1
|
Li Y, Zhang Y, Lin D, Fu X, Jing C. Demyelination of the amygdala mediates psychological stress-induced emotional disorders partially contributed by activation of P2X7R/NLRP3 cascade. Brain Behav Immun 2025; 124:365-375. [PMID: 39689840 DOI: 10.1016/j.bbi.2024.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024] Open
Abstract
Psychological stress can lead to emotional disorders, such as anxiety and depression; however, the underlying mechanisms are complicated and remain unclear. In this study, we established a mouse psychological stress model using an improved communication box, in which the psychologically stressed mice received visual, auditory, and olfactory emotional stimuli from the mice receiving electric foot shock, thus avoiding physical stress interference. After the 14-day psychological stress paradigm, our mice exhibited a significant increase in depressive and anxious behaviors. We then performed proteomic liquid chromatography-tandem mass spectrometry for proteomic data analysis of the amygdala, and the results demonstrated that differentially expressed proteins were more enriched in myelin-related biological processes, cellular components, and molecular functions, indicating a correlation between psychological stress-induced emotional disorders and amygdala myelin damage. Molecular and morphological evidence further confirmed that psychological stress damages myelin ultrastructure, downregulated myelin basic protein and proteolipid protein expression, and reduced oligodendrocyte proliferation in the amygdala. Moreover, clemastine, an antimuscarinic and antihistaminic compound that has been shown to enhance oligodendrocyte differentiation and myelination, rescued depressive behaviors accompanied by increased oligodendrogenesis. In the amygdala, psychological stress was also noted to activate microglia and increase the levels of NOD-like receptor protein 3 (NLRP3) and the proinflammatory cytokines interleukin 1β and tumor necrosis factor α, as indicated by ELISA and Western blot analyses. Moreover, in stressed mice, the administration of Brilliant Blue G, a purinergic ligand-gated ion channel 7 receptor (P2X7R) antagonist, completely reversed the increases in NLRP3 and cleaved caspase-1 levels and partially prevented amygdala myelin damage. In conclusion, amygdala demyelination may mediate psychological stress-induced emotional disorders, and P2X7R/NLRP3 cascade activation partially contributes to amygdala myelin damage after psychological stress.
Collapse
Affiliation(s)
- Yanning Li
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China; School of Basic Medicine, Gannan Medical University, Ganzhou, PR China.
| | - Yi Zhang
- School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| | - Dandan Lin
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Xiaoliang Fu
- School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, PR China
| | - Chenchen Jing
- School of Basic Medicine, Gannan Medical University, Ganzhou, PR China
| |
Collapse
|
2
|
Milewski TM, Lee W, Young RL, Hofmann HA, Curley JP. Rapid changes in plasma corticosterone and medial amygdala transcriptome profiles during social status change reveal molecular pathways associated with a major life history transition in mouse dominance hierarchies. PLoS Genet 2025; 21:e1011548. [PMID: 39804961 PMCID: PMC11761145 DOI: 10.1371/journal.pgen.1011548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 01/24/2025] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
Social hierarchies are a common form of social organization across species. Although hierarchies are largely stable across time, animals may socially ascend or descend within hierarchies depending on environmental and social challenges. Here, we develop a novel paradigm to study social ascent and descent within male CD-1 mouse social hierarchies. We show that mice of all social ranks rapidly establish new stable social hierarchies when placed in novel social groups with animals of equivalent social status. Seventy minutes following social hierarchy formation, males that were socially dominant prior to being placed into new social hierarchies exhibit higher increases in plasma corticosterone and vastly greater transcriptional changes in the medial amygdala (MeA), which is central to the regulation of social behavior, compared to males who were socially subordinate prior to being placed into a new hierarchy. Specifically, the loss of social status in a new hierarchy (social descent) is associated with reductions in MeA expression of myelination and oligodendrocyte differentiation genes. Maintaining high social status is associated with high expression of genes related to cholinergic signaling in the MeA. Conversely, gaining social status in a new hierarchy (social ascent) is related to relatively few unique rapid changes in the MeA. We also identify novel genes associated with social transition that show common changes in expression when animals undergo either social descent or social ascent compared to maintaining their status. Two genes, Myosin binding protein C1 (Mybpc1) and μ-Crystallin (Crym), associated with vasoactive intestinal polypeptide (VIP) and thyroid hormone pathways respectively, are highly upregulated in socially transitioning individuals. Further, increases in genes associated with synaptic plasticity, excitatory glutamatergic signaling and learning and memory pathways were observed in transitioning animals suggesting that these processes may support rapid social status changes.
Collapse
Affiliation(s)
- Tyler M. Milewski
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Won Lee
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Department of In Vivo Pharmacology Services, The Jackson Laboratory, Sacramento, California, United States of America
| | - Rebecca L. Young
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Hans A. Hofmann
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - James P. Curley
- Department of Psychology, University of Texas at Austin, Austin, Texas, United States of America
- Institute for Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
3
|
Miguel-Hidalgo JJ, Kelly I, Rajkowska G. Paranode length in the prefrontal cortex of subjects with major depression and rats under chronic unpredictable stress. J Affect Disord 2024; 373:S0165-0327(24)02094-9. [PMID: 39743147 DOI: 10.1016/j.jad.2024.12.106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Experimental studies of major depressive disorder (MDD) and stress reveal connectivity disturbances of the prefrontal cortex (PFC) that may involve molecular and morphological changes in myelin and the axons it enwraps. These alterations may also affect the nodes of Ranvier (NR), myelin-bare axon stretches along myelin sheaths necessary for action potential propagation, as well as the paranodes, specialized regions of the myelin sheath flanking NRs. Thus, we investigated whether paranode length and the labeling of paranode marker CASPR in PFC white matter (WM) differed in MDD subjects and chronic stress-exposed rats, as compared to their respective controls. Histological sections were obtained from postmortem PFC blocks of 11 subjects with MDD diagnosis and 11 non-psychiatric controls as well as from 6 rats subjected to chronic unpredictable stress (CUS) and 6 non-stressed controls. NRs and paranodes were detected by immunofluorescence with specific antibodies to paranodal protein CASPR. Differences in paranode length and CASPR immunoreactivity were assessed by analysis of covariance and t-tests. In MDD, both paranode length and overall CASPR immunoreactivity were significantly lower than in non-psychiatric controls, while paranode length and CASPR labeling were positively correlated with age. However, those variables did not statistically differ between CUS-exposed and non-exposed rats. Shorter paranodes and lower CASPR immunoreactivity in MDD subjects suggest alterations in paranodal myelin, which may contribute to depression-related connectivity changes. However, without comparable changes in CUS-exposed rats, mechanisms other than the stress response cannot be ruled out as contributors to paranode alterations in MDD.
Collapse
Affiliation(s)
| | - Isabella Kelly
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, USA
| |
Collapse
|
4
|
Kumar A, Schrader AW, Aggarwal B, Boroojeny AE, Asadian M, Lee J, Song YJ, Zhao SD, Han HS, Sinha S. Intracellular spatial transcriptomic analysis toolkit (InSTAnT). Nat Commun 2024; 15:7794. [PMID: 39242579 PMCID: PMC11379969 DOI: 10.1038/s41467-024-49457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/04/2024] [Indexed: 09/09/2024] Open
Abstract
Imaging-based spatial transcriptomics technologies such as Multiplexed error-robust fluorescence in situ hybridization (MERFISH) can capture cellular processes in unparalleled detail. However, rigorous and robust analytical tools are needed to unlock their full potential for discovering subcellular biological patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT), a computational toolkit for extracting molecular relationships from spatial transcriptomics data at single molecule resolution. InSTAnT employs specialized statistical tests and algorithms to detect gene pairs and modules exhibiting intriguing patterns of co-localization, both within individual cells and across the cellular landscape. We showcase the toolkit on five different datasets representing two different cell lines, two brain structures, two species, and three different technologies. We perform rigorous statistical assessment of discovered co-localization patterns, find supporting evidence from databases and RNA interactions, and identify associated subcellular domains. We uncover several cell type and region-specific gene co-localizations within the brain. Intra-cellular spatial patterns discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and shared sub-cellular localization or function, providing a rich compendium of testable hypotheses regarding molecular functions.
Collapse
Affiliation(s)
- Anurendra Kumar
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bhavay Aggarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - JuYeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Saurabh Sinha
- H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
5
|
Krolick KN, Cao J, Gulla EM, Bhardwaj M, Marshall SJ, Zhou EY, Kiss AJ, Choueiry F, Zhu J, Shi H. Subregion-specific transcriptomic profiling of rat brain reveals sex-distinct gene expression impacted by adolescent stress. Neuroscience 2024; 553:19-39. [PMID: 38977070 PMCID: PMC11444371 DOI: 10.1016/j.neuroscience.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Stress during adolescence clearly impacts brain development and function. Sex differences in adolescent stress-induced or exacerbated emotional and metabolic vulnerabilities could be due to sex-distinct gene expression in hypothalamic, limbic, and prefrontal brain regions. However, adolescent stress-induced whole-genome expression changes in key subregions of these brain regions were unclear. In this study, female and male adolescent Sprague Dawley rats received one-hour restraint stress daily from postnatal day (PD) 32 to PD44. Corticosterone levels, body weights, food intake, body composition, and circulating adiposity and sex hormones were measured. On PD44, brain and blood samples were collected. Using RNA-sequencing, sex-specific differences in stress-induced differentially expressed (DE) genes were identified in subregions of the hypothalamus, limbic system, and prefrontal cortex. Canonical pathways reflected well-known sex-distinct maladies and diseases, substantiating the therapeutic potential of the DE genes found in the current study. Thus, we proposed specific sex distinct, adolescent stress-induced transcriptional changes found in the current study as examples of the molecular bases for sex differences witnessed in stress induced or exacerbated emotional and metabolic disorders. Future behavioral studies and single-cell studies are warranted to test the implications of the DE genes identified in this study in sex-distinct stress-induced susceptibilities.
Collapse
Affiliation(s)
| | - Jingyi Cao
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Evelyn M Gulla
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Meeta Bhardwaj
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | | | - Ethan Y Zhou
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| | - Andor J Kiss
- Center for Bioinformatics & Functional Genomics, Miami University, Oxford, OH 45056, USA.
| | - Fouad Choueiry
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA.
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Columbus, OH 43210, USA; James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA.
| | - Haifei Shi
- Department of Biology, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
6
|
Choi MK, Cook A, Mungikar K, Eachus H, Tochwin A, Linke M, Gerber S, Ryu S. Exposure to elevated glucocorticoid during development primes altered transcriptional responses to acute stress in adulthood. iScience 2024; 27:110160. [PMID: 38989456 PMCID: PMC11233911 DOI: 10.1016/j.isci.2024.110160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 07/12/2024] Open
Abstract
Early life stress (ELS) is a major risk factor for developing psychiatric disorders, with glucocorticoids (GCs) implicated in mediating its effects in shaping adult phenotypes. In this process, exposure to high levels of developmental GC (hdGC) is thought to induce molecular changes that prime differential adult responses. However, identities of molecules targeted by hdGC exposure are not completely known. Here, we describe lifelong molecular consequences of hdGC exposure using a newly developed zebrafish double-hit stress model, which shows altered behaviors and stress hypersensitivity in adulthood. We identify a set of primed genes displaying altered expression only upon acute stress in hdGC-exposed adult fish brains. Interestingly, this gene set is enriched in risk factors for psychiatric disorders in humans. Lastly, we identify altered epigenetic regulatory elements following hdGC exposure. Thus, our study provides comprehensive datasets delineating potential molecular targets mediating the impact of hdGC exposure on adult responses.
