1
|
Pengrattanachot N, Thongnak L, Promsan S, Phengpol N, Sutthasupha P, Tocharus J, Lungkaphin A. Fructooligosaccharides Ameliorate Renal Injury and Dysfunction Through the Modulation of Gut Dysbiosis, Inhibition of Renal Inflammation, Oxidative Stress, Fibrosis, and Improve Organic Anion Transporter 3 Function in an Obese Rat Model. Mol Nutr Food Res 2024; 68:e2400191. [PMID: 39021322 DOI: 10.1002/mnfr.202400191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/11/2024] [Indexed: 07/20/2024]
Abstract
SCOPE High-fat diet (HFD) consumption causes obesity and gut dysbiosis which induces kidney injury. It has been reported that prebiotics improve gut dysbiosis and insulin sensitivity and decelerate the progression of kidney disease. This study investigates the impact of fructooligosaccharides (FOS) on renoprotection and the prevention of gut dysbiosis and intestinal barrier injury in obese rats. METHODS AND RESULTS Wistar rats are treated with HFD for 16 weeks. Then, the HFD fed rats (HF) are given FOS 1 g day-1 (HFFOS1), 2 g day-1 (HFFOS2), or metformin 30 mg kg-1 day-1 (HFMET), by intragastric feeding for 8 weeks. Blood, urine, feces, kidney, and intestine are collected to determine the metabolic changes, gut dysbiosis, and the expression of proteins involved in kidney and intestinal injury. FOS can attenuate insulin resistance and hypercholesterolemia concomitant with the inhibition of renal inflammation, oxidative stress, fibrosis, and apoptosis, which are related to the deceleration of the overexpression of renal Toll-like receptor 4 (TLR4) and NADPH oxidase (NOX4). Moreover, FOS shows a greater efficacy than metformin in the reduction of the intestinal injury and loss of tight junction proteins induced by HFD. CONCLUSION FOS may be used as a supplement for therapeutic purposes in an obese condition to improve intestinal integrity and prevent renal complications.
Collapse
Affiliation(s)
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Functional Food Research Center for Well-being, Multidisciplinary Research Institute Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
2
|
Guo S, Tong Y, Li T, Yang K, Gao W, Peng F, Zou X. Endoplasmic Reticulum Stress-Mediated Cell Death in Renal Fibrosis. Biomolecules 2024; 14:919. [PMID: 39199307 PMCID: PMC11352060 DOI: 10.3390/biom14080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
The endoplasmic reticulum (ER) is indispensable for maintaining normal life activities. Dysregulation of the ER function results in the accumulation of harmful proteins and lipids and the disruption of intracellular signaling pathways, leading to cellular dysfunction and eventual death. Protein misfolding within the ER disrupts its delicate balance, resulting in the accumulation of misfolded or unfolded proteins, a condition known as endoplasmic reticulum stress (ERS). Renal fibrosis, characterized by the aberrant proliferation of fibrotic tissue in the renal interstitium, stands as a grave consequence of numerous kidney disorders, precipitating a gradual decline in renal function. Renal fibrosis is a serious complication of many kidney conditions and is characterized by the overgrowth of fibrotic tissue in the glomerular and tubular interstitium, leading to the progressive failure of renal function. Studies have shown that, during the onset and progression of kidney disease, ERS causes various problems in the kidneys, a process that can lead to kidney fibrosis. This article elucidates the underlying intracellular signaling pathways modulated by ERS, delineating its role in triggering diverse forms of cell death. Additionally, it comprehensively explores a spectrum of potential pharmacological agents and molecular interventions aimed at mitigating ERS, thereby charting novel research avenues and therapeutic advancements in the management of renal fibrosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiangyu Zou
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China; (S.G.); (Y.T.); (T.L.); (K.Y.); (W.G.); (F.P.)
| |
Collapse
|
3
|
Cho J, Doo SW, Song N, Lee M, Lee H, Kim H, Jeon JS, Noh H, Kwon SH. Dapagliflozin Reduces Urinary Kidney Injury Biomarkers in Chronic Kidney Disease Irrespective of Albuminuria Level. Clin Pharmacol Ther 2024; 115:1441-1449. [PMID: 38451017 DOI: 10.1002/cpt.3237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/12/2024] [Indexed: 03/08/2024]
Abstract
The beneficial effects of sodium-glucose cotransporter 2 (SGLT2) inhibitors in patients with chronic kidney disease (CKD) with low albuminuria levels have not been established. This study aimed to compare the effects of dapagliflozin on kidney injury biomarkers in patients with CKD stratified by albuminuria level. We prospectively enrolled healthy volunteers (HVs; n = 20) and patients with CKD (n = 54) with and without diabetes mellitus. Patients with CKD were divided into two age-matched and sex-matched subgroups according to urinary albumin-creatinine ratio (uACR) levels (<300 mg/g and ≥300 mg/g). The CKD group received dapagliflozin (10 mg/day). Urine samples were collected before treatment and after 3 and 6 months of dapagliflozin. Urinary kidney injury molecule-1 (KIM-1), interleukin-1β (IL-1β), and mitochondrial DNA nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND1) copy number were measured. The estimated glomerular filtration rate (eGFR) of patients with CKD was lower than that of HVs (P < 0.001). During the study period, eGFR decreased and uACR did not change in the CKD group. Kidney injury markers were significantly elevated in patients with CKD compared with those in HVs. Dapagliflozin reduced urinary KIM-1, IL-1β, and mtDNA copy number in patients with CKD after 6 months of treatment. In further, the levels of urinary KIM-1 and IL-1β, patients with CKD decreased after 6 months of dapagliflozin treatment regardless of albuminuria level. Dapagliflozin reduced urinary kidney injury biomarkers in patients with CKD, regardless of albuminuria level. These findings suggest that SGLT2 inhibitors may also attenuate the progression of low albuminuric CKD.
Collapse
Affiliation(s)
- Junghyun Cho
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Seung Whan Doo
- Department of Urology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Nayoung Song
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Minsul Lee
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Haekyung Lee
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyongnae Kim
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jin Seok Jeon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Hyunjin Noh
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Soon Hyo Kwon
- Division of Nephrology, Soonchunhyang University Seoul Hospital, Seoul, Korea
- Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, Seoul, Korea
| |
Collapse
|
4
|
Vaněčková I, Zicha J. Gliflozins in the Treatment of Non-diabetic Experimental Cardiovascular Diseases. Physiol Res 2024; 73:S377-S387. [PMID: 38634653 PMCID: PMC11412360 DOI: 10.33549/physiolres.935364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
A new class of antidiabetic drugs - gliflozins (inhibitors of sodium glucose cotransporter-2; SGLT-2i) stimulate glucose and sodium excretion, thereby contributing to improved glycemic control, weight loss and blood pressure reduction in diabetic patients. Large clinical trials in patients with type 2 diabetes treated with empagliflozin, canagliflozin or dapagliflozin have demonstrated their excellent efficacy in improving many cardiovascular outcomes, including the reduction of death from cardiovascular diseases, non-fatal myocardial infarction or stroke, and hospitalization for heart failure. Moreover, the beneficial effects of SGLT-2i were also demonstrated in the decrease in proteinuria, which leads to a lower risk of progression to end-stage renal disease and thus a delay in initiation of the renal replacement therapy. Unexpectedly, their cardioprotective and renoprotective effects have been demonstrated not only in patients with diabetes but also in those without diabetes. Recently, much effort has been focused on patients with heart failure (either with reduced or preserved ejection fraction) or liver disease. Experimental studies have highlighted pleiotropic effects of SGLT-2 inhibitors beyond their natriuretic and glycosuric effects, including reduction of fibrosis, inflammation, reactive oxygen species, and others. Our results in experimental non-diabetic models of hypertension, chronic kidney disease and heart failure are partially consistent with these findings. This raises the question of whether the same mechanisms are at work in diabetic and non-diabetic conditions, and which mechanisms are responsible for the beneficial effects of gliflozins under non-diabetic conditions. Are these effects cardio-renal, metabolic, or others? This review will focus on the effects of gliflozins under different pathophysiological conditions, namely in hypertension, chronic kidney disease, and heart failure, which have been evaluated in non-diabetic rat models of these diseases. Key words: SGLT-2 inhibitor, hypertension, chronic kidney disease, heart failure, liver disease, rat.
Collapse
Affiliation(s)
- I Vaněčková
- Laboratory of Experimental Hypertension, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic.
| | | |
Collapse
|
5
|
Pereira RO, Correia LA, Farah D, Komoni G, Farah V, Fiorino P. Wistar rat as an animal model to study high-fat induced kidney damage: a systematic review. Arch Physiol Biochem 2024; 130:205-214. [PMID: 34915796 DOI: 10.1080/13813455.2021.2017462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/08/2021] [Accepted: 12/07/2021] [Indexed: 12/09/2022]
Abstract
The effects of high-fat-associated kidney damage in humans are not completely elucidated. Animal experiments are essential to understanding the mechanisms underlying human diseases. This systematic review aimed to compile evidence of the role of a high-fat diet during the development of renal lipotoxicity and fibrosis of Wistar rats to understand whether this is a satisfactory model for the study of high fat-induced kidney damage. We conducted systematic searches in PUBMED, EMBASE, Lilacs, and Web of Science databases from inception until May 2021. The risk of bias was assessed using SYRCLE toll. Two reviewers independently screened abstracts and reviewed full-text articles. A total of 11 studies were included. The damage varied depending on the age and sex of the animals, time of protocol, and amount of fat in the diet. In conclusion, the Wistar rat is an adequate animal model to assess the effects of a high-fat diet on the kidneys.HighlightsA high-fat diet may promote kidney damage in Wistar rats.Wistar rat is efficient as an animal model to study high-fat-induced kidney damage.The effect of the diet depends on the fat amount, consumption time, and animal age.
Collapse
Affiliation(s)
- Renata O Pereira
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Luana A Correia
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Daniela Farah
- Women's Health Technology Assessment Center, Department of Gynecology, Federal University of São Paulo, São Paulo, Brazil
| | - Geovana Komoni
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Vera Farah
- Translational Medicine Division, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| | - Patricia Fiorino
- Renal, Cardiovascular and Metabolic Physiopharmacology Laboratory, Health and Biological Science Center, Mackenzie University, São Paulo, Brazil
| |
Collapse
|
6
|
Al Tuhaifi T, Zhong J, Yang HC, Fogo AB. Effects of Dipeptidyl Peptidase-4 Inhibitor and Angiotensin-Converting Enzyme Inhibitor on Experimental Diabetic Kidney Disease. J Transl Med 2024; 104:100305. [PMID: 38109999 PMCID: PMC10922867 DOI: 10.1016/j.labinv.2023.100305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 11/08/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease in the United States and worldwide. Proteinuria is a major marker of the severity of injury. Dipeptidyl peptidase-4 inhibitor (DPP-4I) increases incretin-related insulin production and is, therefore, used to treat diabetes. We investigated whether DPP4I could have direct effect on kidney independent of its hypoglycemic activity. We, therefore, tested the effects of DPP4I with or without angiotensin-converting enzyme inhibitor (ACEI) on the progression of diabetic nephropathy and albuminuria in a murine model of DKD. eNOS-/-db/db mice were randomized to the following groups at age 10 weeks and treated until sacrifice: baseline (sacrificed at week 10), untreated control, ACEI, DPP4I, and combination of DPP4I and ACEI (Combo, sacrificed at week 18). Systemic parameters and urine albumin-creatinine ratio were assessed at baseline, weeks 14, and 18. Kidney morphology, glomerular filtration rate (GFR), WT-1, a marker for differentiated podocytes, podoplanin, a marker of foot process integrity, glomerular collagen IV, and alpha-smooth muscle actin were assessed at the end of the study. All mice had hyperglycemia and proteinuria at study entry at week 10. Untreated control mice had increased albuminuria, progression of glomerular injury, and reduced GFR at week 18 compared with baseline. DPP4I alone reduced blood glucose and kidney DPP-4 activity but failed to protect against kidney injury compared with untreated control. ACEI alone and combination groups showed significantly reduced albuminuria and glomerular injury, and maintained GFR and WT-1+ cells. Only the combination group had significantly less glomerular collagen IV deposition and more podoplanin preservation than the untreated control. DPP-4I alone does not decrease the progression of kidney injury in the eNOS-/-db/db mouse model, suggesting that targeting only hyperglycemia is not an optimal treatment strategy for DKD. Combined DPP-4I with ACEI added more benefit to reducing the glomerular matrix.
