1
|
Journé V, Bogdziewicz M, Courbaud B, Kunstler G, Qiu T, Acuña MCA, Ascoli D, Bergeron Y, Berveiller D, Boivin T, Bonal R, Caignard T, Cailleret M, Calama R, Camarero JJ, Chang-Yang CH, Chave J, Chianucci F, Curt T, Cutini A, Das A, Daskalakou E, Davi H, Delpierre N, Delzon S, Dietze M, Calderon SD, Dormont L, Espelta JM, Farfan-Rios W, Fenner M, Franklin J, Gehring C, Gilbert G, Gratzer G, Greenberg CH, Guignabert A, Guo Q, Hacket-Pain A, Hampe A, Han Q, Hanley ME, Lambers JHR, Holík J, Hoshizaki K, Ibanez I, Johnstone JF, Knops JMH, Kobe RK, Kurokawa H, Lageard J, LaMontagne J, Ledwon M, Lefèvre F, Leininger T, Limousin JM, Lutz J, Macias D, Mårell A, McIntire E, Moran EV, Motta R, Myers J, Nagel TA, Naoe S, Noguchi M, Norghauer J, Oguro M, Ourcival JM, Parmenter R, Pearse I, Pérez-Ramos IM, Piechnik Ł, Podgórski T, Poulsen J, Redmond MD, Reid CD, Samonil P, Scher CL, Schlesinger WH, Seget B, Sharma S, Shibata M, Silman M, Steele M, Stephenson N, Straub J, Sutton S, Swenson JJ, Swift M, Thomas PA, Uriarte M, Vacchiano G, Whipple A, Whitham T, Wright SJ, Zhu K, Zimmerman J, Żywiec M, Clark JS. The Relationship Between Maturation Size and Maximum Tree Size From Tropical to Boreal Climates. Ecol Lett 2024; 27:e14500. [PMID: 39354911 DOI: 10.1111/ele.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 10/03/2024]
Abstract
The fundamental trade-off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade-off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non-proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change.
Collapse
Affiliation(s)
- Valentin Journé
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Michał Bogdziewicz
- Forest Biology Center, Institute of Environmental Biology, Adam Mickiewicz University, Poznań, Poland
| | - Benoit Courbaud
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Georges Kunstler
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
| | - Tong Qiu
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marie-Claire Aravena Acuña
- Centro Austral de Investigaciones Científicas (CADIC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), B. Houssay 200 (9410), Ushuaia, Tierra del Fuego, Argentina
| | - Davide Ascoli
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Yves Bergeron
- Forest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, Quebec, Canada
| | - Daniel Berveiller
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Thomas Boivin
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Raul Bonal
- Universite Bordeaux, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), biodiversity, Genes, and Communities (BIOGECO), Pessac, France
| | - Thomas Caignard
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Maxime Cailleret
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-En-Provence, France
| | - Rafael Calama
- ICIFOR (Forest Research Institute), INIA-CSIC, Madrid, Spain
| | - J Julio Camarero
- Instituto Pirenaico de Ecologla, Consejo Superior de Investigaciones Cientificas (IPE-CSIC), Zaragoza, Spain
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Jerome Chave
- Unité Evolution et Diversité Biologique (EDB), CNRS, IRD, UPS, Toulouse, France
| | | | - Thomas Curt
- Aix Marseille Universite, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Aix-en-Provence, France
| | - Andrea Cutini
- Research Centre for Forestry and Wood, Arezzo, Italy
| | - Adrian Das
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Evangelia Daskalakou
- Institute of Mediterranean and Forest Ecosystems, Hellenic Agricultural Organization, Athens, Greece
| | - Hendrik Davi
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | - Nicolas Delpierre
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Gif-sur-Yvette, France
| | - Sylvain Delzon
- Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain
| | - Michael Dietze
- Earth and Environment, Boston University, Boston, Massachusetts, USA
| | - Sergio Donoso Calderon
- Facultad de Ciencias Forestales y de la Conservacion de la Naturaleza (FCFCN), Universidad de Chile, Santiago, Chile
| | - Laurent Dormont
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), Centre National de la Recherche Scientifique (CNRS), Montpellier, France
| | - Josep Maria Espelta
- Centre de Recerca Ecologica i Aplicacions Forestals (CREAF), Bellaterra, Catalunya, Spain
| | - William Farfan-Rios
- Biology Department, Center for Energy, Environment, and Sustainability, Wake Forest University, Winston Salem, North Carolina, USA
| | - Michael Fenner
- Biology Department, University of Southampton, Southampton, UK
| | - Jerry Franklin
- Forest Resources, University of Washington, Seattle, Washington, USA
| | - Catherine Gehring
- Department of Biological Sciences, Center for Adaptive Western Landscapes, Flagstaff, Arizona, USA
| | - Gregory Gilbert
- Department of Environmental Studies, University of California, Santa Cruz, California, USA
| | - Georg Gratzer
- Department of Forest- and Soil Sciences, Institute of Forest Ecology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Cathryn H Greenberg
- Bent Creek Experimental Forest, USDA Forest Service, Asheville, North Carolina, USA
| | - Arthur Guignabert
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave d'Ornon, France
| | - Qinfeng Guo
- Eastern Forest Environmental Threat Assessment Center, USDA Forest Service, Southern Research Station, Research Triangle Park, Durham, North Carolina, USA
| | - Andrew Hacket-Pain
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Arndt Hampe
- BIOGECO, INRAE, University of Bordeaux, Cestas, France
| | - Qingmin Han
- Department of Plant Ecology, Forestry and Forest Products Research Institute (FFPRI), Tsukuba, Japan
| | - Mick E Hanley
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | | | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Kazuhiko Hoshizaki
- Department of Biological Environment, Akita Prefectural University, Akita, Japan
| | - Ines Ibanez
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jill F Johnstone
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | - Johannes M H Knops
- Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Richard K Kobe
- Department of Plant Biology, Program in Ecology, Evolutionary Biology, and Behavior, Michigan State University, East Lansing, Michigan, USA
| | - Hiroko Kurokawa
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Jonathan Lageard
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Jalene LaMontagne
- Department of Biological Sciences, DePaul University, Chicago, Illinois, USA
| | - Mateusz Ledwon
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakow, Poland
| | - François Lefèvre
- Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Ecologie des Forets Mediterranennes, Avignon, France
| | | | | | - James Lutz
- Department of Wildland Resources, and The Ecology Center, Utah State University, Logan, Utah, USA
| | - Diana Macias
- Department of Biology, University of New Mexico, Albuquerque, New Mexico, USA
| | | | - Eliot McIntire
- Pacific Forestry Centre, Victoria, British Columbia, Canada
| | - Emily V Moran
- School of Natural Sciences, UC Merced, Merced, California, USA
| | - Renzo Motta
- Department of Agriculture, Forest and Food Sciences, University of Torino, Turin, Italy
| | - Jonathan Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Thomas A Nagel
- Department of Forestry and Renewable Forest Resources, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Shoji Naoe
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Mahoko Noguchi
- Tohoku Research Center, Forestry and Forest Products Research Institute, Morioka, Iwate, Japan
| | - Julian Norghauer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Michio Oguro
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | | | - Robert Parmenter
- Valles Caldera National Preserve, National Park Service, Jemez Springs, Jemez Springs, New Mexico, USA
| | - Ian Pearse
- Fort Collins Science Center, Fort Collins, Colorado, USA
| | - Ignacio M Pérez-Ramos
- Inst. de Recursos Naturales y Agrobiologia de Sevilla, Consejo Superior de Investigaciones Cientificas (IRNAS-CSIC), Andalucia, Spain
| | - Łukasz Piechnik
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Tomasz Podgórski
- Department of GameManagement and Wildlife Biology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Miranda D Redmond
- Department of Environmental Science Policy and Management, University of California Berkeley, Berkeley, California, USA
| | - Chantal D Reid
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Pavel Samonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - C Lane Scher
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Barbara Seget
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - Shubhi Sharma
- Ecology and Evolutionary Biology Department, Yale University, New Haven, Connecticut, USA
| | - Mitsue Shibata
- Department of Forest Vegetation, Forestry and Forest Products Research Institute, Tsukuba, Ibaraki, Japan
| | - Miles Silman
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, USA
| | - Michael Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, USA
| | - Nathan Stephenson
- USGS Western Ecological Research Center, Three Rivers, California, USA
| | - Jacob Straub
- Department of Environmental Science and Ecology, State University of New York-Brockport, Brockport, New York, USA
| | - Samantha Sutton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | | | - Margaret Swift
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Peter A Thomas
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Maria Uriarte
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Giorgio Vacchiano
- Department of Agricultural and Environmental Sciences-Production, Territory, Agroenergy (DISAA), University of Milan, Milano, Italy
| | - Amy Whipple
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Thomas Whitham
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Panama, Republic of Panama
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, Michigan, USA
| | - Jess Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico, USA
| | - Magdalena Żywiec
- W. Szafer Institute of Botany, Polish Academy of Sciences, Krakow, Poland
| | - James S Clark
- Universite Grenoble Alpes, Institut National de Recherche Pour Agriculture, Alimentation et Environnement (INRAE), Laboratoire EcoSystemes et Societes En Montagne (LESSEM), Grenoble, France
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
2
|
LaManna JA, Hartig F, Myers JA, Freckleton RP, Detto M, Surendra A, Doolittle CJ, Bachelot B, Bagchi R, Comita LS, DeFilippis DM, Huanca-Nunez N, Hülsmann L, Jevon FV, Johnson DJ, Krishnadas M, Magee LJ, Mangan SA, Milici VR, Murengera ALB, Schnitzer SA, Smith DJB, Stein C, Sullivan MK, Torres E, Umaña MN, Delavaux CS. Consequences of Local Conspecific Density Effects for Plant Diversity and Community Dynamics. Ecol Lett 2024; 27:e14506. [PMID: 39354892 DOI: 10.1111/ele.14506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 10/03/2024]
Abstract
Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local-scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD-related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local-scale CDD and its causes, including species-specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics.
Collapse
Affiliation(s)
- Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Robert P Freckleton
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Akshay Surendra
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Cole J Doolittle
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Bénédicte Bachelot
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - David M DeFilippis
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | | | - Lisa Hülsmann
- Ecosystem Analysis and Simulation (EASI) Lab, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Fiona V Jevon
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Meghna Krishnadas
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Lukas J Magee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Scott A Mangan
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, Arkansas, USA
| | - Valerie R Milici
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | | | - Stefan A Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Daniel J B Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Claudia Stein
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, Alabama, USA
| | - Megan K Sullivan
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Ethan Torres
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - María Natalia Umaña
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
3
|
Song X, Katabuchi M, Chase JM, Johnson DJ, Zhang W, Deng X, Cao M, Yang J. Drought tolerance and species abundance mediate dry season negative density dependence in a tropical forest. Ecology 2024; 105:e4382. [PMID: 39056489 DOI: 10.1002/ecy.4382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 07/28/2024]
Abstract
Conspecific negative density dependence (CNDD) is thought to be a key process in maintaining plant diversity. However, the strength of CNDD is highly variable in space and time as well as among species, and correlates of this variation that might help to understand and explain it remain largely unquantified. Using Bayesian hierarchical models, we took advantage of 10-year seedling monitoring data that were collected annually in every dry and rainy season in a seasonal tropical forest. We quantified the interspecific variation in the strength of CNDD and its temporal variation. We also examined potential correlates of this interspecific and temporal variation, including species functional traits (such as drought-tolerant traits, defense-related traits, and recourse acquisition traits) and species abundances. In the dry season, we found a negative relationship between the density of neighboring conspecific seedlings on seedling survival, while in the rainy season, there was a negative relationship between the density of neighboring conspecific adults on seedling survival. In addition, we found that interspecific variation in CNDD was related to drought-tolerant traits in the dry season but not in the rainy season. Across years, we found that drought-intolerant species suffer less CNDD during the dry seasons that have higher rainfall, whereas drought-tolerant species suffer less CNDD when the dry season has lower rainfall. We also found that rare species suffered stronger CNDD in the dry season. Overall, our study highlights that CNDD is highly variable among species and through time, necessitating a deeper appreciation of the environmental and functional contexts of CNDD and their interactions.
