1
|
Nguyen TLL, Van Nguyen D, Jin Y, Kim L, Heo KS. Potential effects of a human milk oligosaccharide 6'-sialyllactose on angiotensin II-induced aortic aneurysm via p90RSK/TGF-β/SMAD2 signaling pathway. Arch Pharm Res 2024:10.1007/s12272-024-01515-z. [PMID: 39463210 DOI: 10.1007/s12272-024-01515-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 10/29/2024]
Abstract
The aberrant phenotypic transformation of vascular smooth muscle cells (VSMCs) is a key factor in the formation of aortic aneurysm (AA). This study aimed to explore the effects of 6'-sialyllactose (6'-SL), a human milk oligosaccharide, on angiotensin II (Ang II)-induced VSMC dysfunction and AA formation both in vitro and in vivo. An AA model was established in male C57BL/6 mice challenged with Ang II via osmotic pumps and a lysyl oxidase inhibitor, β-aminopropionitrile (BAPN), in drinking water. The mice were administered with 6'-SL, FMK (a p90RSK inhibitor), or losartan (as a positive control). In vitro, VSMCs were pretreated with 6'-SL before Ang II stimulation. We found that p90RSK inhibition abolished Ang II/BAPN-induced thoracic AA and abdominal AA formation. Treatment with 100 mg/kg 6'-SL significantly attenuated Ang II/BAPN-induced aortic dilatation. 6'-SL attenuated Ang II-induced collagen deposition, calcification, and immune cell accumulation. Consistently, 6'-SL downregulated p-p90RSK, p90RSK, and p-SMAD2, and mitigated VSMC contractility loss, as indicated by α-SMA expression in vivo. Interestingly, Ang II-induced transforming growth factor-beta (TGF-β) signaling pathway was suppressed by p90RSK inhibition in VSMCs. 6'-SL treatment significantly reduced TGF-β/SMAD2 targets, including dedifferentiation markers such as osteopontin and vimentin, and elastin degradation factors MMP2 and MMP9. Overexpression of p90RSK in VSMCs enhanced TGF-β and abrogated the effects of 6'-SL. Furthermore, 6'-SL co-treatment abolished high phosphate-induced calcification in vitro via p90RSK/TGF-β signaling pathway. Altogether, our findings suggest that 6'-SL could be a potential therapeutic candidate for protecting against Ang II-induced AA formation by inhibiting the p90RSK/TGF-β/SMAD2 signaling pathway.
Collapse
Affiliation(s)
- Thuy Le Lam Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Dung Van Nguyen
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Yujin Jin
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea
| | - Lila Kim
- NeuraGene Inc., 17 Techno 2-Ro, Yuseong-Gu, Daejeon, 34025, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
2
|
Lieverse TGF, van Praagh GD, Mulder DJ, Lambers Heerspink HJ, Wolterink JM, Slart RHJA. Quantitative aortic Na[ 18F]F positron emission tomography computed tomography as a tool to associate vascular calcification with major adverse cardiovascular events. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06901-9. [PMID: 39297960 DOI: 10.1007/s00259-024-06901-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 09/21/2024]
Abstract
PURPOSE Sodium[18F]fluoride (Na[18F]F) used in positron emission tomography (PET) binds to active calcification and correlates consistently with higher cardiovascular risk. This study aims to investigate the feasibility of aortic Na[18F]F-PET in hybrid combination with low-dose computed tomography (CT) as a risk model for major adverse cardiovascular events (MACE). METHODS Patient data and Na[18F]F-PET/CT scans from January 2019 to February 2022 were retrospectively collected at the University Medical Center Groningen (UMCG), the Netherlands. MACE-outcome was a composite of time to first documented myocardial infarction, cerebral vascular accident (CVA), acute heart failure hospitalization, and aortic aneurysms. MACE dates were recorded from the day of the scan until follow-up in December 2023. The aorta was manually segmented in all low-dose CT scans. To minimize spill-over effects from the vertebrae, the vertebrae were automatically segmented using an open-source model, dilated with 10 mm, and subtracted from the aortic mask. The total aortic Na[18F]F corrected maximum standardized uptake value (cSUVmax) and total aortic Agatston score were automatically calculated using SEQUOIA. Kaplan-Meier and Cox regression survival analysis were performed, stratifying patients into high, medium, and low cSUVmax and Agatston categories. Cox regression models were adjusted for age. RESULTS Out of 280 identified scans, 216 scans of unique patients were included. During a median follow-up of 3.9 years, 12 MACE occurred. Kaplan-Meier survival analysis demonstrated a significant difference in MACE-free survival among the high cSUVmax group compared to the medium and low groups (p = 0.03 and p < 0.01, respectively). Similarly, patients with high Agatston scores had a significantly lower MACE-free survival probability compared to those with medium and low scores (both p < 0.01). CONCLUSION This study highlights the potential clinical utility of Na[18F]F-PET/CT as an imaging tool to predict the risk of MACE. Clinical validation of this novel proof-of-concept method is needed to confirm these results and expand the clinical context.
Collapse
Affiliation(s)
- T G F Lieverse
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - G D van Praagh
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - D J Mulder
- Department of Internal Medicine, Division of Vascular Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H J Lambers Heerspink
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - J M Wolterink
- Department of Applied Mathematics and Technical Medical Center, University of Twente, Enschede, The Netherlands
| | - R H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biomedical Photonic Imaging, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
3
|
Barkhordarian M, Tran HHV, Menon A, Pulipaka SP, Aguilar IK, Fuertes A, Dey S, Chacko AA, Sethi T, Bangolo A, Weissman S. Innovation in pathogenesis and management of aortic aneurysm. World J Exp Med 2024; 14:91408. [PMID: 38948412 PMCID: PMC11212750 DOI: 10.5493/wjem.v14.i2.91408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 06/19/2024] Open
Abstract
Aortic aneurysm (AA) refers to the persistent dilatation of the aorta, exceeding three centimeters. Investigating the pathophysiology of this condition is important for its prevention and management, given its responsibility for more than 25000 deaths in the United States. AAs are classified based on their location or morphology. various pathophysiologic pathways including inflammation, the immune system and atherosclerosis have been implicated in its development. Inflammatory markers such as transforming growth factor β, interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase-2 and many more may contribute to this phenomenon. Several genetic disorders such as Marfan syndrome, Ehler-Danlos syndrome and Loeys-Dietz syndrome have also been associated with this disease. Recent years has seen the investigation of novel management of AA, exploring the implication of different immune suppressors, the role of radiation in shrinkage and prevention, as well as minimally invasive and newly hypothesized surgical methods. In this narrative review, we aim to present the new contributing factors involved in pathophysiology of AA. We also highlighted the novel management methods that have demonstrated promising benefits in clinical outcomes of the AA.
Collapse
Affiliation(s)
- Maryam Barkhordarian
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Hadrian Hoang-Vu Tran
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Aiswarya Menon
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Sai Priyanka Pulipaka
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Izage Kianifar Aguilar
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Axel Fuertes
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Shraboni Dey
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Angel Ann Chacko
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Tanni Sethi
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Ayrton Bangolo
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| | - Simcha Weissman
- Department of Internal Medicine, Palisades Medical Center, North Bergen, NJ 07047, United States
| |
Collapse
|
4
|
Wu Z, Yu W, Luo J, Shen G, Cui Z, Ni W, Wang H. Comprehensive transcriptomic analysis unveils macrophage-associated genes for establishing an abdominal aortic aneurysm diagnostic model and molecular therapeutic framework. Eur J Med Res 2024; 29:323. [PMID: 38867262 PMCID: PMC11167832 DOI: 10.1186/s40001-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a highly lethal cardiovascular disease. The aim of this research is to identify new biomarkers and therapeutic targets for the treatment of such deadly diseases. METHODS Single-sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithms were used to identify distinct immune cell infiltration types between AAA and normal abdominal aortas. Single-cell RNA sequencing data were used to analyse the hallmark genes of AAA-associated macrophage cell subsets. Six macrophage-related hub genes were identified through weighted gene co-expression network analysis (WGCNA) and validated for expression in clinical samples and AAA mouse models. We screened potential therapeutic drugs for AAA through online Connectivity Map databases (CMap). A network-based approach was used to explore the relationships between the candidate genes and transcription factors (TFs), lncRNAs, and miRNAs. Additionally, we also identified hub genes that can effectively identify AAA and atherosclerosis (AS) through a variety of machine learning algorithms. RESULTS We obtained six macrophage hub genes (IL-1B, CXCL1, SOCS3, SLC2A3, G0S2, and CCL3) that can effectively diagnose abdominal aortic aneurysm. The ROC curves and decision curve analysis (DCA) were combined to further confirm the good diagnostic efficacy of the hub genes. Further analysis revealed that the expression of the six hub genes mentioned above was significantly increased in AAA patients and mice. We also constructed TF regulatory networks and competing endogenous RNA networks (ceRNA) to reveal potential mechanisms of disease occurrence. We also obtained two key genes (ZNF652 and UBR5) through a variety of machine learning algorithms, which can effectively distinguish abdominal aortic aneurysm and atherosclerosis. CONCLUSION Our findings depict the molecular pharmaceutical network in AAA, providing new ideas for effective diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Zhen Wu
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Weiming Yu
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- General Surgery, Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510000, Guangdong, China
| | - Jie Luo
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Guanghui Shen
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China
| | - Zhongqi Cui
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Wenxuan Ni
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
| | - Haiyang Wang
- Department of Vascular and Interventional Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
5
|
Li M, Wei P, Li K, Liu H, Alam N, Hou H, Deng J, Xu B, Liu E, Zhao S, Li Y. The incidence rate and histological characteristics of intimal hyperplasia in elastase-induced experimental abdominal aortic aneurysms in mice. Animal Model Exp Med 2024; 7:388-395. [PMID: 38017222 PMCID: PMC11228087 DOI: 10.1002/ame2.12362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 11/30/2023] Open
Abstract
Intimal hyperplasia (IH) is a negative vascular remodeling after arterial injury. IH occasionally occurs in elastase-induced abdominal aortic aneurysm (AAA) mouse models. This study aims to clarify the incidence and histological characteristics of IH in aneurysmal mice. A retrospective study was conducted by including 42 male elastase-induced mouse AAA models. The IH incidence, aortic diameters with or without IH, and hyperplasia lesional features of mice were analyzed. Among 42 elastase-induced AAA mouse models, 10 mice developed mild IH (24%) and severe IH was found in only 2 mice (5%). The outer diameters of the AAA segments in mice with and without IH did not show significant difference. Both mild and severe IH lesions show strong smooth muscle cell positive staining, but endothelial cells were occasionally observed in severe IH lesions. There was obvious macrophage infiltration in the IH lesions of the AAA mouse models, especially in mice with severe IH. However, only a lower numbers of T cells and B cells were found in the IH lesion. Local cell-secreted matrix metalloproteinases (MMP) 2 was highly expressed in all IH lesions, but MMP9 was only overexpressed in severe lesions. In conclusion, this study is the first to demonstrate the occurrence of aneurysmal IH and its histological characteristics in an elastase-induced mouse AAA model. This will help researchers better understand this model, and optimize it for use in AAA-related research.
Collapse
Affiliation(s)
- Meng Li
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
- Department of Vascular SurgeryThe Second Hospital of Tianjin Medical UniversityTianjinChina
| | - Panpan Wei
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Kexin Li
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Haole Liu
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Naqash Alam
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Haiwen Hou
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Jie Deng
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Baohui Xu
- Department of Vascular SurgeryStanford University School of MedicineStanfordCaliforniaUSA
| | - Enqi Liu
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
| | - Sihai Zhao
- Laboratory Animal CenterXi'an Jiaotong UniversityXi'anChina
- Department of CardiologyThe Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yankui Li
- Department of Vascular SurgeryThe Second Hospital of Tianjin Medical UniversityTianjinChina
| |
Collapse
|
6
|
Hu P, Du Y, Xu Y, Ye P, Xia J. The role of transcription factors in the pathogenesis and therapeutic targeting of vascular diseases. Front Cardiovasc Med 2024; 11:1384294. [PMID: 38745757 PMCID: PMC11091331 DOI: 10.3389/fcvm.2024.1384294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
Transcription factors (TFs) constitute an essential component of epigenetic regulation. They contribute to the progression of vascular diseases by regulating epigenetic gene expression in several vascular diseases. Recently, numerous regulatory mechanisms related to vascular pathology, ranging from general TFs that are continuously activated to histiocyte-specific TFs that are activated under specific circumstances, have been studied. TFs participate in the progression of vascular-related diseases by epigenetically regulating vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). The Krüppel-like family (KLF) TF family is widely recognized as the foremost regulator of vascular diseases. KLF11 prevents aneurysm progression by inhibiting the apoptosis of VSMCs and enhancing their contractile function. The presence of KLF4, another crucial member, suppresses the progression of atherosclerosis (AS) and pulmonary hypertension by attenuating the formation of VSMCs-derived foam cells, ameliorating endothelial dysfunction, and inducing vasodilatory effects. However, the mechanism underlying the regulation of the progression of vascular-related diseases by TFs has remained elusive. The present study categorized the TFs involved in vascular diseases and their regulatory mechanisms to shed light on the potential pathogenesis of vascular diseases, and provide novel insights into their diagnosis and treatment.