Collapse
Affiliation(s)
- Min-Kyeung Choi
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Alexander Cook
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Helen Eachus
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Anna Tochwin
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| | - Matthias Linke
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| | - Soojin Ryu
- Living Systems Institute & Department of Clinical and Biomedical Sciences, University of Exeter, Stocker Road, EX4 4QD Exeter, UK
| |
Collapse
|
7
|
Luo S, Wu F, Fang Q, Hu Y, Zhang H, Yuan S, Yang C, Shi Y, Luo Y. Antidepressant effect of teriflunomide via oligodendrocyte protection in a mouse model. Heliyon 2024; 10:e29481. [PMID: 38655332 PMCID: PMC11036017 DOI: 10.1016/j.heliyon.2024.e29481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
Addressing the treatment of depression is crucial; nevertheless, the etiology and pathogenesis remain unelucidated. Therefore, this study investigated the effects of teriflunomide (TF) on corticosterone (CORT)-induced depression-like behaviors in mice. Notably, TF administration resulted in a substantial amelioration of anxiety and depression-like behaviors observed in CORT-treated mice. This was evidenced by behavioral assessments conducted via the sucrose preference test (SPT), open-field test (OFT), novelty-suppressed feeding test (NSFT), forced swimming test (FST), and tail suspension test (TST). The administration of CORT inflicts damage upon oligodendrocytes and neurons within the hippocampus. Our findings indicate that TF offers significant protective effects on oligodendrocytes, mitigating apoptosis both invivo and invitro. Additionally, TF was found to counteract the CORT-induced neuronal loss and synaptic damage, as demonstrated by an increase in Nissl-positive cells across hippocampal regions CA1, CA3, and the dentate gyrus (DG) alongside elevated levels of synapse-related proteins including PSD-95 and synaptophysin. Additionally, TF treatment facilitated a reduction in the levels of apoptosis-related proteins while simultaneously augmenting the levels of Bcl2. Our findings indicate that TF administration effectively mitigates CORT-induced depression-like behaviors and reverses damage to oligodendrocytes and neurons in the hippocampus, suggesting TF as a promising candidate for depression.
Collapse
Affiliation(s)
- Shuting Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Feilong Wu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Qian Fang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yue Hu
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Huihui Zhang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Shishan Yuan
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Chang Yang
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yan Shi
- School of Medicine, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Luo
- School of Medicine, Hunan Normal University, Changsha, 410081, China
- Hunan Province People's Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
8
|
Poggi G, Klaus F, Pryce CR. Pathophysiology in cortico-amygdala circuits and excessive aversion processing: the role of oligodendrocytes and myelination. Brain Commun 2024; 6:fcae140. [PMID: 38712320 PMCID: PMC11073757 DOI: 10.1093/braincomms/fcae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/27/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Stress-related psychiatric illnesses, such as major depressive disorder, anxiety and post-traumatic stress disorder, present with alterations in emotional processing, including excessive processing of negative/aversive stimuli and events. The bidirectional human/primate brain circuit comprising anterior cingulate cortex and amygdala is of fundamental importance in processing emotional stimuli, and in rodents the medial prefrontal cortex-amygdala circuit is to some extent analogous in structure and function. Here, we assess the comparative evidence for: (i) Anterior cingulate/medial prefrontal cortex<->amygdala bidirectional neural circuits as major contributors to aversive stimulus processing; (ii) Structural and functional changes in anterior cingulate cortex<->amygdala circuit associated with excessive aversion processing in stress-related neuropsychiatric disorders, and in medial prefrontal cortex<->amygdala circuit in rodent models of chronic stress-induced increased aversion reactivity; and (iii) Altered status of oligodendrocytes and their oligodendrocyte lineage cells and myelination in anterior cingulate/medial prefrontal cortex<->amygdala circuits in stress-related neuropsychiatric disorders and stress models. The comparative evidence from humans and rodents is that their respective anterior cingulate/medial prefrontal cortex<->amygdala circuits are integral to adaptive aversion processing. However, at the sub-regional level, the anterior cingulate/medial prefrontal cortex structure-function analogy is incomplete, and differences as well as similarities need to be taken into account. Structure-function imaging studies demonstrate that these neural circuits are altered in both human stress-related neuropsychiatric disorders and rodent models of stress-induced increased aversion processing. In both cases, the changes include altered white matter integrity, albeit the current evidence indicates that this is decreased in humans and increased in rodent models. At the cellular-molecular level, in both humans and rodents, the current evidence is that stress disorders do present with changes in oligodendrocyte lineage, oligodendrocytes and/or myelin in these neural circuits, but these changes are often discordant between and even within species. Nonetheless, by integrating the current comparative evidence, this review provides a timely insight into this field and should function to inform future studies-human, monkey and rodent-to ascertain whether or not the oligodendrocyte lineage and myelination are causally involved in the pathophysiology of stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
| | - Federica Klaus
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, VA San Diego Healthcare System, San Diego, CA 92093, USA
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, CH-8008 Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, 8057 Zurich, Switzerland
- URPP Adaptive Brain Circuits in Development and Learning (AdaBD), University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
9
|
Liu Y, Yuan J, Dong Y, Jiang S, Zhang M, Zhao X. Interaction between Oligodendrocytes and Interneurons in Brain Development and Related Neuropsychiatric Disorders. Int J Mol Sci 2024; 25:3620. [PMID: 38612430 PMCID: PMC11011273 DOI: 10.3390/ijms25073620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
A variety of neurological and psychiatric disorders have recently been shown to be highly associated with the abnormal development and function of oligodendrocytes (OLs) and interneurons. OLs are the myelin-forming cells in the central nervous system (CNS), while interneurons are important neural types gating the function of excitatory neurons. These two types of cells are of great significance for the establishment and function of neural circuits, and they share similar developmental origins and transcriptional architectures, and interact with each other in multiple ways during development. In this review, we compare the similarities and differences in these two cell types, providing an important reference and further revealing the pathogenesis of related brain disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Xianghui Zhao
- Department of Neuroscience, Air Force Medical University, Xi’an 710032, China
| |
Collapse
|
10
|
Sigrist H, Hogg DE, Senn A, Pryce CR. Mouse Model of Chronic Social Stress-Induced Excessive Pavlovian Aversion Learning-Memory. Curr Protoc 2024; 4:e1008. [PMID: 38465468 DOI: 10.1002/cpz1.1008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Increased experience of aversive stimuli/events is a psychological-neurobiological state of major importance in psychiatry. It occurs commonly in generalized anxiety disorder, post-traumatic stress disorder, and major depression. A sustained period of exposure to threat (chronic stressor) is a common risk factor, and a major symptom is generalized excessive perception of, and reactivity to, aversive stimuli. In rodents, Pavlovian aversion learning and memory (PAL, PAM), quantified in terms of the conditioned defensive behavior freezing, is an extensively studied behavioral paradigm, and well understood in terms of underlying neural circuitry. In mice, chronic social stress (CSS) is a 15-day resident-intruder paradigm in which C57BL/6 adult males are exposed continuously and distally to dominant-aggressive CD-1 male mice (sustained threat) interspersed with a brief daily period of proximal attack (acute threat). To ensure that physical wounding is minimized, proximal attacks are limited to 30 to 60 s/day and lower incisor teeth of CD-1 mice are blunted. Control (comparison) mice are maintained in littermate pairs. The CSS and CD-1 mice are maintained in distal contact during subsequent behavioral testing. For PAL, CSS and control (CON) mice are placed in a conditioning chamber (context) and exposed to a tone [conditioned stimulus (CS)] and mild, brief foot shock [unconditioned stimulus (US)]. For PAM, mice are placed in the same context and presented with CS repetitions. The CSS mice acquire (learn) and express (memory) a higher level of freezing than CON mice, indicating that CSS leads to generalized hypersensitivity to aversion, i.e., chronic social aversion leads to increased aversion salience of foot shock. Distinctive features of the model include the following: high reproducibility; rare, mild wounding only; male specificity; absence of "susceptible" vs "resilient" subgroups; behavioral effects dependent on continued presence of CD-1 mice; and preclinical validation of novel compounds for normalizing aversion hypersensitivity with accurate feedforward prediction of efficacy in human patients. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Chronic social stress (CSS) Basic Protocol 2: Pavlovian aversion learning and memory (PALM).
Collapse
Affiliation(s)
- Hannes Sigrist
- Preclinical Laboratory, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - David E Hogg
- Preclinical Laboratory, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Alena Senn
- Preclinical Laboratory, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory, Adult Psychiatry and Psychotherapy, University Hospital of Psychiatry and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
11
|
Zhou P, Yu ZC, Cao C, Cui HR, Ding MC, Yang CX, Liao M. Pyruvate maintains and enhances the pro-inflammatory response of microglia caused by glucose deficiency in early stroke. J Cell Biochem 2024; 125:e30524. [PMID: 38226453 DOI: 10.1002/jcb.30524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Pro-inflammatory microglia mainly rely on glycolysis to maintain cytokine production during ischemia, accompanied by an increase in inducible nitric oxide synthase (iNOS) and monocarboxylate transporter 1 (MCT1). The role of energy metabolism in the pro-inflammatory response of microglia is currently unclear. In this study, we tested the response of microglia in mice after cerebral ischemia and simulated an energy environment in vitro using low glucose culture medium. The research results indicate that the expression levels of iNOS and arginase 1 (ARG1) increase in the ischemic mouse brain, but the upregulation of MCT1 expression is mainly present in iNOS positive microglia. In microglia exposed to low glucose conditions, iNOS and MCT1 levels increased, while ARG1 levels decreased. Under the same conditions, knocking down MCT1 in microglia leads to a decrease in iNOS levels, while overexpression of MCT1 leads to the opposite result. The use of NF-κB inhibitors reduced the expression levels of iNOS and MCT1 in microglia. In summary, our data indicate that pyruvate maintains and enhances the NF-κB regulated pro-inflammatory response of microglia induced by low glucose.
Collapse
Affiliation(s)
- Peng Zhou
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Zhe-Cheng Yu
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Cong Cao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Huai-Rui Cui
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Mao-Chao Ding
- Department of Anatomy, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| | - Chao-Xian Yang
- Department of Anatomy, Southwest Medical University, Luzhou, China
| | - Min Liao
- Institute of Neuroscience, Basic Medical College of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
12
|
Miguel-Hidalgo JJ, Hearn E, Moulana M, Saleem K, Clark A, Holmes M, Wadhwa K, Kelly I, Stockmeier CA, Rajkowska G. Reduced length of nodes of Ranvier and altered proteoglycan immunoreactivity in prefrontal white matter in major depressive disorder and chronically stressed rats. Sci Rep 2023; 13:16419. [PMID: 37775676 PMCID: PMC10541441 DOI: 10.1038/s41598-023-43627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Major depressive disorder (MDD) and chronic unpredictable stress (CUS) in animals feature comparable cellular and molecular disturbances that involve neurons and glial cells in gray and white matter (WM) in prefrontal brain areas. These same areas demonstrate disturbed connectivity with other brain regions in MDD and stress-related disorders. Functional connectivity ultimately depends on signal propagation along WM myelinated axons, and thus on the integrity of nodes of Ranvier (NRs) and their environment. Various glia-derived proteoglycans interact with NR axonal proteins to sustain NR function. It is unclear whether NR length and the content of associated proteoglycans is altered in prefrontal cortex (PFC) WM of human subjects with MDD and in experimentally stressed animals. The length of WM NRs in histological sections from the PFC of 10 controls and 10 MDD subjects, and from the PFC of control and CUS rats was measured. In addition, in WM of the same brain region, five proteoglycans, tenascin-R and NR protein neurofascin were immunostained or their levels measured with western blots. Analysis of covariance and t-tests were used for group comparisons. There was dramatic reduction of NR length in PFC WM in both MDD and CUS rats. Proteoglycan BRAL1 immunostaining was reduced at NRs and in overall WM of MDD subjects, as was versican in overall WM. Phosphacan immunostaining and levels were increased in both in MDD and CUS. Neurofascin immunostaining at NRs and in overall WM was significantly increased in MDD. Reduced length of NRs and increased phosphacan and neurocan in MDD and stressed animals suggest that morphological and proteoglycan changes at NRs in depression may be related to stress exposure and contribute to connectivity alterations. However, differences between MDD and CUS for some NR related markers may point to other mechanisms affecting the structure and function of NRs in MDD.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA.