Collapse
Affiliation(s)
- Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Masatoshi Katabuchi
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Xiaobao Deng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
4
|
Rueda-Trujillo MA, Veldhuis MP, van Bodegom PM, de Deurwaerder HPT, Visser M. Global increase of lianas in tropical forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17485. [PMID: 39187993 DOI: 10.1111/gcb.17485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
Lianas profoundly affect tropical forests dynamics, reducing productivity and carbon storage, which underscores the importance of monitoring change in their abundance in projecting the future of the global terrestrial carbon store. While increasing liana populations are documented within the Neotropics, the global consistency of these patterns is questioned, and remains to be determined. To evaluate pantropical trends in liana abundance comprehensively and quantitatively, we conducted a systematic literature review and meta-analysis. This approach allowed us to synthesize data from published longitudinal studies examining liana trends across the tropics. We calculated standardized effect sizes and standard errors, and applied a Bayesian hierarchical meta-analytic model to adjust for publication bias. Our analysis reveals an overall pan-tropical increase in lianas abundance, occurring at an average rate of 1.7 ± 0.7 SE% per year (~10% to 24% per decade). This upward trend, confirmed to be robust against publication bias, extends beyond Neotropical regions, indicating a widespread phenomenon. Although a global trend of increasing liana abundance is evident, significant local variation exist, attributable to differences in life cycle stages, abundance metrics, forest successional stages, and biogeographical realms. Notably, increases in stem density of saplings and biomass of canopy lianas, especially in old-growth forests, point to global climatic drivers and heightened turnover rates in tropical forests as factors promoting sustained liana growth in the canopy and clonal colonization in the understory. These trends suggest that the rise in liana abundance may not only persist but could also intensify under climate change. Considering both previous and current research on lianas, our findings confirm growing concerns about lianas' expanding impact on pan-tropical carbon storage, highlighting their significant potential effect on global carbon dynamics.
Collapse
Affiliation(s)
| | - Michiel P Veldhuis
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Peter M van Bodegom
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | | | - Marco Visser
- Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| |
Collapse
|
5
|
Magee LJ, LaManna JA, Wolf AT, Howe RW, Lu Y, Valle D, Smith DJB, Bagchi R, Bauman D, Johnson DJ. The unexpected influence of legacy conspecific density dependence. Ecol Lett 2024; 27:e14449. [PMID: 38857318 DOI: 10.1111/ele.14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024]
Abstract
When plants die, neighbours escape competition. Living conspecifics could disproportionately benefit because they are freed from negative intraspecific processes; however, if the negative effects of past conspecific neighbours persist, other species might be advantaged, and diversity might be maintained through legacy effects. We examined legacy effects in a mapped forest by modelling the survival of 37,212 trees of 23 species using four neighbourhood properties: living conspecific, living heterospecific, legacy conspecific (dead conspecifics) and legacy heterospecific densities. Legacy conspecific effects proved nearly four times stronger than living conspecific effects; changes in annual survival associated with legacy conspecific density were 1.5% greater than living conspecific effects. Over 90% of species were negatively impacted by legacy conspecific density, compared to 47% by living conspecific density. Our results emphasize that legacies of trees alter community dynamics, revealing that prior research may have underestimated the strength of density dependent interactions by not considering legacy effects.
Collapse
Affiliation(s)
- Lukas J Magee
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Amy T Wolf
- Department of Biology and Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, Wisconsin, USA
| | - Robert W Howe
- Department of Biology and Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, Wisconsin, USA
| | - Yuanming Lu
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Denis Valle
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel J B Smith
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Robert Bagchi
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - David Bauman
- AMAP, Univ Montpellier, CIRAD, CNRS, IRAE, IRD, Montpellier, France
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Zhou G, Qin Y, Petticord D, Qiao X, Jiang M. Plant-ant interactions mediate herbivore-induced conspecific negative density dependence in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172163. [PMID: 38569958 DOI: 10.1016/j.scitotenv.2024.172163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/15/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
The early growth stage of plants is vital to community diversity and community regeneration. The Janzen-Connell hypothesis predicts that conspecific density dependence lowers the survival of conspecific seedlings by attracting specialist natural enemies, promoting the recruitment and performance of heterospecific neighbors. Recent work has underscored how this conspecific negative density dependence may be mediated by mutualists - such as how mycorrhizal fungi may mediate the accrual of host-specific pathogens beneath the crown of conspecific adult trees. Aboveground mutualist and enemy interactions exist as well, however, and may provide useful insight into density dependence that are as of yet unexplored. Using a long-term seedling demographic dataset in a subtropical forest plot in central China, we confirmed that conspecific neighborhoods had a significant negative effect on seedling survival in this subtropical forest. Furthermore, although we detected more leaf damage in species that were closely related to ants, we found that the presence of ants had significant positive effects on seedling survival. Beside this, we also found a negative effect of ant appearance on seedling growth which may reflect a trade-off between survival and growth. Overall, our findings suggested that ants and conspecific neighborhoods played important but inverse roles on seedling survival and growth. Our results suggest ants may mediate the influence of conspecific negative density dependence on seedling survival at community level.
Collapse
Affiliation(s)
- Gang Zhou
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Yuanzhi Qin
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | - Xiujuan Qiao
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
| | - Mingxi Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China; State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
7
|
Ruiz-Moreno A, Emslie MJ, Connolly SR. High response diversity and conspecific density-dependence, not species interactions, drive dynamics of coral reef fish communities. Ecol Lett 2024; 27:e14424. [PMID: 38634183 DOI: 10.1111/ele.14424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
Species-to-species and species-to-environment interactions are key drivers of community dynamics. Disentangling these drivers in species-rich assemblages is challenging due to the high number of potentially interacting species (the 'curse of dimensionality'). We develop a process-based model that quantifies how intraspecific and interspecific interactions, and species' covarying responses to environmental fluctuations, jointly drive community dynamics. We fit the model to reef fish abundance time series from 41 reefs of Australia's Great Barrier Reef. We found that fluctuating relative abundances are driven by species' heterogenous responses to environmental fluctuations, whereas interspecific interactions are negligible. Species differences in long-term average abundances are driven by interspecific variation in the magnitudes of both conspecific density-dependence and density-independent growth rates. This study introduces a novel approach to overcoming the curse of dimensionality, which reveals highly individualistic dynamics in coral reef fish communities that imply a high level of niche structure.
Collapse
Affiliation(s)
- Alfonso Ruiz-Moreno
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
- Australian Institute of Marine Science, Townsville, Queensland, Australia
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Sean R Connolly
- Smithsonian Tropical Research Institute, Panama City, Panama
| |
Collapse
|
8
|
Hülsmann L, Chisholm RA, Comita L, Visser MD, de Souza Leite M, Aguilar S, Anderson-Teixeira KJ, Bourg NA, Brockelman WY, Bunyavejchewin S, Castaño N, Chang-Yang CH, Chuyong GB, Clay K, Davies SJ, Duque A, Ediriweera S, Ewango C, Gilbert GS, Holík J, Howe RW, Hubbell SP, Itoh A, Johnson DJ, Kenfack D, Král K, Larson AJ, Lutz JA, Makana JR, Malhi Y, McMahon SM, McShea WJ, Mohamad M, Nasardin M, Nathalang A, Norden N, Oliveira AA, Parmigiani R, Perez R, Phillips RP, Pongpattananurak N, Sun IF, Swanson ME, Tan S, Thomas D, Thompson J, Uriarte M, Wolf AT, Yao TL, Zimmerman JK, Zuleta D, Hartig F. Latitudinal patterns in stabilizing density dependence of forest communities. Nature 2024; 627:564-571. [PMID: 38418889 PMCID: PMC10954553 DOI: 10.1038/s41586-024-07118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 01/25/2024] [Indexed: 03/02/2024]
Abstract
Numerous studies have shown reduced performance in plants that are surrounded by neighbours of the same species1,2, a phenomenon known as conspecific negative density dependence (CNDD)3. A long-held ecological hypothesis posits that CNDD is more pronounced in tropical than in temperate forests4,5, which increases community stabilization, species coexistence and the diversity of local tree species6,7. Previous analyses supporting such a latitudinal gradient in CNDD8,9 have suffered from methodological limitations related to the use of static data10-12. Here we present a comprehensive assessment of latitudinal CNDD patterns using dynamic mortality data to estimate species-site-specific CNDD across 23 sites. Averaged across species, we found that stabilizing CNDD was present at all except one site, but that average stabilizing CNDD was not stronger toward the tropics. However, in tropical tree communities, rare and intermediate abundant species experienced stronger stabilizing CNDD than did common species. This pattern was absent in temperate forests, which suggests that CNDD influences species abundances more strongly in tropical forests than it does in temperate ones13. We also found that interspecific variation in CNDD, which might attenuate its stabilizing effect on species diversity14,15, was high but not significantly different across latitudes. Although the consequences of these patterns for latitudinal diversity gradients are difficult to evaluate, we speculate that a more effective regulation of population abundances could translate into greater stabilization of tropical tree communities and thus contribute to the high local diversity of tropical forests.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Ecosystem Analysis and Simulation (EASI) Lab, University of Bayreuth, Bayreuth, Germany.
- Theoretical Ecology, University of Regensburg, Regensburg, Germany.
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany.
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Liza Comita
- School of the Environment, Yale University, New Haven, CT, USA
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Marco D Visser
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | | | - Salomon Aguilar
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Kristina J Anderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | - Warren Y Brockelman
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Sarayudh Bunyavejchewin
- Thai Long Term Forest Ecological Research Project, Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok, Thailand
| | - Nicolas Castaño
- Instituto Amazónico de Investigaciones Científicas Sinchi, Bogotá, Colombia
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | | | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Stuart J Davies
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | - Alvaro Duque
- Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín, Medellín, Colombia
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | | | - Gregory S Gilbert
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Robert W Howe
- Cofrin Center for Biodiversity, Department of Biology, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Akira Itoh
- Graduate School of Science, Osaka Metropolitan University, Osaka, Japan
| | - Daniel J Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - David Kenfack
- Global Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute, Washington, DC, USA
| | - Kamil Král
- Department of Forest Ecology, Silva Tarouca Research Institute, Brno, Czech Republic
| | - Andrew J Larson
- Department of Forest Management, University of Montana, Missoula, MT, USA
- Wilderness Institute, University of Montana, Missoula, MT, USA
| | - James A Lutz
- Department of Wildland Resources, Utah State University, Logan, UT, USA
| | | | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian's National Zoo & Conservation Biology Institute, Front Royal, VA, USA
| | | | | | - Anuttara Nathalang
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Bangkok, Thailand
| | - Natalia Norden
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia
| | | | - Renan Parmigiani
- Department of Ecology, University of São Paulo, São Paulo, Brazil
| | - Rolando Perez
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | | | | | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Donghwa University, Hualien, Taiwan
| | - Mark E Swanson
- School of the Environment, Washington State University, Pullman, WA, USA
| | | | - Duncan Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, USA
| | - Jill Thompson
- UK Centre for Ecology & Hydrology, Bush Estate, Penicuik, UK
| | - Maria Uriarte
- Department of Ecology, Evolution & Environmental Biology, Columbia University, New York, NY, USA
| | - Amy T Wolf
- Department of Biology, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Tze Leong Yao
- Forest Research Institute Malaysia, Kepong, Malaysia
| | - Jess K Zimmerman
- Department of Environmental Science, University of Puerto Rico, Rio Piedras, USA
| | - Daniel Zuleta
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Washington, DC, USA
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
9
|
Bimler MD, Stouffer DB, Martyn TE, Mayfield MM. Plant interaction networks reveal the limits of our understanding of diversity maintenance. Ecol Lett 2024; 27:e14376. [PMID: 38361464 DOI: 10.1111/ele.14376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 12/17/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Species interactions are key drivers of biodiversity and ecosystem stability. Current theoretical frameworks for understanding the role of interactions make many assumptions which unfortunately, do not always hold in natural, diverse communities. This mismatch extends to annual plants, a common model system for studying coexistence, where interactions are typically averaged across environmental conditions and transitive competitive hierarchies are assumed to dominate. We quantify interaction networks for a community of annual wildflowers in Western Australia across a natural shade gradient at local scales. Whilst competition dominated, intraspecific and interspecific facilitation were widespread in all shade categories. Interaction strengths and directions varied substantially despite close spatial proximity and similar levels of local species richness, with most species interacting in different ways under different environmental conditions. Contrary to expectations, all networks were predominantly intransitive. These findings encourage us to rethink how we conceive of and categorize the mechanisms driving biodiversity in plant systems.