Collapse
Affiliation(s)
- Poyi Hu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yifan Du
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xu
- Institute of Reproduction Health Research, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Ye
- Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
7
|
Gu X, Yu Z, Qian T, Jin Y, Xu G, Li J, Gu J, Li M, Tao K. Transcriptomic analysis identifies the shared diagnostic biomarkers and immune relationship between Atherosclerosis and abdominal aortic aneurysm based on fatty acid metabolism gene set. Front Mol Biosci 2024; 11:1365447. [PMID: 38660376 PMCID: PMC11040089 DOI: 10.3389/fmolb.2024.1365447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Background Epidemiological research has demonstrated that there is a connection between lipid metabolism disorder and an increased risk of developing arteriosclerosis (AS) and abdominal aortic aneurysm (AAA). However, the precise relationship between lipid metabolism, AS, and AAA is still not fully understood. The objective of this study was to examine the pathways and potential fatty acid metabolism-related genes (FRGs) that are shared between AS and AAA. Methods AS- and AAA-associated datasets were retrieved from the Gene Expression Omnibus (GEO) database, and the limma package was utilized to identify differentially expressed FRGs (DFRGs) common to both AS and AAA patients. Functional enrichment analysis was conducted on the (DFRGs), and a protein-protein interaction (PPI) network was established. The selection of signature genes was performed through the utilization of least absolute shrinkage and selection operator (LASSO) regression and random forest (RF). Subsequently, a nomogram was developed using the results of the screening process, and the crucial genes were validated in two separate external datasets (GSE28829 and GSE17901) as well as clinical samples. In the end, single-sample gene set enrichment analysis (ssGSEA) was utilized to assess the immune cell patterns in both AS and AAA. Additionally, the correlation between key crosstalk genes and immune cell was evaluated. Results In comparison to control group, both AS and AAA patients exhibited a decrease in fatty acid metabolism score. We found 40 DFRGs overlapping in AS and AAA, with lipid and amino acid metabolism critical in their pathogenesis. PCBD1, ACADL, MGLL, BCKDHB, and IDH3G were identified as signature genes connecting AS and AAA. Their expression levels were confirmed in validation datasets and clinical samples. The analysis of immune infiltration showed that neutrophils, NK CD56dim cells, and Tem cells are important in AS and AAA development. Correlation analysis suggested that these signature genes may be involved in immune cell infiltration. Conclusion The fatty acid metabolism pathway appears to be linked to the development of both AS and AAA. Furthermore, PCBD1, ACADL, MGLL, BCKDHB, and IDH3G have the potential to serve as diagnostic markers for patients with AS complicated by AAA.
Collapse
Affiliation(s)
- Xuefeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Zhongxian Yu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Tianwei Qian
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Yiqi Jin
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Guoxiong Xu
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jiang Li
- Department of General Surgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu Province, China
| | - Jianfeng Gu
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ming Li
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| | - Ke Tao
- Department of General Surgery, Changshu Hospital Affiliated to Soochow University, Changshu, Jiangsu Province, China
| |
Collapse
|
8
|
Rantasalo V, Gunn J, Pan E, Kiviniemi T, Hirvonen J, Rahi M, Fordell T, Rinne JK, Laukka D. Positive Correlation Between Thoracic Aortic Diameter and Intracranial Aneurysm Size-An Observational Cohort Study. World Neurosurg 2024; 184:e633-e646. [PMID: 38342167 DOI: 10.1016/j.wneu.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
OBJECTIVE To investigate the association between intracranial aneurysms (IAs) and thoracic aortic diameter. METHODS This observational cohort study examined thoracic aortic diameters in patients with IA. Patients were categorized by IA size (<7 mm and ≥7 mm) and IA status (ruptured/unruptured) based on radiologic findings. We investigated the association between thoracic aortic diameter and IA size and status using binary and linear regression as univariate and multivariable analyses. RESULTS A total of 409 patients were included. Mean age was 60 (±11.7) years and 63% were women. Thoracic aortic diameters were greater among patients who had an IA ≥7 mm versus IA <7 mm (P < 0.05). In the univariate analysis, the diameter of the ascending aorta (odds ratio [OR], 1.07; 95% confidence interval [CI], 1.02-1.129 per 1 mm; P = 0.002), aortic arch (OR, 1.10; 95% CI, 1.04-1.15 per 1 mm; P < 0.001), and descending aorta (OR, 1.10; 95% CI, 1.03-1.16 per 1 mm; P = 0.003) were associated with IAs ≥7 mm. In the multivariable regression model, larger ascending aorta (OR, 1.09; 95% CI, 1.01-1.17 per 1 mm; P = 0.018), aortic arch (OR, 1.12; 95% CI, 1.02-1.22 per 1 mm; P = 0.013), and descending aorta (OR, 1.20; 95% CI, 1.08-1.33 per 1 mm; P < 0.001) were associated with ruptured IA. CONCLUSIONS Greater thoracic aortic diameters are associated with a higher risk of IA being larger than 7 mm and IA rupture. Exploring the concomitant growth tendency in IA and thoracic aorta provides a basis for future considerations regarding screening and risk management.
Collapse
Affiliation(s)
- Ville Rantasalo
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Department of Surgery, Mikkeli Central Hospital, Mikkeli, Finland.
| | - Jarmo Gunn
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Emily Pan
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Cardiovascular Medicine Division, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tuomas Kiviniemi
- Heart Center, Turku University Hospital, University of Turku, Turku, Finland
| | - Jussi Hirvonen
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland; Department of Radiology, Faculty of Medicine and Health Technology and Tampere University Hospital, Tampere University, Tampere, Finland
| | - Melissa Rahi
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Terhi Fordell
- Department of Surgery, University of Turku, Turku, Finland; Heart Center, Turku University Hospital, University of Turku, Turku, Finland; Department of Surgery, Helsinki University Hospital, Hyvinkää Hospital, Hyvinkää, Finland
| | - Jaakko K Rinne
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| | - Dan Laukka
- Clinical Neurosciences, University of Turku, Turku, Finland; Department of Neurosurgery, Neurocenter, Turku University Hospital, Turku, Finland
| |
Collapse
|
9
|
Li M, Jin M, Yang H. Remodelers of the vascular microenvironment: The effect of biopolymeric hydrogels on vascular diseases. Int J Biol Macromol 2024; 264:130764. [PMID: 38462100 DOI: 10.1016/j.ijbiomac.2024.130764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Vascular disease is the leading health problem worldwide. Vascular microenvironment encompasses diverse cell types, including those within the vascular wall, blood cells, stromal cells, and immune cells. Initiation of the inflammatory state of the vascular microenvironment and changes in its mechanics can profoundly affect vascular homeostasis. Biomedical materials play a crucial role in modern medicine, hydrogels, characterized by their high-water content, have been increasingly utilized as a three-dimensional interaction network. In recent times, the remarkable progress in utilizing hydrogels and understanding vascular microenvironment have enabled the treatment of vascular diseases. In this review, we give an emphasis on the utilization of hydrogels and their advantages in the various vascular diseases including atherosclerosis, aneurysm, vascular ulcers of the lower limbs and myocardial infarction. Further, we highlight the importance and advantages of hydrogels as artificial microenvironments.
Collapse
Affiliation(s)
- Minhao Li
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Meiqi Jin
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China
| | - Huazhe Yang
- School of Intelligent Medicine, China Medical University, No.77, Puhe Road, Shenyang 110122, Liaoning Province, China.
| |
Collapse
|
10
|
Li J, Liu Y, Wei Z, Cheng J, Wu Y. The occurrence and development of abdominal aortic aneurysm may be related to the energy metabolism disorder and local inflammation. Heliyon 2024; 10:e27912. [PMID: 38496900 PMCID: PMC10944252 DOI: 10.1016/j.heliyon.2024.e27912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/19/2024] Open
Abstract
Background The cellular mechanism of the formation of abdominal aortic aneurysm (AAA) is very complicated. A series of sophisticated events eventually led to significant pathological changes in the anatomical structure and function of the arterial wall and they are still not clear nowadays. Methods We pooled publicly available GEO datasets (GSE57691 and GSE47472) to get a comprehensive comparisons between normal tissues and AAA tissues to try to reveal molecular mechanism underlying the disease. Total 63 AAA samples and 18 normal tissue samples were compared and we fond that there were 784 significantly different gene (DEGs, threshold set as adjusted P < 0.05 and Log FC < 1) were identified. At the same time, we validate the possible signaling factor expression of AAA by comparing the normal tissue of the human body with the AAA tissue. Results In the pathway enrichment, we found that FOXP3 related signaling pathways, inflammation-related cytokine signaling pathways, interleukin-8-CXCR1 related signaling pathways and VEGFA and FGFR1 related signal pathway were significantly enrichmented. In Weighted gene co-expression network analysis (WGCNA), we found that the key hub genes were significantly related to lipid catabolic metabolism, which further verified the possibility that AAA might relate to energy metabolism disorders. Conclusion Based on the comprehensive analysis of previous high-throughput data and the validation of basic experiments, we found that the occurrence of AAA may be related to energy metabolism disorders and local inflammation.
Collapse
Affiliation(s)
- Jun Li
- Department of Endovascular and Vascular Surgery, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yang Liu
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Zhitao Wei
- Department of Urology, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jie Cheng
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| | - Yongfa Wu
- Department of Interventional and Vascular Surgery, Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
11
|
Chao C, Dang C, Reddy N, Alharbi S, Doan J, Karthikeyan A, Applewhite B, Jiang B. Characterization of a phenol-based model for denervation of the abdominal aorta and its implications for aortic remodeling. JVS Vasc Sci 2024; 5:100202. [PMID: 38694477 PMCID: PMC11061754 DOI: 10.1016/j.jvssci.2024.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/11/2024] [Indexed: 05/04/2024] Open
Abstract
Objective Sympathetic innervation plays a pivotal role in regulating cardiovascular health, and its dysregulation is implicated in a wide spectrum of cardiovascular diseases. This study seeks to evaluate the impact of denervation of the abdominal aorta on its morphology and wall homeostasis. Methods Male and female Sprague-Dawley rats (N = 12), aged 3 months, underwent midline laparotomy for infrarenal aorta exposure. Chemical denervation was induced via a one-time topical application of 10% phenol (n = 6), whereas sham controls received phosphate-buffered saline (n = 6). Animals were allowed to recover and subsequently were sacrificed after 6 months for analysis encompassing morphology, histology, and immunohistochemistry. Results At 6 months post-treatment, abdominal aortas subjected to phenol denervation still exhibited a significant reduction in nerve fiber density compared with sham controls. Denervated aortas demonstrated reduced intima-media thickness, increased elastin fragmentation, decreased expression of vascular smooth muscle proteins (α-SMA and MYH11), and elevated adventitial vascular density. Sex-stratified analyses revealed additional dimorphic responses, particularly in aortic collagen and medial cellular density in female animals. Conclusions Single-timepoint phenol-based chemical denervation induces alterations in abdominal aortic morphology and vascular remodeling over a 6-month period. These findings underscore the potential of the sympathetic nervous system as a therapeutic target for aortic pathologies. Clinical Relevance Aortic remodeling remains an important consideration in the pathogenesis of aortic disease, including occlusive, aneurysmal, and dissection disease states. The paucity of medical therapies for the treatment of aortic disease has driven considerable interest in elucidating the pathogenesis of these conditions; new therapeutic targets are critically needed. Here, we show significant remodeling after phenol-induced denervation with morphologic, histologic, and immunohistochemical features. Future investigations should integrate sympathetic dysfunction as a potential driver of pathologic aortic wall changes with additional consideration of the sympathetic nervous system as a therapeutic target.
Collapse
Affiliation(s)
- Calvin Chao
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Caitlyn Dang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Nidhi Reddy
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sara Alharbi
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jimmy Doan
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL
| | - Akashraj Karthikeyan
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL
| | - Brandon Applewhite
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL
| | - Bin Jiang
- Division of Vascular Surgery, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL
- Department of Biomedical Engineering, Northwestern University McCormick School of Engineering, Evanston, IL
| |
Collapse
|
12
|
Paloschi V, Pauli J, Winski G, Wu Z, Li Z, Botti L, Meucci S, Conti P, Rogowitz F, Glukha N, Hummel N, Busch A, Chernogubova E, Jin H, Sachs N, Eckstein H, Dueck A, Boon RA, Bausch AR, Maegdefessel L. Utilization of an Artery-on-a-Chip to Unravel Novel Regulators and Therapeutic Targets in Vascular Diseases. Adv Healthc Mater 2024; 13:e2302907. [PMID: 37797407 PMCID: PMC11468405 DOI: 10.1002/adhm.202302907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Indexed: 10/07/2023]
Abstract
In this study, organ-on-chip technology is used to develop an in vitro model of medium-to-large size arteries, the artery-on-a-chip (AoC), with the objective to recapitulate the structure of the arterial wall and the relevant hemodynamic forces affecting luminal cells. AoCs exposed either to in vivo-like shear stress values or kept in static conditions are assessed to generate a panel of novel genes modulated by shear stress. Considering the crucial role played by shear stress alterations in carotid arteries affected by atherosclerosis (CAD) and abdominal aortic aneurysms (AAA) disease development/progression, a patient cohort of hemodynamically relevant specimens is utilized, consisting of diseased and non-diseased (internal control) vessel regions from the same patient. Genes activated by shear stress follow the same expression pattern in non-diseased segments of human vessels. Single cell RNA sequencing (scRNA-seq) enables to discriminate the unique cell subpopulations between non-diseased and diseased vessel portions, revealing an enrichment of flow activated genes in structural cells originating from non-diseased specimens. Furthermore, the AoC served as a platform for drug-testing. It reproduced the effects of a therapeutic agent (lenvatinib) previously used in preclinical AAA studies, therefore extending the understanding of its therapeutic effect through a multicellular structure.
