1
|
Martin ST. Regeneration of secondary forest following anthropogenic disturbance from 1985 to 2021 for Amazonas, Brazil. GLOBAL CHANGE BIOLOGY 2024; 30:e17514. [PMID: 39370706 DOI: 10.1111/gcb.17514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024]
Abstract
Following old-growth forest loss and subsequent land abandonment, secondary forest grows throughout the Amazon biome. For Amazonas, agricultural colonization was unsuccessful in many regions, leading to the regeneration of secondary forest and carbon storage under favorable climate conditions. Herein, the extent of regeneration in Amazonas and its timescale are investigated, including a granular analysis of its 62 municipalities, based on the MapBiomas dataset from 1985 to 2021. By 2021, 10,495 km2 of secondary forest had grown, corresponding to 28% of the lost old-growth forest. After normalization for algorithmic differences, this estimate was 17%-38% lower than prior studies for Amazonas that used earlier versions of the MapBiomas dataset, indicating increased accuracy in landcover assignments for more current versions of the dataset. For the northeastern microregion, representing the 15 municipalities of economic and population dominance in Amazonas, the growth of secondary forest varied from 3.0% to 9.8% of the total land area. For the southern microregion, constituting seven municipalities adjacent to large-scale deforestation of Mato Grosso and Rondônia, regeneration of secondary forest constituted 0.4%-1.2% of the land area. For the remaining interior municipalities, the regeneration was 0.0%-1.9%. Among the municipalities, the median regeneration interval, corresponding to the duration between the loss of old-growth forest and the appearance of secondary forest, ranged from 2 to 7 years. The median regeneration intervals of the interior, northeastern, and southern microregions were 3, 4, and 5 years, respectively. Even as the secular trend of deforestation continues in the Amazon biome and encroaches into the southern border of Amazonas state, the results herein indicate a possible resiliency toward secondary forest for undisturbed land on a timescale of several years, at least for mixed pasture-forest landscapes of kilometer-scale heterogeneity and assuming that a favorable climate persists for regeneration even as global change occurs.
Collapse
Affiliation(s)
- Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Whitehouse CL, Hall H, Shiju M, Webster J, Yazbek J, Parslow-Williams S. Exploring the sustainable impacts of a clinical healthcare research scholarship programme. BRITISH JOURNAL OF NURSING (MARK ALLEN PUBLISHING) 2024; 33:515-521. [PMID: 38850139 DOI: 10.12968/bjon.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2024]
Abstract
BACKGROUND The NHS is the first public body globally to commit to net zero. AIM This study aimed to explore the environmental sustainability impact of a hospital scholarship programme. METHOD A sustainable quality improvement value framework was used to measure the programme's environmental, social and financial effects. RESULTS The social impact through face-to-face contact was most valued by scholars; there were also savings in carbon emissions and costs. DISCUSSION Training in sustainability is essential for the workforce but little infrastructure and expertise are available within organisations to support staff to provide sustainable healthcare in day-to-day practice. CONCLUSION Sustainable healthcare should be supported by education and national guidance and implementation plans should be drawn up to this end. The social impact of the framework used is often seen as less important than its environmental and financial components; however, as its value to scholars illustrates, the components are intertwined and should be considered of equal importance.
