1
|
Yang X, Huang YWA, Marshall J. Targeting TrkB-PSD-95 coupling to mitigate neurological disorders. Neural Regen Res 2025; 20:715-724. [PMID: 38886937 PMCID: PMC11433911 DOI: 10.4103/nrr.nrr-d-23-02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/15/2024] [Accepted: 03/30/2024] [Indexed: 06/20/2024] Open
Abstract
Tropomyosin receptor kinase B (TrkB) signaling plays a pivotal role in dendritic growth and dendritic spine formation to promote learning and memory. The activity-dependent release of brain-derived neurotrophic factor at synapses binds to pre- or postsynaptic TrkB resulting in the strengthening of synapses, reflected by long-term potentiation. Postsynaptically, the association of postsynaptic density protein-95 with TrkB enhances phospholipase Cγ-Ca2+/calmodulin-dependent protein kinase II and phosphatidylinositol 3-kinase-mechanistic target of rapamycin signaling required for long-term potentiation. In this review, we discuss TrkB-postsynaptic density protein-95 coupling as a promising strategy to magnify brain-derived neurotrophic factor signaling towards the development of novel therapeutics for specific neurological disorders. A reduction of TrkB signaling has been observed in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, and enhancement of postsynaptic density protein-95 association with TrkB signaling could mitigate the observed deficiency of neuronal connectivity in schizophrenia and depression. Treatment with brain-derived neurotrophic factor is problematic, due to poor pharmacokinetics, low brain penetration, and side effects resulting from activation of the p75 neurotrophin receptor or the truncated TrkB.T1 isoform. Although TrkB agonists and antibodies that activate TrkB are being intensively investigated, they cannot distinguish the multiple human TrkB splicing isoforms or cell type-specific functions. Targeting TrkB-postsynaptic density protein-95 coupling provides an alternative approach to specifically boost TrkB signaling at localized synaptic sites versus global stimulation that risks many adverse side effects.
Collapse
Affiliation(s)
- Xin Yang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Yu-Wen Alvin Huang
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA
| | - John Marshall
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA Receptor Co-Regulation of Protein Translation in Cultured Nucleus Accumbens Neurons. Neurochem Res 2024; 50:27. [PMID: 39567459 DOI: 10.1007/s11064-024-04283-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Protein translation is essential for some forms of synaptic plasticity. Here we used fluorescent noncanonical amino acid tagging (FUNCAT) to examine whether dopamine modulates protein translation in cultured nucleus accumbens (NAc) medium spiny neurons (MSN). These neurons were co-cultured with cortical neurons to restore excitatory synapses. We measured translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 h). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers. Supporting this, immunocytochemistry and proximity ligation assays revealed D1R/NMDAR heteromers on NAc cells both in vitro and in vivo, confirming previous results. Furthermore, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390 + APV. These results suggest that: (1) excitatory transmission stimulates translation in NAc MSNs, (2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and (3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R Zimbelman
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: UCLA Center for Cannabis and Cannabinoids, Semel Institute for Neuroscience & Human Behavior, Los Angeles, CA, 90025, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
- Present Address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97212, USA
| | - Michael T Stefanik
- Department of Psychology and Neuroscience, North Central College, 30 N. Brainard St., Naperville, IL, 60540, USA.
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
3
|
Pinkston BTC, Browning JL, Olsen ML. Astrocyte TrkB.T1 deficiency disrupts glutamatergic synaptogenesis and astrocyte-synapse interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619696. [PMID: 39484608 PMCID: PMC11526899 DOI: 10.1101/2024.10.22.619696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Perisynaptic astrocyte processes (PAPs) contact pre- and post-synaptic elements to provide structural and functional support to synapses. Accumulating research demonstrates that the cradling of synapses by PAPs is critical for synapse formation, stabilization, and plasticity. The specific signaling pathways that govern these astrocyte-synapse interactions, however, remain to be elucidated. Herein, we demonstrate a role for the astrocyte TrkB.T1 receptor, a truncated isoform of the canonical receptor for brain derived neurotrophic factor (BDNF), in modulating astrocyte-synapse interactions and excitatory synapse development. Neuron-astrocyte co-culture studies revealed that loss of astrocyte TrkB.T1 disrupts the formation of PAPs. To elucidate the role of TrkB.T1 in synapse development, we conditionally deleted TrkB.T1 in astrocytes in mice. Synaptosome preparations were employed to probe for TrkB.T1 localization at the PAP, and confocal three-dimensional microscopy revealed a significant reduction in synapse density and astrocyte-synapse interactions across development in the absence of astrocytic TrkB.T1. These findings suggest that BDNF/TrkB.T1 signaling in astrocytes is critical for normal excitatory synapse formation in the cortex and that astrocyte TrkB.T1 serves a requisite role in astrocyte synapse interactions. Overall, this work provides new insights into the molecular mechanisms of astrocyte-mediated synaptogenesis and may have implications for understanding neurodevelopmental disorders and developing potential therapeutic targets.
Collapse
|
4
|
Wu D, Li F, Yang F, Liu J. Validity of Plasma Neuropeptide Y in Combination with Clinical Factors in Predicting Neuralgia Following Herpes Zoster. Int J Gen Med 2024; 17:4805-4814. [PMID: 39440102 PMCID: PMC11495191 DOI: 10.2147/ijgm.s480411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
Background Numerous lines of evidence suggest that neuropeptide Y (NPY) is critically involved in the modulation of neuropathic pain. Postherpetic neuralgia (PHN) is characterized by prolonged duration, severe pain, and significant treatment resistance, substantially impairing patients' quality of life. This study aims to evaluate the potential of plasma NPY levels in patients with PHN as a predictive biomarker for the development of this condition. Methods Between February 2022 and December 2023, 182 patients with herpes zoster (HZ) were recruited. Thirty-eight volunteers with no history of HZ were also recruited as controls. Clinical factors, NPY, brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed within 3 days of healing. Logistic regression analysis was used to predict the development of PHN. Results NPY levels were lower and BDNF and NGF were higher in HZ patients than those in controls. Only NPY levels were lower in patients with PHN (n = 59) compared with those without PHN (n = 123). Age, acute pain severity, and rash area were independent predictors of PHN, as were NPY levels. The area under the curve (AUC) to predict the development of PHN based on the combination of NPY levels and clinical factors was 0.873 (95% CI: 0.805 to 0.940), and the AUC was 0.804 based on only clinical factors (AUC: 0.804, 95% CI: 0.728 to 0.881). Conclusion Low plasma NPY levels are a predictor of developing PHN in patients with HZ. Combining clinical predictors with NPY levels may improve predictive accuracy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Dermatology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Fang Li
- Department of Pathology, Peking University First Hospital Ningxia Women and Children’s Hospital (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan City, Ningxia Hui Autonomous Region, 750011, People’s Republic of China
| | - Feifei Yang
- Department of Dermatology, Tongzhou Maternal & Child Health Hospital of Beijing, Beijing City, 101101, People’s Republic of China
| | - Jun Liu
- Department of Critical Care Medicine, the First People’s Hospital of Yinchuan, Yinchuan City, Ningxia Hui Autonomous Region, 750001, People’s Republic of China
| |
Collapse
|
5
|
Wen W, Turrigiano GG. Keeping Your Brain in Balance: Homeostatic Regulation of Network Function. Annu Rev Neurosci 2024; 47:41-61. [PMID: 38382543 DOI: 10.1146/annurev-neuro-092523-110001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To perform computations with the efficiency necessary for animal survival, neocortical microcircuits must be capable of reconfiguring in response to experience, while carefully regulating excitatory and inhibitory connectivity to maintain stable function. This dynamic fine-tuning is accomplished through a rich array of cellular homeostatic plasticity mechanisms that stabilize important cellular and network features such as firing rates, information flow, and sensory tuning properties. Further, these functional network properties can be stabilized by different forms of homeostatic plasticity, including mechanisms that target excitatory or inhibitory synapses, or that regulate intrinsic neuronal excitability. Here we discuss which aspects of neocortical circuit function are under homeostatic control, how this homeostasis is realized on the cellular and molecular levels, and the pathological consequences when circuit homeostasis is impaired. A remaining challenge is to elucidate how these diverse homeostatic mechanisms cooperate within complex circuits to enable them to be both flexible and stable.
Collapse
Affiliation(s)
- Wei Wen
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| | - Gina G Turrigiano
- Department of Biology, Brandeis University, Waltham, Massachusetts, USA;
| |
Collapse
|
6
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O'Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus Nerve Stimulation (VNS) Modulates Synaptic Plasticity in the Infralimbic Cortex via Trk-B Receptor Activation to Reduce Drug-Seeking in Male Rats. J Neurosci 2024; 44:e0107242024. [PMID: 38719446 PMCID: PMC11154660 DOI: 10.1523/jneurosci.0107-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/21/2024] [Accepted: 04/25/2024] [Indexed: 05/21/2024] Open
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in male rats trained to self-administer cocaine. Pairing 10 d of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay. Systemic blockade of tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in Layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates the extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Jessica E Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Aarron J Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Sierra R Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - John T O'Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Kathy L Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| | - Bogdan Bordieanu
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jacqueline F McGinty
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, Texas 75080
| |
Collapse
|
7
|
Weiner SP, Vasquez C, Song S, Zhao K, Ali O, Rosenkilde D, Froemke RC, Carr KD. Sex difference in the effect of environmental enrichment on food restriction-induced persistence of cocaine conditioned place preference and mechanistic underpinnings. ADDICTION NEUROSCIENCE 2024; 10:100142. [PMID: 38323217 PMCID: PMC10843874 DOI: 10.1016/j.addicn.2024.100142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Psychosocial and environmental factors, including loss of natural reward, contribute to the risk of drug abuse. Reward loss has been modeled in animals by removal from social or sexual contact, transfer from enriched to impoverished housing, or restriction of food. We previously showed that food restriction increases the unconditioned rewarding effects of abused drugs and the conditioned incentive effects of drug-paired environments. Mechanistic studies provided evidence of decreased basal dopamine (DA) transmission, adaptive upregulation of signaling downstream of D1 DA receptor stimulation, synaptic upscaling and incorporation of calcium-permeable AMPA receptors (CP-AMPARs) in medium spiny neurons (MSNs) of nucleus accumbens (NAc). These findings align with the still evolving 'reward deficiency' hypothesis of drug abuse. The present study tested whether a compound natural reward that is known to increase DA utilization, environmental enrichment, would prevent the persistent expression of cocaine conditioned place preference (CPP) otherwise observed in food restricted rats, along with the mechanistic underpinnings. Because nearly all prior investigations of both food restriction and environmental enrichment effects on cocaine CPP were conducted in male rodents, both sexes were included in the present study. Results indicate that environmental enrichment curtailed the persistence of CPP expression, decreased signaling downstream of the D1R, and decreased the amplitude and frequency of spontaneous excitatory postsynaptic currents (EPSCs) in NAc MSNs of food restricted male, but not female, rats. The failure of environmental enrichment to significantly decrease food restriction-induced synaptic insertion of CP-AMPARs, and how this may accord with previous pharmacological findings that blockade of CP-AMPARs reverses behavioral effects of food restriction is discussed. In addition, it is speculated that estrous cycle-dependent fluctuations in DA release, receptor density and MSN excitability may obscure the effect of increased DA signaling during environmental enrichment, thereby interfering with development of the cellular and behavioral effects that enrichment produced in males.