Collapse
Affiliation(s)
- Valentina Paloschi
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Jessica Pauli
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
| | - Greg Winski
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Zhiyuan Wu
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Department of Vascular SurgeryBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing10073P. R. China
| | - Zhaolong Li
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Lorenzo Botti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | - Sandro Meucci
- Micronit MicrotechnologiesEnschede15 7521The Netherlands
| | - Pierangelo Conti
- Department of Engineering and Applied SciencesUniversity of BergamoBergamo24129Italy
| | | | - Nadiya Glukha
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Nora Hummel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Albert Busch
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- Division of Vascular and Endovascular SurgeryDepartment for VisceralThoracic and Vascular SurgeryMedical Faculty Carl Gustav Carus and University HospitalTechnical University Dresden01069DresdenGermany
| | | | - Hong Jin
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| | - Nadja Sachs
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Hans‐Henning Eckstein
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
| | - Anne Dueck
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Institute of Pharmacology and ToxicologyTechnical University of Munich80333MunichGermany
| | - Reinier A. Boon
- Department of PhysiologyAmsterdam Cardiovascular Sciences (ACS)Amsterdam UMCVU University Medical CenterAmsterdam1081 HVThe Netherlands
- Institute of Cardiovascular RegenerationCenter of Molecular MedicineGoethe‐University60323FrankfurtGermany
- German Center for Cardiovascular Research DZHKPartner Site Frankfurt Rhine‐Main10785BerlinGermany
| | - Andreas R. Bausch
- Department of Cellular BiophysicsTechnical University of Munich80333MunichGermany
| | - Lars Maegdefessel
- Department for Vascular and Endovascular SurgeryTechnical University of Munich80333MunichGermany
- German Center for Cardiovascular Research DZHKPartner Site Munich Heart Alliance80336BerlinGermany
- Department of Medicine, Cardiovascular UnitKarolinska Institute171 77StockholmSweden
| |
Collapse
|
13
|
Fu C, Liu D, Liu Q, Wang X, Ma X, Pan H, Feng S, Sun Z, Qiao W, Yang M, Gao S, Ding H, Huang X, Hou J. Revisiting an old relationship: the causal associations of the ApoB/ApoA1 ratio with cardiometabolic diseases and relative risk factors-a mendelian randomization analysis. Cardiovasc Diabetol 2024; 23:51. [PMID: 38310324 PMCID: PMC10838437 DOI: 10.1186/s12933-024-02140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
BACKGROUND It has been confirmed that the ApoB/ApoA1 ratio is closely associated with the incidence of cardiometabolic diseases (CMD). However, due to uncontrolled confounding factors in observational studies, the causal relationship of this association remains unclear. METHODS In this study, we extracted the ApoB/ApoA1 ratio and data on CMD and its associated risk factors from the largest European Genome-Wide Association Study. The purpose was to conduct Mendelian Randomization (MR) analysis. The causal relationship between the ApoB/ApoA1 ratio and CMD was evaluated using both univariable and multivariable MR analyses. Furthermore, bidirectional MR analysis was performed to estimate the causal relationship between the ApoB/ApoA1 ratio and risk factors for CMD. The final verification confirmed whether the ApoB/ApoA1 ratio exhibits a mediating effect in CMD and related risk factors. RESULTS In terms of CMD, a noteworthy correlation was observed between the increase in the ApoB/ApoA1 ratio and various CMD, including ischemic heart disease, major adverse cardiovascular events, aortic aneurysm, cerebral ischemic disease and so on (all PFDR<0.05). Meanwhile, the ApoB/ApoA1 ratio was significantly associated with CMD risk factors, such as hemoglobin A1c, fasting insulin levels, waist-to-hip ratio, sedentary behavior, and various others, demonstrating a notable causal relationship (all PFDR<0.05). Additionally, the ApoB/ApoA1 ratio played a mediating role in CMD and relative risk factors. CONCLUSIONS This MR study provides evidence supporting the significant causal relationship between the ApoB/ApoA1 ratio and CMD and its risk factors. Moreover, it demonstrates the mediating effect of the ApoB/ApoA1 ratio in CMD and its risk factors. These findings suggest that the ApoB/ApoA1 ratio may serve as a potential indicator for identifying the risk of developing CMD in participants.
Collapse
Affiliation(s)
- Chao Fu
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Dongbo Liu
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Qi Liu
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xuedong Wang
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xiaoxue Ma
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Hong Pan
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shi Feng
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Zhao Sun
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Weishen Qiao
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Mengyue Yang
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Shuang Gao
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Hongyu Ding
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China
| | - Xingtao Huang
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China.
| | - Jingbo Hou
- Department of Cardiology, The Key Laboratory of Myocardial Ischemia, The Second Affiliated Hospital of Harbin Medical University, Chinese Ministry of Education, Harbin, Heilongjiang Province, China.
| |
Collapse
|
14
|
Skeyni A, Pradignac A, Matz RL, Terrand J, Boucher P. Cholesterol trafficking, lysosomal function, and atherosclerosis. Am J Physiol Cell Physiol 2024; 326:C473-C486. [PMID: 38145298 DOI: 10.1152/ajpcell.00415.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/17/2023] [Accepted: 12/18/2023] [Indexed: 12/26/2023]
Abstract
Despite years of study and major research advances over the past 50 years, atherosclerotic diseases continue to rank as the leading global cause of death. Accumulation of cholesterol within the vascular wall remains the main problem and represents one of the early steps in the development of atherosclerotic lesions. There is a complex relationship between vesicular cholesterol transport and atherosclerosis, and abnormalities in cholesterol trafficking can contribute to the development and progression of the lesions. The dysregulation of vesicular cholesterol transport and lysosomal function fosters the buildup of cholesterol within various intracytoplasmic compartments, including lysosomes and lipid droplets. This, in turn, promotes the hallmark formation of foam cells, a defining feature of early atherosclerosis. Multiple cellular processes, encompassing endocytosis, exocytosis, intracellular trafficking, and autophagy, play crucial roles in influencing foam cell formation and atherosclerotic plaque stability. In this review, we highlight recent advances in the understanding of the intricate mechanisms of vesicular cholesterol transport and its relationship with atherosclerosis and discuss the importance of understanding these mechanisms in developing strategies to prevent or treat this prevalent cardiovascular disease.
Collapse
Affiliation(s)
- Alaa Skeyni
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Alain Pradignac
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Rachel L Matz
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | - Jérôme Terrand
- UMR-S INSERM 1109, University of Strasbourg, Strasbourg, France
| | | |
Collapse
|
15
|
Liu Q, Zhuang W, Chen J, Li S, Li C, Ma D, Chen M. A turn-on fluorescent probe for lipid-targeting imaging in human arterial aneurysm and fibrocalcific stenotic aortic valve. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123030. [PMID: 37354855 DOI: 10.1016/j.saa.2023.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
Fluorescence imaging techniques have shown remarkable performance in studying the biological functions of lipid droplets (LDs). However, the biological applications of the commercially available LDs probes suffer from insufficient specificity and low signal/noise ratio (SNR). Herein, we presented a novel near-infrared (NIR) lipid activatable fluorescence probe, namely Me2NND, with extremely low emission in water but significantly enhanced emission in the lipid environment. Me2NND presented good biocompatibility and impressive LDs-specific imaging ability in cells and tissues. Moreover, Me2NND has also shown good photostability and it could efficiently locate the distribution of LDs in human pathological samples of aortic aneurysms and fibrocalcific stenotic aortic valves. This study provided a novel turn-on probe Me2NND and would improve the bio-applications of LDs-specific probes.
Collapse
Affiliation(s)
- Qi Liu
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Weihua Zhuang
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| | - Jingruo Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Shufen Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Chengming Li
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Di Ma
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China
| | - Mao Chen
- Laboratory of Heart Valve Disease and Department of Cardiology, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu 610041, China.
| |
Collapse
|
16
|
Nocun W, Muscogliati R, Al-Tawil M, Jubouri M, Alsmadi AS, Surkhi AO, Bailey DM, Williams IM, Bashir M. Impact of patient demographics and intraoperative characteristics on abdominal aortic aneurysm sac following endovascular repair. Asian Cardiovasc Thorac Ann 2023; 31:633-643. [PMID: 37264635 DOI: 10.1177/02184923231178704] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND Endovascular aortic repair (EVAR) has become the preferred treatment for abdominal aortic aneurysm (AAA). Its main aim is to seal the perfusion of the aneurysmal sac and, thus, induce sac regression and subsequent aortic remodelling. Aneurysmal sac regression has been linked to the short- and long-term clinical outcomes post-EVAR. It has also been shown to be influenced by endograft device choice, with several of these available commercially. This review summarises and discusses current evidence on the influence of pre- and intraoperative factors on sac regression. Additionally, this review aims to highlight the device-specific variations in sac regression to provide an overall holistic approach to treating AAAs with EVAR. METHODS A comprehensive literature search was conducted using multiple electronic databases to identify and extract relevant data. RESULTS Female sex, >70 mm original sac diameters, higher pre-procedural fibrinogen levels, smoking and low intra-aneurysmal pressure were found to positively impact sac regression. Whereas renal impairment, ischemic heart disease, high intra-aneurysmal pressure and aneurysm neck thrombus negatively influenced sac regression. Patent lumbar arteries, age, statins and hypercholesterolaemia displayed conflicting evidence regarding sac regression. Regarding the EVAR endografts compared, newer generation devices such as the Anaconda mainly showed the most optimal results. CONCLUSION Sac regression following EVAR in AAA is an important prognostic factor for morbidity and mortality. Nevertheless, several pre- and intraoperative factors can have an influence on sac regression. Therefore, it is necessary to take them into account when assessing AAA patients for EVAR to optimise outcomes. The choice of EVAR stent-graft can also affect sac regression, with evidence suggesting that the Fenestrated Anaconda is associated with the most favourable results.
Collapse
Affiliation(s)
- Weronika Nocun
- School of Medicine, University of Nottingham, Nottingham, UK
| | | | | | - Matti Jubouri
- Hull York Medical School, University of York, York, UK
| | - Ayah S Alsmadi
- Faculty of Medicine, Jordan University of Science & Technology, Irbid, Jordan
| | | | - Damian M Bailey
- Neurovascular Research Laboratory, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, UK
| | - Ian M Williams
- Department of Vascular Surgery, University Hospital of Wales, Cardiff, UK
| | - Mohamad Bashir
- Vascular and Endovascular Surgery, Velindre University NHS Trust, Health Education and Improvement Wales, Cardiff, UK
| |
Collapse
|
17
|
Zhu J, Yu J, Hu A, Liu JQ, Pan X, Xin G, Carson WE, Li Z, Yang Y, Bai XF. IL-27 Gene Therapy Induces Stat3-Mediated Expansion of CD11b+Gr1+ Myeloid Cells and Promotes Accumulation of M1 Macrophages in the Tumor Microenvironment. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:895-902. [PMID: 37459051 PMCID: PMC10530257 DOI: 10.4049/jimmunol.2300176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/03/2023]
Abstract
IL-27 is a pleiotropic cytokine that exhibits stimulatory/regulatory functions on multiple lineages of immune cells and has a potential to be used as a therapeutic for cancer. We have recently demonstrated that administration of IL-27 producing adeno-associated virus (AAV-IL-27) exhibits potent inhibition of tumor growth in mouse models. In this study, we demonstrate that AAV-IL-27 treatment leads to significant expansion of CD11b+Gr1+ myeloid cells. AAV-IL-27-induced expansion of CD11b+Gr1+ cells is IL-27R-dependent and requires Stat3 signaling, but it is inhibited by Stat1 signaling. AAV-IL-27 treatment does not increase the self-renewal capacity of CD11b+Gr1+ cells but induces significant expansion of Lin-Sca1+c-Kit+ (LSK) and granulocyte-monocyte progenitor cells. Despite exhibiting significant suppression of T cells in vitro, IL-27-induced CD11b+Gr1+ cells lost the tumor-promoting activity in vivo and overall play an antitumor role. In tumors from AAV-IL-27-treated mice, CD11b+Gr1+ cells are largely F4/80+ and express high levels of MHC class I/II and M1 macrophage markers. Thus, IL-27 gene therapy induces Stat3-mediated expansion of CD11b+Gr1+ myeloid cells and promotes accumulation of M1 macrophages in the tumor microenvironment.
Collapse
Affiliation(s)
- Jianmin Zhu
- Department of Pathology, College of Medicine, The Ohio State University
| | - Jianyu Yu
- Department of Pathology, College of Medicine, The Ohio State University
| | - Aiyan Hu
- Department of Pathology, College of Medicine, The Ohio State University
| | - Jin-Qing Liu
- Department of Pathology, College of Medicine, The Ohio State University
| | - Xueliang Pan
- Center for Biostatistics, College of Medicine, The Ohio State University
| | - Gang Xin
- Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University
| | - William E. Carson
- Department of Surgery, Division of Surgical Oncology, The Ohio State University
| | - Zihai Li
- Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University
| | - Yiping Yang
- Institute for Immuno-Oncology, Comprehensive Cancer Center, The Ohio State University
- Division of Hematology, Comprehensive Cancer Center, The Ohio State University
| | - Xue-Feng Bai
- Department of Pathology, College of Medicine, The Ohio State University
| |
Collapse
|
18
|
Ali AM, Hafez AH, Elkhodary KI, El-Morsi M. A CFD-FFT approach to hemoacoustics that enables degree of stenosis prediction from stethoscopic signals. Heliyon 2023; 9:e17643. [PMID: 37449099 PMCID: PMC10336451 DOI: 10.1016/j.heliyon.2023.e17643] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
In this paper, we identify a new (acoustic) frequency-stenosis relation whose frequencies lie within the recommended auscultation threshold of stethoscopy (< 120 Hz). We show that this relation can be used to extend the application of phonoangiography (quantifying the degree of stenosis from bruits) to widely accessible stethoscopes. The relation is successfully identified from an analysis restricted to the acoustic signature of the von Karman vortex street, which we automatically single out by means of a metric we propose that is based on an area-weighted average of the Q-criterion for the post-stenotic region. Specifically, we perform CFD simulations on internal flow geometries that represent stenotic blood vessels of different severities. We then extract their emitted acoustic signals using the Ffowcs Williams-Hawkings equation, which we subtract from a clean signal (stenosis free) at the same heart rate. Next, we transform this differential signal to the frequency domain and carefully classify its acoustic signatures per six (stenosis-)invariant flow phases of a cardiac cycle that are newly identified in this paper. We then automatically restrict our acoustic analysis to the sounds emitted by the von Karman vortex street (phase 4) by means of our Q-criterion-based metric. Our analysis of its acoustic signature reveals a strong linear relationship between the degree of stenosis and its dominant frequency, which differs considerably from the break frequency and the heart rate (known dominant frequencies in the literature). Applying our new relation to available stethoscopic data, we find that its predictions are consistent with clinical assessment. Our finding of this linear correlation is also unlike prevalent scaling laws in the literature, which feature a small exponent (i.e., low stenosis percentage sensitivity over much of the clinical range). They hence can only distinguish mild, moderate, and severe cases. Conversely, our linear law can identify variations in the degree of stenosis sensitively and accurately for the full clinical range, thus significantly improving the utility of the relevant scaling laws... Future research will investigate incorporating the vibroacoustic role of adjacent organs to expand the clinical applicability of our findings. Extending our approach to more complex 3D stenotic morphologies and including the vibroacoustic role of surrounding organs will be explored in future research to advance the clinical reach of our findings.