Collapse
Affiliation(s)
- Claire L Whitehouse
- Senior Nurse for Nursing, Midwifery and Allied Health Professions Research, and Clinical Director for Research, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth; Honorary Fellow, University of East Anglia, Norwich; and Visiting Professor, Staffordshire University, Stoke-on-Trent
| | - Helen Hall
- Research Grants Advisor and Research Paramedic, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth, and Honorary Fellow, University of East Anglia, Norwich
| | - Mehar Shiju
- Research and Evaluation Associate, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth
| | - Jonathan Webster
- Professor of Practice Development, Norfolk Initiative for Coastal and Rural Health Equalities, University of East Anglia, Norwich
| | - Jonathan Yazbek
- Head of Quality Improvement, James Paget University Hospitals NHS Foundation Trust, Great Yarmouth
| | | |
Collapse
|
3
|
Vilà-Cabrera A, Astigarraga J, Jump AS, Zavala MA, Seijo F, Sperlich D, Ruiz-Benito P. Anthropogenic land-use legacies underpin climate change-related risks to forest ecosystems. TRENDS IN PLANT SCIENCE 2023; 28:1132-1143. [PMID: 37263916 DOI: 10.1016/j.tplants.2023.04.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 06/03/2023]
Abstract
Forest ecosystems with long-lasting human imprints can emerge worldwide as outcomes of land-use cessation. However, the interaction of these anthropogenic legacies with climate change impacts on forests is not well understood. Here, we set out how anthropogenic land-use legacies that persist in forest properties, following alterations in forest distribution, structure, and composition, can interact with climate change stressors. We propose a risk-based framework to identify anthropogenic legacies of land uses in forest ecosystems and quantify the impact of their interaction with climate-related stress on forest responses. Considering anthropogenic land-use legacies alongside environmental drivers of forest ecosystem dynamics will improve our predictive capacity of climate-related risks to forests and our ability to promote ecosystem resilience to climate change.
Collapse
Affiliation(s)
- Albert Vilà-Cabrera
- CREAF, E08193 Bellaterra (Cerdanyola del Vallès), Catalonia, Spain; Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK; Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain.
| | - Julen Astigarraga
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Alistair S Jump
- Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, UK
| | - Miguel A Zavala
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain
| | - Francisco Seijo
- Instituto de Empresa, School of Global and Public Affairs, Madrid, Spain
| | - Dominik Sperlich
- Department of Forestry Economics and Forest Planning, Faculty of Environment and Natural Resources, University of Freiburg, Freiburg, Germany
| | - Paloma Ruiz-Benito
- Universidad de Alcalá, Grupo de Ecología y Restauración Forestal, Departamento de Ciencias de la Vida, 28805 Alcalá de Henares, Madrid, Spain; Universidad de Alcalá, Grupo de Investigación en Teledetección Ambiental, Departamento de Geología, Geografía y Medio Ambiente, 28801 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
4
|
Huang S, Ghazali S, Azadi H, Movahhed Moghaddam S, Viira AH, Janečková K, Sklenička P, Lopez-Carr D, Köhl M, Kurban A. Contribution of agricultural land conversion to global GHG emissions: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162269. [PMID: 36813188 DOI: 10.1016/j.scitotenv.2023.162269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Greenhouse gases (GHG) have extensive environmental effects by trapping heat and causing climate change and air pollution. Land plays a key role in the global cycles of GHG (i.e., carbon dioxide (CO2), methane (CH4), and nitrogen oxide (N2O)), and land use change (LUC) can lead to the release of such gases into the atmosphere or the removal of them from the atmosphere. One of the most common forms of LUC is agricultural land conversion (ALC) where agricultural lands are converted for other uses. This study aimed to review 51 original papers from 1990 to 2020 that investigate the contribution of ALC to GHG emissions from a spatiotemporal perspective using a meta-analysis method. The results of spatiotemporal effects on GHG emissions showed that the effects were significant. The emissions were affected by different continent regions representing the spatial effects. The most significant spatial effect was relevant to African and Asian countries. In addition, the quadratic relationship between ALC and GHG emissions had the highest significant coefficients, showing an upward concave curve. Therefore, increasing ALC to more than 8 % of available land led to increasing GHG emissions during the economic development process. The implications of the current study are important for policymakers from two perspectives. First, to achieve sustainable economic development, policymaking should prevent the conversion of more than 90 % of agricultural land to other uses based on the turning point of the second model. Second, policies to control global GHG emissions should take into account spatial effects (e.g., continental Africa and Asia), which show the highest contribution to GHG emissions.