Collapse
Affiliation(s)
- Sydney P. Weiner
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Carolina Vasquez
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Diabetes Research Program, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Soomin Song
- Department of Pathology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kaiyang Zhao
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Omar Ali
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Danielle Rosenkilde
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Robert C. Froemke
- Skirball Institute of Biomolecular Medicine, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Otolaryngology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| | - Kenneth D. Carr
- Department of Psychiatry, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
- Neuroscience Institute, New York University Grossman School of Medicine, 435 East 30th Street, New York, NY 10016, United States
| |
Collapse
|
8
|
Driskill CM, Childs JE, Phensy AJ, Rodriguez SR, O’Brien JT, Lindquist KL, Naderi A, Bordieanu B, McGinty JF, Kroener S. Vagus nerve stimulation (VNS) modulates synaptic plasticity in the rat infralimbic cortex via Trk-B receptor activation to reduce drug-seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577293. [PMID: 38328140 PMCID: PMC10849650 DOI: 10.1101/2024.01.25.577293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Drugs of abuse cause changes in the prefrontal cortex (PFC) and associated regions that impair inhibitory control over drug-seeking. Breaking the contingencies between drug-associated cues and the delivery of the reward during extinction learning reduces relapse. Vagus nerve stimulation (VNS) has previously been shown to enhance extinction learning and reduce drug-seeking. Here we determined the effects of VNS-mediated release of brain-derived neurotrophic factor (BDNF) on extinction and cue-induced reinstatement in rats trained to self-administer cocaine. Pairing 10 days of extinction training with VNS facilitated extinction and reduced drug-seeking behavior during reinstatement. Rats that received a single extinction session with VNS showed elevated BDNF levels in the medial PFC as determined via an enzyme-linked immunosorbent assay (ELISA). Systemic blockade of Tropomyosin receptor kinase B (TrkB) receptors during extinction, via the TrkB antagonist ANA-12, decreased the effects of VNS on extinction and reinstatement. Whole-cell recordings in brain slices showed that cocaine self-administration induced alterations in the ratio of AMPA and NMDA receptor-mediated currents in layer 5 pyramidal neurons of the infralimbic cortex (IL). Pairing extinction with VNS reversed cocaine-induced changes in glutamatergic transmission by enhancing AMPAR currents, and this effect was blocked by ANA-12. Our study suggests that VNS consolidates extinction of drug-seeking behavior by reversing drug-induced changes in synaptic AMPA receptors in the IL, and this effect is abolished by blocking TrkB receptors during extinction, highlighting a potential mechanism for the therapeutic effects of VNS in addiction.
Collapse
Affiliation(s)
- Christopher M. Driskill
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Jessica E. Childs
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aarron J. Phensy
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Sierra R. Rodriguez
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - John T. O’Brien
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Kathy L. Lindquist
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Aurian Naderi
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| | - Bogdan Bordieanu
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Jacqueline F. McGinty
- Dept. of Neuroscience, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425
| | - Sven Kroener
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Rd., Richardson, TX 75080
| |
Collapse
|
9
|
Steinke I, Govindarajulu M, Pinky PD, Bloemer J, Yoo S, Ward T, Schaedig T, Young T, Wibowo FS, Suppiramaniam V, Amin RH. Selective PPAR-Delta/PPAR-Gamma Activation Improves Cognition in a Model of Alzheimer's Disease. Cells 2023; 12:1116. [PMID: 37190025 PMCID: PMC10136457 DOI: 10.3390/cells12081116] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Background: The continuously increasing association of Alzheimer's disease (AD) with increased mortality rates indicates an unmet medical need and the critical need for establishing novel molecular targets for therapeutic potential. Agonists for peroxisomal proliferator activating receptors (PPAR) are known to regulate energy in the body and have shown positive effects against Alzheimer's disease. There are three members of this class (delta, gamma, and alpha), with PPAR-gamma being the most studied, as these pharmaceutical agonists offer promise for AD because they reduce amyloid beta and tau pathologies, display anti-inflammatory properties, and improve cognition. However, they display poor brain bioavailability and are associated with several adverse side effects on human health, thus limiting their clinical application. Methods: We have developed a novel series of PPAR-delta and PPAR-gamma agonists in silico with AU9 as our lead compound that displays selective amino acid interactions focused upon avoiding the Tyr-473 epitope in the PPAR-gamma AF2 ligand binding domain. Results: This design helps to avoid the unwanted side effects of current PPAR-gamma agonists and improve behavioral deficits and synaptic plasticity while reducing amyloid-beta levels and inflammation in 3xTgAD animals. Conclusions: Our innovative in silico design of PPAR-delta/gamma agonists may offer new perspectives for this class of agonists for AD.
Collapse
Affiliation(s)
- Ian Steinke
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Manoj Govindarajulu
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Priyanka Das Pinky
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Jenna Bloemer
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy, New York, NY 10027, USA
| | - Sieun Yoo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Tracey Ward
- Department of Pharmaceutical Sciences, Ferris State University, Big Rapids, MI 49307, USA
| | - Taylor Schaedig
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Taylor Young
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Fajar Setyo Wibowo
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
- College of Science and Mathematics, Kennesaw State University, Kennesaw, GA 31044, USA
| | - Rajesh H. Amin
- Department of Drug Discovery and Development, Auburn University, Auburn, AL 36879, USA
| |
Collapse
|
10
|
Zimbelman AR, Wong B, Murray CH, Wolf ME, Stefanik MT. Dopamine D1 and NMDA receptor co-regulation of protein translation in cultured nucleus accumbens neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.02.535293. [PMID: 37034633 PMCID: PMC10081306 DOI: 10.1101/2023.04.02.535293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2023]
Abstract
Protein translation is essential for some forms of synaptic plasticity. We used nucleus accumbens (NAc) medium spiny neurons (MSN), co-cultured with cortical neurons to restore excitatory synapses, to examine whether dopamine modulates protein translation in NAc MSN. FUNCAT was used to measure translation in MSNs under basal conditions and after disinhibiting excitatory transmission using the GABAA receptor antagonist bicuculline (2 hr). Under basal conditions, translation was not altered by the D1-class receptor (D1R) agonist SKF81297 or the D2-class receptor (D2R) agonist quinpirole. Bicuculline alone robustly increased translation. This was reversed by quinpirole but not SKF81297. It was also reversed by co-incubation with the D1R antagonist SCH23390, but not the D2R antagonist eticlopride, suggesting dopaminergic tone at D1Rs. This was surprising because no dopamine neurons are present. An alternative explanation is that bicuculline activates translation by increasing glutamate tone at NMDA receptors (NMDAR) within D1R/NMDAR heteromers, which have been described in other cell types. Supporting this, immunocytochemistry and proximity ligation assays revealed D1/NMDAR heteromers on NAc cells both in vitro and in vivo. Further, bicuculline's effect was reversed to the same extent by SCH23390 alone, the NMDAR antagonist APV alone, or SCH23390+APV. These results suggest that: 1) excitatory synaptic transmission stimulates translation in NAc MSNs, 2) this is opposed when glutamate activates D1R/NMDAR heteromers, even in the absence of dopamine, and 3) antagonist occupation of D1Rs within the heteromers prevents their activation. Our study is the first to suggest a role for D2 receptors and D1R/NMDAR heteromers in regulating protein translation.
Collapse
Affiliation(s)
- Alexa R. Zimbelman
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Benjamin Wong
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
| | - Conor H. Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- Present address: Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL
| | - Marina E. Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
- Present address: Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97212
| | - Michael T. Stefanik
- Department of Psychology and Neuroscience, North Central College, Naperville, IL 60540
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064
- These authors contributed equally
| |
Collapse
|
11
|
Thapliyal S, Arendt KL, Lau AG, Chen L. Retinoic acid-gated BDNF synthesis in neuronal dendrites drives presynaptic homeostatic plasticity. eLife 2022; 11:e79863. [PMID: 36515276 PMCID: PMC9797192 DOI: 10.7554/elife.79863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Homeostatic synaptic plasticity is a non-Hebbian synaptic mechanism that adjusts synaptic strength to maintain network stability while achieving optimal information processing. Among the molecular mediators shown to regulate this form of plasticity, synaptic signaling through retinoic acid (RA) and its receptor, RARα, has been shown to be critically involved in the homeostatic adjustment of synaptic transmission in both hippocampus and sensory cortices. In this study, we explore the molecular mechanism through which postsynaptic RA and RARα regulates presynaptic neurotransmitter release during prolonged synaptic inactivity at mouse glutamatertic synapses. We show that RARα binds to a subset of dendritically sorted brain-derived neurotrophic factor (Bdnf) mRNA splice isoforms and represses their translation. The RA-mediated translational de-repression of postsynaptic BDNF results in the retrograde activation of presynaptic tropomyosin receptor kinase B (TrkB) receptors, facilitating presynaptic homeostatic compensation through enhanced presynaptic release. Together, our study illustrates an RA-mediated retrograde synaptic signaling pathway through which postsynaptic protein synthesis during synaptic inactivity drives compensatory changes at the presynaptic site.
Collapse
Affiliation(s)
- Shruti Thapliyal
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Kristin L Arendt
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Anthony G Lau
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| | - Lu Chen
- Departments of Neurosurgery, Neuropsychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
12
|
Van Hook MJ. Brain-derived neurotrophic factor is a regulator of synaptic transmission in the adult visual thalamus. J Neurophysiol 2022; 128:1267-1277. [PMID: 36224192 PMCID: PMC9662800 DOI: 10.1152/jn.00540.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/12/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of circuit development, neuronal survival, and plasticity throughout the nervous system. In the visual system, BDNF is produced by retinal ganglion cells (RGCs) and transported along their axons to central targets. Within the dorsolateral geniculate nucleus (dLGN), a key RGC projection target for conscious vision, the BDNF receptor tropomyosin receptor kinase B (TrkB) is present on RGC axon terminals and postsynaptic thalamocortical (TC) relay neuron dendrites. Based on this, the goal of this study was to determine how BDNF modulates the conveyance of signals through the retinogeniculate (RG) pathway of adult mice. Application of BDNF to dLGN brain slices increased TC neuron spiking evoked by optogenetic stimulation of RGC axons. There was a modest contribution to this effect from a BDNF-dependent enhancement of TC neuron intrinsic excitability including increased input resistance and membrane depolarization. BDNF also increased evoked vesicle release from RGC axon terminals, as evidenced by increased amplitude of evoked excitatory postsynaptic currents (EPSCs), which was blocked by inhibition of TrkB or phospholipase C. High-frequency stimulation revealed that BDNF increased synaptic vesicle pool size, release probability, and replenishment rate. There was no effect of BDNF on EPSC amplitude or short-term plasticity of corticothalamic feedback synapses. Thus, BDNF regulates RG synapses by both presynaptic and postsynaptic mechanisms. These findings suggest that BNDF influences the flow of visual information through the retinogeniculate pathway.NEW & NOTEWORTHY Brain-derived neurotrophic factor (BDNF) is an important regulator of neuronal development and plasticity. In the visual system, BDNF is transported along retinal ganglion cell (RGC) axons to the dorsolateral geniculate nucleus (dLGN), although it is not known how it influences mature dLGN function. Here, BDNF enhanced thalamocortical relay neuron responses to signals arising from RGC axons in the dLGN, pointing toward an important role for BDNF in processing signals en route to the visual cortex.
Collapse
Affiliation(s)
- Matthew J Van Hook
- Truhlsen Eye Institute, Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, Nebraska
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska
| |
Collapse
|
13
|
Bazzari AH, Bazzari FH. BDNF Therapeutic Mechanisms in Neuropsychiatric Disorders. Int J Mol Sci 2022; 23:ijms23158417. [PMID: 35955546 PMCID: PMC9368938 DOI: 10.3390/ijms23158417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is the most abundant neurotrophin in the adult brain and functions as both a primary neurotrophic signal and a neuromodulator. It serves essential roles in neuronal development, maintenance, transmission, and plasticity, thereby influencing aging, cognition, and behavior. Accumulating evidence associates reduced central and peripheral BDNF levels with various neuropsychiatric disorders, supporting its potential utilization as a biomarker of central pathologies. Subsequently, extensive research has been conducted to evaluate restoring, or otherwise augmenting, BDNF transmission as a potential therapeutic approach. Promising results were indeed observed for genetic BDNF upregulation or exogenous administration using a multitude of murine models of neurological and psychiatric diseases. However, varying mechanisms have been proposed to underlie the observed therapeutic effects, and many findings indicate the engagement of disease-specific and other non-specific mechanisms. This is because BDNF essentially affects all aspects of neuronal cellular function through tropomyosin receptor kinase B (TrkB) receptor signaling, the disruptions of which vary between brain regions across different pathologies leading to diversified consequences on cognition and behavior. Herein, we review the neurophysiology of BDNF transmission and signaling and classify the converging and diverging molecular mechanisms underlying its therapeutic potentials in neuropsychiatric disorders. These include neuroprotection, synaptic maintenance, immunomodulation, plasticity facilitation, secondary neuromodulation, and preservation of neurovascular unit integrity and cellular viability. Lastly, we discuss several findings suggesting BDNF as a common mediator of the therapeutic actions of centrally acting pharmacological agents used in the treatment of neurological and psychiatric illness.
