1
|
Schienle A, Kogler W, Seibel A, Wabnegger A. The pill you don't have to take that is still effective: neural correlates of imaginary placebo intake for regulating disgust. Soc Cogn Affect Neurosci 2024; 19:nsae021. [PMID: 38450743 PMCID: PMC11227952 DOI: 10.1093/scan/nsae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/22/2023] [Accepted: 03/06/2024] [Indexed: 03/08/2024] Open
Abstract
A commonly established protocol for the administration of open-label placebos (OLPs)-placebos honestly prescribed-emphasizes the necessity of ingesting the pill for the placebo effect to manifest. The current functional magnetic resonance imaging study used a novel approach to OLP administration: the imaginary intake of an OLP pill for regulating disgust. A total of 99 females were randomly allocated to one of three groups that either swallowed a placebo pill (OLP Pill), imagined the intake of a placebo pill (Imaginary Pill) or passively viewed (PV) repulsive and neutral images. The imaginary pill reduced reported disgust more effectively than the OLP pill and was also perceived as a more plausible method to reduce emotional distress. Relative to the OLP pill, the imaginary pill lowered neural activity in a region of interest involved in disgust processing: the pallidum. No significant differences in brain activation were found when comparing the OLP pill with PV. These findings highlight that imagining the intake of an OLP emerged as a superior method for regulating feelings of disgust compared to the actual ingestion of a placebo pill. The study's innovative approach sheds new light on the potential of placebo interventions in emotion regulation.
Collapse
Affiliation(s)
- Anne Schienle
- Department of Clinical Psychology, University of Graz, Universitaetsplatz 2, Graz 8010, Austria
| | - Wolfgang Kogler
- Department of Clinical Psychology, University of Graz, Universitaetsplatz 2, Graz 8010, Austria
| | - Arved Seibel
- Department of Clinical Psychology, University of Graz, Universitaetsplatz 2, Graz 8010, Austria
| | - Albert Wabnegger
- Department of Clinical Psychology, University of Graz, Universitaetsplatz 2, Graz 8010, Austria
| |
Collapse
|
2
|
de Carvalho RP, do Vale B, Dsouki NA, Cafarchio EM, De Luca LA, Aronsson P, Sato MA. GABAergic and glutamatergic transmission reveals novel cardiovascular and urinary bladder control features in the shell nucleus accumbens. Brain Res 2023; 1818:148520. [PMID: 37562564 DOI: 10.1016/j.brainres.2023.148520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/24/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The shell Nucleus Accumbens (NAcc) projects to the lateral preoptic area, which is involved in the central micturition control and receives inputs from medullary areas involved in cardiovascular control. We investigated the role of GABAergic and glutamatergic transmission in the shell NAcc on intravesical pressure (IP) and cardiovascular control. Male Wistar rats with guide cannulas implanted bilaterally in the shell NAcc 7 days prior to the experiments were anesthetized with 2% isoflurane in 100% O2 and subjected to cannulation of the femoral artery and vein for mean arterial pressure (MAP) and heart rate recordings (HR) and infusion of drugs, respectively. The urinary bladder (UB) was cannulated for IP measurement. A Doppler flow probe was placed around the renal arterial for renal blood flow (RBF) measurement. After the baseline MAP, HR, IP and RBF recordings for 15 min, GABA or bicuculline methiodate (BMI) or L-glutamate or kynurenic acid (KYN) or saline (vehicle) were bilaterally injected into the shell NAcc and the variables were measured for 30 min. Data are as mean ± SEM and submitted to Student́s t test. GABA injections into the shell NAcc evoked a significant fall in MAP and HR and increased IP and RC compared to saline. L-glutamate in the shell NAcc increased MAP, HR and IP and reduced RC. Injections of BMI and KYN elicited no changes in the variables recorded. Therefore, the GABAergic and glutamatergic transmissions in neurons in the shell NAcc are involved in the neural pathways responsible for the central cardiovascular control and UB regulation.
Collapse
Affiliation(s)
- Rodrigo P de Carvalho
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitario FMABC, Santo Andre, SP, Brazil.
| | - Bárbara do Vale
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitario FMABC, Santo Andre, SP, Brazil.
| | - Nuha A Dsouki
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitario FMABC, Santo Andre, SP, Brazil.
| | - Eduardo M Cafarchio
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitario FMABC, Santo Andre, SP, Brazil.
| | - Laurival A De Luca
- Dept. Physiology and Pathology, School of Dentistry, São Paulo State University - UNESP, Araraquara, SP, Brazil.
| | - Patrik Aronsson
- Dept Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Monica A Sato
- Dept. Morphology and Physiology, Faculdade de Medicina do ABC, Centro Universitario FMABC, Santo Andre, SP, Brazil.
| |
Collapse
|
3
|
Foxall GR. The neurophysiological Behavioral Perspective Model of consumer choice and its contribution to the intentional behaviorist research programme. Front Hum Neurosci 2023; 17:1190108. [PMID: 37593041 PMCID: PMC10427341 DOI: 10.3389/fnhum.2023.1190108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
Cognitive explanations raise epistemological problems not faced by accounts confined to observable variables. Many explanatory components of cognitive models are unobservable: beliefs, attitudes, and intentions, for instance, must be made empirically available to the researcher in the form of measures of observable behavior from which the latent variables are inferred. The explanatory variables are abstract and theoretical and rely, if they are to enter investigations and explanations, on reasoned agreement on how they can be captured by proxy variables derived from what people say and how they behave. Psychometrics must be founded upon a firm, intersubjective agreement among researchers and users of research on the relationship of behavioral measures to the intentional constructs to which they point and the latent variables they seek to operationalize. Only if these considerations are adequately addressed can we arrive at consistent interpretations of the data. This problem provides the substance of the intentional behaviorist research programme which seeks to provide a rationale for the cognitive explanation. Within this programme, two versions of the Behavioral Perspective Model (BPM), an extensional portrayal of socioeconomic behavior and a corresponding intentional approach, address the task of identifying where intentional explanation becomes necessary and the form it should take. This study explores a third version, based on neurophysiological substrates of consumer choice as a contributor to this task. The nature of "value" is closely related to the rationale for a neurophysiological model of consumer choice. The variables involved are operationally specified and measured with high intersubjective agreement. The intentional model (BPM-I), depicting consumer action in terms of mental processes such as perception, deliberation, and choice, extends the purview of the BPM to new situations and areas of explanation.
Collapse
Affiliation(s)
- Gordon R Foxall
- Cardiff Business School, Cardiff University, Cardiff, United Kingdom
- School of Business Administration, Reykjavík University, Reykjavik, Iceland
| |
Collapse
|
4
|
Soares-Cunha C, Heinsbroek JA. Ventral pallidal regulation of motivated behaviors and reinforcement. Front Neural Circuits 2023; 17:1086053. [PMID: 36817646 PMCID: PMC9932340 DOI: 10.3389/fncir.2023.1086053] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
The interconnected nuclei of the ventral basal ganglia have long been identified as key regulators of motivated behavior, and dysfunction of this circuit is strongly implicated in mood and substance use disorders. The ventral pallidum (VP) is a central node of the ventral basal ganglia, and recent studies have revealed complex VP cellular heterogeneity and cell- and circuit-specific regulation of reward, aversion, motivation, and drug-seeking behaviors. Although the VP is canonically considered a relay and output structure for this circuit, emerging data indicate that the VP is a central hub in an extensive network for reward processing and the regulation of motivation that extends beyond classically defined basal ganglia borders. VP neurons respond temporally faster and show more advanced reward coding and prediction error processing than neurons in the upstream nucleus accumbens, and regulate the activity of the ventral mesencephalon dopamine system. This review will summarize recent findings in the literature and provide an update on the complex cellular heterogeneity and cell- and circuit-specific regulation of motivated behaviors and reinforcement by the VP with a specific focus on mood and substance use disorders. In addition, we will discuss mechanisms by which stress and drug exposure alter the functioning of the VP and produce susceptibility to neuropsychiatric disorders. Lastly, we will outline unanswered questions and identify future directions for studies necessary to further clarify the central role of VP neurons in the regulation of motivated behaviors. Significance: Research in the last decade has revealed a complex cell- and circuit-specific role for the VP in reward processing and the regulation of motivated behaviors. Novel insights obtained using cell- and circuit-specific interrogation strategies have led to a major shift in our understanding of this region. Here, we provide a comprehensive review of the VP in which we integrate novel findings with the existing literature and highlight the emerging role of the VP as a linchpin of the neural systems that regulate motivation, reward, and aversion. In addition, we discuss the dysfunction of the VP in animal models of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jasper A. Heinsbroek
- Department of Anesthesiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
5
|
Wang J, Beecher K, Chehrehasa F, Moody H. The limitations of investigating appetite through circuit manipulations: are we biting off more than we can chew? Rev Neurosci 2022; 34:295-311. [PMID: 36054842 DOI: 10.1515/revneuro-2022-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/09/2022] [Indexed: 11/15/2022]
Abstract
Disordered eating can underpin a number of debilitating and prevalent chronic diseases, such as obesity. Broader advances in psychopharmacology and biology have motivated some neuroscientists to address diet-induced obesity through reductionist, pre-clinical eating investigations on the rodent brain. Specifically, chemogenetic and optogenetic methods developed in the 21st century allow neuroscientists to perform in vivo, region-specific/projection-specific/promoter-specific circuit manipulations and immediately assess the impact of these manipulations on rodent feeding. These studies are able to rigorously conclude whether a specific neuronal population regulates feeding behaviour in the hope of eventually developing a mechanistic neuroanatomical map of appetite regulation. However, an artificially stimulated/inhibited rodent neuronal population that changes feeding behaviour does not necessarily represent a pharmacological target for treating eating disorders in humans. Chemogenetic/optogenetic findings must therefore be triangulated with the array of theories that contribute to our understanding of appetite. The objective of this review is to provide a wide-ranging discussion of the limitations of chemogenetic/optogenetic circuit manipulation experiments in rodents that are used to investigate appetite. Stepping into and outside of medical science epistemologies, this paper draws on philosophy of science, nutrition, addiction biology and neurophilosophy to prompt more integrative, transdisciplinary interpretations of chemogenetic/optogenetic appetite data. Through discussing the various technical and epistemological limitations of these data, we provide both an overview of chemogenetics and optogenetics accessible to non-neuroscientist obesity researchers, as well as a resource for neuroscientists to expand the number of lenses through which they interpret their circuit manipulation findings.