Collapse
Affiliation(s)
- Shansong Huang
- Faculty of Applied Science, The University of British Columbia, Vancouver, BC, Canada
| | | | - Hossein Azadi
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, 830011, China; Department of Economics and Rural Development, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic; Faculty of Environmental Science and Engineering, Babeș-Bolyai University, Cluj-Napoca, Romania
| | - Saghi Movahhed Moghaddam
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ants-Hannes Viira
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Kristina Janečková
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Petr Sklenička
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - David Lopez-Carr
- Department of Geography, University of California, Santa Barbara, United States
| | - Michael Köhl
- Center for Earth System Research & Sustainability (CEN), World Forestry, University of Hamburg, Hamburg, Germany
| | - Alishir Kurban
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, 830011, China; Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, 818 South Beijing Road, Urumqi, Xinjiang, 830011, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi, 830011 China; Sino-Belgian Joint Laboratory for Geo-Information, Ghent, B-9000, Belgium.
| |
Collapse
|
5
|
Heinrich VHA, Vancutsem C, Dalagnol R, Rosan TM, Fawcett D, Silva-Junior CHL, Cassol HLG, Achard F, Jucker T, Silva CA, House J, Sitch S, Hales TC, Aragão LEOC. The carbon sink of secondary and degraded humid tropical forests. Nature 2023; 615:436-442. [PMID: 36922608 DOI: 10.1038/s41586-022-05679-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 12/16/2022] [Indexed: 03/17/2023]
Abstract
The globally important carbon sink of intact, old-growth tropical humid forests is declining because of climate change, deforestation and degradation from fire and logging1-3. Recovering tropical secondary and degraded forests now cover about 10% of the tropical forest area4, but how much carbon they accumulate remains uncertain. Here we quantify the aboveground carbon (AGC) sink of recovering forests across three main continuous tropical humid regions: the Amazon, Borneo and Central Africa5,6. On the basis of satellite data products4,7, our analysis encompasses the heterogeneous spatial and temporal patterns of growth in degraded and secondary forests, influenced by key environmental and anthropogenic drivers. In the first 20 years of recovery, regrowth rates in Borneo were up to 45% and 58% higher than in Central Africa and the Amazon, respectively. This is due to variables such as temperature, water deficit and disturbance regimes. We find that regrowing degraded and secondary forests accumulated 107 Tg C year-1 (90-130 Tg C year-1) between 1984 and 2018, counterbalancing 26% (21-34%) of carbon emissions from humid tropical forest loss during the same period. Protecting old-growth forests is therefore a priority. Furthermore, we estimate that conserving recovering degraded and secondary forests can have a feasible future carbon sink potential of 53 Tg C year-1 (44-62 Tg C year-1) across the main tropical regions studied.
Collapse
Affiliation(s)
- Viola H A Heinrich
- School of Geographical Sciences, University of Bristol, Bristol, UK.
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK.
| | - Christelle Vancutsem
- Fincons Group, Milan, Italy
- Center for International Forestry Research (CIFOR), Bogor, Indonesia
| | - Ricardo Dalagnol
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
- Institute of the Environment and Sustainability, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Thais M Rosan
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Dominic Fawcett
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Celso H L Silva-Junior
- Institute of the Environment and Sustainability, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Programa de Pós-graduação em Biodiversidade e Conservação, Universidade Federal do Maranhão (UFMA), São Luís, Brazil
| | - Henrique L G Cassol
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | | | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Carlos A Silva
- Forest Biometrics and Remote Sensing Lab (Silva Lab), School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Jo House
- School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Stephen Sitch
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
| | - Tristram C Hales
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Luiz E O C Aragão
- Faculty of Environment, Science and Economy, University of Exeter, Exeter, UK
- Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| |
Collapse
|
6
|
Linking land-use and land-cover transitions to their ecological impact in the Amazon. Proc Natl Acad Sci U S A 2022; 119:e2202310119. [PMID: 35759674 PMCID: PMC9271202 DOI: 10.1073/pnas.2202310119] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Human activities pose a major threat to tropical forest biodiversity and ecosystem services. Although the impacts of deforestation are well studied, multiple land-use and land-cover transitions (LULCTs) occur in tropical landscapes, and we do not know how LULCTs differ in their rates or impacts on key ecosystem components. Here, we quantified the impacts of 18 LULCTs on three ecosystem components (biodiversity, carbon, and soil), based on 18 variables collected from 310 sites in the Brazilian Amazon. Across all LULCTs, biodiversity was the most affected ecosystem component, followed by carbon stocks, but the magnitude of change differed widely among LULCTs and individual variables. Forest clearance for pasture was the most prevalent and high-impact transition, but we also identified other LULCTs with high impact but lower prevalence (e.g., forest to agriculture). Our study demonstrates the importance of considering multiple ecosystem components and LULCTs to understand the consequences of human activities in tropical landscapes.
