1
|
Korgan AC, Prendergast K, Rosenhauer AM, Morrison KE, Jovanovic T, Bale TL. Trauma and sensory systems: Biological mechanisms involving the skin and the 17q21 gene cluster. Biol Psychiatry 2024:S0006-3223(24)01737-2. [PMID: 39521032 DOI: 10.1016/j.biopsych.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Childhood trauma experience increases risk for neuropsychiatric and neurodevelopmental disorders, including posttraumatic stress disorder (PTSD), autism spectrum disorders (ASDs), and attention deficit/hyperactivity disorder (ADHD). While the biological mechanisms connecting adverse experiences with later disease presentation are not clear, the concept of Gene x Environment x Development (GxExD) interactions has significant implications for improving our understanding of these diseases. We recently utilized this approach in a study where we found that women exposed to interpersonal violence trauma (the E) uniquely during adolescence (the D), but not childhood or adulthood, had novel protein biomarkers (the G) associated with a sensory cell system in the skin, Merkel cells. Merkel cell mechanosensory signaling is important in gentle and social touch, inflammation-induced pain, and the skin's neuroendocrine stress response. Further, keratinocyte-derived Merkel cell final maturation occurs during the identified vulnerable period of adolescence. Interestingly, many of the genes identified in our study belong to a known 17q21 gene cluster, suggesting an identifiable location in the genome permanently altered by adolescent trauma. These results form a potential functional link between mechanosensory Merkel cells and the pathology and sensory symptomatology in PTSD. Future research directions could identify specific mechanisms involved in tactile alterations following trauma in hopes of revealing additional biomarkers and potentially leading to novel tactile-involved therapies (e.g., massage, electroacupuncture, or focused ultrasound).
Collapse
Affiliation(s)
- Austin C Korgan
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Kathryn Prendergast
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Anna M Rosenhauer
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | | | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI
| | - Tracy L Bale
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO.
| |
Collapse
|
2
|
Yao G, Pan J, Zou T, Li J, Li J, He X, Zhang F, Xu Y. Structure-function coupling changes in first-episode, treatment-naïve schizophrenia correlate with cell type-specific transcriptional signature. BMC Med 2024; 22:491. [PMID: 39443976 PMCID: PMC11515592 DOI: 10.1186/s12916-024-03714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND First-episode schizophrenia (FES) is a complex and progressive psychiatric disorder. The etiology of FES involves genetic, environmental, and neurobiological factors. This study investigates the association between alterations in structural-functional (SC-FC) coupling and transcriptional expression in FES. METHODS This study encompassed a cohort of 214 participants, comprising 111 FES patients and 103 healthy controls (HC). Furthermore, we examined the abnormalities within SC-FC coupling in FES and their correlations with meta-analytic cognitive terms, neurotransmitters, and transcriptional patterns through partial least squares regression (PLS), involving similarity with other psychiatric disorders or psychiatric-related diseases, functional enrichments, special cell types, peripheral inflammation, and cortical layers. RESULTS FES patients exhibited lower SC-FC coupling in the visual, sensorimotor, and ventral attention networks compared to controls. Furthermore, case-control t-maps revealed a negative correlation with neurotransmitters such as serotonin and dopamine, while showing a positive correlation with opioids. Positive t-maps were associated with cognitive functions, including reasoning, judgment, and action, whereas negative t-maps correlated with cognitive functions such as learning, stress, and mood. Moreover, there was a significant overlap between genes linked to abnormalities in SC-FC coupling and those dysregulated in inflammatory bowel diseases. PLS2- genes linked to SC-FC coupling demonstrated significant enrichment in pathways related to immunity and inflammation, as well as in cortical layers I and V. Conversely, PLS2 + genes were primarily enriched in synaptic signaling processes, specific excitatory neurons, and layers II and IV. Additionally, changes in SC-FC coupling were negatively associated with gene expression related to antipsychotics and lymphocytes. CONCLUSIONS These findings offer a new perspective on the complex interplay between SC-FC coupling abnormalities and transcriptional expression in the initial phases of schizophrenia.
Collapse
Affiliation(s)
- Guanqun Yao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Jingjing Pan
- Zhejiang Provincial Centers for Disease Control and Prevention, Hangzhou, 310051, China
| | - Ting Zou
- School of Life Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jing Li
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
| | - Juan Li
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, 453638, China
| | - Xiao He
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, 030001, China
- Shanxi Key Laboratory of Artificial Intelligence Assisted Diagnosis and Treatment for Mental Disorder, First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fuquan Zhang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Yong Xu
- Department of Clinical Psychology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shennan Middle Road, Futian District, Shenzhen City, Guangdong Province, 518031, China.
| |
Collapse
|
3
|
Santos JM, Deshmukh H, Elmassry MM, Yakhnitsa V, Ji G, Kiritoshi T, Presto P, Antenucci N, Liu X, Neugebauer V, Shen CL. Beneficial Effects of Ginger Root Extract on Pain Behaviors, Inflammation, and Mitochondrial Function in the Colon and Different Brain Regions of Male and Female Neuropathic Rats: A Gut-Brain Axis Study. Nutrients 2024; 16:3563. [PMID: 39458557 PMCID: PMC11510108 DOI: 10.3390/nu16203563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Neuroinflammation and mitochondrial dysfunction have been implicated in the progression of neuropathic pain (NP) but can be mitigated by supplementation with gingerol-enriched ginger (GEG). However, the exact benefits of GEG for each sex in treating neuroinflammation and mitochondrial homeostasis in different brain regions and the colon remain to be determined. OBJECTIVE Evaluate the effects of GEG on emotional/affective pain and spontaneous pain behaviors, neuroinflammation, as well as mitochondria homeostasis in the amygdala, frontal cortex, hippocampus, and colon of male and female rats in the spinal nerve ligation (SNL) NP model. METHODS One hundred rats (fifty males and fifty females) were randomly assigned to five groups: sham + vehicle, SNL + vehicle, and SNL with three different GEG doses (200, 400, and 600 mg/kg BW) for 5 weeks. A rat grimace scale and vocalizations were used to assess spontaneous and emotional/affective pain behaviors, respectively. mRNA gene and protein expression levels for tight junction protein, neuroinflammation, mitochondria homeostasis, and oxidative stress were measured in the amygdala, frontal cortex, hippocampus, and colon using qRT-PCR and Western blot (colon). RESULTS GEG supplementation mitigated spontaneous pain in both male and female rats with NP while decreasing emotional/affective responses only in male NP rats. GEG supplementation increased intestinal integrity (claudin 3) and suppressed neuroinflammation [glial activation (GFAP, CD11b, IBA1) and inflammation (TNFα, NFκB, IL1β)] in the selected brain regions and colon of male and female NP rats. GEG supplementation improved mitochondrial homeostasis [increased biogenesis (TFAM, PGC1α), increased fission (FIS, DRP1), decreased fusion (MFN2, MFN1) and mitophagy (PINK1), and increased Complex III] in the selected brain regions and colon in both sexes. Some GEG dose-response effects in gene expression were observed in NP rats of both sexes. CONCLUSIONS GEG supplementation decreased emotional/affective pain behaviors of males and females via improving gut integrity, suppressing neuroinflammation, and improving mitochondrial homeostasis in the amygdala, frontal cortex, hippocampus, and colon in both male and female SNL rats in an NP model, implicating the gut-brain axis in NP. Sex differences observed in the vocalizations assay may suggest different mechanisms of evoked NP responses in females.