Collapse
Affiliation(s)
- Malyon D Bimler
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Trace E Martyn
- Eastern Oregon Agriculture Research Center-Union Experiment Station, Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon, USA
- Eastern Oregon Agriculture and Natural Resource Program, Oregon State University, Oregon, USA
| | - Margaret M Mayfield
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
10
|
Jiang F, Bennett JA, Crawford KM, Heinze J, Pu X, Luo A, Wang Z. Global patterns and drivers of plant-soil microbe interactions. Ecol Lett 2024; 27:e14364. [PMID: 38225803 DOI: 10.1111/ele.14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
Plant-soil feedback (PSF) is an important mechanism determining plant community dynamics and structure. Understanding the geographic patterns and drivers of PSF is essential for understanding the mechanisms underlying geographic plant diversity patterns. We compiled a large dataset containing 5969 observations of PSF from 202 studies to demonstrate the global patterns and drivers of PSF for woody and non-woody species. Overall, PSF was negative on average and was influenced by plant attributes and environmental settings. Woody species PSFs did not vary with latitude, but non-woody PSFs were more negative at higher latitudes. PSF was consistently more positive with increasing aridity for both woody and non-woody species, likely due to increased mutualistic microbes relative to soil-borne pathogens. These findings were consistent between field and greenhouse experiments, suggesting that PSF variation can be driven by soil legacies from climates. Our findings call for caution to use PSF as an explanation of the latitudinal diversity gradient and highlight that aridity can influence plant community dynamics and structure across broad scales through mediating plant-soil microbe interactions.
Collapse
Affiliation(s)
- Feng Jiang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Jonathan A Bennett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Kerri M Crawford
- Department of Biology & Biochemistry, University of Houston, Houston, Texas, USA
| | - Johannes Heinze
- Department of Biodiversity, Heinz Sielmann Foundation, Wustermark (OT Elstal), Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Xucai Pu
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Ao Luo
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Zhiheng Wang
- Institute of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
11
|
Bruijning M, Metcalf CJE, Visser MD. Closing the gap in the Janzen-Connell hypothesis: What determines pathogen diversity? Ecol Lett 2024; 27:e14316. [PMID: 37787147 DOI: 10.1111/ele.14316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 09/11/2023] [Accepted: 09/17/2023] [Indexed: 10/04/2023]
Abstract
The high tree diversity in tropical forests has long been a puzzle to ecologists. In the 1970s, Janzen and Connell proposed that tree species (hosts) coexist due to the stabilizing actions of specialized enemies. This Janzen-Connell hypothesis was subsequently supported by theoretical studies. Yet, such studies have taken the presence of specialized pathogens for granted, overlooking that pathogen coexistence also requires an explanation. Moreover, stable ecological coexistence does not necessarily imply evolutionary stability. What are the conditions that allow Janzen-Connell effects to evolve? We link theory from community ecology, evolutionary biology and epidemiology to tackle this question, structuring our approach around five theoretical frameworks. Phenomenological Lotka-Volterra competition models provide the most basic framework, which can be restructured to include (single- or multi-)pathogen dynamics. This ecological foundation can be extended to include pathogen evolution. Hosts, of course, may also evolve, and we introduce a coevolutionary model, showing that host-pathogen coevolution can lead to highly diverse systems. Our work unpacks the assumptions underpinning Janzen-Connell and places theoretical bounds on pathogen and host ecology and evolution. The five theoretical frameworks taken together provide a stronger theoretical basis for Janzen-Connell, delivering a wider lens that can yield important insights into the maintenance of diversity in these increasingly threatened systems.
Collapse
Affiliation(s)
- Marjolein Bruijning
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - C Jessica E Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - Marco D Visser
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| |
Collapse
|
12
|
Siegmund GF, Moeller DA, Eckhart VM, Geber MA. Bet Hedging Is Not Sufficient to Explain Germination Patterns of a Winter Annual Plant. Am Nat 2023; 202:767-784. [PMID: 38033178 DOI: 10.1086/726785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
AbstractBet hedging consists of life history strategies that buffer against environmental variability by trading off immediate and long-term fitness. Delayed germination in annual plants is a classic example of bet hedging and is often invoked to explain low germination fractions. We examined whether bet hedging explains low and variable germination fractions among 20 populations of the winter annual plant Clarkia xantiana ssp. xantiana that experience substantial variation in reproductive success among years. Leveraging 15 years of demographic monitoring and 3 years of field germination experiments, we assessed the fitness consequences of seed banks and compared optimal germination fractions from a density-independent bet-hedging model to observed germination fractions. We did not find consistent evidence of bet hedging or the expected trade-off between arithmetic and geometric mean fitness, although delayed germination increased long-term fitness in 7 of 20 populations. Optimal germination fractions were two to five times higher than observed germination fractions, and among-population variation in germination fractions was not correlated with risks across the life cycle. Our comprehensive test suggests that bet hedging is not sufficient to explain the observed germination patterns. Understanding variation in germination strategies will likely require integrating bet hedging with complementary forces shaping the evolution of delayed germination.
Collapse
|
13
|
Iuorio A, Eppinga MB, Baudena M, Veerman F, Rietkerk M, Giannino F. Modelling how negative plant-soil feedbacks across life stages affect the spatial patterning of trees. Sci Rep 2023; 13:19128. [PMID: 37926717 PMCID: PMC10625994 DOI: 10.1038/s41598-023-44867-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023] Open
Abstract
In this work, we theoretically explore how litter decomposition processes and soil-borne pathogens contribute to negative plant-soil feedbacks, in particular in transient and stable spatial organisation of tropical forest trees and seedlings known as Janzen-Connell distributions. By considering soil-borne pathogens and autotoxicity both separately and in combination in a phenomenological model, we can study how both factors may affect transient dynamics and emerging Janzen-Connell distributions. We also identify parameter regimes associated with different long-term behaviours. Moreover, we compare how the strength of negative plant-soil feedbacks was mediated by tree germination and growth strategies, using a combination of analytical approaches and numerical simulations. Our interdisciplinary investigation, motivated by an ecological question, allows us to construct important links between local feedbacks, spatial self-organisation, and community assembly. Our model analyses contribute to understanding the drivers of biodiversity in tropical ecosystems, by disentangling the abilities of two potential mechanisms to generate Janzen-Connell distributions. Furthermore, our theoretical results may help guiding future field data analyses by identifying spatial signatures in adult tree and seedling distribution data that may reflect the presence of particular plant-soil feedback mechanisms.
Collapse
Affiliation(s)
- Annalisa Iuorio
- Department of Engineering, Centro Direzionale-Isola C4, Parthenope University of Naples, 80143, Naples, Italy.
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Maarten B Eppinga
- Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Mara Baudena
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), National Research Council of Italy, Corso Fiume 4, 10133, Torino, Italy
| | - Frits Veerman
- Mathematical Institute, Leiden University, Niels Bohrweg 1, 2300 RA, Leiden, The Netherlands
| | - Max Rietkerk
- Environmental Sciences Group, Copernicus Institute of Sustainable Development, Utrecht University, 3508 TC, Utrecht, The Netherlands
| | - Francesco Giannino
- Department of Agricultural Sciences, University of Naples Federico II, via Università 100, 80055, Portici, Italy
| |
Collapse
|
14
|
Delavaux CS, LaManna JA, Myers JA, Phillips RP, Aguilar S, Allen D, Alonso A, Anderson-Teixeira KJ, Baker ME, Baltzer JL, Bissiengou P, Bonfim M, Bourg NA, Brockelman WY, Burslem DFRP, Chang LW, Chen Y, Chiang JM, Chu C, Clay K, Cordell S, Cortese M, den Ouden J, Dick C, Ediriweera S, Ellis EC, Feistner A, Freestone AL, Giambelluca T, Giardina CP, Gilbert GS, He F, Holík J, Howe RW, Huaraca Huasca W, Hubbell SP, Inman F, Jansen PA, Johnson DJ, Kral K, Larson AJ, Litton CM, Lutz JA, Malhi Y, McGuire K, McMahon SM, McShea WJ, Memiaghe H, Nathalang A, Norden N, Novotny V, O'Brien MJ, Orwig DA, Ostertag R, Parker GG'J, Pérez R, Reynolds G, Russo SE, Sack L, Šamonil P, Sun IF, Swanson ME, Thompson J, Uriarte M, Vandermeer J, Wang X, Ware I, Weiblen GD, Wolf A, Wu SH, Zimmerman JK, Lauber T, Maynard DS, Crowther TW, Averill C. Mycorrhizal feedbacks influence global forest structure and diversity. Commun Biol 2023; 6:1066. [PMID: 37857800 PMCID: PMC10587352 DOI: 10.1038/s42003-023-05410-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure.
Collapse
Affiliation(s)
- Camille S Delavaux
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland.
| | - Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Jonathan A Myers
- Department of Biology, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Salomón Aguilar
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - David Allen
- Department of Biology, Middlebury College, Middlebury, VT, USA
| | - Alfonso Alonso
- Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Kristina J Anderson-Teixeira
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Forest Global Earth Observatory, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Matthew E Baker
- Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | | | - Pulchérie Bissiengou
- Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Libreville, Gabon
| | - Mariana Bonfim
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Norman A Bourg
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Warren Y Brockelman
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Pathum Thani, Thailand
| | | | - Li-Wan Chang
- Taiwan Forestry Research Institute, Taipei City, Taipei, Taiwan, ROC
| | - Yang Chen
- State Key Laboratory of Biocontrol, School of Ecology/School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jyh-Min Chiang
- Department of Life Science, Tunghai University, Taichung City, Taiwan, ROC
| | - Chengjin Chu
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, USA
| | - Susan Cordell
- Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI, USA
| | - Mary Cortese
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Jan den Ouden
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Christopher Dick
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sisira Ediriweera
- Department of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Erle C Ellis
- Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Anna Feistner
- Gabon Biodiversity Program, Center for Conservation and Sustainability, Smithsonian National Zoo and Conservation Biology Institute, Gamba, Gabon
| | - Amy L Freestone
- Department of Biology, Temple Ambler Field Station, Temple University, Ambler, PA, USA
| | - Thomas Giambelluca
- University of Hawaii at Manoa, 1910 East-West Rd., Honolulu, HI, USA
- Water Resources Research Center, University of Hawaii at Manoa, Honolulu, USA
| | | | - Gregory S Gilbert
- Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Fangliang He
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - Jan Holík
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - Robert W Howe
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Walter Huaraca Huasca
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Stephen P Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Faith Inman
- Department of Biology, University of Hawaii, Hilo, HI, USA
| | - Patrick A Jansen
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
- Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
| | - Daniel J Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, USA
| | - Kamil Kral
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - Andrew J Larson
- Department of Forest Management, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- The Wilderness Institute, W. A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
| | - Creighton M Litton
- University of Hawaii at Manoa, 1910 East-West Rd., Honolulu, HI, USA
- Department of Natural Resources and Environmental Management, University of Hawaii at Manoa, Honolulu, USA
| | - James A Lutz
- The Ecology Center, Utah State University, Logan, UT, USA
- Wildland Resources Department, Utah State University, Logan, UT, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Krista McGuire
- Department of Biology, University of Oregon, Eugene, OR, USA
| | - Sean M McMahon
- Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, NJ, USA
| | - William J McShea
- Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Hervé Memiaghe
- Department of Biology, University of Oregon, Eugene, OR, USA
- Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Anuttara Nathalang
- National Biobank of Thailand, National Science and Technology Development Agency, Khlong Nueng, Pathum Thani, Thailand
| | - Natalia Norden
- Programa Ciencias de la Biodiversidad, Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt, Bogota, Colombia
| | - Vojtech Novotny
- Biology Centre, Institute of Entomology, Czech Academy of Sciences, Budějovice, Czech Republic
| | - Michael J O'Brien
- Estación Experimental de Zonas Áridas, Consejo Superior de Investigaciones Científicas, Almería, Spain
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, MA, USA
| | | | | | - Rolando Pérez
- Forest Global Earth Observatory, Smithsonian Tropical Research Institute, Panama City, Panama
| | - Glen Reynolds
- The Royal Society SEARRP (UK/Malaysia), Kota Kinabalu, Sabah, Malaysia
| | - Sabrina E Russo
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Pavel Šamonil
- Department of Forest Ecology, Silva Tarouca Research Institute, Průhonice, Czech Republic
| | - I-Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hsinchu, Taiwan, ROC
| | - Mark E Swanson
- School of the Environment, Washington State University, Pullman, WA, USA
| | | | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, USA
| | - John Vandermeer
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xihua Wang
- Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ian Ware
- U.S. Forest Service, Institute of Pacific Islands Forestry, Pacific Southwest Research Station, Hilo, HI, USA
| | - George D Weiblen
- Department of Plant & Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - Amy Wolf
- Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay, WI, USA
| | - Shu-Hui Wu
- Botanical Garden Division, Taiwan Forestry Research Institute, Taipei City, Taiwan, ROC
| | - Jess K Zimmerman
- Department of Environmental Sciences, University of Puerto Rico, Rio Piedras, Puerto Rico
| | - Thomas Lauber
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Daniel S Maynard
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Thomas W Crowther
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| | - Colin Averill
- ETH Zurich, Department of Environmental Systems Science, Zurich, Switzerland
| |
Collapse
|
15
|
Kalyuzhny M, Lake JK, Wright SJ, Ostling AM. Pervasive within-species spatial repulsion among adult tropical trees. Science 2023; 381:563-568. [PMID: 37535716 DOI: 10.1126/science.adg7021] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
For species to coexist, performance must decline as the density of conspecific individuals increases. Although evidence for such conspecific negative density dependence (CNDD) exists in forests, the within-species spatial repulsion it should produce has rarely been demonstrated in adults. In this study, we show that in comparison to a null model of stochastic birth, death, and limited dispersal, the adults of dozens of tropical forest tree species show strong spatial repulsion, some to surprising distances of approximately 100 meters. We used simulations to show that such strong repulsion can only occur if CNDD considerably exceeds heterospecific negative density dependence-an even stronger condition required for coexistence-and that large-scale repulsion can indeed result from small-scale CNDD. These results demonstrate substantial niche differences between species that may stabilize species diversity.