Collapse
Affiliation(s)
- Ahmed M. Ali
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Ahmed H. Hafez
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
- Aerospace Engineering Department, Cairo University, 12511 Giza, Egypt
| | - Khalil I. Elkhodary
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| | - Mohamed El-Morsi
- Department of Mechanical Engineering, The American University in Cairo, 11835 New Cairo, Egypt
| |
Collapse
|
19
|
Xie T, Lei C, Song W, Wu X, Wu J, Li F, Lv Y, Chen Y, Liu B, Zheng Y. Plasma Lipidomics Analysis Reveals the Potential Role of Lysophosphatidylcholines in Abdominal Aortic Aneurysm Progression and Formation. Int J Mol Sci 2023; 24:10253. [PMID: 37373399 DOI: 10.3390/ijms241210253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Abdominal aortic aneurysm (AAA) is hallmarked by irreversible dilation of the infrarenal aorta. Lipid deposition in the aortic wall and the potential importance of a lipid disorder in AAA etiology highlight the need to explore lipid variation during AAA development. This study aimed to systematically characterize the lipidomics associated with AAA size and progression. Plasma lipids from 106 subjects (36 non-AAA controls and 70 AAA patients) were comprehensively analyzed using untargeted lipidomics. An AAA animal model was established by embedding angiotensin-II pump in ApoE-/- mice for four weeks and blood was collected at 0, 2 and 4 weeks for lipidomic analysis. Using a false-discovery rate (FDR) < 0.05, a group of lysophosphatidylcholines (lysoPCs) were specifically decreased in AAA patients and mice. LysoPCs were principally lower in the AAA patients with larger diameter (diameter > 50 mm) than those with a smaller size (30 mm < diameter < 50 mm), and levels of lysoPCs were also found to be decreased with modelling time and aneurysm formation in AAA mice. Correlation matrices between lipids and clinical characteristics identified that the positive correlation between lysoPCs and HDL-c was reduced and negative correlations between lysoPCs and CAD rate, lysoPCs and hsCRP were converted to positive correlations in AAA compared to control. Weakened positive correlations between plasma lysoPCs and circulating HDL-c in AAA suggested that HDL-lysoPCs may elicit instinctive physiological effects in AAA. This study provides evidence that reduced lysoPCs essentially underlie the pathogenesis of AAA and that lysoPCs are promising biomarkers for AAA development.
Collapse
Affiliation(s)
- Ting Xie
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Chuxiang Lei
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Wei Song
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Xunyao Wu
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Fangyuan Li
- Clinical Biobank, Department of Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yanze Lv
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuexin Chen
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Bao Liu
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Yuehong Zheng
- Department of Vascular Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
20
|
Winter H, Winski G, Busch A, Chernogubova E, Fasolo F, Wu Z, Bäcklund A, Khomtchouk BB, Van Booven DJ, Sachs N, Eckstein HH, Wittig I, Boon RA, Jin H, Maegdefessel L. Targeting long non-coding RNA NUDT6 enhances smooth muscle cell survival and limits vascular disease progression. Mol Ther 2023; 31:1775-1790. [PMID: 37147804 PMCID: PMC10277891 DOI: 10.1016/j.ymthe.2023.04.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 03/31/2023] [Accepted: 04/28/2023] [Indexed: 05/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) orchestrate various biological processes and regulate the development of cardiovascular diseases. Their potential therapeutic benefit to tackle disease progression has recently been extensively explored. Our study investigates the role of lncRNA Nudix Hydrolase 6 (NUDT6) and its antisense target fibroblast growth factor 2 (FGF2) in two vascular pathologies: abdominal aortic aneurysms (AAA) and carotid artery disease. Using tissue samples from both diseases, we detected a substantial increase of NUDT6, whereas FGF2 was downregulated. Targeting Nudt6 in vivo with antisense oligonucleotides in three murine and one porcine animal model of carotid artery disease and AAA limited disease progression. Restoration of FGF2 upon Nudt6 knockdown improved vessel wall morphology and fibrous cap stability. Overexpression of NUDT6 in vitro impaired smooth muscle cell (SMC) migration, while limiting their proliferation and augmenting apoptosis. By employing RNA pulldown followed by mass spectrometry as well as RNA immunoprecipitation, we identified Cysteine and Glycine Rich Protein 1 (CSRP1) as another direct NUDT6 interaction partner, regulating cell motility and SMC differentiation. Overall, the present study identifies NUDT6 as a well-conserved antisense transcript of FGF2. NUDT6 silencing triggers SMC survival and migration and could serve as a novel RNA-based therapeutic strategy in vascular diseases.
Collapse
Affiliation(s)
- Hanna Winter
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Greg Winski
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Function Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Albert Busch
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; Division of Vascular and Endovascular Surgery, Department of Visceral, Thoracic and Vascular Surgery, Medical Faculty, Carl Gustav Carus and University Hospital Carl Gustav Carus Dresden, Technische Universität Dresden, Dresden, Germany
| | | | - Francesca Fasolo
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Zhiyuan Wu
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | | | - Bohdan B Khomtchouk
- Department of BioHealth Informatics, Indiana University, Indianapolis, IN, USA; Krannert Cardiovascular Research Center, Indiana University School of Medicine, Indianapolis, IN, USA; Center for Computational Biology & Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Derek J Van Booven
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Nadja Sachs
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, 60590 Frankfurt am Main, Germany; German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany
| | - Reinier A Boon
- German Center for Cardiovascular Research DZHK, Partner Site Frankfurt Rhine-Main, 60590 Frankfurt am Main, Germany; Institute of Cardiovascular Regeneration, Goethe University, 60590 Frankfurt am Main, Germany; Amsterdam UMC location Vrije Universiteit Amsterdam, Physiology, 1081 Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Microcirculation, 1105 Amsterdam, the Netherlands
| | - Hong Jin
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University, Munich, Germany; German Center for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Berlin, Germany; Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Dayal S, Broekelmann T, Mecham RP, Ramamurthi A. Targeting Epidermal Growth Factor Receptor to Stimulate Elastic Matrix Regenerative Repair. Tissue Eng Part A 2023; 29:187-199. [PMID: 36641641 PMCID: PMC10122231 DOI: 10.1089/ten.tea.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/15/2022] [Indexed: 01/16/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) represent a multifactorial, proteolytic disorder involving disintegration of the matrix structure within the AAA wall. Intrinsic deficiency of adult vascular cells to regenerate and repair the wall elastic matrix, which contributes to vessel stretch and recoil, is a major clinical challenge to therapeutic reversal of AAA growth. In this study, we investigate the involvement of epidermal growth factor receptor-mitogen activated protein kinase (EGFR-MAPK) pathway in the activation of aneurysmal smooth muscle cells (SMCs) by neutrophil elastase, and how EGFR can be targeted for elastic matrix regeneration. We have demonstrated that neutrophil elastase activates EGFR and downregulates expression level of key elastin homeostasis genes (elastin, crosslinking enzyme-lysyl oxidase, and fibulin4) between a dose range of 1-10 μg/mL (p < 0.05). It also incites downstream proteolytic outcomes by upregulating p-extracellular signal-regulated kinase (ERK)1/2 (p < 0.0001) and matrix metalloprotease 2 (MMP2) at a protein level, which is significantly downregulated upon EGFR-specific inhibition by tyrosine kinase inhibitor AG1478 (p-ERK1/2 and MMP2 [p < 0.05]). Moreover, we have shown that EGFR inhibition suppresses collagen amounts in aneurysmal SMCs (p < 0.05) and promotes robust formation of elastic fibers by enhancing its deposition in the extracellular space. Hence, the EGFR-MAPK pathway in aneurysmal cells can be targeted to provide therapeutic effects toward stimulating vascular matrix regeneration. Impact statement Proteolytic disorders such as aortal expansions, called abdominal aortic aneurysms (AAAs), are characterized by naturally irreversible enzymatic breakdown and loss of elastic fibers, a problem that has not yet been surmounted by existing tissue engineering approaches. In this work, we show, for the first time, how epidermal growth factor receptor (EGFR) inhibition provides downstream benefits in elastic fiber assembly and deposition in aneurysmal smooth muscle cell cultures. This work can open future possibilities for development of EGFR-targeted drug-based therapies not only for vessel wall repair in AAAs but also other proteolytically compromised elastic tissues.
Collapse
Affiliation(s)
- Simran Dayal
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Thomas Broekelmann
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Robert P. Mecham
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri, USA
| | - Anand Ramamurthi
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
22
|
Nicolajsen CW, Nielsen PB, Jensen M, Eldrup N, Larsen TB, Lip GYH, Goldhaber SZ, Søgaard M. Stroke and Myocardial Infarction in Patients with Abdominal Aortic Aneurysm and New-Onset Atrial Fibrillation. Thromb Haemost 2023; 123:555-564. [PMID: 36626930 DOI: 10.1055/a-2009-8954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
OBJECTIVE We investigated the association between new-onset atrial fibrillation (AF) and risk of stroke and myocardial infarction (MI) in patients with abdominal aortic aneurysmal (AAA) disease. METHODS Observational crossover study using Danish nationwide data, including patients with AAA and incident AF between 1997 and 2018. We estimated the 1-year risk of stroke and MI and the within-individual odds ratios (ORs) of ischemic events before and after an AF diagnosis, stratified by year of AF diagnosis (1997-2010 and 2011-2018), and supplemented with analyses on changes in use of antithrombotic therapy. RESULTS A total of 3,035 AAA patients were included: 1,040 diagnosed during 1997 to 2010, and 1,995 during 2011 to 2018 (22.2% females, median age 78 years; median CHA2DS2-VASc score 4; interquartile range: 3-5). One-year risk of ischemic events after AF was 5.9% (confidence interval [CI] 95%: 4.6-7.5%) and 4.5% (CI 95%: 3.7-5.5%) for stroke and 5.4% (CI 95%: 4.2-6.9%) and 4.0% (CI 95%: 3.2-4.9%) for MI during 1997 to 2010 and 2011 to 2018, respectively. The OR of ischemic stroke before and after incident AF was 2.8 (CI 95%: 1.6-5.2) during 1997 to 2010; and 2.4 (CI 95%: 1.5 to 3.9) during 2011 to 2018, and 3.5 (CI 95%: 1.7-7.5) and 1.5 (CI 95%: 0.9-2.4) for MI. One-year proportion of prescription claims for oral anticoagulants after AF changed from 66.1% in 1997 to 2010 to 82.6% in 2011 to 2018, while antiplatelet prescription claims changed from 80.8 to 60.9%. CONCLUSION Cardiovascular prognosis has improved in patients with prevalent AAA disease and new-onset AF in concordance with optimization of antithrombotic therapy over time. A diagnosis of AF conferred residual risk of stroke and MI.
Collapse
Affiliation(s)
- Chalotte W Nicolajsen
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Vascular Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - Peter B Nielsen
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Jensen
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark
| | - Nikolaj Eldrup
- Department of Vascular Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Copenhagen University, Copenhagen, Denmark
| | - Torben B Larsen
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| | - Gregory Y H Lip
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Liverpool Centre for Cardiovascular Science, University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Samuel Z Goldhaber
- Division of Cardiovascular Medicine, Thrombosis Research Group, Brigham and Women's Hospital, Boston, Massachusetts, United States.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States
| | - Mette Søgaard
- Aalborg Thrombosis Research Unit, Department of Clinical Medicine, Faculty of Health, Aalborg University, Aalborg, Denmark.,Department of Cardiology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
23
|
Adar A, Onalan O, Cakan F, Keles H, Akbay E, Akıncı S, Coner A, Haberal C, Muderrisoglu H. Evaluation of the relationship between para-aortic adipose tissue and ascending aortic diameter using a new method. Acta Cardiol 2022; 77:943-949. [PMID: 36189879 DOI: 10.1080/00015385.2022.2121537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Para-aortic adipose tissue (PAT) is the local adipose tissue that externally surrounds the aorta. It contributes significantly to aortic atherosclerosis and enlargement. Studies conducted with computed tomography and magnetic resonance have shown that individuals with aortic aneurysm had more PAT than healthy individuals. In this study, we measured PAT using transthoracic echocardiography (TTE). The aim of this study is to investigate the possible relationship of TTE measured PAT with ascending aortic width. METHODS PAT was defined as the hypoechoic space in front of ascending aortic 2 cm above the sinotubular junction at the end of the systole. Patients were divided into 2 groups according to the presence of dilatation in the ascending aorta using Roman's classification (aortic size index, ASI). ASI of less than 21 was considered no aortic dilation and an ASI of 21 mm/m2 or greater was considered to have aortic dilation. RESULTS A total of 321 unselected patients were divided into the ascending aortic dilatation (AAD) group (n = 96) and the normal ascending aorta diameter group (n = 225 patients). PAT was significantly higher in the AAD group compared with the non-ADD group (0.9 (0.48) vs. 0.7 (0.91) mm, p < 0.0001). Univariate and multivariate logistic regression analysis revealed that PAT (OR: 3.005, 95%CI (1.445-6.251)) were significantly associated with AAD. CONCLUSIONS This is the first study which evaluated PAT measured by TTE. We found a significant association between PAT measured by TTE and ascending aorta width.
