1
|
Yáñez S, Tavera L, Guzmán-Rendón G, Fernández LD, Espinoza-Arevena N, Marchant M, Hernández CE. Macroecological patterns of planktonic unicellular eukaryotes richness in the Southeast Pacific Ocean. Sci Rep 2025; 15:18833. [PMID: 40442169 PMCID: PMC12122717 DOI: 10.1038/s41598-025-03220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/19/2025] [Indexed: 06/02/2025] Open
Abstract
In recent years, studies focusing on microbial biogeography have been developed, but macroecological processes in marine microorganisms remain unclear, especially in seemingly continuous environments such as the Southeast Pacific Ocean (SPO), where information on microbial distribution patterns is limited, and they may vary depending on the habitat and lifestyle. We used unicellular planktonic eukaryotes as model organisms to determine their biogeographic patterns in the SPO, identify the underlying ecological and historical-evolutionary processes and compare with other microorganism groups. Our analyses were based on the Niche Theory to model species diversity distribution using large open-access ecological and physical-biogeochemical databases based on Bayesian approaches, an integrated nested Laplace approximation (INLA), and Generalized Additive Models (GAM). As a result, two richness hotspots were observed, which are associated with coastal and offshore regions in the central southern areas of SPO. The richness hotspots were associated mainly with nutrients (N/Si ratio) and Mixed Layer Depth (MLD), which could be explained by highly productive upwelling events in the SPO. In contrast, the negative correlation of predicted richness with low pH is strongly related to the effect of calcareous shells (tests), as lower pH levels hinder the formation and stability of calcium carbonate shells in protists like foraminifera and radiolaria, thereby affecting overall unicellular planktonic eukaryote diversity. Our results support the role of ecological processes related to productivity, energy dynamics, and ecological limits in shaping broad-scale diversity patterns of unicellular planktonic eukaryotes in the SPO. The results show colonization and extinction dynamics through species replacement (i.e. High Turnover) along the Chilean and Equatorial coasts associated mainly with the Hotspots of their biodiversity, but also a gradual species loss (i.e. High Nestedness) along the Peruvian Coast associated mainly with the Coldspots of their biodiversity; highlighting how local environmental fluctuations can shape these planktonic microorganisms' behavior, ecology and distribution. The distribution patterns of planktonic unicellular eukaryotes show little evidence of the effects of historical and evolutionary processes. This is because the high dispersal capacity of planktonic microbes probably dilutes the influence of these processes in environments lacking clear barriers to species dispersal. Additionally, the effect of historical events could be highlighted in specific taxonomic groups at the kingdom, phylum level or habitat type and addressing gaps about latitudinal richness in the SPO. This provides insight into the spatial distribution of marine microbes and contributes to conservation efforts, as these organisms are an essential foundation of the upper levels of the food web.
Collapse
Affiliation(s)
- Sonia Yáñez
- Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Laura Tavera
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
- Museo de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160- C, Concepción, Chile, Concepción, Chile.
| | - Garen Guzmán-Rendón
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
- Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Concepción, Chile
| | - Leonardo D Fernández
- Núcleo de Investigación en Sustentabilidad Agroambiental (NISUA), Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Manuel Montt 948, Providencia, Santiago, Chile
| | - Nicolás Espinoza-Arevena
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
- Programa de Doctorado en sistemática y biodiversidad, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Margarita Marchant
- Departamento de Zoología, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cristián E Hernández
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.
- Universidad Católica de Santa María, Arequipa, Perú.
| |
Collapse
|
2
|
Archidona-Yuste A, Ciobanu M, Kardol P, Eisenhauer N. Divergent alpha and beta diversity trends of soil nematode fauna along gradients of environmental change in the Carpathian Ecoregion. Commun Biol 2025; 8:587. [PMID: 40204864 PMCID: PMC11982216 DOI: 10.1038/s42003-025-07994-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
There is a significant lack of research on how climate change influences long-term temporal trends in the biodiversity of soil organisms. Nematodes may be specifically adequate to test soil biodiversity changes, because they account for ~80% of all Metazoans and play key roles in the functioning of terrestrial ecosystems. Here, we report on the first synthesis study focused on temporal trends of nematode fauna over a period of 14 years (1986-1999) across the Carpathian Ecoregion. We provide new evidence that wetter conditions associated to global change contributes to driving nematode diversity at genus/family level. We observed opposite trends in soil nematode alpha diversity (increase) and beta diversity (decrease) consistent across ecosystem types and soil horizons, providing strong evidence for the influence of climate change on soil biodiversity at large spatial scales. An increase in the community functional uniformity along with a decline in beta diversity indicated more homogenous soil conditions over time. The Soil Stability Index (metric devised to assess soil homeostasis based on the functional composition of nematode communities) increased over time, indicating a decline of soil disturbances and more complex soil food webs. Our results highlight the importance of nematodes as powerful indicators of soil biodiversity trends affected by multiple facets of environmental change in long-term soil monitoring.
Collapse
Affiliation(s)
- Antonio Archidona-Yuste
- Institute for Sustainable Agriculture (IAS), Spanish National Research Council (CSIC), Avenida Menéndez Pidal s/n, Campus de Excelencia Internacional Agroalimentario, ceiA3, Córdoba, Spain.
| | - Marcel Ciobanu
- Institute of Biological Research Cluj, National Institute of Research and Development for Biological Sciences, Cluj-Napoca, Cluj County, Romania
| | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| |
Collapse
|
3
|
Rodrigues AC, Granzotti RV, dos Santos NCL, Agostinho AA, Gomes LC. Non-Native Species Abundance Decreases the Co-Occurrence Between Native and Non-Native Species Through Time at Any Phylogenetic Distance. Ecol Lett 2025; 28:e70107. [PMID: 40178287 PMCID: PMC11967308 DOI: 10.1111/ele.70107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Non-native species may cause cumulative impacts on native communities if their abundance continues to increase through time. This negative effect can reflect on the spatial distribution of native species, especially when native and non-native species are phylogenetically similar. Here, we assessed the spatial co-occurrence between native and non-native fish species using long-term abundance data from six locations in a Brazilian floodplain. We tested whether the co-occurrence of native and non-native species is influenced by non-native species abundance and time since first record, and whether the abundance effect is mediated by the phylogenetic relatedness between native and non-native species. We found that non-native abundance was more influential than the time since first record and co-occurrence between native and non-native species was lower when the non-native abundance was high, regardless of phylogenetic relatedness. The interannual variability in non-native species abundance may overshadow long-term trends in determining the temporal effects of non-native species.
Collapse
Affiliation(s)
- Amanda Cantarute Rodrigues
- Programa de Pós‐Graduação Em Ecologia de Ambientes Aquáticos Continentais (PEA), Departamento de Biologia (DBI), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáParanáBrazil
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR5300Université Toulouse 3 Paul Sabatier, CNRS, IRDToulouseFrance
| | - Rafaela Vendrametto Granzotti
- Programa DTI/CNPq, INCT Em Ecologia, Evolução e Conservação da Biodiversidade (EECBio)Universidade Federal de GoiásGoiâniaGoiásBrazil
| | | | - Angelo Antonio Agostinho
- Programa de Pós‐Graduação Em Ecologia de Ambientes Aquáticos Continentais (PEA), Departamento de Biologia (DBI), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáParanáBrazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáParanáBrazil
| | - Luiz Carlos Gomes
- Programa de Pós‐Graduação Em Ecologia de Ambientes Aquáticos Continentais (PEA), Departamento de Biologia (DBI), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáParanáBrazil
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupélia), Centro de Ciências Biológicas (CCB)Universidade Estadual de Maringá (UEM)MaringáParanáBrazil
| |
Collapse
|
4
|
Rehbein M, Escobari B, Fischer S, Güntsch A, Haas B, Matheisen G, Perschl T, Wieshuber A, Engel T. Quantitative and qualitative Data on historical Vertebrate Distributions in Bavaria 1845. Sci Data 2025; 12:525. [PMID: 40155652 PMCID: PMC11953396 DOI: 10.1038/s41597-025-04846-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Archival collections contain an underutilized wealth of biodiversity data, encapsulated in government files and other historical documents. In 1845, the Bavarian government conducted a comprehensive national survey on the occurrence of 44 selected vertebrate species across the country. The detailed expert responses from 119 forestry offices, totalling 520 handwritten pages, have been preserved in the Bavarian State Archives. In this study, we digitized, annotated, geographically referenced, and published these historical records, making them widely available as data for research and conservation planning. Our dataset, openly accessible through the Global Biodiversity Information Facility (GBIF) and Zenodo, contains 5,467 species occurrence records from 1845. Besides the binary presence/absence data, we have also published the original textual survey responses, which contain rich qualitative information, such as species abundances, population trends, habitats, forest management practices, and human-nature relationships. This information can be further processed and interpreted to address a range of questions in historical and contemporary ecology.
Collapse
Affiliation(s)
- Malte Rehbein
- Chair of Computational Humanities, University of Passau, Passau, Germany.
| | - Belen Escobari
- Freie Universität Berlin, Botanic Garden and Botanical Museum Berlin. Center for Biodiversity Informatics and Collection Data Integration (ZBS), Berlin, Germany
| | - Sarah Fischer
- Research Institute for Farm Animal Biology (FBN) Dummerstorf, Dummerstorf, Germany
| | - Anton Güntsch
- Freie Universität Berlin, Botanic Garden and Botanical Museum Berlin. Center for Biodiversity Informatics and Collection Data Integration (ZBS), Berlin, Germany
| | - Bettina Haas
- Chair of Computational Humanities, University of Passau, Passau, Germany
| | - Giada Matheisen
- Generaldirektion der Staatlichen Archive Bayerns, Munich, Germany
| | - Tobias Perschl
- Chair of Computational Humanities, University of Passau, Passau, Germany
| | - Alois Wieshuber
- Generaldirektion der Staatlichen Archive Bayerns, Munich, Germany
| | - Thore Engel
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Biodiversity and People, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| |
Collapse
|
5
|
Pinsky ML, Hillebrand H, Chase JM, Antão LH, Hirt MR, Brose U, Burrows MT, Gauzens B, Rosenbaum B, Blowes SA. Warming and cooling catalyse widespread temporal turnover in biodiversity. Nature 2025; 638:995-999. [PMID: 39880943 DOI: 10.1038/s41586-024-08456-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 11/27/2024] [Indexed: 01/31/2025]
Abstract
Turnover in species composition through time is a dominant form of biodiversity change, which has profound effects on the functioning of ecological communities1-4. Turnover rates differ markedly among communities4, but the drivers of this variation across taxa and realms remain unknown. Here we analyse 42,225 time series of species composition from marine, terrestrial and freshwater assemblages, and show that temporal rates of turnover were consistently faster in locations that experienced faster temperature change, including both warming and cooling. In addition, assemblages with limited access to microclimate refugia or that faced stronger human impacts on land were especially responsive to temperature change, with up to 48% of species replaced per decade. These results reveal a widespread signal of vulnerability to continuing climate change and highlight which ecological communities are most sensitive, raising concerns about ecosystem integrity as climate change and other human impacts accelerate.
Collapse
Affiliation(s)
- Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ, USA.
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA.
| | - Helmut Hillebrand
- Institute for Chemistry and Biology of Marine Environments (ICBM), University of Oldenburg, Wilhelmshaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Oldenburg, Germany
- Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laura H Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | | | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Benjamin Rosenbaum
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
6
|
Fuster-Calvo A, Valentin S, Tamayo WC, Gravel D. Evaluating the feasibility of automating dataset retrieval for biodiversity monitoring. PeerJ 2025; 13:e18853. [PMID: 39897501 PMCID: PMC11786708 DOI: 10.7717/peerj.18853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/20/2024] [Indexed: 02/04/2025] Open
Abstract
Aim Effective management strategies for conserving biodiversity and mitigating the impacts of global change rely on access to comprehensive and up-to-date biodiversity data. However, manual search, retrieval, evaluation, and integration of this information into databases present a significant challenge to keeping pace with the rapid influx of large amounts of data, hindering its utility in contemporary decision-making processes. Automating these tasks through advanced algorithms holds immense potential to revolutionize biodiversity monitoring. Innovation In this study, we investigate the potential for automating the retrieval and evaluation of biodiversity data from Dryad and Zenodo repositories. We have designed an evaluation system based on various criteria, including the type of data provided and its spatio-temporal range, and applied it to manually assess the relevance for biodiversity monitoring of datasets retrieved through an application programming interface (API). We evaluated a supervised classification to identify potentially relevant datasets and investigate the feasibility of automatically ranking the relevance. Additionally, we applied the same appraoch on a scientific literature source, using data from Semantic Scholar for reference. Our evaluation centers on the database utilized by a national biodiversity monitoring system in Quebec, Canada. Main conclusions We retrieved 89 (55%) relevant datasets for our database, showing the value of automated dataset search in repositories. Additionally, we find that scientific publication sources offer broader temporal coverage and can serve as conduits guiding researchers toward other valuable data sources. Our automated classification system showed moderate performance in detecting relevant datasets (with an F-score up to 0.68) and signs of overfitting, emphasizing the need for further refinement. A key challenge identified in our manual evaluation is the scarcity and uneven distribution of metadata in the texts, especially pertaining to spatial and temporal extents. Our evaluative framework, based on predefined criteria, can be adopted by automated algorithms for streamlined prioritization, and we make our manually evaluated data publicly available, serving as a benchmark for improving classification techniques.
Collapse
Affiliation(s)
| | - Sarah Valentin
- Joint Research Unit Land, Remote Sensing and Spatial Information (UMR TETIS), French Agricultural Research Centre for International Development (CIRAD), Montpellier, France
| | - William C. Tamayo
- Biology Department, University of Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dominique Gravel
- Biology Department, University of Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
7
|
Januario M, Pinsky ML, Rabosky DL. The Metapopulation Bridge to Macroevolutionary Speciation Rates: A Conceptual Framework and Empirical Test. Ecol Lett 2025; 28:e70021. [PMID: 39737715 DOI: 10.1111/ele.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/09/2024] [Accepted: 10/09/2024] [Indexed: 01/01/2025]
Abstract
Whether large-scale variation in lineage diversification rates can be predicted by species properties at the population level is a key unresolved question at the interface between micro- and macroevolution. All else being equal, species with biological attributes that confer metapopulation stability should persist more often at timescales relevant to speciation and so give rise to new (incipient) forms that share these biological traits. Here, we develop a framework for testing the relationship between metapopulation properties related to persistence and phylogenetic speciation rates. We illustrate this conceptual approach by applying it to a long-term dataset on demersal fish communities from the North American continental shelf region. We find that one index of metapopulation persistence has phylogenetic signal, suggesting that traits are connected with range-wide demographic patterns. However, there is no relationship between demographic properties and speciation rate. These findings suggest a decoupling between ecological dynamics at decadal timescales and million-year clade dynamics, raising questions about the extent to which population-level processes observable over ecological timescales can be extrapolated to infer biodiversity dynamics more generally.
Collapse
Affiliation(s)
- Matheus Januario
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Malin L Pinsky
- Department of Ecology, Evolution, and Natural Resources, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Daniel L Rabosky
- Museum of Zoology & Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Leveau LM, Bocelli L, Quesada-Acuña SG, González-Lagos C, Tapia PG, Dri GF, Delgado-V CA, Garitano-Zavala A, Campos J, Benedetti Y, Ortega-Álvarez R, Contreras-Rodríguez AI, Souza López D, Fontana CS, da Silva TW, Zalewski Vargas SS, Toledo MCB, Sarquis JA, Giraudo A, Echevarria AL, Fanjul ME, Martínez MV, Haedo J, Gonzalo Cano Sanz L, Peña Dominguez YA, Fernandez-Maldonado V, Marinero V, Abilhoa V, Amorin R, Escobar-Ibáñez JF, Juri MD, Camín SR, Marone L, Piratelli AJ, Franchin AG, Crispim L, Morelli F. Drivers of Seasonal Change of Avian Communities in Urban Parks and Cemeteries of Latin America. Animals (Basel) 2024; 14:3564. [PMID: 39765469 PMCID: PMC11672830 DOI: 10.3390/ani14243564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Urban parks and cemeteries constitute hot spots of bird diversity in urban areas. However, the seasonal dynamics of their bird communities have been scarcely explored at large scales. This study aims to analyze the drivers of urban bird assemblage seasonality in urban parks and cemeteries comparing assemblages during breeding and non-breeding seasons in the Neotropical Region. Since cemeteries have less human disturbance than urban parks, we expected differences in bird community seasonality between habitats. The seasonal change of species composition was partitioned into species turnover and nestedness. At large scales, the seasonal change of species composition was positively related to temperature seasonality and was higher in the Northern Hemisphere. At the landscape scale, the seasonal change of composition decreased in sites located in the most urbanized areas. At the local scale, sites with the highest habitat diversity and pedestrian traffic had the lowest seasonal change of composition. The species turnover was higher in the Northern Hemisphere, augmented with increasing annual temperature range, and decreased in urban parks. The species nestedness was positively related to habitat diversity. Our results showed that a multi-scale framework is essential to understand the seasonal changes of bird communities. Moreover, the two components of seasonal composition dissimilarity showed contrasting responses to environmental variables. Although the surrounding urbanization lowered the seasonal dynamics of urban green areas, cemeteries seem to conserve more seasonal changes than urban parks. Thus, urban cemeteries help to conserve the temporal dynamics of bird communities in cities.