Collapse
Affiliation(s)
- Michael Kalyuzhny
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffrey K Lake
- Department of Ecology and Evolutionary Biology, The University of Michigan, Ann Arbor, MI 48109, USA
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa 0843-03092, Republic of Panama
| | - Annette M Ostling
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
16
|
Lebrija-Trejos E, Hernández A, Wright SJ. Effects of moisture and density-dependent interactions on tropical tree diversity. Nature 2023; 615:100-104. [PMID: 36792827 DOI: 10.1038/s41586-023-05717-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 01/08/2023] [Indexed: 02/17/2023]
Abstract
Tropical tree diversity increases with rainfall1,2. Direct physiological effects of moisture availability and indirect effects mediated by biotic interactions are hypothesized to contribute to this pantropical increase in diversity with rainfall2-6. Previous studies have demonstrated direct physiological effects of variation in moisture availability on tree survival and diversity5,7-10, but the indirect effects of variation in moisture availability on diversity mediated by biotic interactions have not been shown11. Here we evaluate the relationships between interannual variation in moisture availability, the strength of density-dependent interactions, and seedling diversity in central Panama. Diversity increased with soil moisture over the first year of life across 20 annual cohorts. These first-year changes in diversity persisted for at least 15 years. Differential survival of moisture-sensitive species did not contribute to the observed changes in diversity. Rather, negative density-dependent interactions among conspecifics were stronger and increased diversity in wetter years. This suggests that moisture availability enhances diversity indirectly through moisture-sensitive, density-dependent conspecific interactions. Pathogens and phytophagous insects mediate interactions among seedlings in tropical forests12-18, and many of these plant enemies are themselves moisture-sensitive19-27. Changes in moisture availability caused by climate change and habitat degradation may alter these interactions and tropical tree diversity.
Collapse
Affiliation(s)
- Edwin Lebrija-Trejos
- Department of Biology and Environment, University of Haifa-Oranim, Kiryat Tiv'on, Israel.
| | | | - S Joseph Wright
- Smithsonian Tropical Research Institute, Balboa Ancón, Panama
| |
Collapse
|
17
|
Paniw M, García-Callejas D, Lloret F, Bassar RD, Travis J, Godoy O. Pathways to global-change effects on biodiversity: new opportunities for dynamically forecasting demography and species interactions. Proc Biol Sci 2023; 290:20221494. [PMID: 36809806 PMCID: PMC9943645 DOI: 10.1098/rspb.2022.1494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/12/2023] [Indexed: 02/23/2023] Open
Abstract
In structured populations, persistence under environmental change may be particularly threatened when abiotic factors simultaneously negatively affect survival and reproduction of several life cycle stages, as opposed to a single stage. Such effects can then be exacerbated when species interactions generate reciprocal feedbacks between the demographic rates of the different species. Despite the importance of such demographic feedbacks, forecasts that account for them are limited as individual-based data on interacting species are perceived to be essential for such mechanistic forecasting-but are rarely available. Here, we first review the current shortcomings in assessing demographic feedbacks in population and community dynamics. We then present an overview of advances in statistical tools that provide an opportunity to leverage population-level data on abundances of multiple species to infer stage-specific demography. Lastly, we showcase a state-of-the-art Bayesian method to infer and project stage-specific survival and reproduction for several interacting species in a Mediterranean shrub community. This case study shows that climate change threatens populations most strongly by changing the interaction effects of conspecific and heterospecific neighbours on both juvenile and adult survival. Thus, the repurposing of multi-species abundance data for mechanistic forecasting can substantially improve our understanding of emerging threats on biodiversity.
Collapse
Affiliation(s)
- Maria Paniw
- Department of Conservation Biology and Global Change, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - David García-Callejas
- Department of Integrative Ecology, Estación Biológica de Doñana (EBD-CSIC), Seville, 41001 Spain
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| | - Francisco Lloret
- Center for Ecological Research and Forestry Applications (CREAF), Cerdanyola del Vallès 08193, Spain
- Department Animal Biology, Plant Biology and Ecology, Universitat Autònoma Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ronald D. Bassar
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Joseph Travis
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
| | - Oscar Godoy
- Instituto Universitario de Investigación Marina (INMAR), Departamento de Biología, Universidad de Cádiz, Campus Río San Pedro, 11510 Puerto Real, Spain
| |
Collapse
|
18
|
Xu L, Clark AT, Rees M, Turnbull LA. Estimating competition in metacommunities: accounting for biases caused by dispersal. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Liang Xu
- Department of Plant Sciences University of Oxford Oxford UK
| | - Adam T. Clark
- Institute of Biology Karl‐Franzens‐Universität Graz Graz Austria
| | - Mark Rees
- Department of Animal and Plant Sciences University of Sheffield Sheffield UK
| | | |
Collapse
|
19
|
Wei B, Zhong L, Liu J, Zheng F, Jin Y, Xie Y, Lei Z, Shen G, Yu M. Differences in Density Dependence among Tree Mycorrhizal Types Affect Tree Species Diversity and Relative Growth Rates. PLANTS 2022; 11:plants11182340. [PMID: 36145742 PMCID: PMC9505969 DOI: 10.3390/plants11182340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/30/2022]
Abstract
Conspecific negative density dependence (CNDD) may vary by tree mycorrhizal type. However, whether arbuscular mycorrhizal (AM)-associated tree species suffer from stronger CNDD than ectomycorrhizal (EcM) and ericoid mycorrhizal (ErM)-associated tree species at different tree life stages, and whether EcM tree species can promote AM and ErM saplings and adults growth, remain to be studied. Based on the subtropical evergreen broad-leaved forest data in eastern China, the generalized linear mixed-effects model was used to analyze the effects of the conspecific density and heterospecific density grouped by symbiont mycorrhizal type on different tree life stages of different tree mycorrhizal types. The results showed that compared to other tree mycorrhizal types at the same growth stage, EcM saplings and AM adults experienced stronger CNDD. Heterospecific EcM density had a stronger positive effect on AM and ErM individuals. Species diversity and average relative growth rate (RGR) first increased and then decreased with increasing basal area (BA) ratios of EcM to AM tree species. These results suggested that the stronger CNDD of EcM saplings and AM adults favored local species diversity over other tree mycorrhizal types. The EcM tree species better facilitated the growth of AM and ErM tree species in the neighborhood, increasing the forest carbon sink rate. Interestingly, species diversity and average RGR decreased when EcM or AM tree species predominated. Therefore, our study highlights that manipulating the BA ratio of EcM to AM tree species will play a nonnegligible role in maintaining biodiversity and increasing forest carbon sink rates.
Collapse
Affiliation(s)
- Boliang Wei
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lei Zhong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Wuyanling National Nature Reserve Management Bureau, Taishun 325500, China
| | - Jinliang Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Fangdong Zheng
- Zhejiang Wuyanling National Nature Reserve Management Bureau, Taishun 325500, China
| | - Yi Jin
- State Key Laboratory of Plant Physiology and Development in Guizhou Province, School of Life Sciences, Guizhou Normal University, Guiyang 550025, China
| | - Yuchu Xie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zupei Lei
- Zhejiang Wuyanling National Nature Reserve Management Bureau, Taishun 325500, China
| | - Guochun Shen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Mingjian Yu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
- Correspondence: ; Tel.: +86-0571-88206469
| |
Collapse
|
20
|
Jevon FV, De La Cruz D, LaManna JA, Lang AK, Orwig DA, Record S, Kouba PV, Ayres MP, Matthes JH. Experimental and observational evidence of negative conspecific density dependence in temperate ectomycorrhizal trees. Ecology 2022; 103:e3808. [PMID: 35792423 DOI: 10.1002/ecy.3808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/25/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
Conspecific negative density dependence (CNDD) promotes tree species diversity by reducing recruitment near conspecific adults due to biotic feedbacks from herbivores, pathogens, or competitors. While this process is well-described in tropical forests, tests of temperate tree species range from strong positive to strong negative density dependence. To explain this, several studies have suggested that tree species traits may help predict the strength and direction of density dependence: for example, ectomycorrhizal-associated tree species typically exhibit either positive or weaker negative conspecific density dependence. More generally, the strength of density dependence may be predictably related to other species-specific ecological attributes such as shade tolerance, or the relative local abundance of a species. To test the strength of density dependence and whether it affects seedling community diversity in a temperate forest, we tracked the survival of seedlings of three ectomycorrhizal-associated species experimentally planted beneath conspecific and heterospecific adults on the Prospect Hill tract of the Harvard Forest, in Massachusetts, USA. Experimental seedling survival was always lower under conspecific adults, which increased seedling community diversity in one of six treatments. We compared these results to evidence of CNDD from observed sapling survival patterns of 28 species over approximately 8 years in an adjacent 35-hectare forest plot. We tested whether species-specific estimates of CNDD were associated with mycorrhizal association, shade tolerance, and local abundance. We found evidence of significant, negative conspecific density dependence (CNDD) in 23 of 28 species, and positive conspecific density dependence in two species. Contrary to our expectations, ectomycorrhizal-associated species generally exhibited stronger (e.g. more negative) CNDD than arbuscular mycorrhizal- associated species. CNDD was also stronger in more shade tolerant species but was not associated with local abundance. Conspecific adult trees often have a negative influence on seedling survival in temperate forests, particularly for tree species with certain traits. Here we found strong experimental and observational evidence that ectomycorrhizal-associating species consistently exhibit CNDD. Moreover, similarities in the relative strength of density dependence from experiments and observations of sapling mortality suggest a mechanistic link between negative effects of conspecific adults on seedling and sapling survival and local tree species distributions.