Collapse
Affiliation(s)
- Joshua Wang
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Kate Beecher
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Building 71/918 Royal Brisbane and Women's Hospital Campus, Herston 4029, QLD, Australia
| | - Fatemeh Chehrehasa
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| | - Hayley Moody
- Queensland University of Technology, 2 George Street, Brisbane 4000, QLD, Australia
| |
Collapse
|
6
|
Hurley MM, Nawari AN, Chen VX, O'Brien SC, Sabir AI, Goodman EJ, Wiles LJ, Biswas A, Aston SA, Khambadkone SG, Tamashiro KL, Moran TH. Adolescent female rats recovered from the activity-based anorexia display blunted hedonic responding. Int J Eat Disord 2022; 55:1042-1053. [PMID: 35689569 PMCID: PMC9545546 DOI: 10.1002/eat.23752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
OBJECTIVE As patients with anorexia nervosa tend to "like" palatable tastants less than controls, we set out to model this preclinically by using the taste reactivity test (TRT) to assess hedonic state in rats following weight restoration from a bout of activity-based anorexia (ABA). METHOD Female rats (n = 31) were surgically implanted with an intraoral catheter, which allowed experimenters to assess baseline TRT to six tastants. Following baseline TRT, animals were either exposed to the activity-based anorexia condition (ABA; 1.5HR chow/ad lib wheel until 25% weight loss), kept sedentary (SED; ad lib chow/locked wheel), given access to running wheels with ad lib chow access (RW; ad lib chow/wheel), or were body weight matched to the ABA group (BWM; restricted chow/locked wheel). Following 25% weight loss, wheels were locked and food returned to ABA rats. Paired RW groups had their wheels locked and paired BWM rats were given ad lib access to food. Animals were given 10 days to recover prior to a second TRT. Videos were analyzed for liking (tongue protrusions) and disliking (gape) behaviors. RESULTS The ABA group displayed a significant within-subject reduction in cumulative lick responses to water and 1 M sucrose. Additionally, we found the SED and ABA group displayed a significant within-subject reduction in cumulative lick responses to .1 M sucrose. Positive hedonic responses did not decline in either the BWM or the RW groups. DISCUSSION The data show a novel phenomenon that a history of ABA results in an anhedonia phenotype that mirrors aspects of AN. SIGNIFICANCE STATEMENT Patients recovered from anorexia nervosa report anhedonia, or the lack of pleasure in consuming palatable foods. Unfortunately, the biological mechanism underpinning anhedonia in anorexia nervosa is not well understood. The current study assessed hedonic state in adolescent female rats prior to and 10 days recovered following the activity-based anorexia paradigm. Age-matched, running wheel-matched and body weight-matched control groups were also tested at the same time points.
Collapse
Affiliation(s)
- Matthew M. Hurley
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ashraf N. Nawari
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Victoria X. Chen
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Shannon C. O'Brien
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Aliasgher I. Sabir
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Ethan J. Goodman
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Lucas J. Wiles
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Aditi Biswas
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Sean Andrew Aston
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Seva G. Khambadkone
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Kellie L. Tamashiro
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Timothy H. Moran
- Department of Psychiatry & Behavioral SciencesThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
7
|
Morales I. Brain regulation of hunger and motivation: The case for integrating homeostatic and hedonic concepts and its implications for obesity and addiction. Appetite 2022; 177:106146. [PMID: 35753443 DOI: 10.1016/j.appet.2022.106146] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022]
Abstract
Obesity and other eating disorders are marked by dysregulations to brain metabolic, hedonic, motivational, and sensory systems that control food intake. Classic approaches in hunger research have distinguished between hedonic and homeostatic processes, and have mostly treated these systems as independent. Hindbrain structures and a complex network of interconnected hypothalamic nuclei control metabolic processes, energy expenditure, and food intake while mesocorticolimbic structures are though to control hedonic and motivational processes associated with food reward. However, it is becoming increasingly clear that hedonic and homeostatic brain systems do not function in isolation, but rather interact as part of a larger network that regulates food intake. Incentive theories of motivation provide a useful route to explore these interactions. Adapting incentive theories of motivation can enable researchers to better how motivational systems dysfunction during disease. Obesity and addiction are associated with profound alterations to both hedonic and homeostatic brain systems that result in maladaptive patterns of consumption. A subset of individuals with obesity may experience pathological cravings for food due to incentive sensitization of brain systems that generate excessive 'wanting' to eat. Further progress in understanding how the brain regulates hunger and appetite may depend on merging traditional hedonic and homeostatic concepts of food reward and motivation.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI, 48109-1043, USA.
| |
Collapse
|
8
|
Riegel M, Wierzba M, Wypych M, Ritchey M, Jednoróg K, Grabowska A, Vuilleumier P, Marchewka A. Distinct medial-tempora lobe mechanisms of encoding and amygdala-mediated memory reinstatement for disgust and fear. Neuroimage 2022; 251:118889. [PMID: 35065268 DOI: 10.1016/j.neuroimage.2022.118889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/22/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022] Open
Abstract
Current models of episodic memory posit that retrieval involves the reenactment of encoding processes. Recent evidence has shown that this reinstatement process - indexed by subsequent encoding-retrieval similarity of brain activity patterns - is related to the activity in the hippocampus during encoding. However, we tend to re-experience emotional events in memory more richly than dull events. The role of amygdala - a critical hub of emotion processing - in reinstatement of emotional events was poorly understood. To investigate it, we leveraged a previously overlooked divergence in the role of amygdala in memory modulation by distinct emotions - disgust and fear. Here we used a novel paradigm in which participants encoded complex events (word pairs) and their memory was tested after 3 weeks, both phases during fMRI scanning. Using representational similarity analysis and univariate analyses, we show that the strength of amygdala activation during encoding was correlated with memory reinstatement of individual event representations in emotion-specific regions. Critically, amygdala modulated reinstatement more for disgust than fear. This was in line with other differences observed at the level of memory performance and neural mechanisms of encoding. Specifically, amygdala and perirhinal cortex were more involved during encoding of disgust-related events, whereas hippocampus and parahippocampal gyrus during encoding of fear-related events. Together, these findings shed a new light on the role of the amygdala and medial temporal lobe regions in encoding and reinstatement of specific emotional memories.
Collapse
Affiliation(s)
- Monika Riegel
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland; Department of Psychology, Columbia University, New York 10027, United States of America; Centre interfacultaire de gérontologie et d'études des vulnerabilities, University of Geneva, CH-Geneva 1211, Switzerland.
| | - Małgorzata Wierzba
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Marek Wypych
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Maureen Ritchey
- Department of Psychology and Neuroscience, Boston College, Chestnut Hill, MA 02467, United States of America
| | - Katarzyna Jednoróg
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Anna Grabowska
- SWPS University of Social Sciences and Humanities, Warsaw 03-815, Poland
| | - Patrik Vuilleumier
- Department of Neuroscience, University Medical Center, Geneva CH-1211, Switzerland; Swiss Center for Affective Sciences, University of Geneva, Campus Biotech, CH-Geneva 1211, Switzerland; Geneva Neuroscience Center, University of Geneva, Geneva CH-1211, Switzerland
| | - Artur Marchewka
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw 02-093, Poland
| |
Collapse
|
9
|
Pallidal functional connectivity changes are associated with disgust recognition in pure motor amyotrophic lateral sclerosis. NEUROIMAGE: CLINICAL 2022; 35:103145. [PMID: 36002963 PMCID: PMC9421543 DOI: 10.1016/j.nicl.2022.103145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/19/2022] [Accepted: 08/02/2022] [Indexed: 11/23/2022] Open
Abstract
In cognitively normal ALS, we detected early difficulties in recognizing disgust. Pallidum functional connectivity (FC) alterations occur in pure-motor ALS patients. Reduced left pallidum-temporal FC is linked to altered disgust recognition.
In the present study, we aimed to investigate the resting-state functional connectivity (RS-FC) of the globus pallidus (GP) in patients with amyotrophic lateral sclerosis (ALS) compared to healthy controls, and the relationship between RS-FC changes and disgust recognition. Twenty-six pure-motor ALS patients and 52 healthy controls underwent RS functional MRI and a neuropsychological assessment including the Comprehensive Affect Testing System. A seed-based RS-FC analysis was performed between the left and right GP and the rest of the brain and compared between groups. Correlations between RS-FC significant changes and subjects’ performance in recognizing disgust were tested. Compared to controls, patients were significantly less able to recognize disgust. In ALS compared to controls, the seed-based analysis showed: reduced RS-FC between bilateral GP and bilateral middle and superior frontal and middle cingulate gyri, and increased RS-FC between bilateral GP and bilateral postcentral, supramarginal and superior temporal gyri and Rolandic operculum. Decreased RS-FC was further observed between left GP and left middle and inferior temporal gyri and bilateral caudate; and increased RS-FC was also shown between right GP and left lingual and fusiform gyri. In patients and controls, lower performance in recognizing disgust correlated with reduced RS-FC between left GP and left middle and inferior temporal gyri. In pure-motor ALS patients, we demonstrated altered RS-FC between GP and the rest of the brain. The reduced left pallidum-temporo-striatal RS-FC may have a role in the lower ability of patients in recognizing disgust.
Collapse
|
10
|
Castelnovo V, Canu E, Magno MA, Basaia S, Riva N, Poletti B, Silani V, Filippi M, Agosta F. Impaired recognition of disgust in amyotrophic lateral sclerosis is related to basal ganglia involvement. NEUROIMAGE-CLINICAL 2021; 32:102803. [PMID: 34537684 PMCID: PMC8478135 DOI: 10.1016/j.nicl.2021.102803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Altered ability to correctly recognize disgust in
pure motor ALS patients. Potential role of the left pallidum in the altered
processing of disgust. Disgust as one of the first emotion that ALS
patients fail to recognize.
In the present study we investigated emotion recognition
in pure motor amyotrophic lateral sclerosis (ALS) patients and its relationship
with the integrity of basal ganglia, hippocampus and amygdala. Twenty ALS
patients without either cognitive or behavioural impairment, and 52 matched
healthy controls performed a neuropsychological assessment including the
Comprehensive Affect Testing System (CATS) investigating emotion recognition.