| | - Erik Hearn
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Mohadetheh Moulana
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Khunsa Saleem
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Austin Clark
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Maggie Holmes
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Kashish Wadhwa
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Isabella Kelly
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Craig Allen Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 N. State Street, Jackson, MS, 39216, USA
| |
Collapse
|
13
|
Koskinen MK, Laine M, Abdollahzadeh A, Gigliotta A, Mazzini G, Journée S, Alenius V, Trontti K, Tohka J, Hyytiä P, Sierra A, Hovatta I. Node of Ranvier remodeling in chronic psychosocial stress and anxiety. Neuropsychopharmacology 2023; 48:1532-1540. [PMID: 36949148 PMCID: PMC10425340 DOI: 10.1038/s41386-023-01568-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/07/2023] [Accepted: 03/03/2023] [Indexed: 03/24/2023]
Abstract
Differential expression of myelin-related genes and changes in myelin thickness have been demonstrated in mice after chronic psychosocial stress, a risk factor for anxiety disorders. To determine whether and how stress affects structural remodeling of nodes of Ranvier, another form of myelin plasticity, we developed a 3D reconstruction analysis of node morphology in C57BL/6NCrl and DBA/2NCrl mice. We identified strain-dependent effects of chronic social defeat stress on node morphology in the medial prefrontal cortex (mPFC) gray matter, including shortening of paranodes in C57BL/6NCrl stress-resilient and shortening of node gaps in DBA/2NCrl stress-susceptible mice compared to controls. Neuronal activity has been associated with changes in myelin thickness. To investigate whether neuronal activation is a mechanism influencing also node of Ranvier morphology, we used DREADDs to repeatedly activate the ventral hippocampus-to-mPFC pathway. We found reduced anxiety-like behavior and shortened paranodes specifically in stimulated, but not in the nearby non-stimulated axons. Altogether, our data demonstrate (1) nodal remodeling of the mPFC gray matter axons after chronic stress and (2) axon-specific regulation of paranodes in response to repeated neuronal activity in an anxiety-associated pathway. Nodal remodeling may thus contribute to aberrant circuit function associated with anxiety disorders.
Collapse
Affiliation(s)
- Maija-Kreetta Koskinen
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Mikaela Laine
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Ali Abdollahzadeh
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Adrien Gigliotta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Giulia Mazzini
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Sarah Journée
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Varpu Alenius
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Kalevi Trontti
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jussi Tohka
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Petri Hyytiä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Iiris Hovatta
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Neuroscience Center, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
14
|
Louie AY, Kim JS, Drnevich J, Dibaeinia P, Koito H, Sinha S, McKim DB, Soto-Diaz K, Nowak RA, Das A, Steelman AJ. Influenza A virus infection disrupts oligodendrocyte homeostasis and alters the myelin lipidome in the adult mouse. J Neuroinflammation 2023; 20:190. [PMID: 37596606 PMCID: PMC10439573 DOI: 10.1186/s12974-023-02862-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/25/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Recent data suggest that myelin may be altered by physiological events occurring outside of the central nervous system, which may cause changes to cognition and behavior. Similarly, peripheral infection by non-neurotropic viruses is also known to evoke changes to cognition and behavior. METHODS Mice were inoculated with saline or influenza A virus. Bulk RNA-seq, lipidomics, RT-qPCR, flow cytometry, immunostaining, and western blots were used to determine the effect of infection on OL viability, protein expression and changes to the lipidome. To determine if microglia mediated infection-induced changes to OL homeostasis, mice were treated with GW2580, an inhibitor of microglia activation. Additionally, conditioned medium experiments using primary glial cell cultures were also used to test whether secreted factors from microglia could suppress OL gene expression. RESULTS Transcriptomic and RT-qPCR analyses revealed temporal downregulation of OL-specific transcripts with concurrent upregulation of markers characteristic of cellular stress. OLs isolated from infected mice had reduced cellular expression of myelin proteins compared with those from saline-inoculated controls. In contrast, the expression of these proteins within myelin was not different between groups. Similarly, histological and immunoblotting analysis performed on various brain regions indicated that infection did not alter OL viability, but increased expression of a cellular stress marker. Shot-gun lipidomic analysis revealed that infection altered the lipid profile within the prefrontal cortex as well as in purified brain myelin and that these changes persisted after recovery from infection. Treatment with GW2580 during infection suppressed the expression of genes associated with glial activation and partially restored OL-specific transcripts to baseline levels. Finally, conditioned medium from activated microglia reduced OL-gene expression in primary OLs without altering their viability. CONCLUSIONS These findings show that peripheral respiratory viral infection with IAV is capable of altering OL homeostasis and indicate that microglia activation is likely involved in the process.
Collapse
Affiliation(s)
- Allison Y Louie
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Justin S Kim
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Jenny Drnevich
- Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Payam Dibaeinia
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
| | - Hisami Koito
- Department of Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado-shi, Saitama, 350-0295, Japan
| | - Saurabh Sinha
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, USA
| | - Daniel B McKim
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Katiria Soto-Diaz
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA
| | - Romana A Nowak
- Department of Computer Science, University of Illinois at Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL, 61801, USA
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA
| | - Aditi Das
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 3306, IBB, Parker H. Petit Institute for Bioengineering and Biosciences, 315 Fernst Dr. NW, Atlanta, GA, 30332, USA.
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, 3516 Veterinary Medicine Basic Sciences Bldg., 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
| | - Andrew J Steelman
- Neuroscience Program, 2325/21 Beckman Institute, 405 North Mathews Ave., Urbana, IL, 61801, USA.
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Dr., Urbana, IL, 61801, USA.
- Department of Bioengineering, Cancer Center at Illinois, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, 405 N. Mathews Ave., Urbana, IL, 61801, USA.
| |
Collapse
|
15
|
Corrigan M, O'Rourke A, Moran B, Fletcher J, Harkin A. Inflammation in the pathogenesis of depression: a disorder of neuroimmune origin. Neuronal Signal 2023; 7:NS20220054. [PMID: 37457896 PMCID: PMC10345431 DOI: 10.1042/ns20220054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
There are several hypotheses concerning the underlying pathophysiological mechanisms of major depression, which centre largely around adaptive changes in neuronal transmission and plasticity, neurogenesis, and circuit and regional connectivity. The immune and endocrine systems are commonly implicated in driving these changes. An intricate interaction of stress hormones, innate immune cells and the actions of soluble mediators of immunity within the nervous system is described as being associated with the symptoms of depression. Bridging endocrine and immune processes to neurotransmission and signalling within key cortical and limbic brain circuits are critical to understanding depression as a disorder of neuroimmune origins. Emergent areas of research include a growing recognition of the adaptive immune system, advances in neuroimaging techniques and mechanistic insights gained from transgenic animals. Elucidation of glial-neuronal interactions is providing additional avenues into promising areas of research, the development of clinically relevant disease models and the discovery of novel therapies. This narrative review focuses on molecular and cellular mechanisms that are influenced by inflammation and stress. The aim of this review is to provide an overview of our current understanding of depression as a disorder of neuroimmune origin, focusing on neuroendocrine and neuroimmune dysregulation in depression pathophysiology. Advances in current understanding lie in pursuit of relevant biomarkers, as the potential of biomarker signatures to improve clinical outcomes is yet to be fully realised. Further investigations to expand biomarker panels including integration with neuroimaging, utilising individual symptoms to stratify patients into more homogenous subpopulations and targeting the immune system for new treatment approaches will help to address current unmet clinical need.
Collapse
Affiliation(s)
- Myles Corrigan
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
- Transpharmation Ireland, Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Aoife M. O'Rourke
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Barry Moran
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Jean M. Fletcher
- School of Biochemistry and Immunology, Trinity Biosciences Institute, Trinity College, Dublin, Ireland
| | - Andrew Harkin
- Neuropsychopharmacology Research Group, School of Pharmacy and Pharmaceutical Sciences and Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
16
|
Becker LJ, Fillinger C, Waegaert R, Journée SH, Hener P, Ayazgok B, Humo M, Karatas M, Thouaye M, Gaikwad M, Degiorgis L, Santin MDN, Mondino M, Barrot M, Ibrahim EC, Turecki G, Belzeaux R, Veinante P, Harsan LA, Hugel S, Lutz PE, Yalcin I. The basolateral amygdala-anterior cingulate pathway contributes to depression-like behaviors and comorbidity with chronic pain behaviors in male mice. Nat Commun 2023; 14:2198. [PMID: 37069164 PMCID: PMC10110607 DOI: 10.1038/s41467-023-37878-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
While depression and chronic pain are frequently comorbid, underlying neuronal circuits and their psychopathological relevance remain poorly defined. Here we show in mice that hyperactivity of the neuronal pathway linking the basolateral amygdala to the anterior cingulate cortex is essential for chronic pain-induced depression. Moreover, activation of this pathway in naive male mice, in the absence of on-going pain, is sufficient to trigger depressive-like behaviors, as well as transcriptomic alterations that recapitulate core molecular features of depression in the human brain. These alterations notably impact gene modules related to myelination and the oligodendrocyte lineage. Among these, we show that Sema4a, which was significantly upregulated in both male mice and humans in the context of altered mood, is necessary for the emergence of emotional dysfunction. Overall, these results place the amygdalo-cingulate pathway at the core of pain and depression comorbidity, and unravel the role of Sema4a and impaired myelination in mood control.
Collapse
Affiliation(s)
- Léa J Becker
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Anesthesiology, Center for Clinical Pharmacology Washington University in St. Louis, St. Louis, MO, USA
| | - Clémentine Fillinger
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Robin Waegaert
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Sarah H Journée
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre Hener
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Beyza Ayazgok
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Biochemistry, Faculty of Pharmacy, University of Hacettepe, Ankara, Turkey
| | - Muris Humo
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Meltem Karatas
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Maxime Thouaye
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Mithil Gaikwad
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada
| | - Laetitia Degiorgis
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Marie des Neiges Santin
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Mary Mondino
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - El Chérif Ibrahim
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
| | - Gustavo Turecki
- Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Raoul Belzeaux
- Aix-Marseille Univ, CNRS, INT, Inst Neurosci Timone, Marseille, France
- Department of Psychiatry, CHU de Montpellier, Montpellier, France
| | - Pierre Veinante
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Laura A Harsan
- Laboratory of Engineering, Informatics and Imaging (ICube), Integrative multimodal imaging in healthcare (IMIS), CNRS, UMR 7357, University of Strasbourg, Strasbourg, France
| | - Sylvain Hugel
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Pierre-Eric Lutz
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
- Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Ipek Yalcin
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
17
|
Takahashi K, Hong L, Kurokawa K, Miyagawa K, Mochida-Saito A, Takeda H, Tsuji M. Brexpiprazole prevents colitis-induced depressive-like behavior through myelination in the prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2023; 121:110666. [PMID: 36273507 DOI: 10.1016/j.pnpbp.2022.110666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/10/2022] [Accepted: 10/15/2022] [Indexed: 11/18/2022]
Abstract
Patients with inflammatory bowel disease (IBD) have higher rates of psychiatric pathology including depression. The dextran sulfate sodium (DSS)-treated mice exhibit IBD- and depressive-like phenotypes. A disturbed intestinal environment causes a decrease in serotonin and abnormal myelination in the brain, along with depressive-like behavior in rodents. However, the involvement of these factors in DSS-induced depressive-like behavior in mice remains unclear. In this study, we examined whether myelin proteins in the prefrontal cortex (PFC) and hippocampi were altered in DSS-treated mice, along with the changes in the serotonergic system in the PFC by western blotting and HPLC. The effects of brexpiprazole (Brx), a serotonin modulator, on DSS-induced depressive-like behavior using the tail-suspension test were evaluated. Subsequently, we investigated Brx's effects on the levels of myelin, nodal proteins, and neurotrophic molecules in the PFC with western blotting, and examined the altered node of Ranvier formation by immunohistochemistry. DSS-treated mice showed a reduction in myelin and nodal proteins, dysfunction of the serotonergic system, and impaired formation of the nodes of Ranvier in the PFC. Brx administration prevented the DSS-induced depressive-like behavior and demyelination in the PFC. However, the Brx-mediated effects were inhibited by the selective 5-HT1A antagonist, WAY100635, or the selective TrkB antagonist, ANA-12. Brx decreased the phosphorylation of ERK, CREB, and TrkB along with the expression of BDNF in the PFC of DSS-treated mice. Moreover, the effects of Brx were blocked by WAY100635. These findings indicated that myelination regulated by the activation of the ERK1/2-CREB-BDNF-TrkB pathway in the PFC may be involved in mediating the antidepressant effects of Brx.