Collapse
Affiliation(s)
- Fiona V Jevon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | - Dayna De La Cruz
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Ashley K Lang
- Department of Biological Sciences, Indiana University, Bloomington, IN, USA
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, MA, USA
| | - Sydne Record
- Department of Biology, Bryn Mawr College, Bryn Mawr, Pennsylvania, USA
| | - Paige V Kouba
- Department of Plant Sciences, University of California, Davis, CA, USA
| | - Matthew P Ayres
- Department of Biological Sciences, Dartmouth College, Hanover, NH, United States
| | | |
Collapse
|
21
|
Smith DJB. The functional form of specialised predation affects whether Janzen-Connell effects can prevent competitive exclusion. Ecol Lett 2022; 25:1458-1470. [PMID: 35474601 PMCID: PMC9324109 DOI: 10.1111/ele.14014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 01/31/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
Janzen–Connell effects (JCEs), specialised predation of seeds and seedlings near conspecific trees, are hypothesised to maintain species richness. While previous studies show JCEs can maintain high richness relative to neutral communities, recent theoretical work indicates JCEs may weakly inhibit competitive exclusion when species exhibit interspecific fitness variation. However, recent models make somewhat restrictive assumptions about the functional form of specialised predation—that JCEs occur at a fixed rate when offspring are within a fixed distance of a conspecific tree. Using a theoretical model, I show that the functional form of JCEs largely impacts their ability to maintain coexistence. If predation pressure increases additively with adult tree density and decays exponentially with distance, JCEs maintain considerably higher species richness than predicted by recent models. Loosely parameterising the model with data from a Panamanian tree community, I elucidate the conditions under which JCEs are capable of maintaining high species richness.
Collapse
Affiliation(s)
- Daniel J B Smith
- Committee on Evolutionary Biology, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
22
|
Barbour MA, Kliebenstein DJ, Bascompte J. A keystone gene underlies the persistence of an experimental food web. Science 2022; 376:70-73. [PMID: 35357912 DOI: 10.1126/science.abf2232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Genes encode information that determines an organism's fitness. Yet we know little about whether genes of one species influence the persistence of interacting species in an ecological community. Here, we experimentally tested the effect of three plant defense genes on the persistence of an insect food web and found that a single allele at a single gene promoted coexistence by increasing plant growth rate, which in turn increased the intrinsic growth rates of species across multiple trophic levels. Our discovery of a "keystone gene" illustrates the need to bridge between biological scales, from genes to ecosystems, to understand community persistence.
Collapse
Affiliation(s)
- Matthew A Barbour
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| | | | - Jordi Bascompte
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
23
|
Li Y, Jiang Y, Zhao K, Chen Y, Wei W, Shipley B, Chu C. Exploring trait-performance relationships of tree seedlings along experimentally manipulated light and water gradients. Ecology 2022; 103:e3703. [PMID: 35357001 DOI: 10.1002/ecy.3703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/11/2022]
Abstract
A foundational assumption of trait-based ecology is that individual performances should be predicted by its functional traits. However, the trait-performance relationships reported in literature were typically weak, probably due to the ignorance of interactions between traits and environments, intraspecific trait variability and hard traits (directly linked to physiological processes of interest). We conducted an experiment of planting 900 seedlings of six tree species separately (one seedling per pot) along experimentally manipulated light and water gradients, monitored their survival and growth, and measured their morphological, photosynthetic and hydraulic traits. Most trait-performance relationships depended on the environments, either marginally changing (weak trait × environment interaction) or even reversing (strong trait × environment interaction) along light or water gradients in our experiment. Such trait × environment interactions were more likely to be detected in growth models using individual-level traits than models using species mean traits, but seedling growth was not better modelled with individual-level traits than species mean traits. Additionally, none of the hard traits (photosynthetic and hydraulic traits) were better predictors than soft traits (morphological traits) modeling seedling growth and survival along light and water gradients. Our study highlights the necessities of considering trait × environment interactions when predicting response of plants to changing environments. The benefits of using individual-level traits or hard traits to predict plant performance might be reduced or even cancelled if their measurement errors are not well controlled.
Collapse
Affiliation(s)
- Yuanzhi Li
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Yuan Jiang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| | - Kangning Zhao
- School of Architecture, University of South China, Hengyang, Hunan, China
| | - Yang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Wei
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bill Shipley
- Département de biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Chengjin Chu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
24
|
LaManna JA, Jones FA, Bell DM, Pabst RJ, Shaw DC. Tree species diversity increases with conspecific negative density dependence across an elevation gradient. Ecol Lett 2022; 25:1237-1249. [PMID: 35291051 DOI: 10.1111/ele.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 11/30/2022]
Abstract
Elevational and latitudinal gradients in species diversity may be mediated by biotic interactions that cause density-dependent effects of conspecifics on survival or growth to differ from effects of heterospecifics (i.e. conspecific density dependence), but limited evidence exists to support this. We tested the hypothesis that conspecific density dependence varies with elevation using over 40 years of data on tree survival and growth from 23 old-growth temperate forest stands across a 1,000-m elevation gradient. We found that conspecific-density-dependent effects on survival of small-to-intermediate-sized focal trees were negative in lower elevation, higher diversity forest stands typically characterised by warmer temperatures and greater relative humidity. Conspecific-density-dependent effects on survival were less negative in higher elevation stands and ridges than in lower elevation stands and valley bottoms for small-to-intermediate-sized trees, but were neutral for larger trees across elevations. Conspecific-density-dependent effects on growth were negative across all tree size classes and elevations. These findings reveal fundamental differences in biotic interactions that may contribute to relationships between species diversity, elevation and climate.
Collapse
Affiliation(s)
- Joseph A LaManna
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - F Andrew Jones
- Department of Botany & Plant Pathology, Oregon State University, Corvallis, Oregon, USA.,Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - David M Bell
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA
| | - Robert J Pabst
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, Oregon, USA
| | - David C Shaw
- Department of Forest Engineering, Resources, and Management, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
25
|
Germain SJ, Lutz JA. Climate warming may weaken stabilizing mechanisms in old forests. ECOL MONOGR 2022. [DOI: 10.1002/ecm.1508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sara J. Germain
- Department of Wildland Resources Utah State University Logan Utah USA
| | - James A. Lutz
- Department of Wildland Resources Utah State University Logan Utah USA
| |
Collapse
|
26
|
Xu Z, Johnson DJ, Zhu K, Lin F, Ye J, Yuan Z, Mao Z, Fang S, Hao Z, Wang X. Interannual climate variability has predominant effects on seedling survival in a temperate forest. Ecology 2022; 103:e3643. [DOI: 10.1002/ecy.3643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/27/2021] [Accepted: 11/10/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Zhichao Xu
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
- University of Chinese Academy of Sciences Beijing China
| | - Daniel J. Johnson
- School of Forest, Fisheries, and Geomatics Sciences University of Florida Gainesville Florida USA
| | - Kai Zhu
- Department of Environmental Studies University of California Santa Cruz California USA
| | - Fei Lin
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
| | - Zuoqiang Yuan
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
- University of Chinese Academy of Sciences Beijing China
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
| | - Zhanqing Hao
- School of Ecology and Environment Northwestern Polytechnical University Xi'an China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management Institute of Applied Ecology, Chinese Academy of Sciences Shenyang China
| |
Collapse
|
27
|
Segnitz RM, Russo SE, Peay KG. Interactions with soil fungi alter density dependence and neighborhood effects in a locally abundant dipterocarp species. Ecol Evol 2022; 12:e8478. [PMID: 35127017 PMCID: PMC8796921 DOI: 10.1002/ece3.8478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/05/2021] [Accepted: 11/25/2021] [Indexed: 11/10/2022] Open
Abstract
Seedling recruitment can be strongly affected by the composition of nearby plant species. At the neighborhood scale (on the order of tens of meters), adult conspecifics can modify soil chemistry and the presence of host microbes (pathogens and mutualists) across their combined canopy area or rooting zones. At local or small spatial scales (on the order of one to few meters), conspecific seed or seedling density can influence the strength of intraspecific light and resource competition and also modify the density-dependent spread of natural enemies such as pathogens or invertebrate predators. Intrinsic correlation between proximity to adult conspecifics (i.e., recruitment neighborhood) and local seedling density, arising from dispersal, makes it difficult to separate the independent and interactive factors that contribute to recruitment success. Here, we present a field experiment in which we manipulated both the recruitment neighborhood and seedling density to explore how they interact to influence the growth and survival of Dryobalanops aromatica, a dominant ectomycorrhizal tree species in a Bornean tropical rainforest. First, we found that both local seedling density and recruitment neighborhood had effects on performance of D. aromatica seedlings, though the nature of these impacts varied between growth and survival. Second, we did not find strong evidence that the effect of density on seedling survival is dependent on the presence of conspecific adult trees. However, accumulation of mutualistic fungi beneath conspecifics adults does facilitate establishment of D. aromatica seedlings. In total, our results suggest that recruitment near adult conspecifics was not associated with a performance cost and may have weakly benefitted recruiting seedlings. Positive effects of conspecifics may be a factor facilitating the regional hyperabundance of this species. Synthesis: Our results provide support for the idea that dominant species in diverse forests may escape the localized recruitment suppression that limits abundance in rarer species.
Collapse
Affiliation(s)
- R. Max Segnitz
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Sabrina E. Russo
- School of Biological SciencesUniversity of NebraskaLincolnNebraskaUSA
- Center for Plant Science InnovationUniversity of NebraskaLincolnNebraskaUSA
| | - Kabir G. Peay
- Department of BiologyStanford UniversityStanfordCaliforniaUSA
- Woods Institute for the EnvironmentStanfordCaliforniaUSA
| |
Collapse
|
28
|
Lai HR, Chong KY, Yee ATK, Mayfield MM, Stouffer DB. Non-additive biotic interactions improve predictions of tropical tree growth and impact community size structure. Ecology 2021; 103:e03588. [PMID: 34797924 DOI: 10.1002/ecy.3588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/25/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Growth in individual size or biomass is a key demographic component in population models, with wide-ranging applications from quantifying species performance across abiotic or biotic conditions to assessing landscape-level dynamics under global change. In forest ecology, the responses of tree growth to biotic interactions are widely held to be crucial for understanding forest diversity, function, and structure. To date, most studies on plant-plant interactions only examine the additive competitive or facilitative interactions between species pairs; however, there is increasing evidence of non-additive, higher-order interactions (HOIs) impacting species demographic rates. When HOIs are present, the dynamics of a multispecies community cannot be fully understood or accurately predicted solely from pairwise outcomes because of how additional species "interfere" with the direct, pairwise interactions. Such HOIs should be particularly prevalent when species show non-linear functional responses to resource availability and resource-acquisition traits themselves are density dependent. With this in mind, we used data from a tropical secondary forest-a system that fulfills both of these conditions-to build an ontogenetic diameter growth model for individuals across 10 woody-plant species. We allowed both direct and indirect interactions within communities to influence the species-specific growth parameters in a generalized Lotka-Volterra model. Specifically, indirect interactions entered the model as higher-order quadratic terms, i.e., non-additive effects of conspecific and heterospecific neighbor size on the focal individual's growth. For the whole community and for four out of 10 focal species, the model that included HOIs had more statistical support than the model that included only direct interactions, despite the former containing a far greater number of parameters. HOIs had comparable effect sizes to direct interactions, and tended to further reduce the diameter growth rates of most species beyond what direct interactions had already reduced. In a simulation of successional stand dynamics, the inclusion of HOIs led to rank swaps in species' diameter hierarchies, even when community-level size distributions remained qualitatively similar. Our study highlights the implications, and discusses possible mechanisms, of non-additive density dependence in highly diverse and light-competitive tropical forests.