Collapse
Affiliation(s)
- Julianna Maria Santos
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Department of Microanatomy and Cellular Biology, Woody L. Hunt School of Dental Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905, USA
| | - Hemalata Deshmukh
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Moamen M. Elmassry
- Department of Molecular Biology, Princeton University, Princeton, NJ 08540, USA;
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
| | - Xiaobo Liu
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (V.Y.); (G.J.); (T.K.); (P.P.); (N.A.); (V.N.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (J.M.S.); (H.D.); (X.L.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79401, USA
| |
Collapse
|
4
|
Lacasse JM, Heller C, Kheloui S, Ismail N, Raval AP, Schuh KM, Tronson NC, Leuner B. Beyond Birth Control: The Neuroscience of Hormonal Contraceptives. J Neurosci 2024; 44:e1235242024. [PMID: 39358019 PMCID: PMC11450536 DOI: 10.1523/jneurosci.1235-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 10/04/2024] Open
Abstract
Hormonal contraceptives (HCs) are one of the most highly prescribed classes of drugs in the world used for both contraceptive and noncontraceptive purposes. Despite their prevalent use, the impact of HCs on the brain remains inadequately explored. This review synthesizes recent findings on the neuroscience of HCs, with a focus on human structural neuroimaging as well as translational, nonhuman animal studies investigating the cellular, molecular, and behavioral effects of HCs. Additionally, we consider data linking HCs to mood disorders and dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis and stress response as a potential mediator. The review also addresses the unique sensitivity of the adolescent brain to HCs, noting significant changes in brain structure and function when HCs are used during this developmental period. Finally, we discuss potential effects of HCs in combination with smoking-derived nicotine on outcomes of ischemic brain damage. Methodological challenges, such as the variability in HC formulations and user-specific factors, are acknowledged, emphasizing the need for precise and individualized research approaches. Overall, this review underscores the necessity for continued interdisciplinary research to elucidate the neurobiological mechanisms of HCs, aiming to optimize their use and improve women's health.
Collapse
Affiliation(s)
- Jesse M Lacasse
- Department of Psychology, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Centre for Neuroscience, Brock University, St Catharines, Ontario L2S 3A1, Canada
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario M6J 1H4, Canada
| | - Carina Heller
- Department of Clinical Psychology, Friedrich Schiller University Jena, Jena 07743, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany
- German Center for Mental Health (DZPG), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Partner Site Jena-Magdeburg-Halle, Jena 07743, Germany
| | - Sarah Kheloui
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Nafissa Ismail
- NISE Lab, School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ami P Raval
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami and Bruce W. Carter Department of Veterans Affairs Medical Center, Miami, Florida 33136
| | - Kristen M Schuh
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Natalie C Tronson
- Psychology Department, University of Michigan, Ann Arbor, Michigan 48109
| | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, Ohio 43210
- Department of Neuroscience, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
5
|
Alcaide J, Gramuntell Y, Klimczak P, Bueno-Fernandez C, Garcia-Verellen E, Guicciardini C, Sandi C, Castillo-Gómez E, Crespo C, Perez-Rando M, Nacher J. Long term effects of peripubertal stress on the thalamic reticular nucleus of female and male mice. Neurobiol Dis 2024; 200:106642. [PMID: 39173845 DOI: 10.1016/j.nbd.2024.106642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024] Open
Abstract
Adverse experiences during infancy and adolescence have an important and enduring effect on the brain and are predisposing factors for mental disorders, particularly major depression. This impact is particularly notable in regions with protracted development, such as the prefrontal cortex. The inhibitory neurons of this cortical region are altered by peripubertal stress (PPS), particularly in female mice. In this study we have explored whether the inhibitory circuits of the thalamus are impacted by PPS in male and female mice. This diencephalic structure, as the prefrontal cortex, also completes its development during postnatal life and is affected by adverse experiences. The long-term changes induced by PPS were exclusively found in adult female mice. We have found that PPS increases depressive-like behavior and induces changes in parvalbumin-expressing (PV+) cells of the thalamic reticular nucleus (TRN). We observed reductions in the volume of the TRN, together with those of parameters related to structures/molecules that regulate the plasticity and connectivity of PV+ cells: perineuronal nets, matricellular structures surrounding PV+ neurons, and the polysialylated form of the neural cell adhesion molecule (PSA-NCAM). The expression of the GluN1, but not of GluN2C, NMDA receptor subunit was augmented in the TRN after PPS. An increase in the fluorescence intensity of PV+ puncta was also observed in the synaptic output of TRN neurons in the lateral posterior thalamic nucleus. These results demonstrate that the inhibitory circuits of the thalamus, as those of the prefrontal cortex, are vulnerable to the effects of aversive experiences during early life, particularly in females. This vulnerability is probably related to the protracted development of the TRN and might contribute to the development of psychiatric disorders.
Collapse
Affiliation(s)
- Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Yaiza Gramuntell
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Patrycja Klimczak
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain
| | - Erica Garcia-Verellen
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Chiara Guicciardini
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain
| | - Carlos Crespo
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain; Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010 Valencia, Spain.
| |
Collapse
|
6
|
Mendez Colmenares A, Thomas ML, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Kramer AF, Li K, Lee J, Lee P, Burzynska AZ. Testing the structural disconnection hypothesis: Myelin content correlates with memory in healthy aging. Neurobiol Aging 2024; 141:21-33. [PMID: 38810596 PMCID: PMC11290458 DOI: 10.1016/j.neurobiolaging.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/07/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
INTRODUCTION The "structural disconnection" hypothesis of cognitive aging suggests that deterioration of white matter (WM), especially myelin, results in cognitive decline, yet in vivo evidence is inconclusive. METHODS We examined age differences in WM microstructure using Myelin Water Imaging and Diffusion Tensor Imaging in 141 healthy participants (age 20-79). We used the Virginia Cognitive Aging Project and the NIH Toolbox® to generate composites for memory, processing speed, and executive function. RESULTS Voxel-wise analyses showed that lower myelin water fraction (MWF), predominantly in prefrontal WM, genu of the corpus callosum, and posterior limb of the internal capsule was associated with reduced memory performance after controlling for age, sex, and education. In structural equation modeling, MWF in the prefrontal white matter and genu of the corpus callosum significantly mediated the effect of age on memory, whereas fractional anisotropy (FA) did not. DISCUSSION Our findings support the disconnection hypothesis, showing that myelin decline contributes to age-related memory loss and opens avenues for interventions targeting myelin health.
Collapse
Affiliation(s)
- Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin St, Fort Collins, CO 80523, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin, St, Fort Collins, CO 80523, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, 456 University Ave #444, Fort Collins, CO 80521, USA
| | - David B Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, 12348 E Montview Blvd, Aurora, CO 80045, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, 55 Park Pl NE, Atlanta, GA 30303, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, 3805 Eaton St, Kansas City, KS 66103, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, 405 N Mathews Ave, Urbana, IL 61801, USA; Center for Cognitive & Brain Health, Northeastern University, Address: 360 Huntington Ave, Boston, MA 02115, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, 951 W Plum St, Fort Collins, CO 80521, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, 232 Gongneung-ro, Nowon-gu, Seoul 01811, South Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, 3805 Eaton St, Kansas City, KS 66103, USA
| | - Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Behavioral Sciences Building, 303, 410 W Pitkin St, Fort Collins, CO 80523, USA.
| |
Collapse
|
7
|
Raschle NM, Borbás R, Dimanova P, Unternaehrer E, Kohls G, De Brito S, Fairchild G, Freitag CM, Konrad K, Stadler C. Losing Control: Prefrontal Emotion Regulation Is Related to Symptom Severity and Predicts Treatment-Related Symptom Change in Adolescent Girls With Conduct Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00240-4. [PMID: 39182724 DOI: 10.1016/j.bpsc.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Emotion regulation skills are linked to corticolimbic brain activity (e.g., dorsolateral prefrontal cortex [dlPFC] and limbic regions) and enable an individual to control their emotional experiences, thus allowing healthy social functioning. Disruptions in emotion regulation skills are reported in neuropsychiatric disorders, including conduct disorder or oppositional defiant disorder (CD/ODD). Clinically recognized means to ameliorate emotion regulation deficits observed in CD/ODD include cognitive or dialectical behavioral skills therapy as implemented in the START NOW program. However, the role of emotion regulation and its neural substrates in symptom severity and prognosis following treatment of adolescent CD/ODD has not been investigated. METHODS Cross-sectional data including functional magnetic resonance imaging responses during emotion regulation (N = 114; average age = 15 years), repeated-measures assessments of symptom severity (pretreatment, posttreatment, long-term follow-up), and functional magnetic resonance imaging data collected prior to and following the START NOW randomized controlled trial (n = 44) for female adolescents with CD/ODD were analyzed using group comparisons and multiple regression. RESULTS First, behavioral and neural correlates of emotion regulation were disrupted in female adolescents with CD/ODD. Second, ODD symptom severity was negatively associated with dlPFC/precentral gyrus activity during regulation. Third, treatment-related symptom changes were predicted by pretreatment ODD symptom severity and regulatory dlPFC/precentral activity. Additionally, pretreatment dlPFC/precentral activity and ODD symptom severity predicted long-term reductions in symptom severity following treatment for participants who received the START NOW treatment. CONCLUSIONS Our findings demonstrate the important role that emotion regulation skills play in the characteristics of CD/ODD and show that regulatory dlPFC/precentral activity is positively associated with treatment response in female adolescents with CD/ODD.