All participants underwent also a 3T brain MRI. Volumes of basal ganglia,
hippocampus and amygdala bilaterally were measured using FIRST in FSL.
Sociodemographic, cognitive and MRI data were compared between groups. In ALS
patients, correlations between CATS significant findings, brain volumes,
cognition, mood and behaviour were explored. ALS patients showed altered
performances at the CATS total score and, among the investigated emotions,
patients were significantly less able to recognize disgust compared with
controls. No brain volumetric differences were observed between groups. In ALS
patients, a lower performance in disgust recognition was related with a reduced
volume of the left pallidum and a lower performance on the Edinburgh Cognitive
and Behavioural ALS Screen. Cognitively/behaviourally unimpaired ALS patients
showed impaired disgust recognition, which was associated with pallidum volume.
The association with cognitive alterations may suggest impaired disgust
recognition as an early marker of cognitive decline.
Collapse
Affiliation(s)
- Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Antonietta Magno
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nilo Riva
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy; Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
11
|
Dopamine D1 receptor signalling in the lateral shell of the nucleus accumbens controls dietary fat intake in male rats. Appetite 2021; 167:105597. [PMID: 34273421 DOI: 10.1016/j.appet.2021.105597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022]
Abstract
Central dopamine signaling regulates reward-related aspects of feeding behavior, and during diet-induced obesity dopamine receptor signaling is altered. Yet, the influence of dopamine signaling on the consumption of specific dietary components remains to be elucidated. We have previously shown that 6-hydroxydopamine-mediated lesions of dopamine neuron terminals in the lateral shell of the nucleus accumbens promotes fat intake in rats fed a multi-component free-choice high-fat high-sugar (fcHFHS) diet. It is however not yet determined which dopamine receptors are responsible for this shift towards fat preference. In this study, we assess the effects of D1-or D2 receptor acute inhibition in the lateral shell of the nucleus accumbens on fcHFHS diet consumption. We report that infusion of the D1 receptor antagonist SCH2 3390, but not the D2 receptor antagonist raclopride, promotes dietary fat consumption in male Sprague Dawley rats on a fcHFHS diet during 2 h after infusion. Furthermore, anatomical analysis of infusion sites revealed that the rostral region, but not the caudal region, of the lateral shell of the nucleus accumbens is sensitive to the D1 receptor inhibition effects on fat consumption. Our data highlight a role for D1 receptors in the rostral region of the lateral shell of the nucleus accumbens to control dietary fat consumption.
Collapse
|
12
|
Mapping excessive "disgust" in the brain: Ventral pallidum inactivation recruits distributed circuitry to make sweetness "disgusting". COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:141-159. [PMID: 31836960 DOI: 10.3758/s13415-019-00758-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ventral pallidum (VP) is an important structure in processing reward. The VP may be the only brain structure where localized lesions in rats replace normal facial "liking" expressions to sweetness with excessive "disgust" reactions, such as gapes and chin rubs, that are normally reserved for unpalatable tastes. The posterior half of the VP (pVP) contains a hedonic hot spot where opioid or related neurochemical stimulations can amplify positive "liking" reactions to sweet taste. This is the same site where lesions or pharmacological inactivations replace positive hedonic reactions to sucrose with intense negative "disgust." In the present study, we aimed to identify brain networks recruited by pVP inactivation to generate excessive "disgust," using neuronal Fos expression as a marker of neurobiological activation. Microinjections in pVP of inhibitory GABAA/B agonists (muscimol and baclofen) caused rats to exhibit excessive "disgust" reactions to sucrose. Excessive "disgust" was accompanied by recruitment of neural Fos activation in several subcortical structures, including the posterior medial shell of nucleus accumbens (which also contains another GABAergic "disgust"-inducing "hedonic cold spot"), the bed nucleus of stria terminalis, lateral habenula, hypothalamus, and midbrain ventral tegmentum. Fos suppression was found in cortical limbic regions, including previously identified hedonic hot spots in the anteromedial orbitofrontal cortex and posterior insula. Finally, in addition to inducing excessive "disgust," pVP inactivation abolished motivational "wanting" to eat palatable food, reduced positive social interactions, and reordered sensorimotor relations. Our findings identify potential "disgust" generators in the brain that are released into excitation by pVP inhibition and may serve as targets for future research.
Collapse
|
13
|
Hegedüs P, Heckenast J, Hangya B. Differential recruitment of ventral pallidal e-types by behaviorally salient stimuli during Pavlovian conditioning. iScience 2021; 24:102377. [PMID: 33912818 PMCID: PMC8066429 DOI: 10.1016/j.isci.2021.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 03/26/2021] [Indexed: 10/25/2022] Open
Abstract
The ventral pallidum (VP) is interfacing striatopallidal and limbic circuits, conveying information about salience and valence crucial to adjusting behavior. However, how VP neuron populations with distinct electrophysiological properties (e-types) represent these variables is not fully understood. Therefore, we trained mice on probabilistic Pavlovian conditioning while recording the activity of VP neurons. Many VP neurons responded to punishment (54%), reward (48%), and outcome-predicting auditory stimuli (32%), increasingly differentiating distinct outcome probabilities through learning. We identified e-types based on the presence of bursts or fast rhythmic discharges and found that non-bursting, non-rhythmic neurons were the most sensitive to reward and punishment. Some neurons exhibited distinct responses of their bursts and single spikes, suggesting a multiplexed coding scheme in the VP. Finally, we demonstrate synchronously firing neuron assemblies, particularly responsive to reinforcing stimuli. These results suggest that electrophysiologically defined e-types of the VP differentially participate in transmitting reinforcement signals during learning.
Collapse
Affiliation(s)
- Panna Hegedüs
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest 1085, Hungary
| | - Julia Heckenast
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Hangya
- Lendület Laboratory of Systems Neuroscience, Institute of Experimental Medicine, Budapest 1083, Hungary
| |
Collapse
|
14
|
Nguyen D, Naffziger EE, Berridge KC. Positive Affect: Nature and brain bases of liking and wanting. Curr Opin Behav Sci 2021; 39:72-78. [PMID: 33748351 DOI: 10.1016/j.cobeha.2021.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The positive affect of rewards is an important contributor to well-being. Reward involves components of pleasure 'liking', motivation 'wanting', and learning. 'Liking' refers to the hedonic impact of positive events, with underlying mechanisms that include hedonic hotspots in limbic brain structures that amplify 'liking' reactions. 'Wanting' refers to incentive salience, a motivational process that makes reward cues attractive and able to trigger craving for their reward, mediated by larger dopamine-related mesocorticolimbic networks. Under normal conditions, 'liking' and 'wanting' cohere. However, 'liking' and 'wanting' can be dissociated by alterations in neural signaling, either induced in animal neuroscience laboratories or arising spontaneously in addictions and other affective disorders, which can be detrimental to positive well-being.
Collapse
Affiliation(s)
- David Nguyen
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Erin E Naffziger
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
15
|
Wabnegger A, Höfler C, Zussner T, Freudenthaler HH, Schienle A. Enjoyment of watching pimple popping videos: An fMRI investigation. Behav Brain Res 2021; 402:113129. [PMID: 33422596 DOI: 10.1016/j.bbr.2021.113129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 12/21/2020] [Accepted: 01/04/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Millions of people enjoy watching videos of pimple treatments. The underlying neural mechanisms of this enjoyment have not been investigated so far. METHOD We administered a total of 96 video clips from three categories: Pimple Popping (PP), Water Fountains (WF), and Steam Cleaning (SC). The PP videos showed a pimple or blackhead that was opened to squeeze out the pus or sebum. The female participants (mean age: 24 years) were assigned to one of two groups: females who reported to enjoy watching PP (PPE_high; n = 38) and those with little enjoyment (PPE_low; n = 42). We analyzed brain activity in regions of interest (ROI) involved in the encoding of pleasure and aversion (e.g., nucleus accumbens (NAc), insula). RESULTS The PPE_high group showed less deactivation of the NAc (ROI finding), more frontopolar activation (whole-brain finding), and stronger accumbens-insula coupling than the PPE_low group. CONCLUSIONS A specific pattern of brain activity and connectivity that involves the NAc and insula (coding of aversion/pleasure) and the frontopolar region (prediction of outcomes of motor decisions) is associated with the enjoyment of PP videos.
Collapse
Affiliation(s)
- Albert Wabnegger
- Institute of Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2, 8010, Graz, Austria
| | - Carina Höfler
- Institute of Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2, 8010, Graz, Austria
| | - Thomas Zussner
- Institute of Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2, 8010, Graz, Austria
| | - Harald H Freudenthaler
- Institute of Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2, 8010, Graz, Austria
| | - Anne Schienle
- Institute of Psychology, University of Graz, BioTechMedGraz, Universitätsplatz 2, 8010, Graz, Austria.
| |
Collapse
|
16
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
17
|
Projections from the nucleus accumbens shell to the ventral pallidum are involved in the control of sucrose intake in adult female rats. Brain Struct Funct 2020; 225:2815-2839. [PMID: 33124673 DOI: 10.1007/s00429-020-02161-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022]
Abstract
In rodents, stimulation of the nucleus accumbens shell (AcbSh) directly or via its projection to the lateral hypothalamus (LH) attenuates food intake. The ventral pallidum (VP) receives dense projections from the AcbSh and is sensitive to the hedonic aspect of food and motivation for reward. However, the role of accumbal projections to the VP in the regulation of food intake was not well investigated. In the present study conducted on female rats, we examined the effects of stimulation of the AcbSh using optogenetics, or pharmacological inhibition of the rostral VP, or stimulation of projections from the AcbSh to the rostral VP using optogenetics on the consumption of 10% sucrose, lick microstructure and the expression of c-fos mRNA. Stimulation of the AcbSh, inhibition of the rostral VP with muscimol, or stimulation of axonal terminals from the AcbSh to the rostral VP resulted in a decrease in sucrose intake, meal duration, and total number of licks. The licking microstructure analysis showed that optogenetic stimulation of AcbSh or axonal terminals from the AcbSh to the rostral VP decreased the hedonic value of the sucrose. However, inhibition of the rostral VP decreased the motivation, whereas stimulation of the accumbal projections in the rostral VP increased the motivation to drink. This difference could be due to differential involvement of GABAergic and glutamatergic VP neurons. Stimulation of the AcbSh resulted in a decrease of c-fos mRNA expression in the LH and rostral VP, and stimulation of axonal terminals from the AcbSh to the rostral VP decreased c-fos mRNA expression only in the rostral VP. This study demonstrates that in adult female rats, in addition to the already known role of the AcbSh projections to the LH, AcbSh projections to the VP play a major role in the regulation of sucrose intake.