Collapse
Affiliation(s)
- Hao Ran Lai
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Kwek Yan Chong
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore, 117558, Singapore
| | - Alex Thiam Koon Yee
- Centre for Urban Greenery and Ecology, National Parks Board, Singapore Botanic Gardens, Singapore, Singapore
| | - Margaret M Mayfield
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland, 4067, Australia
| | - Daniel B Stouffer
- Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
29
|
Song X, Corlett RT. Do natural enemies mediate conspecific negative distance‐ and density‐dependence of trees? A meta‐analysis of exclusion experiments. OIKOS 2021. [DOI: 10.1111/oik.08509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Mengla China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences Mengla China
| | - Richard T. Corlett
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences Mengla China
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences Mengla China
| |
Collapse
|
30
|
Fibich P, Ishihara MI, Suzuki SN, Doležal J, Altman J. Contribution of conspecific negative density dependence to species diversity is increasing towards low environmental limitation in Japanese forests. Sci Rep 2021; 11:18712. [PMID: 34548522 PMCID: PMC8455644 DOI: 10.1038/s41598-021-98025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Species coexistence is a result of biotic interactions, environmental and historical conditions. The Janzen-Connell hypothesis assumes that conspecific negative density dependence (CNDD) is one of the local processes maintaining high species diversity by decreasing population growth rates at high densities. However, the contribution of CNDD to species richness variation across environmental gradients remains unclear. In 32 large forest plots all over the Japanese archipelago covering > 40,000 individual trees of > 300 species and based on size distributions, we analysed the strength of CNDD of individual species and its contribution to species number and diversity across altitude, mean annual temperature, mean annual precipitation and maximum snow depth gradients. The strength of CNDD was increasing towards low altitudes and high tree species number and diversity. The effect of CNDD on species number was changing across altitude, temperature and snow depth gradients and their combined effects contributed 11-18% of the overall explained variance. Our results suggest that CNDD can work as a mechanism structuring forest communities in the Japanese archipelago. Strong CNDD was observed to be connected with high species diversity under low environmental limitations where local biotic interactions are expected to be stronger than in niche-based community assemblies under high environmental filtering.
Collapse
Affiliation(s)
- Pavel Fibich
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic.
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.
| | - Masae I Ishihara
- Field Science Education and Research Center, Ashiu Forest Research Station, Kyoto University, Kyoto, Japan
| | - Satoshi N Suzuki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo Hokkaido Forest, The University of Tokyo, Furano, Japan
| | - Jiří Doležal
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of Sciences, Průhonice, Czech Republic
| |
Collapse
|
31
|
Liu Y, He F. Warming intensifies soil pathogen negative feedback on a temperate tree. THE NEW PHYTOLOGIST 2021; 231:2297-2307. [PMID: 33891310 PMCID: PMC8456973 DOI: 10.1111/nph.17409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/07/2021] [Indexed: 05/05/2023]
Abstract
The soil pathogen-induced Janzen-Connell (JC) effect is considered as a primary mechanism regulating plant biodiversity worldwide. As predicted by the framework of the classic plant disease triangle, severity of plant diseases is often influenced by temperature, yet insufficient understanding of how increasing temperatures affect the JC effect contributes uncertainty in predictions about how global warming affects biodiversity. We conducted a 3-yr field warming experiment, combining open-top chambers with pesticide treatment, to test the effect of elevated temperatures on seedling mortality of a temperate tree species, Prunus padus, from a genus with known susceptibility to soil-borne pathogens. Elevated temperature significantly increased the mortality of P. padus seedlings in the immediate vicinity of parent trees, concurrent with increased relative abundance of pathogenic fungi identified to be virulent to Prunus species. Our study offers experimental evidence suggesting that global warming significantly intensifies the JC effect on a temperate tree species due to increased relative abundance of pathogenic fungi. This work advances our understanding about changes in the JC effect linked to ongoing global warming, which has important implications for predicting tree diversity in a warmer future.
Collapse
Affiliation(s)
- Yu Liu
- ECNU‐Alberta Joint Laboratory for Biodiversity StudyTiantong National Station for Forest Ecosystem ResearchSchool of Ecology and Environmental SciencesEast China Normal UniversityShanghai200241China
- Shanghai Institute of Pollution Control and Ecological SecurityShanghai200092China
| | - Fangliang He
- ECNU‐Alberta Joint Laboratory for Biodiversity StudyTiantong National Station for Forest Ecosystem ResearchSchool of Ecology and Environmental SciencesEast China Normal UniversityShanghai200241China
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlberta,T6G 2H1Canada
| |
Collapse
|
32
|
Zaiats A, Germino MJ, Serpe MD, Richardson BA, Caughlin TT. Intraspecific variation mediates density dependence in a genetically diverse plant species. Ecology 2021; 102:e03502. [PMID: 34314039 DOI: 10.1002/ecy.3502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/06/2021] [Indexed: 11/06/2022]
Abstract
Interactions between neighboring plants are critical for biodiversity maintenance in plant populations and communities. Intraspecific trait variation and genome duplication are common in plant species and can drive eco-evolutionary dynamics through genotype-mediated plant-plant interactions. However, few studies have examined how species-wide intraspecific variation may alter interactions between neighboring plants. We investigate how subspecies and ploidy variation in a genetically diverse species, big sagebrush (Artemisia tridentata), can alter the demographic outcomes of plant interactions. Using a replicated, long-term common garden experiment that represents range-wide diversity of A. tridentata, we ask how intraspecific variation, environment, and stand age mediate neighbor effects on plant growth and survival. Spatially explicit models revealed that ploidy variation and subspecies identity can mediate plant-plant interactions but that the effect size varied in time and across experimental sites. We found that demographic impacts of neighbor effects were strongest during early stages of stand development and in sites with greater growth rates. Within subspecies, tetraploid populations showed greater tolerance to neighbor crowding compared to their diploid variants. Our findings provide evidence that intraspecific variation related to genome size and subspecies identity impacts spatial demography in a genetically diverse plant species. Accounting for intraspecific variation in studies of conspecific density dependence will improve our understanding of how local populations will respond to novel genotypes and biotic interaction regimes. As introduction of novel genotypes into local populations becomes more common, quantifying demographic processes in genetically diverse populations will help predict long-term consequences of plant-plant interactions.
Collapse
Affiliation(s)
- Andrii Zaiats
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - Matthew J Germino
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, Boise, Idaho, 83706, USA
| | - Marcelo D Serpe
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| | - Bryce A Richardson
- USDA Forest Service, Rocky Mountain Research Station, Moscow, Idaho, 83843, USA
| | - T Trevor Caughlin
- Department of Biological Sciences, Boise State University, Boise, Idaho, 83725, USA
| |
Collapse
|
33
|
Song C, Uricchio LH, Mordecai EA, Saavedra S. Understanding the emergence of contingent and deterministic exclusion in multispecies communities. Ecol Lett 2021; 24:2155-2168. [PMID: 34288350 DOI: 10.1111/ele.13846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Competitive exclusion can be classified as deterministic or as historically contingent. While competitive exclusion is common in nature, it has remained unclear when multispecies communities formed by more than two species should be dominated by deterministic or contingent exclusion. Here, we take a fully parameterised model of an empirical competitive system between invasive annual and native perennial plant species to explain both the emergence and sources of competitive exclusion in multispecies communities. Using a structural approach to understand the range of parameters promoting deterministic and contingent exclusions, we then find heuristic theoretical support for the following three general conclusions. First, we find that the life-history of perennial species increases the probability of observing contingent exclusion by increasing their effective intrinsic growth rates. Second, we find that the probability of observing contingent exclusion increases with weaker intraspecific competition, and not with the level of hierarchical competition. Third, we find a shift from contingent exclusion to deterministic exclusion with increasing numbers of competing species. Our work provides a heuristic framework to increase our understanding about the predictability of species persistence within multispecies communities.
Collapse
Affiliation(s)
- Chuliang Song
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA.,Department of Biology, McGill University, Montreal, Canada.,Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, Canada
| | - Lawrence H Uricchio
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | | | - Serguei Saavedra
- Department of Civil and Environmental Engineering, MIT, Cambridge, MA, USA
| |
Collapse
|
34
|
Barry KE, Schnitzer SA. Are we missing the forest for the trees? Conspecific negative density dependence in a temperate deciduous forest. PLoS One 2021; 16:e0245639. [PMID: 34264937 PMCID: PMC8282035 DOI: 10.1371/journal.pone.0245639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 06/17/2021] [Indexed: 11/26/2022] Open
Abstract
One of the central goals of ecology is to determine the mechanisms that enable coexistence among species. Evidence is accruing that conspecific negative density dependence (CNDD), the process by which plant seedlings are unable to survive in the area surrounding adults of their same species, is a major contributor to tree species coexistence. However, for CNDD to maintain community-level diversity, three conditions must be met. First, CNDD must maintain diversity for the majority of the woody plant community (rather than merely specific groups). Second, the pattern of repelled recruitment must increase in with plant size. Third, CNDD should extend to the majority of plant life history strategies. These three conditions are rarely tested simultaneously. In this study, we simultaneously test all three conditions in a woody plant community in a North American temperate forest. We examined whether understory and canopy woody species across height categories and dispersal syndromes were overdispersed-a spatial pattern indicative of CNDD-using spatial point pattern analysis across life history stages and strategies. We found that there was a strong signal of overdispersal at the community level. Across the whole community, larger individuals were more overdispersed than smaller individuals. The overdispersion of large individuals, however, was driven by canopy trees. By contrast, understory woody species were not overdispersed as adults. This finding indicates that the focus on trees for the vast majority of CNDD studies may have biased the perception of the prevalence of CNDD as a dominant mechanism that maintains community-level diversity when, according to our data, CNDD may be restricted largely to trees.
Collapse
Affiliation(s)
- Kathryn E. Barry
- Department of Biology, Ecology and Biodiversity Working Group, Institute of Environmental Biology, Utrecht University, Utrecht, Netherlands
| | - Stefan A. Schnitzer
- Department of Biological Sciences, Marquette University, Milwaukee, WI, United States of America
| |
Collapse
|
35
|
Newbery DM, Stoll P. Including tree spatial extension in the evaluation of neighborhood competition effects in Bornean rain forest. Ecol Evol 2021; 11:6195-6222. [PMID: 34141212 PMCID: PMC8207374 DOI: 10.1002/ece3.7452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 01/05/2021] [Indexed: 12/05/2022] Open
Abstract
Classical tree neighborhood models use size variables acting at point distances. In a new approach here, trees were spatially extended as a function of their crown sizes, represented impressionistically as points within crown areas. Extension was accompanied by plasticity in the form of crown removal or relocation under the overlap of taller trees. Root systems were supposedly extended in a similar manner. For the 38 most abundant species in the focal size class (10-<100 cm stem girth) in two 4-ha plots at Danum (Sabah), for periods P1 (1986-1996) and P2 (1996-2007), stem growth rate and tree survival were individually regressed against stem size, and neighborhood conspecific (CON) and heterospecific (HET) basal areas within incremented steps in radius. Model parameters were critically assessed, and statistical robustness in the modeling was set by randomization testing. Classical and extended models differed importantly in their outcomes. Crown extension weakened the relationship of CON effect on growth versus plot species' abundance, showing that models without plasticity overestimated negative density dependence. A significant negative trend of difference in CON effects on growth (P2-P1) versus CON or HET effect on survival in P1 was strongest with crown extension. Model outcomes did not then support an explanation of CON and HET effects being due to (asymmetric) competition for light alone. An alternative hypothesis is that changes in CON effects on small trees, largely incurred by a drought phase (relaxing light limitation) in P2, and following the more shaded (suppressing) conditions in P1, were likely due to species-specific (symmetric) root competition and mycorrhizal processes. The very high variation in neighborhood composition and abundances led to a strong "neighborhood stochasticity" and hence to largely idiosyncratic species' responses. A need to much better understand the roles of rooting structure and processes at the individual tree level was highlighted.