Collapse
Affiliation(s)
- Nora Maria Raschle
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland.
| | - Réka Borbás
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland
| | - Plamina Dimanova
- Jacobs Center for Productive Youth Development, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Eva Unternaehrer
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| | - Gregor Kohls
- Department of Child and Adolescent Psychiatry, Medical Faculty, TU Dresden, Dresden, Germany
| | - Stephane De Brito
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom; School of Psychology, University of Birmingham, Birmingham, United Kingdom; Institute for Mental Health, University of Birmingham, Birmingham, United Kingdom; Centre for Developmental Science, University of Birmingham, Birmingham, United Kingdom; Centre for Neurogenetics, University of Birmingham, Birmingham, United Kingdom
| | - Graeme Fairchild
- Department of Psychology, University of Bath, Bath, United Kingdom
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Kerstin Konrad
- Child Neuropsychology Section, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, RWTH Aachen, Aachen, Germany; Brain Institute II, Molecular Neuroscience and Neuroimaging, RWTH Aachen and Research Centre Jülich, Jülich, Germany
| | - Christina Stadler
- Department of Child and Adolescent Psychiatry, Psychiatric University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Hagan KE, Aimufua I, Haynos AF, Walsh BT. The explore/exploit trade-off: An ecologically valid and translational framework that can advance mechanistic understanding of eating disorders. Int J Eat Disord 2024; 57:1102-1108. [PMID: 38385592 DOI: 10.1002/eat.24173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The explore/exploit trade-off is a decision-making process that is conserved across species and balances exploring unfamiliar choices of unknown value with choosing familiar options of known value to maximize reward. This framework is rooted in behavioral ecology and has traditionally been used to study maladaptive versus adaptive non-human animal foraging behavior. Researchers have begun to recognize the potential utility of understanding human decision-making and psychopathology through the explore/exploit trade-off. In this article, we propose that explore/exploit trade-off holds promise for advancing our mechanistic understanding of decision-making processes that confer vulnerability for and maintain eating pathology due to its neurodevelopmental bases, conservation across species, and ability to be mathematically modeled. We present a model for how suboptimal explore/exploit decision-making can promote disordered eating and present recommendations for future research applying this framework to eating pathology. Taken together, the explore/exploit trade-off provides a translational framework for expanding etiologic and maintenance models of eating pathology, given developmental changes in explore/exploit decision-making that coincide in time with the emergence of eating pathology and evidence of biased explore/exploit decision-making in psychopathology. Additionally, understanding explore/exploit decision-making in eating disorders may improve knowledge of their underlying pathophysiology, informing targeted clinical interventions such as neuromodulation and pharmacotherapy. PUBLIC SIGNIFICANCE STATEMENT: The explore/exploit trade-off is a cross-species decision-making process whereby organisms choose between a known option with a known reward or sampling unfamiliar options. We hypothesize that imbalanced explore/exploit decision-making can promote disordered eating and present preliminary data. We propose that explore/exploit trade-off has significant potential to advance understanding of the neurocognitive and neurodevelopmental mechanisms of eating pathology, which could ultimately guide revisions of etiologic models and inform novel interventions.
Collapse
Affiliation(s)
- Kelsey E Hagan
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
- Institute for Women's Health, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Ivieosa Aimufua
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA
| | - Ann F Haynos
- Department of Psychiatry, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Psychology, Virginia Commonwealth University, Richmond, Virginia, USA
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | - B Timothy Walsh
- Department of Psychiatry, New York State Psychiatric Institute, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
9
|
Howe CG, Laue HE. Invited Perspective: Studying Metal Impacts on Neurobehavior during the Critical but Challenging Window of Adolescence. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:21303. [PMID: 38363633 PMCID: PMC10871113 DOI: 10.1289/ehp14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Affiliation(s)
- Caitlin G. Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Hannah E. Laue
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
10
|
Schildroth S, Kordas K, White RF, Friedman A, Placidi D, Smith D, Lucchini RG, Wright RO, Horton M, Claus Henn B. An Industry-Relevant Metal Mixture, Iron Status, and Reported Attention-Related Behaviors in Italian Adolescents. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:27008. [PMID: 38363634 PMCID: PMC10871126 DOI: 10.1289/ehp12988] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND Exposure to environmental metals has been consistently associated with attention and behavioral deficits in children, and these associations may be modified by coexposure to other metals or iron (Fe) status. However, few studies have investigated Fe status as a modifier of a metal mixture, particularly with respect to attention-related behaviors. METHODS We used cross-sectional data from the Public Health Impact of Metals Exposure study, which included 707 adolescents (10-14 years of age) from Brescia, Italy. Manganese, chromium, and copper were quantified in hair samples, and lead was quantified in whole blood, using inductively coupled plasma mass spectrometry. Concentrations of Fe status markers (ferritin, hemoglobin, transferrin) were measured using immunoassays or luminescence assays. Attention-related behaviors were assessed using the Conners Rating Scales Self-Report Scale-Long Form, Parent Rating Scales Revised-Short Form, and Teacher Rating Scales Revised-Short Form. We employed Bayesian kernel machine regression to examine associations of the metal mixture with these outcomes and evaluate Fe status as a modifier. RESULTS Higher concentrations of the metals and ferritin were jointly associated with worse self-reported attention-related behaviors: metals and ferritin set to their 90th percentiles were associated with 3.0% [β = 0.03 ; 95% credible interval (CrI): - 0.01 , 0.06], 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08), and 4.1% (β = 0.04 ; 95% CrI: 0.00, 0.08) higher T -scores for self-reported attention deficit/hyperactivity disorder (ADHD) index, inattention, and hyperactivity, respectively, compared with when metals and ferritin were set to their 50th percentiles. These associations were driven by hair manganese, which exhibited nonlinear associations with all self-reported scales. There was no evidence that Fe status modified the neurotoxicity of the metal mixture. The metal mixture was not materially associated with any parent-reported or teacher-reported scale. CONCLUSIONS The overall metal mixture, driven by manganese, was adversely associated with self-reported attention-related behavior. These findings suggest that exposure to multiple environmental metals impacts adolescent neurodevelopment, which has significant public health implications. https://doi.org/10.1289/EHP12988.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, New York, USA
| | - Roberta F. White
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
- Department of Neurology, Boston University, Boston, Massachusetts, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, Santa Cruz, California, USA
| | - Roberto G. Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Florida International University, Miami, Florida, USA
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
11
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
12
|
Yao G, Zou T, Luo J, Hu S, Yang L, Li J, Li X, Zhang Y, Feng K, Xu Y, Liu P. Cortical structural changes of morphometric similarity network in early-onset schizophrenia correlate with specific transcriptional expression patterns. BMC Med 2023; 21:479. [PMID: 38049797 PMCID: PMC10696871 DOI: 10.1186/s12916-023-03201-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND This study aimed to investigate the neuroanatomical subtypes among early-onset schizophrenia (EOS) patients by exploring the association between structural alterations and molecular mechanisms using a combined analysis of morphometric similarity network (MSN) changes and specific transcriptional expression patterns. METHODS We recruited 206 subjects aged 7 to 17 years, including 100 EOS patients and 106 healthy controls (HC). Heterogeneity through discriminant analysis (HYDRA) was used to identify the EOS subtypes within the MSN strength. The differences in morphometric similarity between each EOS subtype and HC were compared. Furthermore, we examined the link between morphometric changes and brain-wide gene expression in different EOS subtypes using partial least squares regression (PLS) weight mapping, evaluated genetic commonalities with psychiatric disorders, identified functional enrichments of PLS-weighted genes, and assessed cellular transcriptional signatures. RESULTS Two distinct MSN-based EOS subtypes were identified, each exhibiting different abnormal MSN strength and cognitive functions compared to HC. The PLS1 score mapping demonstrated anterior-posterior gradients of gene expression in EOS1, whereas inverse distributions were observed in EOS2 cohorts. Genetic commonalities were identified in autistic disorder and adult schizophrenia with EOS1 and inflammatory bowel diseases with EOS2 cohorts. The EOS1 PLS1- genes (Z < -5) were significantly enriched in synaptic signaling-related functions, whereas EOS2 demonstrated enrichments in virtual infection-related pathways. Furthermore, the majority of observed associations with EOS1-specific MSN strength differences contributed to specific transcriptional changes in astrocytes and neurons. CONCLUSIONS The findings of this study provide a comprehensive analysis of neuroanatomical subtypes in EOS, shedding light on the intricate relationships between macrostructural and molecular aspects of the EOS disease.