Collapse
Affiliation(s)
- Kohei Takahashi
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Lihua Hong
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuhiro Kurokawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Kazuya Miyagawa
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Atsumi Mochida-Saito
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan
| | - Hiroshi Takeda
- Department of Pharmacology, School of Pharmacy at Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka 831-8501, Japan
| | - Minoru Tsuji
- Department of Pharmacology, School of Pharmacy, International University of Health and Welfare, 2600-1 Kitakanemaru, Ohtawara, Tochigi 324-8501, Japan.
| |
Collapse
|
18
|
Chen H, Kang Z, Liu X, Zhao Y, Fang Z, Zhang J, Zhang H. Chronic social defeat stress caused region-specific oligodendrogenesis impairment in adolescent mice. Front Neurosci 2023; 16:1074631. [PMID: 36685249 PMCID: PMC9846137 DOI: 10.3389/fnins.2022.1074631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Introduction Social stress in adolescents precipitates stress-related emotional disorders. In this study we aimed to investigate oligodendrogenesis in three stress-associated brain regions, medial prefrontal cortex (mPFC), habenula, and amygdala in adolescent mice exposed to social defeat stress. Methods Four-week-old adolescent mice were subjected to social defeat for 10 days, followed by behavioral tests and evaluations of oligodendroglial proliferation and differentiation. Results Stressed mice showed reduced social interaction, more stretched approach posture, lower sucrose preference, but no changes in the forced swimming test. EdU labeled proliferative cells, newly formed NG2+EdU + oligodendrocyte precursor cells (OPCs), and Olig2+EdU+ oligodendrocyte lineage cells (OLLs) were significantly decreased in the mPFC and the lateral habenula, but not in the amygdala and the medial habenula in socially defeated mice. APC+Edu+ newly-generated mature oligodendrocytes (OLs) were decreased in the mPFC in stressed mice. However, the total number of NG2+ OPCs, APC+ mature OLs, and Olig2+ OLLs were comparable in all the brain regions examined between stressed and control mice except for a decrease of APC+ mature OLs in the prelimbic cortex of stressed mice. Conclusion Our findings indicate that adolescent social stress causes emotion-related behavioral changes and region-specific impairment of oligodendrogenesis.
Collapse
Affiliation(s)
- Huan Chen
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Zhewei Kang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
| | - Xueqing Liu
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Yinglin Zhao
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Zeman Fang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China
| | - Jinling Zhang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,*Correspondence: Jinling Zhang,
| | - Handi Zhang
- Department of Psychiatry, Shantou University Mental Health Center, Shantou, China,Handi Zhang,
| |
Collapse
|
19
|
Stankiewicz AM, Jaszczyk A, Goscik J, Juszczak GR. Stress and the brain transcriptome: Identifying commonalities and clusters in standardized data from published experiments. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110558. [PMID: 35405299 DOI: 10.1016/j.pnpbp.2022.110558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 03/17/2022] [Accepted: 04/04/2022] [Indexed: 12/28/2022]
Abstract
Interpretation of transcriptomic experiments is hindered by many problems including false positives/negatives inherent to big-data methods and changes in gene nomenclature. To find the most consistent effect of stress on brain transcriptome, we retrieved data from 79 studies applying animal models and 3 human studies investigating post-traumatic stress disorder (PTSD). The analyzed data were obtained either with microarrays or RNA sequencing applied to samples collected from more than 1887 laboratory animals and from 121 human subjects. Based on the initial database containing a quarter million differential expression effect sizes representing transcripts in three species, we identified the most frequently reported genes in 223 stress-control comparisons. Additionally, the analysis considers sex, individual vulnerability and contribution of glucocorticoids. We also found an overlap between gene expression in PTSD patients and animals which indicates relevance of laboratory models for human stress response. Our analysis points to genes that, as far as we know, were not specifically tested for their role in stress response (Pllp, Arrdc2, Midn, Mfsd2a, Ccn1, Htra1, Csrnp1, Tenm4, Tnfrsf25, Sema3b, Fmo2, Adamts4, Gjb1, Errfi1, Fgf18, Galnt6, Slc25a42, Ifi30, Slc4a1, Cemip, Klf10, Tom1, Dcdc2c, Fancd2, Luzp2, Trpm1, Abcc12, Osbpl1a, Ptp4a2). Provided transcriptomic resource will be useful for guiding the new research.
Collapse
Affiliation(s)
- Adrian M Stankiewicz
- Department of Molecular Biology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Aneta Jaszczyk
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland
| | - Joanna Goscik
- Faculty of Computer Science, Bialystok University of Technology, Bialystok, Poland
| | - Grzegorz R Juszczak
- Department of Animal Behavior and Welfare, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzebiec, Poland.
| |
Collapse
|
20
|
Zhu P, Tang J, Liang X, Luo Y, Wang J, Li Y, Xiao K, Li J, Deng Y, Jiang L, Xiao Q, Qi Y, Xie Y, Yang H, Zhu L, Tang Y, Huang C. Activation of liver X receptors protects oligodendrocytes in CA3 of stress-induced mice. Front Pharmacol 2022; 13:936045. [PMID: 35959443 PMCID: PMC9358133 DOI: 10.3389/fphar.2022.936045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Depression is a complex disorder that is associated with various structural abnormalities. Oligodendrocyte (OL) dysfunction is associated with the pathogenesis of depression and the promotion of hippocampal oligodendrocyte maturation and myelination could be a novel therapeutic strategy for ameliorating depressive behaviors. Recent studies have shown that activation of liver X receptors (LXRs) by GW3965 improves depressive phenotypes, but the effects of GW3965 on OL function and myelination in the hippocampus of depression remain relatively unclear. To address this issue, we investigated the effects of GW3965 on mature OL in the hippocampus and on the myelin sheaths of mice subjected to chronic unpredictable stress (CUS). Behavioral tests were performed to assess depressive behaviors. Then, the number of mature OLs (CC1+) in each hippocampal subregion was precisely quantified with immunohistochemical and stereological methods, and the density of newborn mature OLs (BrdU+/Olig2+/CC1+ cells) in each hippocampal subregion was quantified with immunofluorescence. In addition, myelin basic protein (MBP) staining intensity in the cornu ammonis 3 (CA3) region was assessed by using immunofluorescence. We found that both the number of CC1+ OLs and the density of BrdU+/Olig2+/CC1+ cells were obviously decreased in each hippocampal subregion of mice subjected to CUS, and 4 weeks of GW3965 treatment reversed these effects only in the CA3 region. Furthermore, the decreased MBP expression in the CA3 region of mice subjected to CUS was ameliorated by GW3965 treatment. Collectively, these results suggested that improvement of OL maturation and enhancement of myelination may be structural mechanisms underlying the antidepressant effects of LXR agonists.
Collapse
Affiliation(s)
- Peilin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Pathophysiology, Chongqing Medical University, Chongqing, China
| | - Yanmin Luo
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jin Wang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yue Li
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Kai Xiao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Li
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Yuhui Deng
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Lab Teaching and Management Center, Chongqing Medical University, Chongqing, China
| | - Qian Xiao
- Department of Radioactive Medicine, Chongqing Medical University, Chongqing, China
| | - Yingqiang Qi
- Department of Electron Microscope, Institute of Life Science, Chongqing Medical University, Chongqing, China
| | - Yuhan Xie
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Hao Yang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Zhu
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Chunxia Huang
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
- Department of Physiology, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Abraham M, Mundorf A, Brodmann K, Freund N. Unraveling the mystery of white matter in depression: A translational perspective on recent advances. Brain Behav 2022; 12:e2629. [PMID: 35652161 PMCID: PMC9304855 DOI: 10.1002/brb3.2629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Numerous cortical and subcortical structures have been studied extensively concerning alterations of their integrity as well as their neurotransmitters in depression. However, connections between these structures have received considerably less attention. OBJECTIVE This systematic review presents results from recent neuroimaging as well as neuropathologic studies conducted on humans and other mammals. It aims to provide evidence for impaired white matter integrity in individuals expressing a depressive phenotype. METHODS A systematic database search in accordance with the PRISMA guidelines was conducted to identify imaging and postmortem studies conducted on humans with a diagnosis of major depressive disorder, as well as on rodents and primates subjected to an animal model of depression. RESULTS Alterations are especially apparent in frontal gyri, as well as in structures establishing interhemispheric connectivity between frontal regions. Translational neuropathological findings point to alterations in oligodendrocyte density and morphology, as well as to alterations in the expression of genes related to myelin synthesis. An important role of early life adversities in the development of depressive symptoms and white matter alterations across species is thereby revealed. Data indicating that stress can interfere with physiological myelination patterns is presented. Altered myelination is most notably present in regions that are subject to maturation during the developmental stage of exposure to adversities. CONCLUSION Translational studies point to replicable alterations in white matter integrity in subjects suffering from depression across multiple species. Impaired white matter integrity is apparent in imaging as well as neuropathological studies. Future studies should focus on determining to what extent influencing white matter integrity is able to improve symptoms of depression in animals as well as humans.