Collapse
Affiliation(s)
| | - Peter Stoll
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Section of Conservation BiologyDepartment of Environmental SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
36
|
Affiliation(s)
- James B. Grace
- U.S. Geological Survey, Wetland and Aquatic Research Center Lafayette LA USA
| |
Collapse
|
37
|
Wills C, Wang B, Fang S, Wang Y, Jin Y, Lutz J, Thompson J, Harms KE, Pulla S, Pasion B, Germain S, Liu H, Smokey J, Su SH, Butt N, Chu C, Chuyong G, Chang-Yang CH, Dattaraja HS, Davies S, Ediriweera S, Esufali S, Fletcher CD, Gunatilleke N, Gunatilleke S, Hsieh CF, He F, Hubbell S, Hao Z, Itoh A, Kenfack D, Li B, Li X, Ma K, Morecroft M, Mi X, Malhi Y, Ong P, Rodriguez LJ, Suresh HS, Sun IF, Sukumar R, Tan S, Thomas D, Uriarte M, Wang X, Wang X, Yao TL, Zimmermann J. Interactions between all pairs of neighboring trees in 16 forests worldwide reveal details of unique ecological processes in each forest, and provide windows into their evolutionary histories. PLoS Comput Biol 2021; 17:e1008853. [PMID: 33914731 PMCID: PMC8084225 DOI: 10.1371/journal.pcbi.1008853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
When Darwin visited the Galapagos archipelago, he observed that, in spite of the islands' physical similarity, members of species that had dispersed to them recently were beginning to diverge from each other. He postulated that these divergences must have resulted primarily from interactions with sets of other species that had also diverged across these otherwise similar islands. By extrapolation, if Darwin is correct, such complex interactions must be driving species divergences across all ecosystems. However, many current general ecological theories that predict observed distributions of species in ecosystems do not take the details of between-species interactions into account. Here we quantify, in sixteen forest diversity plots (FDPs) worldwide, highly significant negative density-dependent (NDD) components of both conspecific and heterospecific between-tree interactions that affect the trees' distributions, growth, recruitment, and mortality. These interactions decline smoothly in significance with increasing physical distance between trees. They also tend to decline in significance with increasing phylogenetic distance between the trees, but each FDP exhibits its own unique pattern of exceptions to this overall decline. Unique patterns of between-species interactions in ecosystems, of the general type that Darwin postulated, are likely to have contributed to the exceptions. We test the power of our null-model method by using a deliberately modified data set, and show that the method easily identifies the modifications. We examine how some of the exceptions, at the Wind River (USA) FDP, reveal new details of a known allelopathic effect of one of the Wind River gymnosperm species. Finally, we explore how similar analyses can be used to investigate details of many types of interactions in these complex ecosystems, and can provide clues to the evolution of these interactions.
Collapse
Affiliation(s)
- Christopher Wills
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, United States of America
| | - Bin Wang
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin
| | - Shuai Fang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - Yunquan Wang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | - Yi Jin
- College of Life Sciences, Zhejiang University, Hangzhou
| | - James Lutz
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Jill Thompson
- Center for Ecology & Hydrology, Penicuik, Midlothian, Scotland
| | - Kyle E. Harms
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Los Angeles, United States of America
| | - Sandeep Pulla
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
- National Centre for Biological Sciences, GKVK Campus, Bengaluru, India
| | - Bonifacio Pasion
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan
| | - Sara Germain
- Department of Wildland Resources, Utah State University, Logan, Utah, United States of America
| | - Heming Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai
| | - Joseph Smokey
- Department of Biology, Memorial University of Newfoundland, Newfoundland, Canada
| | - Sheng-Hsin Su
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei
| | - Nathalie Butt
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Chengjin Chu
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - George Chuyong
- Department of Botany and Plant Physiology, University of Buea, Cameroon
| | - Chia-Hao Chang-Yang
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung
| | | | - Stuart Davies
- Center for Tropical Forest Science, Smithsonian Institution, Washington, DC, United States of America
| | - Sisira Ediriweera
- Faculty of Science and Technology, Uva Wellassa University, Badulla, Sri Lanka
| | - Shameema Esufali
- Department of Botany, University of Peradeniya, Peradeniya Sri Lanka
| | | | - Nimal Gunatilleke
- Dept. of Botany, Faculty of Science, University of Peradeniya, Peradeniya Sri Lanka
| | - Savi Gunatilleke
- Dept. of Botany, Faculty of Science, University of Peradeniya, Peradeniya Sri Lanka
| | | | - Fangliang He
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - Stephen Hubbell
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Zhanqing Hao
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - Akira Itoh
- Graduate School of Science, Osaka City University, Sumiyoshi Ku, Osaka, Japan
| | - David Kenfack
- Center for Tropical Forest Science–Forest Global Earth Observatory (CTFS-ForestGEO), Smithsonian Tropical Research Institute, NMNH—MRC, Washington, DC, United States of America
| | - Buhang Li
- Department of Ecology, State Key Laboratory of Biocontrol and School of Life Sciences, Sun Yat-sen University, Guangzhou
| | - Xiankun Li
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin
| | - Keping Ma
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | | | - Xiangcheng Mi
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing
| | - Yadvinder Malhi
- School of Geography and the Environment, Oxford University Centre for the Environment, University of Oxford, Oxford, United Kingdom
| | - Perry Ong
- Institute of Biology, College of Science, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - Lillian Jennifer Rodriguez
- Institute of Biology, College of Science, University of the Philippines Diliman, Diliman, Quezon City, Philippines
| | - H. S. Suresh
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - I Fang Sun
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien
| | - Raman Sukumar
- Divecha Centre for Climate Change, Indian Institute of Science, Bengaluru, India
| | - Sylvester Tan
- Forest Department Sarawak, Bangunan Wisma Sumber Alam, Jalan Stadium, Petra Jaya, Kuching, Sarawak, Malaysia
| | - Duncan Thomas
- Department of Biology, Washington State University, Vancouver, Washington State, United States of America
| | - Maria Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York city, New York, United States of America
| | - Xihua Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, School of Ecological and Environmental Sciences, East China Normal University, Shanghai
| | - Xugao Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang
| | - T. L. Yao
- Forest Research Institute Malaysia, Kepong Selangor, Malaysia
| | - Jess Zimmermann
- Dept of Environmental Sciences, University of Puerto Rico, Rio Piedras, San Juan, PR, United States of America
| |
Collapse
|
38
|
LaManna JA, Mangan SA, Myers JA. Conspecific negative density dependence and why its study should not be abandoned. Ecosphere 2021. [DOI: 10.1002/ecs2.3322] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Joseph A. LaManna
- Department of Biological Sciences Marquette University Milwaukee Wisconsin53201USA
- Departments of Botany & Zoology Milwaukee Public Museum Milwaukee Wisconsin USA
| | - Scott A. Mangan
- Department of Biological Sciences Arkansas State University Jonesboro Arkansas72467USA
| | - Jonathan A. Myers
- Department of Biology & Tyson Research Center Washington University in St. Louis St. Louis Missouri63110USA
| |
Collapse
|
39
|
Song X, Corlett RT. Enemies mediate distance- and density-dependent mortality of tree seeds and seedlings: a meta-analysis of fungicide, insecticide and exclosure studies. Proc Biol Sci 2021; 288:20202352. [PMID: 33468003 DOI: 10.1098/rspb.2020.2352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Conspecific negative distance- and density-dependence is often assumed to be one of the most important mechanisms controlling forest community assembly and species diversity globally. Plant pathogens, and insect and mammalian herbivores, are the most common natural enemy types that have been implicated in this phenomenon, but their general effects at different plant life stages are still unclear. Here, we conduct a meta-analysis of studies that involved robust manipulative experiments, using fungicides, insecticides and exclosures, to assess the contributions of different natural enemy types to distance- and density-dependent effects at seed and seedling stages. We found that distance- and density-dependent mortality caused by natural enemies was most likely at the seedling stage and was greater at higher mean annual temperatures. Conspecific negative distance- and density-dependence at the seedling stage is significantly weakened when fungicides were applied. By contrast, negative conspecific distance- and density-dependence is not a general pattern at the seed stage. High seed mass reduced distance- and density-dependent mortality at the seed stage. Seed studies excluding only large mammals found significant negative conspecific distance-dependent mortality, but exclusion of all mammals resulted in a non-significant effect of conspecifics. Our study suggests that plant pathogens are a major cause of distance- and density-dependent mortality at the seedling stage, while the impacts of herbivores on seedlings have been understudied. At the seed stage, large and small mammals, respectively, weaken and enhance negative conspecific distance-dependent mortality. Future research should identify specific agents of mortality, investigate the interactions among different enemy types and assess how global change may affect natural enemies and thus influence the strength of conspecific distance- and density-dependence.
Collapse
Affiliation(s)
- Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, People's Republic of China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, People's Republic of China
| | - Richard T Corlett
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla 666303, People's Republic of China.,Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, People's Republic of China
| |
Collapse
|
40
|
Song X, Lim JY, Yang J, Luskin MS. When do Janzen-Connell effects matter? A phylogenetic meta-analysis of conspecific negative distance and density dependence experiments. Ecol Lett 2020; 24:608-620. [PMID: 33382527 DOI: 10.1111/ele.13665] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/18/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022]
Abstract
The Janzen-Connell (J-C) hypothesis suggests that specialised natural enemies cause distance- or density-dependent mortality among host plants and is regarded as an important mechanism for species coexistence. However, there remains debate about whether this phenomenon is widespread and how variation is structured across taxa and life stages. We performed the largest meta-analysis of experimental studies conducted under natural settings to date. We found little evidence of distance-dependent or density-dependent mortality when grouping all types of manipulations. Our analysis also reveals very large variation in response among species, with 38.5% of species even showing positive responses to manipulations. However, we found a strong signal of distance-dependent mortality among seedlings but not seed experiments, which we attribute to (a) seedlings sharing susceptible tissues with adults (leaves, wood, roots), (b) seedling enemies having worse dispersal than seed enemies and (c) seedlings having fewer physical and chemical defences than seeds. Both density- and distance-dependent mortality showed large variation within genera and families, suggesting that J-C effects are not strongly phylogenetically conserved. There were no clear trends with latitude, rainfall or study duration. We conclude that J-C effects may not be as pervasive as widely thought. Understanding the variation in J-C effects provides opportunities for new discoveries that will refine our understanding of J-C effects and its role in species coexistence.
Collapse
Affiliation(s)
- Xiaoyang Song
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Jun Ying Lim
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jie Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China.,Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Matthew Scott Luskin
- School of Biological Sciences, University of Queensland, Brisbane, Qld., 4072, Australia
| |
Collapse
|
41
|
Lasky JR, Hooten MB, Adler PB. What processes must we understand to forecast regional-scale population dynamics? Proc Biol Sci 2020; 287:20202219. [PMID: 33290672 PMCID: PMC7739927 DOI: 10.1098/rspb.2020.2219] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/12/2020] [Indexed: 12/14/2022] Open
Abstract
An urgent challenge facing biologists is predicting the regional-scale population dynamics of species facing environmental change. Biologists suggest that we must move beyond predictions based on phenomenological models and instead base predictions on underlying processes. For example, population biologists, evolutionary biologists, community ecologists and ecophysiologists all argue that the respective processes they study are essential. Must our models include processes from all of these fields? We argue that answering this critical question is ultimately an empirical exercise requiring a substantial amount of data that have not been integrated for any system to date. To motivate and facilitate the necessary data collection and integration, we first review the potential importance of each mechanism for skilful prediction. We then develop a conceptual framework based on reaction norms, and propose a hierarchical Bayesian statistical framework to integrate processes affecting reaction norms at different scales. The ambitious research programme we advocate is rapidly becoming feasible due to novel collaborations, datasets and analytical tools.
Collapse
Affiliation(s)
- Jesse R. Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Mevin B. Hooten
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO, USA
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Peter B. Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| |
Collapse
|
42
|
Cannon PG, O’Brien MJ, Yusah KM, Edwards DP, Freckleton RP. Limited contributions of plant pathogens to density-dependent seedling mortality of mast fruiting Bornean trees. Ecol Evol 2020; 10:13154-13164. [PMID: 33304525 PMCID: PMC7713929 DOI: 10.1002/ece3.6906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 09/16/2020] [Indexed: 11/07/2022] Open
Abstract
Fungal pathogens are implicated in driving tropical plant diversity by facilitating strong, negative density-dependent mortality of conspecific seedlings (C-NDD). Assessment of the role of fungal pathogens in mediating coexistence derives from relatively few tree species and predominantly the Neotropics, limiting our understanding of their role in maintaining hyper-diversity in many tropical forests. A key question is whether fungal pathogen-mediated C-NDD seedling mortality is ubiquitous across diverse plant communities. Using a manipulative shadehouse experiment, we tested the role of fungal pathogens in mediating C-NDD seedling mortality of eight mast fruiting Bornean trees, typical of the species-rich forests of South East Asia. We demonstrate species-specific responses of seedlings to fungicide and density treatments, generating weak negative density-dependent mortality. Overall seedling mortality was low and likely insufficient to promote overall community diversity. Although conducted in the same way as previous studies, we find little evidence that fungal pathogens play a substantial role in determining patterns of seedling mortality in a SE Asian mast fruiting forest, questioning our understanding of how Janzen-Connell mechanisms structure the plant communities of this globally important forest type.