Collapse
Affiliation(s)
- Lucas M. Leveau
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET—UBA), Ciudad Universitaria, Pab 2, Piso 4, Buenos Aires 1426, Argentina
| | - Lucia Bocelli
- Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires—IEGEBA (CONICET—UBA), Ciudad Universitaria, Pab 2, Piso 4, Buenos Aires 1426, Argentina
| | - Sergio Gabriel Quesada-Acuña
- Laboratorio de Ecología Urbana, Vicerrectoría de Investigación, Universidad Estatal a Distancia, San José 2050, Sabanilla, Costa Rica
| | - César González-Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago 8320000, Chile;
- Center of Applied Ecology and Sustainability (CAPES), Santiago 7820244, Chile
| | | | - Gabriela Franzoi Dri
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, 5755 Nutting Hall, Room 244, Orono, ME 04469-5755, USA
| | - Carlos A. Delgado-V
- Programa de Ecología, Facultad de Ciencias y Biotecnología, Universidad CES, Calle 10A 22-04, Medellín 050021, Colombia
| | - Alvaro Garitano-Zavala
- Instituto de Ecología, Facultad de Ciencias Puras y Naturales, Universidad Mayor de San Andrés, La Paz 8635, Bolivia;
| | - Jackeline Campos
- Independent Researcher, Av. Sánchez Lima 900, Torre Altavista 14F, La Paz, Bolivia
| | - Yanina Benedetti
- Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague, Czech Republic; (Y.B.); (F.M.)
| | - Rubén Ortega-Álvarez
- Investigadoras e Investigadores por México del CONACYT, Dirección Regional Occidente, Comala 28454, Mexico;
| | | | - Daniela Souza López
- North American Birds Conservation Initiative, CONABIO, Liga Periférico-Insurgentes Sur No. 4903, Parques del Pedregal, Ciudad de México 14010, Mexico
| | | | - Thaiane Weinert da Silva
- Museu de Ciências e Tecnologia, Programa de Pós-Graduação em Ecologia e Evolução da Biodiversidade, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, Prédio 40 Sala 110 B, Porto Alegre 90619-900, RS, Brazil;
| | - Sarah S. Zalewski Vargas
- Laboratório de Ornitologia, Museu de Ciências e Tecnologia, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre 90619-900, RS, Brazil;
| | - Maria C. B. Toledo
- Laboratório de Ecologia, Instituto Básico de Biociências, Universidade de Taubaté Curso de Pós-Graduação em Ciências Ambientais, Taubaté 12020040, SP, Brazil;
| | - Juan Andres Sarquis
- Instituto Nacional de Limnología (Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional del Litoral), Ciudad Universitaria, Santa Fe 3000, Argentina; (J.A.S.); (A.G.)
| | - Alejandro Giraudo
- Instituto Nacional de Limnología (Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional del Litoral), Ciudad Universitaria, Santa Fe 3000, Argentina; (J.A.S.); (A.G.)
| | - Ada Lilian Echevarria
- Instituto de Vertebrados—Zoología—Fundación Miguel Lillo, Miguel Lillo 251 San Miguel de Tucumán, Tucumán CP 4000, Argentina; (A.L.E.); (M.E.F.); (M.V.M.)
| | - María Elisa Fanjul
- Instituto de Vertebrados—Zoología—Fundación Miguel Lillo, Miguel Lillo 251 San Miguel de Tucumán, Tucumán CP 4000, Argentina; (A.L.E.); (M.E.F.); (M.V.M.)
| | - María Valeria Martínez
- Instituto de Vertebrados—Zoología—Fundación Miguel Lillo, Miguel Lillo 251 San Miguel de Tucumán, Tucumán CP 4000, Argentina; (A.L.E.); (M.E.F.); (M.V.M.)
| | - Josefina Haedo
- Instituto de Ecología Regional (CONICET—UNT), Tucumán T4107, Argentina;
| | - Luis Gonzalo Cano Sanz
- Museo de Historia Natural de la Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; (L.G.C.S.); (Y.A.P.D.)
| | - Yuri A. Peña Dominguez
- Museo de Historia Natural de la Universidad Nacional de San Agustín de Arequipa, Arequipa 04001, Peru; (L.G.C.S.); (Y.A.P.D.)
| | - Viviana Fernandez-Maldonado
- Centro de Investigaciones de la Geósfera y la Biósfera-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan (UNSJ), Complejo Universitario “Islas Malvinas”, Av. Ignacio de la Roza 590 (O), Rivadavia J5402DCS, Argentina; (V.F.-M.); (V.M.)
| | - Veronica Marinero
- Centro de Investigaciones de la Geósfera y la Biósfera-CONICET, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de San Juan (UNSJ), Complejo Universitario “Islas Malvinas”, Av. Ignacio de la Roza 590 (O), Rivadavia J5402DCS, Argentina; (V.F.-M.); (V.M.)
| | - Vinícius Abilhoa
- Museu de História Natural Capão da Imbuia, PMC Rua Prof. Benedito Conceição, 407, Curitiba 82810-080, PR, Brazil; (V.A.); (R.A.)
| | - Rafael Amorin
- Museu de História Natural Capão da Imbuia, PMC Rua Prof. Benedito Conceição, 407, Curitiba 82810-080, PR, Brazil; (V.A.); (R.A.)
| | - Juan Fernando Escobar-Ibáñez
- Doctorado en Ciencias de la Sustentabilidad, Universidad Rosario Castellanos de la Ciudad de México, Ciudad de México 07969, Mexico;
- Gnósis—Naturaleza con Ciencia, A.C., Guadalajara 45239, Mexico
| | | | - Sergio R. Camín
- ECODES, Grupo de Investigación en Ecología de Comunidades de Desierto, IADIZA-CONICET, Mendoza y Facultad de Ciencias Exactas y Naturales, UNCuyo, Mendoza CP 5500, Argentina; (S.R.C.); (L.M.)
| | - Luis Marone
- ECODES, Grupo de Investigación en Ecología de Comunidades de Desierto, IADIZA-CONICET, Mendoza y Facultad de Ciencias Exactas y Naturales, UNCuyo, Mendoza CP 5500, Argentina; (S.R.C.); (L.M.)
| | - Augusto João Piratelli
- Departamento de Ciências Ambientais, CCTS, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Itinga, Sorocaba 18052-780, SP, Brazil; (A.J.P.); (A.G.F.); (L.C.)
| | - Alexandre G. Franchin
- Departamento de Ciências Ambientais, CCTS, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Itinga, Sorocaba 18052-780, SP, Brazil; (A.J.P.); (A.G.F.); (L.C.)
| | - Larissa Crispim
- Departamento de Ciências Ambientais, CCTS, Universidade Federal de São Carlos, Rodovia João Leme dos Santos, Km 110, Itinga, Sorocaba 18052-780, SP, Brazil; (A.J.P.); (A.G.F.); (L.C.)
| | - Federico Morelli
- Faculty of Environmental Sciences, Community Ecology & Conservation, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague, Czech Republic; (Y.B.); (F.M.)
| |
Collapse
|
9
|
Huang M, Chen Y, Zhou W, Wei F. Assessing the response of marine fish communities to climate change and fishing. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14291. [PMID: 38745485 DOI: 10.1111/cobi.14291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 05/16/2024]
Abstract
Globally, marine fish communities are being altered by climate change and human disturbances. We examined data on global marine fish communities to assess changes in community-weighted mean temperature affinity (i.e., mean temperatures within geographic ranges), maximum length, and trophic levels, which, respectively, represent the physiological, morphological, and trophic characteristics of marine fish communities. Then, we explored the influence of climate change and fishing on these characteristics because of their long-term role in shaping fish communities, especially their interactive effects. We employed spatial linear mixed models to investigate their impacts on community-weighted mean trait values and on abundance of different fish lengths and trophic groups. Globally, we observed an initial increasing trend in the temperature affinity of marine fish communities, whereas the weighted mean length and trophic levels of fish communities showed a declining trend. However, these shift trends were not significant, likely due to the large variation in midlatitude communities. Fishing pressure increased fish communities' temperature affinity in regions experiencing climate warming. Furthermore, climate warming was associated with an increase in weighted mean length and trophic levels of fish communities. Low climate baseline temperature appeared to mitigate the effect of climate warming on temperature affinity and trophic levels. The effect of climate warming on the relative abundance of different trophic classes and size classes both exhibited a nonlinear pattern. The small and relatively large fish species may benefit from climate warming, whereas the medium and largest size groups may be disadvantaged. Our results highlight the urgency of establishing stepping-stone marine protected areas to facilitate the migration of fishes to habitats in a warming ocean. Moreover, reducing human disturbance is crucial to mitigate rapid tropicalization, particularly in vulnerable temperate regions.
Collapse
Affiliation(s)
- Mingpan Huang
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yiting Chen
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- Department of Ocean Science, Hong Kong University of Science and Technology, Hong Kong, China
| | - Wenliang Zhou
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Fuwen Wei
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Jiangxi Key Laboratory of Conservation Biology, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
10
|
Vagnon C, Olden JD, Boulêtreau S, Bruel R, Chevalier M, Garcia F, Holtgrieve G, Jackson M, Thebault E, Tedesco PA, Cucherousset J. Ecosystem synchrony: an emerging property to elucidate ecosystem responses to global change. Trends Ecol Evol 2024; 39:1080-1089. [PMID: 39217060 DOI: 10.1016/j.tree.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/25/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Understanding ecosystem responses to global change have long challenged scientists due to notoriously complex properties arising from the interplay between biological and environmental factors. We propose the concept of ecosystem synchrony - that is, similarity in the temporal fluctuations of an ecosystem function between multiple ecosystems - to overcome this challenge. Ecosystem synchrony can manifest due to spatially correlated environmental fluctuations (Moran effect), exchange of energy, nutrients, and organic matter and similarity in biotic characteristics across ecosystems. By taking advantage of long-term surveys, remote sensing and the increased use of high-frequency sensors to assess ecosystem functions, ecosystem synchrony can foster our understanding of the coordinated ecosystem responses at unexplored spatiotemporal scales, identify emerging portfolio effects among ecosystems, and deliver signals of ecosystem perturbations.
Collapse
Affiliation(s)
- Chloé Vagnon
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France.
| | - Julian D Olden
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Stéphanie Boulêtreau
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Rosalie Bruel
- OFB, DRAS, Service EcoAqua, Aix-en-Provence, France; Pôle R&D ECLA, Aix-en-Provence, France
| | - Mathieu Chevalier
- IFREMER-DYNECO-LEBCO, Centre de Bretagne, CS 10070, 29280 Plouzané, France
| | - Flavien Garcia
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Gordon Holtgrieve
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Michelle Jackson
- Department of Biology, University of Oxford, Oxford, OX1 3SZ, UK
| | - Elisa Thebault
- Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Science (iEES), Paris, France
| | - Pablo A Tedesco
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| | - Julien Cucherousset
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), Université de Toulouse, CNRS, IRD, Toulouse INP, Université Toulouse 3 - Paul Sabatier (UT3), Toulouse, France
| |
Collapse
|
11
|
Haubrock PJ, Soto I, Tarkan AS, Macêdo RL, Kouba A, Cuthbert RN, Briski E, Everts T, Kurtul I. Socioeconomic prerequisites determine national long-term biomonitoring efforts. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122431. [PMID: 39243635 DOI: 10.1016/j.jenvman.2024.122431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/18/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
In the current anthropogenic era characterised by human-induced environmental changes, long-term biomonitoring has become a crucial component for understanding ecological patterns and detecting shifts in biodiversity. However, spatiotemporal inconsistencies in biomonitoring efforts hinder transboundary progress in understanding and mitigating global environmental change effectively. The International Long-Term Ecosystem Research (ILTER) network is one of the largest standardised biomonitoring initiatives worldwide, encompassing 44 countries globally, including 26 European countries that are part of the European Long-Term Ecosystem Research network (eLTER). To better understand the establishment and development of such long-term biomonitoring efforts, we analysed spatial and temporal trends within the eLTER network. Additionally, we evaluated the environmental, social, and economic factors influencing engagement in biomonitoring activities within this European network. Our findings reveal a spatial imbalance, with biomonitoring efforts concentrated in Central and Western European countries, where monitoring initiatives have typically been established for a longer duration. Furthermore, our analyses underscore the complex interplay of economic, geographic, and cultural factors in the development of long-term ecological research infrastructures. Countries with greater geographic connectivity, slower economic growth, and higher research activity are more likely to be involved in the eLTER network. The intensity of biomonitoring significantly increased with greater research investments, economic growth, and elevated levels of tourism. In contrast, it decreased in countries that are more inward-facing and exhibit a belief in their ability to control environmental outcomes independently. Addressing spatial gaps in monitoring necessitates enhanced support and funding to ensure comprehensive ecological monitoring over extended time periods. This is essential for achieving transboundary sustainability and effective biodiversity conservation in the face of global change drivers.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany; CAMB, Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, 73F2+GV4, Kuwait.
| | - Ismael Soto
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland; Department of Basic Sciences, Faculty of Fisheries, Muğla Sıtkı Koçman University, 48000, Muğla, Türkiye
| | - Rafael L Macêdo
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), 12587, Berlin, Germany; Institute of Biology, Freie Universität Berlin, 14195, Berlin, Germany
| | - Antonín Kouba
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, 389 25, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL, Belfast, United Kingdom
| | - Elizabeta Briski
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24148, Kiel, Germany
| | - Teun Everts
- Research Institute for Nature and Forest (INBO), Genetic Diversity, 9500, Geraardsbergen, Belgium; KU Leuven, Department of Biology, Plant Conservation and Population Biology, 3000, Leuven, Belgium
| | - Irmak Kurtul
- Marine and Inland Waters Sciences and Technology Department, Faculty of Fisheries, Ege University, 35050, Bornova, İzmir, Türkiye; Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, BH12 5BB, Poole, Dorset, United Kingdom.
| |
Collapse
|
12
|
Woodhouse A, Swain A, Smith J, Sibert E, Lam A, Dunne J, Auderset A. The Micropaleoecology Framework: Evaluating Biotic Responses to Global Change Through Paleoproxy, Microfossil, and Ecological Data Integration. Ecol Evol 2024; 14:e70470. [PMID: 39493613 PMCID: PMC11525056 DOI: 10.1002/ece3.70470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/05/2024] Open
Abstract
The microfossil record contains abundant, diverse, and well-preserved fossils spanning multiple trophic levels from primary producers to apex predators. In addition, microfossils often constitute and are preserved in high abundances alongside continuous high-resolution geochemical proxy records. These characteristics mean that microfossils can provide valuable context for understanding the modern climate and biodiversity crises by allowing for the interrogation of spatiotemporal scales well beyond what is available in neo-ecological research. Here, we formalize a research framework of "micropaleoecology," which builds on a holistic understanding of global change from the environment to ecosystem level. Location: Global. Time period: Neoproterozoic-Phanerozoic. Taxa studied: Fossilizing organisms/molecules. Our framework seeks to integrate geochemical proxy records with microfossil records and metrics, and draws on mechanistic models and systems-level statistical analyses to integrate disparate records. Using multiple proxies and mechanistic mathematical frameworks extends analysis beyond traditional correlation-based studies of paleoecological associations and builds a greater understanding of past ecosystem dynamics. The goal of micropaleoecology is to investigate how environmental changes impact the component and emergent properties of ecosystems through the integration of multi-trophic level body fossil records (primarily using microfossils, and incorporating additional macrofossil data where possible) with contemporaneous environmental (biogeochemical, geochemical, and sedimentological) records. Micropaleoecology, with its focus on integrating ecological metrics within the context of paleontological records, facilitates a deeper understanding of the response of ecosystems across time and space to better prepare for a future Earth under threat from anthropogenic climate change.