Collapse
Affiliation(s)
- Mate Abraham
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Annakarina Mundorf
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany.,Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Nadja Freund
- Division of Experimental and Molecular Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL University Hospital, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
22
|
Poggi G, Albiez J, Pryce CR. Effects of chronic social stress on oligodendrocyte proliferation-maturation and myelin status in prefrontal cortex and amygdala in adult mice. Neurobiol Stress 2022; 18:100451. [PMID: 35685682 PMCID: PMC9170777 DOI: 10.1016/j.ynstr.2022.100451] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/13/2022] [Accepted: 04/16/2022] [Indexed: 10/26/2022] Open
Abstract
Stress-related neuropsychiatric disorders present with excessive processing of aversive stimuli. Whilst underlying pathophysiology remains poorly understood, within- and between-regional changes in oligodendrocyte (OL)-myelination status in anterior cingulate cortex and amygdala (ACC-AMY network) could be important. In adult mice, a 15-day chronic social stress (CSS) protocol leads to increased aversion responsiveness, accompanied by increased resting-state functional connectivity between, and reduced oligodendrocyte- and myelin-related transcript expression within, medial prefrontal cortex and amygdala (mPFC-AMY network), the analog of the human ACC-AMY network. In the current study, young-adult male C57BL/6 mice underwent CSS or control handling (CON). To assess OL proliferation-maturation, mice received 5-ethynyl-2'-deoxyuridine via drinking water across CSS/CON and brains were collected on day 16 or 31. In mPFC, CSS decreased the density of proliferative OL precursor cells (OPCs) at days 16 and 31. CSS increased mPFC myelin basic protein (MBP) integrated density at day 31, as well as increasing myelin thickness as determined using transmission electron microscopy, at day 16. In AMY, CSS increased the densities of total CC1+ OLs (day 31) and CC1+/ASPA+ OLs (days 16 and 31), whilst decreasing the density of proliferative OPCs at days 16 and 31. CSS was without effect on AMY MBP content and myelin thickness, at days 16 and 31. Therefore, CSS impacts on the OL lineage in mPFC and AMY and to an extent that, in mPFC at least, leads to increased myelination. This increased myelination could contribute to the excessive aversion learning and memory that occur in CSS mice and, indeed, human stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Giulia Poggi
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Jamie Albiez
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
| | - Christopher R. Pryce
- Preclinical Laboratory for Translational Research Into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Switzerland
| |
Collapse
|
23
|
Yao K, Cao L, Ding H, Gao Y, Li T, Wang G, Zhang J. Increasing Aspartoacylase in the Central Amygdala: The Common Mechanism of Gastroprotective Effects of Monoamine-Based Antidepressants Against Stress. Front Pharmacol 2022; 13:823291. [PMID: 35281914 PMCID: PMC8914169 DOI: 10.3389/fphar.2022.823291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/17/2022] Open
Abstract
Monoamine-based antidepressants can prophylactically protect against stress-induced gastric ulcers. Although the central nucleus of amygdala (CeA) has been shown to modulate the severity of stress ulcers, little is known about the molecular mechanisms underlying the gastroprotective effect of this kind of drugs. Here, we first used proton magnetic resonance spectroscopy, a non-invasive tool, to explore the change of neurometabolites of the CeA of rats pretreated with the duloxetine of selective serotonin-norepinephrine reuptake inhibitors during 6 h of water-immersion restraint stress (WIRS). Duloxetine decreased N-acetyl-aspartate/creatine ratio (NAA/creatine) in CeA after WIRS, which was paralleled by the amelioration of gastric lesions. Meanwhile, the gastric ulcer index was negatively correlated with reduced NAA/creatine. Furthermore, the intra-CeA infusion of NAA aggravated WIRS-induced gastric mucosa damage, which suggested the crucial role of reduced NAA. Western blotting was performed to identify the specific enzymes responsible for the change of the contents of NAA at 0.5 h/3 h/6 h after WIRS, considering the preventative gastric protection of duloxetine. The NAA-catabolizing enzyme aspartoacylase (ASPA) was the only enzyme downregulated by 0.5 h WIRS and upregulated by duloxetine. Moreover, overexpressing ASPA in CeA alleviated stress ulcers. Additionally, all of the other three monoamine-based antidepressants, the fluoxetine of selective serotonin reuptake inhibitors, the amitriptyline of tricyclic agents, and the moclobemide of MAOs, increased ASPA expression in CeA. Together, these results indicate that increasing ASPA to hydrolyze NAA in CeA is a common mechanism of gastroprotective effects against stress exerted by monoamine-based antidepressants, and ASPA is a shared target more than monoamine regulation for this kind of drugs.
Collapse
Affiliation(s)
- Kaiyun Yao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Linyu Cao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongwan Ding
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinge Gao
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiegang Li
- Department of Pharmacology, Beijing, China
| | - Guibin Wang
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibin Wang, ; Jianjun Zhang,
| | - Jianjun Zhang
- Department of Pharmacology, Beijing, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibin Wang, ; Jianjun Zhang,
| |
Collapse
|
24
|
Tang J, Liang X, Dou X, Qi Y, Yang C, Luo Y, Chao F, Zhang L, Xiao Q, Jiang L, Zhou C, Tang Y. Exercise rather than fluoxetine promotes oligodendrocyte differentiation and myelination in the hippocampus in a male mouse model of depression. Transl Psychiatry 2021; 11:622. [PMID: 34880203 PMCID: PMC8654899 DOI: 10.1038/s41398-021-01747-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/19/2021] [Accepted: 11/26/2021] [Indexed: 12/12/2022] Open
Abstract
Although selective serotonin reuptake inhibitor (SSRI) systems have been meaningfully linked to the clinical phenomena of mood disorders, 15-35% of patients do not respond to multiple SSRI interventions or even experience an exacerbation of their condition. As we previously showed, both running exercise and fluoxetine reversed depression-like behavior. However, whether exercise reverses depression-like behavior more quickly than fluoxetine treatment and whether this rapid effect is achieved via the promotion of oligodendrocyte differentiation and/or myelination in the hippocampus was previously unknown. Sixty male C57BL/6 J mice were used in the present study. We subjected mice with unpredictable chronic stress (UCS) to a 4-week running exercise trial (UCS + RN) or intraperitoneally injected them with fluoxetine (UCS + FLX) to address these uncertainties. At the behavioral level, mice in the UCS + RN group consumed significantly more sugar water in the sucrose preference test (SPT) at the end of the 7th week than those in the UCS group, while those in the UCS + FLX group consumed significantly more sugar water than mice in the UCS group at the end of the 8th week. The unbiased stereological results and immunofluorescence analyses revealed that running exercise, and not fluoxetine treatment, increased the numbers of CC1+ and CC1+/Olig2+/BrdU+ oligodendrocytes in the CA1 subfield in depressed mice exposed to UCS. Moreover, running exercise rather than fluoxetine increased the level of myelin basic protein (MBP) and the G-ratio of myelinated nerve fibers in the CA1 subfield in the UCS mouse model. Unlike fluoxetine, exercise promoted hippocampal myelination and oligodendrocyte differentiation and thus has potential as a therapeutic strategy to reduce depression-like behaviors induced by UCS.
Collapse
Affiliation(s)
- Jing Tang
- grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Xin Liang
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Department of Pathologic Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Xiaoyun Dou
- grid.203458.80000 0000 8653 0555Institute of Life Science, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Yingqiang Qi
- grid.203458.80000 0000 8653 0555Institute of Life Science, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Chunmao Yang
- grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Yanmin Luo
- grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Department of Physiology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Fenglei Chao
- grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Lei Zhang
- grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Qian Xiao
- grid.203458.80000 0000 8653 0555Department of Radioactive Medicine, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Lin Jiang
- grid.203458.80000 0000 8653 0555Lab Teaching & Management Center, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Chunni Zhou
- grid.203458.80000 0000 8653 0555Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China ,grid.203458.80000 0000 8653 0555Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016 P. R. China
| | - Yong Tang
- Department of Histology and Embryology, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China. .,Laboratory of Stem Cells and Tissue Engineering, Faculty of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, P. R. China.
| |
Collapse
|
25
|
Ibrahim P, Almeida D, Nagy C, Turecki G. Molecular impacts of childhood abuse on the human brain. Neurobiol Stress 2021; 15:100343. [PMID: 34141833 PMCID: PMC8187840 DOI: 10.1016/j.ynstr.2021.100343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/24/2021] [Accepted: 05/13/2021] [Indexed: 12/17/2022] Open
Abstract
Childhood abuse (CA) is a prevalent global health concern, increasing the risk of negative mental health outcomes later in life. In the literature, CA is commonly defined as physical, sexual, and emotional abuse, as well as neglect. Several mental disorders have been associated with CA, including depression, bipolar disorder, schizophrenia, and post-traumatic stress disorder, along with an increased risk of suicide. It is thought that traumatic life events occurring during childhood and adolescence may have a significant impact on essential brain functions, which may persist throughout adulthood. The interaction between the brain and the external environment can be mediated by epigenetic alterations in gene expression, and there is a growing body of evidence to show that such changes occur as a function of CA. Disruptions in the HPA axis, myelination, plasticity, and signaling have been identified in individuals with a history of CA. Understanding the molecular impact of CA on the brain is essential for the development of treatment and prevention measures. In this review, we will summarize studies that highlight the molecular changes associated with CA in the human brain, along with supporting evidence from peripheral studies and animal models. We will also discuss some of the limitations surrounding the study of CA and propose extracellular vesicles as a promising future approach in the field.
Collapse
Affiliation(s)
- Pascal Ibrahim
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Daniel Almeida
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Somatostatin receptor 4 agonism normalizes stress-related excessive amygdala glutamate release and Pavlovian aversion learning and memory in rodents. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2021; 2:470-479. [PMID: 36324659 PMCID: PMC9616361 DOI: 10.1016/j.bpsgos.2021.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
Background Excessive processing of aversive life events is a major pathology in stress-related anxiety and depressive disorders. Current pharmacological treatments have rather nonspecific mechanisms of action. Somatostatin is synthesized and released as an inhibitory co-neurotransmitter by specific GABA (gamma-aminobutyric acid) interneurons, and one of its receptors, SSTR4 (somatostatin receptor 4), is localized in brain regions involved in adaptive aversion processing and implicated in negative valence neuropathology, including the amygdala. Methods Rat and mouse experiments were conducted to investigate effects of specific SSTR4 agonism on neurobehavioral aversion processing, including any normalization of stress-related hyperresponsiveness. A mouse experiment to investigate stress and SSTR4 agonism effects on reward processing was also conducted. Results In male rats (n = 5–10/group) fitted with glutamate biosensors in basolateral amygdala, SSTR4 agonism attenuated glutamate release to restraint stress in control rats and particularly in rats previously exposed to chronic corticosterone. In male mice (n = 10–18/group), SSTR4 agonism dose-dependently attenuated Pavlovian tone/footshock learning and memory measured as freezing behavior, in both control mice and mice exposed to chronic social stress, which induces excessive Pavlovian aversion learning and memory. Specificity of SSTR4 agonism effects to aversion learning/memory was demonstrated by absence of effects on discriminative reward (sucrose) learning/memory in both control mice and mice exposed to chronic social stress; SSTR4 agonism did increase reward-to-effort valuation in a dose-dependent manner and in both control mice and mice exposed to chronic social stress, which attenuates reward motivation. Conclusions These neuropsychopharmacological findings add substantially to the preclinical proof-of-concept evidence for SSTR4 agonism as a treatment in anxiety and depressive disorders.
Collapse
|
27
|
Activation of 5-HT 1A receptor reduces abnormal emotionality in stress-maladaptive mice by alleviating decreased myelin protein in the ventral hippocampus. Neurochem Int 2021; 151:105213. [PMID: 34673172 DOI: 10.1016/j.neuint.2021.105213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/03/2021] [Accepted: 10/18/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that abnormal emotionality in stress-maladaptive mice was ameliorated by chronic treatment with flesinoxan, a 5-HT1A receptor agonist. Furthermore, the maintenance of hippocampal myelination appeared to contribute to the development of stress adaptation in mice. However, the effects of 5-HT1A receptor activation on myelination under the stress-maladaptive situations and the underlying mechanisms remain unknown. In the present study, we examined using flesinoxan whether activation of 5-HT1A receptor can reduce an abnormal emotional response by acting on oligodendrocytes to preserve myelin proteins in stress-maladaptive mice. Mice were exposed to repeated restraint stress for 4 h/day for 14 days as a stress-maladaptive model. Flesinoxan was given intraperitoneally immediately after the daily exposure to restraint stress. After the final exposure to restraint stress, the emotionality of mice was evaluated by the hole-board test. The expression levels of brain-derived neurotrophic factor (BDNF), phosphorylated-extracellular signal-regulated kinase (p-ERK), phosphorylated-cAMP response element-binding protein (p-CREB), myelin-associated glycoprotein (MAG), myelin basic protein (MBP) and oligodendrocyte transcription factor 2 (olig2) in the hippocampus was assessed by western blotting. Hippocampal oligodendrogenesis were examined by immunohistochemistry. Chronic treatment with flesinoxan suppressed the decrease in head-dipping behaviors in stress-maladaptive mice in the hole-board test. Under this condition, the decreases in MAG and MBP in the hippocampus recovered with increase in BDNF, p-ERK, p-CREB, and olig2. Furthermore, hippocampal oligodendrogenesis in stress-maladaptive mice was promoted by chronic treatment with flesinoxan. These findings suggest that 5-HT1A receptor activation may promote oligodendrogenesis and myelination via an ERK/CREB/BDNF signaling pathway in the hippocampus and reduces abnormal emotionality due to maladaptation to excessive stress.