Collapse
Affiliation(s)
- Tareq Al Tuhaifi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Nephrology Clinical Trials Center, Division of Nephrology and Hypertension, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jianyong Zhong
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hai-Chun Yang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Agnes B Fogo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
7
|
Jaikumkao K, Thongnak L, Htun KT, Pengrattanachot N, Phengpol N, Sutthasupha P, Promsan S, Montha N, Sriburee S, Kothan S, Lungkaphin A. Dapagliflozin and metformin in combination ameliorates diabetic nephropathy by suppressing oxidative stress, inflammation, and apoptosis and activating autophagy in diabetic rats. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166912. [PMID: 37816397 DOI: 10.1016/j.bbadis.2023.166912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023]
Abstract
Considering the effects of sodium-glucose cotransporter inhibitors and metformin on the kidneys, a combination of both agents is postulated to provide protection against diabetic nephropathy (DN). We examined the potential protective effects of dapagliflozin, metformin, and their combination on kidney injury in rats with type 2 diabetes. Diabetic (DM) rats were administered dapagliflozin (1.0 mg/kg/day), metformin (100 mg/kg/day), or a combination (dapagliflozin 0.5 mg/kg/day plus metformin 50 mg/kg/day) by oral gavage for 4 weeks. Dapagliflozin monotherapy or in combination with metformin was more effective than metformin monotherapy in attenuating renal dysfunction, improving renal organic anion transporter 3 expression, and activating renal autophagy by modulating the AMPK/mTOR/SIRT1 axis in DM rats. Interestingly, dapagliflozin monotherapy exhibited greater efficacy in suppressing renal oxidative stress in DM rats than metformin or the combination treatment. Renal and pancreatic injury scores decreased in all treatment groups. Apoptotic markers were predominantly reduced in dapagliflozin monotherapy and combination treatment groups. The low-dose combination treatment, through synergistic coordination, appeared to modulate oxidative, autophagic, and apoptotic signaling and confer significant renoprotective effects against DM-induced complications. In addition, a low dose of the combination might be beneficial to patients by avoiding the risk of side effects of the medication. Future clinical trials are necessary to study the nephroprotective effects of the combined treatment at a low dosage in patients with diabetes.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Khin Thandar Htun
- Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Napatsorn Montha
- Department of Animal and Aquatic Science, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Sompong Sriburee
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand; Center of Radiation Research and Medical Imaging, Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Foods for Health and Disease, Department of Physiology, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
8
|
Bendotti G, Montefusco L, Pastore I, Lazzaroni E, Lunati ME, Fiorina P. The anti-inflammatory and immunological properties of SGLT-2 inhibitors. J Endocrinol Invest 2023; 46:2445-2452. [PMID: 37535237 DOI: 10.1007/s40618-023-02162-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/18/2023] [Indexed: 08/04/2023]
Abstract
BACKGROUND Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are antidiabetic oral drugs that act on proximal renal tubules promoting renal glucose excretion. Although SGLT-2i belong to the class of hypoglycemic agents, in the last years great interest has emerged in studying their pleiotropic effects, beyond their ability to lower glucose levels. PURPOSE In this review we are describing the anti-inflammatory and immunological properties of SGLT-2i; furthermore, we are addressing how the mechanisms associated with the aforementioned anti-inflammatory properties may contribute to the beneficial effects of SGLT-2i in diabetes. METHODS A systematic search was undertaken for studies related the properties of SGLT-2i in reducing the inflammatory milieu of acute and chronic disease by acting on the immune system, independently by glycemia. RESULTS Recently, some data described the anti-inflammatory and immunological properties of SGLT-2 in both pre-clinical and clinical studies. Numerous data confirmed the cardio- and -renal protective effects of SGLT-2i in patients with heart failure and kidney diseases, with or without diabetes. CONCLUSIONS SGLT-2i are promising drugs with anti-inflammatory and immunological properties. Despite the mechanism of action of SGLT-2i is not fully understood, these drugs demonstrated anti-inflammatory effects, which may help in keeping under control the variety of complications associated with diabetes.
Collapse
Affiliation(s)
- G Bendotti
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
- Endocrinology and Metabolic Diseases Unit, AO S.S. Antonio e Biagio e Cesare Arrigo, Alessandria, Italy
| | - L Montefusco
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - I Pastore
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - E Lazzaroni
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - M E Lunati
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - P Fiorina
- Division of Endocrinology, ASST Fatebenefratelli-Sacco, Milan, Italy.
- International Center for T1D, Pediatric Clinical Research Center "Romeo ed Enrica Invernizzi", Department of Biomedical and Clinical Science L. Sacco, University of Milan, Milan, Italy.
- Nephrology Division, Boston Children's Hospital, Harvard Medical School, 300 Longwood Ave. Enders Building 5th floor En511, Boston, MA, 02115, USA.
| |
Collapse
|
9
|
Xue S, Li YX, Lu XX, Tang W. Dapagliflozin can alleviate renal fibrosis in rats with streptozotocin‑induced type 2 diabetes mellitus. Exp Ther Med 2023; 26:572. [PMID: 38023356 PMCID: PMC10652239 DOI: 10.3892/etm.2023.12271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/14/2023] [Indexed: 12/01/2023] Open
Abstract
The aim of the present study was to explore the effects of Dapagliflozin on renal fibrosis in streptozotocin (STZ)-induced type 2 diabetes mellitus (T2DM) rats, and to determine the underlying mechanism of action. A total of 24 SPF male SD rats were randomly divided into 4 groups: A normal (Control) group, model group (STZ-induced T2DM rats), Dapagliflozin group (STZ-induced T2DM rats treated with 1 mg/kg Dapagliflozin), and a metformin group (STZ-induced T2DM rats treated with 200 mg/kg metformin), with 6 rats per a group. Peripheral blood and renal tissues were collected from these rats, and the renal indices of each group were examined. The fasting blood glucose (FBG), glycosylated hemoglobin (HbA1c), blood urea nitrogen (BUN), and serum creatinine (SCr) of rats were detected. After 24 h, the urine was collected and the urine protein levels were measured. Hematoxylin and eosin staining was used to detect histological changes in the rat kidney; Masson staining was used to observe the degree of fibrosis in rat renal tissues; and western blot was performed to determine the expression levels of α-smooth muscle actin (SMA), vimentin, E-cadherin, TGF-β1, Smad7, and p-Smad3 in rat renal tissues. Dapagliflozin effectively inhibited the increase in FBG and HbA1c levels in diabetic mice, reduced renal tissue damage, reduced the renal index values, reduced collagen deposition in the glomerulus and interstitial area, and reduced the proliferation of glomerular mesangial cells. In addition, Dapagliflozin significantly lowered the levels of BUN, SCr, and 24-h urine protein, decreased the protein expression of α-SMA, vimentin, TGF-β1, and p-Smad3, and increased the protein expression levels of E-cadherin and Smad7. Together, these results showed that Dapagliflozin alleviated renal fibrosis in STZ-induced T2DM rats, and its mechanism of action may be related to the inhibition of the TGF-β1/Smad pathway.
Collapse
Affiliation(s)
- Song Xue
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| | - Ying-Xuan Li
- Department of Endocrinology, Shanghai Gongli Hospital, Shanghai 200135, P.R. China
| | - Xiao-Xiao Lu
- Department of Endocrinology, Shanghai Zhoupu Hospital, Shanghai 201318, P.R. China
| | - Wei Tang
- Department of Endocrinology, Shanghai Changzheng Hospital, Shanghai 200003, P.R. China
| |
Collapse
|
10
|
Ashfaq A, Meineck M, Pautz A, Arioglu-Inan E, Weinmann-Menke J, Michel MC. A systematic review on renal effects of SGLT2 inhibitors in rodent models of diabetic nephropathy. Pharmacol Ther 2023; 249:108503. [PMID: 37495021 DOI: 10.1016/j.pharmthera.2023.108503] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
We have performed a systematic review of studies reporting on the renal effects of SGLT2 inhibitors in rodent models of diabetes. In 105 studies, SGLT2 inhibitors improved not only the glycemic control but also various aspects of renal function in most cases. These nephroprotective effects were similarly reported whether treatment with the SGLT2 inhibitor started concomitant with the onset of diabetes (within 1 week), early after onset (1-4 weeks) or after nephropathy had developed (>4 weeks after onset) with the latter probably having the greatest translational value. They were observed across various animal models of type 1 and type 2 diabetes/obesity (4 and 23 models, respectively), although studies in the type 2 diabetes model of db/db mice more often had negative data than in other models. Among possibly underlying pathophysiological mechanisms of nephroprotection, treatment with SGLT2 inhibitors had beneficial effects on lipid metabolism, blood pressure, glomerulosclerosis as well as renal tubular fibrosis, apoptosis, oxidative stress, and inflammation. These pathomechanisms highly influence atherosclerosis and renal health, which are two major factors that lead to an enhanced mortality in patients with diabetes and/or chronic kidney disease. Interestingly, renal SGLT2 inhibitor effects did not always correlate with those on glucose homeostasis, particularly in a limited number of direct comparative studies with other anti-diabetic treatments, indicating that nephroprotection may at least partly occur by mechanisms other than improving glycemic control. Our analyses did not provide evidence for different nephroprotective efficacy between SGLT2 inhibitors. Importantly, only four of 105 studies reported on female animals, and none provided direct comparative data between sexes. We conclude that more data on female animals and more direct comparative studies with other anti-diabetic compounds and combinations of treatments are needed.
Collapse
Affiliation(s)
- Aqsa Ashfaq
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Myriam Meineck
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Andrea Pautz
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ebru Arioglu-Inan
- Dept. of Pharmacology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Julia Weinmann-Menke
- 1(st) Dept. of Medicine, Div. of Nephrology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Martin C Michel
- Dept. of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
11
|
Gad EM, Abdel-rahman HG, Abd-el-fattah ME, Kamal MM, Eltahan AS, Dessouki AA. Renoprotective impact of Dapagliflozin and Mulberry extracts toward Fr-STZ induced diabetic nephropathy in rats: Biochemical and Molecular aspects.. [DOI: 10.21203/rs.3.rs-3186379/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Abstract
Among the most typical reasons of end-stage renal disease (ESRD) is diabetic nephropathy (DN), which is also rated as a major microvascular complication of diabetes mellitus. The existent study looked at the impact of dapagliflozin, mulberry fruit and leaves extracts and their combination on the kidney of diabetic rats. To induce diabetic nephropathy, experimental rats were supplied with 10% fructose (Fr) in drinking water for the first two weeks. Each Fr-fed animal received an intraperitoneal injection of a low single dose of STZ (40 mg/kg) after being fasted for the whole night. Sixty albino rats were separated into six equivalent groups. Group I control rats, group II untreated diabetic rats, group III–VI are diabetic groups; received dapagliflozin for 4 weeks, mulberry fruit extract, mulberry leaves extract and combination of DAPA, MFE and MLE, respectively for 6 weeks. Untreated diabetic rats exhibited considerable rise in serum glucose, urea, creatinine, KIM-1, β2-MG, TNF-α, and TGβ1 levels compared to control rats, while treated diabetic ones manifested significant decrease in these measures in contrast to the untreated diabetic rats. Also, renal tissue IL-6, NF-κB and NADPH oxidase manifested significant increase in untreated diabetic rats, while treated groups revealed significant decline in comparison to the untreated one. DAPA and mulberry fruit and leaves extracts optimized IL-10 and renin expression in renal tissue. Histopathological picture of kidney, revealed significant improvement in rats received DAPA and mulberry extracts compared to untreated diabetic rats. It could be concluded that, DAPA, mulberry fruits and leaves extracts alleviated diabetic nephropathy complications. Therefore, combining these ingredients in a supplement may be promising for modulating diabetic nephropathy.
Collapse
|
12
|
Peng R, Lin H, Zhu H, Zhang Y, Bao T, Li W, Deng J. Involvement of IGF1 in endoplasmic reticulum stress contributes to cataract formation through regulating Nrf2/NF-κB signaling. Funct Integr Genomics 2023; 23:220. [PMID: 37394478 DOI: 10.1007/s10142-023-01152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023]
Abstract
Endoplasmic reticulum (ER) stress is reportedly involved in the development of ophthalmic diseases. This study aimed to investigate the role and potential mechanism of insulin-like growth factor 1 (IGF1) in ER stress. A mouse cataract model was constructed by subcutaneous injection of sodium selenite, and sh-IGF1 was used to evaluate the effect of silencing IGF1 on cataract progression. Slit-lamp and histological examination of the lens were performed to examine lens damage. The regulatory effects of IGF1 on inflammatory responses, oxidative stress, and ER stress were evaluated using ELISA, reverse transcription-quantitative PCR (RT-qPCR), and immunoblotting analysis. Tunicamycin was used to induce ER stress in the lens of epithelial cells. The NF-E2 related factor-2 (Nrf2) inhibitor ML385 and nuclear factor-κB (NF-κB) agonist diprovocim were used to confirm whether IGF1 regulates inflammation and ER stress through Nrf2/NF-κB signaling. Silencing IGF1 alleviated lens damage and reduced lens turbidity in the cataract mice. Silencing IGF1 inhibited inflammatory response, oxidative stress and ER stress response. Meanwhile, IGF1 was highly expressed in sodium selenite-treated lens epithelial cells. The ER stress agonist tunicamycin suppressed cell viability as well as induced ER stress, oxidative stress and inflammation. Silencing IGF1 increased cell viability, EdU-positive rate and migration. Also, silencing of IGF1 reduced inflammation and ER stress via regulating Nrf2/NF-κB pathway. This study reveals silencing IGF1 attenuated cataract through regulating Nrf2/NF-κB signaling, which shares novel insights into the underlying mechanism of cataract and provides potential therapeutic target for cataract.