Collapse
|
18
|
Holtmann O, Bruchmann M, Mönig C, Schwindt W, Melzer N, Miltner WHR, Straube T. Lateralized Deficits of Disgust Processing After Insula-Basal Ganglia Damage. Front Psychol 2020; 11:1429. [PMID: 32714249 PMCID: PMC7347022 DOI: 10.3389/fpsyg.2020.01429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/27/2020] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence suggests a role of the insular cortex (IC) and the basal ganglia (BG) in the experience, expression, and recognition of disgust. However, human lesion research, probing this structure-function link, has yielded rather disparate findings in single cases of unilateral and bilateral damage to these areas. Comparative group approaches are needed to elucidate whether disgust-related deficits specifically follow damage to the IC-BG system, or whether there might be a differential hemispheric contribution to disgust processing. We examined emotional processing by means of a comprehensive emotional test battery in four patients with left- and four patients with right-hemispheric lesions to the IC-BG system as well as in 19 healthy controls. While single tests did not provide clear-cut separations of patient groups, composite scores indicated selective group effects for disgust. Importantly, left-lesioned patients presented attenuated disgust composites, while right-lesioned patients showed increased disgust composites, as compared to each other and controls. These findings propose a left-hemispheric basis of disgust, potentially due to asymmetrical representations of autonomic information in the human forebrain. The present study provides the first behavioral evidence of hemispheric lateralization of a specific emotion in the human brain, and contributes to neurobiological models of disgust.
Collapse
Affiliation(s)
- Olga Holtmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Maximilian Bruchmann
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| | - Constanze Mönig
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Wolfram Schwindt
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Nico Melzer
- Department of Neurology, University Hospital Muenster, Muenster, Germany
| | - Wolfgang H R Miltner
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena, Germany
| | - Thomas Straube
- Institute of Medical Psychology and Systems Neuroscience, University of Muenster, Muenster, Germany.,Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Muenster, Muenster, Germany
| |
Collapse
|
19
|
Su J, Li Z, Yamashita A, Kusumoto-Yoshida I, Isomichi T, Hao L, Kuwaki T. Involvement of the Nucleus Accumbens in Chocolate-induced Cataplexy. Sci Rep 2020; 10:4958. [PMID: 32188934 PMCID: PMC7080740 DOI: 10.1038/s41598-020-61823-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/04/2020] [Indexed: 11/09/2022] Open
Abstract
Happiness is key for both mental and physical well-being. To further understand the brain mechanisms involved, we utilized the cataplexy that occurs in narcoleptic animal models as a quantitative behavioral measure because it is triggered by actions associated with happiness, such as laughter in humans and palatable foods in mice. Here we report that the rostral part of the nucleus accumbens (NAc) shell is strongly activated during the beginning of chocolate-induced cataplexy in orexin neuron-ablated mice. We made a local lesion in the NAc using ibotenic acid and observed the animals' behavior. The number of cataplexy bouts was negatively correlated to the lesion size. We also examined the hedonic response to palatable food by measuring the number of tongue protrusions in response to presentation of honey, which was also found to be negatively correlated to the lesion size. Next, we used clozapine N-oxide to either activate or inactivate the NAc through viral DREADD expression. As expected, the number of cataplexy bouts increased with activation and decreased with inactivation, and saline control injections showed no changes. Hedonic response in the DREADD experiment varied and showed both increases and decreases across mice. These results demonstrated that the rostral part of the NAc plays a crucial role in triggering cataplexy and hedonic orofacial movements. Since the NAc is also implicated in motivated behavior, we propose that the NAc is one of the key brain structures involved in happiness and is a driving force for positive emotion-related behaviors.
Collapse
Affiliation(s)
- Jingyang Su
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Zhi Li
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Akira Yamashita
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ikue Kusumoto-Yoshida
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takuto Isomichi
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Liying Hao
- Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang, China
| | - Tomoyuki Kuwaki
- Department of Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.
| |
Collapse
|
20
|
Urstadt KR, Berridge KC. Optogenetic mapping of feeding and self-stimulation within the lateral hypothalamus of the rat. PLoS One 2020; 15:e0224301. [PMID: 31986148 PMCID: PMC6984703 DOI: 10.1371/journal.pone.0224301] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/27/2019] [Indexed: 11/18/2022] Open
Abstract
The lateral hypothalamus (LH) includes several anatomical subregions involved in eating and reward motivation. This study explored localization of function across different LH subregions in controlling food intake stimulated by optogenetic channelrhodopsin excitation, and in supporting laser self-stimulation. We particularly compared the tuberal LH subregion, the posterior LH subregion, and the lateral preoptic area. Local diameters of tissue optogenetically stimulated within the LH were assessed by measuring laser-induced Fos plumes and Jun plumes via immunofluorescence surrounding optic fiber tips. Those plume diameters were used to map localization of function for behavioral effects elicited by LH optogenetic stimulation. Optogenetic stimulation of the tuberal subsection of the LH produced the most robust eating behavior and food intake initially, but produced only mild laser self-stimulation in the same rats. However, after repeated exposures to optogenetic stimulation, tuberal LH behavioral profiles shifted toward more self-stimulation and less food intake. By contrast, stimulation of the lateral preoptic area produced relatively little food intake or self-stimulation, either initially or after extended stimulation experience. Stimulation in the posterior LH subregion supported moderate self-stimulation, but not food intake, and at higher laser intensity shifted valence to evoke escape behaviors. We conclude that the tuberal LH subregion may best mediate stimulation-bound increases in food intake stimulated by optogenetic excitation. However, incentive motivational effects of tuberal LH stimulation may shift toward self-stimulation behavior after repeated stimulation. By contrast, the lateral preoptic area and posterior LH do not as readily elicit either eating behavior or laser self-stimulation, and may be more prone to higher-intensity aversive effects.
Collapse
Affiliation(s)
- Kevin R. Urstadt
- Psychology Dept., University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Kent C. Berridge
- Psychology Dept., University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
21
|
Abstract
How do brain systems evaluate the affective valence of a stimulus - that is, its quality of being good or bad? One possibility is that a neural subsystem, or 'module' (such as a subregion of the brain, a projection pathway, a neuronal population or an individual neuron), is permanently dedicated to mediate only one affective function, or at least only one specific valence - an idea that is termed here the 'affective modules' hypothesis. An alternative possibility is that a given neural module can exist in multiple neurobiological states that give it different affective functions - an idea termed here the 'affective modes' hypothesis. This suggests that the affective function or valence mediated by a neural module need not remain permanently stable but rather can change dynamically across different situations. An evaluation of evidence for the 'affective modules' versus 'affective modes' hypotheses may be useful for advancing understanding of the affective organization of limbic circuitry.
Collapse
|
22
|
Becker S, Bräscher AK, Bannister S, Bensafi M, Calma-Birling D, Chan RCK, Eerola T, Ellingsen DM, Ferdenzi C, Hanson JL, Joffily M, Lidhar NK, Lowe LJ, Martin LJ, Musser ED, Noll-Hussong M, Olino TM, Pintos Lobo R, Wang Y. The role of hedonics in the Human Affectome. Neurosci Biobehav Rev 2019; 102:221-241. [PMID: 31071361 PMCID: PMC6931259 DOI: 10.1016/j.neubiorev.2019.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 03/25/2019] [Accepted: 05/03/2019] [Indexed: 01/06/2023]
Abstract
Experiencing pleasure and displeasure is a fundamental part of life. Hedonics guide behavior, affect decision-making, induce learning, and much more. As the positive and negative valence of feelings, hedonics are core processes that accompany emotion, motivation, and bodily states. Here, the affective neuroscience of pleasure and displeasure that has largely focused on the investigation of reward and pain processing, is reviewed. We describe the neurobiological systems of hedonics and factors that modulate hedonic experiences (e.g., cognition, learning, sensory input). Further, we review maladaptive and adaptive pleasure and displeasure functions in mental disorders and well-being, as well as the experience of aesthetics. As a centerpiece of the Human Affectome Project, language used to express pleasure and displeasure was also analyzed, and showed that most of these analyzed words overlap with expressions of emotions, actions, and bodily states. Our review shows that hedonics are typically investigated as processes that accompany other functions, but the mechanisms of hedonics (as core processes) have not been fully elucidated.
Collapse
Affiliation(s)
- Susanne Becker
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J5, 68159 Mannheim, Germany.
| | - Anne-Kathrin Bräscher
- Department of Clinical Psychology, Psychotherapy and Experimental Psychopathology, University of Mainz, Wallstr. 3, 55122 Mainz, Germany.
| | | | - Moustafa Bensafi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France.
| | - Destany Calma-Birling
- Department of Psychology, University of Wisconsin-Oshkosh, 800 Algoma, Blvd., Clow F011, Oshkosh, WI 54901, USA.
| | - Raymond C K Chan
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tuomas Eerola
- Durham University, Palace Green, DH1 RL3, Durham, UK.
| | - Dan-Mikael Ellingsen
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, CNY149-2301, 13th St, Charlestown, MA 02129, USA.
| | - Camille Ferdenzi
- Research Center in Neurosciences of Lyon, CNRS UMR5292, INSERM U1028, Claude Bernard University Lyon 1, Lyon, Centre Hospitalier Le Vinatier, 95 bd Pinel, 69675 Bron Cedex, France.
| | - Jamie L Hanson
- University of Pittsburgh, Department of Psychology, 3939 O'Hara Street, Rm. 715, Pittsburgh, PA 15206, USA.
| | - Mateus Joffily
- Groupe d'Analyse et de Théorie Economique (GATE), 93 Chemin des Mouilles, 69130, Écully, France.
| | - Navdeep K Lidhar
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Leroy J Lowe
- Neuroqualia (NGO), 36 Arthur Street, Truro, NS, B2N 1X5, Canada.
| | - Loren J Martin
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada.
| | - Erica D Musser
- Department of Psychology, Center for Childen and Families, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Michael Noll-Hussong
- Clinic for Psychiatry and Psychotherapy, Division of Psychosomatic Medicine and Psychotherapy, Saarland University Medical Centre, Kirrberger Strasse 100, D-66421 Homburg, Germany.
| | - Thomas M Olino
- Temple University, Department of Psychology, 1701N. 13th St, Philadelphia, PA 19010, USA.
| | - Rosario Pintos Lobo
- Department of Psychology, Center for Childen and Families, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA.