Collapse
|
7
|
Research on the Potential of Forestry’s Carbon-Neutral Contribution in China from 2021 to 2060. SUSTAINABILITY 2022. [DOI: 10.3390/su14095444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Forest ecosystems play a crucial role in mitigating climate change. To assess and quantify the specific emissions reduction benefits of forest carbon sequestration, this study used a combination of backpropagation neural networks, biomass conversion factor method, and logistic models to predict the carbon-neutral contribution from existing forests, planned afforestation, and forest tending activities in China from 2021 to 2060. The results showed that (1) the emissions reduction contribution of forestry pathways in China was 7.91% (8588.61 MtCO2) at the carbon peak stage and 8.71% (24,932.73 MtCO2) at the carbon-neutral stage; (2) the southwest was the main contributing region, while the east and north lagged; (3) afforestation activities made the largest emission reduction contribution during the forecast period, while the contribution of existing forests continued to decline; and (4) carbon sequestration contribution by different forest origins was comparable during the carbon peak, while the contribution of plantation forests was expected to surpass that of natural forests during the carbon-neutral period. In order to maximize the benefits of the carbon-neutral pathway of forestry, it is necessary to enhance the policy frameworks related to forestry activities, forestry financial investment systems, and sustainable forest management systems to maximize the potential of this sector. Furthermore, more focus should be placed on reduction sectors to ensure the timely achievement of carbon goals and boost sustainable development in the context of climate change.
Collapse
|
8
|
Mapping native and non-native vegetation in the Brazilian Cerrado using freely available satellite products. Sci Rep 2022; 12:1588. [PMID: 35091635 PMCID: PMC8799689 DOI: 10.1038/s41598-022-05332-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022] Open
Abstract
Native vegetation across the Brazilian Cerrado is highly heterogeneous and biodiverse and provides important ecosystem services, including carbon and water balance regulation, however, land-use changes have been extensive. Conservation and restoration of native vegetation is essential and could be facilitated by detailed landcover maps. Here, across a large case study region in Goiás State, Brazil (1.1 Mha), we produced physiognomy level maps of native vegetation (n = 8) and other landcover types (n = 5). Seven different classification schemes using different combinations of input satellite imagery were used, with a Random Forest classifier and 2-stage approach implemented within Google Earth Engine. Overall classification accuracies ranged from 88.6-92.6% for native and non-native vegetation at the formation level (stage-1), and 70.7-77.9% for native vegetation at the physiognomy level (stage-2), across the seven different classifications schemes. The differences in classification accuracy resulting from varying the input imagery combination and quality control procedures used were small. However, a combination of seasonal Sentinel-1 (C-band synthetic aperture radar) and Sentinel-2 (surface reflectance) imagery resulted in the most accurate classification at a spatial resolution of 20 m. Classification accuracies when using Landsat-8 imagery were marginally lower, but still reasonable. Quality control procedures that account for vegetation burning when selecting vegetation reference data may also improve classification accuracy for some native vegetation types. Detailed landcover maps, produced using freely available satellite imagery and upscalable techniques, will be important tools for understanding vegetation functioning at the landscape scale and for implementing restoration projects.