Collapse
Affiliation(s)
- Adam Woodhouse
- School of Earth SciencesUniversity of BristolBristolUK
- University of Texas Institute for GeophysicsUniversity of Texas at AustinAustinTexasUSA
| | - Anshuman Swain
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
- Museum of Comparative ZoologyHarvard UniversityCambridgeMassachusettsUSA
| | - Jansen A. Smith
- Department of Earth and Environmental SciencesUniversity of Minnesota DuluthDuluthMinnesotaUSA
| | - Elizabeth C. Sibert
- Department of Geology and GeophysicsWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Adriane R. Lam
- Department of Earth SciencesBinghamton UniversityBinghamtonNew YorkUSA
| | | | | |
Collapse
|
13
|
Ondo I, Dhanjal-Adams KL, Pironon S, Silvestro D, Colli-Silva M, Deklerck V, Grace OM, Monro AK, Nicolson N, Walker B, Antonelli A. Plant diversity darkspots for global collection priorities. THE NEW PHYTOLOGIST 2024; 244:719-733. [PMID: 39152543 DOI: 10.1111/nph.20024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/07/2024] [Indexed: 08/19/2024]
Abstract
More than 15% of all vascular plant species may remain scientifically undescribed, and many of the > 350 000 described species have no or few geographic records documenting their distribution. Identifying and understanding taxonomic and geographic knowledge shortfalls is key to prioritising future collection and conservation efforts. Using extensive data for 343 523 vascular plant species and time-to-event analyses, we conducted multiple tests related to plant taxonomic and geographic data shortfalls, and identified 33 global diversity darkspots (those 'botanical countries' predicted to contain most undescribed and not yet recorded species). We defined priority regions for future collection according to several socio-economic and environmental scenarios. Most plant diversity darkspots are found within global biodiversity hotspots, with the exception of New Guinea. We identify Colombia, Myanmar, New Guinea, Peru, Philippines and Turkey as global collection priorities under all environmental and socio-economic conditions considered. Our study provides a flexible framework to help accelerate the documentation of global plant diversity for the implementation of conservation actions. As digitisation of the world's herbaria progresses, collection and conservation priorities may soon be identifiable at finer scales.
Collapse
Affiliation(s)
- Ian Ondo
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
| | | | - Samuel Pironon
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, CB3 0DL, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4DQ, UK
| | - Daniele Silvestro
- Department of Biology, University of Fribourg, Fribourg, 1700, Switzerland
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, 41319, Sweden
| | | | - Victor Deklerck
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Meise Botanic Garden, Meise, 1860, Belgium
| | - Olwen M Grace
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Royal Botanic Garden Edinburgh, Edinburgh, EH3 5LR, UK
| | | | | | | | - Alexandre Antonelli
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, 41319, Sweden
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| |
Collapse
|
14
|
Ghosh S, Matthews B, Petchey OL. Temperature and biodiversity influence community stability differently in birds and fishes. Nat Ecol Evol 2024; 8:1835-1846. [PMID: 39112662 DOI: 10.1038/s41559-024-02493-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/08/2024] [Indexed: 08/15/2024]
Abstract
Determining the factors that affect community stability is crucial to understanding the maintenance of biodiversity and ecosystem functioning in the face of global warming. We investigated how four temperature components (that is, median, variability, trend and extremes) affected diversity-synchrony-stability relationships for 1,246 bird and 580 fish communities from temperate regions. We hypothesized a stabilizing effect on the community if the variation in species' response to changing median temperature decreases overall community synchrony (hypothesis H1) and if temperature extremes reduce interspecific synchrony at extreme abundances due to variation in species' thermal tolerance limits (hypothesis H2). We found support for H1 in fish and for H2 in bird communities. Here we showed that the abiotic components (that is, the median, variability, trend and extremes of temperature) had more indirect effects on community stability, predominantly by affecting the biotic components (that is, diversity, synchrony). Considering various temperature components' direct as well as indirect impacts on stability for terrestrial versus aquatic communities will improve our mechanistic understanding of biodiversity change in response to global climatic stressors.
Collapse
Affiliation(s)
- Shyamolina Ghosh
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland.
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Kastanienbaum, Switzerland
| | - Owen L Petchey
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Armitage P, Burrows MT, Rimmer JEV, Blight AJ, Paterson DM. Multidecadal changes in coastal benthic species composition and ecosystem functioning occur independently of temperature-driven community shifts. GLOBAL CHANGE BIOLOGY 2024; 30:e17482. [PMID: 39189596 DOI: 10.1111/gcb.17482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 08/28/2024]
Abstract
Rising global temperatures are often identified as the key driver impacting ecosystems and the services they provide by affecting biodiversity structure and function. A disproportionate amount of our understanding of biodiversity and function is from short-term experimental studies and static values of biodiversity indices, lacking the ability to monitor long-term trends and capture community dynamics. Here, we analyse a biennial dataset spanning 32 years of macroinvertebrate benthic communities and their functional response to increasing temperatures. We monitored changes in species' thermal affinities to examine warming-related shifts by selecting their mid-point global temperature distribution range and linking them to species' traits. We employed a novel weighted metric using Biological Trait Analysis (BTA) to gain better insights into the ecological potential of each species by incorporating species abundance and body size and selecting a subset of traits that represent five ecosystem functions: bioturbation activity, sediment stability, nutrient recycling and higher and lower trophic production. Using biodiversity indices (richness, Simpson's diversity and vulnerability) and functional indices (richness, Rao's Q and redundancy), the community structure showed no significant change over time with a narrow range of variation. However, we show shifts in species composition with warming and increases in the abundance of individuals, which altered ecosystem functioning positively and/or non-linearly. Yet, when higher taxonomic groupings than species were excluded from the analysis, there was only a weak increase in the measured change in community-weighted average thermal affinities, suggesting changes in ecosystem functions over time occur independently of temperature increase-related shifts in community composition. Other environmental factors driving species composition and abundance may be more important in these subtidal macrobenthic communities. This challenges the prevailing emphasis on temperature as the primary driver of ecological response to climate change and emphasises the necessity for a comprehensive understanding of the temporal dynamics of complex systems.
Collapse
Affiliation(s)
- Phoebe Armitage
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
- Åbo Akademi University, Environmental and Marine Biology, Turku, Finland
| | | | - James E V Rimmer
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Andrew J Blight
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - David M Paterson
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
16
|
Pérez-Aragón M, Escribano R, Rivera R, Hidalgo P. Biodiversity patterns of epipelagic copepods in the South Pacific Ocean: Strengths and limitations of current data bases. PLoS One 2024; 19:e0306440. [PMID: 38991030 PMCID: PMC11238982 DOI: 10.1371/journal.pone.0306440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/18/2024] [Indexed: 07/13/2024] Open
Abstract
Basin-scale patterns of biodiversity for zooplankton in the ocean may provide valuable insights for understanding the impact of climate change and global warming on the marine ecosystem. However, studies on this topic remain scarce or unavailable in vast regions of the world ocean, particularly in large regions where the amount and quality of available data are limited. In this study, we used a 27-year (1993-2019) database on species occurrence of planktonic copepods in the South Pacific, along with associated oceanographic variables, to examine their spatial patterns of biodiversity in the upper 200 m of the ocean. The aim of this study was to identify ecological regions and the environmental predictors explaining such patterns. It was found that hot and cold spots of diversity, and distinctive species assemblages were linked to major ocean currents and large regions over the basin, with increasing species richness over the subtropical areas on the East and West sides of the South Pacific. While applying the spatial models, we showed that the best environmental predictors for diversity and species composition were temperature, salinity, chlorophyll-a concentration, oxygen concentration, and the residual autocorrelation. Nonetheless, the observed spatial patterns and derived environmental effects were found to be strongly influenced by sampling coverage over space and time, revealing a highly under-sampled basin. Our findings provide an assessment of copepods diversity patterns and their potential drivers for the South Pacific Ocean, but they also stress the need for strengthening the data bases of planktonic organisms, as they can act as suitable indicators of ecosystem response to climate change at basin scale.
Collapse
Affiliation(s)
- Manuela Pérez-Aragón
- Doctoral Program of Oceanography, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Ruben Escribano
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
- Department of Oceanography, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| | - Reinaldo Rivera
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
| | - Pamela Hidalgo
- Instituto Milenio de Oceanografía (IMO), Universidad de Concepción, Concepción, Chile
- Department of Oceanography, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
17
|
Welti EAR, Bowler DE, Sinclair JS, Altermatt F, Álvarez-Cabria M, Amatulli G, Angeler DG, Archambaud G, Arrate Jorrín I, Aspin T, Azpiroz I, Baker NJ, Bañares I, Barquín Ortiz J, Bodin CL, Bonacina L, Bonada N, Bottarin R, Cañedo-Argüelles M, Csabai Z, Datry T, de Eyto E, Dohet A, Domisch S, Dörflinger G, Drohan E, Eikland KA, England J, Eriksen TE, Evtimova V, Feio MJ, Ferréol M, Floury M, Forcellini M, Forio MAE, Fornaroli R, Friberg N, Fruget JF, Garcia Marquez JR, Georgieva G, Goethals P, Graça MAS, House A, Huttunen KL, Jensen TC, Johnson RK, Jones JI, Kiesel J, Larrañaga A, Leitner P, L'Hoste L, Lizée MH, Lorenz AW, Maire A, Manzanos Arnaiz JA, Mckie B, Millán A, Muotka T, Murphy JF, Ozolins D, Paavola R, Paril P, Peñas Silva FJ, Polasek M, Rasmussen J, Rubio M, Sánchez Fernández D, Sandin L, Schäfer RB, Schmidt-Kloiber A, Scotti A, Shen LQ, Skuja A, Stoll S, Straka M, Stubbington R, Timm H, Tyufekchieva VG, Tziortzis I, Uzunov Y, van der Lee GH, Vannevel R, Varadinova E, Várbíró G, Velle G, Verdonschot PFM, Verdonschot RCM, Vidinova Y, Wiberg-Larsen P, Haase P. Time series of freshwater macroinvertebrate abundances and site characteristics of European streams and rivers. Sci Data 2024; 11:601. [PMID: 38849407 PMCID: PMC11161585 DOI: 10.1038/s41597-024-03445-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
Freshwater macroinvertebrates are a diverse group and play key ecological roles, including accelerating nutrient cycling, filtering water, controlling primary producers, and providing food for predators. Their differences in tolerances and short generation times manifest in rapid community responses to change. Macroinvertebrate community composition is an indicator of water quality. In Europe, efforts to improve water quality following environmental legislation, primarily starting in the 1980s, may have driven a recovery of macroinvertebrate communities. Towards understanding temporal and spatial variation of these organisms, we compiled the TREAM dataset (Time seRies of European freshwAter Macroinvertebrates), consisting of macroinvertebrate community time series from 1,816 river and stream sites (mean length of 19.2 years and 14.9 sampling years) of 22 European countries sampled between 1968 and 2020. In total, the data include >93 million sampled individuals of 2,648 taxa from 959 genera and 212 families. These data can be used to test questions ranging from identifying drivers of the population dynamics of specific taxa to assessing the success of legislative and management restoration efforts.
Collapse
Affiliation(s)
- Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany.
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, Virginia, 22630, USA.
| | - Diana E Bowler
- Department of Ecosystem Services, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, 07743, Germany
- Department of Ecosystem Services, Helmholtz Center for Environmental Research - UFZ, Leipzig, 04318, Germany
| | - James S Sinclair
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057, Zürich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - Mario Álvarez-Cabria
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 39011, Spain
| | - Giuseppe Amatulli
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
- IMPACT, the Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
- Brain Capital Alliance, San Francisco, CA, USA
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gaït Archambaud
- INRAE, Aix Marseille Univ, RECOVER, Aix-en-Provence, 13182, France
| | | | | | - Iker Azpiroz
- Ekolur Asesoría Ambiental SLL, Oiartzun, 20180, Spain
| | - Nathan Jay Baker
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Akademijos Str. 2, Vilnius, 08412, Lithuania
| | - Iñaki Bañares
- Departamento de Medio Ambiente y Obras Hidráulicas, Diputación Foral de Gipuzkoa, Donostia-San Sebastián, 20004, Spain
| | - José Barquín Ortiz
- IHCantabria - Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, 39011, Spain
| | - Christian L Bodin
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, 5838, Norway
| | - Luca Bonacina
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, 20126, Italy
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, 08028, Spain
| | - Roberta Bottarin
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, 39100, Italy
| | - Miguel Cañedo-Argüelles
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Carrer de Jordi Girona, 18-26, 08034, Barcelona, Spain
| | - Zoltán Csabai
- HUN-REN Balaton Limnological Research Institute, 3 Klebelsberg Kuno, H8237, Tihany, Hungary
- Department of Hydrobiology, University of Pécs, Pécs, 7624, Hungary
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, F28PF65, Ireland
| | - Alain Dohet
- Environmental Research and Innovation department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, L-4362, Luxembourg
| | - Sami Domisch
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Gerald Dörflinger
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, 1047, Cyprus
| | - Emma Drohan
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, A91 K584, Ireland
| | - Knut A Eikland
- Norwegian Institute for Nature Research (NINA), Oslo/Lillehammer, Norway
| | | | - Tor E Eriksen
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
| | - Vesela Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Maria J Feio
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, 3000-456, Portugal
| | - Martial Ferréol
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Mathieu Floury
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
| | - Maxence Forcellini
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, F-69625, France
| | - Marie Anne Eurie Forio
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences - DISAT, University of Milano-Bicocca, Milan, 20126, Italy
| | - Nikolai Friberg
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
- University of Copenhagen, Freshwater Biological section, 2100, Copenhagen, Denmark
- University of Leeds, water@leeds, School of Geography, Leeds, UK
| | | | - Jaime R Garcia Marquez
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Galia Georgieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Manuel A S Graça
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, 3000-456, Portugal
| | | | - Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, Oulu, 90014, Finland
- Nature Solutions Unit, Finnish Environment Institute, Oulu, 90014, Finland
| | | | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Jens Kiesel
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- Department of Hydrology and Water Resources Management, Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Kiel, 24118, Germany
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, 48940, Spain
| | - Patrick Leitner
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
| | - Lionel L'Hoste
- Environmental Research and Innovation department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, L-4362, Luxembourg
| | | | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| | - Anthony Maire
- EDF Recherche et Développement, Laboratoire National d'Hydraulique et Environnement, Chatou, 78401, France
| | | | - Brendan Mckie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 75651, Sweden
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, 30100, Spain
| | - Timo Muotka
- Nature Solutions Unit, Finnish Environment Institute, Oulu, 90014, Finland
| | - John F Murphy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Davis Ozolins
- Institute of Biology, University of Latvia, Riga, LV-1004, Latvia
| | - Riku Paavola
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, 93900, Finland
- Water, Energy and Environmental Engineering Research Unit, Faculty of Technology, University of Oulu, 90014, Oulu, Finland
| | - Petr Paril
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | | | - Marek Polasek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Jes Rasmussen
- Norwegian Institute for Water Research (NIVA Denmark), 2300, Copenhagen S, Denmark
| | - Manu Rubio
- Ekolur Asesoría Ambiental SLL, Oiartzun, 20180, Spain
| | | | - Leonard Sandin
- Norwegian Institute for Nature Research (NINA), Oslo/Lillehammer, Norway
| | - Ralf B Schäfer
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
- Research Center One Health Ruhr, University Alliance Ruhr, Universitätsstrasse 2, 45141, Essen, Germany
| | - Astrid Schmidt-Kloiber
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, 1180, Vienna, Austria
| | - Alberto Scotti
- Eurac Research, Institute for Alpine Environment, Bolzano/Bozen, 39100, Italy
- APEM Ltd, Riverview, A17 - The Embankment Business Park - SK4 3GN, Heaton Mersey, Stockport, UK
| | - Longzhu Q Shen
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, 15213, USA
| | - Agnija Skuja
- Institute of Biology, University of Latvia, Riga, LV-1004, Latvia
| | - Stefan Stoll
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
- Department of Environmental Planning and Technology, University of Applied Sciences Trier, Birkenfeld, 55761, Germany
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
- T.G. Masaryk Water Research Institute, p.r.i., Brno, 61200, Czech Republic
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Henn Timm
- Estonian University of Life Sciences, Chair of Hydrobiology and Fishery, Centre for Limnology, Elva vald, 61117, Estonia
| | - Violeta G Tyufekchieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Iakovos Tziortzis
- Department Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, 12587, Germany
| | - Yordan Uzunov
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, 6708, PB, Netherlands
| | - Rudy Vannevel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
- Flanders Environment Agency, Aalst, 9300, Belgium
| | - Emilia Varadinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
- South-West University "Neofit Rilski", Faculty of Mathematics and Natural Sciences, Department of Geography, Ecology and Environment Protection, Blagoevgrad, Bulgaria
| | - Gábor Várbíró
- Department of Tisza River Research, HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, 4026, Hungary
| | - Gaute Velle
- LFI - The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, 5838, Norway
- Department of Biological Sciences, University of Bergen, Bergen, 5006, Norway
| | - Piet F M Verdonschot
- Estonian University of Life Sciences, Chair of Hydrobiology and Fishery, Centre for Limnology, Elva vald, 61117, Estonia
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, 1098, XH, Netherlands
| | - Ralf C M Verdonschot
- School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, UK
| | - Yanka Vidinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, 1000, Bulgaria
| | | | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
18
|
Chaikin S, Riva F, Marshall KE, Lessard JP, Belmaker J. Marine fishes experiencing high-velocity range shifts may not be climate change winners. Nat Ecol Evol 2024; 8:936-946. [PMID: 38459374 DOI: 10.1038/s41559-024-02350-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/28/2024] [Indexed: 03/10/2024]
Abstract
Climate change is driving the global redistribution of species. A common assumption is that rapid range shifts occur in tandem with overall stable or positive abundance trends throughout the range and thus these species may be considered as climate change 'winners'. However, although establishing the link between range shift velocities and population trends is crucial for predicting climate change impacts it has not been empirically tested. Using 2,572 estimates of changes in marine fish abundance spread across the world's oceans, we show that poleward range shifts are not necessarily associated with positive population trends. Species experiencing high-velocity range shifts seem to experience local population declines irrespective of the position throughout the species range. High range shift velocities of 17 km yr-1 are associated with a 50% decrease in population sizes over a period of 10 yr, which is dramatic compared to the overall stable population trends in non-shifting species. This pattern, however, mostly occurs in populations located in the poleward, colder, portion of the species range. The lack of a positive association between poleward range shift velocities and population trends at the coldest portion of the range contrasts with the view that rapid range shifts safeguard against local population declines. Instead, our work suggests that marine fishes experiencing rapid range shifts could be more vulnerable to climatic change and therefore should be carefully assessed for conservation status.