Collapse
Affiliation(s)
- Ruiping Peng
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Hongmei Lin
- Health Management Center, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Haocheng Zhu
- School of Medicine, Jinan University, No. 601, West Whampoa Avenue, Guangzhou City, 510632, Guangdong Province, China
| | - Yi Zhang
- Department of Ophthalmology, Shenzhen University General Hospital, No. 1098, Xueyuan Avenue, Nanshan District, Shenzhen City, 518071, Guangdong Province, China
| | - Tiancheng Bao
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Weili Li
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China
| | - Juan Deng
- Department of Ophthalmology, The 3rd Affiliated Hospital, Sun Yat-sen University, No. 600, Tianhe Road, Guangzhou City, 510630, Guangdong Province, China.
| |
Collapse
|
13
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Lungkaphin A. Metformin mitigates renal dysfunction in obese insulin-resistant rats via activation of the AMPK/PPARα pathway. Arch Pharm Res 2023; 46:408-422. [PMID: 36966452 DOI: 10.1007/s12272-023-01439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/28/2023] [Indexed: 03/27/2023]
Abstract
Insulin signaling and lipid metabolism are disrupted by long-term consumption of a high-fat diet (HFD). This disruption can lead to insulin resistance, dyslipidemia and subsequently renal dysfunction as a consequence of the inactivation of the AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPARα) or AMPK/PPARα pathways. We investigated the impact of metformin on the prevention of renal dysfunction through the modulation of AMPK-regulated PPARα-dependent pathways in insulin-resistant rats induced by a HFD. Male Wistar rats were fed a HFD for 16 weeks to induce insulin resistance. After insulin resistance had been confirmed, metformin (30 mg/kg) or gemfibrozil (50 mg/kg) was given orally for 8 weeks. Evidence of insulin resistance, dyslipidemia, lipid accumulation and kidney injury were observed in HF rats. Impairment of lipid oxidation, energy metabolism and renal organic anion transporter 3 (Oat3) expression and function were demonstrated in HF rats. Metformin can stimulate the AMPK/PPARα pathways and suppress sterol regulatory element-binding transcription factor 1 (SREBP1) and fatty acid synthase (FAS) signaling (SREBP1/FAS) to enable the regulation of lipid metabolism. Renal inflammatory markers and renal fibrosis expression induced by a HFD were more effectively reduced after metformin treatment than after gemfibrozil treatment. Interestingly, renal Oat3 function and expression and kidney injury were improved following metformin and gemfibrozil treatment. Renal cluster of differentiation 36 (CD36) or sodium glucose cotransporter type 2 (SGLT2) expression did not differ after treatment with metformin or gemfibrozil. Metformin and gemfibrozil could reduce the impairment of renal injury in obese conditions induced by a HFD through the AMPK/PPARα-dependent pathway. Interestingly, metformin demonstrated greater efficacy than gemfibrozil in attenuating renal lipotoxicity through the AMPK-regulated SREBP1/FAS signaling pathway.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporter and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Intravaroros Road, 50200, Chiang Mai, Thailand.
- Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
14
|
Liu Y, Wang Y, Chen S, Bai L, Li F, Wu Y, Zhang L, Wang X. Glutamate ionotropic receptor NMDA type subunit 1: A novel potential protein target of dapagliflozin against renal interstitial fibrosis. Eur J Pharmacol 2023; 943:175556. [PMID: 36736528 DOI: 10.1016/j.ejphar.2023.175556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Renal interstitial fibrosis (RIF) is the final pathway for chronic kidney diseases (CKD) to end-stage renal disease, with no ideal therapy at present. Previous studies indicated that sodium glucose co-transporter-2 inhibitor (SGLT2i) dapagliflozin had the effect of anti-RIF, but the mechanism remains elusive and the renal protective effect could not be fully explained by singly targeting SGLT2. In this study, we aimed to explore the mechanism of dapagliflozin against RIF and identify novel potential targets. Firstly, dapagliflozin treatment improved pro-fibrotic indicators in unilateral ureteral obstruction mice and transforming growth factor beta 1 induced human proximal tubular epithelial cells. Then, transcriptomics and bioinformatics analysis were performed, and results revealed that dapagliflozin against RIF by regulating inflammation and oxidative stress related signals. Subsequently, targets prediction and analysis demonstrated that glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) was a novel potential target of dapagliflozin, which was related to inflammation and oxidative stress related signals. Moreover, molecular dynamics simulation revealed that dapagliflozin could stably bind to GRIN1 protein and change its spatial conformation. Furthermore, human renal samples and Nephroseq data were used for GRIN1 expression evaluation, and the results showed that GRIN1 expression were increased in renal tissues of CKD and RIF patients than controls. Additionally, further studies demonstrated that dapagliflozin could reduce intracellular calcium influx in renal tubular cells, which depended on regulating GRIN1 protein but not gene. In conclusion, GRIN1 is probably a novel target of dapagliflozin against RIF.
Collapse
Affiliation(s)
- Yuyuan Liu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Nephrology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, Jiangsu, 215002, China
| | - Yanzhe Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sijia Chen
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linnan Bai
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengqin Li
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Wu
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Zhang
- Department of Obstetrics and Gynecology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610073, China.
| | - Xiaoxia Wang
- Department of Nephrology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
15
|
Jones NK, Costello HM, Monaghan MT, Stewart K, Binnie D, Marks J, Bailey MA, Culshaw GJ. Sodium-glucose cotransporter 2 inhibition does not improve the acute pressure natriuresis response in rats with type 1 diabetes. Exp Physiol 2023; 108:480-490. [PMID: 36644793 PMCID: PMC10103849 DOI: 10.1113/ep090849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/19/2022] [Indexed: 01/17/2023]
Abstract
NEW FINDINGS What is the central question of this study? Sodium-glucose cotransporter 2 (SGLT2) inhibitors reduce cardiovascular risk in patients with both diabetic and non-diabetic kidney disease: can SGLT2 inhibition improve renal pressure natriuresis (PN), an important mechanism for long-term blood pressure control, which is impaired in type 1 diabetes mellitus (T1DM)? What is the main finding and its importance? The SGLT2 inhibitor dapagliflozin did not enhance the acute in vivo PN response in either healthy or T1DM Sprague-Dawley rats. The data suggest that the mechanism underpinning the clinical benefits of SGLT2 inhibitors on health is unlikely to be due to an enhanced natriuretic response to increased blood pressure. ABSTRACT Type 1 diabetes mellitus (T1DM) leads to serious complications including premature cardiovascular and kidney disease. Hypertension contributes importantly to these adverse outcomes. The renal pressure natriuresis (PN) response, a key regulator of blood pressure (BP), is impaired in rats with T1DM as tubular sodium reabsorption fails to down-regulate with increasing BP. We hypothesised that sodium-glucose cotransporter 2 (SGLT2) inhibitors, which reduce cardiovascular risk in kidney disease, would augment the PN response in T1DM rats. Non-diabetic or T1DM (35-50 mg/kg streptozotocin i.p.) adult male Sprague-Dawley rats were anaesthetised (thiopental 50 mg/kg i.p.) and randomised to receive either dapagliflozin (1 mg/kg i.v.) or vehicle. Baseline sodium excretion was measured and then BP was increased by sequential arterial ligations to induce the PN response. In non-diabetic animals, the natriuretic and diuretic responses to increasing BP were not augmented by dapagliflozin. Dapagliflozin induced glycosuria, but this was not influenced by BP. In T1DM rats the PN response was impaired. Dapagliflozin again increased urinary glucose excretion but did not enhance PN. Inhibition of SGLT2 does not enhance the PN response in rats, either with or without T1DM. SGLT2 makes only a minor contribution to tubular sodium reabsorption and does not contribute to the impaired PN response in T1DM.
Collapse
Affiliation(s)
- Natalie K. Jones
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Hannah M. Costello
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | | | - Kevin Stewart
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - David Binnie
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Joanne Marks
- Department of NeurosciencePhysiology and Pharmacology, Royal Free CampusUniversity College LondonLondonUK
| | - Matthew A. Bailey
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| | - Geoffrey J. Culshaw
- British Heart Foundation Centre for Cardiovascular ScienceUniversity of EdinburghEdinburghUK
| |
Collapse
|
16
|
Feng B, Yang F, Liu J, Sun Q, Meng R, Zhu D. Amelioration of diabetic kidney injury with dapagliflozin is associated with suppressing renal HMGB1 expression and restoring autophagy in obese mice. J Diabetes Complications 2023; 37:108409. [PMID: 36731146 DOI: 10.1016/j.jdiacomp.2023.108409] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 01/12/2023] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Diabetic kidney disease (DKD) is a major cause of chronic and end-stage renal disease in diabetic patients. Here, we investigated protective effects and possible mechanisms of dapagliflozin on renal injury in diabetic mice. DKD mice were established by high fat diet (HFD) feeding. Half of DKD mice were randomly assigned to receive dapagliflozin treatment (200 μg/day) for 8 weeks. Renal lipid droplets, fibrosis, oxidative and endoplasmic reticulum stress were evaluated. Glomerular injury was assessed by immunohistochemistry and transmission electron microscopy. Dapagliflozin led to marked inhibition of ROS levels and endoplasmic reticulum stress in diabetic mice. HFD-induced loss of Podocin and Nephrin, and impaired podocytes were also improved with the treatment. Importantly, overexpression of HMGB1 and suppressed autophagy in the kidney were partly reversed by dapagliflozin. Therefore, we speculate that protective effects of dapagliflozin on DKD may be associated with suppression of HMGB1 expression and restoration of autophagy in the kidney.
Collapse
Affiliation(s)
- Bin Feng
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Fan Yang
- Department of Endocrinology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Jie Liu
- Department of Endocrinology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Qichao Sun
- Department of Endocrinology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Ran Meng
- Department of Endocrinology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China.
| | - Dalong Zhu
- Department of Endocrinology, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China.
| |
Collapse
|
17
|
Thongnak L, Jaruan O, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Jaikumkao K, Sriyotai W, Mahatheeranont S, Lungkaphin A. Resistant starch from black rice, Oryza sativa L. var. ameliorates renal inflammation, fibrosis and injury in insulin resistant rats. Phytother Res 2023; 37:935-948. [PMID: 36379906 DOI: 10.1002/ptr.7675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022]
Abstract
It has recently been reported that black rice (BR) extract has anti-obesity, anti-diabetic, and anti-osteoporosis effects. It has been shown to reduce obese-related kidney dysfunction in animal models. This study aimed to investigate the effect of resistant starch from BR (RS) on renal inflammation, oxidative stress, and apoptosis in obese insulin resistant rats. Male Wistar rats were divided into six groups: normal diet (ND), ND treated with 150 mg of RS (NDRS150), high-fat (HF) diet, HF treated with 100 and 150 mg of RS (HFRS100), (HFRS150), and HF treated with metformin as a positive control. Insulin resistance was shown in the HF rats by glucose intolerance, increased insulin, total area under the curve of glucose and homeostasis model assessment of insulin resistance and dyslipidemia. The resulting metabolic disturbance in the HF rats caused renal inflammation, fibrosis and apoptosis progressing to kidney injury and dysfunction. Prebiotic RS including anthocyanin from BR at doses of 100 and 150 mg ameliorated insulin resistance, dyslipidemia and liver injury. Treatment with RS reduced TGF-β fibrotic and apoptotic pathways by inhibition of NF-κB and inflammatory cytokines which potentially restore kidney damage and dysfunction. In conclusion, prebiotic RS from BR ameliorated obesity induced renal injury and dysfunction by attenuating inflammatory, fibrotic, and apoptotic pathways in insulin resistant rats induced by HF.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Onanong Jaruan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nattavadee Pengrattanachot
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Woraprapa Sriyotai
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Sugunya Mahatheeranont
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence for Innovation in Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Renal Transporters and Molecular Signaling Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Foods for Health and Disease, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
18
|
Afsar B, Afsar RE. Sodium-glucose cotransporter inhibitors and kidney fibrosis: review of the current evidence and related mechanisms. Pharmacol Rep 2023; 75:44-68. [PMID: 36534320 DOI: 10.1007/s43440-022-00442-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Sodium-glucose cotransporter inhibitors (SGLT2i) are a new class of anti-diabetic drugs that have beneficial cardiovascular and renal effects. These drugs decrease proximal tubular glucose reabsorption and decrease blood glucose levels as a main anti-diabetic action. Furthermore, SGLT2i decreases glomerular hyperfiltration by a tubuloglomerular feedback mechanism. However, the renal benefits of these agents are independent of glucose-lowering and hemodynamic factors, and SGLT2i also impacts the kidney structure including kidney fibrosis. Renal fibrosis is a common pathway and pathological marker of virtually every type of chronic kidney disease (CKD), and amelioration of renal fibrosis is of utmost importance to reduce the progression of CKD. Recent studies have shown that SGLT2i impact many cellular processes including inflammation, hypoxia, oxidative stress, metabolic functions, and renin-angiotensin system (RAS) which all are related with kidney fibrosis. Indeed, most but not all studies showed that renal fibrosis was ameliorated by SGLT2i through the reduction of inflammation, hypoxia, oxidative stress, and RAS activation. In addition, less known effects on SGLT2i on klotho expression, capillary rarefaction, signal transducer and activator of transcription signaling and peptidylprolyl cis/trans isomerase (Pin1) levels may partly explain the anti-fibrotic effects of SGLT2i in kidneys. It is important to remember that some studies have not shown any beneficial effects of SGLT2i on kidney fibrosis. Given this background, in the current review, we have summarized the studies and pathophysiologic aspects of SGL2 inhibition on renal fibrosis in various CKD models and tried to explain the potential reasons for contrasting findings.