Collapse
Affiliation(s)
- Guanqun Yao
- School of Medicine, Tsinghua University, Beijing, 100084, China
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Shijingshan District, 5 Shijingshan Road, Beijing, China
| | - Ting Zou
- School of Life Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jing Luo
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Shuang Hu
- Shanghai Mental Health Center, Shanghai, 200030, China
| | - Langxiong Yang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jing Li
- College of Humanities and Social Science, Shanxi Medical University, Taiyuan, 030001, China
- School of Mental Health, Shanxi Medical University, Taiyuan, 030001, China
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Xinrong Li
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Yuqi Zhang
- School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Kun Feng
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Shijingshan District, 5 Shijingshan Road, Beijing, China.
| | - Yong Xu
- School of Mental Health, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Psychiatry, the First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Mental Health, Shanxi Medical University, Taiyuan Central Hospital of Shanxi Medical University, 256 Fen Dongnan Road, Xiaodian District, Taiyuan City, Shanxi Province, China.
| | - Pozi Liu
- School of Medicine, Tsinghua University, Beijing, 100084, China.
- Department of Psychiatry, Tsinghua University Yuquan Hospital, Shijingshan District, 5 Shijingshan Road, Beijing, China.
| |
Collapse
|
13
|
Ku BS, Collins M, Anglin DM, Diomino AM, Addington J, Bearden CE, Cadenhead KS, Cannon TD, Cornblatt BA, Druss BG, Keshavan M, Mathalon DH, Perkins DO, Stone WS, Tsuang MT, Woods SW, Walker EF. Associations between childhood ethnoracial minority density, cortical thickness, and social engagement among minority youth at clinical high-risk for psychosis. Neuropsychopharmacology 2023; 48:1707-1715. [PMID: 37438421 PMCID: PMC10579230 DOI: 10.1038/s41386-023-01649-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
An ethnoracial minority density (EMD) effect in studies of psychotic spectrum disorders has been observed, whereby the risk of psychosis in ethnoracial minority group individuals is inversely related to the proportion of minorities in their area of residence. The authors investigated the relationships among area-level EMD during childhood, cortical thickness (CT), and social engagement (SE) in clinical high risk for psychosis (CHR-P) youth. Data were collected as part of the North American Prodrome Longitudinal Study. Participants included 244 ethnoracial minoritized (predominantly Hispanic, Asian and Black) CHR-P youth and ethnoracial minoritized healthy controls. Among youth at CHR-P (n = 164), lower levels of EMD during childhood were associated with reduced CT in the right fusiform gyrus (adjusted β = 0.54; 95% CI 0.17 to 0.91) and right insula (adjusted β = 0.40; 95% CI 0.05 to 0.74). The associations between EMD and CT were significantly moderated by SE: among youth with lower SE (SE at or below the median, n = 122), lower levels of EMD were significantly associated with reduced right fusiform gyrus CT (adjusted β = 0.72; 95% CI 0.29 to 1.14) and reduced right insula CT (adjusted β = 0.57; 95% CI 0.18 to 0.97). However, among those with greater SE (n = 42), the associations between EMD and right insula and fusiform gyrus CT were not significant. We found evidence that lower levels of ethnic density during childhood were associated with reduced cortical thickness in regional brain regions, but this association may be buffered by greater levels of social engagement.
Collapse
Affiliation(s)
- Benson S Ku
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.
| | - Meghan Collins
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Deidre M Anglin
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
- The Graduate Center, City University of New York, New York, NY, USA
| | - Anthony M Diomino
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | - Kristin S Cadenhead
- Department of Psychology, The City College of New York, City University of New York, New York, NY, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Barbara A Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, Northwell Health, Glen Oaks, NY, USA
- Department of Psychiatry, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Benjamin G Druss
- Department of Health Policy and Management, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Matcheri Keshavan
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, University of California, and San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - William S Stone
- Harvard Medical School, Departments of Psychiatry at Massachusetts Mental Health Center Public Psychiatry Division, Beth Israel Deaconess Medical Center, and Massachusetts General Hospital, Boston, MA, USA
| | - Ming T Tsuang
- Department of Psychiatry, University of California, San Diego, CA, USA
| | - Scott W Woods
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| |
Collapse
|
14
|
Schildroth S, Friedman A, White RF, Kordas K, Placidi D, Bauer JA, Webster TF, Coull BA, Cagna G, Wright RO, Smith D, Lucchini RG, Horton M, Claus Henn B. Associations of an industry-relevant metal mixture with verbal learning and memory in Italian adolescents: The modifying role of iron status. ENVIRONMENTAL RESEARCH 2023; 224:115457. [PMID: 36773645 PMCID: PMC10117691 DOI: 10.1016/j.envres.2023.115457] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/30/2023] [Accepted: 02/08/2023] [Indexed: 05/18/2023]
Abstract
BACKGROUND Biomarker concentrations of metals are associated with neurodevelopment, and these associations may be modified by nutritional status (e.g., iron deficiency). No prior study on associations of metal mixtures with neurodevelopment has assessed effect modification by iron status. OBJECTIVES We aimed to quantify associations of an industry-relevant metal mixture with verbal learning and memory among adolescents, and to investigate the modifying role of iron status on those associations. METHODS We used cross-sectional data from 383 Italian adolescents (10-14 years) living in proximity to ferroalloy industry. Verbal learning and memory was assessed using the California Verbal Learning Test for Children (CVLT-C), and metals were quantified in hair (manganese, copper, chromium) or blood (lead) using inductively coupled plasma mass spectrometry. Serum ferritin, a proxy for iron status, was measured using immunoassays. Covariate-adjusted associations of the metal mixture with CVLT subtests were estimated using Bayesian Kernel Machine Regression, and modification of the mixture associations by ferritin was examined. RESULTS Compared to the 50th percentile of the metal mixture, the 90th percentile was associated with a 0.12 standard deviation [SD] (95% CI = -0.27, 0.50), 0.16 SD (95% CI = -0.11, 0.44), and 0.11 SD (95% CI = -0.20, 0.43) increase in the number of words recalled for trial 5, long delay free, and long delay cued recall, respectively. For an increase from its 25th to 75th percentiles, copper was beneficially associated the recall trials when other metals were fixed at their 50th percentiles (for example, trial 5 recall: β = 0.31, 95% CI = 0.14, 0.48). The association between copper and trial 5 recall was stronger at the 75th percentile of ferritin, compared to the 25th or 50th percentiles. CONCLUSIONS In this metal mixture, copper was beneficially associated with neurodevelopment, which was more apparent at higher ferritin concentrations. These findings suggest that metal associations with neurodevelopment may depend on iron status, which has important public health implications.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA.
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA; Department of Neurology, Boston University, Boston MA, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Julia A Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Thomas F Webster
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston MA, USA
| | - Giuseppa Cagna
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz CA, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami FL, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston MA, USA
| |
Collapse
|
15
|
Stepanous J, Munford L, Qualter P, Nees F, Elliott R. Longitudinal Associations between Peer and Family Relationships, Emotional Symptoms, and Regional Brain Volume across Adolescence. J Youth Adolesc 2023; 52:734-753. [PMID: 36807228 PMCID: PMC9957881 DOI: 10.1007/s10964-023-01740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/23/2023]
Abstract
The period of adolescence brings with it a dynamic interaction between social context and behaviour, structural brain development, and anxiety and depressive symptoms. The rate of volumetric change in the ventromedial prefrontal cortex (vmPFC) and amygdala have been implicated in socioemotional development in adolescence; typically, there is thinning of grey matter volume (GMV) in the vmPFC and growth in the amygdala during this time. The directionality of the associations between social, emotional, and neuroanatomical factors has yet to be untangled, such as the degree to which social variables impact regional brain development, and vice versa. To add, the differences between sexes are still up for debate. In this study, longitudinal associations between peer problems, family support, socioeconomic stress, emotional symptoms, amygdala volume, and vmPFC GMV were investigated for both sexes using latent change score models. Data from a multi-site European study at baseline (mean (SD) age = 14.40 (0.38) years; % female = 53.19) and follow-up 2 (mean (SD) age = 18.90 (0.69) years, % female = 53.19) were used. Results revealed that peer problems did not predict emotional symptoms, rather they changed together over time. For males only, there was positive correlated change between vmPFC GMV, peer problems and emotional symptoms, indicating that slower vmPFC GMV thinning was associated with poorer social and emotional functioning. Additionally, greater family support at age 14 years was associated with slower growth of amygdala volume between ages 14 and 19 years for males; previous research has related slower amygdala growth to resilience to mental health disorders. The findings have extended understanding of mutual social, emotional and brain development, and avenues to protect mental health.