Collapse
Affiliation(s)
- Shahar Chaikin
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Federico Riva
- Department of Environmental Geography, Institute for Environmental Studies (IVM), Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Katie E Marshall
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Jonathan Belmaker
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- The Steinhardt Museum of Natural History, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
19
|
Lenoir J, Comte L. Rapid range shifters show unexpected population dynamics. Nat Ecol Evol 2024; 8:850-851. [PMID: 38459375 DOI: 10.1038/s41559-024-02354-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Affiliation(s)
- Jonathan Lenoir
- UMR CNRS 7058 'Ecologie et Dynamique des Systèmes Anthropisés' (EDYSAN), Université de Picardie Jules Verne, Amiens, France.
| | - Lise Comte
- Conservation Science Partners, Inc., Truckee, CA, USA
| |
Collapse
|
20
|
Pottier P, Noble DWA, Seebacher F, Wu NC, Burke S, Lagisz M, Schwanz LE, Drobniak SM, Nakagawa S. New horizons for comparative studies and meta-analyses. Trends Ecol Evol 2024; 39:435-445. [PMID: 38216408 DOI: 10.1016/j.tree.2023.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 01/14/2024]
Abstract
Comparative analyses and meta-analyses are key tools to elucidate broad biological principles, yet the two approaches often appear different in purpose. We propose an integrated approach that can generate deeper insights into ecoevolutionary processes. Marrying comparative and meta-analytic approaches will allow for (i) a more accurate investigation of drivers of biological variation, (ii) a greater ability to account for sources of non-independence in experimental data, (iii) more effective control of publication bias, and (iv) improved transparency and reproducibility. Stronger integration of meta-analytic and comparative studies can also broaden the scope from species-centric investigations to community-level responses and function-valued traits (e.g., reaction norms). We illuminate commonalities, differences, and the transformative potential of combining these methodologies for advancing ecology and evolutionary biology.
Collapse
Affiliation(s)
- Patrice Pottier
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| | - Daniel W A Noble
- Division of Ecology and Evolution, Research School of Biology, College of Science, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Nicholas C Wu
- Hawkesbury Institute for the Environment, Western Sydney University, New South Wales, Australia
| | - Samantha Burke
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Malgorzata Lagisz
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Japan
| | - Lisa E Schwanz
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Szymon M Drobniak
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Shinichi Nakagawa
- Evolution and Ecology Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia; Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna 904-0495, Japan
| |
Collapse
|
21
|
van Klink R, Bowler DE, Gongalsky KB, Shen M, Swengel SR, Chase JM. Disproportionate declines of formerly abundant species underlie insect loss. Nature 2024; 628:359-364. [PMID: 38123681 PMCID: PMC11006610 DOI: 10.1038/s41586-023-06861-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/10/2023] [Indexed: 12/23/2023]
Abstract
Studies have reported widespread declines in terrestrial insect abundances in recent years1-4, but trends in other biodiversity metrics are less clear-cut5-7. Here we examined long-term trends in 923 terrestrial insect assemblages monitored in 106 studies, and found concomitant declines in abundance and species richness. For studies that were resolved to species level (551 sites in 57 studies), we observed a decline in the number of initially abundant species through time, but not in the number of very rare species. At the population level, we found that species that were most abundant at the start of the time series showed the strongest average declines (corrected for regression-to-the-mean effects). Rarer species were, on average, also declining, but these were offset by increases of other species. Our results suggest that the observed decreases in total insect abundance2 can mostly be explained by widespread declines of formerly abundant species. This counters the common narrative that biodiversity loss is mostly characterized by declines of rare species8,9. Although our results suggest that fundamental changes are occurring in insect assemblages, it is important to recognize that they represent only trends from those locations for which sufficient long-term data are available. Nevertheless, given the importance of abundant species in ecosystems10, their general declines are likely to have broad repercussions for food webs and ecosystem functioning.
Collapse
Affiliation(s)
- Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Diana E Bowler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz-Centre for Environmental Research (UFZ), Leipzig, Germany
- UK Centre for Ecology & Hydrology, Crowmarsh Gifford, UK
| | - Konstantin B Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russian Federation
| | - Minghua Shen
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
22
|
Johnson TF, Beckerman AP, Childs DZ, Webb TJ, Evans KL, Griffiths CA, Capdevila P, Clements CF, Besson M, Gregory RD, Thomas GH, Delmas E, Freckleton RP. Revealing uncertainty in the status of biodiversity change. Nature 2024; 628:788-794. [PMID: 38538788 PMCID: PMC11041640 DOI: 10.1038/s41586-024-07236-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Biodiversity faces unprecedented threats from rapid global change1. Signals of biodiversity change come from time-series abundance datasets for thousands of species over large geographic and temporal scales. Analyses of these biodiversity datasets have pointed to varied trends in abundance, including increases and decreases. However, these analyses have not fully accounted for spatial, temporal and phylogenetic structures in the data. Here, using a new statistical framework, we show across ten high-profile biodiversity datasets2-11 that increases and decreases under existing approaches vanish once spatial, temporal and phylogenetic structures are accounted for. This is a consequence of existing approaches severely underestimating trend uncertainty and sometimes misestimating the trend direction. Under our revised average abundance trends that appropriately recognize uncertainty, we failed to observe a single increasing or decreasing trend at 95% credible intervals in our ten datasets. This emphasizes how little is known about biodiversity change across vast spatial and taxonomic scales. Despite this uncertainty at vast scales, we reveal improved local-scale prediction accuracy by accounting for spatial, temporal and phylogenetic structures. Improved prediction offers hope of estimating biodiversity change at policy-relevant scales, guiding adaptive conservation responses.
Collapse
Affiliation(s)
- T F Johnson
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK.
| | - A P Beckerman
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - D Z Childs
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - T J Webb
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - K L Evans
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - C A Griffiths
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Swedish University of Agricultural Sciences, Department of Aquatic Resources, Institute of Marine Research, Lysekil, Sweden
| | - P Capdevila
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona (UB), Barcelona, Spain
| | - C F Clements
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
| | - M Besson
- School of Biological Sciences, Biosciences, University of Bristol, Bristol, UK
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, BIOM, Banyuls-sur-Mer, France
| | - R D Gregory
- RSPB Centre for Conservation Science, The Lodge, Sandy, UK
- Centre for Biodiversity & Environment Research, Department of Genetics, Evolution and Environment, University College London, London, UK
| | - G H Thomas
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
| | - E Delmas
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Habitat, Montreal, Quebec, Canada
- Institut des Sciences de la Forêt Tempérée, Université du Québec en Outaouais, Ripon, Quebec, Canada
| | - R P Freckleton
- School of Biosciences, Ecology and Evolutionary Biology, University of Sheffield, Sheffield, UK
- Debrecen Biodiversity Centre, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
23
|
Simaika JP, Stribling J, Lento J, Bruder A, Poikane S, Moretti MS, Rivers-Moore N, Meissner K, Macadam CR. Towards harmonized standards for freshwater biodiversity monitoring and biological assessment using benthic macroinvertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170360. [PMID: 38311088 DOI: 10.1016/j.scitotenv.2024.170360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 12/19/2023] [Accepted: 01/20/2024] [Indexed: 02/06/2024]
Abstract
Monitoring programs at sub-national and national scales lack coordination, harmonization, and systematic review and analysis at continental and global scales, and thus fail to adequately assess and evaluate drivers of biodiversity and ecosystem degradation and loss at large spatial scales. Here we review the state of the art, gaps and challenges in the freshwater assessment programs for both the biological condition (bioassessment) and biodiversity monitoring of freshwater ecosystems using the benthic macroinvertebrate community. To assess the existence of nationally- and regionally- (sub-nationally-) accepted freshwater benthic macroinvertebrate protocols that are put in practice/used in each country, we conducted a survey from November 2022 to May 2023. Responses from 110 respondents based in 67 countries were received. Although the responses varied in their consistency, the responses clearly demonstrated a lack of biodiversity monitoring being done at both national and sub-national levels for lakes, rivers and artificial waterbodies. Programs for bioassessment were more widespread, and in some cases even harmonized among several countries. We identified 20 gaps and challenges, which we classed into five major categories, these being (a) field sampling, (b) sample processing and identification, (c) metrics and indices, (d) assessment, and (e) other gaps and challenges. Above all, we identify the lack of harmonization as one of the most important gaps, hindering efficient collaboration and communication. We identify the IUCN SSC Global Freshwater Macroinvertebrate Sampling Protocols Task Force (GLOSAM) as a means to address the lack of globally-harmonized biodiversity monitoring and biological assessment protocols.
Collapse
Affiliation(s)
- John P Simaika
- Department of Water Resources and Ecosystems, IHE Delft Institute for Water Education, the Netherlands.
| | - James Stribling
- Tetra Tech, Inc., Center for Ecological Sciences, Owings Mills, MD, USA
| | - Jennifer Lento
- Canadian Rivers Institute and Department of Biology, University of New Brunswick, Fredericton, New Brunswick, Canada
| | - Andreas Bruder
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland. Mendrisio, Switzerland
| | | | - Marcelo S Moretti
- Laboratory of Aquatic Insect Ecology, University of Vila Velha, Vila Velha, Espirito Santo, Brazil
| | - Nick Rivers-Moore
- Centre for Water Resources Research, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | | | - Craig R Macadam
- Buglife - The Invertebrate Conservation Trust, United Kingdom
| |
Collapse
|
24
|
Khaliq I, Rixen C, Zellweger F, Graham CH, Gossner MM, McFadden IR, Antão L, Brodersen J, Ghosh S, Pomati F, Seehausen O, Roth T, Sattler T, Supp SR, Riaz M, Zimmermann NE, Matthews B, Narwani A. Warming underpins community turnover in temperate freshwater and terrestrial communities. Nat Commun 2024; 15:1921. [PMID: 38429327 PMCID: PMC10907361 DOI: 10.1038/s41467-024-46282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
Rising temperatures are leading to increased prevalence of warm-affinity species in ecosystems, known as thermophilisation. However, factors influencing variation in thermophilisation rates among taxa and ecosystems, particularly freshwater communities with high diversity and high population decline, remain unclear. We analysed compositional change over time in 7123 freshwater and 6201 terrestrial, mostly temperate communities from multiple taxonomic groups. Overall, temperature change was positively linked to thermophilisation in both realms. Extirpated species had lower thermal affinities in terrestrial communities but higher affinities in freshwater communities compared to those persisting over time. Temperature change's impact on thermophilisation varied with community body size, thermal niche breadth, species richness and baseline temperature; these interactive effects were idiosyncratic in the direction and magnitude of their impacts on thermophilisation, both across realms and taxonomic groups. While our findings emphasise the challenges in predicting the consequences of temperature change across communities, conservation strategies should consider these variable responses when attempting to mitigate climate-induced biodiversity loss.
Collapse
Affiliation(s)
- Imran Khaliq
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland.
- Department of Zoology, Government (defunct) post-graduate college, Dera Ghazi Khan, 32200, Pakistan.
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Climate Change, Extremes and Natural Hazards in Alpine Regions Research Centre CERC, Flüelastrasse 11, 7260, Davos Dorf, Switzerland
| | - Florian Zellweger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin M Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Ian R McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
- University of London, Queen Mary, London, UK
| | - Laura Antão
- Research Centre for Ecological Change, Organismal and Evolutionary Biology Research Programme, University of Helsinki, PO Box 65 (Viikinkaari 1), 00014, Helsinki, Finland
| | - Jakob Brodersen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Flüelastrasse 11, 7260, Davos Dorf, Switzerland
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Ole Seehausen
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
- Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, 3012, Bern, Switzerland
| | - Tobias Roth
- Department of Environmental Sciences, Zoology, University of Basel, Vesalgasse 1, 4051, Basel, Switzerland
- Hintermann & Weber AG Austrasse 2a, 4153, Reinach, Switzerland
| | - Thomas Sattler
- Swiss Ornithological Institute, Seerose 1, 6204, Sempach, Switzerland
| | - Sarah R Supp
- Denison University, Data Analytics Program, Granville, OH, 43023, USA
| | - Maria Riaz
- Conservation Genetics Group, Senckenberg Research Institute and Natural History Museum Frankfurt, 63571, Gelnhausen, Germany
- Faculty of Biological Sciences, Institute for Ecology, Evolution and Diversity, Goethe University, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Niklaus E Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
- ETH Zurich, Department of Environmental Systems Science, Institute of Terrestrial Ecosystems, 8092, Zurich, Switzerland
| | - Blake Matthews
- Department of Fish Ecology and Evolution, Eawag (Swiss Federal Institute of Aquatic Science and Technology), Seestrasse 79, 6047, Kastanienbaum, Switzerland
| | - Anita Narwani
- Department of Aquatic Ecology, Eawag (Swiss Federal Institute of Aquatic Science and Technology) Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
25
|
Benedetti-Cecchi L, Bates AE, Strona G, Bulleri F, Horta E Costa B, Edgar GJ, Hereu B, Reed DC, Stuart-Smith RD, Barrett NS, Kushner DJ, Emslie MJ, García-Charton JA, Gonçalves EJ, Aspillaga E. Marine protected areas promote stability of reef fish communities under climate warming. Nat Commun 2024; 15:1822. [PMID: 38418445 PMCID: PMC10902350 DOI: 10.1038/s41467-024-44976-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/11/2024] [Indexed: 03/01/2024] Open
Abstract
Protection from direct human impacts can safeguard marine life, yet ocean warming crosses marine protected area boundaries. Here, we test whether protection offers resilience to marine heatwaves from local to network scales. We examine 71,269 timeseries of population abundances for 2269 reef fish species surveyed in 357 protected versus 747 open sites worldwide. We quantify the stability of reef fish abundance from populations to metacommunities, considering responses of species and functional diversity including thermal affinity of different trophic groups. Overall, protection mitigates adverse effects of marine heatwaves on fish abundance, community stability, asynchronous fluctuations and functional richness. We find that local stability is positively related to distance from centers of high human density only in protected areas. We provide evidence that networks of protected areas have persistent reef fish communities in warming oceans by maintaining large populations and promoting stability at different levels of biological organization.
Collapse
Affiliation(s)
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, Canada
| | | | - Fabio Bulleri
- Department of Biology, University of Pisa, URL CoNISMa, Via Derna 1, Pisa, Italy
| | - Barbara Horta E Costa
- CCMAR, Centre of Marine Sciences, University of Algarve, Building 7, Faro, 8005-139, Portugal
| | - Graham J Edgar
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Bernat Hereu
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBIO), Universitat de Barcelona, Barcelona, Spain
| | - Dan C Reed
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, 93106, CA, USA
| | - Rick D Stuart-Smith
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Reef Life Survey Foundation, Battery Point, Tasmania, Australia
| | - Neville S Barrett
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Michael J Emslie
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | | | - Emanuel J Gonçalves
- MARE - Marine and Environmental Sciences Centre, ISPA - Instituto Universitário, Lisbon, Portugal
| | - Eneko Aspillaga
- Instituto Mediterráneo de Estudios Avanzados (IMEDEA, CSIC-UIB), 07190, Esporles, Spain
| |
Collapse
|
26
|
Blowes SA, McGill B, Brambilla V, Chow CFY, Engel T, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Xu WB, Gotelli NJ, Magurran A, Dornelas M, Chase JM. Synthesis reveals approximately balanced biotic differentiation and homogenization. SCIENCE ADVANCES 2024; 10:eadj9395. [PMID: 38381832 PMCID: PMC10881054 DOI: 10.1126/sciadv.adj9395] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
It is commonly thought that the biodiversity crisis includes widespread declines in the spatial variation of species composition, called biotic homogenization. Using a typology relating homogenization and differentiation to local and regional diversity changes, we synthesize patterns across 461 metacommunities surveyed for 10 to 91 years, and 64 species checklists (13 to 500+ years). Across all datasets, we found that no change was the most common outcome, but with many instances of homogenization and differentiation. A weak homogenizing trend of a 0.3% increase in species shared among communities/year on average was driven by increased numbers of widespread (high occupancy) species and strongly associated with checklist data that have longer durations and large spatial scales. At smaller spatial and temporal scales, we show that homogenization and differentiation can be driven by changes in the number and spatial distributions of both rare and common species. The multiscale perspective introduced here can help identify scale-dependent drivers underpinning biotic differentiation and homogenization.