Collapse
|
9
|
Piffer PR, Calaboni A, Rosa MR, Schwartz NB, Tambosi LR, Uriarte M. Ephemeral forest regeneration limits carbon sequestration potential in the Brazilian Atlantic Forest. GLOBAL CHANGE BIOLOGY 2022; 28:630-643. [PMID: 34665911 DOI: 10.1111/gcb.15944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Although deforestation remains widespread in the tropics, many places are now experiencing significant forest recovery (i.e., forest transition), offering an optimistic outlook for natural ecosystem recovery and carbon sequestration. Naturally regenerated forests, however, may not persist, so a more nuanced understanding of the drivers of forest change in the tropics is critical to ensure the success of reforestation efforts and carbon sequestration targets. Here we use 35 years of detailed land cover data to investigate forest trajectories in 3014 municipalities in the Brazilian Atlantic Forest (AF), a biodiversity and conservation hotspot. Although deforestation was evident in some regions, deforestation reversals, the typical forest transition trajectory, were the prevalent trend in the AF, accounting for 38% of municipalities. However, simultaneous reforestation reversals in the region (13% of municipalities) suggest that these short-term increases in native forest cover do not necessarily translate into persistent trends. In the absence of reversals in reforestation, forests in the region could have sequestered 1.75 Pg C, over three times the actual estimated carbon sequestration (0.52 Pg C). We also showed that failure to distinguish native and planted forests would have masked native forest cover loss in the region and overestimated reforestation by 3.2 Mha and carbon sequestration from natural forest regeneration by 0.37 Pg C. Deforestation reversals were prevalent in urbanized municipalities with limited forest cover and high agricultural productivity, highlighting the importance of favorable socioeconomic conditions in promoting reforestation. Successful forest restoration efforts will require development and enforcement of environmental policies that promote forest regeneration and ensure the permanence of regrowing forests. This is crucial not only for the fate and conservation of the AF, but also for other tropical nations to achieve their restoration and carbon sequestration commitments.
Collapse
Affiliation(s)
- Pedro R Piffer
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| | - Adriane Calaboni
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
| | - Marcos R Rosa
- Department of Geography, University of São Paulo, São Paulo, SP, Brazil
| | - Naomi B Schwartz
- Department of Geography, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leandro R Tambosi
- Center of Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, SP, Brazil
- Department of Ecology, University of São Paulo, São Paulo, SP, Brazil
| | - María Uriarte
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Edwards DP, Cerullo GR, Chomba S, Worthington TA, Balmford AP, Chazdon RL, Harrison RD. Upscaling tropical restoration to deliver environmental benefits and socially equitable outcomes. Curr Biol 2021; 31:R1326-R1341. [PMID: 34637743 DOI: 10.1016/j.cub.2021.08.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The UN Decade on Ecosystem Restoration offers immense potential to return hundreds of millions of hectares of degraded tropical landscapes to functioning ecosystems. Well-designed restoration can tackle multiple Sustainable Development Goals, driving synergistic benefits for biodiversity, ecosystem services, agricultural and timber production, and local livelihoods at large spatial scales. To deliver on this potential, restoration efforts must recognise and reduce trade-offs among objectives, and minimize competition with food production and conservation of native ecosystems. Restoration initiatives also need to confront core environmental challenges of climate change and inappropriate planting in savanna biomes, be robustly funded over the long term, and address issues of poor governance, inadequate land tenure, and socio-cultural disparities in benefits and costs. Tackling these issues using the landscape approach is vital to realising the potential for restoration to break the cycle of land degradation and poverty, and deliver on its core environmental and social promises.
Collapse
Affiliation(s)
- David P Edwards
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | - Andrew P Balmford
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Robin L Chazdon
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | | |
Collapse
|
11
|
Aragón S, Salinas N, Nina-Quispe A, Qquellon VH, Paucar GR, Huaman W, Porroa PC, Olarte JC, Cruz R, Muñiz JG, Yupayccana CS, Espinoza TEB, Tito R, Cosio EG, Roman-Cuesta RM. Aboveground biomass in secondary montane forests in Peru: Slow carbon recovery in agroforestry legacies. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
12
|
Heinrich VHA, Dalagnol R, Cassol HLG, Rosan TM, de Almeida CT, Silva Junior CHL, Campanharo WA, House JI, Sitch S, Hales TC, Adami M, Anderson LO, Aragão LEOC. Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nat Commun 2021; 12:1785. [PMID: 33741981 PMCID: PMC7979697 DOI: 10.1038/s41467-021-22050-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/19/2021] [Indexed: 01/31/2023] Open
Abstract
Tropical secondary forests sequester carbon up to 20 times faster than old-growth forests. This rate does not capture spatial regrowth patterns due to environmental and disturbance drivers. Here we quantify the influence of such drivers on the rate and spatial patterns of regrowth in the Brazilian Amazon using satellite data. Carbon sequestration rates of young secondary forests (<20 years) in the west are ~60% higher (3.0 ± 1.0 Mg C ha-1 yr-1) compared to those in the east (1.3 ± 0.3 Mg C ha-1 yr-1). Disturbances reduce regrowth rates by 8-55%. The 2017 secondary forest carbon stock, of 294 Tg C, could be 8% higher by avoiding fires and repeated deforestation. Maintaining the 2017 secondary forest area has the potential to accumulate ~19.0 Tg C yr-1 until 2030, contributing ~5.5% to Brazil's 2030 net emissions reduction target. Implementing legal mechanisms to protect and expand secondary forests whilst supporting old-growth conservation is, therefore, key to realising their potential as a nature-based climate solution.