Collapse
Affiliation(s)
- Jessica Stepanous
- Department of Psychology and Mental Health, University of Manchester, Manchester, Greater Manchester, UK.
| | - Luke Munford
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Manchester, Greater Manchester, UK
| | - Pamela Qualter
- Manchester Institute of Education, University of Manchester, Manchester, Greater Manchester, UK
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Rebecca Elliott
- Department of Psychology and Mental Health, University of Manchester, Manchester, Greater Manchester, UK
| |
Collapse
|
16
|
O’Hearn K, Lynn A. Age differences and brain maturation provide insight into heterogeneous results in autism spectrum disorder. Front Hum Neurosci 2023; 16:957375. [PMID: 36819297 PMCID: PMC9934814 DOI: 10.3389/fnhum.2022.957375] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/07/2022] [Indexed: 02/05/2023] Open
Abstract
Studies comparing individuals with autism spectrum disorder (ASD) to typically developing (TD) individuals have yielded inconsistent results. These inconsistencies reflect, in part, atypical trajectories of development in children and young adults with ASD compared to TD peers. These different trajectories alter group differences between children with and without ASD as they age. This paper first summarizes the disparate trajectories evident in our studies and, upon further investigation, laboratories using the same recruiting source. These studies indicated that cognition improves into adulthood typically, and is associated with the maturation of striatal, frontal, and temporal lobes, but these age-related improvements did not emerge in the young adults with ASD. This pattern - of improvement into adulthood in the TD group but not in the group with ASD - occurred in both social and non-social tasks. However, the difference between TD and ASD trajectories was most robust on a social task, face recognition. While tempting to ascribe this uneven deficit to the social differences in ASD, it may also reflect the prolonged typical development of social cognitive tasks such as face recognition into adulthood. This paper then reviews the evidence on age-related and developmental changes from other studies on ASD. The broader literature also suggests that individuals with ASD do not exhibit the typical improvements during adolescence on skills important for navigating the transition to adulthood. These skills include execution function, social cognition and communication, and emotional recognition and self-awareness. Relatedly, neuroimaging studies indicate arrested or atypical brain maturation in striatal, frontal, and temporal regions during adolescence in ASD. This review not only highlights the importance of a developmental framework and explicit consideration of age and/or stage when studying ASD, but also the potential importance of adolescence on outcomes in ASD.
Collapse
Affiliation(s)
- Kirsten O’Hearn
- Department of Physiology and Pharmacology, Atrium Health Wake Forest Baptist Medical Center, Winston-Salem, NC, United States,*Correspondence: Kirsten O’Hearn,
| | - Andrew Lynn
- Department of Special Education, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
17
|
Freimer D, Yang TT, Ho TC, Tymofiyeva O, Leung C. The gut microbiota, HPA axis, and brain in adolescent-onset depression: Probiotics as a novel treatment. Brain Behav Immun Health 2022; 26:100541. [PMID: 36536630 PMCID: PMC9758412 DOI: 10.1016/j.bbih.2022.100541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022] Open
Abstract
Stress-associated disruptions in the development of frontolimbic regions may play a critical role in the emergence of adolescent-onset depression. These regions are particularly sensitive to Hypothalamic-Pituitary-Adrenal (HPA) axis signaling. The HPA axis is hyperactive in adolescent depression, and interventions that attenuate such hyperactivity hold promise as potential treatments. The Microbiome-Gut-Brain (MGB) axis is an important pathway through which stress dysregulates HPA-axis activity and thus exerts deleterious effects on the adolescent brain. Probiotic agents, which alter the gut microbiota composition by introducing bacterial strains with beneficial physiological effects, normalize aberrant HPA-axis activity and reduce depressive symptoms in both animal studies and adult clinical trials. While the potential utility of such agents in treating or preventing adolescent depression remains largely unexplored, recent data suggest the existence of an adolescent sensitive window during which probiotics may be especially efficacious in reducing depressive symptoms compared to effects observed in adult populations. In this review, we outline evidence that probiotic use may attenuate stress effects on frontolimbic development, providing a novel means of improving depressive symptoms among adolescent populations.
Collapse
Affiliation(s)
- Daniel Freimer
- University of California, San Francisco (UCSF), School of Medicine, USA
| | - Tony T. Yang
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
- Division of Child and Adolescent Psychiatry, USA
- The Langley Porter Psychiatric Institute, USA
| | - Tiffany C. Ho
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, USA
| | - Olga Tymofiyeva
- University of California, San Francisco (UCSF), School of Medicine, USA
- Department of Radiology and Biomedical Imaging, USA
| | - Cherry Leung
- University of California, San Francisco (UCSF), School of Nursing, Department of Community Health Systems, USA
| |
Collapse
|
18
|
Uliana DL, Zhu X, Gomes FV, Grace AA. Using animal models for the studies of schizophrenia and depression: The value of translational models for treatment and prevention. Front Behav Neurosci 2022; 16:935320. [PMID: 36090659 PMCID: PMC9449416 DOI: 10.3389/fnbeh.2022.935320] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/04/2022] [Indexed: 11/29/2022] Open
Abstract
Animal models of psychiatric disorders have been highly effective in advancing the field, identifying circuits related to pathophysiology, and identifying novel therapeutic targets. In this review, we show how animal models, particularly those based on development, have provided essential information regarding circuits involved in disorders, disease progression, and novel targets for intervention and potentially prevention. Nonetheless, in recent years there has been a pushback, largely driven by the US National Institute of Mental Health (NIMH), to shift away from animal models and instead focus on circuits in normal subjects. This has been driven primarily from a lack of discovery of new effective therapeutic targets, and the failure of targets based on preclinical research to show efficacy. We discuss why animal models of complex disorders, when strongly cross-validated by clinical research, are essential to understand disease etiology as well as pathophysiology, and direct new drug discovery. Issues related to shortcomings in clinical trial design that confound translation from animal models as well as the failure to take patient pharmacological history into account are proposed to be a source of the failure of what are likely effective compounds from showing promise in clinical trials.
Collapse
Affiliation(s)
- Daniela L. Uliana
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiyu Zhu
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Felipe V. Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Anthony A. Grace
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
19
|
Developmental trajectory of time perception from childhood to adolescence. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Reduced and delayed myelination and volume of corpus callosum in an animal model of Fetal Alcohol Spectrum Disorders partially benefit from voluntary exercise. Sci Rep 2022; 12:10653. [PMID: 35739222 PMCID: PMC9226126 DOI: 10.1038/s41598-022-14752-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022] Open
Abstract
1 in 20 live births in the United States is affected by prenatal alcohol exposure annually, creating a major public health crisis. The teratogenic impact of alcohol on physical growth, neurodevelopment, and behavior is extensive, together resulting in clinical disorders which fall under the umbrella term of Fetal Alcohol Spectrum Disorders (FASD). FASD-related impairments to executive function and perceptual learning are prevalent among affected youth and are linked to disruptions to corpus callosum growth and myelination in adolescence. Targeted interventions that support neurodevelopment in FASD-affected youth are nonexistent. We evaluated the capacity of an adolescent exercise intervention, a stimulator of myelinogenesis, to upregulate corpus callosum myelination in a rat model of FASD (third trimester-equivalent alcohol exposure). This study employs in vivo diffusion tensor imaging (DTI) scanning to investigate the effects of: (1) neonatal alcohol exposure and (2) an adolescent exercise intervention on corpus callosum myelination in a rodent model of FASD. DTI scans were acquired twice longitudinally (pre- and post-intervention) in male and female rats using a 9.4 Tesla Bruker Biospec scanner to assess alterations to corpus callosum myelination noninvasively. Fractional anisotropy values as well as radial/axial diffusivity values were compared within-animal in a longitudinal study design. Analyses using mixed repeated measures ANOVA’s confirm that neonatal alcohol exposure in a rodent model of FASD delays the trajectory of corpus callosum growth and myelination across adolescence, with a heightened vulnerability in the male brain. Alterations to corpus callosum volume are correlated with reductions to forebrain volume which mediates an indirect relationship between body weight gain and corpus callosum growth. While we did not observe any significant effects of voluntary aerobic exercise on corpus callosum myelination immediately after completion of the 12-day intervention, we did observe a beneficial effect of exercise intervention on corpus callosum volume growth in all rats. In line with clinical findings, we have shown that prenatal alcohol exposure leads to hypomyelination of the corpus callosum in adolescence and that the severity of damage is sexually dimorphic. Further, exercise intervention improves corpus callosum growth in alcohol-exposed and control rats in adolescence.