Collapse
Affiliation(s)
- Baris Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Rengin Elsurer Afsar
- Department of Nephrology, School of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
19
|
Urbanek K, Cappetta D, Bellocchio G, Coppola MA, Imbrici P, Telesca M, Donniacuo M, Riemma MA, Mele E, Cianflone E, Naviglio S, Conte E, Camerino GM, Mele M, Bucci M, Castaldo G, De Luca A, Rossi F, Berrino L, Liantonio A, De Angelis A. Dapagliflozin protects the kidney in a non-diabetic model of cardiorenal syndrome. Pharmacol Res 2023; 188:106659. [PMID: 36646190 DOI: 10.1016/j.phrs.2023.106659] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
Cardiorenal syndrome encompasses a spectrum of disorders involving heart and kidney dysfunction, and sharing common risk factors, such as hypertension and diabetes. Clinical studies have shown that patients with and without diabetes may benefit from using sodium-glucose cotransporter 2 inhibitors to reduce the risk of heart failure and ameliorate renal endpoints. Because the underlying mechanisms remain elusive, we investigated the effects of dapagliflozin on the progression of renal damage, using a model of non-diabetic cardiorenal disease. Dahl salt-sensitive rats were fed a high-salt diet for five weeks and then randomized to dapagliflozin or vehicle for the following six weeks. After treatment with dapagliflozin, renal function resulted ameliorated as shown by decrease of albuminuria and urine albumin-to-creatinine ratio. Functional benefit was accompanied by a decreased accumulation of extracellular matrix and a reduced number of sclerotic glomeruli. Dapagliflozin significantly reduced expression of inflammatory and endothelial activation markers such as NF-κB and e-selectin. Upregulation of pro-oxidant-releasing NADPH oxidases 2 and 4 as well as downregulation of antioxidant enzymes were also counteracted by drug treatment. Our findings also evidenced the modulation of both classic and non-classic renin-angiotensin-aldosterone system (RAAS), and effects of dapagliflozin on gene expression of ion channels/transporters involved in renal homeostasis. Thus, in a non-diabetic model of cardiorenal syndrome, dapagliflozin provides renal protection by modulating inflammatory response, endothelial activation, fibrosis, oxidative stress, local RAAS and ion channels.
Collapse
Affiliation(s)
- Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy; Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Lecce-Monteroni, Monteroni di Lecce, 73047 Lecce, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Coppola
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Silvio Naviglio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Elena Conte
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Giulia Maria Camerino
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Marco Mele
- University Hospital Policlinico Riuniti, Viale Pinto 1, 71100 Foggia, Italy
| | - Mariarosaria Bucci
- Department of Pharmacy, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Via A. Pansini 5, 80131 Naples, Italy; CEINGE-Advanced Biotechnologies, Via G. Salvatore 486, 80131 Naples, Italy
| | - Annamaria De Luca
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy
| | - Antonella Liantonio
- Department of Pharmacy-Drug Sciences, University of Bari "Aldo Moro", Via Orabona 4, 70125 Bari, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Via Costantinopoli 16, 80138 Naples, Italy.
| |
Collapse
|
20
|
Han YP, Liu LJ, Yan JL, Chen MY, Meng XF, Zhou XR, Qian LB. Autophagy and its therapeutic potential in diabetic nephropathy. Front Endocrinol (Lausanne) 2023; 14:1139444. [PMID: 37020591 PMCID: PMC10067862 DOI: 10.3389/fendo.2023.1139444] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
Diabetic nephropathy (DN), the leading cause of end-stage renal disease, is the most significant microvascular complication of diabetes and poses a severe public health concern due to a lack of effective clinical treatments. Autophagy is a lysosomal process that degrades damaged proteins and organelles to preserve cellular homeostasis. Emerging studies have shown that disorder in autophagy results in the accumulation of damaged proteins and organelles in diabetic renal cells and promotes the development of DN. Autophagy is regulated by nutrient-sensing pathways including AMPK, mTOR, and Sirt1, and several intracellular stress signaling pathways such as oxidative stress and endoplasmic reticulum stress. An abnormal nutritional status and excess cellular stresses caused by diabetes-related metabolic disorders disturb the autophagic flux, leading to cellular dysfunction and DN. Here, we summarized the role of autophagy in DN focusing on signaling pathways to modulate autophagy and therapeutic interferences of autophagy in DN.
Collapse
Affiliation(s)
- Yu-Peng Han
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Li-Juan Liu
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jia-Lin Yan
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Meng-Yuan Chen
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiang-Fei Meng
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xin-Ru Zhou
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ling-Bo Qian
- School of Basic Medical Sciences & Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
21
|
Sun X, Wang G. Renal outcomes with sodium-glucose cotransporters 2 inhibitors. Front Endocrinol (Lausanne) 2022; 13:1063341. [PMID: 36531469 PMCID: PMC9752889 DOI: 10.3389/fendo.2022.1063341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most serious complications of diabetes. Therefore, delaying and preventing the progression of DN becomes an important goal in the clinical treatment of type 2 diabetes mellitus. Recent studies confirm that sodium-glucose cotransporters 2 inhibitors (SGLT2is) have been regarded as effective glucose-lowering drugs with renal protective effect. In this review, we summarize in detail the present knowledge of the effects of SGLT2is on renal outcomes by analyzing the experimental data in preclinical study, the effects of SGLT2is on estimated glomerular flitration rates (eGFRs) and urinary albumin-creatinine ratios (UACRs) from clinical trials and observational studies, and renal events (such as renal death or renal failure requiring renal replacement therapy) in some large prospective cardiovaslucar outcomes trials. The underlying mechanisms for renoprotective activity of SGLT2is have been demondtrated in multiple diabetic and nondiabetic animal models including kidney-specific effects and secondary kidney effects related to amelioration in blood glucose and blood pressure. In conclusion, these promising results show that SGLT2is act beneficially in terms of the kidney for diabetic patients.
Collapse
Affiliation(s)
| | - Guohong Wang
- Department of Geriatrics, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Lee H, Kim H, Jeon JS, Noh H, Park R, Byun DW, Kim HJ, Suh K, Park HK, Kwon SH. Empagliflozin suppresses urinary mitochondrial DNA copy numbers and interleukin-1β in type 2 diabetes patients. Sci Rep 2022; 12:19103. [PMID: 36351983 PMCID: PMC9646895 DOI: 10.1038/s41598-022-22083-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors improve cardiovascular and renal outcomes in type 2 diabetes mellitus (T2DM) patients. However, the mechanisms by which SGLT2 inhibitors improve the clinical outcomes remain elusive. We evaluated whether empagliflozin, an SGLT2 inhibitor, ameliorates mitochondrial dysfunction and inflammatory milieu of the kidneys in T2DM patients. We prospectively measured copy numbers of urinary and serum mitochondrial DNA (mtDNA) nicotinamide adenine dinucleotide dehydrogenase subunit-1 (mtND-1) and cytochrome-c oxidase 3 (mtCOX-3) and urinary interleukin-1β (IL-1β) in healthy volunteers (n = 22), in SGLT2 inhibitor-naïve T2DM patients (n = 21) at baseline, and in T2DM patients after 3 months of treatment with empagliflozin (10 mg, n = 17 or 25 mg, n = 4). Both urinary mtDNA copy numbers and IL-1β levels were higher in the T2DM group than in healthy volunteers. Baseline copy numbers of serum mtCOX-3 in the T2DM group were lower than those in healthy volunteers. Empagliflozin induced marked reduction in both urinary and serum mtND-1 and mtCOX-3 copy numbers, as well as in urinary IL-1β. Empagliflozin could attenuate mitochondrial damage and inhibit inflammatory response in T2DM patients. This would explain the beneficial effects of SGLT2 inhibitors on cardiovascular and renal outcomes.
Collapse
Affiliation(s)
- Haekyung Lee
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyoungnae Kim
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Jin Seok Jeon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyunjin Noh
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Rojin Park
- grid.412678.e0000 0004 0634 1623Department of Laboratory Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Dong Won Byun
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hye Jeong Kim
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Kyoil Suh
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Hyeong Kyu Park
- grid.412678.e0000 0004 0634 1623Division of Endocrinology and Metabolism, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| | - Soon Hyo Kwon
- grid.412678.e0000 0004 0634 1623Division of Nephrology, Department of Internal Medicine, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea ,grid.412678.e0000 0004 0634 1623Hyonam Kidney Laboratory, Soonchunhyang University Seoul Hospital, 59 Daesagwan-ro, Yongsan-gu, Seoul, 04401 Republic of Korea
| |
Collapse
|
23
|
Tang Y, Zhou X, Cao T, Chen E, Li Y, Lei W, Hu Y, He B, Liu S. Endoplasmic Reticulum Stress and Oxidative Stress in Inflammatory Diseases. DNA Cell Biol 2022; 41:924-934. [DOI: 10.1089/dna.2022.0353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Yun Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xiangping Zhou
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ting Cao
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - En Chen
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yumeng Li
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Wenbo Lei
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yibao Hu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Bisha He
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Shuangquan Liu
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
24
|
Investigation into the effect and mechanism of dapagliflozin against renal interstitial fibrosis based on transcriptome and network pharmacology. Int Immunopharmacol 2022; 112:109195. [PMID: 36070627 DOI: 10.1016/j.intimp.2022.109195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Renal interstitial fibrosis (RIF) is the final pathway for chronic kidney diseases (CKD) to end-stage renal disease (ESRD). Dapagliflozin, a selective inhibitor of the sodium glucose co-transporter 2, reduced the risk of renal events in non-diabetic CKD patients in the DAPA-CKD trial. However, the effect and mechanism of dapagliflozin on RIF are not very clear. Currently, we evaluate the effects of dapagliflozin on RIF and systematically explore its mechanism. METHODS AND RESULTS Firstly, unilateral ureteral obstruction (UUO) mouse model was established to evaluate effects of dapagliflozin on RIF, and results demonstrated dapagliflozin improved renal function and RIF of UUO mice independent of blood glucose control. Subsequently, transcriptome analysis was performed to explore the potential mechanism of dapagliflozin against RIF, which exhibited the therapeutic effect of dapagliflozin on RIF may be achieved through multiple pathways regulation. Then we verified the potential mechanisms with molecular biology methods, and found that dapagliflozin treatment significantly alleviated inflammation, apoptosis, oxidative stress and mitochondrial injury in kidneys of UUO mice. Furthermore, network pharmacology analysis was used to investigate the potential targets of dapagliflozin against RIF. Moreover, we also applied molecular docking and molecular dynamics simulation to predict the specific binding sites and binding capacity of dapagliflozin and hub target. CONCLUSIONS Dapagliflozin had therapeutic effect on RIF independent of blood glucose control, and the protective effects probably mediated by multiple pathways and targets regulation.