Collapse
Affiliation(s)
- Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Brian McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | - Cher F. Y. Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Thore Engel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, 07743 Jena, Germany
- Department of Ecosystem Services, Helmholtz Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S. Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Department of Data Science, Kitasato University, Kanagawa, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Guia Marine Lab, MARE, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
27
|
Angert AL. The space-for-time gambit fails a robust test. Proc Natl Acad Sci U S A 2024; 121:e2320424121. [PMID: 38198508 PMCID: PMC10823171 DOI: 10.1073/pnas.2320424121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024] Open
Affiliation(s)
- Amy L. Angert
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| |
Collapse
|
28
|
Pironon S, Ondo I, Diazgranados M, Allkin R, Baquero AC, Cámara-Leret R, Canteiro C, Dennehy-Carr Z, Govaerts R, Hargreaves S, Hudson AJ, Lemmens R, Milliken W, Nesbitt M, Patmore K, Schmelzer G, Turner RM, van Andel TR, Ulian T, Antonelli A, Willis KJ. The global distribution of plants used by humans. Science 2024; 383:293-297. [PMID: 38236975 DOI: 10.1126/science.adg8028] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024]
Abstract
Plants sustain human life. Understanding geographic patterns of the diversity of species used by people is thus essential for the sustainable management of plant resources. Here, we investigate the global distribution of 35,687 utilized plant species spanning 10 use categories (e.g., food, medicine, material). Our findings indicate general concordance between utilized and total plant diversity, supporting the potential for simultaneously conserving species diversity and its contributions to people. Although Indigenous lands across Mesoamerica, the Horn of Africa, and Southern Asia harbor a disproportionate diversity of utilized plants, the incidence of protected areas is negatively correlated with utilized species richness. Finding mechanisms to preserve areas containing concentrations of utilized plants and traditional knowledge must become a priority for the implementation of the Kunming-Montreal Global Biodiversity Framework.
Collapse
Affiliation(s)
- S Pironon
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - I Ondo
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - M Diazgranados
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- International Plant Science Center, New York Botanical Garden, New York, NY, USA
| | - R Allkin
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - A C Baquero
- UN Environment Programme World Conservation Monitoring Centre (UNEP-WCMC), Cambridge, UK
| | - R Cámara-Leret
- Department of Systematic and Evolutionary Botany, University of Zurich, Switzerland
| | - C Canteiro
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - Z Dennehy-Carr
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Herbarium, School of Biological Sciences, University of Reading, Whiteknights, UK
| | - R Govaerts
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - S Hargreaves
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - A J Hudson
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
- Botanic Gardens Conservation International, Richmond, UK
| | - R Lemmens
- Wageningen University and Research, Wageningen, Netherlands
| | - W Milliken
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
| | - M Nesbitt
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Geography, Royal Holloway, University of London, Egham, UK
- Institute of Archaeology, University College London, London, UK
| | - K Patmore
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - G Schmelzer
- Wageningen University and Research, Wageningen, Netherlands
| | - R M Turner
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
| | - T R van Andel
- Wageningen University and Research, Wageningen, Netherlands
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - T Ulian
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, UK
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - A Antonelli
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Gothenburg Global Biodiversity Centre, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Department of Biology, University of Oxford, Oxford, UK
| | - K J Willis
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Department of Biology, University of Oxford, Oxford, UK
| |
Collapse
|
29
|
Maureaud AA, Palacios-Abrantes J, Kitchel Z, Mannocci L, Pinsky ML, Fredston A, Beukhof E, Forrest DL, Frelat R, Palomares MLD, Pecuchet L, Thorson JT, van Denderen PD, Mérigot B. FISHGLOB_data: an integrated dataset of fish biodiversity sampled with scientific bottom-trawl surveys. Sci Data 2024; 11:24. [PMID: 38177193 PMCID: PMC10766603 DOI: 10.1038/s41597-023-02866-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
Scientific bottom-trawl surveys are ecological observation programs conducted along continental shelves and slopes of seas and oceans that sample marine communities associated with the seafloor. These surveys report taxa occurrence, abundance and/or weight in space and time, and contribute to fisheries management as well as population and biodiversity research. Bottom-trawl surveys are conducted all over the world and represent a unique opportunity to understand ocean biogeography, macroecology, and global change. However, combining these data together for cross-ecosystem analyses remains challenging. Here, we present an integrated dataset of 29 publicly available bottom-trawl surveys conducted in national waters of 18 countries that are standardized and pre-processed, covering a total of 2,170 sampled fish taxa and 216,548 hauls collected from 1963 to 2021. We describe the processing steps to create the dataset, flags, and standardization methods that we developed to assist users in conducting spatio-temporal analyses with stable regional survey footprints. The aim of this dataset is to support research, marine conservation, and management in the context of global change.
Collapse
Affiliation(s)
- Aurore A Maureaud
- Center for Biodiversity & Global Change, Yale University, New Haven, CT, USA.
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA.
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, USA.
| | - Juliano Palacios-Abrantes
- Changing Ocean Research Unit, Institute for the Oceans & Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | - Zoë Kitchel
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, USA
| | - Laura Mannocci
- FRB-CESAB, Montpellier, France
- MARBEC, Univ Montpellier, CNRS, IRD, IFREMER, Sète, France
| | - Malin L Pinsky
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, USA
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Alexa Fredston
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, USA
- Department of Ocean Sciences, University of California, Santa Cruz, Santa Cruz, CA, USA
| | - Esther Beukhof
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel L Forrest
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ, USA
- Institute for Resources, Environment and Sustainability, The University of British Columbia, Vancouver, BC, Canada
| | - Romain Frelat
- International Livestock Research Institute, Nairobi, Kenya
| | - Maria L D Palomares
- Sea Around Us, Institute for the Oceans and Fisheries, The University of British Columbia, Vancouver, BC, Canada
| | | | - James T Thorson
- Alaska Fisheries Science Center, National Marine Fisheries Service (NOAA), Seattle, WA, USA
| | - P Daniël van Denderen
- National Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, 02882, USA
| | | |
Collapse
|
30
|
Torres A, Kuebbing SE, Stuble KL, Catella SA, Núñez MA, Rodriguez-Cabal MA. Inverse priority effects: A role for historical contingency during species losses. Ecol Lett 2024; 27:e14360. [PMID: 38183675 DOI: 10.1111/ele.14360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 01/08/2024]
Abstract
Communities worldwide are losing multiple species at an unprecedented rate, but how communities reassemble after these losses is often an open question. It is well established that the order and timing of species arrival during community assembly shapes forthcoming community composition and function. Yet, whether the order and timing of species losses can lead to divergent community trajectories remains largely unexplored. Here, we propose a novel framework that sets testable hypotheses on the effects of the order and timing of species losses-inverse priority effects-and suggests its integration into the study of community assembly. We propose that the order and timing of species losses within a community can generate alternative reassembly trajectories, and suggest mechanisms that may underlie these inverse priority effects. To formalize these concepts quantitatively, we used a three-species Lotka-Volterra competition model, enabling to investigate conditions in which the order of species losses can lead to divergent reassembly trajectories. The inverse priority effects framework proposed here promotes the systematic study of the dynamics of species losses from ecological communities, ultimately aimed to better understand community reassembly and guide management decisions in light of rapid global change.
Collapse
Affiliation(s)
- Agostina Torres
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
| | - Sara E Kuebbing
- The Forest School at the Yale School of the Environment, New Haven, Connecticut, USA
| | | | - Samantha A Catella
- Institute of the Environment and Sustainability, University of California, Los Angeles, California, USA
| | - Martín A Núñez
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Mariano A Rodriguez-Cabal
- Grupo de Ecología de Invasiones, INIBIOMA, Universidad Nacional del Comahue, CONICET, San Carlos de Bariloche, Río Negro, Argentina
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
31
|
Lovell RSL, Collins S, Martin SH, Pigot AL, Phillimore AB. Space-for-time substitutions in climate change ecology and evolution. Biol Rev Camb Philos Soc 2023; 98:2243-2270. [PMID: 37558208 DOI: 10.1111/brv.13004] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023]
Abstract
In an epoch of rapid environmental change, understanding and predicting how biodiversity will respond to a changing climate is an urgent challenge. Since we seldom have sufficient long-term biological data to use the past to anticipate the future, spatial climate-biotic relationships are often used as a proxy for predicting biotic responses to climate change over time. These 'space-for-time substitutions' (SFTS) have become near ubiquitous in global change biology, but with different subfields largely developing methods in isolation. We review how climate-focussed SFTS are used in four subfields of ecology and evolution, each focussed on a different type of biotic variable - population phenotypes, population genotypes, species' distributions, and ecological communities. We then examine the similarities and differences between subfields in terms of methods, limitations and opportunities. While SFTS are used for a wide range of applications, two main approaches are applied across the four subfields: spatial in situ gradient methods and transplant experiments. We find that SFTS methods share common limitations relating to (i) the causality of identified spatial climate-biotic relationships and (ii) the transferability of these relationships, i.e. whether climate-biotic relationships observed over space are equivalent to those occurring over time. Moreover, despite widespread application of SFTS in climate change research, key assumptions remain largely untested. We highlight opportunities to enhance the robustness of SFTS by addressing key assumptions and limitations, with a particular emphasis on where approaches could be shared between the four subfields.
Collapse
Affiliation(s)
- Rebecca S L Lovell
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Sinead Collins
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Simon H Martin
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Alex L Pigot
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Albert B Phillimore
- Ashworth Laboratories, Institute of Ecology and Evolution, The University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| |
Collapse
|
32
|
Gonzalez A, Vihervaara P, Balvanera P, Bates AE, Bayraktarov E, Bellingham PJ, Bruder A, Campbell J, Catchen MD, Cavender-Bares J, Chase J, Coops N, Costello MJ, Czúcz B, Delavaud A, Dornelas M, Dubois G, Duffy EJ, Eggermont H, Fernandez M, Fernandez N, Ferrier S, Geller GN, Gill M, Gravel D, Guerra CA, Guralnick R, Harfoot M, Hirsch T, Hoban S, Hughes AC, Hugo W, Hunter ME, Isbell F, Jetz W, Juergens N, Kissling WD, Krug CB, Kullberg P, Le Bras Y, Leung B, Londoño-Murcia MC, Lord JM, Loreau M, Luers A, Ma K, MacDonald AJ, Maes J, McGeoch M, Mihoub JB, Millette KL, Molnar Z, Montes E, Mori AS, Muller-Karger FE, Muraoka H, Nakaoka M, Navarro L, Newbold T, Niamir A, Obura D, O'Connor M, Paganini M, Pelletier D, Pereira H, Poisot T, Pollock LJ, Purvis A, Radulovici A, Rocchini D, Roeoesli C, Schaepman M, Schaepman-Strub G, Schmeller DS, Schmiedel U, Schneider FD, Shakya MM, Skidmore A, Skowno AL, Takeuchi Y, Tuanmu MN, Turak E, Turner W, Urban MC, Urbina-Cardona N, Valbuena R, Van de Putte A, van Havre B, Wingate VR, Wright E, Torrelio CZ. A global biodiversity observing system to unite monitoring and guide action. Nat Ecol Evol 2023; 7:1947-1952. [PMID: 37620553 DOI: 10.1038/s41559-023-02171-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Affiliation(s)
- Andrew Gonzalez
- Department of Biology, Group on Earth Observations Biodiversity Observation Network, McGill University, Montreal, Quebec, Canada.
| | | | - Patricia Balvanera
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad (IIES), Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Amanda E Bates
- Biology Department, University of Victoria, Victoria, British Columbia, Canada
| | - Elisa Bayraktarov
- EcoCommons Australia, Research, Specialised and Data Foundations, Griffith University, Nathan, Queensland, Australia
| | | | - Andreas Bruder
- Institute of Microbiology, University of Applied Sciences and Arts of Southern Switzerland, Mendrisio, Switzerland
| | - Jillian Campbell
- Secretariat of the Convention on Biological Diversity, Montreal, Quebec, Canada
| | - Michael D Catchen
- Department of Biology, Group on Earth Observations Biodiversity Observation Network, McGill University, Montreal, Quebec, Canada
| | | | - Jonathan Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle, Germany
- Department of Computer Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Nicholas Coops
- University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark J Costello
- Faculty of Biosciences and Aquaculture, Nord Universitet, Bodø, Norway
| | - Bálint Czúcz
- Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | | | - Maria Dornelas
- Centre for Biological Diversity, University of St Andrews, St Andrews, UK
- Guia Marine Lab, MARE, Faculdade de Ciências da Universidade de Lisboa, Cascais, Portugal
| | - Grégoire Dubois
- Knowledge Centre for Biodiversity, Joint Research Centre of the European Commission, Ispra, Italy
| | - Emmett J Duffy
- Tennenbaum Marine Observatories Network and MarineGEO program, Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Hilde Eggermont
- Belgian Science Policy Office, Belgian Biodiversity Platform/Biodiversa+, Brussels, Belgium
| | - Miguel Fernandez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | - Nestor Fernandez
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle, Germany
- Department of Computer Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Simon Ferrier
- CSIRO Environment, Canberra, Australian Capital Territory, Australia
| | - Gary N Geller
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Carlos A Guerra
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle, Germany
- Department of Biology, University of Leipzig, Leipzig, Germany
| | - Robert Guralnick
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA
| | | | - Tim Hirsch
- Global Biodiversity Information Facility, Copenhagen, Denmark
| | - Sean Hoban
- The Center for Tree Science, The Morton Arboretum, Lisle, IL, USA
| | - Alice C Hughes
- School of Biological Sciences, University of Hong Kong, Hong Kong, China
| | | | - Margaret E Hunter
- US Geological Survey, Wetland & Aquatic Research Center, Sirenia Project, Gainesville, FL, USA
| | - Forest Isbell
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, USA
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Norbert Juergens
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| | - Cornelia B Krug
- bioDISCOVERY, Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Peter Kullberg
- Finnish Environment Institute (SYKE), Nature Solutions Unit, Helsinki, Finland
| | - Yvan Le Bras
- Pôle national de données de biodiversité, PatriNat, Muséum National d'Histoire Naturelle, Station Marine de Concarneau, Concarneau, France
| | - Brian Leung
- Department of Biology, Group on Earth Observations Biodiversity Observation Network, McGill University, Montreal, Quebec, Canada
| | | | - Jean-Michel Lord
- The Group on Earth Observations Biodiversity Observation Network (GEO BON), Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Michel Loreau
- Theoretical and Experimental Ecology Station, CNRS, Moulis, France
| | | | - Keping Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Anna J MacDonald
- Australian Antarctic Division, Department of Climate Change, Energy, the Environment and Water, Kingston, Tasmania, Australia
| | | | - Melodie McGeoch
- Securing Antarctica's Environmental Future, Department of Environment and Genetics, La Trobe University, Melbourne, Victoria, Australia
| | - Jean Baptiste Mihoub
- Centre d'Écologie et des Sciences de la Conservation (CESCO), Muséum National d'Histoire Naturelle, Sorbonne Université, Centre National de la Recherche Scientifique, CP 135, Paris, France
| | - Katie L Millette
- The Group on Earth Observations Biodiversity Observation Network (GEO BON), Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Zsolt Molnar
- Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Enrique Montes
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA
- Ocean Chemistry and Ecosystems Division, Atlantic Oceanographic and Meteorological Laboratory, National Oceanic and Atmospheric Administration, Miami, Florida, USA
| | - Akira S Mori
- Research Center for Advanced Science and Technology, University of Tokyo, Tokyo, Japan
| | | | - Hiroyuki Muraoka
- River Basin Research Center, Gifu University, Gifu, Japan
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Hokkaido, Japan
| | | | - Tim Newbold
- Centre for Biodiversity and Environment Research, University College London, London, UK
| | - Aidin Niamir
- Senckenberg Biodiversity and Climate Research Institute, Frankfurt, Germany
| | | | - Mary O'Connor
- Biodiversity Research Centre and Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Henrique Pereira
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Halle, Germany
- Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Timothée Poisot
- Département de Sciences Biologiques, Université de Montréal, Montreal, Quebec, Canada
| | - Laura J Pollock
- Department of Biology, Group on Earth Observations Biodiversity Observation Network, McGill University, Montreal, Quebec, Canada
| | - Andy Purvis
- Department of Life Sciences, Natural History Museum, London, UK
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Adriana Radulovici
- The Group on Earth Observations Biodiversity Observation Network (GEO BON), Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Duccio Rocchini
- Department of Biological, Geological, and Environmental Science, Università di Bologna, Bologna, Italy
| | - Claudia Roeoesli
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Michael Schaepman
- Remote Sensing Laboratories, Department of Geography, University of Zurich, Zurich, Switzerland
| | - Gabriela Schaepman-Strub
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Dirk S Schmeller
- Laboratoire écologie fonctionnelle et environnement, Université de Toulouse, INPT, UPS, CNRS, Toulouse, France
| | - Ute Schmiedel
- Institute of Plant Science and Microbiology, University of Hamburg, Hamburg, Germany
| | - Fabian D Schneider
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Andrew Skidmore
- Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, Enschede, The Netherlands
| | - Andrew L Skowno
- South African National Biodiversity Institute, Kirstenbosch National Botanical Gardens, Cape Town, South Africa
- Department of Biological Sciences, University of Cape Town, Cape Town, South Africa
| | - Yayioi Takeuchi
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Mao-Ning Tuanmu
- Thematic Center for Systematics and Biodiversity Informatics, Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Eren Turak
- NSW Department of Environment and Planning, Parramatta, New South Wales, Australia
| | - Woody Turner
- Earth Science Division, NASA Headquarters, Washington, DC, USA
| | - Mark C Urban
- Center of Biological Risk and Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Nicolás Urbina-Cardona
- Facultad de Estudios Ambientales y Rurales, Departamento de Ecología y Territorio, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Ruben Valbuena
- Division of Remote Sensing of Forests, Department of Forest Resource Management, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Anton Van de Putte
- Royal Belgian Institute for Naturalsciences, Brussels, Belgium
- Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Elaine Wright
- NZ Department of Conservation, Christchurch, New Zealand
| | | |
Collapse
|
33
|
Eastwood N, Zhou J, Derelle R, Abdallah MAE, Stubbings WA, Jia Y, Crawford SE, Davidson TA, Colbourne JK, Creer S, Bik H, Hollert H, Orsini L. 100 years of anthropogenic impact causes changes in freshwater functional biodiversity. eLife 2023; 12:RP86576. [PMID: 37933221 PMCID: PMC10629823 DOI: 10.7554/elife.86576] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023] Open
Abstract
Despite efforts from scientists and regulators, biodiversity is declining at an alarming rate. Unless we find transformative solutions to preserve biodiversity, future generations may not be able to enjoy nature's services. We have developed a conceptual framework that establishes the links between biodiversity dynamics and abiotic change through time and space using artificial intelligence. Here, we apply this framework to a freshwater ecosystem with a known history of human impact and study 100 years of community-level biodiversity, climate change and chemical pollution trends. We apply explainable network models with multimodal learning to community-level functional biodiversity measured with multilocus metabarcoding, to establish correlations with biocides and climate change records. We observed that the freshwater community assemblage and functionality changed over time without returning to its original state, even if the lake partially recovered in recent times. Insecticides and fungicides, combined with extreme temperature events and precipitation, explained up to 90% of the functional biodiversity changes. The community-level biodiversity approach used here reliably explained freshwater ecosystem shifts. These shifts were not observed when using traditional quality indices (e.g. Trophic Diatom Index). Our study advocates the use of high-throughput systemic approaches on long-term trends over species-focused ecological surveys to identify the environmental factors that cause loss of biodiversity and disrupt ecosystem functions.