Collapse
|
28
|
Pan S, Chan JR. Clinical Applications of Myelin Plasticity for Remyelinating Therapies in Multiple Sclerosis. Ann Neurol 2021; 90:558-567. [PMID: 34402546 PMCID: PMC8555870 DOI: 10.1002/ana.26196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Central nervous system demyelination in multiple sclerosis (MS) and subsequent axonal degeneration represent a major cause of clinical morbidity. Learning, salient experiences, and stimulation of neuronal activity induce new myelin formation in rodents, and in animal models of demyelination, remyelination can be enhanced via experience- and activity-dependent mechanisms. Furthermore, preliminary studies in MS patients support the use of neuromodulation and rehabilitation exercises for symptomatic improvement, suggesting that these interventions may represent nonpharmacological strategies for promoting remyelination. Here, we review the literature on myelin plasticity processes and assess the potential to leverage these mechanisms to develop remyelinating therapies. ANN NEUROL 2021;90:558-567.
Collapse
Affiliation(s)
- Simon Pan
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco
| | - Jonah R. Chan
- Department of Neurology, Weill Institute for Neuroscience, University of California, San Francisco
| |
Collapse
|
29
|
Disturbance of prefrontal cortical myelination in olfactory bulbectomized mice is associated with depressive-like behavior. Neurochem Int 2021; 148:105112. [PMID: 34171413 DOI: 10.1016/j.neuint.2021.105112] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/10/2021] [Accepted: 06/20/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have reported that demyelination is associated with the development of depression. Olfactory bulbectomized (OBX) rodents are a useful experimental animal model for depressive disorder. However, little is known about the change in myelination in the brain of OBX mice. To address this question, we observed depressive-like behavior of OBX mice in the tail-suspension test, and determined the quantity of myelin proteins in the prefrontal cortex (PFC), striatum and hippocampus on day 14 or 21 after surgery. The number of nodes of Ranvier paired with the paranodal marker contactin-associated protein (Caspr), as well as the numbers of immature and mature oligodendrocytes in the PFC, were also measured on day 21 after surgery. We examined whether these behavioral and neurochemical changes observed in OBX mice were reversed by chronic administration of imipramine. OBX mice showed depressive-like behavior in the tail-suspension test together with a decrease in the levels of myelin proteins such as myelin basic protein, myelin-associated glycoprotein and cyclicnucleotide phosphodiesterase in the PFC on day 21 after surgery. The number of nodes of Ranvier and mature oligodendrocytes were also decreased in the PFC of OBX mice, while the number of immature oligodendrocytes was increased on day 21 after surgery. However, the number of immature oligodendrocytes in the PFC of OBX mice was decreased on day 35 after surgery. Administration of imipramine (20 mg/kg) for 2 weeks from day 21 after surgery improved OBX-induced depressive-like behavior and abnormal myelination in the PFC. The present findings suggest that the disturbance of myelin function in the PFC may contribute to the pathophysiology of depression, and further support the notion that it plays an important role in the psychological state.
Collapse
|
30
|
Carneiro-Nascimento S, Powell W, Uebel M, Buerge M, Sigrist H, Patterson M, Pryce CR, Opacka-Juffry J. Region- and receptor-specific effects of chronic social stress on the central serotonergic system in mice. IBRO Neurosci Rep 2021; 10:8-16. [PMID: 33861815 PMCID: PMC8019833 DOI: 10.1016/j.ibneur.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 11/27/2020] [Indexed: 10/25/2022] Open
Abstract
Serotonin (5-HT), via its receptors expressed in discrete brain regions, modulates aversion and reward processing and is implicated in various psychiatric disorders including depression. Stressful experiences affect central serotonergic activity and act as a risk factor for depression; this can be modelled preclinically. In adult male C57BL/6J mice, 15-day chronic social stress (CSS) leads to depression-relevant behavioural states, including increased aversion and reduced reward sensitivity. Based on this evidence, here we investigated CSS effects on 5-HT1A, 5-HT2A, and 5-HT2C receptor binding in discrete brain regions using in vitro quantitative autoradiography with selective radioligands. In addition, mRNA expression of Htr1a, 2a, 2c and Slc6a4 (5-HT transporter) was measured by quantitative PCR. Relative to controls, the following effects were observed in CSS mice: 5-HT1A receptor binding was markedly increased in the dorsal raphe nucleus (136%); Htr1a mRNA expression was increased in raphe nuclei (19%), medial prefrontal cortex (35%), and hypothalamic para- and periventricular nuclei (21%) and ventral medial nucleus (38%). 5-HT2A receptor binding was decreased in the amygdala (48%) and ventral tegmental area (60%); Htr2a mRNA expression was increased in the baso-lateral amygdala (116%). 5-HT2C receptor binding was decreased in the dorsal raphe nucleus (42%). Slc6a4 mRNA expression was increased in the raphe (59%). The present findings add to the translational evidence that chronic social stress impacts on the central serotonergic system in a region- and receptor-specific manner, and that this altered state of the serotonergic system contributes to stress-induced dysfunctions in emotional processing.
Collapse
Affiliation(s)
| | - William Powell
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Uebel
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Michaela Buerge
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy & Psychosomatics, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
31
|
Emanetci E, Çakır T. Network-Based Analysis of Cognitive Impairment and Memory Deficits from Transcriptome Data. J Mol Neurosci 2021; 71:2415-2428. [PMID: 33713319 DOI: 10.1007/s12031-021-01807-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022]
Abstract
Aging is an inevitable process that negatively affects all living organisms and their vital functions. The brain is one of the most important organs in living beings and is primarily impacted by aging. The molecular mechanisms of learning, memory and cognition are altered over time, and the impairment in these mechanisms can lead to neurodegenerative diseases. Transcriptomics can be used to study these impairments to acquire more detailed information on the affected molecular mechanisms. Here we analyzed learning- and memory-related transcriptome data by mapping it on the organism-specific protein-protein interactome network. Subnetwork discovery algorithms were applied to discover highly dysregulated subnetworks, which were complemented with co-expression-based interactions. The functional analysis shows that the identified subnetworks are enriched with genes having roles in synaptic plasticity, gliogenesis, neurogenesis and cognition, which are reported to be related to memory and learning. With a detailed analysis, we show that the results from different subnetwork discovery algorithms or from different transcriptomic datasets can be successfully reconciled, leading to a memory-learning network that sheds light on the molecular mechanisms behind aging and memory-related impairments.
Collapse
Affiliation(s)
- Elif Emanetci
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey.
| |
Collapse
|
32
|
Kaul D, Schwab SG, Mechawar N, Matosin N. How stress physically re-shapes the brain: Impact on brain cell shapes, numbers and connections in psychiatric disorders. Neurosci Biobehav Rev 2021; 124:193-215. [PMID: 33556389 DOI: 10.1016/j.neubiorev.2021.01.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 12/16/2022]
Abstract
Severe stress is among the most robust risk factors for the development of psychiatric disorders. Imaging studies indicate that life stress is integral to shaping the human brain, especially regions involved in processing the stress response. Although this is likely underpinned by changes to the cytoarchitecture of cellular networks in the brain, we are yet to clearly understand how these define a role for stress in human psychopathology. In this review, we consolidate evidence of macro-structural morphometric changes and the cellular mechanisms that likely underlie them. Focusing on stress-sensitive regions of the brain, we illustrate how stress throughout life may lead to persistent remodelling of the both neurons and glia in cellular networks and how these may lead to psychopathology. We support that greater translation of cellular alterations to human cohorts will support parsing the psychological sequalae of severe stress and improve our understanding of how stress shapes the human brain. This will remain a critical step for improving treatment interventions and prevention outcomes.
Collapse
Affiliation(s)
- Dominic Kaul
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia
| | - Naguib Mechawar
- Douglas Mental Health University Institute, 6875 LaSalle blvd, Verdun, Qc, H4H 1R3, Canada
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong 2522, Australia; Molecular Horizons, School of Chemistry and Molecular Biosciences, University of Wollongong, Northfields Ave, Wollongong 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
33
|
Zhou B, Zhu Z, Ransom BR, Tong X. Oligodendrocyte lineage cells and depression. Mol Psychiatry 2021; 26:103-117. [PMID: 33144710 PMCID: PMC7815509 DOI: 10.1038/s41380-020-00930-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/01/2020] [Accepted: 10/22/2020] [Indexed: 12/25/2022]
Abstract
Depression is a common mental illness, affecting more than 300 million people worldwide. Decades of investigation have yielded symptomatic therapies for this disabling condition but have not led to a consensus about its pathogenesis. There are data to support several different theories of causation, including the monoamine hypothesis, hypothalamic-pituitary-adrenal axis changes, inflammation and immune system alterations, abnormalities of neurogenesis and a conducive environmental milieu. Research in these areas and others has greatly advanced the current understanding of depression; however, there are other, less widely known theories of pathogenesis. Oligodendrocyte lineage cells, including oligodendrocyte progenitor cells and mature oligodendrocytes, have numerous important functions, which include forming myelin sheaths that enwrap central nervous system axons, supporting axons metabolically, and mediating certain forms of neuroplasticity. These specialized glial cells have been implicated in psychiatric disorders such as depression. In this review, we summarize recent findings that shed light on how oligodendrocyte lineage cells might participate in the pathogenesis of depression, and we discuss new approaches for targeting these cells as a novel strategy to treat depression.
Collapse
Affiliation(s)
- Butian Zhou
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongqun Zhu
- Department of Cardiothoracic Surgery, Center for Brain Science, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bruce R Ransom
- Neuroscience Department, City University of Hong Kong, Hong Kong, China.
| | - Xiaoping Tong
- Center for Brain Science, Shanghai Children's Medical Center; Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
34
|
Komatsu H, Takeuchi H, Ono C, Yu Z, Kikuchi Y, Kakuto Y, Funakoshi S, Ono T, Kawashima R, Taki Y, Tomita H. Association Between OLIG2 Gene SNP rs1059004 and Negative Self-Schema Constructing Trait Factors Underlying Susceptibility to Depression. Front Psychiatry 2021; 12:631475. [PMID: 33762978 PMCID: PMC7983671 DOI: 10.3389/fpsyt.2021.631475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/05/2021] [Indexed: 11/23/2022] Open
Abstract
Recent evidence has indicated that the disruption of oligodendrocytes may be involved in the pathogenesis of depression. Genetic factors are likely to affect trait factors, such as characteristics, rather than state factors, such as depressive symptoms. Previously, a negative self-schema had been proposed as the major characteristic of constructing trait factors underlying susceptibility to depression. Thus, the association between a negative self-schema and the functional single nucleotide polymorphism (SNP) rs1059004 in the OLIG2 gene, which influences OLIG2 gene expression, white matter integrity, and cerebral blood flow, was evaluated. A total of 546 healthy subjects were subjected to genotype and psychological evaluation using the Beck Depression Inventory-II (BDI-II) and the Brief Core Schema Scale (BCSS). The rs1059004 SNP was found to be associated with the self-schema subscales of the BCSS and scores on the BDI-II in an allele dose-dependent manner, and to have a predictive impact on depressive symptoms via a negative-self schema. The results suggest the involvement of a genetic factor regulating oligodendrocyte function in generating a negative-self schema as a trait factor underlying susceptibility to depression.