Collapse
|
21
|
Sicher AR, Duerr A, Starnes WD, Crowley NA. Adolescent Alcohol and Stress Exposure Rewires Key Cortical Neurocircuitry. Front Neurosci 2022; 16:896880. [PMID: 35655755 PMCID: PMC9152326 DOI: 10.3389/fnins.2022.896880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022] Open
Abstract
Human adolescence is a period of development characterized by wide ranging emotions and behavioral risk taking, including binge drinking (Konrad et al., 2013). These behavioral manifestations of adolescence are complemented by growth in the neuroarchitecture of the brain, including synaptic pruning (Spear, 2013) and increases in overall white matter volume (Perrin et al., 2008). During this period of profound physiological maturation, the adolescent brain has a unique vulnerability to negative perturbations. Alcohol consumption and stress exposure, both of which are heightened during adolescence, can individually and synergistically alter these neurodevelopmental trajectories in positive and negative ways (conferring both resiliency and susceptibility) and influence already changing neurotransmitter systems and circuits. Importantly, the literature is rapidly changing and evolving in our understanding of basal sex differences in the brain, as well as the interaction between biological sex and life experiences. The animal literature provides the distinctive opportunity to explore sex-specific stress- and alcohol- induced changes in neurocircuits on a relatively rapid time scale. In addition, animal models allow for the investigation of individual neurons and signaling molecules otherwise inaccessible in the human brain. Here, we review the human and rodent literature with a focus on cortical development, neurotransmitters, peptides, and steroids, to characterize the field's current understanding of the interaction between adolescence, biological sex, and exposure to stress and alcohol.
Collapse
Affiliation(s)
- Avery R. Sicher
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Arielle Duerr
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - William D. Starnes
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
| | - Nicole A. Crowley
- The Pennsylvania State University, University Park, PA, United States
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
22
|
Cattane N, Vernon AC, Borsini A, Scassellati C, Endres D, Capuron L, Tamouza R, Benros ME, Leza JC, Pariante CM, Riva MA, Cattaneo A. Preclinical animal models of mental illnesses to translate findings from the bench to the bedside: Molecular brain mechanisms and peripheral biomarkers associated to early life stress or immune challenges. Eur Neuropsychopharmacol 2022; 58:55-79. [PMID: 35235897 DOI: 10.1016/j.euroneuro.2022.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Animal models are useful preclinical tools for studying the pathogenesis of mental disorders and the effectiveness of their treatment. While it is not possible to mimic all symptoms occurring in humans, it is however possible to investigate the behavioral, physiological and neuroanatomical alterations relevant for these complex disorders in controlled conditions and in genetically homogeneous populations. Stressful and infection-related exposures represent the most employed environmental risk factors able to trigger or to unmask a psychopathological phenotype in animals. Indeed, when occurring during sensitive periods of brain maturation, including pre, postnatal life and adolescence, they can affect the offspring's neurodevelopmental trajectories, increasing the risk for mental disorders. Not all stressed or immune challenged animals, however, develop behavioral alterations and preclinical animal models can explain differences between vulnerable or resilient phenotypes. Our review focuses on different paradigms of stress (prenatal stress, maternal separation, social isolation and social defeat stress) and immune challenges (immune activation in pregnancy) and investigates the subsequent alterations in several biological and behavioral domains at different time points of animals' life. It also discusses the "double-hit" hypothesis where an initial early adverse event can prime the response to a second negative challenge. Interestingly, stress and infections early in life induce the activation of the hypothalamic-pituitary-adrenal (HPA) axis, alter the levels of neurotransmitters, neurotrophins and pro-inflammatory cytokines and affect the functions of microglia and oxidative stress. In conclusion, animal models allow shedding light on the pathophysiology of human mental illnesses and discovering novel molecular drug targets for personalized treatments.
Collapse
Affiliation(s)
- Nadia Cattane
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anthony C Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; MRC Centre for Neurodevelopmental Disorders, King's College London, United Kingdom
| | - Alessandra Borsini
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Catia Scassellati
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Dominique Endres
- Department of Psychiatry and Psychotherapy, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lucile Capuron
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Ryad Tamouza
- Département Medico-Universitaire de Psychiatrie et d'Addictologie (DMU ADAPT), Laboratoire Neuro-psychiatrie translationnelle, AP-HP, UniversitéParis Est Créteil, INSERM U955, IMRB, Hôpital Henri Mondor, Fondation FondaMental, F-94010 Créteil, France
| | - Michael Eriksen Benros
- Biological and Precision Psychiatry, Copenhagen Research Centre for Mental Health, Copenhagen University Hospital, Gentofte Hospitalsvej 15, 4th floor, 2900 Hellerup, Denmark; Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark
| | - Juan C Leza
- Department of Pharmacology & Toxicology, Faculty of Medicine, Universidad Complutense de Madrid (UCM), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Investigación Hospital 12 de Octubre (i+12), IUIN-UCM. Spain
| | - Carmine M Pariante
- Stress, Psychiatry and Immunology Laboratory, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, King's College London, United Kingdom
| | - Marco A Riva
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy.
| |
Collapse
|
23
|
Morrison KE, Stenson AF, Marx-Rattner R, Carter S, Michopoulos V, Gillespie CF, Powers A, Huang W, Kane MA, Jovanovic T, Bale TL. Developmental Timing of Trauma in Women Predicts Unique Extracellular Vesicle Proteome Signatures. Biol Psychiatry 2022; 91:273-282. [PMID: 34715991 PMCID: PMC9219961 DOI: 10.1016/j.biopsych.2021.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Exposure to traumatic events is a risk factor for negative physical and mental health outcomes. However, the underlying biological mechanisms that perpetuate these lasting effects are not known. METHODS We investigated the impact and timing of sexual trauma, a specific type of interpersonal violence, experienced during key developmental windows of childhood, adolescence, or adulthood on adult health outcomes and associated biomarkers, including circulating cell-free mitochondrial DNA levels and extracellular vesicles (EVs), in a predominantly Black cohort of women (N = 101). RESULTS Significant changes in both biomarkers examined, circulating cell-free mitochondrial DNA levels and EV proteome, were specific to developmental timing of sexual trauma. Specifically, we identified a large number of keratin-related proteins from EVs unique to the adolescent sexual trauma group. Remarkably, the majority of these keratin proteins belong to a 17q21 gene cluster, which suggests a potential local epigenetic regulatory mechanism altered by adolescent trauma to impact keratinocyte EV secretion or its protein cargo. These results, along with changes in fear-potentiated startle and skin conductance detected in these women, suggest that sexual violence experienced during the specific developmental window of adolescence may involve unique programming of the skin, the body's largest stress organ. CONCLUSIONS Together, these descriptive studies provide novel insight into distinct biological processes altered by trauma experienced during specific developmental windows. Future studies will be required to mechanistically link these biological processes to health outcomes.
Collapse
Affiliation(s)
- Kathleen E Morrison
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Anaïs F Stenson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Ruth Marx-Rattner
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland
| | - Sierra Carter
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Charles F Gillespie
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, Georgia
| | - Weiliang Huang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Tracy L Bale
- Department of Pharmacology and Center for Epigenetic Research in Child Health and Brain Development, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
24
|
Shaw GA. Mitochondria as the target for disease related hormonal dysregulation. Brain Behav Immun Health 2021; 18:100350. [PMID: 34746877 PMCID: PMC8554460 DOI: 10.1016/j.bbih.2021.100350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria play an important role in the synthesis of steroid hormones, including the sex hormone estrogen. Sex-specific regulation of these hormones is important for phenotypic development and downstream, sex-specific activational effects in both brain and behavior. First, mitochondrial contribution to the synthesis of estrogen, followed by a discussion of the signaling interactions between estrogen and the mitochondria will be reviewed. Next, disorders with an established sex difference related to aging, mood, and cognition will be examined. Finally, review of mitochondria as a biomarker of disease and data supporting efforts in targeting mitochondria as a therapeutic target for the amelioration of these disorders will be discussed. Taken together, this review aims to assess the influence of E2 on mitochondrial function within the brain via exploration of E2-ER interactions within neural mitochondria and how they may act to influence the development and presentation of neurodegenerative and neurocognitive diseases with known sex differences.