Collapse
|
25
|
KHAKDE S, JAWAID H, YASMIN F, BINTE ALI M, REHMAN A. Is there a paradigm shift in preventing diabetic heart failure? A review of SGLT2 inhibitors. Minerva Endocrinol (Torino) 2022; 47:344-357. [DOI: 10.23736/s2724-6507.20.03221-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Sutthasupha P, Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Jaruan O, Jaikumkao K, Muanprasat C, Pichyangkura R, Chatsudthipong V, Lungkaphin A. Chitosan oligosaccharide mitigates kidney injury in prediabetic rats by improving intestinal barrier and renal autophagy. Carbohydr Polym 2022; 288:119405. [PMID: 35450657 DOI: 10.1016/j.carbpol.2022.119405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/09/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022]
Abstract
Consumption of a high-fat diet (HFD) not only increases the risk of metabolic syndrome but also initiates kidney injury. Lipid accumulation-induced systemic low-grade inflammation is an upstream mechanism of kidney injury associated with prediabetes. Chitosan oligosaccharide (COS) provides potent anti-obesity effects through several mechanisms including fecal lipid excretion. In this study, we investigated the effects of COS on the prevention of obesity-related complications and its ability to confer renoprotection in a prediabetic model. Rats fed on a HFD developed obesity, glucose intolerance and kidney dysfunction. COS intervention successfully ameliorated these conditions (p < 0.05) by attenuating intestinal lipid absorption and the renal inflammation-autophagy-apoptosis axis. A novel anti-inflammatory effect of COS had been demonstrated by the strengthening of intestinal barrier integrity via calcium-sensing receptor (p < 0.05). The use of COS as a supplement may be useful in reducing prediabetic complications especially renal injury and the risk of type 2 diabetes.
Collapse
Affiliation(s)
- Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Onanong Jaruan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Muanprasat
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
| | - Rath Pichyangkura
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
27
|
Ren FF, Xie ZY, Jiang YN, Guan X, Chen QY, Lai TF, Li L. Dapagliflozin attenuates pressure overload-induced myocardial remodeling in mice via activating SIRT1 and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2022; 43:1721-1732. [PMID: 34853445 PMCID: PMC9253115 DOI: 10.1038/s41401-021-00805-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/26/2021] [Indexed: 12/30/2022] Open
Abstract
Endoplasmic reticulum stress-mediated apoptosis plays a vital role in the occurrence and development of heart failure. Dapagliflozin (DAPA), a new type of sodium-glucose cotransporter 2 (SGLT2) inhibitor, is an oral hypoglycemic drug that reduces glucose reabsorption by the kidneys and increases glucose excretion in the urine. Studies have shown that DAPA may have the potential to treat heart failure in addition to controlling blood sugar. This study explored the effect of DAPA on endoplasmic reticulum stress-related apoptosis caused by heart failure. In vitro, we found that DAPA inhibited the expression of cleaved caspase 3, Bax, C/EBP homologous protein (CHOP), and glucose-regulated protein78 (GRP78) and upregulated the cardiomyoprotective protein Bcl-2 in angiotensin II (Ang II)-treated cardiomyocytes. In addition, DAPA promoted the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and suppressed the expression of activating transcription factor 4 (ATF4) and the ratios p-PERK/PERK and p-eIF2α/eIF2α. Notably, the therapeutic effect of DAPA was weakened by pretreatment with the SIRT1 inhibitor EX527 (10 μM). Simultaneous administration of DAPA inhibited the Ang II-induced transformation of fibroblasts into myofibroblasts and inhibited fibroblast migration. In summary, our present findings first indicate that DAPA could inhibit the PERK-eIF2α-CHOP axis of the ER stress response through the activation of SIRT1 in Ang II-treated cardiomyocytes and ameliorate heart failure development in vivo.
Collapse
Affiliation(s)
- Fang-fang Ren
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Zuo-yi Xie
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Yi-na Jiang
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Xuan Guan
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Qiao-ying Chen
- grid.417384.d0000 0004 1764 2632Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027 China
| | - Teng-fang Lai
- grid.460081.bDepartment of Cardiology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 533000 China
| | - Lei Li
- Department of Cardiology, Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
28
|
Oe Y, Vallon V. The Pathophysiological Basis of Diabetic Kidney Protection by Inhibition of SGLT2 and SGLT1. KIDNEY AND DIALYSIS 2022; 2:349-368. [PMID: 36380914 PMCID: PMC9648862 DOI: 10.3390/kidneydial2020032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
SGLT2 inhibitors can protect the kidneys of patients with and without type 2 diabetes mellitus and slow the progression towards end-stage kidney disease. Blocking tubular SGLT2 and spilling glucose into the urine, which triggers a metabolic counter-regulation similar to fasting, provides unique benefits, not only as an anti-hyperglycemic strategy. These include a low hypoglycemia risk and a shift from carbohydrate to lipid utilization and mild ketogenesis, thereby reducing body weight and providing an additional energy source. SGLT2 inhibitors counteract hyperreabsorption in the early proximal tubule, which acutely lowers glomerular pressure and filtration and thereby reduces the physical stress on the filtration barrier, the filtration of tubule-toxic compounds, and the oxygen demand for tubular reabsorption. This improves cortical oxygenation, which, together with lesser tubular gluco-toxicity and improved mitochondrial function and autophagy, can reduce pro-inflammatory, pro-senescence, and pro-fibrotic signaling and preserve tubular function and GFR in the long-term. By shifting transport downstream, SGLT2 inhibitors more equally distribute the transport burden along the nephron and may mimic systemic hypoxia to stimulate erythropoiesis, which improves oxygen delivery to the kidney and other organs. SGLT1 inhibition improves glucose homeostasis by delaying intestinal glucose absorption and by increasing the release of gastrointestinal incretins. Combined SGLT1 and SGLT2 inhibition has additive effects on renal glucose excretion and blood glucose control. SGLT1 in the macula densa senses luminal glucose, which affects glomerular hemodynamics and has implications for blood pressure control. More studies are needed to better define the therapeutic potential of SGLT1 inhibition to protect the kidney, alone or in combination with SGLT2 inhibition.
Collapse
Affiliation(s)
- Yuji Oe
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Volker Vallon
- Division of Nephrology and Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA 92161, USA
- VA San Diego Healthcare System, San Diego, CA 92161, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA 92161, USA
| |
Collapse
|
29
|
Wang A, Li Z, Zhuo S, Gao F, Zhang H, Zhang Z, Ren G, Ma X. Mechanisms of Cardiorenal Protection With SGLT2 Inhibitors in Patients With T2DM Based on Network Pharmacology. Front Cardiovasc Med 2022; 9:857952. [PMID: 35677689 PMCID: PMC9169967 DOI: 10.3389/fcvm.2022.857952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/04/2022] [Indexed: 11/24/2022] Open
Abstract
Purpose Sodium-glucose cotransporter 2 (SGLT2) inhibitors have cardiorenal protective effects regardless of whether they are combined with type 2 diabetes mellitus, but their specific pharmacological mechanisms remain undetermined. Materials and Methods We used databases to obtain information on the disease targets of “Chronic Kidney Disease,” “Heart Failure,” and “Type 2 Diabetes Mellitus” as well as the targets of SGLT2 inhibitors. After screening the common targets, we used Cytoscape 3.8.2 software to construct SGLT2 inhibitors' regulatory network and protein-protein interaction network. The clusterProfiler R package was used to perform gene ontology functional analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analyses on the target genes. Molecular docking was utilized to verify the relationship between SGLT2 inhibitors and core targets. Results Seven different SGLT2 inhibitors were found to have cardiorenal protective effects on 146 targets. The main mechanisms of action may be associated with lipid and atherosclerosis, MAPK signaling pathway, Rap1 signaling pathway, endocrine resistance, fluid shear stress, atherosclerosis, TNF signaling pathway, relaxin signaling pathway, neurotrophin signaling pathway, and AGEs-RAGE signaling pathway in diabetic complications were related. Docking of SGLT2 inhibitors with key targets such as GAPDH, MAPK3, MMP9, MAPK1, and NRAS revealed that these compounds bind to proteins spontaneously. Conclusion Based on pharmacological networks, this study elucidates the potential mechanisms of action of SGLT2 inhibitors from a systemic and holistic perspective. These key targets and pathways will provide new ideas for future studies on the pharmacological mechanisms of cardiorenal protection by SGLT2 inhibitors.
Collapse
Affiliation(s)
- Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhendong Li
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Sun Zhuo
- Qingdao West Coast New Area People's Hospital, Qingdao, China
| | - Feng Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongwei Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Gaocan Ren
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
- *Correspondence: Xiaochang Ma
| |
Collapse
|
30
|
Promsan S, Thongnak L, Pengrattanachot N, Phengpol N, Sutthasupha P, Lungkaphin A. Agomelatine, a structural analog of melatonin, improves kidney dysfunction through regulating the AMPK/mTOR signaling pathway to promote autophagy in obese rats. Food Chem Toxicol 2022; 165:113190. [DOI: 10.1016/j.fct.2022.113190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
|
31
|
Deng J, Zheng C, Hua Z, Ci H, Wang G, Chen L. Diosmin mitigates high glucose-induced endoplasmic reticulum stress through PI3K/AKT pathway in HK-2 cells. BMC Complement Med Ther 2022; 22:116. [PMID: 35477428 PMCID: PMC9044681 DOI: 10.1186/s12906-022-03597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diosmin has been reported to treat diabetes, but its role in diabetic nephropathy (DN) remains unclear. This research investigated the mechanism by which diosmin alleviated high glucose (HG)-induced HK-2 cell injury. METHODS First, we used CCK-8 to detect the effect of 0.1, 1, or 10 μg/mL diosmin on the viability of HK-2 cells treated with normal glucose or HG. Next, we used flow cytometry, automatic biochemical analyzer, ELISA, immunofluorescence, and colorimetric assay kit to examine the apoptosis, oxidative stress, inflammatory factors, and Caspase-3 expression in HK-2 cells. Thereafter, we used the western blot and qRT-PCR to examine the expression of the endoplasmic reticulum stress-, oxidative stress-, inflammation-, apoptosis-, and autophagy, and PI3K/AKT pathway-related factors. RESULTS Diosmin was non-cytotoxic to normal HK-2 cells and enhanced the HK-2 cell viability suppressed by HG. Meanwhile, diosmin restrained apoptosis, the contents of MDA, pro-inflammatory factors, and Caspase-3 but intensified the contents of SOD and CAT induced by HG. We further confirmed that diosmin blunted oxidative stress-, inflammation-, apoptosis-, and autophagy-related factors expression induced by HG via restraining the CHOP and GRP78 expressions. Further, we also discovered that PTEN level was restrained and the ratios of p-PI3K/PI3K and p-AKT/AKT were enhanced in HK-2 cells induced by HG, which was reversed by co-treatment of HG and diosmin. CONCLUSIONS Our study manifested that diosmin alleviated the HG-mediated endoplasmic reticulum stress injury in HK-2 cells via restraining the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Jiuhong Deng
- Wenzhou Medical University, Chashan Higher Education Park, Wenzhou City, 325035, Zhejiang Province, China.,Department of Endocrinology, Second People's Hospital of Pingyang County, Wenzhou City, 325405, Zhejiang Province, China
| | - Chao Zheng
- Wenzhou Medical University, Chashan Higher Education Park, Wenzhou City, 325035, Zhejiang Province, China. .,The Second Affiliated Hospital Zhejiang University, School of Medicine, Jiefang Road 88, Shangcheng District, Hangzhou City, 310009, Zhejiang Province, China.
| | - Zhou Hua
- Department of Nephrology, The Poeple' s Hospital of Suichang County, Lishui City, 323300, Zhejiang Province, China
| | - Haideng Ci
- Department of Endocrinology and Nephrology, Jiande Hospital of Traditional Chinese Medicine, Hangzhou City, 311600, Zhejiang Province, China
| | - Guiying Wang
- Shangyu People's Hospital of Shaoxing, Shaoxing City, 312300, Zhejiang Province, China
| | - Lijing Chen
- Department of Nephrology, Huzhou Central Hospital; Affiliated Central Hospital of Huzhou University; Affiliated Huzhou Hospital; Zhejiang University School of Medicine, Huzhou City, 313000, Zhejiang Province, China
| |
Collapse
|
32
|
Salvatore T, Galiero R, Caturano A, Rinaldi L, Di Martino A, Albanese G, Di Salvo J, Epifani R, Marfella R, Docimo G, Lettieri M, Sardu C, Sasso FC. An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. Int J Mol Sci 2022; 23:3651. [PMID: 35409011 PMCID: PMC8998569 DOI: 10.3390/ijms23073651] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Sodium-glucose co-transporter 2 (SGLT2) inhibitors block glucose reabsorption in the renal proximal tubule, an insulin-independent mechanism that plays a critical role in glycemic regulation in diabetes. In addition to their glucose-lowering effects, SGLT2 inhibitors prevent both renal damage and the onset of chronic kidney disease and cardiovascular events, in particular heart failure with both reduced and preserved ejection fraction. These unexpected benefits prompted changes in treatment guidelines and scientific interest in the underlying mechanisms. Aside from the target effects of SGLT2 inhibition, a wide spectrum of beneficial actions is described for the kidney and the heart, even though the cardiac tissue does not express SGLT2 channels. Correction of cardiorenal risk factors, metabolic adjustments ameliorating myocardial substrate utilization, and optimization of ventricular loading conditions through effects on diuresis, natriuresis, and vascular function appear to be the main underlying mechanisms for the observed cardiorenal protection. Additional clinical advantages associated with using SGLT2 inhibitors are antifibrotic effects due to correction of inflammation and oxidative stress, modulation of mitochondrial function, and autophagy. Much research is required to understand the numerous and complex pathways involved in SGLT2 inhibition. This review summarizes the current known mechanisms of SGLT2-mediated cardiorenal protection.