Collapse
Affiliation(s)
- Adem Adar
- Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Orhan Onalan
- Department of Cardiology, Karabuk University Faculty of Medicine, Karabuk, Turkey.,Department of Radiology, Karabuk University Faculty of Medicine, Alanya, Turkey
| | - Fahri Cakan
- Department of Cardiology, Karabuk University Faculty of Medicine, Karabuk, Turkey.,Department of Radiology, Karabuk University Faculty of Medicine, Alanya, Turkey
| | - Hakan Keles
- Department of Cardiovascular Surgery, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Ertan Akbay
- Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Sinan Akıncı
- Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Ali Coner
- Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Cevahir Haberal
- Department of Cardiovascular Surgery, Baskent University Faculty of Medicine, Alanya, Turkey
| | - Haldun Muderrisoglu
- Department of Cardiology, Baskent University Faculty of Medicine, Alanya, Turkey
| |
Collapse
|
24
|
Márquez-Sánchez AC, Koltsova EK. Immune and inflammatory mechanisms of abdominal aortic aneurysm. Front Immunol 2022; 13:989933. [PMID: 36275758 PMCID: PMC9583679 DOI: 10.3389/fimmu.2022.989933] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a life-threatening cardiovascular disease. Immune-mediated infiltration and a destruction of the aortic wall during AAA development plays significant role in the pathogenesis of this disease. While various immune cells had been found in AAA, the mechanisms of their activation and function are still far from being understood. A better understanding of mechanisms regulating the development of aberrant immune cell activation in AAA is essential for the development of novel preventive and therapeutic approaches. In this review we summarize current knowledge about the role of immune cells in AAA and discuss how pathogenic immune cell activation is regulated in this disease.
Collapse
|
25
|
Ho F, Watson AMD, Elbatreek MH, Kleikers PWM, Khan W, Sourris KC, Dai A, Jha J, Schmidt HHHW, Jandeleit-Dahm KAM. Endothelial reactive oxygen-forming NADPH oxidase 5 is a possible player in diabetic aortic aneurysm but not atherosclerosis. Sci Rep 2022; 12:11570. [PMID: 35798762 PMCID: PMC9262948 DOI: 10.1038/s41598-022-15706-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/13/2022] Open
Abstract
Atherosclerosis and its complications are major causes of cardiovascular morbidity and death. Apart from risk factors such as hypercholesterolemia and inflammation, the causal molecular mechanisms are unknown. One proposed causal mechanism involves elevated levels of reactive oxygen species (ROS). Indeed, early expression of the ROS forming NADPH oxidase type 5 (Nox5) in vascular endothelial cells correlates with atherosclerosis and aortic aneurysm. Here we test the pro-atherogenic Nox5 hypothesis using mouse models. Because Nox5 is missing from the mouse genome, a knock-in mouse model expressing human Nox5 in its physiological location of endothelial cells (eNOX5ki/ki) was tested as a possible new humanised mouse atherosclerosis model. However, whether just on a high cholesterol diet or by crossing in aortic atherosclerosis-prone ApoE−/− mice with and without induction of diabetes, Nox5 neither induced on its own nor aggravated aortic atherosclerosis. Surprisingly, however, diabetic ApoE−/− x eNOX5ki/ki mice developed aortic aneurysms more than twice as often correlating with lower vascular collagens, as assessed by trichrome staining, without changes in inflammatory gene expression, suggesting that endothelial Nox5 directly affects extracellular matrix remodelling associated with aneurysm formation in diabetes. Thus Nox5-derived reactive oxygen species are not a new independent mechanism of atherosclerosis but may enhance the frequency of abdominal aortic aneurysms in the context of diabetes. Together with similar clinical findings, our preclinical target validation opens up a first-in-class mechanism-based approach to treat or even prevent abdominal aortic aneurysms.
Collapse
Affiliation(s)
- Florence Ho
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Anna M D Watson
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia.,Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, 75 commercial Road, Melbourne, VIC, 3004, Australia
| | - Mahmoud H Elbatreek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, 44519, Egypt. .,Department of Pharmacology and Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| | - Pamela W M Kleikers
- Department of Pharmacology and Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands
| | - Waheed Khan
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Karly C Sourris
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Aozhi Dai
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Jay Jha
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia
| | - Harald H H W Schmidt
- Department of Pharmacology and Personalised Medicine, MeHNS, Faculty of Health, Medicine & Life Science, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, The Netherlands.
| | - Karin A M Jandeleit-Dahm
- Department of Diabetes, Central Clinical School, Monash University, 99 Commercial Road, Melbourne, VIC, 3004, Australia. .,Institute for Clinical Diabetology, German Diabetes Centre, Leibniz Centre for Diabetes Research at Heinrich Heine University Düsseldorf, Auf'm Hennekamp 65, 40225, Düsseldorf, Germany.
| |
Collapse
|
26
|
Gao H, Wang L, Ren J, Liu Y, Liang S, Zhang B, Sun X. Interleukin 2 receptor subunit beta as a novel hub gene plays a potential role in the immune microenvironment of abdominal aortic aneurysms. Gene 2022; 827:146472. [PMID: 35381314 DOI: 10.1016/j.gene.2022.146472] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is potentially life threatening and characterized by immune-inflammatory cell infiltration and extracellular matrix degradation. Currently, pharmacotherapy mainly aims to control risk factors without reversion of the dilated aorta. This study analyzed the immune-inflammatory response and identified the immune-related hub genes of AAA. METHOD Gene Expression Omnibus datasets (GSE57691, GSE47472 and GSE7084) were downloaded. After identification of GSE57691 differentially expressed genes (DEGs), weighted gene co-expression network analysis of the DEGs was performed. Through enrichment analysis of each module and screening in Immunology Database and Analysis Portal, immune-related hub genes were identified via protein-protein interaction (PPI) network construction and lasso regression. CIBERSORT was utilized to analyze AAA immune infiltration. The correlations between the immune-related hub genes and infiltrating immune cells were investigated. Receiver operating characteristic (ROC) curve analysis was performed to determine immune-related hub gene cutoff values, which were validated in GSE47472 and GSE7084. RESULT In GSE57691, 1,018 DEGs were identified. Five modules were identified in the co-expression network. The blue and green modules were found to be related to immune-inflammatory responses, and 61 immune-related genes were identified. PPI and lasso regression analyses identified FOS, IL-6 and IL2RB as AAA immune-related hub genes. CIBERSORT analysis indicated significantly increased infiltration of naive B cells, memory activated CD4 T cells, follicular helper T cells, monocytes and M1 macrophages and significantly decreased infiltration of M2 macrophages in AAA compared with normal samples. IL2RB was more strongly associated with immune infiltration in AAA than were FOS and IL6. The IL2RB area under the ROC curve (AUC) value was > 0.9 in both the training and validation set, demonstrating its strong, stable diagnostic value in AAA. CONCLUSION AAA and normal samples had different immune infiltration statuses. IL2RB was identified as an immune-related hub gene and a potential hub gene with significant diagnostic value in AAA.
Collapse
Affiliation(s)
- Haoyu Gao
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Luchen Wang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Ren
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Liu
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shenghua Liang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bowen Zhang
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaogang Sun
- Department of Cardiovascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
27
|
A hypothesis-driven study to comprehensively investigate the association between genetic polymorphisms in EPHX2 gene and cardiovascular diseases: Findings from the UK Biobank. Gene X 2022; 822:146340. [PMID: 35183688 DOI: 10.1016/j.gene.2022.146340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Epoxyeicosatrienoic acids (EETs) are protective factors against cardiovascular diseases (CVDs) because of their vasodilatory, cholesterol-lowering, and anti-inflammatory effects. Soluble epoxide hydrolase (sEH), encoded by the EPHX2 gene, degrades EETs into less biologically active metabolites. EPHX2 is highly polymorphic, and genetic polymorphisms in EPHX2 have been linked to various types of CVDs, such as coronary heart disease, essential hypertension, and atrial fibrillation recurrence. METHODS Based on a priori hypothesis that EPHX2 genetic polymorphisms play an important role in the pathogenesis of CVDs, we comprehensively investigated the associations between 210 genetic polymorphisms in the EPHX2 gene and an array of 118 diseases in the circulatory system using a large sample from the UK Biobank (N = 307,516). The diseases in electronic health records were mapped to the phecode system, which was more representative of independent phenotypes. Survival analyses were employed to examine the effects of EPHX2 variants on CVD incidence, and a phenome-wide association study was conducted to study the impact of EPHX2 polymorphisms on 62 traits, including blood pressure, blood lipid levels, and inflammatory indicators. RESULTS A novel association between the intronic variant rs116932590 and the phenotype "aneurysm and dissection of heart" was identified. In addition, the rs149467044 and rs200286838 variants showed nominal evidence of association with arterial aneurysm and cerebrovascular disease, respectively. Furthermore, the variant rs751141, which was linked with a lower hydrolase activity of sEH, was significantly associated with metabolic traits, including blood levels of triglycerides, creatinine, and urate. CONCLUSIONS Multiple novel associations observed in the present study highlight the important role of EPHX2 genetic variation in the pathogenesis of CVDs.
Collapse
|
28
|
Kori M, Cig D, Arga KY, Kasavi C. Multiomics Data Integration Identifies New Molecular Signatures for Abdominal Aortic Aneurysm and Aortic Occlusive Disease: Implications for Early Diagnosis, Prognosis, and Therapeutic Targets. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:290-304. [PMID: 35447046 DOI: 10.1089/omi.2022.0021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death among adults in developed countries. Among CVDs, abdominal aortic aneurysm (AAA) and aortic occlusive disease (AOD) are of great public health importance because of the high mortality rate in the elderly population. Despite significant molecular insights into AAA and AOD, the molecular mechanisms of these diseases remain unclear, and the current lack of robust diagnostic and prognostic biomarkers requires novel approaches to biomarker discovery and molecular targeting. In this study, we performed a comparative analysis of genome-wide expression data from patients with large AAA (n = 29), small AAA (n = 20), AOD (n = 9), and controls (n = 10). Specifically, we identified the differentially expressed genes and associated molecular pathways and biological processes (BPs) in each disease. Using a systems science approach, these data were linked to comprehensive human biological networks (i.e., protein-protein interaction, transcriptional regulatory, and metabolic networks) to identify molecular signatures of the salient mechanisms of AAA and AOD. Significant alterations in lipid metabolism and valine, leucine, and isoleucine metabolism, as well as neurodegenerative diseases and sex differences in the pathogenesis of AAA and AOD were identified. In the presence of aneurysm, size-dependent changes in lipid metabolism were observed. In addition, molecules and signaling pathways related to immunity, inflammation, infectious disease, and oxidative phosphorylation were identified in common. The results of the comparative and integrative analyzes revealed important clues to disease mechanisms and reporter molecules at various levels that warrant future development as potential prognostic biomarkers and putative therapeutic targets.
Collapse
Affiliation(s)
- Medi Kori
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Defne Cig
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul, Turkey
| | - Ceyda Kasavi
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| |
Collapse
|
29
|
Weng Y, Lou J, Bao Y, Cai C, Zhu K, Du C, Chen X, Tang L. Single-Cell RNA Sequencing Technology Revealed the Pivotal Role of Fibroblast Heterogeneity in Angiotensin II-Induced Abdominal Aortic Aneurysms. DNA Cell Biol 2022; 41:498-520. [PMID: 35451888 DOI: 10.1089/dna.2021.0923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanism of abdominal aortic aneurysm (AAA) has not been fully elucidated. In this study, we aimed to map the cellular heterogeneity, molecular alteration, and functional transformation of angiotensin (Ang) II-induced AAA in mice based on single-cell RNA sequencing (sc-RNA seq) technology. sc-RNA seq was performed on suprarenal abdominal aorta tissue from male Apoe-/- C57BL/6 mice of Ang II-induced AAA and shame models to determine the heterogeneity and phenotypic transformation of all cells. Immunohistochemistry was used to determine the pathophysiological characteristics of AAA. The single-cell trajectory was performed to predict the differentiation of fibroblasts. Finally ligand-receptor analysis was used to evaluate intercellular communication between fibroblasts and smooth muscle cells (SMCs). More than 27,000 cells were isolated and 25 clusters representing 8 types of cells were identified, including fibroblasts, macrophages, endothelial cells, SMCs, T lymphocytes, B lymphocytes, granulocytes, and natural killer cells. During AAA progression, the function and phenotype of different type cells altered separately, including activation of inflammatory cells, alternations of macrophage polarization, phenotypic transformation of vascular smooth muscle cells, and endothelial to mesenchymal transformation. The alterations of fibroblasts were the most conspicuous. Single-cell trajectory revealed the critical reprogramming genes of fibroblasts mainly enriched in regulation of immune system. Finally, the ligand-receptor analysis confirmed that disorder of collagen metabolism led by fibroblasts was one of the most prominent characteristics of Ang II-induced AAA. Our study revealed the cellular heterogeneity of Ang II-induced AAA. Fibroblasts may play a critical role in Ang II-induced AAA progression according to multiple biological functions, including immune regulation and extracellular matrix metabolic balance. Our study may provide us with a different perspective on the etiology and pathogenesis of AAA.