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience Laboratory, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
23
|
Tanaka DH, Li S, Mukae S, Tanabe T. Genetic Access to Gustatory Disgust-Associated Neurons in the Interstitial Nucleus of the Posterior Limb of the Anterior Commissure in Male Mice. Neuroscience 2019; 413:45-63. [PMID: 31229633 DOI: 10.1016/j.neuroscience.2019.06.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/12/2019] [Accepted: 06/14/2019] [Indexed: 12/18/2022]
Abstract
Orofacial and somatic disgust reactions are observed in rats following intraoral infusion of not only bitter quinine (innate disgust) but also sweet saccharin previously paired with illness (learned disgust). It remains unclear, however, whether these innate and learned disgust reactions share a common neural basis and which brain regions, if any, host it. In addition, there is no established method to genetically access neurons whose firing is associated with disgust (disgust-associated neurons). Here, we examined the expression of cFos and Arc, two markers of neuronal activity, in the interstitial nucleus of the posterior limb of the anterior commissure (IPAC) of male mice that showed innate disgust and mice that showed learned disgust. Furthermore, we used a targeted recombination in active populations (TRAP) method to genetically label the disgust-associated neurons in the IPAC with YFP. We found a significant increase of both cFos-positive neurons and Arc-positive neurons in the IPAC of mice that showed innate disgust and mice that showed learned disgust. In addition, TRAP following quinine infusion (Quinine-TRAP) resulted in significantly more YFP-positive neurons in the IPAC, compared to TRAP following water infusion. A significant number of the YFP-positive neurons following Quinine-TRAP were co-labeled with Arc following the second quinine infusion, confirming that Quinine-TRAP preferentially labeled quinine-activated neurons in the IPAC. Our results suggest that the IPAC activity is associated with both innate and learned disgust and that disgust-associated neurons in the IPAC are genetically accessible by TRAP.
Collapse
Affiliation(s)
- Daisuke H Tanaka
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shusheng Li
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Shiori Mukae
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Tsutomu Tanabe
- Department of Pharmacology and Neurobiology, Graduate School of Medicine, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan.
| |
Collapse
|
24
|
Rock EM, Limebeer CL, Aliasi-Sinai L, Parker LA. The ventral pallidum as a critical region for fatty acid amide hydrolase inhibition of nausea-induced conditioned gaping in male Sprague-Dawley rats. Neuropharmacology 2019; 155:142-149. [PMID: 31145905 DOI: 10.1016/j.neuropharm.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Here we investigate the involvement of the ventral pallidum (VP) in the anti-nausea effect of fatty acid amide hydrolase (FAAH) inhibition with PF-3845, and examine the pharmacological mechanism of such an effect. We explored the potential of intra-VP PF-3845 to reduce the establishment of lithium chloride (LiCl)-induced conditioned gaping (a model of acute nausea) in male Sprague-Dawley rats. As well, the role of the cannabinoid 1 (CB1) receptors and the peroxisome proliferator-activated receptors-α (PPARα) in the anti-nausea effect of PF-3845 was examined. Finally, the potential of intra-VP GW7647, a PPARα agonist, to reduce acute nausea was also evaluated. Intra-VP PF-3845 dose-dependently reduced acute nausea by a PPARα mechanism (and not a CB1 receptor mechanism). Intra-VP administration of GW7647, similarly attenuated acute nausea. These findings suggest that the anti-nausea action of FAAH inhibition may occur in the VP, and may involve activation of PPARα to suppress acute nausea.
Collapse
Affiliation(s)
- Erin M Rock
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Cheryl L Limebeer
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Lital Aliasi-Sinai
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Linda A Parker
- Department of Psychology and Neuroscience Graduate Program, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
25
|
Hurley MM, Robble MR, Callan G, Choi S, Wheeler RA. Pituitary adenylate cyclase-activating polypeptide (PACAP) acts in the nucleus accumbens to reduce hedonic drive. Int J Obes (Lond) 2019; 43:928-932. [PMID: 30082747 PMCID: PMC6363914 DOI: 10.1038/s41366-018-0154-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 06/08/2018] [Indexed: 11/24/2022]
Abstract
Obesity develops, in part, due to frequent overconsumption. Therefore, it is important to identify the regulatory mechanisms that promote eating beyond satiety. Previously, we have demonstrated that an acute microinjection of the neuropeptide PACAP into the nucleus accumbens (NAcc) attenuates palatable food consumption in satiated rats. To better understand the mechanism by which intra-NAcc PACAP selectively blocks palatable food intake, the current work employed a rodent taste reactivity paradigm to assess the impact of PACAP on the hedonic processing of a 1% sucrose solution. Our results revealed that bilateral intra-NAcc PACAP infusions significantly reduced appetitive orofacial responses to sucrose. Interestingly, the effect of PACAP on the expression of aversive responses to sucrose was dependent on the rostral-caudal placement of the microinjection. In a separate group of rats, PACAP was microinjected into the hypothalamus (a region of the brain in which PACAP does not attenuate palatable feeding). Here we found that PACAP had no effect on the hedonic perception of the sucrose solution. Taken together, this dataset indicates that PACAP acts in specific subregions of the NAcc to attenuate palatability-induced feeding by reducing the perceived hedonic value of palatable food.
Collapse
Affiliation(s)
- Matthew M Hurley
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Mykel R Robble
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Grace Callan
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| | - Robert A Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
26
|
Ji MJ, Zhang XY, Chen Z, Wang JJ, Zhu JN. Orexin prevents depressive-like behavior by promoting stress resilience. Mol Psychiatry 2019; 24:282-293. [PMID: 30087452 PMCID: PMC6755988 DOI: 10.1038/s41380-018-0127-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/17/2018] [Accepted: 06/20/2018] [Indexed: 12/21/2022]
Abstract
Hypothalamic neuropeptide orexin has been implicated in the pathophysiology of psychiatric disorders and accumulating clinical evidence indicates a potential link between orexin and depression. However, the exact role of orexin in depression, particularly the underlying neural substrates and mechanisms, remains unknown. In this study, we reveal a direct projection from the hypothalamic orexinergic neurons to the ventral pallidum (VP), a structure that receives an increasing attention for its critical position in rewarding processing, stress responses, and depression. We find that orexin directly excites GABAergic VP neurons and prevents depressive-like behaviors in rats. Two orexin receptors, OX1R and OX2R, and their downstream Na+-Ca2+ exchanger and L-type Ca2+ channel co-mediate the effect of orexin. Furthermore, pharmacological blockade or genetic knockdown of orexin receptors in VP increases depressive-like behaviors in forced swim test and sucrose preference test. Intriguingly, blockage of orexinergic inputs in VP has no impact on social proximity in social interaction test between novel partners, but remarkably strengthens social avoidance under an acute psychosocial stress triggered by social rank. Notably, a significantly increased orexin level in VP is accompanied by an increase in serum corticosterone in animals exposed to acute stresses, including forced swimming, food/water deprivation and social rank stress, rather than non-stress situations. These results suggest that endogenous orexinergic modulation on VP is especially critical for protecting against depressive reactions to stressful events. The findings define an indispensable role for the central orexinergic system in preventing depression by promoting stress resilience.
Collapse
Affiliation(s)
- Miao-Jin Ji
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Zi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Physiology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
- Institute for Brain Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
27
|
Abstract
This review takes a historical perspective on concepts in the psychology of motivation and emotion, and surveys recent developments, debates and applications. Old debates over emotion have recently risen again. For example, are emotions necessarily subjective feelings? Do animals have emotions? I review evidence that emotions exist as core psychological processes, which have objectively detectable features, and which can occur either with subjective feelings or without them. Evidence is offered also that studies of emotion in animals can give new insights into human emotions. Beyond emotion, motivation concepts have changed over decades too, and debates still continue. Motivation was once thought in terms of aversive drives, and reward was thought of in terms of drive reduction. Motivation-as-drive concepts were largely replaced by motivation-as-incentive concepts, yet aversive drive concepts still occasionally surface in reward neuroscience today. Among incentive concepts, incentive salience is a core motivation process, mediated by brain mesocorticolimbic systems (dopamine-related systems) and sometimes called 'wanting' (in quotation marks), to distinguish it from cognitive forms of desire (wanting without quotation marks). Incentive salience as 'wanting' is separable also from pleasure 'liking' for the same reward, which has important implications for several human clinical disorders. Ordinarily, incentive salience adds motivational urgency to cognitive desires, but 'wanting' and cognitive desires can dissociate in some conditions. Excessive incentive salience can cause addictions, in which excessive 'wanting' can diverge from cognitive desires. Conversely, lack of incentive salience may cause motivational forms of anhedonia in depression or schizophrenia, whereas a negatively-valenced form of 'fearful salience' may contribute to paranoia. Finally, negative 'fear' and 'disgust' have both partial overlap but also important neural differences.
Collapse
Affiliation(s)
- Kent C. Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
28
|
Reed SJ, Lafferty CK, Mendoza JA, Yang AK, Davidson TJ, Grosenick L, Deisseroth K, Britt JP. Coordinated Reductions in Excitatory Input to the Nucleus Accumbens Underlie Food Consumption. Neuron 2018; 99:1260-1273.e4. [DOI: 10.1016/j.neuron.2018.07.051] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 06/14/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022]
|
29
|
Olney JJ, Warlow SM, Naffziger EE, Berridge KC. Current perspectives on incentive salience and applications to clinical disorders. Curr Opin Behav Sci 2018; 22:59-69. [PMID: 29503841 PMCID: PMC5831552 DOI: 10.1016/j.cobeha.2018.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Affective neuroscience research has revealed that reward contains separable components of 'liking', 'wanting', and learning. Here we focus on current 'liking' and 'wanting' findings and applications to clinical disorders. 'Liking' is the hedonic impact derived from a pleasant experience, and is amplified by opioid and related signals in discrete sites located in limbic-related brain areas. 'Wanting' refers to incentive salience, a motivation process for reward, and is mediated by larger systems involving mesocorticolimbic dopamine. Deficits in incentive salience may contribute to avolitional features of depression and related disorders, whereas deficits in hedonic impact may produce true anhedonia. Excesses in incentive salience, on the other hand, can lead to addiction, especially when narrowly focused on a particular target. Finally, a fearful form of motivational salience may even contribute to some paranoia symptoms of schizophrenia and related disorders.