Collapse
Affiliation(s)
- Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Anna Di Martino
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Gaetana Albanese
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Jessica Di Salvo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaella Epifani
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
- Mediterrannea Cardiocentro, 80122 Napoli, Italy
| | - Giovanni Docimo
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Miriam Lettieri
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, 3.31 Core Technology Facility, 46 Grafton Street, Manchester M13 9NT, UK
| | - Celestino Sardu
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy
| |
Collapse
|
33
|
Hu Y, Xu Q, Li H, Meng Z, Hao M, Ma X, Lin W, Kuang H. Dapagliflozin Reduces Apoptosis of Diabetic Retina and Human Retinal Microvascular Endothelial Cells Through ERK1/2/cPLA2/AA/ROS Pathway Independent of Hypoglycemic. Front Pharmacol 2022; 13:827896. [PMID: 35281932 PMCID: PMC8908030 DOI: 10.3389/fphar.2022.827896] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/04/2022] [Indexed: 12/20/2022] Open
Abstract
Introduction: It is known that the metabolic disorder caused by high glucose is one of pathogenesis in diabetic retinopathy (DR), the leading cause of blindness, due to the main pathological change of apoptosis of endothelial cells (ECs). In previous studies, the potential impact of sodium glucose cotransporter-2 (SGLT-2), whose inhibitors slow the progression of DR, has not been elucidated. The purpose of the presented study was to explore the effect of SGLT-2 inhibitors dapagliflozin (DAPA) on apoptosis of diabetic mice retina and human retinal microvascular endothelial cells (HRMECs), examine the effects of dapagliflozin on HRMECs metabolism, and explore the molecular processes that affect DR. Methods and Results: The eyeballs of male streptozotocin (STZ)-induced diabetic C57BL/6N mice were evaluated. C57BL/6N mice were divided into control group (CON), diabetic untreated group (DM), diabetic dapagliflozin treatment group (DM + DAPA) and diabetic insulin treatment group (DM + INS). Hematoxylin-Eosin (HE) staining was performed to observe the pathological structure of the mice retina, and TUNEL staining to detect apoptosis of mice retinal cells. In vitro, DCFH-DA and western blot (WB) were used to evaluate ROS, Bcl-2, BAX, cleaved-caspase 3 in HRMECs and metabolomics detected the effect of dapagliflozin on the metabolism of HRMECs. And then, we performed correlation analysis and verification functions for significantly different metabolites. In vivo, dapagliflozin reduced the apoptosis of diabetic mice retina independently of hypoglycemic. In vitro, SGLT-2 protein was expressed on HRMECs. Dapagliflozin reduced the level of ROS caused by high glucose, decreased the expression of cleaved-caspase3 and the ratio of BAX/Bcl-2. Metabolomics results showed that dapagliflozin did not affect the intracellular glucose level. Compared with the high glucose group, dapagliflozin reduced the production of arachidonic acid (AA) and inhibited the phosphorylation of ERK1/2, therefore, reducing the phosphorylation of cPLA2, which is a key enzyme for arachidonic acid release. Conclusion: Collectively, results unearthed for the first time that dapagliflozin reduced apoptosis of retina induced by DM whether in vivo or in vitro. Dapagliflozin did not affect the glucose uptake while mitigated intracellular arachidonic acid in HRMECs. Dapagliflozin alleviated HRMECs apoptosis induced by high glucose through ERK/1/2/cPLA2/AA/ROS pathway.
Collapse
Affiliation(s)
- Yuxin Hu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qian Xu
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongxue Li
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ziyu Meng
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ming Hao
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xuefei Ma
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenjian Lin
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- The Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
34
|
Zhang X, Wang T, Chen Z, Wang H, Yin Y, Wang L, Wang Y, Xu B, Xu W. HMGB1‐Promoted Neutrophil Extracellular Traps Contribute to Cardiac Diastolic Dysfunction in Mice. J Am Heart Assoc 2022; 11:e023800. [PMID: 35156391 PMCID: PMC9245819 DOI: 10.1161/jaha.121.023800] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) remains an increasing public health problem with substantial morbidity and mortality but with few effective treatments. A novel inflammatory mechanism has been proposed, but the inflammatory signals promoting the development of HFpEF remain greatly unknown. Methods and Results Serum of patients with HFpEF was collected for measurement of circulating neutrophils and markers of neutrophil extracellular traps (NETs). To induce HFpEF phenotype, male C57BL/6 mice underwent uninephrectomy, received a continuous infusion of d‐aldosterone for 4 weeks, and maintained on 1.0% sodium chloride drinking water. Heart tissues were harvested, immune cell types determined by flow cytometry, NETs formation by immunofluorescence, and western blotting. Differentiated neutrophils were cultured to investigate the effect of HMGB1 (high mobility group protein B1) and SGLT2 (sodium‐glucose cotransporter‐2) inhibitor on NETs formation in vitro. Circulating neutrophils and NETs markers are elevated in patients with HFpEF, as are cardiac neutrophils and NETs formation in HFpEF mice. NETs inhibition with deoxyribonuclease 1 in experimental HFpEF mice reduces heart macrophages infiltration and inflammation and ameliorates cardiac fibrosis and diastolic function. Damage‐associated molecular pattern HMGB1 expression is elevated in cardiac tissue of HFpEF mice, and HMGB1 inhibition reduces heart neutrophil infiltration and NETs formation and ameliorates diastolic function. Lastly, SGLT2 inhibitor empagliflozin down‐regulates heart HMGB1 expression, attenuates NETs formation and cardiac fibrosis, and improves diastolic function in HFpEF mice. Conclusions NETs contribute to the pathogenesis of HFpEF, which can be ameliorated by HMGB1 inhibition and SGLT2 inhibitors. Thus, HMGB1 and NETs may represent novel therapeutic targets for the treatment of HFpEF.
Collapse
Affiliation(s)
- Xin‐Lin Zhang
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| | - Ting‐Yu Wang
- Central for Translational Medicine Nanjing University School of Medicine Nanjing China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine Nanjing University School of Medicine Nanjing China
| | - Zheng Chen
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| | - Hong‐Wei Wang
- Central for Translational Medicine Nanjing University School of Medicine Nanjing China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine Nanjing University School of Medicine Nanjing China
| | - Yong Yin
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| | - Lian Wang
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| | - Yong Wang
- Central for Translational Medicine Nanjing University School of Medicine Nanjing China
- State Key Laboratory of Analytical Chemistry for Life Science & Jiangsu Key Laboratory of Molecular Medicine Nanjing University School of Medicine Nanjing China
| | - Biao Xu
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| | - Wei Xu
- Department of Cardiology Affiliated Drum Tower Hospital Nanjing University School of Medicine Nanjing China
| |
Collapse
|
35
|
Liu H, Wei P, Fu W, Xia C, Li Y, Tian K, Li Y, Cheng D, Sun J, Xu Y, Lu M, Xu B, Zhang Y, Wang R, Wang W, Xu B, Liu E, Zhao S. Dapagliflozin Ameliorates the Formation and Progression of Experimental Abdominal Aortic Aneurysms by Reducing Aortic Inflammation in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8502059. [PMID: 35126822 PMCID: PMC8816542 DOI: 10.1155/2022/8502059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Dapagliflozin, a sodium glucose transporter protein-2 (SGLT-2) inhibitor, reduces the risk for cardiovascular diseases. However, the influence of dapagliflozin on nondissecting abdominal aortic aneurysms (AAAs) remains unclear. METHODS AAAs were created in male C57BL/6 mice via intra-aortic porcine pancreatic elastase (PPE) infusion. Mice were daily treated with dapagliflozin (1 or 5 mg/kg body weight) or an equal volume of vehicle through oral gavage beginning one day prior to PPE infusion for 14 days. To investigate its translational value, dapagliflozin or vehicle was also administered to mice with existing AAAs in another cohort. Aortic diameters were measured prior to (day 0 for baseline) and 14 days after PPE infusion. After sacrifice, mice aortae were collected, and following histological analyses were performed. RESULTS Dapagliflozin treatment significantly reduced aneurysmal aortic expansion following PPE infusion as compared to vehicle treatment especially at 5 mg/kg body weight (approximately 21% and 33% decreases in 1 and 5 mg/kg treatment groups, respectively). The dose-dependent attenuation of AAAs by dapagliflozin was also confirmed on histological analyses. Dapagliflozin remarkably reduced aortic accumulation of macrophages, CD4+ T cells, and B cells particularly following dapagliflozin treatment at 5 mg/kg. Dapagliflozin treatment also markedly attenuated medial SMC loss. Though the difference was not significant, dapagliflozin treatment tended to attenuate CD8+ T cells and elastin degradation. Dapagliflozin treatment at 5 mg/kg caused a 53% reduction in neovessel density. Furthermore, dapagliflozin treatment mitigated further progress of existing AAAs. CONCLUSION Dapagliflozin treatment ameliorated PPE-induced AAAs by inhibiting aortic leukocytes infiltration and angiogenesis.
Collapse
Affiliation(s)
- Haole Liu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Panpan Wei
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weilai Fu
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Congcong Xia
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yankui Li
- Department of Vascular Surgery, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
| | - Kangli Tian
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yafeng Li
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Daxin Cheng
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Jiaying Sun
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Yangwei Xu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Ming Lu
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
| | - Boyu Xu
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Yali Zhang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Rong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Weirong Wang
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Baohui Xu
- Division of Vascular Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Enqi Liu
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Sihai Zhao
- Institute of Cardiovascular Science, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, China
- Laboratory Animal Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| |
Collapse
|
36
|
Park CH, Lee B, Han M, Rhee WJ, Kwak MS, Yoo TH, Shin JS. Canagliflozin protects against cisplatin-induced acute kidney injury by AMPK-mediated autophagy in renal proximal tubular cells. Cell Death Dis 2022; 8:12. [PMID: 35013111 PMCID: PMC8748642 DOI: 10.1038/s41420-021-00801-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/30/2021] [Accepted: 12/08/2021] [Indexed: 12/30/2022]
Abstract
Sodium-glucose cotransporter 2 inhibitors, which are recently introduced as glucose-lowering agents, improve cardiovascular and renal outcomes in patients with diabetes mellitus. These drugs also have beneficial effects in various kidney disease models. However, the effect of SGLT2 inhibitors on cisplatin-induced acute kidney injury (AKI) and their mechanism of action need to be elucidated. In this study, we investigated whether canagliflozin protects against cisplatin-induced AKI, depending on adenosine monophosphate-activated protein kinase (AMPK) activation and following induction of autophagy. In the experiments using the HK-2 cell line, cell viability assay and molecular analysis revealed that canagliflozin protected renal proximal tubular cells from cisplatin, whereas addition of chloroquine or compound C abolished the protective effect of canagliflozin. In the mouse model of cisplatin-induced AKI, canagliflozin protected mice from cisplatin-induced AKI. However, treatment with chloroquine or compound C in addition to administration of cisplatin and canagliflozin eliminated the protective effect of canagliflozin. Collectively, these findings indicate that canagliflozin protects against cisplatin-induced AKI by activating AMPK and autophagy in renal proximal tubular cells.