Collapse
Affiliation(s)
- Yingzheng Weng
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Jiangjie Lou
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Yizong Bao
- Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Changhong Cai
- Department of Cardiology, Lishui Hospital of Zhejiang University, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Municipal Central Hospital, Lishui, China
| | - Kefu Zhu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China
| | - Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Chen
- Department of Cardiology, Taizhou Hospital, Wenzhou Medical University, Taizhou, China.,Department of Radiation Oncology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, China.,Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
30
|
Plana E, Oto J, Medina P, Herranz R, Fernández-Pardo Á, Requejo L, Miralles M. Thrombospondins in human aortic aneurysms. IUBMB Life 2022; 74:982-994. [PMID: 35293116 DOI: 10.1002/iub.2610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Thrombospondins are a family of matricellular proteins with a multimeric structure that is known to be involved in several biological and pathological processes. Their relationship with vascular disorders has raised special interest recently. Aortic aneurysms are related to the impairment of vascular remodeling, in which extracellular matrix proteins seem to play an important role. Thus, research in thrombospondins, and their potential role in aneurysm development is progressively gaining importance. Nevertheless, studies showing thrombospondin dysregulation in human samples are still scarce. Although studies performed in vitro and in vivo models are essential to understand the molecular mechanisms and pathways underlying the disorder, descriptive studies in human samples are also necessary to ascertain their real value as biomarkers and/or novel therapeutic targets. The present article reviews the latest findings regarding the role of thrombospondins in aortic aneurysm development, paying particular attention to the studies performed in human samples.
Collapse
Affiliation(s)
- Emma Plana
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Julia Oto
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Pilar Medina
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Herranz
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Álvaro Fernández-Pardo
- Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain
| | - Lucia Requejo
- Angiology and Vascular Surgery Service, La Ribera University Hospital, Alzira, Valencia, Spain
| | - Manuel Miralles
- Angiology and Vascular Surgery Service, La Fe University and Polytechnic Hospital, Valencia, Spain.,Haemostasis, Thrombosis, Arteriosclerosis and Vascular Biology Research Group, Medical Research Institute Hospital La Fe, Valencia, Spain.,Department of Surgery, University of Valencia, Valencia, Spain
| |
Collapse
|
31
|
Mammoto A, Matus K, Mammoto T. Extracellular Matrix in Aging Aorta. Front Cell Dev Biol 2022; 10:822561. [PMID: 35265616 PMCID: PMC8898904 DOI: 10.3389/fcell.2022.822561] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The aging population is booming all over the world and arterial aging causes various age-associated pathologies such as cardiovascular diseases (CVDs). The aorta is the largest elastic artery, and transforms pulsatile flow generated by the left ventricle into steady flow to maintain circulation in distal tissues and organs. Age-associated structural and functional changes in the aortic wall such as dilation, tortuousness, stiffening and losing elasticity hamper stable peripheral circulation, lead to tissue and organ dysfunctions in aged people. The extracellular matrix (ECM) is a three-dimensional network of macromolecules produced by resident cells. The composition and organization of key ECM components determine the structure-function relationships of the aorta and therefore maintaining their homeostasis is critical for a healthy performance. Age-associated remodeling of the ECM structural components, including fragmentation of elastic fibers and excessive deposition and crosslinking of collagens, is a hallmark of aging and leads to functional stiffening of the aorta. In this mini review, we discuss age-associated alterations of the ECM in the aortic wall and shed light on how understanding the mechanisms of aortic aging can lead to the development of efficient strategy for aortic pathologies and CVDs.
Collapse
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Cell Biology, Neurobiology and Anatomy, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| | - Kienna Matus
- Department of Pediatrics, Milwaukee, WI, United States
| | - Tadanori Mammoto
- Department of Pediatrics, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Akiko Mammoto, ; Tadanori Mammoto,
| |
Collapse
|
32
|
Alterations in gut microbiota and physiological factors associated with abdominal aortic aneurysm. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
33
|
Sunderland K, Jiang J, Zhao F. Disturbed flow's impact on cellular changes indicative of vascular aneurysm initiation, expansion, and rupture: A pathological and methodological review. J Cell Physiol 2022; 237:278-300. [PMID: 34486114 PMCID: PMC8810685 DOI: 10.1002/jcp.30569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/06/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023]
Abstract
Aneurysms are malformations within the arterial vasculature brought on by the structural breakdown of the microarchitecture of the vessel wall, with aneurysms posing serious health risks in the event of their rupture. Blood flow within vessels is generally laminar with high, unidirectional wall shear stressors that modulate vascular endothelial cell functionality and regulate vascular smooth muscle cells. However, altered vascular geometry induced by bifurcations, significant curvature, stenosis, or clinical interventions can alter the flow, generating low stressor disturbed flow patterns. Disturbed flow is associated with altered cellular morphology, upregulated expression of proteins modulating inflammation, decreased regulation of vascular permeability, degraded extracellular matrix, and heightened cellular apoptosis. The understanding of the effects disturbed flow has on the cellular cascades which initiate aneurysms and promote their subsequent growth can further elucidate the nature of this complex pathology. This review summarizes the current knowledge about the disturbed flow and its relation to aneurysm pathology, the methods used to investigate these relations, as well as how such knowledge has impacted clinical treatment methodologies. This information can contribute to the understanding of the development, growth, and rupture of aneurysms and help develop novel research and aneurysmal treatment techniques.
Collapse
Affiliation(s)
- Kevin Sunderland
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931
| | - Jingfeng Jiang
- Department of Biomedical Engineering, Michigan Technological University, Houghton, MI 49931,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| | - Feng Zhao
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843,Corresponding Authors: Feng Zhao, 101 Bizzell Street, College Station, TX 77843-312, Tel : 979-458-1239, , Jingfeng Jiang, 1400 Townsend Dr., Houghton, MI 49931, Tel: 906-487-1943
| |
Collapse
|
34
|
Kharagjitsing HHS, van Vooren J, Brilman EG, Hendriksz TR, van Gelder T, van Bommel EFH. Abdominal aortic diameter and cardiovascular status in patients with idiopathic retroperitoneal fibrosis. Rheumatol Int 2021; 42:1167-1175. [PMID: 34821970 DOI: 10.1007/s00296-021-05051-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/05/2021] [Indexed: 11/25/2022]
Abstract
Although much debated, an exaggerated inflammatory response to advanced atherosclerosis has been implicated in the pathogenesis of idiopathic retroperitoneal fibrosis (RPF). Clinical presentation, infrarenal abdominal aortic diameter and RPF mass thickness were retrospectively analyzed in 166 patients with idiopathic RPF seen at our referral center between April 1998 and December 2019. Patients were stratified to their infrarenal abdominal aortic diameter at presentation (i.e., non-ectatic [< 25 mm]; ectatic [25-29 mm]; and aneurysmal [≥ 30 mm]) to compare characteristics across groups with an undilated or dilated aorta. Ectatic or aneurysmal aortic dilatation was present in 34% of patients. Most clinical characteristics did not differ across abdominal aortic diameter stratified groups, but RPF mass thickness was greater in patients presenting with aortic aneurysmal dilatation compared to that in patients with an undilated aorta (49.0 mm [IQR 34.0-62.0] vs 32.5 mm [IQR 25.3-47.8]; P < 0.001). A positive linear association was found between aortic diameter on a continuous scale and RPF mass thickness (β 0.32 [95% CI 0.34-0.96]; P < 0.001). This association remained significant after adjusting for age, sex and acute-phase reactant levels (β 0.28 [95% CI 0.15-0.95]; P < 0.01). Treatment success across aortic diameter stratified groups did not differ (P = 0.98). Treatment induced RPF mass regression was not associated with an increase in aortic expansion rate (P = 0.44). Aortic dilatation was prevalent among patients. Infrarenal abdominal aortic diameter was independently associated with RPF mass thickness. Findings support the concept that at least in a subset of patients, RPF may be secondary to advanced atherosclerosis.
Collapse
Affiliation(s)
- H H S Kharagjitsing
- Department of Internal Medicine/Dutch National Center of Expertise Retroperitoneal Fibrosis, Albert Schweitzer Hospital, PO Box 444, 3300 AK, Dordrecht, The Netherlands
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - J van Vooren
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - E G Brilman
- Department of Internal Medicine/Dutch National Center of Expertise Retroperitoneal Fibrosis, Albert Schweitzer Hospital, PO Box 444, 3300 AK, Dordrecht, The Netherlands
| | - T R Hendriksz
- Department of Radiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - T van Gelder
- Department of Clinical Pharmacy & Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - E F H van Bommel
- Department of Internal Medicine/Dutch National Center of Expertise Retroperitoneal Fibrosis, Albert Schweitzer Hospital, PO Box 444, 3300 AK, Dordrecht, The Netherlands.
| |
Collapse
|
35
|
Niu F, Liu Z, Liu P, Pan H, Bi J, Li P, Luo G, Chen Y, Zhang X, Dai X. Identification of novel genetic biomarkers and treatment targets for arteriosclerosis-related abdominal aortic aneurysm using bioinformatic tools. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:9761-9774. [PMID: 34814367 DOI: 10.3934/mbe.2021478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A large number of epidemiological studies have confirmed that arteriosclerosis (AS) is a risk factor for abdominal aortic aneurysm (AAA). However, the relationship between AS and AAA remains controversial. The objective of this work is to better understand the association between the two diseases by identifying the co-differentially expressed genes under both pathological conditions, so as to identify potential genetic biomarkers and treatment targets for atherosclerosis-related aneurysms. Differentially-expressed genes (DEGs) shared by both AS and AAA patients were identified by bioinformatics analyses of Gene Expression Omnibus (GEO) datasets GSE100927 and GSE7084. These DEGs were then subjected to bioinformatic analyses of protein-protein interaction (PPI), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Finally, the identified hub genes were further validated by qRT-PCR in AS (n = 4), AAA (n = 4), and healthy (n = 4) individuals. Differential expression analysis revealed a total of 169 and 37 genes that had increased and decreased expression levels, respectively, in both AS and AAA patients compared with healthy controls. The construction of a PPI network and key modules resulted in the identification of five hub genes (SPI1, TYROBP, TLR2, FCER1G, and MMP9) as candidate diagnostic biomarkers and treatment targets for patients with AS-related AAA. AS and AAA are indeed correlated; SPI1, TYROBP, TLR2, FCER1G and MMP9 genes are potential new genetic biomarkers for AS-related AAA.
Collapse
Affiliation(s)
- Fang Niu
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Zongwei Liu
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Peidong Liu
- Department of Neurosurgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongrui Pan
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Jiaxue Bi
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Peng Li
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Guangze Luo
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Yonghui Chen
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiaoxing Zhang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| | - Xiangchen Dai
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, China
| |
Collapse
|
36
|
Arbustini E, Narula N. Aortic Smooth Muscle Detraining in Continuous Flow LVAD: Out of Practice. J Am Coll Cardiol 2021; 78:1796-1799. [PMID: 34711338 DOI: 10.1016/j.jacc.2021.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Eloisa Arbustini
- Transplant Research Area and Centre for Inherited Cardiovascular Diseases, Department of Medical Sciences and Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
| | - Navneet Narula
- Department of Pathology, New York University Langone Health, New York, New York, USA
| |
Collapse
|
37
|
Li T, Wang T, Zhao X. Profiles of immune infiltration in abdominal aortic aneurysm and their associated marker genes: a gene expression-based study. ACTA ACUST UNITED AC 2021; 54:e11372. [PMID: 34495251 PMCID: PMC8427746 DOI: 10.1590/1414-431x2021e11372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/01/2021] [Indexed: 12/24/2022]
Abstract
Immune-mediated inflammation plays a key role in the pathology of abdominal aortic aneurysm (AAA). We aimed to use a computational approach to profile the immune infiltration patterns and related core genes in AAA samples based on the overexpression of gene signatures. The microarray datasets of AAA and normal abdominal tissues were acquired from gene expression omnibus (GEO) database. We evaluated the composition of immune infiltrates through microenvironment cell populations (MCP)-counter. Weighted gene correlation network analysis (WGCNA) was employed to construct the co-expression network and extract gene information in the most relevant module. Functional and pathway enrichment analysis was performed and immune infiltration related core genes were screened. AAA tissues had a higher level of infiltration by cytotoxic lymphocytes, NK cells, T cells, fibroblasts, myeloid dendritic cells, and neutrophils than normal aorta. The red module was strongly correlated with the infiltrating levels of T cells and cytotoxic lymphocytes. Gene ontology (GO) and pathway analyses revealed that genes in the most relevant module were mainly enriched in T cell activation, regulation of lymphocyte activation, cytokine-cytokine receptor interaction, and chemokine signaling pathway, etc. The expression of GZMK, CCL5, GZMA, CD2, and EOMES showed significant correlations with cytotoxic lymphocytes, while CD247, CD2, CD6, RASGRP1, and CD48 expression were positively associated with T cell infiltration. In conclusion, we comprehensively analyzed profiles of infiltrated immune cells in AAA tissues and their associated marker genes. Our data may provide a novel clue to indicate the underlying molecular mechanisms of AAA formation in terms of immune infiltration.