Collapse
Affiliation(s)
- Niamh Eastwood
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Jiarui Zhou
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Romain Derelle
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | | | - William A Stubbings
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
- School of Geography, Earth & Environmental Sciences, University of BirminghamBirminghamUnited Kingdom
| | - Yunlu Jia
- Department Evolutionary Ecology & Environmental Toxicology, Faculty of Biological Sciences, Goethe University FrankfurtFrankfurtGermany
| | - Sarah E Crawford
- Department Evolutionary Ecology & Environmental Toxicology, Faculty of Biological Sciences, Goethe University FrankfurtFrankfurtGermany
| | - Thomas A Davidson
- Lake Group, Department of Ecoscience, Aarhus UniversityAarhusDenmark
| | - John K Colbourne
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
| | - Simon Creer
- School of Natural Sciences, Environment Centre Wales, Deiniol Road, Bangor UniversityBangorUnited Kingdom
| | - Holly Bik
- Department Marine Sciences and Institute of Bioinformatics, University of GeorgiaAthensUnited States
| | - Henner Hollert
- Department Evolutionary Ecology & Environmental Toxicology, Faculty of Biological Sciences, Goethe University FrankfurtFrankfurtGermany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE‐TBG)FrankfurtGermany
- Department Media-related Toxicology, Institute for Molecular Biology and Applied Ecology (IME)FrankfurtGermany
| | - Luisa Orsini
- Environmental Genomics Group, School of Biosciences, University of BirminghamBirminghamUnited Kingdom
- The Alan Turing Institute, British LibraryLondonUnited Kingdom
| |
Collapse
|
34
|
Volery L, Vaz Fernandez M, Wegmann D, Bacher S. A general framework to quantify and compare ecological impacts under temporal dynamics. Ecol Lett 2023; 26:1726-1739. [PMID: 37515418 DOI: 10.1111/ele.14288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Biodiversity is diminishing at alarming rates due to multiple anthropogenic drivers. To mitigate these drivers, their impacts must be quantified accurately and comparably across drivers. To enable that, we present a generally applicable framework introducing fundamental principles of ecological impact quantification, including the quantification of interactions between multiple drivers. The framework contrasts biodiversity variables in impacted against those in unimpacted or other reference situations while accounting for their temporal dynamics through modelling. Properly accounting for temporal dynamics reduces biases in impact quantification and comparison. The framework addresses key questions around ecological impacts in global change science, namely, how to compare impacts under temporal dynamics across stressors, how to account for stressor interactions in such comparisons, and how to compare the success of management actions over time.
Collapse
Affiliation(s)
- Lara Volery
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Margarida Vaz Fernandez
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Daniel Wegmann
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Fribourg, Switzerland
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
35
|
Bezerra WCA, Figueiredo GM, Kozlowsky-Suzuki B. Can we meaningfully estimate the impacts of climate on zooplankton biodiversity? A review on uses and limitations of marine time series. MARINE POLLUTION BULLETIN 2023; 195:115515. [PMID: 37716130 DOI: 10.1016/j.marpolbul.2023.115515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/18/2023]
Abstract
Climate events compromise ecosystems functioning and services. Marine zooplankton play a key role linking primary producers and higher consumers, in the carbon export to deeper regions, and respond quickly to environmental change. We conducted a systematic review to assess the effects of climate on marine zooplankton diversity. We describe the major findings, uses and limitations raised in the literature from worldwide time series ≥5 years. Thirty-five studies were included and only 6 presented extractable data (i.e., those that could be extracted from images) for the most studied group (i.e., copepods). Responses to climate were conflicting, and studies were mostly restricted to the global north, applied richness, alpha- and beta-diversity equally, and had a large number of unresolved taxonomic identification. Standardized open long-term data would meaningfully help unveiling assemblage reorganization and allow meta-analyses to improve our understanding of the effects of climate change and variability on zooplankton biodiversity.
Collapse
Affiliation(s)
- Wellen Cristina Alves Bezerra
- Instituto de Biociências, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil
| | - Gisela Mandali Figueiredo
- Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Av. Professor Rodolfo Rocco 211, CCS, Cidade Universitária, CEP: 21941-902, Ilha do Fundão, Rio de Janeiro, RJ, Brazil
| | - Betina Kozlowsky-Suzuki
- Departmento de Ecologia e Recursos Marinhos, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Av. Pasteur 458, CEP: 22290-240, Urca, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
36
|
|
37
|
Dove S, Böhm M, Freeman R, Jellesmark S, Murrell DJ. A user-friendly guide to using distance measures to compare time series in ecology. Ecol Evol 2023; 13:e10520. [PMID: 37809360 PMCID: PMC10551742 DOI: 10.1002/ece3.10520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 10/10/2023] Open
Abstract
Time series are a critical component of ecological analysis, used to track changes in biotic and abiotic variables. Information can be extracted from the properties of time series for tasks such as classification (e.g., assigning species to individual bird calls); clustering (e.g., clustering similar responses in population dynamics to abrupt changes in the environment or management interventions); prediction (e.g., accuracy of model predictions to original time series data); and anomaly detection (e.g., detecting possible catastrophic events from population time series). These common tasks in ecological research all rely on the notion of (dis-) similarity, which can be determined using distance measures. A plethora of distance measures have been described, predominantly in the computer and information sciences, but many have not been introduced to ecologists. Furthermore, little is known about how to select appropriate distance measures for time-series-related tasks. Therefore, many potential applications remain unexplored. Here, we describe 16 properties of distance measures that are likely to be of importance to a variety of ecological questions involving time series. We then test 42 distance measures for each property and use the results to develop an objective method to select appropriate distance measures for any task and ecological dataset. We demonstrate our selection method by applying it to a set of real-world data on breeding bird populations in the UK and discuss other potential applications for distance measures, along with associated technical issues common in ecology. Our real-world population trends exhibit a common challenge for time series comparisons: a high level of stochasticity. We demonstrate two different ways of overcoming this challenge, first by selecting distance measures with properties that make them well suited to comparing noisy time series and second by applying a smoothing algorithm before selecting appropriate distance measures. In both cases, the distance measures chosen through our selection method are not only fit-for-purpose but are consistent in their rankings of the population trends. The results of our study should lead to an improved understanding of, and greater scope for, the use of distance measures for comparing ecological time series and help us answer new ecological questions.
Collapse
Affiliation(s)
- Shawn Dove
- Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
- Institute of Zoology, Zoological Society of LondonLondonUK
| | - Monika Böhm
- Institute of Zoology, Zoological Society of LondonLondonUK
- Global Center for Species Survival, Indianapolis ZooIndianapolisIndianaUSA
| | - Robin Freeman
- Institute of Zoology, Zoological Society of LondonLondonUK
| | - Sean Jellesmark
- Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
- Institute of Zoology, Zoological Society of LondonLondonUK
| | - David J. Murrell
- Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| |
Collapse
|
38
|
Martins IS, Schrodt F, Blowes SA, Bates AE, Bjorkman AD, Brambilla V, Carvajal-Quintero J, Chow CFY, Daskalova GN, Edwards K, Eisenhauer N, Field R, Fontrodona-Eslava A, Henn JJ, van Klink R, Madin JS, Magurran AE, McWilliam M, Moyes F, Pugh B, Sagouis A, Trindade-Santos I, McGill BJ, Chase JM, Dornelas M. Widespread shifts in body size within populations and assemblages. Science 2023; 381:1067-1071. [PMID: 37676959 DOI: 10.1126/science.adg6006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Biotic responses to global change include directional shifts in organismal traits. Body size, an integrative trait that determines demographic rates and ecosystem functions, is thought to be shrinking in the Anthropocene. Here, we assessed the prevalence of body size change in six taxon groups across 5025 assemblage time series spanning 1960 to 2020. Using the Price equation to partition this change into within-species body size versus compositional changes, we detected prevailing decreases in body size through time driven primarily by fish, with more variable patterns in other taxa. We found that change in assemblage composition contributes more to body size changes than within-species trends, but both components show substantial variation in magnitude and direction. The biomass of assemblages remains quite stable as decreases in body size trade off with increases in abundance.
Collapse
Affiliation(s)
- Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
| | - Franziska Schrodt
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Amanda E Bates
- Department of Biology, University of Victoria, Victoria, British Columbia, Canada
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 40530, Sweden
- Gothenburg Global Biodiversity Centre, Gothenburg 41319, Sweden
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| | - Juan Carvajal-Quintero
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Gergana N Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Kyle Edwards
- Department of Oceanography, University of Hawai''i at Mānoa, Honolulu, HI 96822, USA
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Institute of Biology, Leipzig University, Leipzig 04103, Germany
| | - Richard Field
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Jonathan J Henn
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Joshua S Madin
- Hawai''i Institute of Marine Biology, University of Hawai''i at Manoa, Kāne'ohe, Hawai''i 96744, USA
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Michael McWilliam
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
| | - Brittany Pugh
- School of Geography, University of Nottingham, University Park, Nottingham NG7 2RD
- University College London, School of Geography, Gower Street, London WC1E 6AE, UK
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Isaac Trindade-Santos
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Macroevolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1, Tancha, Onna-son, Kunigami-gun 904-0495, Okinawa, Japan
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME 04469, USA
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale) 06099, Germany
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, University of York, York YO10 5DD, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais 2750-374, Portugal
| |
Collapse
|
39
|
Carvalho RL, Resende AF, Barlow J, França FM, Moura MR, Maciel R, Alves-Martins F, Shutt J, Nunes CA, Elias F, Silveira JM, Stegmann L, Baccaro FB, Juen L, Schietti J, Aragão L, Berenguer E, Castello L, Costa FRC, Guedes ML, Leal CG, Lees AC, Isaac V, Nascimento RO, Phillips OL, Schmidt FA, Ter Steege H, Vaz-de-Mello F, Venticinque EM, Vieira ICG, Zuanon J, Ferreira J. Pervasive gaps in Amazonian ecological research. Curr Biol 2023; 33:3495-3504.e4. [PMID: 37473761 DOI: 10.1016/j.cub.2023.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/19/2023] [Accepted: 06/28/2023] [Indexed: 07/22/2023]
Abstract
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%-18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost.
Collapse
Affiliation(s)
- Raquel L Carvalho
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade de São Paulo, São Paulo 05508-220, Brazil.
| | - Angelica F Resende
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade de São Paulo, Esalq, Piracicaba 13418-900, Brazil.
| | - Jos Barlow
- Lancaster University, LA1 4YQ Lancaster, UK.
| | | | - Mario R Moura
- Universidade Estadual de Campinas, Campinas 13083-862, Brazil; Universidade Federal da Paraíba, Areia 58397-000, Brazil.
| | | | | | - Jack Shutt
- Manchester Metropolitan University, M15 6BH Manchester, UK
| | - Cassio A Nunes
- Universidade Federal de Lavras, Lavras 37200-000, Brazil
| | | | | | - Lis Stegmann
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil
| | | | - Leandro Juen
- Universidade Federal do Pará, Belém 66075-119, Brazil
| | - Juliana Schietti
- Universidade Federal do Amazonas, Manaus 69067-005, Brazil; Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | - Luiz Aragão
- Instituto Nacional de Pesquisas Espaciais, São José dos Campos 12227-010, Brazil
| | - Erika Berenguer
- Lancaster University, LA1 4YQ Lancaster, UK; University of Oxford, OX1 3QY Oxford, UK
| | | | - Flavia R C Costa
- Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | | | | | | | | | | | - Oliver L Phillips
- Universidade Federal Rural da Amazônia, Belém 66077-830, Brazil; University of Leeds, LS2 9JT Leeds, UK
| | | | - Hans Ter Steege
- Naturalis Biodiversity Center, 2333 CR Leiden, the Netherlands; Utrecht University, 3584 CS Utrecht, the Netherlands
| | | | | | | | - Jansen Zuanon
- Instituto Nacional de Pesquisas da Amazônia, Manaus 69067-375, Brazil
| | - Joice Ferreira
- Empresa Brasileira de Pesquisa Agropecuária, Amazônia Oriental, Belém 66095-903, Brazil; Universidade Federal do Pará, Belém 66075-119, Brazil
| |
Collapse
|
40
|
Haase P, Bowler DE, Baker NJ, Bonada N, Domisch S, Garcia Marquez JR, Heino J, Hering D, Jähnig SC, Schmidt-Kloiber A, Stubbington R, Altermatt F, Álvarez-Cabria M, Amatulli G, Angeler DG, Archambaud-Suard G, Jorrín IA, Aspin T, Azpiroz I, Bañares I, Ortiz JB, Bodin CL, Bonacina L, Bottarin R, Cañedo-Argüelles M, Csabai Z, Datry T, de Eyto E, Dohet A, Dörflinger G, Drohan E, Eikland KA, England J, Eriksen TE, Evtimova V, Feio MJ, Ferréol M, Floury M, Forcellini M, Forio MAE, Fornaroli R, Friberg N, Fruget JF, Georgieva G, Goethals P, Graça MAS, Graf W, House A, Huttunen KL, Jensen TC, Johnson RK, Jones JI, Kiesel J, Kuglerová L, Larrañaga A, Leitner P, L'Hoste L, Lizée MH, Lorenz AW, Maire A, Arnaiz JAM, McKie BG, Millán A, Monteith D, Muotka T, Murphy JF, Ozolins D, Paavola R, Paril P, Peñas FJ, Pilotto F, Polášek M, Rasmussen JJ, Rubio M, Sánchez-Fernández D, Sandin L, Schäfer RB, Scotti A, Shen LQ, Skuja A, Stoll S, Straka M, Timm H, Tyufekchieva VG, Tziortzis I, Uzunov Y, van der Lee GH, Vannevel R, Varadinova E, Várbíró G, Velle G, Verdonschot PFM, Verdonschot RCM, Vidinova Y, Wiberg-Larsen P, Welti EAR. The recovery of European freshwater biodiversity has come to a halt. Nature 2023; 620:582-588. [PMID: 37558875 PMCID: PMC10432276 DOI: 10.1038/s41586-023-06400-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Owing to a long history of anthropogenic pressures, freshwater ecosystems are among the most vulnerable to biodiversity loss1. Mitigation measures, including wastewater treatment and hydromorphological restoration, have aimed to improve environmental quality and foster the recovery of freshwater biodiversity2. Here, using 1,816 time series of freshwater invertebrate communities collected across 22 European countries between 1968 and 2020, we quantified temporal trends in taxonomic and functional diversity and their responses to environmental pressures and gradients. We observed overall increases in taxon richness (0.73% per year), functional richness (2.4% per year) and abundance (1.17% per year). However, these increases primarily occurred before the 2010s, and have since plateaued. Freshwater communities downstream of dams, urban areas and cropland were less likely to experience recovery. Communities at sites with faster rates of warming had fewer gains in taxon richness, functional richness and abundance. Although biodiversity gains in the 1990s and 2000s probably reflect the effectiveness of water-quality improvements and restoration projects, the decelerating trajectory in the 2010s suggests that the current measures offer diminishing returns. Given new and persistent pressures on freshwater ecosystems, including emerging pollutants, climate change and the spread of invasive species, we call for additional mitigation to revive the recovery of freshwater biodiversity.
