition to date, suggest that therapeutic modulation of RIPK1 in the CNS is possible, conferring potential therapeutic promise for AD and ALS, as well as other neurodegenerative conditions. However, SAR443060 development was discontinued due to long‐term nonclinical toxicology findings, although these nonclinical toxicology signals were not observed in the short duration dosing in any of the three early‐stage clinical trials. The dose‐limiting toxicities observed for SAR443060 preclinically have not been reported for other RIPK1‐inhibitors, suggesting that these toxicities are compound‐specific (related to SAR443060) rather than RIPK1 pathway‐specific.
Collapse
Affiliation(s)
- Maurits F J M Vissers
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug Research, Leiden, The Netherlands.,Leiden University Medical Center, Leiden, The Netherlands
| | - Jerome Oude Nijhuis
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter Paul De Deyn
- Department of Neurology and Alzheimer Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences and Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Salah Hadi
- PRA Health Sciences, Groningen, The Netherlands
| | - Jeffrey Harris
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Richard M Tsai
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Fen Huang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Vincent Tong
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | - Yuda Zhu
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | - Xinyan Tang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Megan Chang
- Denali Therapeutics Inc., South San Francisco, California, USA
| | - Brian M Fox
- Denali Therapeutics Inc., South San Francisco, California, USA
| | | | | | | | | | | | - Carole Ho
- Denali Therapeutics Inc., South San Francisco, California, USA
| |
Collapse
|