Collapse
Affiliation(s)
- Amjad H. Bazzari
- Faculty of Medicine, Arab American University, 13 Zababdeh, Jenin 240, Palestine
- Correspondence:
| | - Firas H. Bazzari
- Faculty of Pharmacy, Arab American University, 13 Zababdeh, Jenin 240, Palestine;
| |
Collapse
|
14
|
Keifer J. Regulation of AMPAR trafficking in synaptic plasticity by BDNF and the impact of neurodegenerative disease. J Neurosci Res 2022; 100:979-991. [PMID: 35128708 DOI: 10.1002/jnr.25022] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Research demonstrates that the neural mechanisms underlying synaptic plasticity and learning and memory involve mobilization of AMPA-type neurotransmitter receptors at glutamatergic synaptic contacts, and that these mechanisms are targeted during neurodegenerative disease. Strengthening neural transmission occurs with insertion of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) into synapses while weakening results from receptor withdrawal. A key player in the trafficking of AMPARs during plasticity and learning is the brain-derived neurotrophic factor (BDNF) signaling system. BDNF is a neurotrophic factor that supports neuronal growth and is required for learning and memory. Significantly, a primary feature of many neurodegenerative diseases is a reduction in BDNF protein as well as disrupted neuronal surface expression of synaptic AMPARs. The resulting weakening of synaptic contacts leads to synapse loss and neuronal degeneration that underlies the cognitive impairment and dementia observed in patients with progressive neurodegenerative disease such as Alzheimer's. In the face of these data, one therapeutic approach is to increase BDNF bioavailability in brain. While this has been met with significant challenges, the results of the research have been promising. In spite of this, there are currently no clinical trials to test many of these findings on patients. Here, research showing that BDNF drives AMPARs to synapses, AMPAR trafficking is essential for synaptic plasticity and learning, and that neurodegenerative disease results in a significant decline in BDNF will be reviewed. The aim is to draw attention to the need for increasing patient-directed clinical studies to test the possible benefits of increasing levels of neurotrophins, specifically BDNF, to treat brain disorders. Much is known about the cellular mechanisms that underlie learning and memory in brain. It can be concluded that signaling by neurotrophins like BDNF and AMPA-type glutamate receptor synaptic trafficking are fundamental to these processes. Data from animal models and patients reveal that these mechanisms are adversely targeted during neurodegenerative disease and results in memory loss and cognitive decline. A brief summary of our understanding of these mechanisms indicates that it is time to apply this knowledge base directly to development of therapeutic treatments that enhance neurotrophins for brain disorders in patient populations.
Collapse
Affiliation(s)
- Joyce Keifer
- Neuroscience Group, Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| |
Collapse
|
15
|
Wang CS, Kavalali ET, Monteggia LM. BDNF signaling in context: From synaptic regulation to psychiatric disorders. Cell 2022; 185:62-76. [PMID: 34963057 PMCID: PMC8741740 DOI: 10.1016/j.cell.2021.12.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 80.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/10/2021] [Accepted: 12/02/2021] [Indexed: 01/09/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neuropeptide that plays numerous important roles in synaptic development and plasticity. While its importance in fundamental physiology is well established, studies of BDNF often produce conflicting and unclear results, and the scope of existing research makes the prospect of setting future directions daunting. In this review, we examine the importance of spatial and temporal factors on BDNF activity, particularly in processes such as synaptogenesis, Hebbian plasticity, homeostatic plasticity, and the treatment of psychiatric disorders. Understanding the fundamental physiology of when, where, and how BDNF acts and new approaches to control BDNF signaling in time and space can contribute to improved therapeutics and patient outcomes.
Collapse
Affiliation(s)
- Camille S Wang
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232-2050, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
16
|
Amorim FE, Chapot RL, Moulin TC, Lee JLC, Amaral OB. Memory destabilization during reconsolidation: a consequence of homeostatic plasticity? ACTA ACUST UNITED AC 2021; 28:371-389. [PMID: 34526382 DOI: 10.1101/lm.053418.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 07/14/2021] [Indexed: 11/24/2022]
Abstract
Remembering is not a static process: When retrieved, a memory can be destabilized and become prone to modifications. This phenomenon has been demonstrated in a number of brain regions, but the neuronal mechanisms that rule memory destabilization and its boundary conditions remain elusive. Using two distinct computational models that combine Hebbian plasticity and synaptic downscaling, we show that homeostatic plasticity can function as a destabilization mechanism, accounting for behavioral results of protein synthesis inhibition upon reactivation with different re-exposure times. Furthermore, by performing systematic reviews, we identify a series of overlapping molecular mechanisms between memory destabilization and synaptic downscaling, although direct experimental links between both phenomena remain scarce. In light of these results, we propose a theoretical framework where memory destabilization can emerge as an epiphenomenon of homeostatic adaptations prompted by memory retrieval.
Collapse
Affiliation(s)
- Felippe E Amorim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Renata L Chapot
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Thiago C Moulin
- Functional Pharmacology Unit, Department of Neuroscience, Uppsala University, Uppsala 751 24, Sweden
| | - Jonathan L C Lee
- University of Birmingham, School of Psychology, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Olavo B Amaral
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
17
|
Zhou Z, He G, Zhang X, Lv X, Zhang X, Liu A, Xia S, Xie H, Dang R, Han L, Qi J, Meng Y, Yu S, Xie W, Jia Z. NGPF2 triggers synaptic scaling up through ALK-LIMK-cofilin-mediated mechanisms. Cell Rep 2021; 36:109515. [PMID: 34407403 DOI: 10.1016/j.celrep.2021.109515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
Synaptic scaling is an extensively studied form of homeostatic plasticity critically involved in various brain functions. Although it is accepted that synaptic scaling is expressed through the postsynaptic accumulation of AMPA receptors (AMPARs), the induction mechanism remains elusive. In this study, we show that TTX treatment induces rapid but transient release of the neurite growth-promoting factor 2 (NGPF2), and this release is necessary and sufficient for TTX-induced scaling up. In addition, we show that inhibition of the anaplastic lymphoma kinase (ALK)-LIMK-cofilin signaling pathway blocks TTX- and NGPF2-induced synaptic scaling up. Furthermore, we show that TTX-induced release of NGPF2 is protein synthesis dependent and requires fragile X mental retardation protein 1 (FMRP1). These results indicate that activity blockade induces NGPF2 synthesis and release to trigger synaptic scaling up through LIMK-cofilin-dependent actin reorganization, spine enlargement, and stabilization of AMPARs at the synapse.
Collapse
Affiliation(s)
- Zikai Zhou
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Guiqin He
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Xiaoyun Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; Zhongshan Institute for Drug Discovery, the Institutes of Drug Discovery and Development, Chinese Academy of Sciences, Zhongshan, China
| | - Xin Lv
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolin Zhang
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - An Liu
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Shuting Xia
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China; Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Hao Xie
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Rui Dang
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Lifang Han
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Junxia Qi
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Yanghong Meng
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada
| | - Shunying Yu
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Xie
- School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Zhengping Jia
- Neurosciences & Mental Health, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8, Canada; Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
18
|
Horvath PM, Chanaday NL, Alten B, Kavalali ET, Monteggia LM. A subthreshold synaptic mechanism regulating BDNF expression and resting synaptic strength. Cell Rep 2021; 36:109467. [PMID: 34348149 PMCID: PMC8371576 DOI: 10.1016/j.celrep.2021.109467] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/10/2021] [Accepted: 07/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent studies have demonstrated that protein translation can be regulated by spontaneous excitatory neurotransmission. However, the impact of spontaneous neurotransmitter release on gene transcription remains unclear. Here, we study the effects of the balance between inhibitory and excitatory spontaneous neurotransmission on brain-derived neurotrophic factor (BDNF) regulation and synaptic plasticity. Blockade of spontaneous inhibitory events leads to an increase in the transcription of Bdnf and Npas4 through altered synaptic calcium signaling, which can be blocked by antagonism of NMDA receptors (NMDARs) or L-type voltage-gated calcium channels (VGCCs). Transcription is bidirectionally altered by manipulating spontaneous inhibitory, but not excitatory, currents. Moreover, blocking spontaneous inhibitory events leads to multiplicative downscaling of excitatory synaptic strength in a manner that is dependent on both transcription and BDNF signaling. These results reveal a role for spontaneous inhibitory neurotransmission in BDNF signaling that sets excitatory synaptic strength at rest.
Collapse
Affiliation(s)
- Patricia M Horvath
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Department of Neuroscience, the University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Natali L Chanaday
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA
| | - Baris Alten
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Lisa M Monteggia
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
19
|
Chang E, Wang J. Brain-derived neurotrophic factor attenuates cognitive impairment and motor deficits in a mouse model of Parkinson's disease. Brain Behav 2021; 11:e2251. [PMID: 34132500 PMCID: PMC8413743 DOI: 10.1002/brb3.2251] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/28/2021] [Accepted: 06/01/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Parkinson's disease (PD) is one of the most common neurodegenerative disorders that seriously impair the life quality and survival of patients. Herein, we aim to investigate the neuroprotective roles of brain-derived neurotrophic factor (BDNF) in PD mice and reveal the underlying mechanisms. BDNF overexpression was achieved via the injection of adeno-associated viruses (AAV) with BDNF gene. METHODS PD mouse model was established by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. Tests of rotarod, pole, open field, and novel object recognition were conducted to evaluate the motor and cognitive functions of treated mice. RESULTS Mitochondrial impairment, mitochondrial respiratory chain enzymes, and tyrosine hydroxylase (TH)-positive dopaminergic neurons were detected to uncover the molecular mechanism. BDNF overexpression attenuated motor deficits and cognitive impairment in MPTP-induced PD mice. Mechanistically, BDNF mitigated mitochondrial impairment increased the activity of respiratory chain Complex I and Ⅱ+III, and finally alleviated TH-positive dopaminergic neuron loss in MPTP-induced PD mice. CONCLUSION This study highlights the potential of BDNF as a therapeutic candidate for the treatment of mitochondrial impairment-associated neurodegenerative diseases.
Collapse
Affiliation(s)
- E Chang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| | - Jiongmei Wang
- Department of Rehabilitation MedicineCangzhou Central HospitalCangzhouHebeiChina
| |
Collapse
|
20
|
Kavalali ET, Monteggia LM. Targeting Homeostatic Synaptic Plasticity for Treatment of Mood Disorders. Neuron 2020; 106:715-726. [PMID: 32497508 DOI: 10.1016/j.neuron.2020.05.015] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/23/2023]
Abstract
Ketamine exerts rapid antidepressant action in depressed and treatment-resistant depressed patients within hours. At the same time, ketamine elicits a unique form of functional synaptic plasticity that shares several attributes and molecular mechanisms with well-characterized forms of homeostatic synaptic scaling. Lithium is a widely used mood stabilizer also proposed to act via synaptic scaling for its antimanic effects. Several studies to date have identified specific forms of homeostatic synaptic plasticity that are elicited by these drugs used to treat neuropsychiatric disorders. In the last two decades, extensive work on homeostatic synaptic plasticity mechanisms have shown that they diverge from classical synaptic plasticity mechanisms that process and store information and thus present a novel avenue for synaptic regulation with limited direct interference with cognitive processes. In this review, we discuss the intersection of the findings from neuropsychiatric treatments and homeostatic plasticity studies to highlight a potentially wider paradigm for treatment advance.