Collapse
Affiliation(s)
- Cheol Ho Park
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bin Lee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Myeonggil Han
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Woo Joong Rhee
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Man Sup Kwak
- grid.15444.300000 0004 0470 5454Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea ,grid.15444.300000 0004 0470 5454Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tae-Hyun Yoo
- grid.15444.300000 0004 0470 5454Department of Internal Medicine, Institute of Kidney Disease Research, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jeon-Soo Shin
- Department of Microbiology, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Brain Korea 21 FOUR Project for Medical Science, Yonsei University College of Medicine, Seoul, Republic of Korea. .,Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
37
|
Refaie MMM, Rifaai RA, Fawzy MA, Shehata S. Dapagliflozin Guards Against Cadmium-Induced Cardiotoxicity via Modulation of IL6/STAT3 and TLR2/TNFα Signaling Pathways. Cardiovasc Toxicol 2022; 22:916-928. [PMID: 36242756 PMCID: PMC9606062 DOI: 10.1007/s12012-022-09768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 10/06/2022] [Indexed: 11/15/2022]
Abstract
Cadmium (Cd) is a common environmental pollutant that leads to severe cardiotoxic hazards. Several studies were carried out to protect the myocardium against Cd-induced cardiotoxicity. Up till now, no researches evaluated the protective effect of dapagliflozin (DAP) against Cd induced cardiotoxicity. Thus, we aimed to explore the role of DAP in such model with deep studying of the involved mechanisms. 40 male Wistar albino rats were included in current study. Cd (5 mg/kg/day) was administered orally for 7 days to induce cardiotoxicity with or without co-administration of DAP in three different doses (2.5, 5, 10 mg/kg/day) orally for 7 days. Our data revealed that Cd could induce cardiotoxicity with significant increase in serum cardiac enzymes, heart weight, tissue malondialdehyde (MDA), tumor necrosis factor alpha (TNFα), nuclear factor kappa B (NFκB), toll like receptor2 (TLR2), interleukin 6 (IL6) and caspase3 immunoexpression with abnormal histopathological changes. In addition, Cd significantly decreased the level of heme oxygenase1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), signal transducer and activator of transcription (STAT3), reduced glutathione (GSH), glutathione peroxidase (GPx), and total antioxidant capacity (TAC). Co-administration of DAP could ameliorate Cd cardiotoxicity with significant improvement of the biochemical and histopathological changes. We found that DAP had protective properties against Cd induced cardiotoxicity and this may be due to its anti-oxidant, anti-inflammatory, anti-apoptotic properties and modulation of IL6/STAT3 and TLR2/TNFα-signaling pathways.
Collapse
Affiliation(s)
- Marwa M. M. Refaie
- grid.411806.a0000 0000 8999 4945Department of Pharmacology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Rehab Ahmed Rifaai
- grid.411806.a0000 0000 8999 4945Department of Histology and Cell Biology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| | - Michael Atef Fawzy
- grid.411806.a0000 0000 8999 4945Department of Biochemistry, Faculty of Pharmacy, Minia University, El-Minia, 61511 Egypt
| | - Sayed Shehata
- grid.411806.a0000 0000 8999 4945Department of Cardiology, Faculty of Medicine, Minia University, El-Minia, 61511 Egypt
| |
Collapse
|
38
|
ElMahdy MK, Antar SA, Elmahallawy EK, Abdo W, Hijazy HHA, Albrakati A, Khodir AE. A Novel Role of Dapagliflozin in Mitigation of Acetic Acid-Induced Ulcerative Colitis by Modulation of Monocyte Chemoattractant Protein 1 (MCP-1)/Nuclear Factor-Kappa B (NF-κB)/Interleukin-18 (IL-18). Biomedicines 2021; 10:40. [PMID: 35052720 PMCID: PMC8773032 DOI: 10.3390/biomedicines10010040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/31/2022] Open
Abstract
Colon illnesses, particularly ulcerative colitis, are considered a major cause of death in both men and women around the world. The present study investigated the underlying molecular mechanisms for the potential anti-inflammatory effect of Dapagliflozin (DAPA) against ulcerative colitis (UC) induced by intracolonic instillation of 3% v/v acetic acid (AA). DAPA was administered to rats (1 mg/kg, orally) for two weeks during the treatment regimen. Interestingly, compared to the normal group, a marked increase in the index of colon/body weight, colon weight/colon length ratio, serum lactate dehydrogenase (LDH), and C-reactive protein (CRP), besides decrease in the serum total antioxidant capacity (TAC), were reported in the AA control group (p ˂ 0.05). Elevation in colon monocyte chemoattractant protein (MCP1), Interleukin 18 (IL-18), and inflammasome contents were also reported in the AA control group in comparison with the normal group. In addition, colon-specimen immunohistochemical staining revealed increased expression of nuclear factor-kappa B (NF-κB) and Caspase-3 with histopathological changes. Moreover, DAPA significantly (p ˂ 0.05) reduced the colon/body weight index, colon weight/colon length ratio, clinical evaluation, and macroscopic scoring of UC, and preserved the histopathological architecture of tissues. The inflammatory biomarkers, including colon MCP1, IL-18, inflammasome, Caspase-3, and NF-κB, were suppressed following DAPA treatment and oxidants/antioxidants hemostasis was also restored. Collectively, the present data demonstrate that DAPA represents an attractive approach to ameliorating ulcerative colitis through inhibiting MCP1/NF-κB/IL-18 pathways, thus preserving colon function. Antioxidant, anti-inflammatory, and anti-apoptotic properties of DAPA are implicated in its observed therapeutic benefits.
Collapse
Affiliation(s)
- Mohamed Kh. ElMahdy
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| | - Samar A. Antar
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| | - Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Hayfa Hussin Ali Hijazy
- Department of Family Education, Faculty of Education, Umm Al-Qura University, Makka Al-Mukarama 21955, Saudi Arabia;
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed E. Khodir
- Department of Pharmacology, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt; (M.K.E.); (S.A.A.); (A.E.K.)
| |
Collapse
|
39
|
Thongnak L, Pengrattanachot N, Promsan S, Phengpol N, Sutthasupha P, Chatsudthipong V, Lungkaphin A. The combination of dapagliflozin and statins ameliorates renal injury through attenuating the activation of inflammasome-mediated autophagy in insulin-resistant rats. J Biochem Mol Toxicol 2021; 36:e22978. [PMID: 34939712 DOI: 10.1002/jbt.22978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 11/07/2022]
Abstract
Long-term use of a high-fat diet with high-fructose (HFF) intake could promote insulin resistance and induce lipid accumulation leading to kidney injury possibly via impairment of the autophagy process and enhancement of the inflammasome pathway. We investigated whether dapagliflozin as a monotherapy or combined with atorvastatin could restore kidney autophagy impairment and reduce inflammasome activation associated with kidney injury induced by HFF consumption. Male Wistar rats were given an HFF for 16 weeks and then treated with dapagliflozin with or without atorvastatin for 4 weeks. Impaired glucose tolerance, dyslipidemia, renal lipid accumulation along with impaired renal autophagy and activated inflammasome pathway promoted renal injury were exhibited in HFF rats. Dapagliflozin with or without atorvastatin treatment could partially restore disrupted metabolic parameters and reduce kidney injury. In particular, the combination treatment group showed significant amelioration of inflammasome activation and autophagy impairment. In conclusion, the combination therapy of dapagliflozin and atorvastatin has a positive effect on renal injury associated with autophagy and inflammasome activation induced by HFF in insulin-resistant rats. This study is the first report demonstrating the underlying mechanism associated with a combination treatment of dapagliflozin and atorvastatin on autophagy and inflammasome pathways in an insulin-resistant condition. Therefore, dapagliflozin in combination with atorvastatin may be a further preventive or therapeutic strategy for chronic kidney disease in an insulin-resistant or diabetic condition.
Collapse
Affiliation(s)
- Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nichakorn Phengpol
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Prempree Sutthasupha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Varanuj Chatsudthipong
- Research Center of Transport Protein for Medical Innovation, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Functional Food Research Center for Well-Being, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
40
|
Abstract
Sodium glucose cotransporter 2 (SGLT-2) inhibitors are the latest class of antidiabetic medications. They prevent glucose reabsorption in the proximal convoluted tubule to decrease blood sugar. Several animal studies revealed that SGLT-2 is profoundly involved in the inflammatory response, fibrogenesis, and regulation of numerous intracellular signaling pathways. Likewise, SGLT-2 inhibitors markedly attenuated inflammation and fibrogenesis and improved the function of damaged organ in animal studies, observational studies, and clinical trials. SGLT-2 inhibitors can decrease blood pressure and ameliorate hypertriglyceridemia and obesity. Likewise, they improve the outcome of cardiovascular diseases such as heart failure, arrhythmias, and ischemic heart disease. SGLT-2 inhibitors are associated with lower cardiovascular and all-cause mortality as well. Meanwhile, they protect against nonalcoholic fatty liver disease (NAFLD), chronic kidney disease, acute kidney injury, and improve micro- and macroalbuminuria. SGLT-2 inhibitors can reprogram numerous signaling pathways to improve NAFLD, cardiovascular diseases, and renal diseases. For instance, they enhance lipolysis, ketogenesis, mitochondrial biogenesis, and autophagy while they attenuate the renin-angiotensin-aldosterone system, lipogenesis, endoplasmic reticulum stress, oxidative stress, apoptosis, and fibrogenesis. This review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases and dissects the underlying molecular mechanisms in detail. This narrative review explains the beneficial effects of SGLT-2 inhibitors on NAFLD and cardiovascular and renal diseases using the results of latest observational studies, clinical trials, and meta-analyses. Thereafter, it dissects the underlying molecular mechanisms involved in the clinical effects of SGLT-2 inhibitors on these diseases.
Collapse
Affiliation(s)
- Moein Ala
- School of Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
41
|
Empagliflozin Ameliorates Free Fatty Acid Induced-Lipotoxicity in Renal Proximal Tubular Cells via the PPARγ/CD36 Pathway in Obese Mice. Int J Mol Sci 2021; 22:ijms222212408. [PMID: 34830289 PMCID: PMC8621539 DOI: 10.3390/ijms222212408] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
High serum levels of free fatty acids (FFAs) could contribute to obesity-induced nephropathy. CD36, a class B scavenger receptor, is a major receptor mediating FFA uptake in renal proximal tubular cells. Empagliflozin, a new anti-diabetic agent, is a specific inhibitor of sodium-glucose co-transporter 2 channels presented on renal proximal tubular cells and inhibits glucose reabsorption. In addition, empagliflozin has shown renoprotective effects. However, the mechanism through which empagliflozin regulates CD36 expression and attenuates FFA-induced lipotoxicity remains unclear. Herein, we aimed to elucidate the crosstalk between empagliflozin and CD36 in FFA-induced renal injury. C57BL/6 mice fed a high-fat diet (HFD) and palmitic acid-treated HK-2 renal tubular cells were used for in vivo and in vitro assessments. Empagliflozin attenuated HFD-induced body weight gain, insulin resistance, and inflammation in mice. In HFD-fed mice, CD36 was upregulated in the tubular area of the kidney, whereas empagliflozin attenuated CD36 expression. Furthermore, empagliflozin downregulated the expression of peroxisome proliferator-activated receptor (PPAR)-γ. Treatment with a PPARγ inhibitor (GW9662) did not further decrease PPARγ expression, whereas a PPARγ antagonist reversed this effect; this suggested that empagliflozin may, at least partly, decrease CD36 by modulating PPARγ. In conclusion, empagliflozin can ameliorate FFA-induced renal tubular injury via the PPARγ/CD36 pathway.
Collapse
|
42
|
Cherney DZ, Udell JA, Drucker DJ. Cardiorenal mechanisms of action of glucagon-like-peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors. MED 2021; 2:1203-1230. [DOI: 10.1016/j.medj.2021.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
|
43
|
Chen G, Wang H, Zhang W, Zhou J. Dapagliflozin Reduces Urinary Albumin Excretion by Downregulating the Expression of cAMP, MAPK, and cGMP-PKG Signaling Pathways Associated Genes. Genet Test Mol Biomarkers 2021; 25:627-637. [PMID: 34672772 DOI: 10.1089/gtmb.2021.0086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Objective: Diabetic nephropathy (DN), the most severe complication of diabetes mellitus, is characterized by albuminuria and progressive loss of kidney function. Dapagliflozin (DAP), a sodium-glucose cotransporter inhibitor, is an oral medication that improves blood glucose control in diabetic patients. However, the effects and mechanisms of DAP on DN remain unclear. Materials and Methods: The effect of DAP was based on a retrospective cohort study of patients who underwent 2-year surveillance, and the concentration of urine albumin-to-creatinine ratio, glomerular filtration rate, and serum creatinine were collected after treatment with DAP. To investigate the underlying mechanisms through which DAP reduces urinary albumin excretion, we used RNA-sequencing (RNA-seq) to analyze gene expression in human kidney 2 (HK-2) cells treated with DAP. Results: The retrospective cohort analysis indicated that DAP could reduce the excretion rate of urinary albumin in patients with type 2 diabetes and renal impairment. The results of the RNA-seq experiments showed 349 differentially expressed genes between DAP-treated HK-2 cells and control cells. Gene ontology annotation enrichment analysis showed that DAP mainly affected the expression of integral component of membrane- and cell junction-related genes, while the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that DAP primarily downregulated the expression of gene clusters associated with cyclic adenosine monophosphate, mitogen-activated protein kinase, and cyclic guanosine monophosphate-protein kinase G signaling pathways, which play critical roles in the progression of DN. Conclusion: Our results shed light on the mechanism by which DAP controls DN progression and provide a theoretical basis for the clinical treatment of DN.