Collapse
Affiliation(s)
- Jeffrey J Olney
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Shelley M Warlow
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Erin E Naffziger
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
30
|
Woodworth HL, Batchelor HM, Beekly BG, Bugescu R, Brown JA, Kurt G, Fuller PM, Leinninger GM. Neurotensin Receptor-1 Identifies a Subset of Ventral Tegmental Dopamine Neurons that Coordinates Energy Balance. Cell Rep 2018; 20:1881-1892. [PMID: 28834751 DOI: 10.1016/j.celrep.2017.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 06/19/2017] [Accepted: 07/25/2017] [Indexed: 02/06/2023] Open
Abstract
Dopamine (DA) neurons in the ventral tegmental area (VTA) are heterogeneous and differentially regulate ingestive and locomotor behaviors that affect energy balance. Identification of which VTA DA neurons mediate behaviors that limit weight gain has been hindered, however, by the lack of molecular markers to distinguish VTA DA populations. Here, we identified a specific subset of VTA DA neurons that express neurotensin receptor-1 (NtsR1) and preferentially comprise mesolimbic, but not mesocortical, DA neurons. Genetically targeted ablation of VTA NtsR1 neurons uncouples motivated feeding and physical activity, biasing behavior toward energy expenditure and protecting mice from age-related and diet-induced weight gain. VTA NtsR1 neurons thus represent a molecularly defined subset of DA neurons that are essential for the coordination of energy balance. Modulation of VTA NtsR1 neurons may therefore be useful to promote behaviors that prevent the development of obesity.
Collapse
Affiliation(s)
- Hillary L Woodworth
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Hannah M Batchelor
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Bethany G Beekly
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Raluca Bugescu
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Juliette A Brown
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48823, USA
| | - Gizem Kurt
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA
| | - Patrick M Fuller
- Department of Neurology, Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Gina M Leinninger
- Department of Physiology, Michigan State University, East Lansing, MI 48823, USA.
| |
Collapse
|
31
|
Richard JM, Stout N, Acs D, Janak PH. Ventral pallidal encoding of reward-seeking behavior depends on the underlying associative structure. eLife 2018; 7:33107. [PMID: 29565248 PMCID: PMC5864276 DOI: 10.7554/elife.33107] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/21/2018] [Indexed: 12/22/2022] Open
Abstract
Despite its being historically conceptualized as a motor expression site, emerging evidence suggests the ventral pallidum (VP) plays a more active role in integrating information to generate motivation. Here, we investigated whether rat VP cue responses would encode and contribute similarly to the vigor of reward-seeking behaviors trained under Pavlovian versus instrumental contingencies, when these behavioral responses consist of superficially similar locomotor response patterns but may reflect distinct underlying decision-making processes. We find that cue-elicited activity in many VP neurons predicts the latency of instrumental reward seeking, but not of Pavlovian response latency. Further, disruption of VP signaling increases the latency of instrumental but not Pavlovian reward seeking. This suggests that VP encoding of and contributions to response vigor are specific to the ability of incentive cues to invigorate reward-seeking behaviors upon which reward delivery is contingent. Sounds or other cues associated with receiving a reward can have a powerful effect on an individual’s behavior or emotions. For example, the sound of an ice cream truck might cause salivation and motivate an individual to stand in a long line. Cues may prompt specific actions necessary to receive a reward, for example, approaching the ice cream truck and paying to get an ice cream. This is called instrumental conditioning. Some cues predict reward delivery, without requiring a specific action. This is called Pavlovian conditioning. Pavlovian cues can still prompt actions, such as approaching the truck, even though the action is not required. But exactly what happens in the brain to generate these actions during the two types of learning, is unclear. Learning more about these reward-driven brain mechanisms might help scientists to develop better treatments for people with addiction or other conditions that involve compulsive reward-seeking behavior. Currently, scientists do not know enough about how the brain triggers this kind of behavior or how these processes lead to relapse in individuals who have been abstinent. Basic studies on the brain mechanisms that trigger reward-seeking behavior are needed. Now, Richard et al. show that a greater activity in neurons, or brain cells, in a part of the brain called the ventral pallidum predicts a faster response to a reward cue. In the experiments, some rats were trained to approach a certain location when they heard a particular sound in order to receive sugar water, a form of instrumental conditioning. Another group of rats underwent Pavlovian training and learned to expect sugar water every time they heard sound even if they did nothing. Both groups learned to approach the sugar water location when they heard the cue, despite the different training requirements. Richard et al. measured the activity of neurons in the ventral pallidum when the rats in the two groups heard the reward-associated sound. The experiments showed that the amount of activity in the brain cells in this area predicted whether a rat would approach the sugar-water delivery area and how quickly they would approach the reward after hearing the cue. The predictions were most reliable for rats that had to do something to get the sugar water. When Richard et al. reduced the activity in these cells they found the rats took longer to approach the reward source, but only when this action was required to receive sugar water. The experiments show that the ventral pallidum may provide the motivation to undertake reward-seeking behavior.
Collapse
Affiliation(s)
- Jocelyn M Richard
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Nakura Stout
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Deanna Acs
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, United States.,Solomon H Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Johns Hopkins University, Baltimore, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
32
|
Castro DC, Berridge KC. Opioid and orexin hedonic hotspots in rat orbitofrontal cortex and insula. Proc Natl Acad Sci U S A 2017; 114:E9125-E9134. [PMID: 29073109 PMCID: PMC5664503 DOI: 10.1073/pnas.1705753114] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Hedonic hotspots are brain sites where particular neurochemical stimulations causally amplify the hedonic impact of sensory rewards, such as "liking" for sweetness. Here, we report the mapping of two hedonic hotspots in cortex, where mu opioid or orexin stimulations enhance the hedonic impact of sucrose taste. One hedonic hotspot was found in anterior orbitofrontal cortex (OFC), and another was found in posterior insula. A suppressive hedonic coldspot was also found in the form of an intervening strip stretching from the posterior OFC through the anterior and middle insula, bracketed by the two cortical hotspots. Opioid/orexin stimulations in either cortical hotspot activated Fos throughout a distributed "hedonic circuit" involving cortical and subcortical structures. Conversely, cortical coldspot stimulation activated circuitry for "hedonic suppression." Finally, food intake was increased by stimulations at several prefrontal cortical sites, indicating that the anatomical substrates in cortex for enhancing the motivation to eat are discriminable from those for hedonic impact.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO 63108;
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
33
|
Warlow SM, Robinson MJF, Berridge KC. Optogenetic Central Amygdala Stimulation Intensifies and Narrows Motivation for Cocaine. J Neurosci 2017; 37:8330-8348. [PMID: 28751460 PMCID: PMC5577851 DOI: 10.1523/jneurosci.3141-16.2017] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 06/03/2017] [Accepted: 06/09/2017] [Indexed: 01/09/2023] Open
Abstract
Addiction is often characterized by intense motivation for a drug, which may be narrowly focused at the expense of other rewards. Here, we examined the role of amygdala-related circuitry in the amplification and narrowing of motivation focus for intravenous cocaine. We paired optogenetic channelrhodopsin (ChR2) stimulation in either central nucleus of amygdala (CeA) or basolateral amygdala (BLA) of female rats with one particular nose-poke porthole option for earning cocaine infusions (0.3 mg/kg, i.v.). A second alternative porthole earned identical cocaine but without ChR2 stimulation. Consequently, CeA rats quickly came to pursue their CeA ChR2-paired cocaine option intensely and exclusively, elevating cocaine intake while ignoring their alternative cocaine alone option. By comparison, BLA ChR2 pairing failed to enhance cocaine motivation. CeA rats also emitted consummatory bites toward their laser-paired porthole, suggesting that higher incentive salience made that cue more attractive. A separate progressive ratio test of incentive motivation confirmed that CeA ChR2 amplified rats' motivation, raising their breakpoint effort price for cocaine by 10-fold. However, CeA ChR2 laser on its own lacked any reinforcement value: laser by itself was never self-stimulated, not even by the same rats in which it amplified motivation for cocaine. Conversely, CeA inhibition by muscimol/baclofen microinjections prevented acquisition of cocaine self-administration and laser preference, whereas CeA inhibition by optogenetic halorhodopsin suppressed cocaine intake, indicating that CeA circuitry is needed for ordinary cocaine motivation. We conclude that CeA ChR2 excitation paired with a cocaine option specifically focuses and amplifies motivation to produce intense pursuit and consumption focused on that single target.SIGNIFICANCE STATEMENT In addiction, intense incentive motivation often becomes narrowly focused on a particular drug of abuse. Here we show that pairing central nucleus of amygdala (CeA) optogenetic stimulation with one option for earning intravenous cocaine makes that option almost the exclusive focus of intense pursuit and consumption. CeA stimulation also elevated the effort cost rats were willing to pay for cocaine and made associated cues become intensely attractive. However, we also show that CeA laser had no reinforcing properties at all when given alone for the same rats. Therefore, CeA laser pairing makes its associated cocaine option and cues become powerfully attractive in a nearly addictive fashion.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| | - Mike J F Robinson
- Department of Psychology, Wesleyan University, Middletown, Connecticut 06459
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109, and
| |
Collapse
|
34
|
Sheth C, Furlong TM, Keefe KA, Taha SA. The lateral hypothalamus to lateral habenula projection, but not the ventral pallidum to lateral habenula projection, regulates voluntary ethanol consumption. Behav Brain Res 2017; 328:195-208. [PMID: 28432009 PMCID: PMC5500222 DOI: 10.1016/j.bbr.2017.04.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/23/2017] [Accepted: 04/17/2017] [Indexed: 11/26/2022]
Abstract
The lateral habenula (LHb) is an epithalamic brain region implicated in aversive processing via negative modulation of midbrain dopamine (DA) and serotonin (5-HT) systems. Given the role of the LHb in inhibiting DA and 5-HT systems, it is thought to be involved in various psychiatric pathologies, including drug addiction. In support, it has been shown that LHb plays a critical role in cocaine- and ethanol-related behaviors, most likely by mediating drug-induced aversive conditioning. In our previous work, we showed that LHb lesions increased voluntary ethanol consumption and operant ethanol self-administration and blocked yohimbine-induced reinstatement of ethanol self-administration. LHb lesions also attenuated ethanol-induced conditioned taste aversion suggesting that a mechanism for the increased intake of ethanol may be reduced aversion learning. However, whether afferents to the LHb are required for mediating effects of the LHb on these behaviors remained to be investigated. Our present results show that lesioning the fiber bundle carrying afferent inputs to the LHb, the stria medullaris (SM), increases voluntary ethanol consumption, suggesting that afferent structures projecting to the LHb are important for mediating ethanol-directed behaviors. We then chose two afferent structures as the focus of our investigation. We specifically studied the role of the inputs from the lateral hypothalamus (LH) and ventral pallidum (VP) to the LHb in ethanol-directed behaviors. Our results show that the LH-LHb projection is necessary for regulating voluntary ethanol consumption. These results are an important first step towards understanding the functional role of afferents to LHb with regard to ethanol consumption.