Collapse
Affiliation(s)
- Ege T Kavalali
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| | - Lisa M Monteggia
- Department of Pharmacology and the Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA.
| |
Collapse
|
21
|
Electroacupuncture on Trigeminal Nerve-Innervated Acupoints Ameliorates Poststroke Cognitive Impairment in Rats with Middle Cerebral Artery Occlusion: Involvement of Neuroprotection and Synaptic Plasticity. Neural Plast 2020; 2020:8818328. [PMID: 32963517 PMCID: PMC7492933 DOI: 10.1155/2020/8818328] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
Poststroke cognitive impairment (PSCI) is a severe sequela of stroke. There are no effective therapeutic options for it. In this study, we evaluated whether electroacupuncture (EA) on the trigeminal nerve-innervated acupoints could alleviate PSCI and identified the mechanisms in an animal model. The male Sprague-Dawley rat middle cerebral artery occlusion (MCAO) model was used in our study. EA was conducted on the two scalp acupoints, EX-HN3 (Yintang) and GV20 (Baihui), innervated by the trigeminal nerve, for 14 sessions, daily. Morris water maze and novel object recognition were used to evaluate the animal's cognitive performance. Neuroprotection and synaptic plasticity biomarkers were analyzed in brain tissues. Ischemia-reperfusion (I/R) injury significantly impaired spatial and cognition memory, while EA obviously reversed cognitive deterioration to the control level in the two cognitive paradigms. Moreover, EA reversed the I/R injury-induced decrease of brain-derived neurotrophic factor, tyrosine kinase B, N-methyl-D-aspartic acid receptor 1, α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor, γ-aminobutyric acid type A receptors, Ca2+/calmodulin-dependent protein kinase II, neuronal nuclei, and postsynaptic density protein 95 expression in the prefrontal cortex and hippocampus. These results suggest that EA on the trigeminal nerve-innervated acupoints is an effective therapy for PSCI, in association with mediating neuroprotection and synaptic plasticity in related brain regions in the MCAO rat model.
Collapse
|
22
|
Peng B, Hao DD, Li X, Wang GH, Guan ZY, Jiang ZL. Inhibition of NR2B-containing NMDA receptors during nitrogen narcosis. Diving Hyperb Med 2019; 49:276-282. [PMID: 31828746 DOI: 10.28920/dhm49.4.276-282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/08/2019] [Indexed: 11/05/2022]
Abstract
INTRODUCTION When humans breathe compressed air or N2-O2 mixtures at three to four atmospheres pressure, they will experience nitrogen narcosis that may possibly lead to a diving accident, but the underlying mechanisms remain unclear. METHODS Mice were exposed to 1.6 MPa breathing a N2-O2 mixture adjusted to deliver an inspired PO2 of 32-42 kPa. The electroencephalogram (EEG) and forced swimming test were used to evaluate the narcotic effect of nitrogen. Neuronal activity was observed via c-Fos expression in cortex and hippocampus tissue after decompressing to the surface. To further investigate underlying molecular mechanisms, we incubated cultured hippocampal neurons with various NMDA concentrations, and measured expression of NMDA receptors and its down-stream signal with or without 1.6 MPa N2-O2 exposure. RESULTS Both the frequency of the EEG and the drowning time using the forced swimming test were significantly decreased during exposure to 1.6 MPa N2-O2 (P < 0.001). Additionally, in cultured hippocampal neurons, the increased levels of phosphorylated NR2B and cAMP-response element binding protein (CREB) induced by NMDA stimulation were significantly inhibited by exposure to 1.6 MPa N2-O2. CONCLUSIONS Our findings indicated that NR2B-containing NMDA receptors were inhibited during nitrogen narcosis.
Collapse
Affiliation(s)
- Bin Peng
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Du-Du Hao
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Xia Li
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Guo-Hua Wang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Zong-Yu Guan
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Zheng-Lin Jiang
- Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China.,Corresponding author: Department of Neurophysiology and Neuropharmacology, Institute of Special Environmental Medicine, Nantong University, 9 Seyuan Road, Chongchuan District, Nantong, Jiangsu 226019, China,
| |
Collapse
|
23
|
Gaidin SG, Turovskaya MV, Gavrish MS, Babaev AA, Mal'tseva VN, Blinova EV, Turovsky EA. The selective BDNF overexpression in neurons protects neuroglial networks against OGD and glutamate-induced excitotoxicity. Int J Neurosci 2019; 130:363-383. [PMID: 31694441 DOI: 10.1080/00207454.2019.1691205] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: Cerebral ischemia is accompanied by damage and death of a significant number of neurons due to glutamate excitotoxicity with subsequent a global increase of cytosolic Ca2+ concentration ([Ca2+]i). This study aimed to investigate the neuroprotective action of BDNF overexpression in hippocampal neurons against injury under ischemia-like conditions (oxygen and glucose deprivation) and glutamate-induced excitotoxicity (GluTox).Methods: The overexpression of BDNF was reached by the transduction of cell cultures with the adeno-associated (AAV)-Syn-BDNF-EGFP virus construct. Neuroprotective effects were mediated by Ca2+-dependent BDNF release followed by activation of the neuroprotective signaling cascades and changes of the gene expression. Thus, BDNF overexpression modulates Ca2+ homeostasis in cells, preventing Ca2+ overload and initiation of apoptotic and necrotic processes.Results:Antiapoptotic effect of BDNF overexpression is mediated via activation of phosphoinositide-3-kinase (PI3K) pathway and changing the expression of PI3K, HIF-1, Src and an anti-inflammatory cytokine IL-10. On the contrary, the decrease of expression of proapoptotic proteins such as Jun, Mapk8, caspase-3 and an inflammatory cytokine IL-1β was observed. These changes of expression were accompanied by the decrease of quantity of IL-1β receptors and the level of TNFα in cells in control, as well as 24 h after OGD. Besides, BDNF overexpression changes the expression of GABA(B) receptors. Also, the expression of NMDA and AMPA receptor subunits was altered towards a change in the conductivity of the receptors for Ca2+.Conclusion: Thus, our results demonstrate that neuronal BDNF overexpression reveals complex neuroprotective effects on the neurons and astrocytes under OGD and GluTox via inhibition of Ca2+ responses and regulation of gene expression.
Collapse
Affiliation(s)
- S G Gaidin
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M V Turovskaya
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - M S Gavrish
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A A Babaev
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - V N Mal'tseva
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| | - E V Blinova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russia.,N. P. Ogarev Mordovia State University, Saransk, Russia
| | - E A Turovsky
- Institute of Cell Biophysics, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
24
|
Wu T, Sun XY, Yang X, Liu L, Tong K, Gao Y, Hao JR, Cao J, Gao C. Histone H3K9 Trimethylation Downregulates the Expression of Brain-Derived Neurotrophic Factor in the Dorsal Hippocampus and Impairs Memory Formation During Anaesthesia and Surgery. Front Mol Neurosci 2019; 12:246. [PMID: 31708739 PMCID: PMC6823536 DOI: 10.3389/fnmol.2019.00246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/24/2019] [Indexed: 01/01/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is essential for cognitive and memory functions. Abnormal BDNF expression in the central nervous system may impair these functions. Anaesthesia and surgery can induce perioperative neurocognitive disorders (PND). Clinical studies show that BDNF expression is decreased in patients presenting with cognitive impairment after anaesthesia and surgery. However, the molecular mechanism is still unclear. Epigenetic regulation plays an important role in cognition. The hypermethylation of H3K9 is crucial for transcriptional silencing and the onset of cognitive disorders. Here, we hypothesised that H3K9 trimethylation repressed BDNF expression and impaired memory formation or recall during anaesthesia and surgery. Laparotomy under isoflurane inhalation anaesthesia, behavioural tests, Western blotting, quantitative real-time reverse-transcription polymerase chain reaction (qRT-PCR), chromatin immunoprecipitation (ChIP), and immunohistochemistry were used in this study. BDNF expression was decreased in the hippocampus after anaesthesia and surgery. Cognitive impairment affected memory formation but not recall. The trimethylation of H3K9 downregulated BDNF expression. The overexpression of BDNF or use of exogenous BDNF improved the impairment of memory formation caused by anaesthesia and surgery. Therefore, inhibiting H3K9 trimethylation and increasing the expression of BDNF may help prevent PND in the clinical setting.
Collapse
Affiliation(s)
- Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China.,Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| | - Jing Cao
- Department of Anesthesia, Xuzhou Central Hospital, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
25
|
Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration. Int J Mol Sci 2019; 20:ijms20122943. [PMID: 31208140 PMCID: PMC6627482 DOI: 10.3390/ijms20122943] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 01/16/2023] Open
Abstract
Nicotine causes tobacco dependence, which may result in fatal respiratory diseases. The striatum is a key structure of forebrain basal nuclei associated with nicotine dependence. In the striatum, glutamate release is increased when α7 nicotinic acetylcholine receptors expressed in the glutamatergic terminals are exposed to nicotine, and over-stimulates glutamate receptors in gamma amino-butyric acid (GABA)ergic neurons. These receptor over-stimulations in turn potentiate GABAergic outputs to forebrain basal nuclei and contribute to the increase in psychomotor behaviors associated with nicotine dependence. In parallel with glutamate increases, nicotine exposure elevates brain-derived neurotrophic factor (BDNF) release through anterograde and retrograde targeting of the synapses of glutamatergic terminals and GABAergic neurons. This article reviews nicotine-exposure induced elevations of glutamatergic neurotransmission, the bidirectional targeting of BDNF in the striatum, and the potential regulatory role played by BDNF in behavioral responses to nicotine exposure.
Collapse
|
26
|
Sri S, Pegasiou CM, Cave CA, Hough K, Wood N, Gomez-Nicola D, Deinhardt K, Bannerman D, Perry VH, Vargas-Caballero M. Emergence of synaptic and cognitive impairment in a mature-onset APP mouse model of Alzheimer's disease. Acta Neuropathol Commun 2019; 7:25. [PMID: 30795807 PMCID: PMC6387506 DOI: 10.1186/s40478-019-0670-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/29/2019] [Indexed: 01/10/2023] Open
Abstract
The synaptic changes underlying the onset of cognitive impairment in Alzheimer’s disease (AD) are poorly understood. In contrast to the well documented inhibition of long-term potentiation (LTP) in CA3-CA1 synapses by acute Aβ application in adult neurons from rodents, young amyloid precursor protein (APP) transgenic mouse models often, surprisingly, show normal LTP. This suggests that there may be important differences between mature-onset and developmental-onset APP expression/ Aβ accumulation and the ensuing synaptic and behavioural phenotype. Here, in agreement with previous studies, we observed that developmental expression of APPSw,Ind (3–4 month old mice from line 102, PLoS Med 2:e355, 2005), resulted in reduced basal synaptic transmission in CA3-CA1 synapses, normal LTP, impaired spatial working memory, but normal spatial reference memory. To analyse early Aβ-mediated synaptic dysfunction and cognitive impairment in a more mature brain, we used controllable mature-onset APPSw,Ind expression in line 102 mice. Within 3 weeks of mature-onset APPSw,Ind expression and Aβ accumulation, we detected the first synaptic dysfunction: an impairment of LTP in hippocampal CA3-CA1 synapses. Cognitively, at this time point, we observed a deficit in short-term memory. A reduction in basal synaptic strength and deficit in long-term associative spatial memory were only evident following 12 weeks of APPSw,Ind expression. Importantly, the plasticity impairment observed after 3 weeks of mature-onset APP expression is reversible. Together, these findings demonstrate important differences between developmental and mature-onset APP expression. Further research targeted at this early stage of synaptic dysfunction could help identify mechanisms to treat cognitive impairment in mild cognitive impairment (MCI) and early AD.