Collapse
Affiliation(s)
- Tan Li
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang, China
| | - Tianlong Wang
- The First Clinical College of China Medical University, the First Hospital of China Medical University, Shenyang, China
| | - Xin Zhao
- Department of Operation Room, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
38
|
Chen G, Xu Y, Yao Y, Cao Y, Liu Y, Chai H, Chen W, Chen X. IKKε knockout alleviates angiotensin II-induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway. Exp Ther Med 2021; 22:1051. [PMID: 34434265 PMCID: PMC8353624 DOI: 10.3892/etm.2021.10485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Inhibitor of nuclear factor-κB kinase subunit ε (IKKε) is an important signal regulator in the formation of abdominal aortic aneurysm (AAA). However, the underlying mechanism remains to be elucidated. Therefore, the present study aimed to investigate the mechanism underlying IKKε function in AAA formation by studying apoptosis and autophagy in angiotensin II (Ang II)-induced vascular smooth muscle cells (VSMCs). AngII was used to stimulate VSMCs for 24 h to simulate the process of AAA formation. VSMCs were transfected with IKKε small interfering RNA to investigate the effect of IKKε on AAA formation, cell apoptosis and autophagy. IKKε deficiency led to reduced mitochondrial damage and apoptosis in VSMCs in the early stage of apoptosis in vitro, as demonstrated using a JC-1 probe. IKKε deficiency also reduced autophagy and decreased the formation of autophagic vacuoles in VSMCs, demonstrated using transmission electron microscopy. The decrease in apoptosis caused by IKKε knockdown was reversed when the autophagic flow was blocked using bafilomycin A1. Western blot analysis further revealed that IKKε deficiency negatively regulated the ERK1/2 signaling pathway to reduce autophagy. Collectively, the results of the present study revealed that IKKε played a key role in apoptosis by inducing excessive autophagy, thereby potentially contributing to AAA formation. These findings further revealed the mechanism underlying IKKε function in the formation of AAA.
Collapse
Affiliation(s)
- Ganyi Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yueyue Xu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yiwei Yao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yide Cao
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Yafeng Liu
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Hao Chai
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Wen Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| | - Xin Chen
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, P.R. China
| |
Collapse
|
39
|
Silencing IL12p35 Promotes Angiotensin II-Mediated Abdominal Aortic Aneurysm through Activating the STAT4 Pathway. Mediators Inflamm 2021; 2021:9450843. [PMID: 34354545 PMCID: PMC8331298 DOI: 10.1155/2021/9450843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023] Open
Abstract
Background and Purpose. Abdominal aortic aneurysm (AAA) is a chronic inflammatory disorder and the important causes of death among men over the age of 65 years. Interleukin-12p35 (IL12p35) is an inflammatory cytokine that participates in a variety of inflammatory diseases. However, the role of IL12p35 in the formation and development of AAA is still unknown. Experimental Approach. Male apolipoprotein E-deficient (Apoe−/−) mice were generated and infused with 1.44 mg/kg angiotensin II (Ang II) per day. We found that IL12p35 expression was noticeably increased in the murine AAA aorta and isolated aortic smooth muscle cells (SMCs) after Ang II stimulation. IL12p35 silencing promoted Ang II-induced AAA formation and rupture in Apoe−/− mice. IL12p35 silencing markedly increased the expression of inflammatory cytokines, including IL-1β, IL-6, and tumor necrosis factor-α (TNF-α), in both the serum and AAA aorta. Additionally, IL12p35 silencing exacerbated SMC apoptosis in Apoe−/− mice after Ang II infusion. IL12p35 silencing significantly increased signal transducer and activator of transcription (STAT) 4 phosphorylation levels in AAA mice, and STAT4 knockdown abolished the IL12p35-mediated proinflammatory response and SMC apoptosis. Interpretation. Silencing IL12p35 promotes AAA formation by activating the STAT4 pathway, and IL12p35 may serve as a novel and promising therapeutic target for AAA treatment.
Collapse
|
40
|
Teti G, Chiarini F, Mazzotti E, Ruggeri A, Carano F, Falconi M. Cellular senescence in vascular wall mesenchymal stromal cells, a possible contribution to the development of aortic aneurysm. Mech Ageing Dev 2021; 197:111515. [PMID: 34062172 DOI: 10.1016/j.mad.2021.111515] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a hallmark of ageing and it plays a key role in the development of age-related diseases. Abdominal aortic aneurysm (AAA) is an age related degenerative vascular disorder, characterized by a progressive dilatation of the vascular wall and high risk of rupture over time. Nowadays, no pharmacological therapies are available and the understanding of the molecular mechanisms that lead to AAA onset and development are poorly defined. In this study we investigated the cellular features of senescence in vascular mesenchymal stromal cells, isolated from pathological (AAA - MSCs) and healthy (h - MSCs) segments of human abdominal aorta and their implication in impairing the vascular repair ability of MSCs. Cell proliferation, ROS production, cell surface area, the expression of cyclin dependent kinase inhibitors p21CIP1 and p16INK4a, the activation of the DNA damage response and a dysregulated autophagy showed a senescent state in AAA - MSCs compared to h-MSCs. Moreover, a reduced ability to differentiate toward endothelial cells was observed in AAA - MSCs. All these data suggest that the accumulation of senescent vascular MSCs over time impairs their remodeling ability during ageing. This condition could support the onset and development of AAA.
Collapse
Affiliation(s)
- Gabriella Teti
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy.
| | - Francesca Chiarini
- CNR-National Research Council of Italy, Institute of Molecular Genetics "Luigi Luca Cavalli-Sforza", Unit of Bologna, Bologna, 40136, Italy; IRCCS Istituto Ortopedico Rizzoli, Bologna, 40136, Italy
| | - Eleonora Mazzotti
- Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, 64100, Italy
| | - Alessandra Ruggeri
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Francesco Carano
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| | - Mirella Falconi
- Department of Biomedical and Neuromotor Sciences, University di Bologna, Bologna, 40126, Italy
| |
Collapse
|
41
|
Adventitial recruitment of Lyve-1- macrophages drives aortic aneurysm in an angiotensin-2-based murine model. Clin Sci (Lond) 2021; 135:1295-1309. [PMID: 33978148 DOI: 10.1042/cs20200963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 04/30/2021] [Accepted: 05/12/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Aortic macrophage accumulation is characteristic of the pathogenesis of abdominal aortic aneurysm (AAA) but the mechanisms of macrophage accumulation and their phenotype are poorly understood. Lymphatic vessel endothelial receptor-1 (Lyve-1+) resident aortic macrophages independently self-renew and are functionally distinct from monocyte-derived macrophages recruited during inflammation. We hypothesized that Lyve-1+ and Lyve-1- macrophages differentially contribute to aortic aneurysm. Approach and results: Angiotensin-2 and β-aminopropionitrile (AT2/BAPN) were administered to induce AAA in C57BL/6J mice. Using immunohistochemistry (IHC), we demonstrated primarily adventitial accumulation of aortic macrophages, and in association with areas of elastin fragmentation and aortic dissection. Compared with controls, AAA was associated with a relative percent depletion of Lyve-1+ resident aortic macrophages and accumulation of Lyve-1- macrophages. Using CD45.1/CD45.2 parabiosis, we demonstrated aortic macrophage recruitment in AAA. Depletion of aortic macrophages in CCR2-/- mice was associated with reduced aortic dilatation indicating the functional role of recruitment from the bone marrow. Depletion of aortic macrophages using anti-macrophage colony-stimulating factor 1 receptor (MCSF1R)-neutralizing antibody (Ab) reduced the incidence of AAA. Conditional depletion of Lyve-1+ aortic macrophages was achieved by generating Lyve-1wt/cre Csf1rfl/fl mice. Selective depletion of Lyve-1+ aortic macrophages had no protective effects following AT2/BAPN administration and resulted in increased aortic dilatation in the suprarenal aorta. CONCLUSIONS Aortic macrophage accumulation in AAA derives from adventitial recruitment of Lyve-1- macrophages, with relative percent depletion of Lyve-1+ macrophages. Selective targeting of macrophage subtypes represents a potential novel therapeutic avenue for the medical treatment of AAA.
Collapse
|
42
|
Zhang Z, Yue P, Lu T, Wang Y, Wei Y, Wei X. Role of lysosomes in physiological activities, diseases, and therapy. J Hematol Oncol 2021; 14:79. [PMID: 33990205 PMCID: PMC8120021 DOI: 10.1186/s13045-021-01087-1] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Long known as digestive organelles, lysosomes have now emerged as multifaceted centers responsible for degradation, nutrient sensing, and immunity. Growing evidence also implicates role of lysosome-related mechanisms in pathologic process. In this review, we discuss physiological function of lysosomes and, more importantly, how the homeostasis of lysosomes is disrupted in several diseases, including atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, lysosomal storage disorders, and malignant tumors. In atherosclerosis and Gaucher disease, dysfunction of lysosomes changes cytokine secretion from macrophages, partially through inflammasome activation. In neurodegenerative diseases, defect autophagy facilitates accumulation of toxic protein and dysfunctional organelles leading to neuron death. Lysosomal dysfunction has been demonstrated in pathology of pancreatitis. Abnormal autophagy activation or inhibition has been revealed in autoimmune disorders. In tumor microenvironment, malignant phenotypes, including tumorigenesis, growth regulation, invasion, drug resistance, and radiotherapy resistance, of tumor cells and behaviors of tumor-associated macrophages, fibroblasts, dendritic cells, and T cells are also mediated by lysosomes. Based on these findings, a series of therapeutic methods targeting lysosomal proteins and processes have been developed from bench to bedside. In a word, present researches corroborate lysosomes to be pivotal organelles for understanding pathology of atherosclerosis, neurodegenerative diseases, autoimmune disorders, pancreatitis, and lysosomal storage disorders, and malignant tumors and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Pengfei Yue
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Tianqi Lu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yang Wang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan People’s Republic of China
| |
Collapse
|
43
|
Abstract
Atherosclerosis and abdominal aortic aneurysm (AAA) are multifactorial diseases characterized by inflammatory cell infiltration, matrix degradation, and thrombosis in the arterial wall. Although there are some differences between atherosclerosis and AAA, inflammation is a prominent common feature of these disorders. The nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a cytosolic multiprotein complex that activates caspase-1 and regulates the release of proinflammatory cytokines interleukin (IL)-1β and IL-18, as well as the induction of lytic cell death, termed pyroptosis, thereby leading to inflammation. Previous experimental and clinical studies have demonstrated that inflammation in atherosclerosis and AAA is mediated primarily through the NLRP3 inflammasome. Furthermore, recent results of the Canakinumab Anti-inflammatory Thrombosis and Outcome Study (CANTOS) showed that IL-1β inhibition reduces systemic inflammation and prevents atherothrombotic events; this supports the concept that the NLRP3 inflammasome is a promising therapeutic target for cardiovascular diseases, including atherosclerosis and AAA. This review summarizes current knowledge with a focus on the role of the NLRP3 inflammasome in atherosclerosis and AAA, and discusses the prospects of NLRP3 inflammasome-targeted therapy.
Collapse
Affiliation(s)
- Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| |
Collapse
|
44
|
Oliveira MS, da Silva Torquato BG, Tsuji SY, Aguiar LS, Juliano GR, da Silveira LAM, Miranda Corrêa RR, Rocha LB, da Fonseca Ferraz ML. Morphological and Histopathological Study of Autopsied Patients with Atherosclerosis and HIV. Curr HIV Res 2021; 19:121-127. [PMID: 33135614 DOI: 10.2174/1570162x18999201029123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/18/2020] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Chronic infection by HIV evolves with a vascular inflammatory action causing endothelial dysfunction. The action of the virus, as well as the side effects of antiretroviral drugs, contribute to the progression of cardiovascular diseases. The present study aimed to evaluate the percentage of collagen fibers and the density of mast cells, chymase and tryptase, in aortas of patients with and without HIV, and also patients with and without atherosclerosis. METHODS Aortic fragments were obtained from autopsied patients aged 22-69 years and selected regardless of the cause of death or underlying disease. The samples were divided into four groups, (1) Group with HIV and with atherosclerosis; (2) Group with HIV and without atherosclerosis; (3) Group without HIV and with atherosclerosis; (4) Group without HIV and without atherosclerosis (Control). The percentage of collagen fibers was analyzed in the intima-media layer and the density of mast cells was analyzed in all aortic layers. Graphpad Prism 5.0® software was used for statistical analysis. RESULTS There were more collagen fibers in HIV patients, with or without atherosclerosis. The group with HIV and atherosclerosis presented a higher density of chymase and tryptase mast cells. The correlation between collagen fibers and age was negative in the non-HIV group and with atherosclerosis. CONCLUSION The inflammatory process resulting from HIV infection may be relevant in the alteration of aortic collagen fibers and in triggering or accelerating atherosclerosis. The study is important because HIV patients have increased risks for the development of cardiovascular diseases, and follow-up is necessary to prevent such diseases.
Collapse
Affiliation(s)
- Mariana Silva Oliveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Bianca Gonçalves da Silva Torquato
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Simone Yumi Tsuji
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Laura Sanches Aguiar
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Guilherme Ribeiro Juliano
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Luciano Alves Matias da Silveira
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Rosana Rosa Miranda Corrêa
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Lenaldo Branco Rocha
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| | - Mara Lúcia da Fonseca Ferraz
- General Pathology Department, Triângulo Mineiro Federal University, St: Frei Paulino, 30. Zip Code: 38025-180, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
45
|
Hong LZ, Xue Q, Shao H. Inflammatory Markers Related to Innate and Adaptive Immunity in Atherosclerosis: Implications for Disease Prediction and Prospective Therapeutics. J Inflamm Res 2021; 14:379-392. [PMID: 33628042 PMCID: PMC7897977 DOI: 10.2147/jir.s294809] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/21/2021] [Indexed: 12/20/2022] Open
Abstract
Several lines of evidence have linked a dysregulated inflammatory setting to the pathogenesis of atherosclerosis, which is a form of chronic vascular inflammation. Various inflammatory biomarkers have been associated with inflammation and are recognized as potential tools to monitor the progression of atherosclerosis. A well-studied inflammatory marker in the context of cardiovascular diseases is C-reactive protein (CRP) or, more accurately, highly sensitive-CRP (hs-CRP), which has been established as an inflammatory biomarker for atherosclerotic events. In addition, a growing body of investigations has attempted to disclose the potential of inflammatory cytokines, enzymes, and genetic polymorphisms related to innate and adaptive immunity as biomarkers for predicting the development of atherosclerosis. In this review article, we clarify both traditional and novel inflammatory biomarkers related to components of the innate and adaptive immune system that may mirror the progression or phases of atherosclerotic inflammation/lesions. Furthermore, the contribution of the inflammatory biomarkers in developing potential therapeutics against atherosclerotic treatment will be discussed.