Collapse
Affiliation(s)
- Guoping Chen
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China.,Department of Endocrinology, De Qing People's Hospital, De Qing, Zhejiang, P.R. China
| | - Hong Wang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Wenjing Zhang
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jiaqiang Zhou
- Department of Endocrinology and Metabolism, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
44
|
Jaikumkao K, Promsan S, Thongnak L, Swe MT, Tapanya M, Htun KT, Kothan S, Intachai N, Lungkaphin A. Dapagliflozin ameliorates pancreatic injury and activates kidney autophagy by modulating the AMPK/mTOR signaling pathway in obese rats. J Cell Physiol 2021; 236:6424-6440. [PMID: 33559163 DOI: 10.1002/jcp.30316] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/30/2020] [Accepted: 01/27/2021] [Indexed: 02/05/2023]
Abstract
Chronic consumption of a high-fat diet induces obesity and impairs the ultra-structure of organs and tissues. We examined the effect of sodium-glucose cotransporter 2 (SGLT2) inhibitor-dapagliflozin on renal and pancreatic injuries in obese condition. Rats were fed a high-fat diet for 16 weeks to induce obesity. After that, dapagliflozin or vildagliptin, 1.0 or 3.0 mg/kg/day, respectively, was administered by oral gavage for 4 weeks. The effects of dapagliflozin on insulin resistance, kidney autophagy, pancreatic oxidative stress, endoplasmic reticulum (ER) stress, inflammation, and apoptosis in high-fat diet-induced obese rats were elucidated. High-fat-diet fed rats demonstrated metabolic abnormalities including increased body weight, visceral fat weight, plasma insulin, plasma cholesterol, homeostasis model assessment (HOMA) index, and TAUCg, indicating the obese-insulin resistant and glucose intolerance conditions. Also, high-fat-diet fed rats exhibited significant pancreatic injury accompanied by decreased kidney autophagy. Dapagliflozin or vildagliptin treatment for 4 weeks ameliorated pancreatic oxidative stress, ER stress, inflammation, and apoptosis and restored kidney autophagy in obese rats. Moreover, the morphology changes of the pancreas and kidney were improved in the treated groups. Interestingly, dapagliflozin showed higher efficacy than vildagliptin in improving body weight, visceral fat weight, plasma cholesterol level, and pancreatic oxidative stress in our model. Taken together, the present study demonstrated that the therapeutic effects of dapagliflozin attenuated pancreatic injury, pancreatic oxidative stress, ER stress, inflammation, apoptosis, and exerted renoprotective effects by restoring autophagic signaling in obese rats.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Sasivimon Promsan
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Laongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Myat T Swe
- Department of Physiology, University of Medicine 2, Yangon, Yangon, Myanmar
| | - Monruedee Tapanya
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Khin T Htun
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Suchart Kothan
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Center of Radiation Research and Medical Imaging, Chiang Mai University, Chiang Mai, Thailand
| | - Nuttawadee Intachai
- Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
45
|
A Role for SGLT-2 Inhibitors in Treating Non-diabetic Chronic Kidney Disease. Drugs 2021; 81:1491-1511. [PMID: 34363606 DOI: 10.1007/s40265-021-01573-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
In recent years, inhibitors of the sodium-glucose co-transporter 2 (SGLT2 inhibitors) have been shown to have significant protective effects on the kidney and the cardiovascular system in patients with diabetes. This effect is also manifested in chronic kidney disease (CKD) patients and is minimally due to improved glycaemic control. Starting from these positive findings, SGLT2 inhibitors have also been tested in patients with non-diabetic CKD or heart failure with reduced ejection fraction. Recently, the DAPA-CKD trial showed a significantly lower risk of CKD progression or death from renal or cardiovascular causes in a mixed population of patients with diabetic and non-diabetic CKD receiving dapagliflozin in comparison with placebo. In patients with heart failure and reduced ejection fraction, two trials (EMPEROR-Reduced and DAPA-HF) also found a significantly lower risk of reaching the secondary renal endpoint in those treated with an SGLT2 inhibitor in comparison with placebo. This also applied to patients with CKD. Apart from their direct mechanism of action, SGLT2 inhibitors have additional effects that could be of particular interest for patients with non-diabetic CKD. Among these, SGLT2 inhibitors reduce blood pressure and serum acid uric levels and can increase hemoglobin levels. Some safety issues should be further explored in the CKD population. SGLT2 inhibitors can minimally increase potassium levels, but this has not been shown by the CREDENCE trial. They also increase magnesium and phosphate reabsorption. These effects could become more significant in patients with advanced CKD and will need monitoring when these agents are used more extensively in the CKD population. Conversely, they do not seem to increase the risk of acute kidney injury.
Collapse
|
46
|
Aguilar-Gallardo JS, Correa A, Contreras JP. Cardio-Renal Benefits of SGLT2 Inhibitors in Heart Failure with Reduced Ejection Fraction: Mechanisms and Clinical Evidence. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 8:311-321. [PMID: 34264341 DOI: 10.1093/ehjcvp/pvab056] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/23/2021] [Accepted: 07/13/2021] [Indexed: 11/12/2022]
Abstract
The heart and the kidneys are closely interconnected, and disease in one organ system can lead to disease in the other. This interdependence is illustrated in heart failure with reduced ejection fraction (HFrEF), where worsening heart failure can lead to renal dysfunction and vice versa. Further complicating this situation is the fact that drugs that serve as guideline directed medical therapy (GDMT) for HFrEF can affect renal function. Sodium glucose co-transporter 2 (SGLT2) inhibitors are a new class of medication with an evolving role in heart failure (HF) and chronic kidney disease (CKD). Initially found to have benefits in diabetics, new research established potential cardiovascular and renal benefits in patients with HF independent of their diabetic status and in populations with CKD. This has been established by landmark trials such as EMPEROR-Reduced, EMPA-TROPISM, CREDENCE, DAPA-CKD, DAPA-HF, and DEFINE-HF. Multiple mechanisms responsible for these benefits have been suggested by clinical and non-clinical studies, and involve cardiac and renal energetic efficiency, cardiac remodeling, preservation of renal function, immunomodulation, changes in hematocrit, and control of risk factors. As such, SGLT2 inhibitors have tremendous potential to improve outcomes in populations with HF and CKD. The purpose of this review is to discuss the current evidence and underlying mechanisms for the cardio-renal benefits of SGLT2 inhibitors in patients with HFrEF.
Collapse
Affiliation(s)
- Jose S Aguilar-Gallardo
- Mount Sinai Morningside, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Ave, New York, NY 10025, United States
| | - Ashish Correa
- Mount Sinai Morningside, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Ave, New York, NY 10025, United States
| | - Johanna P Contreras
- Mount Sinai Morningside, Icahn School of Medicine at Mount Sinai, 1111 Amsterdam Ave, New York, NY 10025, United States
| |
Collapse
|
47
|
Xu J, Kitada M, Ogura Y, Liu H, Koya D. Dapagliflozin Restores Impaired Autophagy and Suppresses Inflammation in High Glucose-Treated HK-2 Cells. Cells 2021; 10:cells10061457. [PMID: 34200774 PMCID: PMC8230404 DOI: 10.3390/cells10061457] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Sodium-glucose cotransporter2 (SGLT2) inhibitors have a reno-protective effect in diabetic kidney disease. However, the detailed mechanism remains unclear. In this study, human proximal tubular cells (HK-2) were cultured in 5 mM glucose and 25 mM mannitol (control), 30 mM glucose (high glucose: HG), or HG and SGLT2 inhibitor, dapagliflozin-containing medium for 48 h. The autophagic flux was decreased, accompanied by the increased phosphorylation of S6 kinase ribosomal protein (p-S6RP) and the reduced phosphorylation of AMP-activated kinase (p-AMPK) expression in a HG condition. Compared to those of the control, dapagliflozin and SGLT2 knockdown ameliorated the HG-induced alterations of p-S6RP, p-AMPK, and autophagic flux. In addition, HG increased the nuclear translocation of nuclear factor-κB p65 (NF-κB) p65 and the cytoplasmic nucleotide-binding oligomerization domain-like receptor 3 (NLRP3), mature interleukin-1β (IL-1β), IL-6, and tumor necrosis factorα (TNFα) expression. Dapagliflozin, SGLT2 knockdown, and NF-κB p65 knockdown reduced the extent of these HG-induced inflammatory alterations. The inhibitory effect of dapagliflozin on the increase in the HG-induced nuclear translocation of NF-κB p65 was abrogated by knocking down AMPK. These data indicated that in diabetic renal proximal tubular cells, dapagliflozin ameliorates: (1) HG-induced autophagic flux reduction, via increased AMPK activity and mTOR suppression; and (2) inflammatory alterations due to NF-κB pathway suppression.
Collapse
Affiliation(s)
- Jing Xu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Munehiro Kitada
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan
- Correspondence: ; Tel.: +81-76-286-2211
| | - Yoshio Ogura
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Haijie Liu
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
| | - Daisuke Koya
- Department of Diabetology and Endocrinology, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan; (J.X.); (Y.O.); (H.L.); (D.K.)
- Division of Anticipatory Molecular Food Science and Technology, Medical Research Institute, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Ishikawa, Japan
| |
Collapse
|
48
|
Abstract
PURPOSE OF REVIEW Sodium-glucose cotransporter 2 (SGLT2) inhibitors have proven cardiorenal protection in patients with diabetes and chronic kidney disease (CKD) as seen in cardiovascular outcome trials (CVOTs) and CREDENCE. In this review, we aim to discuss the mechanisms of kidney protection with SGLT2 inhibition as well as review the results of multiple translational studies and clinical trials of SGLT2 inhibition in the nondiabetic kidney disease (non-DKD) population. RECENT FINDINGS The application of SGLT2 inhibitors as dedicated kidney-protective agents continues to evolve with the publication of the dapagliflozin in patients with chronic kidney disease (DAPA CKD) trial, which extends their cardiorenal protection to patients with nondiabetic CKD. This trial was preceded by CREDENCE, a dedicated kidney outcome study in participants with DKD that demonstrated a 30% reduction in the risk of the composite kidney outcome. From a physiological perspective, mechanistic benefits of SGLT2 inhibitors are independent of their glucose-lowering effects as demonstrated in preclinical studies and post hoc analyses of dedicated CVOTs in participants with type 2 diabetes. From a clinical perspective, there is a growing body of evidence for kidney protection in nondiabetes mellitus patients. SUMMARY There exists strong rationale for SGLT2 inhibition to be incorporated into standard of care for appropriate groups of patients with nondiabetic kidney disease.
Collapse
|
49
|
Pathophysiology of diabetic kidney disease: impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17:319-334. [PMID: 33547417 DOI: 10.1038/s41581-021-00393-8] [Citation(s) in RCA: 263] [Impact Index Per Article: 87.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/30/2023]
Abstract
Diabetic kidney disease is the leading cause of kidney failure worldwide; in the USA, it accounts for over 50% of individuals entering dialysis or transplant programmes. Unlike other complications of diabetes, the prevalence of diabetic kidney disease has failed to decline over the past 30 years. Hyperglycaemia is the primary aetiological factor responsible for the development of diabetic kidney disease. Once hyperglycaemia becomes established, multiple pathophysiological disturbances, including hypertension, altered tubuloglomerular feedback, renal hypoxia, lipotoxicity, podocyte injury, inflammation, mitochondrial dysfunction, impaired autophagy and increased activity of the sodium-hydrogen exchanger, contribute to progressive glomerular sclerosis and the decline in glomerular filtration rate. The quantitative contribution of each of these abnormalities to the progression of diabetic kidney disease, as well as their role in type 1 and type 2 diabetes mellitus, remains to be determined. Sodium-glucose co-transporter 2 (SGLT2) inhibitors have a beneficial impact on many of these pathophysiological abnormalities; however, as several pathophysiological disturbances contribute to the onset and progression of diabetic kidney disease, multiple agents used in combination will likely be required to slow the progression of disease effectively.
Collapse
|
50
|
SGLT2is and Renal Protection: From Biological Mechanisms to Real-World Clinical Benefits. Int J Mol Sci 2021; 22:ijms22094441. [PMID: 33922865 PMCID: PMC8122991 DOI: 10.3390/ijms22094441] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, following the publication of results from several RCTs, first on cardiovascular and more recently on renal outcomes, SGLT2is have become the standard of care to prevent diabetic kidney disease and slow its progression. This narrative review focuses on biological mechanisms, both renal and extrarenal, underlying kidney protection with SGLT2is. Furthermore, data from cardiovascular as well as renal outcome trials, mostly conducted in diabetic patients, are presented and discussed to provide an overview of current uses as well as the future therapeutic potential of these drugs.
Collapse
|