Collapse
|
27
|
Hayashida KI, Obata H. Strategies to Treat Chronic Pain and Strengthen Impaired Descending Noradrenergic Inhibitory System. Int J Mol Sci 2019; 20:ijms20040822. [PMID: 30769838 PMCID: PMC6412536 DOI: 10.3390/ijms20040822] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/04/2019] [Accepted: 02/12/2019] [Indexed: 12/28/2022] Open
Abstract
Gabapentinoids (gabapentin and pregabalin) and antidepressants (tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors) are often used to treat chronic pain. The descending noradrenergic inhibitory system from the locus coeruleus (LC) to the dorsal horn of the spinal cord plays an important role in the analgesic mechanisms of these drugs. Gabapentinoids activate the LC by inhibiting the release of γ-aminobutyric acid (GABA) and inducing the release of glutamate, thereby increasing noradrenaline levels in the spinal cord. Antidepressants increase noradrenaline levels in the spinal cord by inhibiting reuptake, and accumulating noradrenaline inhibits chronic pain through α2-adrenergic receptors in the spinal cord. Recent animal studies, however, revealed that the function of the descending noradrenergic inhibitory system is impaired in chronic pain states. Other recent studies found that histone deacetylase inhibitors and antidepressants restore the impaired noradrenergic descending inhibitory system acting on noradrenergic neurons in the LC.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashida
- Doctorial Course in Medicine, Organ Function-Oriented Medicine, Akita University Graduate School of Medicine;1-1-1, Hondo, Akita-City, Akita 010-8543, Japan.
| | - Hideaki Obata
- Center for Pain Management and Department of Anesthesiology, Fukushima Medical University; 1 Hikarigaoka, Fukushima-City, Fukushima 960-1295, Japan.
| |
Collapse
|
28
|
Suto T, Kato D, Obata H, Saito S. Tropomyosin Receptor Kinase B Receptor Activation in the Locus Coeruleus Restores Impairment of Endogenous Analgesia at a Late Stage Following Nerve Injury in Rats. THE JOURNAL OF PAIN 2018; 20:600-609. [PMID: 30529695 DOI: 10.1016/j.jpain.2018.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 11/08/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022]
Abstract
A rat model of neuropathic pain at 6 weeks after spinal nerve ligation (SNL6w) exhibits both mechanical hypersensitivity and impaired noxious stimuli-induced analgesia (NSIA). Repeated treatment with antidepressants can produce antihypersensitivity and restore NSIA. To examine the involvement of a brain-derived neurotrophic factor-mediated mechanism, a tropomyosin receptor kinase B (TrkB) agonist, 7,8-dihydroxyflavone (DHF), was administered to SNL6w rats (5 mg/kg/d for 5 days). Mechanical hypersensitivity was evaluated using the von Frey filament test and paw pressure test. NSIA was examined by measuring the change in the hind paw withdrawal threshold 30 minutes after painful stimulation induced by capsaicin injection into the fore paw. Changes in the concentrations of glutamate and GABA in the locus coeruleus area were measured by in vivo microdialysis. DHF treatment did not affect mechanical hypersensitivity, although it restored NSIA by reducing GABA release in response to the fore paw capsaicin injection. DHF treatment did not alter the baseline concentration of glutamate or GABA. These findings suggest that DHF treatment restored the stimuli-response activity of the locus coeruleus without affecting the tonic activity of the locus coeruleus. The brain-derived neurotrophic factor-TkB signaling is also involved in the NSIA-restoring effect of amitriptyline. PERSPECTIVE: This article demonstrates that repeated treatment with TrkB agonist, DHF, restored endogenous analgesia. Repeated amitriptyline treatment showed similar effect via TrkB-mediated mechanisms, and the effect may be independent from the effect of antihypersensitivity. This effect of TrkB activation is promising for patients with chronic pain with impaired descending inhibition.
Collapse
Affiliation(s)
- Takashi Suto
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan.
| | - Daiki Kato
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Hideaki Obata
- Department of Anesthesiology and Center for Pain Management, Fukushima Medical University, Fukushima, Japan
| | - Shigeru Saito
- Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan
| |
Collapse
|
29
|
Loweth JA, Reimers JM, Caccamise A, Stefanik MT, Woo KKY, Chauhan NM, Werner CT, Wolf ME. mGlu1 tonically regulates levels of calcium-permeable AMPA receptors in cultured nucleus accumbens neurons through retinoic acid signaling and protein translation. Eur J Neurosci 2018; 50:2590-2601. [PMID: 30222904 DOI: 10.1111/ejn.14151] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/22/2018] [Accepted: 08/28/2018] [Indexed: 12/24/2022]
Abstract
In several brain regions, ongoing metabotropic glutamate receptor 1 (mGlu1) transmission has been shown to tonically suppress synaptic levels of Ca2+ -permeable AMPA receptors (CP-AMPARs) while pharmacological activation of mGlu1 removes CP-AMPARs from these synapses. Consistent with this, we previously showed in nucleus accumbens (NAc) medium spiny neurons (MSNs) that reduced mGlu1 tone enables and mGlu1 positive allosteric modulation reverses the elevation of CP-AMPAR levels in the NAc that underlies enhanced cocaine craving in the "incubation of craving" rat model of addiction. To better understand mGlu1/CP-AMPAR interactions, we used a NAc/prefrontal cortex co-culture system in which NAc MSNs express high CP-AMPAR levels, providing an in vitro model for NAc MSNs after the incubation of cocaine craving. The non-specific group I orthosteric agonist dihydroxyphenylglycine (10 min) decreased cell surface GluA1 but not GluA2, indicating CP-AMPAR internalization. This was prevented by mGlu1 (LY367385) or mGlu5 (MTEP) blockade. However, a selective role for mGlu1 emerged in studies of long-term antagonist treatment. Thus, LY367385 (24 hr) increased surface GluA1 without affecting GluA2, whereas MTEP (24 hr) had no effect. In hippocampal neurons, scaling up of CP-AMPARs can occur through a mechanism requiring retinoic acid (RA) signaling and new GluA1 synthesis. Consistent with this, the LY367385-induced increase in surface GluA1 was blocked by anisomycin (translation inhibitor) or 4-(diethylamino)-benzaldehyde (RA synthesis inhibitor). Thus, mGlu1 transmission tonically suppresses cell surface CP-AMPAR levels, and decreasing mGlu1 tone increases surface CP-AMPARs via RA signaling and protein translation. These results identify a novel mechanism for homeostatic plasticity in NAc MSNs.
Collapse
Affiliation(s)
- Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Jeremy M Reimers
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Aaron Caccamise
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Kenneth Kin Yan Woo
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Nirav M Chauhan
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Craig T Werner
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| |
Collapse
|
30
|
Kikuchi K, Ihara D, Fukuchi M, Tanabe H, Ishibashi Y, Tsujii J, Tsuda M, Kaneda M, Sakagami H, Okuno H, Bito H, Yamazaki Y, Ishikawa M, Tabuchi A. Involvement of SRF coactivator MKL2 in BDNF-mediated activation of the synaptic activity-responsive element in the Arc gene. J Neurochem 2018; 148:204-218. [PMID: 30244496 DOI: 10.1111/jnc.14596] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 09/12/2018] [Accepted: 09/18/2018] [Indexed: 12/31/2022]
Abstract
The expression of immediate early genes (IEGs) is thought to be an essential molecular basis of neuronal plasticity for higher brain function. Many IEGs contain serum response element in their transcriptional regulatory regions and their expression is controlled by serum response factor (SRF). SRF is known to play a role in concert with transcriptional cofactors. However, little is known about how SRF cofactors regulate IEG expression during the process of neuronal plasticity. We hypothesized that one of the SRF-regulated neuronal IEGs, activity-regulated cytoskeleton-associated protein (Arc; also termed Arg3.1), is regulated by an SRF coactivator, megakaryoblastic leukemia (MKL). To test this hypothesis, we initially investigated which binding site of the transcription factor or SRF cofactor contributes to brain-derived neurotrophic factor (BDNF)-induced Arc gene transcription in cultured cortical neurons using transfection and reporter assays. We found that BDNF caused robust induction of Arc gene transcription through a cAMP response element, binding site of myocyte enhancer factor 2, and binding site of SRF in an Arc enhancer, the synaptic activity-responsive element (SARE). Regardless of the requirement for the SRF-binding site, the binding site of a ternary complex factor, another SRF cofactor, did not affect BDNF-mediated Arc gene transcription. In contrast, chromatin immunoprecipitation revealed occupation of MKL at the SARE. Furthermore, knockdown of MKL2, but not MKL1, significantly decreased BDNF-mediated activation of the SARE. Taken together, these findings suggest a novel mechanism by which MKL2 controls the Arc SARE in response to BDNF stimulation.
Collapse
Affiliation(s)
- Keietsu Kikuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Daisuke Ihara
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mamoru Fukuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroki Tanabe
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Yuta Ishibashi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Junya Tsujii
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masaaki Tsuda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Marisa Kaneda
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Okuno
- Department of Biochemistry and Molecular Biology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka, Kagoshima, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yuya Yamazaki
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Mitsuru Ishikawa
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Akiko Tabuchi
- Laboratory of Molecular Neurobiology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
31
|
Stefanik MT, Sakas C, Lee D, Wolf ME. Ionotropic and metabotropic glutamate receptors regulate protein translation in co-cultured nucleus accumbens and prefrontal cortex neurons. Neuropharmacology 2018; 140:62-75. [PMID: 30077883 DOI: 10.1016/j.neuropharm.2018.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 05/15/2018] [Accepted: 05/29/2018] [Indexed: 01/14/2023]
Abstract
The regulation of protein translation by glutamate receptors and its role in plasticity have been extensively studied in the hippocampus. In contrast, very little is known about glutamatergic regulation of translation in nucleus accumbens (NAc) medium spiny neurons (MSN), despite their critical role in addiction-related plasticity and recent evidence that protein translation contributes to this plasticity. We used a co-culture system, containing NAc MSNs and prefrontal cortex (PFC) neurons, and fluorescent non-canonical amino acid tagging (FUNCAT) to visualize newly synthesized proteins in neuronal processes of NAc MSNs and PFC pyramidal neurons. First, we verified that the FUNCAT signal reflects new protein translation. Next, we examined the regulation of translation by group I metabotropic glutamate receptors (mGluRs) and ionotropic glutamate receptors by incubating co-cultures with agonists or antagonists during the 2-h period of non-canonical amino acid labeling. In NAc MSNs, basal translation was modestly reduced by blocking Ca2+-permeable AMPARs whereas blocking all AMPARs or suppressing constitutive mGluR5 signaling enhanced translation. Activating group I mGluRs with dihydroxyphenylglycine increased translation in an mGluR1-dependent manner in NAc MSNs and PFC pyramidal neurons. Disinhibiting excitatory transmission with bicuculline also increased translation. In MSNs, this was reversed by antagonists of mGluR1, mGluR5, AMPARs or NMDARs. In PFC neurons, AMPAR or NMDAR antagonists blocked bicuculline-stimulated translation. Our study, the first to examine glutamatergic regulation of translation in MSNs, demonstrates regulatory mechanisms specific to MSNs that depend on the level of neuronal activation. This sets the stage for understanding how translation may be altered in addiction.
Collapse
Affiliation(s)
- Michael T Stefanik
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Courtney Sakas
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Dennis Lee
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
32
|
Li W, Bellot-Saez A, Phillips ML, Yang T, Longo FM, Pozzo-Miller L. A small-molecule TrkB ligand restores hippocampal synaptic plasticity and object location memory in Rett syndrome mice. Dis Model Mech 2018; 10:837-845. [PMID: 28679669 PMCID: PMC5536912 DOI: 10.1242/dmm.029959] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 05/08/2017] [Indexed: 01/06/2023] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in methyl-CpG-binding protein-2 (MECP2), a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are reduced in RTT autopsy brains and in multiple brain areas of Mecp2-deficient mice. Furthermore, experimental interventions that increase BDNF levels improve RTT-like phenotypes in Mecp2 mutant mice. Here, we characterized the actions of a small-molecule ligand of the BDNF receptor TrkB in hippocampal function in Mecp2 mutant mice. Systemic treatment of female Mecp2 heterozygous (HET) mice with LM22A-4 for 4 weeks improved hippocampal-dependent object location memory and restored hippocampal long-term potentiation (LTP). Mechanistically, LM22A-4 acts to dampen hyperactive hippocampal network activity, reduce the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), and reduce the frequency of spontaneous tetrodotoxin-resistant Ca2+ signals in Mecp2 mutant hippocampal neurons, making them comparable to those features observed in wild-type neurons. Together, these observations indicate that LM22A-4 is a promising therapeutic candidate for the treatment of hippocampal dysfunction in RTT. Editors' choice: The brain-penetrant BDNF loop domain mimetic LM22A-4 improves synaptic plasticity and spatial discrimination memory in Rett syndrome mice, making it a promising therapeutic candidate for the treatment of hippocampal dysfunction.