Collapse
Affiliation(s)
- Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany.
| | - Diana E Bowler
- Department of Ecosystem Services, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- Department of Ecosystem Services, Helmholtz Center for Environmental Research-UFZ, Leipzig, Germany
| | - Nathan J Baker
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
- Laboratory of Evolutionary Ecology of Hydrobionts, Nature Research Centre, Vilnius, Lithuania
| | - Núria Bonada
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
| | - Sami Domisch
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jaime R Garcia Marquez
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Jani Heino
- Geography Research Unit, University of Oulu, Oulu, Finland
| | - Daniel Hering
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Sonja C Jähnig
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Astrid Schmidt-Kloiber
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rachel Stubbington
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Florian Altermatt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Mario Álvarez-Cabria
- IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | | | - David G Angeler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
- IMPACT, The Institute for Mental and Physical Health and Clinical Translation, Deakin University, Geelong, Victoria, Australia
- Brain Capital Alliance, San Francisco, CA, USA
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Gaït Archambaud-Suard
- INRAE, UMR RECOVER Aix Marseille Univ, Centre d'Aix-en-Provence, Aix-en-Provence, France
| | | | | | | | - Iñaki Bañares
- Departamento de Medio Ambiente y Obras Hidráulicas, Diputación Foral de Gipuzkoa, Donostia-San Sebastián, Spain
| | - José Barquín Ortiz
- IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | - Christian L Bodin
- LFI-The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Luca Bonacina
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Milan, Italy
| | - Roberta Bottarin
- Institute for Alpine Environment, Eurac Research, Bolzano, Italy
| | - Miguel Cañedo-Argüelles
- FEHM-Lab (Freshwater Ecology, Hydrology and Management), Department of Evolutionary Biology, Ecology and Environmental Sciences, Facultat de Biologia, Institut de Recerca de la Biodiversitat (IRBio), University of Barcelona, Barcelona, Spain
- FEHM-Lab, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Zoltán Csabai
- Department of Hydrobiology, University of Pécs, Pécs, Hungary
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Thibault Datry
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Elvira de Eyto
- Fisheries Ecosystems Advisory Services, Marine Institute, Newport, Ireland
| | - Alain Dohet
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Gerald Dörflinger
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Emma Drohan
- Centre for Freshwater and Environmental Studies, Dundalk Institute of Technology, Dundalk, Ireland
| | - Knut A Eikland
- Norwegian Institute for Nature Research (NINA), Oslo, Norway
| | | | - Tor E Eriksen
- Norwegian Institute for Water Research, Oslo, Norway
| | - Vesela Evtimova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria J Feio
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, Portugal
| | - Martial Ferréol
- INRAE, UR RiverLy, Centre de Lyon-Villeurbanne, Villeurbanne, France
| | - Mathieu Floury
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, Villeurbanne, France
| | | | | | - Riccardo Fornaroli
- Department of Earth and Environmental Sciences-DISAT, University of Milano-Bicocca, Milan, Italy
| | - Nikolai Friberg
- Norwegian Institute for Water Research, Oslo, Norway
- Freshwater Biological Section, University of Copenhagen, Copenhagen, Denmark
- water@leeds, School of Geography, University of Leeds, Leeds, UK
| | | | - Galia Georgieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
| | - Manuel A S Graça
- Department of Life Sciences, University of Coimbra, Marine and Environmental Sciences Centre, ARNET, Coimbra, Portugal
| | - Wolfram Graf
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | | | - Thomas C Jensen
- Norwegian Institute for Nature Research (NINA), Oslo, Norway
| | - Richard K Johnson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - J Iwan Jones
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Jens Kiesel
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Department of Hydrology and Water Resources Management, Christian-Albrechts-University Kiel, Institute for Natural Resource Conservation, Kiel, Germany
| | - Lenka Kuglerová
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, University of the Basque Country, Leioa, Spain
| | - Patrick Leitner
- Department of Water, Atmosphere and Environment, Institute of Hydrobiology and Aquatic Ecosystem Management, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Lionel L'Hoste
- Environmental Research and Innovation Department, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
| | - Marie-Helène Lizée
- INRAE, UMR RECOVER Aix Marseille Univ, Centre d'Aix-en-Provence, Aix-en-Provence, France
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Anthony Maire
- Laboratoire National d'Hydraulique et Environnement, EDF Recherche et Développement, Chatou, France
| | | | - Brendan G McKie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Andrés Millán
- Department of Ecology and Hydrology, University of Murcia, Murcia, Spain
| | - Don Monteith
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - John F Murphy
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Davis Ozolins
- Institute of Biology, University of Latvia, Riga, Latvia
| | - Riku Paavola
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, Finland
| | - Petr Paril
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Francisco J Peñas
- IHCantabria-Instituto de Hidráulica Ambiental de la Universidad de Cantabria, Santander, Spain
| | | | - Marek Polášek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | | | - Manu Rubio
- Ekolur Asesoría Ambiental SLL, Oiartzun, Spain
| | | | - Leonard Sandin
- Norwegian Institute for Nature Research (NINA), Oslo, Norway
| | - Ralf B Schäfer
- Institute for Environmental Science, RPTU Kaiserslautern-Landau, Landau, Germany
| | - Alberto Scotti
- Institute for Alpine Environment, Eurac Research, Bolzano, Italy
- APEM, Stockport, UK
| | - Longzhu Q Shen
- Department of Community and Ecosystem Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute for Green Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Agnija Skuja
- Institute of Biology, University of Latvia, Riga, Latvia
| | - Stefan Stoll
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany
- Department of Environmental Planning / Environmental Technology, University of Applied Sciences Trier, Birkenfeld, Germany
| | - Michal Straka
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- T.G. Masaryk Water Research Institute, Brno, Czech Republic
| | - Henn Timm
- Chair of Hydrobiology and Fishery, Centre for Limnology, Estonian University of Life Sciences, Elva vald, Estonia
| | - Violeta G Tyufekchieva
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iakovos Tziortzis
- Water Development Department, Ministry of Agriculture, Rural Development and Environment, Nicosia, Cyprus
| | - Yordan Uzunov
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Gea H van der Lee
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Rudy Vannevel
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, Belgium
- Flanders Environment Agency, Aalst, Belgium
| | - Emilia Varadinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
- Department of Geography, Ecology and Environment Protection, Faculty of Mathematics and Natural Sciences, South-West University 'Neofit Rilski', Blagoevgrad, Bulgaria
| | - Gábor Várbíró
- Department of Tisza River Research, Centre for Ecological Research, Institute of Aquatic Ecology, Debrecen, Hungary
| | - Gaute Velle
- LFI-The Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Piet F M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Ralf C M Verdonschot
- Wageningen Environmental Research, Wageningen University and Research, Wageningen, The Netherlands
| | - Yanka Vidinova
- Department of Aquatic Ecosystems, Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | - Ellen A R Welti
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- Conservation Ecology Center, Smithsonian National Zoo and Conservation Biology Institute, Front Royal, VA, USA.
| |
Collapse
|
41
|
Ahmed DA, Haubrock PJ, Cuthbert RN, Bang A, Soto I, Balzani P, Tarkan AS, Macêdo RL, Carneiro L, Bodey TW, Oficialdegui FJ, Courtois P, Kourantidou M, Angulo E, Heringer G, Renault D, Turbelin AJ, Hudgins EJ, Liu C, Gojery SA, Arbieu U, Diagne C, Leroy B, Briski E, Bradshaw CJA, Courchamp F. Recent advances in availability and synthesis of the economic costs of biological invasions. Bioscience 2023; 73:560-574. [PMID: 37680688 PMCID: PMC10481418 DOI: 10.1093/biosci/biad060] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/18/2023] [Accepted: 06/14/2023] [Indexed: 09/09/2023] Open
Abstract
Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.
Collapse
Affiliation(s)
- Danish A Ahmed
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
| | - Phillip J Haubrock
- Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt,Gelnhausen, Germany
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences at Queen's University Belfast, Belfast, NorthernIreland
| | - Alok Bang
- School of Arts and Sciences at Azim Premji University, Bangalore, India
- School of Arts and Sciences, Azim Premji University, Bhopal, India
- Society for Ecology, Evolution, and Development, Wardha, India
| | - Ismael Soto
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Paride Balzani
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Ali Serhan Tarkan
- Department of Basic Sciences in the Faculty of Fisheries at Muğla Sıtkı Koçman University, in Muğla, Turkey
- Department of Life and Environmental Sciences in the Faculty of Science and Technology at Bournemouth University, Poole, Dorset, England, United Kingdom
| | - Rafael L Macêdo
- Graduate Program in Conservation and Ecotourism at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brazil
- Institute of Biology at Freie Universität Berlin, Berlin, Germany
- Neotropical Limnology Group, at the Federal University of Rio de Janeiro State, Rio de Janeiro, Rio de Janeiro State, Brasil
| | - Laís Carneiro
- Laboratório de Ecologia e Conservação in the Departamento de Engenharia Ambiental, Setor de Tecnologia, at the Universidade Federal do Paraná, in Curitiba, Paraná, Brazil
| | - Thomas W Bodey
- School of Biological Sciences at King's College, University of Aberdeen, Aberdeen, Scotland, United Kingdom
| | - Francisco J Oficialdegui
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany, Czech Republic
| | - Pierre Courtois
- Centre for Environmental Economics—Montpellier, National Institute for Research in Agriculture and the Environment, Montpellier, France
| | - Melina Kourantidou
- Department of Sociology, Environmental and Business Economics, University of Southern Denmark, Esbjerg Ø, Denmark
- Université de Bretagne Occidentale, Plouzané, France
| | | | - Gustavo Heringer
- Departamento de Ecologia e Conservação in the Instituto de Ciências Naturais at the Universidade Federal de Lavras, Lavras, Minas Gerais, Brazil
- Nürtingen-Geislingen University, Nürtingen, Germany
| | - David Renault
- Centre National de Recherche Scientifique's Ecosystèmes, Biodiversité, Evolution, University of Rennes, Rennes, France
| | - Anna J Turbelin
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Great Lakes Forestry Centre at Canadian Forestry Services, part of Natural Resources Canada, Sault Ste Marie, Ontario, Canada
| | - Emma J Hudgins
- Department of Biology at Carleton University, Ottawa, Ontario, Canada
| | - Chunlong Liu
- College of Fisheries at the Ocean University of China, Qingdao, China
- Institute of Hydrobiology at the Chinese Academy of Sciences, Wuhan, China
| | - Showkat A Gojery
- Department of Botany at the University of Kashmir, Kashmir, India
| | - Ugo Arbieu
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- Smithsonian Conservation Biology Institute, at the National Zoological Park, Front Royal, Virginia, United States
| | - Christophe Diagne
- Centre de Biologie pour la Gestion des Populations, at Institut de Recherche pour le Développement, Montferrier-sur-Lez Cedex, France
| | - Boris Leroy
- Unité Biologie des Organismes et des Ecosystèmes Aquatiques, Muséum National d’Histoire Naturelle, Sorbonne Universités, Université de Caen Normandie, Université des Antilles, in Paris, France
| | | | - Corey J A Bradshaw
- Global Ecology Laboratory, Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Franck Courchamp
- Université Paris–Saclay, CNRS, AgroParisTech, Ecologie Systématique Evolution, Gif-sur-Yvette, France
| |
Collapse
|
42
|
Mori AS, Suzuki KF, Hori M, Kadoya T, Okano K, Uraguchi A, Muraoka H, Sato T, Shibata H, Suzuki-Ohno Y, Koba K, Toda M, Nakano SI, Kondoh M, Kitajima K, Nakamura M. Perspective: sustainability challenges, opportunities and solutions for long-term ecosystem observations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220192. [PMID: 37246388 DOI: 10.1098/rstb.2022.0192] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 04/11/2023] [Indexed: 05/30/2023] Open
Abstract
As interest in natural capital grows and society increasingly recognizes the value of biodiversity, we must discuss how ecosystem observations to detect changes in biodiversity can be sustained through collaboration across regions and sectors. However, there are many barriers to establishing and sustaining large-scale, fine-resolution ecosystem observations. First, comprehensive monitoring data on both biodiversity and possible anthropogenic factors are lacking. Second, some in situ ecosystem observations cannot be systematically established and maintained across locations. Third, equitable solutions across sectors and countries are needed to build a global network. Here, by examining individual cases and emerging frameworks, mainly from (but not limited to) Japan, we illustrate how ecological science relies on long-term data and how neglecting basic monitoring of our home planet further reduces our chances of overcoming the environmental crisis. We also discuss emerging techniques and opportunities, such as environmental DNA and citizen science as well as using the existing and forgotten sites of monitoring, that can help overcome some of the difficulties in establishing and sustaining ecosystem observations at a large scale with fine resolution. Overall, this paper presents a call to action for joint monitoring of biodiversity and anthropogenic factors, the systematic establishment and maintenance of in situ observations, and equitable solutions across sectors and countries to build a global network, beyond cultures, languages, and economic status. We hope that our proposed framework and the examples from Japan can serve as a starting point for further discussions and collaborations among stakeholders across multiple sectors of society. It is time to take the next step in detecting changes in socio-ecological systems, and if monitoring and observation can be made more equitable and feasible, they will play an even more important role in ensuring global sustainability for future generations. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Akira S Mori
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Kureha F Suzuki
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
- Graduate School of Environment and Information Sciences, Yokohama National University, 79-7 Tokiwadai, Hodogaya, Yokohama, Kanagawa 240-8501, Japan
| | - Masakazu Hori
- Japan Fisheries Research and Education Agency, 6F Technowave100, 1-1-25 Shin-urashima, Kanagawa-ku, Yokohama, Kanagawa 221-8529, Japan
| | - Taku Kadoya
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Kotaro Okano
- Research Center for Advanced Science and Technology, The University of Tokyo, Komaba 4-6-1, Meguro, Tokyo 153-8904, Japan
| | - Aya Uraguchi
- Conservation International Japan, 1-17 Yotsuya, Shinjuku, Tokyo 160-0014, Japan
| | - Hiroyuki Muraoka
- National Institute for Environmental Studies, 16-2, Onogawa, Tsukuba, Ibaraki 305-8506, Japan
- River Basin Research Center, Gifu University, 1-1 Yanagido, Gifu City 501-1193, Japan
| | - Tamotsu Sato
- International Strategy Division, Forestry and Forest Products Research Institute (FFPRI), 1 Matsunosato, Tsukuba, Ibaraki 305-8687, Japan
| | - Hideaki Shibata
- Field Science Center for Northern Biosphere, Hokkaido University, N9 W9, Kita-ku, Sapporo, Hokkaido 060-0809, Japan
| | - Yukari Suzuki-Ohno
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Keisuke Koba
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Mariko Toda
- Kokusai Kogyo Co., Ltd. Shinjuku Front Tower, 21-1, Kita-Shinjuku 2-chome, Shinjukuku, Tokyo 169-0074, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, Hirano 2-509-3, Otsu, Shiga 520-2113, Japan
| | - Michio Kondoh
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Nakamura
- Tomakomai Experimental Forest, Field Science Center for Northern Biosphere, Hokkaido University, Takaoka, Tomakomai, Hokkaido 053-0035, Japan
| |
Collapse
|
43
|
Dornelas M, Chase JM, Gotelli NJ, Magurran AE, McGill BJ, Antão LH, Blowes SA, Daskalova GN, Leung B, Martins IS, Moyes F, Myers-Smith IH, Thomas CD, Vellend M. Looking back on biodiversity change: lessons for the road ahead. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220199. [PMID: 37246380 PMCID: PMC10225864 DOI: 10.1098/rstb.2022.0199] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/24/2023] [Indexed: 05/30/2023] Open
Abstract
Estimating biodiversity change across the planet in the context of widespread human modification is a critical challenge. Here, we review how biodiversity has changed in recent decades across scales and taxonomic groups, focusing on four diversity metrics: species richness, temporal turnover, spatial beta-diversity and abundance. At local scales, change across all metrics includes many examples of both increases and declines and tends to be centred around zero, but with higher prevalence of declining trends in beta-diversity (increasing similarity in composition across space or biotic homogenization) and abundance. The exception to this pattern is temporal turnover, with changes in species composition through time observed in most local assemblages. Less is known about change at regional scales, although several studies suggest that increases in richness are more prevalent than declines. Change at the global scale is the hardest to estimate accurately, but most studies suggest extinction rates are probably outpacing speciation rates, although both are elevated. Recognizing this variability is essential to accurately portray how biodiversity change is unfolding, and highlights how much remains unknown about the magnitude and direction of multiple biodiversity metrics at different scales. Reducing these blind spots is essential to allow appropriate management actions to be deployed. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.