Collapse
Affiliation(s)
- Gladys A. Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
25
|
de Mendonça Filho EJ, Barth B, Bandeira DR, de Lima RMS, Arcego DM, Dalmaz C, Pokhvisneva I, Sassi RB, Hall GBC, Meaney MJ, Silveira PP. Cognitive Development and Brain Gray Matter Susceptibility to Prenatal Adversities: Moderation by the Prefrontal Cortex Brain-Derived Neurotrophic Factor Gene Co-expression Network. Front Neurosci 2021; 15:744743. [PMID: 34899157 PMCID: PMC8652300 DOI: 10.3389/fnins.2021.744743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Previous studies focused on the relationship between prenatal conditions and neurodevelopmental outcomes later in life, but few have explored the interplay between gene co-expression networks and prenatal adversity conditions on cognitive development trajectories and gray matter density. Methods: We analyzed the moderation effects of an expression polygenic score (ePRS) for the Brain-derived Neurotrophic Factor gene network (BDNF ePRS) on the association between prenatal adversity and child cognitive development. A score based on genes co-expressed with the prefrontal cortex (PFC) BDNF was created, using the effect size of the association between the individual single nucleotide polymorphisms (SNP) and the BDNF expression in the PFC. Cognitive development trajectories of 157 young children from the Maternal Adversity, Vulnerability and Neurodevelopment (MAVAN) cohort were assessed longitudinally in 4-time points (6, 12, 18, and 36 months) using the Bayley-II mental scales. Results: Linear mixed-effects modeling indicated that BDNF ePRS moderates the effects of prenatal adversity on cognitive growth. In children with high BDNF ePRS, higher prenatal adversity was associated with slower cognitive development in comparison with those exposed to lower prenatal adversity. Parallel-Independent Component Analysis (pICA) suggested that associations of expression-based SNPs and gray matter density significantly differed between low and high prenatal adversity groups. The brain IC included areas involved in visual association processes (Brodmann area 19 and 18), reallocation of attention, and integration of information across the supramodal cortex (Brodmann area 10). Conclusion: Cognitive development trajectories and brain gray matter seem to be influenced by the interplay of prenatal environmental conditions and the expression of an important BDNF gene network that guides the growth and plasticity of neurons and synapses.
Collapse
Affiliation(s)
- Euclides José de Mendonça Filho
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Barbara Barth
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Denise Ruschel Bandeira
- Programa de Pós-Graduação em Psicologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Randriely Merscher Sobreira de Lima
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danusa Mar Arcego
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | - Carla Dalmaz
- Programa de Pós-Graduação em Bioquímica e Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| | | | - Geoffrey B. C. Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Michael J. Meaney
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Patricia Pelufo Silveira
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Hospital Research Center, Montreal, QC, Canada
| |
Collapse
|
26
|
Methods and Challenges in Investigating Sex-Specific Consequences of Social Stressors in Adolescence in Rats: Is It the Stress or the Social or the Stage of Development? Curr Top Behav Neurosci 2021; 54:23-58. [PMID: 34455576 DOI: 10.1007/7854_2021_245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Adolescence is a time of social learning and social restructuring that is accompanied by changes in both the hypothalamic-pituitary-gonadal axis and the hypothalamic-pituitary-adrenal (HPA) axis. The activation of these axes by puberty and stressors, respectively, shapes adolescent development. Models of social stress in rats are used to understand the consequences of perturbations of the social environment for ongoing brain development. This paper reviews the challenges in investigating the sex-specific consequences of social stressors, sex differences in the models of social stress used in rats and the sex-specific effects on behaviour and provides an overview of sex differences in HPA responding to stressors, the variability in pubertal development and in strains of rats that require consideration in conducting such research, and directions for future research.
Collapse
|
27
|
Bilecki W, Wawrzczak-Bargieła A, Majcher-Maślanka I, Chmelova M, Maćkowiak M. Inhibition of BET Proteins during Adolescence Affects Prefrontal Cortical Development: Relevance to Schizophrenia. Int J Mol Sci 2021; 22:ijms22168710. [PMID: 34445411 PMCID: PMC8395847 DOI: 10.3390/ijms22168710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background: The present study investigated the role of proteins from the bromodomain and extra-terminal (BET) family in schizophrenia-like abnormalities in a neurodevelopmental model of schizophrenia induced by prenatal methylazoxymethanol (MAM) administration (MAM-E17). Methods: An inhibitor of BET proteins, JQ1, was administered during adolescence on postnatal days (P) 23–P29, and behavioural responses (sensorimotor gating, recognition memory) and prefrontal cortical (mPFC) function (long-term potentiation (LTP), molecular and proteomic analyses) studies were performed in adult males and females. Results: Deficits in sensorimotor gating and recognition memory were observed only in MAM-treated males. However, adolescent JQ1 treatment affected animals of both sexes in the control but not MAM-treated groups and reduced behavioural responses in both sexes. An electrophysiological study showed LTP impairments only in male MAM-treated animals, and JQ1 did not affect LTP in the mPFC. In contrast, MAM did not affect activity-dependent gene expression, but JQ1 altered gene expression in both sexes. A proteomic study revealed alterations in MAM-treated groups mainly in males, while JQ1 affected both sexes. Conclusions: MAM-induced schizophrenia-like abnormalities were observed only in males, while adolescent JQ1 treatment affected memory recognition and altered the molecular and proteomic landscape in the mPFC of both sexes. Thus, transient adolescent inhibition of the BET family might prompt permanent alterations in the mPFC.
Collapse
|
28
|
MicroRNA regulation of prefrontal cortex development and psychiatric risk in adolescence. Semin Cell Dev Biol 2021; 118:83-91. [PMID: 33933350 DOI: 10.1016/j.semcdb.2021.04.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 12/28/2022]
Abstract
In this review, we examine the role of microRNAs in the development of the prefrontal cortex (PFC) in adolescence and in individual differences in vulnerability to mental illness. We describe results from clinical and preclinical research indicating that adolescence coincides with drastic changes in local microRNA expression, including microRNAs that control gene networks involved in PFC and cognitive refinement. We highlight that altered levels of microRNAs in the PFC are associated with psychopathologies of adolescent onset, notably depression and schizophrenia. We show that microRNAs can be measured non-invasively in peripheral samples and could serve as longitudinal physiological readouts of brain expression and psychiatric risk in youth.
Collapse
|
29
|
Bueno-Fernandez C, Perez-Rando M, Alcaide J, Coviello S, Sandi C, Castillo-Gómez E, Nacher J. Long term effects of peripubertal stress on excitatory and inhibitory circuits in the prefrontal cortex of male and female mice. Neurobiol Stress 2021; 14:100322. [PMID: 33869684 PMCID: PMC8045050 DOI: 10.1016/j.ynstr.2021.100322] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 03/24/2021] [Indexed: 12/01/2022] Open
Abstract
The impact of stressful events is especially important during early life, because certain cortical regions, especially the prefrontal cortex (PFC), are still developing. Consequently, aversive experiences that occur during the peripubertal period can cause long-term alterations in neural connectivity, physiology and related behaviors. Although sex influences the stress response and women are more likely to develop stress-related psychiatric disorders, knowledge about the effects of stress on females is still limited. In order to analyze the long-term effects of peripubertal stress (PPS) on the excitatory and inhibitory circuitry of the adult PFC, and whether these effects are sex-dependent, we applied an unpredictable chronic PPS protocol based on psychogenic stressors. Using two strains of transgenic mice with specific fluorescent cell reporters, we studied male and diestrus females to know how PPS affects the structure and connectivity of parvalbumin expressing (PV+) interneurons and pyramidal neurons. We also studied the expression of molecules related to excitatory and inhibitory neurotransmission, as well as alterations in the expression of plasticity-related molecules. The structure of pyramidal neurons was differentially affected by PPS in male and female mice: while the former had a decreased dendritic spine density, the latter displayed an increase in this parameter. PPS affected the density of puncta expressing excitatory and inhibitory synaptic markers exclusively in the female mPFC. Similarly, only in female mice we observed an increased complexity of the dendritic tree of PV+ neurons. Regarding the perisomatic innervation on pyramidal and PV + neurons by basket cells, we found a significant increase in the density of puncta in stressed animals, with interesting differences between the sexes and the type of basket cell analyzed. Finally, the PPS protocol also altered the total number of somata expressing the polysialylated form of the neural cell adhesion molecule (PSA-NCAM) when we analyzed both sexes together. These results highlight the strong programming effects of aversive experiences during early life for the establishment of cortical circuitry and the special impact of these stressful events on females.