Collapse
Affiliation(s)
- Wei Li
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Alba Bellot-Saez
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Mary L Phillips
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Tao Yang
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Frank M Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
33
|
Martínez-Rivera A, Hao J, Tropea TF, Giordano TP, Kosovsky M, Rice RC, Lee A, Huganir RL, Striessnig J, Addy NA, Han S, Rajadhyaksha AM. Enhancing VTA Ca v1.3 L-type Ca 2+ channel activity promotes cocaine and mood-related behaviors via overlapping AMPA receptor mechanisms in the nucleus accumbens. Mol Psychiatry 2017; 22:1735-1745. [PMID: 28194001 PMCID: PMC5555837 DOI: 10.1038/mp.2017.9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 11/30/2016] [Accepted: 12/23/2016] [Indexed: 02/07/2023]
Abstract
Genetic factors significantly influence susceptibility for substance abuse and mood disorders. Rodent studies have begun to elucidate a role of Cav1.3 L-type Ca2+ channels in neuropsychiatric-related behaviors, such as addictive and depressive-like behaviors. Human studies have also linked the CACNA1D gene, which codes for the Cav1.3 protein, with bipolar disorder. However, the neurocircuitry and the molecular mechanisms underlying the role of Cav1.3 in neuropsychiatric phenotypes are not well established. In the present study, we directly manipulated Cav1.3 channels in Cav1.2 dihydropyridine insensitive mutant mice and found that ventral tegmental area (VTA) Cav1.3 channels mediate cocaine-related and depressive-like behavior through a common nucleus accumbens (NAc) shell calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (CP-AMPAR) mechanism that requires GluA1 phosphorylation at S831. Selective activation of VTA Cav1.3 with (±)-BayK-8644 (BayK) enhanced cocaine conditioned place preference and cocaine psychomotor activity while inducing depressive-like behavior, an effect not observed in S831A phospho-mutant mice. Infusion of the CP-AMPAR-specific blocker Naspm into the NAc shell reversed the cocaine and depressive-like phenotypes. In addition, activation of VTA Cav1.3 channels resulted in social behavioral deficits. In contrast to the cocaine- and depression-related phenotypes, GluA1/A2 AMPARs in the NAc core mediated social deficits, independent of S831-GluA1 phosphorylation. Using a candidate gene analysis approach, we also identified single-nucleotide polymorphisms in the CACNA1D gene associated with cocaine dependence in human subjects. Together, our findings reveal novel, overlapping mechanisms through which VTA Cav1.3 mediates cocaine-related, depressive-like and social phenotypes, suggesting that Cav1.3 may serve as a target for the treatment of neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Jin Hao
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Thomas F. Tropea
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Thomas P. Giordano
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Maria Kosovsky
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| | - Richard C. Rice
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA
| | - Richard L. Huganir
- Department of Solomon H. Snyder Department of Neuroscience, Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Joerg Striessnig
- Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria; Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Nii A. Addy
- Department of Psychiatry and Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale Graduate School of Arts and Science, New Haven, CT, USA
| | - Shizhong Han
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Anjali M. Rajadhyaksha
- Dept. of Pediatrics, Division of Pediatric Neurology, Weill Cornell Medicine, New York, NY, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|
34
|
Analgesic Mechanisms of Antidepressants for Neuropathic Pain. Int J Mol Sci 2017; 18:ijms18112483. [PMID: 29160850 PMCID: PMC5713449 DOI: 10.3390/ijms18112483] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/16/2022] Open
Abstract
Tricyclic antidepressants and serotonin noradrenaline reuptake inhibitors are used to treat chronic pain, such as neuropathic pain. Why antidepressants are effective for treatment of neuropathic pain and the precise mechanisms underlying their effects, however, remain unclear. The inhibitory effects of these antidepressants for neuropathic pain manifest more quickly than their antidepressive effects, suggesting different modes of action. Recent studies of animal models of neuropathic pain revealed that noradrenaline is extremely important for the inhibition of neuropathic pain. First, increasing noradrenaline in the spinal cord by reuptake inhibition directly inhibits neuropathic pain through α2-adrenergic receptors. Second, increasing noradrenaline acts on the locus coeruleus and improves the function of an impaired descending noradrenergic inhibitory system. Serotonin and dopamine may reinforce the noradrenergic effects to inhibit neuropathic pain. The mechanisms of neuropathic pain inhibition by antidepressants based mainly on experimental findings from animal models of neuropathic pain are discussed in this review.
Collapse
|
35
|
Hiroki T, Suto T, Saito S, Obata H. Repeated Administration of Amitriptyline in Neuropathic Pain: Modulation of the Noradrenergic Descending Inhibitory System. Anesth Analg 2017; 125:1281-1288. [PMID: 28787345 DOI: 10.1213/ane.0000000000002352] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND The tricyclic antidepressant amitriptyline, the serotonin and noradrenaline reuptake inhibitor duloxetine, and gabapentinoids are first-line drugs for treatment of neuropathic pain. The analgesic effect of these drugs relates to brainstem-spinal descending noradrenergic systems. However, amitriptyline utilizes a variety of mechanisms for analgesia in neuropathic pain, and it is unclear which mechanism is most important. In the present study, we investigated the role of descending noradrenergic systems in the analgesic effect of these drugs for treatment of neuropathic pain. We also examined whether amitriptyline modifies the descending noradrenergic systems. METHODS Seven days after L5 spinal nerve ligation (SNL), rats received N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4, 50 mg/kg) to degenerate noradrenergic fibers. The rats then received 5 daily intraperitoneal injections of amitriptyline (10 mg/kg), duloxetine (10 mg/kg), pregabalin (10 mg/kg), or gabapentin (50 mg/kg) from 21 days after SNL surgery. Paw withdrawal thresholds were determined to assess the effect of the drugs on hyperalgesia after SNL. To determine whether 5 daily injections of amitriptyline activated noradrenergic neurons in the locus coeruleus (LC) and spinal cord with or without DSP-4 treatment, we performed immunohistochemistry using antibodies for c-Fos and dopamine beta-hydroxylase (DβH). RESULTS Five daily injections of amitriptyline, duloxetine, pregabalin, and gabapentin exerted antihyperalgesic effects in SNL rats (P < .001; estimated treatment effect of amitriptyline [99% confidence interval]: 59.9 [35.1-84.7] g). The antihyperalgesic effects of duloxetine, pregabalin, and gabapentin were reversed by pretreatment with DSP-4 (P < .001, respectively). However, antihyperalgesia was still observed after treatment of amitriptyline in SNL rats with DSP-4 pretreatment (P < .001, 59.7 [30.0-89.3] g), and this analgesic effect was not reversed by the α2-adrenoceptor antagonist idazoxan (30 μg). Additionally, 5 daily injections of amitriptyline increased the ratio of c-Fos-immunoreactive (IR) cells in noradrenergic LC neurons in SNL rats with or without DSP-4 pretreatment (P < .001, respectively). Five daily injections of amitriptyline increased DβH-IR in the LC and the spinal dorsal horn of SNL rats (P < .001, respectively). With DSP-4 pretreatment, DβH-IR was dramatically decreased with or without 5 daily injections of amitriptyline (P < .001). CONCLUSIONS Five daily injections of amitriptyline produced antihyperalgesic effects against neuropathic pain despite suppression of noradrenergic descending inhibitory systems. Amitriptyline activated LC neurons and increased noradrenergic fibers density in SNL rats. These results suggest that amitriptyline could still produce analgesia under pathological dysfunction of the descending noradrenergic system. Amitriptyline may enhance the analgesic effect of drugs for neuropathic pain that require normal descending noradrenergic inhibition to produce analgesia, such as serotonin and noradrenaline reuptake inhibitors and gabapentinoids.
Collapse
Affiliation(s)
- Tadanao Hiroki
- From the *Department of Anesthesiology, Gunma University Graduate School of Medicine, Gunma, Japan; †Center of Pain Management, Fukushima Medical University Hospital, Fukushima, Japan; and ‡Department of Anesthesiology, Fukushima Medical University, Fukushima, Japan
| | | | | | | |
Collapse
|
36
|
Gideons ES, Lin PY, Mahgoub M, Kavalali ET, Monteggia LM. Chronic lithium treatment elicits its antimanic effects via BDNF-TrkB dependent synaptic downscaling. eLife 2017; 6:e25480. [PMID: 28621662 PMCID: PMC5499943 DOI: 10.7554/elife.25480] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Lithium is widely used as a treatment for Bipolar Disorder although the molecular mechanisms that underlie its therapeutic effects are under debate. In this study, we show brain-derived neurotrophic factor (BDNF) is required for the antimanic-like effects of lithium but not the antidepressant-like effects in mice. We performed whole cell patch clamp recordings of hippocampal neurons to determine the impact of lithium on synaptic transmission that may underlie the behavioral effects. Lithium produced a significant decrease in α-amino-3-hydroxyl-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated miniature excitatory postsynaptic current (mEPSC) amplitudes due to postsynaptic homeostatic plasticity that was dependent on BDNF and its receptor tropomyosin receptor kinase B (TrkB). The decrease in AMPAR function was due to reduced surface expression of GluA1 subunits through dynamin-dependent endocytosis. Collectively, these findings demonstrate a requirement for BDNF in the antimanic action of lithium and identify enhanced dynamin-dependent endocytosis of AMPARs as a potential mechanism underlying the therapeutic effects of lithium.
Collapse
Affiliation(s)
- Erinn S Gideons
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Pei-Yi Lin
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Melissa Mahgoub
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Ege T Kavalali
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| | - Lisa M Monteggia
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
37
|
Ramírez-Jarquín UN, Tapia R. Chronic GABAergic blockade in the spinal cord in vivo induces motor alterations and neurodegeneration. Neuropharmacology 2017; 117:85-92. [DOI: 10.1016/j.neuropharm.2017.01.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/25/2017] [Accepted: 01/31/2017] [Indexed: 12/13/2022]
|
38
|
Morin JP, Rodríguez-Durán LF, Guzmán-Ramos K, Perez-Cruz C, Ferreira G, Diaz-Cintra S, Pacheco-López G. Palatable Hyper-Caloric Foods Impact on Neuronal Plasticity. Front Behav Neurosci 2017; 11:19. [PMID: 28261067 PMCID: PMC5306218 DOI: 10.3389/fnbeh.2017.00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 01/23/2017] [Indexed: 01/01/2023] Open
Abstract
Neural plasticity is an intrinsic and essential characteristic of the nervous system that allows animals “self-tuning” to adapt to their environment over their lifetime. Activity-dependent synaptic plasticity in the central nervous system is a form of neural plasticity that underlies learning and memory formation, as well as long-lasting, environmentally-induced maladaptive behaviors, such as drug addiction and overeating of palatable hyper-caloric (PHc) food. In western societies, the abundance of PHc foods has caused a dramatic increase in the incidence of overweight/obesity and related disorders. To this regard, it has been suggested that increased adiposity may be caused at least in part by behavioral changes in the affected individuals that are induced by the chronic consumption of PHc foods; some authors have even drawn attention to the similarity that exists between over-indulgent eating and drug addiction. Long-term misuse of certain dietary components has also been linked to chronic neuroimmune maladaptation that may predispose individuals to neurodegenerative conditions such as Alzheimer’s disease. In this review article, we discuss recent evidence that shows how consumption of PHc food can cause maladaptive neural plasticity that converts short-term ingestive drives into compulsive behaviors. We also discuss the neural mechanisms of how chronic consumption of PHc foods may alter brain function and lead to cognitive impairments, focusing on prenatal, childhood and adolescence as vulnerable neurodevelopmental stages to dietary environmental insults. Finally, we outline a societal agenda for harnessing permissive obesogenic environments.