Collapse
Affiliation(s)
- Maria Dornelas
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Guia Marine Laboratory, MARE, Faculdade de Ciencias da Universidade de Lisboa, Cascais 2750-374, Portugal
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Jonathan M. Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | | | - Anne E Magurran
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Laura H. Antão
- Research Centre for Ecological Change, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki,Finland
| | - Shane A. Blowes
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig 04103, Germany
- Department of Computer Sciences, Martin Luther University, Halle-Wittenberg 06099, Germany
| | - Gergana N. Daskalova
- International Institute for Applied Systems Analysis (IIASA), Laxenburg 2361, Austria
| | - Brian Leung
- Department of Biology, McGill University, Montreal, Canada H3A 1B1
| | - Inês S. Martins
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Faye Moyes
- Centre for Biological Diversity, University of St Andrews, St Andrews KY16 9TH, UK
| | | | - Chris D Thomas
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - Mark Vellend
- Leverhulme Centre for Anthropocene Biodiversity, Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
- Département de biologie, Université de Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
44
|
Ledger SEH, Loh J, Almond R, Böhm M, Clements CF, Currie J, Deinet S, Galewski T, Grooten M, Jenkins M, Marconi V, Painter B, Scott-Gatty K, Young L, Hoffmann M, Freeman R, McRae L. Past, present, and future of the Living Planet Index. NPJ BIODIVERSITY 2023; 2:12. [PMID: 39242663 PMCID: PMC11332142 DOI: 10.1038/s44185-023-00017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/05/2023] [Indexed: 09/09/2024]
Abstract
As we enter the next phase of international policy commitments to halt biodiversity loss (e.g., Kunming-Montreal Global Biodiversity Framework), biodiversity indicators will play an important role in forming the robust basis upon which targeted, and time sensitive conservation actions are developed. Population trend indicators are one of the most powerful tools in biodiversity monitoring due to their responsiveness to changes over short timescales and their ability to aggregate species trends from global down to sub-national or even local scale. We consider how the project behind one of the foremost population level indicators - the Living Planet Index - has evolved over the last 25 years, its value to the field of biodiversity monitoring, and how its components have portrayed a compelling account of the changing status of global biodiversity through its application at policy, research and practice levels. We explore ways the project can develop to enhance our understanding of the state of biodiversity and share lessons learned to inform indicator development and mobilise action.
Collapse
Affiliation(s)
- Sophie E H Ledger
- Institute of Zoology, Zoological Society of London (ZSL), London, UK.
| | - Jonathan Loh
- School of Anthropology and Conservation, University of Kent, Canterbury, UK
| | - Rosamunde Almond
- WWF Netherlands - World Wide Fund for Nature, Zeist, Netherlands
| | - Monika Böhm
- Global Center for Species Survival, Indianapolis Zoo, Indianapolis, USA
| | | | - Jessica Currie
- WWF Canada - World Wildlife Fund Canada, Toronto, Canada
| | - Stefanie Deinet
- Institute of Zoology, Zoological Society of London (ZSL), London, UK
| | - Thomas Galewski
- Institut de recherche pour la conservation des zones humides méditerranéennes, Tour du Valat, Arles, France
| | - Monique Grooten
- WWF Netherlands - World Wide Fund for Nature, Zeist, Netherlands
| | | | - Valentina Marconi
- Institute of Zoology, Zoological Society of London (ZSL), London, UK
| | - Brett Painter
- Environment and Climate Change Canada (ECCC), Government of Canada, Gatineau, Canada
| | - Kate Scott-Gatty
- Institute of Zoology, Zoological Society of London (ZSL), London, UK
| | - Lucy Young
- WWF UK - World Wide Fund for Nature, Woking, UK
| | - Michael Hoffmann
- Conservation and Policy, Zoological Society of London (ZSL), London, UK
| | - Robin Freeman
- Institute of Zoology, Zoological Society of London (ZSL), London, UK
| | - Louise McRae
- Institute of Zoology, Zoological Society of London (ZSL), London, UK.
| |
Collapse
|
45
|
Bernard C, Santos GS, Deere JA, Rodriguez-Caro R, Capdevila P, Kusch E, Gascoigne SJL, Jackson J, Salguero-Gómez R. MOSAIC - A Unified Trait Database to Complement Structured Population Models. Sci Data 2023; 10:335. [PMID: 37264011 PMCID: PMC10235418 DOI: 10.1038/s41597-023-02070-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 03/14/2023] [Indexed: 06/03/2023] Open
Abstract
Despite exponential growth in ecological data availability, broader interoperability amongst datasets is needed to unlock the potential of open access. Our understanding of the interface of demography and functional traits is well-positioned to benefit from such interoperability. Here, we introduce MOSAIC, an open-access trait database that unlocks the demographic potential stored in the COMADRE, COMPADRE, and PADRINO open-access databases. MOSAIC data were digitised and curated through a combination of existing datasets and new trait records sourced from primary literature. In its first release, MOSAIC (v. 1.0.0) includes 14 trait fields for 300 animal and plant species: biomass, height, growth determination, regeneration, sexual dimorphism, mating system, hermaphrodism, sequential hermaphrodism, dispersal capacity, type of dispersal, mode of dispersal, dispersal classes, volancy, and aquatic habitat dependency. MOSAIC includes species-level phylogenies for 1,359 species and population-specific climate data. We identify how database integration can improve our understanding of traits well-quantified in existing repositories and those that are poorly quantified (e.g., growth determination, modularity). MOSAIC highlights emerging challenges associated with standardising databases and demographic measures.
Collapse
Affiliation(s)
- Connor Bernard
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom.
| | - Gabriel Silva Santos
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Department of Ecology, Rio de Janeiro State University, 20550-900, Rio de Janeiro, Brazil
- National Institute of the Atlantic Forest (INMA), 29650-000, Santa Teresa, Espírito Santo, Brazil
| | - Jacques A Deere
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1012 WX, Amsterdam, Netherlands
| | - Roberto Rodriguez-Caro
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Departamento de Biología Aplicada, Universidad Miguel Hernández. Av. Universidad, s/n, 03202, Elche (Alicante), Spain
| | - Pol Capdevila
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- School of Biological Sciences, University of Bristol, 24 Tyndall Ave, Bristol, BS8 1TQ, United Kingdom
| | - Erik Kusch
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Arhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Arhus University, Aarhus, Denmark
| | - Samuel J L Gascoigne
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
| | - John Jackson
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
| | - Roberto Salguero-Gómez
- Department of Biology, University of Oxford, 11a Mansfield Rd, OX13SZ, Oxford, United Kingdom
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, QLD, Australia
- Evolutionary Demography Laboratory, Max Plank Institute for Demographic Research, Rostock, Germany
| |
Collapse
|
46
|
Penny A, Dornelas M, Magurran A. Comparing temporal dynamics of compositional reorganization in long-term studies of birds and fish. Ecol Lett 2023. [PMID: 37183392 DOI: 10.1111/ele.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/12/2022] [Indexed: 05/16/2023]
Abstract
The composition of ecological assemblages has changed rapidly over the past century. Compositional reorganization rates are high relative to rates of alpha diversity change, creating an urgent need to understand how this compositional reorganization is progressing. We developed a quantitative framework for comparing temporal trajectories of compositional reorganization and applied it to two long-term bird and marine fish datasets. We then evaluated how the number and magnitude of short-term changes relate to overall rates of change. We found varied trajectories of turnover across birds and fish, with linear directional change predominating in birds and non-directional change more common in fish. The number of changes away from the baseline was a more consistent correlate of the overall rate of change than the magnitude of such changes, but large unreversed changes were found in both fish and birds, as were time series with accelerating compositional change. Compositional reorganization is progressing through a complex mix of temporal trajectories, including both threshold-like behaviour and the accumulation of repeated, linear change.
Collapse
Affiliation(s)
- Amelia Penny
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| | - Anne Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, UK
| |
Collapse
|
47
|
Kortz AR, Moyes F, Pivello VR, Pyšek P, Dornelas M, Visconti P, Magurran AE. Elevated compositional change in plant assemblages linked to invasion. Proc Biol Sci 2023; 290:20222450. [PMID: 37161334 PMCID: PMC10170211 DOI: 10.1098/rspb.2022.2450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Alien species are widely linked to biodiversity change, but the extent to which they are associated with the reshaping of ecological communities is not well understood. One possible mechanism is that assemblages where alien species are found exhibit elevated temporal turnover. To test this, we identified assemblages of vascular plants in the BioTIME database for those assemblages in which alien species are either present or absent and used the Jaccard measure to compute compositional dissimilarity between consecutive censuses. We found that, although alien species are typically rare in invaded assemblages, their presence is associated with an increase in the average rate of compositional change. These differences in compositional change between invaded and uninvaded assemblages are not linked to differences in species richness but rather to species replacement (turnover). Rapid compositional restructuring of assemblages is a major contributor to biodiversity change, and as such, our results suggest a role for alien species in bringing this about.
Collapse
Affiliation(s)
- Alessandra R. Kortz
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice CZ-25243, Czech Republic
- Biodiversity and Natural Resources Program, Biodiversity, Ecology and Conservation group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg 2361, Austria
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
- LEPaC, Ecology Department—IB, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, SP CEP 05508-090, Brazil
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Vânia R. Pivello
- LEPaC, Ecology Department—IB, Universidade de São Paulo, Rua do Matão, Travessa 14, São Paulo, SP CEP 05508-090, Brazil
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice CZ-25243, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague CZ-12844, Czech Republic
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| | - Piero Visconti
- Biodiversity and Natural Resources Program, Biodiversity, Ecology and Conservation group, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg 2361, Austria
| | - Anne E. Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, Fife KY16 9TH, UK
| |
Collapse
|
48
|
Nakagawa S, Yang Y, Macartney EL, Spake R, Lagisz M. Quantitative evidence synthesis: a practical guide on meta-analysis, meta-regression, and publication bias tests for environmental sciences. ENVIRONMENTAL EVIDENCE 2023; 12:8. [PMID: 39294795 PMCID: PMC11378872 DOI: 10.1186/s13750-023-00301-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/23/2023] [Indexed: 09/21/2024]
Abstract
Meta-analysis is a quantitative way of synthesizing results from multiple studies to obtain reliable evidence of an intervention or phenomenon. Indeed, an increasing number of meta-analyses are conducted in environmental sciences, and resulting meta-analytic evidence is often used in environmental policies and decision-making. We conducted a survey of recent meta-analyses in environmental sciences and found poor standards of current meta-analytic practice and reporting. For example, only ~ 40% of the 73 reviewed meta-analyses reported heterogeneity (variation among effect sizes beyond sampling error), and publication bias was assessed in fewer than half. Furthermore, although almost all the meta-analyses had multiple effect sizes originating from the same studies, non-independence among effect sizes was considered in only half of the meta-analyses. To improve the implementation of meta-analysis in environmental sciences, we here outline practical guidance for conducting a meta-analysis in environmental sciences. We describe the key concepts of effect size and meta-analysis and detail procedures for fitting multilevel meta-analysis and meta-regression models and performing associated publication bias tests. We demonstrate a clear need for environmental scientists to embrace multilevel meta-analytic models, which explicitly model dependence among effect sizes, rather than the commonly used random-effects models. Further, we discuss how reporting and visual presentations of meta-analytic results can be much improved by following reporting guidelines such as PRISMA-EcoEvo (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Ecology and Evolutionary Biology). This paper, along with the accompanying online tutorial, serves as a practical guide on conducting a complete set of meta-analytic procedures (i.e., meta-analysis, heterogeneity quantification, meta-regression, publication bias tests and sensitivity analysis) and also as a gateway to more advanced, yet appropriate, methods.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
- Theoretical Sciences Visiting Program, Okinawa Institute of Science and Technology Graduate University, Onna, 904-0495, Japan.
| | - Yefeng Yang
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Erin L Macartney
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rebecca Spake
- School of Biological Sciences, Whiteknights Campus, University of Reading, Reading, RG6 6AS, UK
| | - Malgorzata Lagisz
- Evolution & Ecology Research Centre and School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
49
|
Merz E, Saberski E, Gilarranz LJ, Isles PDF, Sugihara G, Berger C, Pomati F. Disruption of ecological networks in lakes by climate change and nutrient fluctuations. NATURE CLIMATE CHANGE 2023; 13:389-396. [PMID: 37038592 PMCID: PMC10079529 DOI: 10.1038/s41558-023-01615-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/24/2023] [Indexed: 06/19/2023]
Abstract
Climate change interacts with local processes to threaten biodiversity by disrupting the complex network of ecological interactions. While changes in network interactions drastically affect ecosystems, how ecological networks respond to climate change, in particular warming and nutrient supply fluctuations, is largely unknown. Here, using an equation-free modelling approach on monthly plankton community data in ten Swiss lakes, we show that the number and strength of plankton community interactions fluctuate and respond nonlinearly to water temperature and phosphorus. While lakes show system-specific responses, warming generally reduces network interactions, particularly under high phosphate levels. This network reorganization shifts trophic control of food webs, leading to consumers being controlled by resources. Small grazers and cyanobacteria emerge as sensitive indicators of changes in plankton networks. By exposing the outcomes of a complex interplay between environmental drivers, our results provide tools for studying and advancing our understanding of how climate change impacts entire ecological communities.
Collapse
Affiliation(s)
- Ewa Merz
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Erik Saberski
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| | - Luis J. Gilarranz
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Peter D. F. Isles
- Vermont Department of Environmental Conservation, Montpelier, VT USA
| | - George Sugihara
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA USA
| | - Christine Berger
- Stadt Zuerich, Wasserversorgung, Qualitaetsueberwachung, Zuerich, Switzerland
| | - Francesco Pomati
- Department of Aquatic Ecology, Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| |
Collapse
|
50
|
Xu WB, Blowes SA, Brambilla V, Chow CFY, Fontrodona-Eslava A, Martins IS, McGlinn D, Moyes F, Sagouis A, Shimadzu H, van Klink R, Magurran AE, Gotelli NJ, McGill BJ, Dornelas M, Chase JM. Regional occupancy increases for widespread species but decreases for narrowly distributed species in metacommunity time series. Nat Commun 2023; 14:1463. [PMID: 36927847 PMCID: PMC10020147 DOI: 10.1038/s41467-023-37127-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/01/2023] [Indexed: 03/18/2023] Open
Abstract
While human activities are known to elicit rapid turnover in species composition through time, the properties of the species that increase or decrease their spatial occupancy underlying this turnover are less clear. Here, we used an extensive dataset of 238 metacommunity time series of multiple taxa spread across the globe to evaluate whether species that are more widespread (large-ranged species) differed in how they changed their site occupancy over the 10-90 years the metacommunities were monitored relative to species that are more narrowly distributed (small-ranged species). We found that on average, large-ranged species tended to increase in occupancy through time, whereas small-ranged species tended to decrease. These relationships were stronger in marine than in terrestrial and freshwater realms. However, in terrestrial regions, the directional changes in occupancy were less extreme in protected areas. Our findings provide evidence for systematic decreases in occupancy of small-ranged species, and that habitat protection could mitigate these losses in the face of environmental change.
Collapse
Affiliation(s)
- Wu-Bing Xu
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Viviana Brambilla
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Cher F Y Chow
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Ada Fontrodona-Eslava
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Inês S Martins
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
| | - Daniel McGlinn
- Department of Biology, College of Charleston, Charleston, SC, USA
| | - Faye Moyes
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | - Alban Sagouis
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Hideyasu Shimadzu
- Department of Mathematical Sciences, Loughborough University, Leicestershire, UK
- Graduate School of Public Health, Teikyo University, Tokyo, Japan
| | - Roel van Klink
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Anne E Magurran
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
| | | | - Brian J McGill
- School of Biology and Ecology and Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, USA
| | - Maria Dornelas
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, Scotland
- Leverhulme Centre for Anthropocene Biodiversity, Berrick Saul Second Floor, University of York, York, UK
- MARE, Guia Marine Laboratory, Faculty of Sciences, University of Lisbon, Cascais, Portugal
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
- Department of Computer Science, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|