Collapse
Affiliation(s)
- Chandni Sheth
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA.
| | - Teri M Furlong
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| | - Kristen A Keefe
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| | - Sharif A Taha
- Department of Pharmacology and Toxicology, University of Utah, 30 South 2000 East, Salt Lake City, UT 84112-5820, USA
| |
Collapse
|
35
|
Lacerda DC, Ferraz-Pereira KN, Visco DB, Pontes PB, Chaves WF, Guzman-Quevedo O, Manhães-de-Castro R, Toscano AE. Perinatal undernutrition associated to experimental model of cerebral palsy increases adverse effects on chewing in young rats. Physiol Behav 2017; 173:69-78. [DOI: 10.1016/j.physbeh.2017.01.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 11/30/2022]
|
36
|
Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions. Sci Rep 2017; 7:45260. [PMID: 28345642 PMCID: PMC5366904 DOI: 10.1038/srep45260] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 02/23/2017] [Indexed: 12/12/2022] Open
Abstract
The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.
Collapse
|
37
|
Berridge KC, Robinson TE. Liking, wanting, and the incentive-sensitization theory of addiction. ACTA ACUST UNITED AC 2017; 71:670-679. [PMID: 27977239 DOI: 10.1037/amp0000059] [Citation(s) in RCA: 631] [Impact Index Per Article: 90.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Rewards are both "liked" and "wanted," and those 2 words seem almost interchangeable. However, the brain circuitry that mediates the psychological process of "wanting" a particular reward is dissociable from circuitry that mediates the degree to which it is "liked." Incentive salience or "wanting," a form of motivation, is generated by large and robust neural systems that include mesolimbic dopamine. By comparison, "liking," or the actual pleasurable impact of reward consumption, is mediated by smaller and fragile neural systems, and is not dependent on dopamine. The incentive-sensitization theory posits the essence of drug addiction to be excessive amplification specifically of psychological "wanting," especially triggered by cues, without necessarily an amplification of "liking." This is because of long-lasting changes in dopamine-related motivation systems of susceptible individuals, called "neural sensitization." A quarter-century after its proposal, evidence has continued to grow in support the incentive-sensitization theory. Further, its scope is now expanding to include diverse behavioral addictions and other psychopathologies. (PsycINFO Database Record
Collapse
|
38
|
Royet JP, Meunier D, Torquet N, Mouly AM, Jiang T. The Neural Bases of Disgust for Cheese: An fMRI Study. Front Hum Neurosci 2016; 10:511. [PMID: 27799903 PMCID: PMC5065955 DOI: 10.3389/fnhum.2016.00511] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/27/2016] [Indexed: 01/01/2023] Open
Abstract
The study of food aversion in humans by the induction of illness is ethically unthinkable, and it is difficult to propose a type of food that is disgusting for everybody. However, although cheese is considered edible by most people, it can also be perceived as particularly disgusting to some individuals. As such, the perception of cheese constitutes a good model to study the cerebral processes of food disgust and aversion. In this study, we show that a higher percentage of people are disgusted by cheese than by other types of food. Functional magnetic resonance imaging then reveals that the internal and external globus pallidus and the substantia nigra belonging to the basal ganglia are more activated in participants who dislike or diswant to eat cheese (Anti) than in other participants who like to eat cheese, as revealed following stimulation with cheese odors and pictures. We suggest that the aforementioned basal ganglia structures commonly involved in reward are also involved in the aversive motivated behaviors. Our results further show that the ventral pallidum, a core structure of the reward circuit, is deactivated in Anti subjects stimulated by cheese in the wanting task, highlighting the suppression of motivation-related activation in subjects disgusted by cheese.
Collapse
Affiliation(s)
- Jean-Pierre Royet
- Olfaction: From Coding to Memory Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028 - Université de Lyon 1 Lyon, France
| | - David Meunier
- Olfaction: From Coding to Memory Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028 - Université de Lyon 1 Lyon, France
| | - Nicolas Torquet
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris Seine, UM 119, CNRS, UMR 8246, Neuroscience Paris Seine Paris, France
| | - Anne-Marie Mouly
- Olfaction: From Coding to Memory Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028 - Université de Lyon 1 Lyon, France
| | - Tao Jiang
- Olfaction: From Coding to Memory Team, Lyon Neuroscience Research Center, CNRS UMR 5292 - INSERM U1028 - Université de Lyon 1 Lyon, France
| |
Collapse
|
39
|
Castro DC, Terry RA, Berridge KC. Orexin in Rostral Hotspot of Nucleus Accumbens Enhances Sucrose 'Liking' and Intake but Scopolamine in Caudal Shell Shifts 'Liking' Toward 'Disgust' and 'Fear'. Neuropsychopharmacology 2016; 41:2101-11. [PMID: 26787120 PMCID: PMC4908641 DOI: 10.1038/npp.2016.10] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/25/2015] [Indexed: 12/11/2022]
Abstract
The nucleus accumbens (NAc) contains a hedonic hotspot in the rostral half of medial shell, where opioid agonist microinjections are known to enhance positive hedonic orofacial reactions to the taste of sucrose ('liking' reactions). Within NAc shell, orexin/hypocretin also has been reported to stimulate food intake and is implicated in reward, whereas blockade of muscarinic acetylcholine receptors by scopolamine suppresses intake and may have anti-reward effects. Here, we show that NAc microinjection of orexin-A in medial shell amplifies the hedonic impact of sucrose taste, but only within the same anatomically rostral site, identical to the opioid hotspot. By comparison, at all sites throughout medial shell, orexin microinjections stimulated 'wanting' to eat, as reflected by increases in intake of palatable sweet chocolates. At NAc shell sites outside the hotspot, orexin selectively enhanced 'wanting' to eat without enhancing sweetness 'liking' reactions. In contrast, microinjections of the antagonist scopolamine at all sites in NAc shell suppressed sucrose 'liking' reactions as well as suppressing intake of palatable food. Conversely, scopolamine increased aversive 'disgust' reactions elicited by bitter quinine at all NAc shell sites. Finally, scopolamine microinjections localized to the caudal half of medial shell additionally generated a fear-related anti-predator reaction of defensive treading and burying directed toward the corners of the transparent chamber. Together, these results confirm a rostral hotspot in NAc medial shell as a unique site for orexin induction of hedonic 'liking' enhancement, similar to opioid enhancement. They also reveal distinct roles for orexin and acetylcholine signals in NAc shell for hedonic reactions and motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA,Department of Psychology, University of Michigan, 530 Church Street, Ann Arbor, MI 48109, USA, Tel: +1 4256473890, E-mail:
| | - Rachel A Terry
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Chan CL, Wheeler DS, Wheeler RA. The neural encoding of cocaine-induced devaluation in the ventral pallidum. Neurobiol Learn Mem 2016; 130:177-84. [PMID: 26948120 DOI: 10.1016/j.nlm.2016.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 02/04/2016] [Accepted: 02/14/2016] [Indexed: 01/25/2023]
Abstract
Cocaine experience affects motivation structures such as the nucleus accumbens (NAc) and its major output target, the ventral pallidum (VP). Previous studies demonstrated that both NAc activity and hedonic responses change reliably as a taste cue comes to predict cocaine availability. Here we extended this investigation to examine drug-experience induced changes in hedonic encoding in the VP. VP activity was first characterized in adult male Sprague-Dawley rats in response to intraoral infusions of palatable saccharin and unpalatable quinine solutions. Next, rats received 7 daily pairings of saccharin that predicted either a cocaine (20mg/kg, ip) or saline injection. Finally, the responses to saccharin and quinine were again assessed. Of 109 units recorded in 11 rats that received saccharin-cocaine pairings, 71% of responsive units significantly reduced firing rate during saccharin infusions and 64% increased firing rate during quinine exposure. However, as saccharin came to predict cocaine, and elicited aversive taste reactivity, VP responses changed to resemble quinine. After conditioning, 70% of saccharin-responsive units increased firing rate. Most units that encoded the palatable taste (predominantly reduced firing rate) were located in the anterior VP, while most units that were responsive to aversive tastes were located in the posterior VP. This study reveals an anatomical complexity to the nature of hedonic encoding in the VP.