Collapse
Affiliation(s)
- Ling-Zhi Hong
- Emergency Department, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, 311700, Zhejiang Province, People’s Republic of China
| | - Qi Xue
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| | - Hong Shao
- Department of Cardiology, Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, 310014, Zhejiang Province, People’s Republic of China
| |
Collapse
|
46
|
Kumar V. The Trinity of cGAS, TLR9, and ALRs Guardians of the Cellular Galaxy Against Host-Derived Self-DNA. Front Immunol 2021; 11:624597. [PMID: 33643304 PMCID: PMC7905024 DOI: 10.3389/fimmu.2020.624597] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/29/2020] [Indexed: 12/15/2022] Open
Abstract
The immune system has evolved to protect the host from the pathogens and allergens surrounding their environment. The immune system develops in such a way to recognize self and non-self and develops self-tolerance against self-proteins, nucleic acids, and other larger molecules. However, the broken immunological self-tolerance leads to the development of autoimmune or autoinflammatory diseases. Pattern-recognition receptors (PRRs) are expressed by immunological cells on their cell membrane and in the cytosol. Different Toll-like receptors (TLRs), Nod-like receptors (NLRs) and absent in melanoma-2 (AIM-2)-like receptors (ALRs) forming inflammasomes in the cytosol, RIG (retinoic acid-inducible gene)-1-like receptors (RLRs), and C-type lectin receptors (CLRs) are some of the PRRs. The DNA-sensing receptor cyclic GMP–AMP synthase (cGAS) is another PRR present in the cytosol and the nucleus. The present review describes the role of ALRs (AIM2), TLR9, and cGAS in recognizing the host cell DNA as a potent damage/danger-associated molecular pattern (DAMP), which moves out to the cytosol from its housing organelles (nucleus and mitochondria). The introduction opens with the concept that the immune system has evolved to recognize pathogens, the idea of horror autotoxicus, and its failure due to the emergence of autoimmune diseases (ADs), and the discovery of PRRs revolutionizing immunology. The second section describes the cGAS-STING signaling pathway mediated cytosolic self-DNA recognition, its evolution, characteristics of self-DNAs activating it, and its role in different inflammatory conditions. The third section describes the role of TLR9 in recognizing self-DNA in the endolysosomes during infections depending on the self-DNA characteristics and various inflammatory diseases. The fourth section discusses about AIM2 (an ALR), which also binds cytosolic self-DNA (with 80–300 base pairs or bp) that inhibits cGAS-STING-dependent type 1 IFN generation but induces inflammation and pyroptosis during different inflammatory conditions. Hence, this trinity of PRRs has evolved to recognize self-DNA as a potential DAMP and comes into action to guard the cellular galaxy. However, their dysregulation proves dangerous to the host and leads to several inflammatory conditions, including sterile-inflammatory conditions autoinflammatory and ADs.
Collapse
Affiliation(s)
- Vijay Kumar
- Children's Health Queensland Clinical Unit, School of Clinical Medicine, Faculty of Medicine, Mater Research, University of Queensland, St. Lucia, Brisbane, QLD, Australia.,School of Biomedical Sciences, Faculty of Medicine, University of Queensland, St. Lucia, Brisbane, QLD, Australia
| |
Collapse
|
47
|
Chiang MT, Chen IM, Hsu FF, Chen YH, Tsai MS, Hsu YW, Leu HB, Huang PH, Chen JW, Liu FT, Chen YH, Chau LY. Gal-1 (Galectin-1) Upregulation Contributes to Abdominal Aortic Aneurysm Progression by Enhancing Vascular Inflammation. Arterioscler Thromb Vasc Biol 2021; 41:331-345. [PMID: 33147994 DOI: 10.1161/atvbaha.120.315398] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Abdominal aortic aneurysm (AAA) is a vascular degenerative disease causing sudden rupture of aorta and significant mortality in elders. Nevertheless, no prognostic and therapeutic target is available for disease management. Gal-1 (galectin-1) is a β-galactoside-binding lectin constitutively expressed in vasculature with roles in maintaining vascular homeostasis. This study aims to investigate the potential involvement of Gal-1 in AAA progression. Approach and Results: Gal-1 was significantly elevated in circulation and aortic tissues of Ang II (angiotensin II)-infused apoE-deficient mice developing AAA. Gal-1 deficiency reduced incidence and severity of AAA with lower expression of aortic MMPs (matrix metalloproteases) and proinflammatory cytokines. TNFα (tumor necrosis factor alpha) induced Gal-1 expression in cultured vascular smooth muscle cells and adventitial fibroblasts. Gal-1 deletion enhanced TNFα-induced MMP9 expression in fibroblasts but not vascular smooth muscle cells. Cysteinyl-labeling assay demonstrated that aortic Gal-1 exhibited susceptibility to oxidation in vivo. Recombinant oxidized Gal-1 induced expression of MMP9 and inflammatory cytokines to various extents in macrophages, vascular smooth muscle cells, and fibroblasts through activation of MAP (mitogen-activated protein) kinase signaling. Clinically, serum MMP9 level was significantly higher in both patients with AAA and coronary artery disease than in control subjects, whereas serum Gal-1 level was elevated in patients with AAA but not coronary artery disease when compared with controls. CONCLUSIONS Gal-1 is highly induced and contributes to AAA by enhancing matrix degradation activity and inflammatory responses in experimental model. The pathological link between Gal-1 and AAA is also observed in human patients. These findings support the potential of Gal-1 as a disease biomarker and therapeutic target of AAA.
Collapse
MESH Headings
- Adventitia/metabolism
- Adventitia/pathology
- Angiotensin II
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortitis/chemically induced
- Aortitis/metabolism
- Aortitis/pathology
- Case-Control Studies
- Cells, Cultured
- Cytokines/metabolism
- Disease Models, Animal
- Disease Progression
- Extracellular Matrix/metabolism
- Extracellular Matrix/pathology
- Fibroblasts/metabolism
- Fibroblasts/pathology
- Galectin 1/blood
- Galectin 1/deficiency
- Galectin 1/genetics
- Galectin 1/metabolism
- Humans
- Inflammation Mediators/metabolism
- Macrophages, Peritoneal/metabolism
- Macrophages, Peritoneal/pathology
- Male
- Matrix Metalloproteinase 9/metabolism
- Mice, Inbred C57BL
- Mice, Knockout, ApoE
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Signal Transduction
- Up-Regulation
- Vascular Remodeling
- Mice
Collapse
Affiliation(s)
- Ming-Tsai Chiang
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - I-Ming Chen
- Division of Cardiovascular Surgery, Department of Surgery (I.-M.C.), Taipei Veterans General Hospital, Taiwan
| | - Fu-Fei Hsu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Yen-Hui Chen
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Min-Shao Tsai
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Yaw-Wen Hsu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Hsin-Bang Leu
- Division of Healthcare and Management, Healthcare Center (H.-B.L.), Taipei Veterans General Hospital, Taiwan
- Department of Medicine, School of Medicine (H.-B.L., Ying-Hwa Chen), National Yang-Ming University, Taipei, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Institute of Clinical Medicine (P.-H.H.), National Yang-Ming University, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Institute of Pharmacology (J.-W.C.), National Yang-Ming University, Taipei, Taiwan
| | - Fu-Tong Liu
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| | - Ying-Hwa Chen
- Division of Cardiology, Department of Internal Medicine (P.-H.H., J.-W.C., Ying-Hwa Chen), Taipei Veterans General Hospital, Taiwan
- Department of Medicine, School of Medicine (H.-B.L., Ying-Hwa Chen), National Yang-Ming University, Taipei, Taiwan
| | - Lee-Young Chau
- Division of Cardiovascular Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan (M.-T.C., F.-F.H., Yen-Hui Chen, M.-S.T., Y.-W.H., F.-T.L., L.-Y.C.)
| |
Collapse
|
48
|
Baumgartner R, Berg M, Matic L, Polyzos KP, Forteza MJ, Hjorth SA, Schwartz TW, Paulsson-Berne G, Hansson GK, Hedin U, Ketelhuth DFJ. Evidence that a deviation in the kynurenine pathway aggravates atherosclerotic disease in humans. J Intern Med 2021; 289:53-68. [PMID: 32794238 DOI: 10.1111/joim.13142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/24/2020] [Accepted: 06/04/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The metabolism of tryptophan (Trp) along the kynurenine pathway has been shown to carry strong immunoregulatory properties. Several experimental studies indicate that this pathway is a major regulator of vascular inflammation and influences atherogenesis. Knowledge of the role of this pathway in human atherosclerosis remains incomplete. OBJECTIVES In this study, we performed a multiplatform analysis of tissue samples, in vitro and in vivo functional assays to elucidate the potential role of the kynurenine pathway in human atherosclerosis. METHODS AND RESULTS Comparison of transcriptomic data from carotid plaques and control arteries revealed an upregulation of enzymes within the quinolinic branch of the kynurenine pathway in the disease state, whilst the branch leading to the formation of kynurenic acid (KynA) was downregulated. Further analyses indicated that local inflammatory responses are closely tied to the deviation of the kynurenine pathway in the vascular wall. Analysis of cerebrovascular symptomatic and asymptomatic carotid stenosis data showed that the downregulation of KynA branch enzymes and reduced KynA production were associated with an increased probability of patients to undergo surgery due to an unstable disease. In vitro, we showed that KynA-mediated signalling through aryl hydrocarbon receptor (AhR) is a major regulator of human macrophage activation. Using a mouse model of peritoneal inflammation, we showed that KynA inhibits leukocyte recruitment. CONCLUSIONS We have found that a deviation in the kynurenine pathway is associated with an increased probability of developing symptomatic unstable atherosclerotic disease. Our study suggests that KynA-mediated signalling through AhR is an important mechanism involved in the regulation of vascular inflammation.
Collapse
Affiliation(s)
- R Baumgartner
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - M Berg
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - L Matic
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - K P Polyzos
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - M J Forteza
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - S A Hjorth
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - T W Schwartz
- Section for Metabolic Receptology, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.,Laboratory for Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - G Paulsson-Berne
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - G K Hansson
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - U Hedin
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Vascular Surgery, Karolinska University Hospital, Stockholm, Sweden
| | - D F J Ketelhuth
- From the, Cardiovascular Medicine Unit, Center for Molecular Medicine, Department of Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.,Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
49
|
Tedjawirja VN, Nieuwdorp M, Yeung KK, Balm R, de Waard V. A Novel Hypothesis: A Role for Follicle Stimulating Hormone in Abdominal Aortic Aneurysm Development in Postmenopausal Women. Front Endocrinol (Lausanne) 2021; 12:726107. [PMID: 34721292 PMCID: PMC8548664 DOI: 10.3389/fendo.2021.726107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/02/2021] [Indexed: 12/24/2022] Open
Abstract
An abdominal aortic aneurysm (AAA) is a dilatation of the abdominal aorta, which can potentially be fatal due to exsanguination following rupture. Although AAA is less prevalent in women, women with AAA have a more severe AAA progression compared to men as reflected by enhanced aneurysm growth rates and a higher rupture risk. Women are diagnosed with AAA at an older age than men, and in line with increased osteoporosis and cardiovascular events, the delayed AAA onset has been attributed to the reduction of the protective effect of oestrogens during the menopausal transition. However, new insights have shown that a high follicle stimulating hormone (FSH) level during menopause may also play a key role in those diseases. In this report we hypothesize that FSH may aggravate AAA development and progression in postmenopausal women via a direct and/or indirect role, promoting aorta pathology. Since FSH receptors (FSHR) are reported on many other cell types than granulosa cells in the ovaries, it is feasible that FSH stimulation of FSHR-bearing cells such as aortic endothelial cells or inflammatory cells, could promote AAA formation directly. Indirectly, AAA progression may be influenced by an FSH-mediated increase in osteoporosis, which is associated with aortic calcification. Also, an FSH-mediated decrease in cholesterol uptake by the liver and an increase in cholesterol biosynthesis will increase the cholesterol level in the circulation, and subsequently promote aortic atherosclerosis and inflammation. Lastly, FSH-induced adipogenesis may lead to obesity-mediated dysfunction of the microvasculature of the aorta and/or modulation of the periaortic adipose tissue. Thus the long term increased plasma FSH levels during the menopausal transition may contribute to enhanced AAA disease in menopausal women and could be a potential novel target for treatment to lower AAA-related events in women.
Collapse
Affiliation(s)
- Victoria N. Tedjawirja
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
- *Correspondence: Victoria N. Tedjawirja,
| | - Max Nieuwdorp
- Departments of Internal and Vascular Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Kak Khee Yeung
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Ron Balm
- Department of Surgery, Amsterdam University Medical Center (UMC), University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Vivian de Waard
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
50
|
Toth PP. The bandwidth of preventive cardiology continues to increase: Meeting the challenge head on. Am J Prev Cardiol 2020; 4:100132. [PMID: 34386783 PMCID: PMC8346679 DOI: 10.1016/j.ajpc.2020.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/24/2022] Open
Affiliation(s)
- Peter P. Toth
- CGH Medical Center, Sterling, IL, USA
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|