Collapse
Affiliation(s)
- Jean-Pascal Morin
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Institute of Medical Psychology and Behavioral Immunobiology, University Hospital Essen, University of Duisburg-EssenEssen, Germany
| | - Luis F Rodríguez-Durán
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Laboratory of Neurobiology of Learning and Memory, Division of Research and Graduate Studies, Faculty of Psychology, National Autonomous University of Mexico (UNAM)Mexico City, Mexico
| | - Kioko Guzmán-Ramos
- Department of Health Sciences, Metropolitan Autonomous University (UAM) Lerma, Mexico
| | - Claudia Perez-Cruz
- Department of Pharmacology, Center of Research and Advance Studies (CINVESTAV) Mexico City, Mexico
| | - Guillaume Ferreira
- Laboratory of Nutrition and Integrative Neurobiology, National Institute of Agricultural Research (INRA), UMR 1286Bordeaux, France; Laboratory of Nutrition and Integrative Neurobiology, Université de BordeauxBordeaux, France
| | - Sofia Diaz-Cintra
- Institute of Neurobiology, National Autonomous University of Mexico (UNAM) Queretaro, Mexico
| | - Gustavo Pacheco-López
- Department of Health Sciences, Metropolitan Autonomous University (UAM)Lerma, Mexico; Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichSchwerzenbach, Switzerland
| |
Collapse
|
39
|
Cellular and molecular mechanisms of the brain-derived neurotrophic factor in physiological and pathological conditions. Clin Sci (Lond) 2016; 131:123-138. [DOI: 10.1042/cs20160009] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 10/24/2016] [Accepted: 11/07/2016] [Indexed: 02/08/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin that plays a key role in the central nervous system, promoting synaptic plasticity, neurogenesis and neuroprotection. The BDNF gene structure is very complex and consists of multiple 5′-non-coding exons, which give rise to differently spliced transcripts, and one coding exon at the 3′-end. These multiple transcripts, together with the complex transcriptional regulatory machinery, lead to a complex and fine regulation of BDNF expression that can be tissue and stimulus specific. BDNF effects are mainly mediated by the high-affinity, tropomyosin-related, kinase B receptor and involve the activation of several downstream cascades, including the mitogen-activated protein kinase, phospholipase C-γ and phosphoinositide-3-kinase pathways. BDNF exerts a wide range of effects on neuronal function, including the modulation of activity-dependent synaptic plasticity and neurogenesis. Importantly, alterations in BDNF expression and function are involved in different brain disorders and represent a major downstream mechanism for stress response, which has important implications in psychiatric diseases, such as major depressive disorders and schizophrenia. In the present review, we have summarized the main features of BDNF in relation to neuronal plasticity, stress response and pathological conditions, and discussed the role of BDNF as a possible target for pharmacological and non-pharmacological treatments in the context of psychiatric illnesses.
Collapse
|
40
|
Werner CT, Murray CH, Reimers JM, Chauhan NM, Woo KKY, Molla HM, Loweth JA, Wolf ME. Trafficking of calcium-permeable and calcium-impermeable AMPA receptors in nucleus accumbens medium spiny neurons co-cultured with prefrontal cortex neurons. Neuropharmacology 2016; 116:224-232. [PMID: 27993521 DOI: 10.1016/j.neuropharm.2016.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 11/27/2022]
Abstract
AMPA receptor (AMPAR) transmission onto medium spiny neurons (MSNs) of the adult rat nucleus accumbens (NAc) is normally dominated by GluA2-containing, Ca2+-impermeable AMPAR (CI-AMPARs). However, GluA2-lacking, Ca2+-permeable AMPA receptors (CP-AMPARs) accumulate after prolonged withdrawal from extended-access cocaine self-administration and thereafter their activation is required for the intensified (incubated) cue-induced cocaine craving that characterizes prolonged withdrawal from such regimens. These findings suggest the existence of mechanisms in NAc MSNs that differentially regulate CI-AMPARs and CP-AMPARs. Here, we compared trafficking of GluA1A2 CI-AMPARs and homomeric GluA1 CP-AMPARs using immunocytochemical assays in cultured NAc MSNs plated with prefrontal cortical neurons to restore excitatory inputs. We began by evaluating constitutive internalization of surface receptors and found that this occurs more rapidly for CP-AMPARs. Next, we studied receptor insertion into the membrane; combined with past results, the present findings suggest that activation of protein kinase A accelerates insertion of both CP-AMPARs and CI-AMPARs. We also studied constitutive cycling (net loss of receptors from the membrane under conditions where internalization and recycling are both occurring). Interestingly, although CP-AMPARs exhibit faster constitutive internalization, they cycle at similar rates as CI-AMPARs, suggesting faster reinsertion of CP-AMPARs. In studies of synaptic scaling, long-term (24 h) activity blockade increased surface expression and cycling rates of CI-AMPARs but not CP-AMPARs, whereas long-term increases in activity produced more pronounced scaling down of CI-AMPARs than CP-AMPARs but did not alter receptor cycling. These findings can be used to evaluate and generate hypotheses regarding AMPAR plasticity in the rat NAc following cocaine exposure.
Collapse
Affiliation(s)
- Craig T Werner
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Conor H Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jeremy M Reimers
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Niravkumar M Chauhan
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth K Y Woo
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hanna M Molla
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Jessica A Loweth
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Marina E Wolf
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
41
|
Matsuoka H, Suto T, Saito S, Obata H. Amitriptyline, but Not Pregabalin, Reverses the Attenuation of Noxious Stimulus–Induced Analgesia After Nerve Injury in Rats. Anesth Analg 2016; 123:504-10. [DOI: 10.1213/ane.0000000000001301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Fernandes D, Carvalho AL. Mechanisms of homeostatic plasticity in the excitatory synapse. J Neurochem 2016; 139:973-996. [PMID: 27241695 DOI: 10.1111/jnc.13687] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 11/30/2022]
Abstract
Brain development, sensory information processing, and learning and memory processes depend on Hebbian forms of synaptic plasticity, and on the remodeling and pruning of synaptic connections. Neurons in networks implicated in these processes carry out their functions while facing constant perturbation; homeostatic responses are therefore required to maintain neuronal activity within functional ranges for proper brain function. Here, we will review in vitro and in vivo studies demonstrating that several mechanisms underlie homeostatic plasticity of excitatory synapses, and identifying participant molecular players. Emerging evidence suggests a link between disrupted homeostatic synaptic plasticity and neuropsychiatric and neurologic disorders. Hebbian forms of synaptic plasticity, such as long-term potentiation (LTP), induce long-lasting changes in synaptic strength, which can be destabilizing and drive activity to saturation. Conversely, homeostatic plasticity operates to compensate for prolonged activity changes, stabilizing neuronal firing within a dynamic physiological range. We review mechanisms underlying homeostatic plasticity, and address how neurons integrate distinct forms of plasticity for proper brain function. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".
Collapse
Affiliation(s)
- Dominique Fernandes
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,PDBEB-Doctoral Program in Experimental Biology and Biomedicine, Interdisciplinary Research Institute (III-UC), University of Coimbra, Coimbra, Portugal
| | - Ana Luísa Carvalho
- CNC-Centre for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
43
|
Activation of PPARγ Ameliorates Spatial Cognitive Deficits through Restoring Expression of AMPA Receptors in Seipin Knock-Out Mice. J Neurosci 2016; 36:1242-53. [PMID: 26818512 DOI: 10.1523/jneurosci.3280-15.2016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A characteristic phenotype of congenital generalized lipodystrophy 2 (CGL2) that is caused by loss-of-function of seipin gene is mental retardation. Here, we show that seipin deficiency in hippocampal CA1 pyramidal cells caused the reduction of peroxisome proliferator-activated receptor gamma (PPARγ). Twelve-week-old systemic seipin knock-out mice and neuronal seipin knock-out (seipin-nKO) mice, but not adipose seipin knock-out mice, exhibited spatial cognitive deficits as assessed by the Morris water maze and Y-maze, which were ameliorated by the treatment with the PPARγ agonist rosiglitazone (rosi). In addition, seipin-nKO mice showed the synaptic dysfunction and the impairment of NMDA receptor-dependent LTP in hippocampal CA1 regions. The density of AMPA-induced current (IAMPA) in CA1 pyramidal cells and GluR1/GluR2 expression were significantly reduced in seipin-nKO mice, whereas the NMDA-induced current (INMDA) and NR1/NR2 expression were not altered. Rosi treatment in seipin-nKO mice could correct the decrease in expression and activity of AMPA receptor (AMPAR) and was accompanied by recovered synaptic function and LTP induction. Furthermore, hippocampal ERK2 and CREB phosphorylation in seipin-nKO mice were reduced and this could be rescued by rosi treatment. Rosi treatment in seipin-nKO mice elevated BDNF concentration. The MEK inhibitor U0126 blocked rosi-restored AMPAR expression and LTP induction in seipin-nKO mice, but the Trk family inhibitor K252a did not. These findings indicate that the neuronal seipin deficiency selectively suppresses AMPAR expression through reducing ERK-CREB activities, leading to the impairment of LTP and spatial memory, which can be rescued by PPARγ activation. SIGNIFICANCE STATEMENT Congenital generalized lipodystrophy 2 (CGL2), caused by loss-of-function mutation of seipin gene, is characterized by mental retardation. By the generation of systemic or neuronal seipin knock-out mice, the present study provides in vivo evidence that neuronal seipin deficiency causes deficits in spatial memory and hippocampal LTP induction. Neuronal seipin deficiency selectively suppresses AMPA receptor expression, ERK-CREB phosphorylation with the decline of PPARγ. The PPARγ agonist rosiglitazone can ameliorate spatial cognitive deficits and rescue the LTP induction in seipin knock-out mice by restoring AMPA receptor expression and ERK-CREB activities.
Collapse
|
44
|
Han Y, Luo Y, Sun J, Ding Z, Liu J, Yan W, Jian M, Xue Y, Shi J, Wang JS, Lu L. AMPK Signaling in the Dorsal Hippocampus Negatively Regulates Contextual Fear Memory Formation. Neuropsychopharmacology 2016; 41:1849-64. [PMID: 26647974 PMCID: PMC4869054 DOI: 10.1038/npp.2015.355] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 11/08/2015] [Accepted: 12/01/2015] [Indexed: 12/12/2022]
Abstract
Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energy homeostasis. However, still unknown is its role in memory formation. In the present study, we found that AMPK is primarily expressed in neurons in the hippocampus, and then we demonstrated a time-dependent decrease in AMPK activity and increase in mammalian target of rapamycin complex 1 (mTORC1) activity after contextual fear conditioning in the CA1 but not CA3 area of the dorsal hippocampus. Using pharmacological methods and adenovirus gene transfer to bidirectionally regulate AMPK activity, we found that increasing AMPK activity in the CA1 impaired the formation of long-term fear memory, and decreasing AMPK activity enhanced fear memory formation. These findings were associated with changes in the phosphorylation of AMPK and p70s6 kinase (p70s6k) and expression of BDNF and membrane GluR1 and GluR2 in the CA1. Furthermore, the prior administration of an mTORC1 inhibitor blocked the enhancing effect of AMPK inhibition on fear memory formation, suggesting that this negative regulation of contextual fear memory by AMPK in the CA1 depends on the mTORC1 signaling pathway. Finally, we found that AMPK activity regulated hippocampal spine growth associated with memory formation. In summary, our results indicate that AMPK is a key negative regulator of plasticity and fear memory formation.
Collapse
Affiliation(s)
- Ying Han
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China,Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yixiao Luo
- Department of Pharmacy, Medical College, Hunan Normal University, Changsha, China
| | - Jia Sun
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, China
| | - Zengbo Ding
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jianfeng Liu
- Department of Pharmacology and Toxicology, University of Buffalo, State University of New York, Buffalo, NY, USA
| | - Wei Yan
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Min Jian
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Jie Shi
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Ji-Shi Wang
- Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang, China,Department of Hematology, Affiliated Hospital of Guiyang Medical University, Guiyang 550004, China, E-mail:
| | - Lin Lu
- Institute of Mental Health/Peking University Sixth Hospital and Key Laboratory of Mental Health, Beijing, China,National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China,Institute of Mental Health, Peking University, 51 Huayuan Bei Road, Beijing 100191, China, Tel: +86 10 82805308, Fax: +86 10 62032624, E-mail:
| |
Collapse
|
45
|
Hussein NA, Delaney TL, Tounsel BL, Liebl FLW. The Extracellular-Regulated Kinase Effector Lk6 is Required for Glutamate Receptor Localization at the Drosophila Neuromuscular Junction. J Exp Neurosci 2016; 10:77-91. [PMID: 27199570 PMCID: PMC4866800 DOI: 10.4137/jen.s32840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 11/16/2022] Open
Abstract
The proper localization and synthesis of postsynaptic glutamate receptors are essential for synaptic plasticity. Synaptic translation initiation is thought to occur via the target of rapamycin (TOR) and mitogen-activated protein kinase signal-integrating kinase (Mnk) signaling pathways, which is downstream of extracellular-regulated kinase (ERK). We used the model glutamatergic synapse, the Drosophila neuromuscular junction, to better understand the roles of the Mnk and TOR signaling pathways in synapse development. These synapses contain non-NMDA receptors that are most similar to AMPA receptors. Our data show that Lk6, the Drosophila homolog of Mnk1 and Mnk2, is required in either presynaptic neurons or postsynaptic muscle for the proper localization of the GluRIIA glutamate receptor subunit. Lk6 may signal through eukaryotic initiation factor (eIF) 4E to regulate the synaptic levels of GluRIIA as either interfering with eIF4E binding to eIF4G or expression of a nonphosphorylatable isoform of eIF4E resulted in a significant reduction in GluRIIA at the synapse. We also find that Lk6 and TOR may independently regulate synaptic levels of GluRIIA.