Collapse
Affiliation(s)
- Chung-Lung Chan
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Daniel S Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Robert A Wheeler
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
41
|
Naneix F, Darlot F, Coutureau E, Cador M. Long-lasting deficits in hedonic and nucleus accumbens reactivity to sweet rewards by sugar overconsumption during adolescence. Eur J Neurosci 2016; 43:671-80. [PMID: 26762310 DOI: 10.1111/ejn.13149] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/12/2015] [Accepted: 11/17/2015] [Indexed: 02/01/2023]
Abstract
Adolescence is a critical period characterized by major neurobiological changes. Chronic stimulation of the reward system might constitute an important factor in vulnerability to pathological development. In spite of the dramatic increase in the consumption of sweet palatable foods during adolescence in our modern societies, the long-term consequences of such exposure on brain reward processing remain poorly understood. Here, we investigated in rats the long-lasting effects of sugar overconsumption during their adolescence on their adult reactivity to the hedonic properties of sweet rewards. Adolescent rats with continuous access to 5% sucrose solution (from postnatal day 30-46) showed escalating intake. At adulthood (post-natal day 70), using two-bottle free choice tests, sucrose-exposed rats showed lower intake than non-exposed rats suggesting decreased sensitivity to the rewarding properties of sucrose. In Experiment 1, we tested their hedonic-related orofacial reactions to intraoral infusion of tasty solutions. We showed that sucrose-exposed rats presented less hedonic reactions in response to sweet tastes leaving the reactivity to water or quinine unaltered. Hence, in Experiment 2, we observed that this hedonic deficit is associated with lower c-Fos expression levels in the nucleus accumbens, a brain region known to play a central role in hedonic processing. These findings demonstrate that a history of high sucrose intake during the critical period of adolescence induces long-lasting deficits in hedonic treatment that may contribute to reward-related disorders.
Collapse
Affiliation(s)
- Fabien Naneix
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.,University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33076, Bordeaux, France
| | - Florence Darlot
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.,University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33076, Bordeaux, France
| | - Etienne Coutureau
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.,University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33076, Bordeaux, France
| | - Martine Cador
- CNRS, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.,University of Bordeaux, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, F-33076, Bordeaux, France
| |
Collapse
|
42
|
Itoga CA, Berridge KC, Aldridge JW. Ventral pallidal coding of a learned taste aversion. Behav Brain Res 2015; 300:175-83. [PMID: 26615907 DOI: 10.1016/j.bbr.2015.11.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 11/04/2015] [Accepted: 11/19/2015] [Indexed: 12/30/2022]
Abstract
The hedonic value of a sweet food reward, or how much a taste is 'liked', has been suggested to be encoded by neuronal firing in the posterior ventral pallidum (VP). Hedonic impact can be altered by psychological manipulations, such as taste aversion conditioning, which can make an initially pleasant sweet taste become perceived as disgusting. Pairing nausea-inducing LiCl injection as a Pavlovian unconditioned stimulus (UCS) with a novel taste that is normally palatable as the predictive conditioned stimulus (CS+) suffices to induce a learned taste aversion that changes orofacial 'liking' responses to that sweet taste (e.g., lateral tongue protrusions) to 'disgust' reactions (e.g., gapes) in rats. We used two different sweet tastes of similar initial palatability (a sucrose solution and a polycose/saccharin solution, CS ± assignment was counterbalanced across groups) to produce a discriminative conditioned aversion. Only one of those tastes (arbitrarily assigned and designated as CS+) was associatively paired with LiCl injections as UCS to form a conditioned aversion. The other taste (CS-) was paired with mere vehicle injections to remain relatively palatable as a control sweet taste. We recorded the neural activity in VP in response to each taste, before and after aversion training. We found that the safe and positively hedonic taste always elicited excitatory increases in firing rate of VP neurons. By contrast, aversion learning reversed the VP response to the 'disgusting' CS+ taste from initial excitation into a conditioned decrease in neuronal firing rate after training. Such neuronal coding of hedonic impact by VP circuitry may contribute both to normal pleasure and disgust, and disruptions of VP coding could result in affective disorders, addictions and eating disorders.
Collapse
Affiliation(s)
- Christy A Itoga
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.
| | - Kent C Berridge
- Psychology Department, University of Michigan, Ann Arbor, MI, United States
| | - J Wayne Aldridge
- Psychology Department, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
43
|
Castro DC, Cole SL, Berridge KC. Lateral hypothalamus, nucleus accumbens, and ventral pallidum roles in eating and hunger: interactions between homeostatic and reward circuitry. Front Syst Neurosci 2015; 9:90. [PMID: 26124708 PMCID: PMC4466441 DOI: 10.3389/fnsys.2015.00090] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 05/29/2015] [Indexed: 12/16/2022] Open
Abstract
The study of the neural bases of eating behavior, hunger, and reward has consistently implicated the lateral hypothalamus (LH) and its interactions with mesocorticolimbic circuitry, such as mesolimbic dopamine projections to nucleus accumbens (NAc) and ventral pallidum (VP), in controlling motivation to eat. The NAc and VP play special roles in mediating the hedonic impact (“liking”) and motivational incentive salience (“wanting”) of food rewards, and their interactions with LH help permit regulatory hunger/satiety modulation of food motivation and reward. Here, we review some progress that has been made regarding this circuitry and its functions: the identification of localized anatomical hedonic hotspots within NAc and VP for enhancing hedonic impact; interactions of NAc/VP hedonic hotspots with specific LH signals such as orexin; an anterior-posterior gradient of sites in NAc shell for producing intense appetitive eating vs. intense fearful reactions; and anatomically distributed appetitive functions of dopamine and mu opioid signals in NAc shell and related structures. Such findings help improve our understanding of NAc, VP, and LH interactions in mediating affective and motivation functions, including “liking” and “wanting” for food rewards.
Collapse
Affiliation(s)
- Daniel C Castro
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - Shannon L Cole
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - Kent C Berridge
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| |
Collapse
|
44
|
Hahn JD, Swanson LW. Connections of the juxtaventromedial region of the lateral hypothalamic area in the male rat. Front Syst Neurosci 2015; 9:66. [PMID: 26074786 PMCID: PMC4445319 DOI: 10.3389/fnsys.2015.00066] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/06/2015] [Indexed: 01/09/2023] Open
Abstract
Evolutionary conservation of the hypothalamus attests to its critical role in the control of fundamental behaviors. However, our knowledge of hypothalamic connections is incomplete, particularly for the lateral hypothalamic area (LHA). Here we present the results of neuronal pathway-tracing experiments to investigate connections of the LHA juxtaventromedial region, which is parceled into dorsal (LHAjvd) and ventral (LHAjvv) zones. Phaseolus vulgaris leucoagglutinin (PHAL, for outputs) and cholera toxin B subunit (CTB, for inputs) coinjections were targeted stereotaxically to the LHAjvd/v. Results: LHAjvd/v connections overlapped highly but not uniformly. Major joint outputs included: Bed nuc. stria terminalis (BST), interfascicular nuc. (BSTif) and BST anteromedial area, rostral lateral septal (LSr)- and ventromedial hypothalamic (VMH) nuc., and periaqueductal gray. Prominent joint LHAjvd/v input sources included: BSTif, BST principal nuc., LSr, VMH, anterior hypothalamic-, ventral premammillary-, and medial amygdalar nuc., and hippocampal formation (HPF) field CA1. However, LHAjvd HPF retrograde labeling was markedly more abundant than from the LHAjvv; in the LSr this was reversed. Furthermore, robust LHAjvv (but not LHAjvd) targets included posterior- and basomedial amygdalar nuc., whereas the midbrain reticular nuc. received a dense input from the LHAjvd alone. Our analyses indicate the existence of about 500 LHAjvd and LHAjvv connections with about 200 distinct regions of the cerebral cortex, cerebral nuclei, and cerebrospinal trunk. Several highly LHAjvd/v-connected regions have a prominent role in reproductive behavior. These findings contrast with those from our previous pathway-tracing studies of other LHA medial and perifornical tier regions, with different connectional behavioral relations. The emerging picture is of a highly differentiated LHA with extensive and far-reaching connections that point to a role as a central coordinator of behavioral control.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| | - Larry W Swanson
- Department of Biological Sciences, University of Southern California Los Angeles, CA, USA
| |
Collapse
|
45
|
Abstract
Pleasure is mediated by well-developed mesocorticolimbic circuitry and serves adaptive functions. In affective disorders, anhedonia (lack of pleasure) or dysphoria (negative affect) can result from breakdowns of that hedonic system. Human neuroimaging studies indicate that surprisingly similar circuitry is activated by quite diverse pleasures, suggesting a common neural currency shared by all. Wanting for reward is generated by a large and distributed brain system. Liking, or pleasure itself, is generated by a smaller set of hedonic hot spots within limbic circuitry. Those hot spots also can be embedded in broader anatomical patterns of valence organization, such as in a keyboard pattern of nucleus accumbens generators for desire versus dread. In contrast, some of the best known textbook candidates for pleasure generators, including classic pleasure electrodes and the mesolimbic dopamine system, may not generate pleasure after all. These emerging insights into brain pleasure mechanisms may eventually facilitate better treatments for affective disorders.
Collapse
Affiliation(s)
- Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-1043, USA.
| | - Morten L Kringelbach
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford OX3 7JX, UK; Centre for Functionally Integrative Neuroscience, University of Aarhus, 8000 Aarhus C, Denmark
| |
Collapse
|
46
|
Urstadt KR, Stanley BG. Direct hypothalamic and indirect trans-pallidal, trans-thalamic, or trans-septal control of accumbens signaling and their roles in food intake. Front Syst Neurosci 2015; 9:8. [PMID: 25741246 PMCID: PMC4327307 DOI: 10.3389/fnsys.2015.00008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 01/15/2015] [Indexed: 01/01/2023] Open
Abstract
Due in part to the increasing incidence of obesity in developed nations, recent research aims to elucidate neural circuits that motivate humans to overeat. Earlier research has described how the nucleus accumbens shell (AcbSh) motivates organisms to feed by activating neuronal populations in the lateral hypothalamus (LH). However, more recent research suggests that the LH may in turn communicate with the AcbSh, both directly and indirectly, to re-tune the motivation to consume foods with homeostatic and food-related sensory signals. Here, we discuss the functional and anatomical evidence for an LH to AcbSh connection and its role in eating behaviors. The LH appears to modulate Acb activity directly, using neurotransmitters such as hypocretin/orexin or melanin concentrating hormone (MCH). The LH also indirectly regulates AcbSh activity through certain subcortical "relay" regions, such as the lateral septum (LS), ventral pallidum (VP), and paraventricular thalamus, using a variety of neurotransmitters. This review aims to summarize studies on these topics and outline a model by which LH circuits processing energy balance can modulate AcbSh neural activity to regulate feeding behavior.
Collapse
Affiliation(s)
- Kevin R Urstadt
- Department of Psychology, University of Michigan Ann Arbor, MI, USA
| | - B Glenn Stanley
- Departments of Psychology and Cell Biology and Neuroscience, University of California - Riverside Riverside, CA, USA
| |
Collapse
|