Collapse
Affiliation(s)
- Clara Bueno-Fernandez
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Marta Perez-Rando
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Julia Alcaide
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Simona Coviello
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain
| | - Carmen Sandi
- Department of Life Sciences, Laboratory of Behavioral Genetics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Esther Castillo-Gómez
- Department of Medicine, School of Medical Sciences, Universitat Jaume I, Valencia, Spain.,Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain
| | - Juan Nacher
- Neurobiology Unit, Institute for Biotechnology and Biomedicine (BIOTECMED), Universitat de València, 46100, Spain.,Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain.,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, 46010, Valencia, Spain
| |
Collapse
|
30
|
Stadtler H, Shaw G, Neigh GN. Mini-review: Elucidating the psychological, physical, and sex-based interactions between HIV infection and stress. Neurosci Lett 2021; 747:135698. [PMID: 33540057 PMCID: PMC9258904 DOI: 10.1016/j.neulet.2021.135698] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 12/21/2022]
Abstract
Stress is generally classified as any mental or emotional strain resulting from difficult circumstances, and can manifest in the form of depression, anxiety, post-traumatic stress disorder (PTSD), or other neurocognitive disorders. Neurocognitive disorders such as depression, anxiety, and PTSD are large contributors to disability worldwide, and continue to affect individuals and communities. Although these disorders affect men and women, women are disproportionately represented among those diagnosed with affective disorders, a result of both societal gender roles and physical differences. Furthermore, the incidence of these neurocognitive disorders is augmented among People Living with HIV (PLWH); the physical ramifications of stress increase the likelihood of HIV acquisition, pathogenesis, and treatment, as both stress and HIV infection are characterized by chronic inflammation, which creates a more opportunistic environment for HIV. Although the stress response is facilitated by the autonomic nervous system (ANS) and the hypothalamic pituitary adrenal (HPA) axis, when the response involves a psychological component, additional brain regions are engaged. The impact of chronic stress exposure and the origin of individual variation in stress responses and resilience are at least in part attributable to regions outside the primary stress circuity, including the amygdala, prefrontal cortex, and hippocampus. This review aims to elucidate the relationship between stress and HIV, how these interact with sex, and to understand the physical ramifications of these interactions.
Collapse
Affiliation(s)
- Hannah Stadtler
- Department of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Gladys Shaw
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - Gretchen N Neigh
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
31
|
Uliana DL, Gomes FV, Grace AA. Stress impacts corticoamygdalar connectivity in an age-dependent manner. Neuropsychopharmacology 2021; 46:731-740. [PMID: 33096542 PMCID: PMC8027626 DOI: 10.1038/s41386-020-00886-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 01/13/2023]
Abstract
Stress is a socio-environmental risk factor for the development of psychiatric disorders, with the age of exposure potentially determining the outcome. Several brain regions mediate stress responsivity, with a prominent role of the medial prefrontal cortex (mPFC) and basolateral amygdala (BLA) and their reciprocal inhibitory connectivity. Here we investigated the impact of stress exposure during adolescence and adulthood on the activity of putative pyramidal neurons in the BLA and corticoamygdalar plasticity using in vivo electrophysiology. 155 male Sprague-Dawley rats were subjected to a combination of footshock/restraint stress in either adolescence (postnatal day 31-40) or adulthood (postnatal day 65-74). Both adolescent and adult stress increased the number of spontaneously active putative BLA pyramidal neurons 1-2 weeks, but not 5-6 weeks post stress. High-frequency stimulation (HFS) of BLA and mPFC depressed evoked spike probability in the mPFC and BLA, respectively, in adult but not adolescent rats. In contrast, an adult-like BLA HFS-induced decrease in spike probability of mPFC neurons was found 1-2 weeks post-adolescent stress. Changes in mPFC and BLA neuron discharge were found 1-2 weeks post-adult stress after BLA and mPFC HFS, respectively. All these changes were transient since they were not found 5-6 weeks post adolescent or adult stress. Our findings indicate that stress during adolescence may accelerate the development of BLA-PFC plasticity, probably due to BLA hyperactivity, which can also disrupt the reciprocal communication of BLA-mPFC after adult stress. Therefore, precocious BLA-mPFC connectivity alterations may represent an early adaptive stress response that ultimately may contribute to vulnerability to adult psychiatric disorders.
Collapse
Affiliation(s)
- Daniela L. Uliana
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| | - Felipe V. Gomes
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA ,grid.11899.380000 0004 1937 0722Present Address: Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP Brazil
| | - Anthony A. Grace
- grid.21925.3d0000 0004 1936 9000Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA USA
| |
Collapse
|
32
|
Bendersky CJ, Milian AA, Andrus MD, De La Torre U, Walker DM. Long-Term Impacts of Post-weaning Social Isolation on Nucleus Accumbens Function. Front Psychiatry 2021; 12:745406. [PMID: 34616326 PMCID: PMC8488119 DOI: 10.3389/fpsyt.2021.745406] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Adolescence is a period of incredible change, especially within the brain's reward circuitry. Stress, including social isolation, during this time has profound effects on behaviors associated with reward and other neuropsychiatric disorders. Because the Nucleus Accumbens (NAc), is crucial to the integration of rewarding stimuli, the NAc is especially sensitive to disruptions by adolescent social isolation stress. This review highlights the long-term behavioral consequences of adolescent social isolation rearing on the NAc. It will discuss the cellular and molecular changes within the NAc that might underlie the long-term effects on behavior. When available sex-specific effects are discussed. Finally by mining publicly available data we identify, for the first time, key transcriptional profiles induced by adolescence social isolation in genes associated with dopamine receptor 1 and 2 medium spiny neurons and genes associated with cocaine self-administration. Together, this review provides a comprehensive discussion of the wide-ranging long-term impacts of adolescent social isolation on the dopaminergic system from molecules through behavior.
Collapse
Affiliation(s)
- Cari J Bendersky
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Allison A Milian
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Mason D Andrus
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| | - Ubaldo De La Torre
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR, United States
| | - Deena M Walker
- Department of Behavioral Neuroscience, Oregon Health and Science and University, Portland, OR, United States
| |
Collapse
|
33
|
Torres-Berrío A, Hernandez G, Nestler EJ, Flores C. The Netrin-1/DCC Guidance Cue Pathway as a Molecular Target in Depression: Translational Evidence. Biol Psychiatry 2020; 88:611-624. [PMID: 32593422 PMCID: PMC7529861 DOI: 10.1016/j.biopsych.2020.04.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/14/2020] [Accepted: 04/28/2020] [Indexed: 12/15/2022]
Abstract
The Netrin-1/DCC guidance cue pathway plays a critical role in guiding growing axons toward the prefrontal cortex during adolescence and in the maturational organization and adult plasticity of prefrontal cortex connectivity. In this review, we put forward the idea that alterations in prefrontal cortex architecture and function, which are intrinsically linked to the development of major depressive disorder, originate in part from the dysregulation of the Netrin-1/DCC pathway by a mechanism that involves microRNA-218. We discuss evidence derived from mouse models of stress and from human postmortem brain and genome-wide association studies indicating an association between the Netrin-1/DCC pathway and major depressive disorder. We propose a potential role of circulating microRNA-218 as a biomarker of stress vulnerability and major depressive disorder.
Collapse
Affiliation(s)
- Angélica Torres-Berrío
- Integrated Program in Neuroscience, Montreal, Quebec, Canada; Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Douglas Mental Health University Institute, Montreal, Quebec, Canada.
| |
Collapse
|