Collapse
Affiliation(s)
- Hiroshi Komatsu
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Miyagi Psychiatric Center, Natori, Japan
| | - Hikaru Takeuchi
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Chiaki Ono
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Zhiqian Yu
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | - Yoshie Kikuchi
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan
| | | | - Shunichi Funakoshi
- Miyagi Psychiatric Center, Natori, Japan.,Department of Community Psychiatry, Tohoku University, Sendai, Japan
| | | | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Smart Ageing International Research Center, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan.,Division of Medical Neuroimaging Analysis, Department of Community Medical Supports, Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Tohoku University Hospital, Sendai, Japan.,Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan.,Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan.,Department of Disaster Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan.,Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai, Japan
| |
Collapse
|
35
|
Ineichen C, Greter A, Baer M, Sigrist H, Sautter E, Sych Y, Helmchen F, Pryce CR. Basomedial amygdala activity in mice reflects specific and general aversion uncontrollability. Eur J Neurosci 2020; 55:2435-2454. [PMID: 33338290 PMCID: PMC9292353 DOI: 10.1111/ejn.15090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/10/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
Learning adaptive behaviour to control aversion is a major brain function. Detecting the absence of control is also important, although chronic uncontrollable aversion can impact maladaptively on stimulus processing in general. The mouse basomedial amygdala (BMA) contributes to aversion processing with high BMA activity associated with active behavioural responding. The overall aim of the present study was to investigate the associations between aversion (un)controllability, BMA activity and behaviour. Fibre photometry of GCaMP6‐expressing BMA neuron populations was applied in freely behaving adult male mice during exposure to mild electrical shocks, and effects of specific or general (un)controllability were investigated. In a discrete learned helplessness (LH) effect paradigm, mice underwent discrete sessions of pre‐exposure to either escapable shock (ES) or inescapable shock (IES) followed by an escape test. IES mice acquired fewer escape attempts than ES mice, and this co‐occurred with higher aversion‐related BMA activity in the IES group. After 30 days, ES and IES mice were allocated equally to either chronic social stress (CSS)—exposure to continuous uncontrollable social aversion—or control handling (CON), and on days 5 and 15 underwent an IES session. CSS mice made fewer escape attempts than CON mice, and this was now associated with lower aversion‐related BMA activity in the CSS group. These findings suggest that mouse BMA activity is higher when discrete aversion is uncontrollable but becomes lower following chronic uncontrollable aversion exposure. Therefore, BMA activity could be a neural marker of adaptive and maladaptive states consequent to specific and general uncontrollability, respectively.
Collapse
Affiliation(s)
- Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Alexandra Greter
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Mischa Baer
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | | | - Yaroslav Sych
- Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| | - Christopher R Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders (PLaTRAD), Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, Zurich, Switzerland
| |
Collapse
|
36
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
37
|
Fear Deficits in Hypomyelinated Tppp Knock-Out Mice. eNeuro 2020; 7:ENEURO.0170-20.2020. [PMID: 32878961 PMCID: PMC7540923 DOI: 10.1523/eneuro.0170-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 07/09/2020] [Indexed: 12/20/2022] Open
Abstract
Oligodendrocytes in the central nervous system (CNS) produce myelin sheaths that insulate axons to facilitate efficient electrical conduction. These myelin sheaths contain lamellar microtubules that enable vesicular transport into the inner sheath. Mechanistically, oligodendrocytes rely on Golgi outpost organelles and the associated protein tubulin polymerization promoting protein (TPPP) to nucleate or form new microtubules outside of the cell body. Consequently, elongation of lamellar microtubules is defective in Tppp knock-out (KO) mice, which have thinner and shorter myelin sheaths. We now explore the behavioral phenotypes of Tppp KO mice using a number of different assays. In open-field assays, Tppp KO mice display similar activity levels and movement patterns as wild-type mice, indicating that they do not display anxiety behavior. However, Tppp KO mice lack fear responses by two types of assays, traditional fear-conditioning assays and looming fear assays, which test for innate fear responses. Deficits in fear conditioning, which is a memory-dependent task, as well as in spatial memory tests, support possible short-term memory defects in Tppp KO mice. Together, our experiments indicate a connection between CNS myelination and behavioral deficits.
Collapse
|
38
|
Li B, Xu Y, Quan Y, Cai Q, Le Y, Ma T, Liu Z, Wu G, Wang F, Bao C, Li H. Inhibition of RhoA/ROCK Pathway in the Early Stage of Hypoxia Ameliorates Depression in Mice via Protecting Myelin Sheath. ACS Chem Neurosci 2020; 11:2705-2716. [PMID: 32667781 DOI: 10.1021/acschemneuro.0c00352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Neuroplasticity and connectivity in the central nervous system (CNS) are easily damaged after hypoxia. Long-term exposure to an anoxic environment can lead to neuropsychiatric symptoms and increases the likelihood of depression. Demyelination is an important lesion of CNS injury that may occur in depression. Previous studies have found that the RhoA/ROCK pathway is upregulated in neuropsychiatric disorders such as multiple sclerosis, stroke, and neurodegenerative diseases. Therefore, the chief aim of this study is to explore the regulatory role of the RhoA/ROCK pathway in the development of depression after hypoxia by behavioral tests, Western blotting, immunostaining as well as electron microscopy. Results showed that HIF-1α, S100β, RhoA/ROCK, and immobility time in FST were increased, sucrose water preference ratio in SPT was decreased, and the aberrant activity of neurocyte and demyelination occurred after hypoxia. After the administration of Y-27632 and fluoxetine in hypoxia, these alterations were improved. Lingo1, a negative regulatory factor, was also overexpressed after hypoxia and its expression was decreased when the pathway blocked. However, fluoxetine had no effect on the expression of Lingo1. Then, we demonstrated that demyelination was associated with failures of oligodendrocyte precursor cell proliferation and differentiation and increased apoptosis of oligodendrocytes. Collectively, our data indicate that the RhoA/ROCK pathway plays a vital role in the initial depression during hypoxia. Blocking this pathway in the early stage of hypoxia can enhance the effectiveness of antidepressants, rescue myelin damage, and reduce the expression of the negative regulatory protein of myelination. The findings provide new insight into the prophylaxis and treatment of depression.
Collapse
Affiliation(s)
- Baichuan Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yang Xu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yong Quan
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Qiyan Cai
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Yifan Le
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Teng Ma
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Zhi Liu
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Guangyan Wu
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Fei Wang
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
| | - Chuncha Bao
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| | - Hongli Li
- Department of Histology and Embryology, Chongqing Key Laboratory of Neurobiology, Army Medical University, Chongqing 400038, China
- Department of Teaching Experiment Center, Army Medical University, Chongqing 400038, China
| |
Collapse
|
39
|
Antontseva E, Bondar N, Reshetnikov V, Merkulova T. The Effects of Chronic Stress on Brain Myelination in Humans and in Various Rodent Models. Neuroscience 2020; 441:226-238. [DOI: 10.1016/j.neuroscience.2020.06.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/08/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
40
|
Wei N, Zhang H, Wang J, Wang S, Lv W, Luo L, Xu Z. The Progress in Diagnosis and Treatment of Exosomes and MicroRNAs on Epileptic Comorbidity Depression. Front Psychiatry 2020; 11:405. [PMID: 32528321 PMCID: PMC7247821 DOI: 10.3389/fpsyt.2020.00405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
The occurrence of epilepsy can increase the incidence of depression, and the risk of epilepsy in the patients with depression is also high, both of which have an adverse effect on the life and the psychology of the patient, which is not conducive to the prognosis of the patients with epilepsy. With lucubrating the function of exosomes and microRNAs, some scholars found that the exosomes and its microRNAs have development prospect in the diagnosis and treatment of the disease. MicroRNAs are involved in the regulation of seizures and depression, as biomarkers, that can significantly improve the management of epileptic patients and play a preventive role in the occurrence of epilepsy and epilepsy depressive disorder. Moreover, due to its regulation to genes, appropriate application of microRNAs may have therapeutic effect on epilepsy and depression with the characteristics of long distance transmission and stability of exosomes, to a certain extent. This provides a great convenience for the diagnosis and treatment of epileptic comorbidity depression.
Collapse
Affiliation(s)
- Nian Wei
- Zunyi Medical University, Zunyi, China
| | - Haiqing Zhang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Jing Wang
- Prevention and Health Care, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shen Wang
- Zunyi Medical University, Zunyi, China
| | - Wenbo Lv
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Limei Luo
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zucai Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Key Laboratory of Brain Science, Zunyi Medical University, Zunyi, China
| |
Collapse
|
41
|
Khan AR, Geiger L, Wiborg O, Czéh B. Stress-Induced Morphological, Cellular and Molecular Changes in the Brain-Lessons Learned from the Chronic Mild Stress Model of Depression. Cells 2020; 9:cells9041026. [PMID: 32326205 PMCID: PMC7226496 DOI: 10.3390/cells9041026] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Major depressive disorder (MDD) is a severe illness imposing an increasing social and economic burden worldwide. Numerous rodent models have been developed to investigate the pathophysiology of MDD. One of the best characterized and most widely used models is the chronic mild stress (CMS) model which was developed more than 30 years ago by Paul Willner. More than 2000 published studies used this model, mainly to assess novel compounds with potential antidepressant efficacy. Most of these studies examined the behavioral consequences of stress and concomitant drug intervention. Much fewer studies focused on the CMS-induced neurobiological changes. However, the stress-induced cellular and molecular changes are important as they may serve as potential translational biomarkers and increase our understanding of the pathophysiology of MDD. Here, we summarize current knowledge on the structural and molecular alterations in the brain that have been described using the CMS model. We discuss the latest neuroimaging and postmortem histopathological data as well as molecular changes including recent findings on microRNA levels. Different chronic stress paradigms occasionally deliver dissimilar findings, but the available experimental data provide convincing evidence that the CMS model has a high translational value. Future studies examining the neurobiological changes in the CMS model in combination with clinically effective antidepressant drug intervention will likely deliver further valuable information on the pathophysiology of MDD.
Collapse
Affiliation(s)
- Ahmad Raza Khan
- Centre of Biomedical Research, Sanjay Gandhi Post Graduate Institute (SGPGI) Campus, Lucknow-226017, U.P, India;
| | - Lili Geiger
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Ove Wiborg
- Department of Health Science and Technology, Aalborg University, 9220 Aalborg, Denmark;
| | - Boldizsár Czéh
- Neurobiology of Stress Research Group, Szentágothai Research Centre, University of Pécs, 7624 Pécs, Hungary;
- Department of Laboratory Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence:
| |
Collapse
|
42
|
Yang F, Zhu W, Cai X, Zhang W, Yu Z, Li X, Zhang J, Cai M, Xiang J, Cai D. Minocycline alleviates NLRP3 inflammasome-dependent pyroptosis in monosodium glutamate-induced depressive rats. Biochem Biophys Res Commun 2020; 526:553-559. [PMID: 32245616 DOI: 10.1016/j.bbrc.2020.02.149] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammasome activation and followed by the release of proinflammatory cytokines play a pivotal role in the development and progression of depression. However, the involvement of gasdermin D (GSDMD)-mediated pyroptosis in inflammasome-associated depression has not been studied. The present study aimed to determine the involvement of pyroptosis in the development of depression. METHODS The rat depressive model was established by the administration of monosodium glutamate (MSG) in postnatal rats. Minocycline (an anti-inflammatory agent) and VX-765 (a specific inhibitor of caspase-1) were given as intervention treatments when rats were two-month-old. Rat depressive behaviors were evaluated by behavioral tests, including open field test, sucrose preference test, and forced swim test. Rat hippocampi were collected for western blotting and immunofluorescence examination. RESULTS MSG administration induced depressive-like behavior in rats. MSG upregulated protein presences of caspase-1, GSDMD, interleukin-1β (IL-1β), interleukin-18 (IL-18), NLR pyrin domain-containing 3 (NLRP3), apoptosis-associated speck-like protein (ASC), high mobility group box 1 protein (HMGB1), and the receptor for advanced glycation end products (RAGE) in the hippocampus. Protein presences of HMGB1, NLRP3 and GSDMD were upregulated in Olig2+ oligodendrocytes in the hippocampus. The data suggest that both HMGB1/RAGE/NLRP3 signalings and GSDMD-dependent pyroptosis were activated. Both minocycline and VX-765 treatments improved depressive-like behaviors. Minocycline treatment significantly reduced both HMGB1/RAGE/NLRP3 inflammasome signalings and GSDMD-dependent pyroptosis. VX-765 downregulated GSDMD-dependent pyroptosis, but not HMGB1/RAGE signalings, indicating that GSDMD-dependent pyroptosis is a key player in the progress of depression. CONCLUSION In rats hippocampus, NLRP3 inflammasome activates GSDMD mediated-pyroptosis in the hippocampus of MSG-induced depressive rats.