Collapse
Affiliation(s)
- Nizar A Hussein
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Taylor L Delaney
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Brittany L Tounsel
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| |
Collapse
|
46
|
Xu D, Su C, Lin HY, Manders T, Wang J. Persistent neuropathic pain increases synaptic GluA1 subunit levels in core and shell subregions of the nucleus accumbens. Neurosci Lett 2015; 609:176-81. [PMID: 26477778 DOI: 10.1016/j.neulet.2015.10.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 11/18/2022]
Abstract
The nucleus accumbens (NAc) is a key component of the brain reward system, and it is composed of core and shell subregions. Glutamate transmission through AMPA-type receptors in both core and shell of the NAc has been shown to regulate reward- and aversion-type behaviors. Previous studies have additionally demonstrated a role for AMPA receptor signaling in the NAc in chronic pain states. Here, we show that persistent neuropathic pain, modeled by spared nerve injury (SNI), selectively increases the numbers of GluA1 subunits of AMPA receptors at the synapse of both core and shell subregions. Such increases are not observed, however, for the GluA2 subunits. Furthermore, we find that phosphorylation at Ser845-GluA1 is increased by SNI at both core and shell subregions. These results demonstrate that persistent neuropathic pain increases AMPA receptor delivery to the synapse in both NAc core and shell, implying a role for AMPA receptor signaling in these regions in pain states.
Collapse
Affiliation(s)
- Duo Xu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Chen Su
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Hau-Yueh Lin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Toby Manders
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York, NY 10016, United States; Department of Neuroscience and Physiology, New York University School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
47
|
Su C, D'amour J, Lee M, Lin HY, Manders T, Xu D, Eberle SE, Goffer Y, Zou AH, Rahman M, Ziff E, Froemke RC, Huang D, Wang J. Persistent pain alters AMPA receptor subunit levels in the nucleus accumbens. Mol Brain 2015; 8:46. [PMID: 26260133 PMCID: PMC4531890 DOI: 10.1186/s13041-015-0140-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Background A variety of pain conditions have been found to be associated with depressed mood in clinical studies. Depression-like behaviors have also been described in animal models of persistent or chronic pain. In rodent chronic neuropathic pain models, elevated levels of GluA1 subunits of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the nucleus accumbens (NAc) have been found to inhibit depressive symptoms. However, the effect of reversible post-surgical pain or inflammatory pain on affective behaviors such as depression has not been well characterized in animal models. Neither is it known what time frame is required to elicit AMPA receptor subunit changes in the NAc in various pain conditions. Results In this study, we compared behavioral and biochemical changes in three pain models: the paw incision (PI) model for post-incisional pain, the Complete Freund’s Adjuvant (CFA) model for persistent but reversible inflammatory pain, and the spared nerve injury (SNI) model for chronic postoperative neuropathic pain. In all three models, rats developed depressive symptoms that were concurrent with the presentation of sensory allodynia. GluA1 levels at the synapses of the NAc, however, differed in these three models. The level of GluA1 subunits of AMPA-type receptors at NAc synapses was not altered in the PI model. GluA1 levels were elevated in the CFA model after a period (7 d) of persistent pain, leading to the formation of GluA2-lacking AMPA receptors. As pain symptoms began to resolve, however, GluA1 levels returned to baseline. Meanwhile, in the SNI model, in which pain persisted beyond 14 days, GluA1 levels began to rise after pain became persistent and remained elevated. In addition, we found that blocking GluA2-lacking AMPA receptors in the NAc further decreased the depressive symptoms only in persistent pain models. Conclusion Our study shows that while both short-term and persistent pain can trigger depression-like behaviors, GluA1 upregulation in the NAc likely represents a unique adaptive response to minimize depressive symptoms in persistent pain states.
Collapse
Affiliation(s)
- Chen Su
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - James D'amour
- Departments of Otolaryngology and Physiology and Neuroscience, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA. James.D'
| | - Michelle Lee
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Hau-Yeuh Lin
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Toby Manders
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Duo Xu
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Sarah E Eberle
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Yossef Goffer
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | - Anthony H Zou
- Department of Anesthesiology, New York University School of Medicine, New York, NY, USA.
| | | | - Edward Ziff
- Department of Biochemistry, New York University School of Medicine, New York, NY, USA.
| | - Robert C Froemke
- Departments of Otolaryngology and Physiology and Neuroscience, The Helen and Martin Kimmel Center for Biology and Medicine at the Skirball Institute for Biomolecular Medicine, New York University School of Medicine, New York, NY, USA.
| | - Dong Huang
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jing Wang
- Departments of Anesthesiology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
48
|
Li Y, Pehrson AL, Waller JA, Dale E, Sanchez C, Gulinello M. A critical evaluation of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1)'s putative role in regulating dendritic plasticity, cognitive processes, and mood in animal models of depression. Front Neurosci 2015; 9:279. [PMID: 26321903 PMCID: PMC4530346 DOI: 10.3389/fnins.2015.00279] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 07/23/2015] [Indexed: 11/13/2022] Open
Abstract
Major depressive disorder (MDD) is primarily conceptualized as a mood disorder but cognitive dysfunction is also prevalent, and may limit the daily function of MDD patients. Current theories on MDD highlight disturbances in dendritic plasticity in its pathophysiology, which could conceivably play a role in the production of both MDD-related mood and cognitive symptoms. This paper attempts to review the accumulated knowledge on the basic biology of the activity-regulated cytoskeleton-associated protein (Arc or Arg3.1), its effects on neural plasticity, and how these may be related to mood or cognitive dysfunction in animal models of MDD. On a cellular level, Arc plays an important role in modulating dendritic spine density and remodeling. Arc also has a close, bidirectional relationship with postsynaptic glutamate neurotransmission, since it is stimulated by multiple glutamatergic receptor mechanisms but also modulates α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. The effects on AMPA receptor trafficking are likely related to Arc's ability to modulate phenomena such as long-term potentiation, long-term depression, and synaptic scaling, each of which are important for maintaining proper cognitive function. Chronic stress models of MDD in animals show suppressed Arc expression in the frontal cortex but elevation in the amygdala. Interestingly, cognitive tasks depending on the frontal cortex are generally impaired by chronic stress, while those depending on the amygdala are enhanced, and antidepressant treatments stimulate cortical Arc expression with a timeline that is reminiscent of the treatment efficacy lag observed in the clinic or in preclinical models. However, pharmacological treatments that stimulate regional Arc expression do not universally improve relevant cognitive functions, and this highlights a need to further refine our understanding of Arc on a subcellular and network level.
Collapse
Affiliation(s)
- Yan Li
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Alan L Pehrson
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Jessica A Waller
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Elena Dale
- Neuroinflammation Disease Biology Unit, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Connie Sanchez
- External Sourcing and Scientific Excellence, Lundbeck Research USA, Inc. Paramus, NJ, USA
| | - Maria Gulinello
- Behavioral Core Facility, Department of Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| |
Collapse
|
49
|
Kron M, Lang M, Adams IT, Sceniak M, Longo F, Katz DM. A BDNF loop-domain mimetic acutely reverses spontaneous apneas and respiratory abnormalities during behavioral arousal in a mouse model of Rett syndrome. Dis Model Mech 2015; 7:1047-55. [PMID: 25147297 PMCID: PMC4142725 DOI: 10.1242/dmm.016030] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Reduced levels of brain-derived neurotrophic factor (BDNF) are thought to contribute to the pathophysiology of Rett syndrome (RTT), a severe neurodevelopmental disorder caused by loss-of-function mutations in the gene encoding methyl-CpG-binding protein 2 (MeCP2). In Mecp2 mutant mice, BDNF deficits have been associated with breathing abnormalities, a core feature of RTT, as well as with synaptic hyperexcitability within the brainstem respiratory network. Application of BDNF can reverse hyperexcitability in acute brainstem slices from Mecp2-null mice, suggesting that therapies targeting BDNF or its receptor, TrkB, could be effective at acute reversal of respiratory abnormalities in RTT. Therefore, we examined the ability of LM22A-4, a small-molecule BDNF loop-domain mimetic and TrkB partial agonist, to modulate synaptic excitability within respiratory cell groups in the brainstem nucleus tractus solitarius (nTS) and to acutely reverse abnormalities in breathing at rest and during behavioral arousal in Mecp2 mutants. Patch-clamp recordings in Mecp2-null brainstem slices demonstrated that LM22A-4 decreases excitability at primary afferent synapses in the nTS by reducing the amplitude of evoked excitatory postsynaptic currents and the frequency of spontaneous and miniature excitatory postsynaptic currents. In vivo, acute treatment of Mecp2-null and -heterozygous mutants with LM22A-4 completely eliminated spontaneous apneas in resting animals, without sedation. Moreover, we demonstrate that respiratory dysregulation during behavioral arousal, a feature of human RTT, is also reversed in Mecp2 mutants by acute treatment with LM22A-4. Together, these data support the hypothesis that reduced BDNF signaling and respiratory dysfunction in RTT are linked, and establish the proof-of-concept that treatment with a small-molecule structural mimetic of a BDNF loop domain and a TrkB partial agonist can acutely reverse abnormal breathing at rest and in response to behavioral arousal in symptomatic RTT mice.
Collapse
Affiliation(s)
- Miriam Kron
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Min Lang
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Ian T Adams
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Michael Sceniak
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | - Frank Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | - David M Katz
- Department of Neurosciences, Case Western Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
50
|
Park YH, Mueller BH, McGrady NR, Ma HY, Yorio T. AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells. Exp Eye Res 2015; 132:136-50. [PMID: 25643624 DOI: 10.1016/j.exer.2015.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
The ionotropic glutamate receptors (iGLuR) have been hypothesized to play a role in neuronal pathogenesis by mediating excitotoxic death. Previous studies on iGluR in the retina have focused on two broad classes of receptors: NMDA and non-NMDA receptors including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and kainate receptor. In this study, we examined the role of receptor desensitization on the specific excitotoxic effects of AMPAR activation on primary retinal ganglion cells (RGCs). Purified rat RGCs were isolated from postnatal day 4-7 Sprague-Dawley rats. Calcium imaging was used to identify the functionality of the AMPARs and selectivity of the s-AMPA agonist. Phosphorylated CREB and ERK1/2 expression were performed following s-AMPA treatment. s-AMPA excitotoxicity was determined by JC-1 mitochondrial membrane depolarization assay, caspase 3/7 luciferase activity assay, immunoblot analysis for α-fodrin, and Live (calcein AM)/Dead (ethidium homodimer-1) assay. RGC cultures of 98% purity, lacking Iba1 and GFAP expression were used for the present studies. Isolated prenatal RGCs expressed calcium permeable AMPAR and s-AMPA (100 μM) treatment of cultured RGCs significantly increased phosphorylation of CREB but not that of ERK1/2. A prolonged (6 h) AMPAR activation in purified RGCs using s-AMPA (100 μM) did not depolarize the RGC mitochondrial membrane potential. In addition, treatment of cultured RGCs with s-AMPA, both in the presence and absence of trophic factors (BDNF and CNTF), did not increase caspase 3/7 activities or the cleavage of α-fodrin (neuronal apoptosis marker), as compared to untreated controls. Lastly, a significant increase in cell survival of RGCs was observed after s-AMPA treatment as compared to control untreated RGCs. However, preventing the desensitization of AMPAR with the treatment with either kainic acid (100 μM) or the combination of s-AMPA and cyclothiazide (50 μM) significantly reduced cell survivability. Activation of the AMPAR in RGCs does not appear to activate a signaling cascade to apoptosis, suggesting that RGCs in vitro are not susceptible to AMPA excitotoxicity as previously hypothesized. Conversely, preventing AMPAR desensitization through differential agonist activation caused AMPAR mediated excitotoxicity. Activation of the AMPAR in increasing CREB phosphorylation was dependent on the presence of calcium, which may help explain this action in increasing RGC survival.
Collapse
Affiliation(s)
- Yong H Park
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Brett H Mueller
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nolan R McGrady
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|