Collapse
Affiliation(s)
- Patrick G. Cannon
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | - Michael J. O’Brien
- Área de Biodiversidad y ConservaciónUniversidad Rey Juan CarlosMóstolesSpain
- Danum Valley Field CentreSouth East Asian Rainforest Research Partnership (SEARRP)Lahad DatuSabahMalaysia
| | - Kalsum M. Yusah
- Institute for Tropical Biology and ConservationUniversiti Malaysia SabahKota KinabaluSabahMalaysia
| | - David P. Edwards
- Department of Animal and Plant SciencesThe University of SheffieldSheffieldUK
| | | |
Collapse
|
43
|
Jiang F, Lutz JA, Guo Q, Hao Z, Wang X, Gilbert GS, Mao Z, Orwig DA, Parker GG, Sang W, Liu Y, Tian S, Cadotte MW, Jin G. Mycorrhizal type influences plant density dependence and species richness across 15 temperate forests. Ecology 2020; 102:e03259. [PMID: 33226634 DOI: 10.1002/ecy.3259] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/28/2020] [Accepted: 10/06/2020] [Indexed: 01/21/2023]
Abstract
Recent studies suggest that the mycorrhizal type associated with tree species is an important trait influencing ecological processes such as response to environmental conditions and conspecific negative density dependence (CNDD). However, we lack a general understanding of how tree mycorrhizal type influences CNDD strength and the resulting patterns of species abundance and richness at larger spatial scales. We assessed 305 species across 15 large, stem-mapped, temperate forest dynamics plots in Northeastern China and North America to explore the relationships between tree mycorrhizal type and CNDD, species abundance, and species richness at a regional scale. Tree species associated with arbuscular mycorrhizal (AM) fungi showed a stronger CNDD and a more positive relationship with species abundance than did tree species associated with ectomycorrhizal (ECM) fungi. For each plot, both basal area and stem abundance of AM tree species was lower than that of ECM tree species, suggesting that AM tree species were rarer than ECM tree species. Finally, ECM tree dominance showed a negative effect on plant richness across plots. These results provide evidence that tree mycorrhizal type plays an important role in influencing CNDD and species richness, highlighting this trait as an important factor in structuring plant communities in temperate forests.
Collapse
Affiliation(s)
- Feng Jiang
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada
| | - James A Lutz
- Wildland Resources Department, Utah State University, Logan, Utah, UT 84322, USA
| | - Qingxi Guo
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhanqing Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Xugao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China
| | - Gregory S Gilbert
- Environmental Studies Department, University of California, 1156 High Street, Santa Cruz, California, 95064, USA
| | - Zikun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110164, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - David A Orwig
- Harvard Forest, Harvard University, Petersham, Massachusetts, MA 01366, USA
| | - Geoffrey G Parker
- Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, Maryland, MD 21037, USA
| | - Weiguo Sang
- Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yankun Liu
- Heilongjiang Forestry Engineering and Environment Institute, Harbin, 150040, China.,Key Laboratory of Forest Ecology and Forestry Ecological Engineering of Heilongjiang Province, Harbin, Heilongjiang, 150040, China
| | - Songyan Tian
- Heilongjiang Forestry Engineering and Environment Institute, Harbin, 150040, China.,National Positioning observation Station of Mudanjiang Forest Ecosystem in Heilongjiang Province, Mudanjiang, Muling, 157500, China
| | - Marc W Cadotte
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, M1C 1A4, Canada.,Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada
| | - Guangze Jin
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.,Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
44
|
Krishnadas M, Agarwal K, Comita LS. Edge effects alter the role of fungi and insects in mediating functional composition and diversity of seedling recruits in a fragmented tropical forest. ANNALS OF BOTANY 2020; 126:1181-1191. [PMID: 32710752 PMCID: PMC7684699 DOI: 10.1093/aob/mcaa138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS In fragmented forests, proximity to forest edges can favour the establishment of resource-acquisitive species over more resource-conservative species. During seedling recruitment, resource-acquisitive species may benefit from either higher light availability or weaker top-down effects of natural enemies. The relative importance of light and enemies for recruitment has seldom been examined with respect to edge effects. METHODS In a human-modified wet tropical forest in India, we first examined how functional traits indicative of resource-acquisitive vs. resource-conservative strategies, i.e. specific leaf area (SLA), leaf dry matter content, wood density and seed size, explained interspecific differences in densities of seedling recruits with distance to the forest edge. Then, we checked whether fungicide and insecticide treatments and canopy openness (proxy for light availability) explained edge effects on trait-mediated changes in seedling density. Finally, we examined whether light availability and natural enemy activity explained edge effects on functional diversity of seedling recruits. KEY RESULTS Up to 60 m from edges, recruit densities increased with decreasing seed size, but not at 90-100 m, where recruit densities increased with higher SLA. Trait-mediated variation in recruit densities changed with pesticides only at 90-100 m: compared with control plots, fungicide increased recruit densities for low SLA species and insecticide increased smaller seeded species. For SLA, wood density and seed size, functional diversity of recruits was higher at 90-100 m than at 0-5 m. At 90-100 m, fungicide decreased functional diversity for SLA and insecticide reduced seed size diversity compared with control plots. Canopy openness explained neither variation in recruit density in relation to traits nor functional diversity. CONCLUSIONS Altered biotic interactions can mediate local changes to trait composition and functional diversity during seedling recruitment in forest fragments, hinting at downstream effects on the structure and function of human-modified forests.
Collapse
Affiliation(s)
- Meghna Krishnadas
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
- Centre for Cellular and Molecular Biology, Habshiguda, Hyderabad, Telangana, India
| | - Kavya Agarwal
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Liza S Comita
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
45
|
Zheng Y, Huang F, Liang M, Liu X, Yu S. The effects of density dependence and habitat preference on species coexistence and relative abundance. Oecologia 2020; 194:673-684. [PMID: 33094381 DOI: 10.1007/s00442-020-04788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 10/10/2020] [Indexed: 11/24/2022]
Abstract
In plant communities, some mechanisms maintain differences in species' abundances, while other mechanisms promote coexistence. Asymmetry in conspecific negative density dependence (CNDD) and/or habitat preference is hypothesized to shape relative species abundance, whereas community compensatory trends (CCTs) induced by community-level CNDD and heterospecific facilitation are hypothesized to promote coexistence. We use survey data from three 1-ha permanent dynamic plots in a subtropical forest over the course of a decade to find out which of these processes are important and at which life-history stages (the seedling, sapling, and juvenile stages) they exert their effects. CNDD was not related to abundance in any of the life-history stages. Suitable habitats positively influenced plant abundance at all tested life stages, but especially so for juveniles. Community-level CNDD of seedling neighbors was detected at the seedling stage, while heterospecific facilitation was detected across all tested life-history stages. A CCT in seedling survival was detected, but there was no evidence for such trends across the other life-history stages. Altogether, our results suggest that habitat specificity increases the rarity of species, whereas a CCT at the seedling stage, which is likely to be induced by CNDD and heterospecific facilitation, enables such species to maintain their populations.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fengmin Huang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Minxia Liang
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xubing Liu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shixiao Yu
- Department of Ecology, School of Life Sciences/State Key Laboratory of Biocontrol, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
46
|
Hülsmann L, Chisholm RA, Hartig F. Is Variation in Conspecific Negative Density Dependence Driving Tree Diversity Patterns at Large Scales? Trends Ecol Evol 2020; 36:151-163. [PMID: 33589047 DOI: 10.1016/j.tree.2020.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Half a century ago, Janzen and Connell hypothesized that the high tree species diversity in tropical forests is maintained by specialized natural enemies. Along with other mechanisms, these can cause conspecific negative density dependence (CNDD) and thus maintain species diversity. Numerous studies have measured proxies of CNDD worldwide, but doubt about its relative importance remains. We find ample evidence for CNDD in local populations, but methodological limitations make it difficult to assess if CNDD scales up to control community diversity and thereby local and global biodiversity patterns. A combination of more robust statistical methods, new study designs, and eco-evolutionary models are needed to provide a more definite evaluation of the importance of CNDD for geographic variation in plant species diversity.
Collapse
Affiliation(s)
- Lisa Hülsmann
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Ryan A Chisholm
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Florian Hartig
- Theoretical Ecology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
47
|
Pik D, Lucero JE, Lortie CJ, Braun J. Light intensity and seed density differentially affect the establishment, survival, and biomass of an exotic invader and three species of native competitors. COMMUNITY ECOL 2020. [DOI: 10.1007/s42974-020-00027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Eagar AC, Cosgrove CR, Kershner MW, Blackwood CB. Dominant community mycorrhizal types influence local spatial structure between adult and juvenile temperate forest tree communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew C. Eagar
- Department of Biological Sciences Kent State University Kent OH USA
| | | | - Mark W. Kershner
- Department of Biological Sciences Kent State University Kent OH USA
| | | |
Collapse
|
49
|
Song X, Zhang W, Johnson DJ, Yang J, Asefa M, Deng X, Yang X, Cao M. Conspecific negative density dependence in rainy season enhanced seedling diversity across habitats in a tropical forest. Oecologia 2020; 193:949-957. [PMID: 32851493 DOI: 10.1007/s00442-020-04729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
Conspecific negative density dependence (CNDD) could be one of the most important local-scale mechanisms shaping plant species coexistence. However, the spatial and temporal changes in the strength CNDD and the implications for the plant diversity remain unknown. We used 10 years of seedling data, in a seasonal tropical rainforest, to discover how CNDD influences tree seedling survival across habitats and seasons. We also evaluated the relation between CNDD and species diversity. We found the strength of CNDD in the valley habitat was significantly stronger than in ridge habitat in rainy season, but not significantly different in dry season. Corresponding to expectations of CNDD as mechanism of diversity maintenance, seedling species diversity was significantly higher in valley habitat than in ridge habitat and significantly correlated with CNDD. Additionally, conspecific and heterospecific seedling neighbour densities positively affected the survival of tree seedlings, but heterospecific adult neighbour density had a weak effect. Our study finds that CNDD varied significantly across habitats and was correlated with local seedling diversity. Our results highlight the importance of CNDD in driving species diversity at the local scale. Recognizing the spatial and temporal variation in the strength of CNDD will aid efforts to model and understand species coexistence.
Collapse
Affiliation(s)
- Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China
| | - Wenfu Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Daniel J Johnson
- School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China.
- Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Mengla, 666303, China.
| | - Mengesha Asefa
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xiaobao Deng
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Xiaofei Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, Yunnan, China
| |
Collapse
|
50
|
The Net Effect of Functional Traits on Fitness. Trends Ecol Evol 2020; 35:1037-1047. [PMID: 32807503 DOI: 10.1016/j.tree.2020.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 11/21/2022]
Abstract
Generalizing the effect of traits on performance across species may be achievable if traits explain variation in population fitness. However, testing relationships between traits and vital rates to infer effects on fitness can be misleading. Demographic trade-offs can generate variation in vital rates that yield equal population growth rates, thereby obscuring the net effect of traits on fitness. To address this problem, we describe a diversity of approaches to quantify intrinsic growth rates of plant populations, including experiments beyond range boundaries, density-dependent population models built from long-term demographic data, theoretical models, and methods that leverage widely available monitoring data. Linking plant traits directly to intrinsic growth rates is a fundamental step toward rigorous predictions of population dynamics and community assembly.
Collapse
|