Collapse
Affiliation(s)
- Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Xiaofang Cai
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Zhonghai Yu
- Department of Traditional Chinese Medicine, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingsi Zhang
- Department of Neurology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, China; Institute of Neurology, Academy of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
43
|
Xu Y, Fang Z, Wu C, Xu H, Kong J, Huang Q, Zhang H. The Long-Term Effects of Adolescent Social Defeat Stress on Oligodendrocyte Lineage Cells and Neuroinflammatory Mediators in Mice. Neuropsychiatr Dis Treat 2020; 16:1321-1330. [PMID: 32547035 PMCID: PMC7250299 DOI: 10.2147/ndt.s247497] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/30/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Adverse childhood and adolescent experiences are associated with the emergences of psychopathology later in life and have negative consequences on white matter integrity. However, this adversity-induced white matter impairment remains not fully investigated. METHODS Adolescent Balb/c mice were subjected to intermittent social defeat stress once a day during postnatal days 25 to 40. Then, the subjects were allowed to recover for three weeks before sacrifice. At the end, oligodendrocyte (OL) lineage cells, cell proliferation, and microglia activation, as well as myelin basic protein (MBP) levels in frontal cortex and hippocampus were evaluated. The levels of interleukin (IL)-1β and IL-6 in the brain regions were assessed. RESULTS MBP protein level in frontal cortex, but not in the hippocampus of defeated mice, decreased significantly compared to controls. The numeral densities of mature OLs, oligodendrocyte progenitor cells, and proliferating cells in medial prefrontal cortex were comparable between the defeated mice and controls. The defeated mice, however, showed significantly higher IL-1β level, although IL-6 level and numeral density of microglia in frontal cortex did not change relative to controls. CONCLUSION These results indicate that effects of intermittent social defeat stress on the white matter integrity and OL lineage cells in mouse brain are region- and developmental stage-specific. Upregulated IL-1β may contribute to this negative consequence though the underlying mechanism remains to be investigated.
Collapse
Affiliation(s)
- Yingjuan Xu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Zeman Fang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Cairu Wu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Haiyun Xu
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China.,Affiliated Kangning Hospital, School of Psychiatry, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, University of Manitoba, Winnipeg, MB, Canada
| | - Qingjun Huang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| | - Handi Zhang
- Shantou University Mental Health Center, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
44
|
Shaw GA, Dupree JL, Neigh GN. Adolescent maturation of the prefrontal cortex: Role of stress and sex in shaping adult risk for compromise. GENES BRAIN AND BEHAVIOR 2019; 19:e12626. [DOI: 10.1111/gbb.12626] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| | - Jeffrey L. Dupree
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
- Research ServiceHunter Holmes McGuire VA Medical Center Richmond Virginia
| | - Gretchen N. Neigh
- Department of Anatomy and NeurobiologyVirginia Commonwealth University Richmond Virginia
| |
Collapse
|
45
|
Oligodendrocytes in Development, Myelin Generation and Beyond. Cells 2019; 8:cells8111424. [PMID: 31726662 PMCID: PMC6912544 DOI: 10.3390/cells8111424] [Citation(s) in RCA: 345] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/07/2019] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes are the myelinating cells of the central nervous system (CNS) that are generated from oligodendrocyte progenitor cells (OPC). OPC are distributed throughout the CNS and represent a pool of migratory and proliferative adult progenitor cells that can differentiate into oligodendrocytes. The central function of oligodendrocytes is to generate myelin, which is an extended membrane from the cell that wraps tightly around axons. Due to this energy consuming process and the associated high metabolic turnover oligodendrocytes are vulnerable to cytotoxic and excitotoxic factors. Oligodendrocyte pathology is therefore evident in a range of disorders including multiple sclerosis, schizophrenia and Alzheimer’s disease. Deceased oligodendrocytes can be replenished from the adult OPC pool and lost myelin can be regenerated during remyelination, which can prevent axonal degeneration and can restore function. Cell population studies have recently identified novel immunomodulatory functions of oligodendrocytes, the implications of which, e.g., for diseases with primary oligodendrocyte pathology, are not yet clear. Here, we review the journey of oligodendrocytes from the embryonic stage to their role in homeostasis and their fate in disease. We will also discuss the most common models used to study oligodendrocytes and describe newly discovered functions of oligodendrocytes.
Collapse
|
46
|
Bonnefil V, Dietz K, Amatruda M, Wentling M, Aubry AV, Dupree JL, Temple G, Park HJ, Burghardt NS, Casaccia P, Liu J. Region-specific myelin differences define behavioral consequences of chronic social defeat stress in mice. eLife 2019; 8:40855. [PMID: 31407664 PMCID: PMC6692108 DOI: 10.7554/elife.40855] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 07/09/2019] [Indexed: 12/26/2022] Open
Abstract
Exposure to stress increases the risk of developing mood disorders. While a subset of individuals displays vulnerability to stress, others remain resilient, but the molecular basis for these behavioral differences is not well understood. Using a model of chronic social defeat stress, we identified region-specific differences in myelination between mice that displayed social avoidance behavior (‘susceptible’) and those who escaped the deleterious effect to stress (‘resilient’). Myelin protein content in the nucleus accumbens was reduced in all mice exposed to stress, whereas decreased myelin thickness and internodal length were detected only in the medial prefrontal cortex (mPFC) of susceptible mice, with fewer mature oligodendrocytes and decreased heterochromatic histone marks. Focal demyelination in the mPFC was sufficient to decrease social preference, which was restored following new myelin formation. Together these data highlight the functional role of mPFC myelination as critical determinant of the avoidance response to traumatic social experiences. Editorial note: This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter). High levels of stress do not have the same effect on everybody: some individuals can show resilience and recover quickly, while other struggle to cope. Scientists have started to investigate how these differences may find their origin in biological processes, mainly by focusing on the role of neurons. However, neurons represent only one type of brain cells, and there is increasing evidence that interactions between neuronal and non-neuronal cells play an important role in the response to stress. Oligodendrocytes are a common type of non-neuronal cells which shield and feed nerve cells. In particular, their membrane constitutes the myelin sheath, a protective coating that insulates neurons and allows them to better communicate with each other using electric signals. Bonnefil et al. explored whether differences in oligodendrocytes could affect how mice responded to social stress. The rodents were exposed to repeated attacks from an aggressive mouse five minutes a day for ten days. After this period, ‘susceptible’ mice then avoided future contact with any other mice, while resilient animals remained interested in socializing. Comparing the brain areas of resilient and susceptible mice revealed differences in the oligodendrocytes of the medial prefrontal cortex, the part of the brain that controls emotions and thinking. Susceptible animals had fewer mature oligodendrocytes and their neurons were covered in thinner and shorter segments of myelin sheaths. There was also evidence that, in these animals, the genes that regulate the maturation of oligodendrocytes were more likely to be switched off. Taken together, these results may suggest that, in certain animals, social stress disrupts the genetic program that controls how oligodendrocytes develop, potentially leading to neurons communicating less well. To explore whether reduced amounts of myelin could be linked to decreased social behavior, Bonnefil et al. then damaged the myelin in the medial prefrontal cortex in another group of rodents. The mice were then less willing to interact with other animals until new sheaths had formed. The results by Bonnefil et al. undercover how changes in non-neuronal cells can at least in part explain differences in the way individuals respond to stress. Ultimately, this knowledge may be useful to design new strategies to foster resilience.
Collapse
Affiliation(s)
- Valentina Bonnefil
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Karen Dietz
- Department of Neuroscience, Icahn School of Medicine, New York, United States.,Friedman Brain Institute, Icahn School of Medicine, New York, United States
| | - Mario Amatruda
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Maureen Wentling
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Antonio V Aubry
- Department of Psychology, Hunter College, City University, New York, United States
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, United States
| | - Gary Temple
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Hye-Jin Park
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| | - Nesha S Burghardt
- Department of Psychology, Hunter College, City University, New York, United States
| | - Patrizia Casaccia
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States.,Department of Neuroscience, Icahn School of Medicine, New York, United States.,Friedman Brain Institute, Icahn School of Medicine, New York, United States
| | - Jia Liu
- Advanced Science Research Center at the Graduate Center, Neuroscience Initiative, City University, New York, United States
| |
Collapse
|
47
|
Holmes A. The neuroscience and genomics of social behavior. GENES BRAIN AND BEHAVIOR 2019; 18:e12551. [PMID: 30666807 DOI: 10.1111/gbb.12551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
48
|
Sillivan SE, Jones ME, Jamieson S, Rumbaugh G, Miller CA. Bioinformatic analysis of long-lasting transcriptional and translational changes in the basolateral amygdala following acute stress. PLoS One 2019; 14:e0209846. [PMID: 30629705 PMCID: PMC6328204 DOI: 10.1371/journal.pone.0209846] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022] Open
Abstract
Stress profoundly impacts the brain and increases the risk of developing a psychiatric disorder. The brain’s response to stress is mediated by a number of pathways that affect gene expression and protein function throughout the cell. Understanding how stress achieves such dramatic effects on the brain requires an understanding of the brain’s stress response pathways. The majority of studies focused on molecular changes have employed repeated or chronic stress paradigms to assess the long-term consequences of stress and have not taken an integrative genomic and/or proteomic approach. Here, we determined the lasting impact of a single stressful event (restraint) on the broad molecular profile of the basolateral amygdala complex (BLC), a key brain region mediating emotion, memory and stress. Molecular profiling performed thirty days post-restraint consisted of small RNA sequencing, RNA sequencing and quantitative mass spectrometry and identified long-lasting changes in microRNA (miRNA), messenger RNA (mRNA) and proteins. Alignment of the three datasets further delineated the regulation of stress-specific pathways which were validated by qPCR and Western Blot analysis. From this analysis, mir-29a-5p was identified as a putative regulator of stress-induced adaptations in the BLC. Further, a number of predicted mir-29a-5p targets are regulated at the mRNA and protein level. The concerted and long-lasting disruption of multiple molecular pathways in the amygdala by a single stress event is expected to be sufficient to alter behavioral responses to a wide array of future experiences, including exposure to additional stressors.
Collapse
Affiliation(s)
- Stephanie E. Sillivan
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Meghan E. Jones
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Sarah Jamieson
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Gavin Rumbaugh
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
| | - Courtney A. Miller
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida, United States of America
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida, United States of America
- * E-mail:
| |
Collapse
|