Collapse
Affiliation(s)
- Viola H. A. Heinrich
- grid.5337.20000 0004 1936 7603School of Geographical Sciences, University of Bristol, Bristol, UK
| | - Ricardo Dalagnol
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| | - Henrique L. G. Cassol
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| | - Thais M. Rosan
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Catherine Torres de Almeida
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| | - Celso H. L. Silva Junior
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| | - Wesley A. Campanharo
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil
| | - Joanna I. House
- grid.5337.20000 0004 1936 7603School of Geographical Sciences, University of Bristol, Bristol, UK ,grid.5337.20000 0004 1936 7603Cabot institute, University of Bristol, Bristol, UK
| | - Stephen Sitch
- grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Tristram C. Hales
- grid.5600.30000 0001 0807 5670School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Marcos Adami
- grid.419222.e0000 0001 2116 4512Amazon Regional Center, National Institute for Space Research (INPE), Belém, Brazil
| | - Liana O. Anderson
- National Center for Monitoring and Early Warning of Natural Disaster (CEMADEN), São José dos Campos, Brazil
| | - Luiz E. O. C. Aragão
- grid.419222.e0000 0001 2116 4512Earth Observation and Geoinformatics Division, National Institute for Space Research (INPE), São José dos Campos, Brazil ,grid.8391.30000 0004 1936 8024College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
13
|
Fire Occurrences and Greenhouse Gas Emissions from Deforestation in the Brazilian Amazon. REMOTE SENSING 2021. [DOI: 10.3390/rs13030376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work presents the dynamics of fire occurrences, greenhouse gas (GHG) emissions, forest clearing, and degradation in the Brazilian Amazon during the period 2006–2019, which includes the approval of the new Brazilian Forest Code in 2012. The study was carried out in the Brazilian Amazon, Pará State, and the municipality of Novo Progresso (Pará State). The analysis was based on deforestation and fire hotspot datasets issued by the Brazilian Institute for Space Research (INPE), which is produced based on optical and thermal sensors onboard different satellites. Deforestation data was also used to assess GHG emissions from the slash-and-burn practices. The work showed a good correlation between the occurrence of fires in the newly deforested area in the municipality of Novo Progresso and the slash-and-burn practices. The same trend was observed in the Pará State, suggesting a common practice along the deforestation arch. The study indicated positive coefficients of determination of 0.72 and 0.66 between deforestation and fire occurrences for the municipality of Novo Progresso and Pará State, respectively. The increased number of fire occurrences in the primary forest suggests possible ecosystem degradation. Deforestation reported for 2019 surpassed 10,000 km2, which is 48% higher than the previous ten years, with an average of 6760 km2. The steady increase of deforestation in the Brazilian Amazon after 2012 has been a worldwide concern because of the forest loss itself as well as the massive GHG emitted in the Brazilian Amazon. We estimated 295 million tons of net CO2, which is equivalent to 16.4% of the combined emissions of CO2 and CH4 emitted by Brazil in 2019. The correlation of deforestation and fire occurrences reported from satellite images confirmed the slash-and-burn practice and the secondary effect of deforestation, i.e., degradation of primary forest surrounding the deforested areas. Hotspots’ location was deemed to be an important tool to verify forest degradation. The incidence of hotspots in forest area is from 5% to 20% of newly slashed-and-burned areas, which confirms the strong impact of deforestation on ecosystem degradation due to fire occurrences over the Brazilian Amazon.
Collapse
|