1
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
2
|
Xu J, Huang X, Zhou Y, Xu Z, Cai X, Yang B, He Q, Luo P, Yan H, Jin J. The Combination of Gefitinib and Acetaminophen Exacerbates Hepatotoxicity via ROS-Mediated Apoptosis. Biomol Ther (Seoul) 2024; 32:647-657. [PMID: 38871446 PMCID: PMC11392667 DOI: 10.4062/biomolther.2023.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/15/2024] Open
Abstract
Gefitinib is the well-tolerated first-line treatment of non-small cell lung cancer. As it need for analgesics during oncology treatment, particularly in the context ofthe coronavirus disease, where patients are more susceptible to contract high fever and sore throat. This has increased the likelihood of taking both gefitinib and antipyretic analgesic acetaminophen (APAP). Given that gefitinib and APAP overdose can predispose patients to liver injury or even acute liver failure, there is a risk of severe hepatotoxicity when these two drugs are used concomitantly. However, little is known regarding their safety at therapeutic doses. This study simulated the administration of gefitinib and APAP at clinically relevant doses in an animal model and confirmed that gefitinib in combination with APAP exhibited additional hepatotoxicity. We found that gefitinib plus APAP significantly exacerbated cell death, whereas each drug by itself had little or minor effect on hepatocyte survival. Mechanistically, combination of gefitinib and APAP induces hepatocyte death via the apoptotic pathway obviously. Reactive oxygen species (ROS) generation and DNA damage accumulation are involved in hepatocyte apoptosis. Gefitinib plus APAP also promotes the expression of Kelch-like ECH-associated protein 1 (Keap1) and downregulated the antioxidant factor, Nuclear factor erythroid 2-related factor 2 (Nrf2), by inhibiting p62 expression. Taken together, this study revealed the potential ROS-mediated apoptosis-dependent hepatotoxicity effect of the combination of gefitinib and APAP, in which the p62/Keap1/Nrf2 signaling pathway participates and plays an important regulatory role.
Collapse
Affiliation(s)
- Jiangxin Xu
- Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou 310005, China
| | - Xiangliang Huang
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yourong Zhou
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhifei Xu
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinjun Cai
- Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou 310005, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- School of Medicine, Hangzhou City University, Hangzhou 310015, China
| | - Qiaojun He
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China
| | - Peihua Luo
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacology and Toxicology, Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310018, China
| | - Hao Yan
- Center for Drug Safety Evaluation and Research of Zhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Jin
- Department of Pharmacy, Hangzhou Red Cross Hospital (Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine), Hangzhou 310005, China
| |
Collapse
|
3
|
Mahboubi-Rabbani M, Abdolghaffari AH, Ghesmati M, Amini A, Zarghi A. Selective COX-2 inhibitors as anticancer agents: a patent review (2018-2023). Expert Opin Ther Pat 2024; 34:733-757. [PMID: 38958471 DOI: 10.1080/13543776.2024.2373771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION COX-2 is a crucial enzyme in the manufacture of prostaglandins. The enzyme's metabolites might have an important function as regulators of the inflammatory response and other medical conditions such as cancer. Selective COX-2 inhibitors are believed to enhance or reverse the response of cancer chemotherapeutics. AREAS COVERED This study addresses the chemical structures as well as the antitumor activity of new COX-2 inhibitors produced in the recent five years, aiming to provide an insight into the mechanism of COX-2 induced PGE2 powerful signal in cancer development. EXPERT OPINION The significance of selective COX-2 inhibitors as an efficient superfamily of compounds with anti-inflammatory, anti-Alzheimer's, anti-Parkinson's disease, and anticancer properties has piqued the passion of academics in the field of drug development. Long-term usage of selective COX-2 inhibitors, such as celecoxib has been proven in clinical trials to lower the incidence of several human malignancies. Furthermore, celecoxib has the potential to greatly increase the effectiveness of chemotherapy. Our extensive understanding of selective COX-2 inhibitor SAR may aid in the development of safer and more effective selective COX-2 inhibitors as cancer chemopreventive agents. This review focuses on the different structural classes of selective COX-2 inhibitors, with a particular emphasis on their SAR.
Collapse
Affiliation(s)
- Mohammad Mahboubi-Rabbani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Ghesmati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ali Amini
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Afshin Zarghi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Habibi Zare M, Mehrabani-Zeinabad A. Yolk@Wrinkled-double shell smart nanoreactors: new platforms for mineralization of pharmaceutical wastewater. Front Chem 2023; 11:1211503. [PMID: 37347043 PMCID: PMC10281210 DOI: 10.3389/fchem.2023.1211503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/25/2023] [Indexed: 06/23/2023] Open
Abstract
Nanomaterials with "yolk and shell" "structure" can be considered as "nanoreactors" that have significant potential for application in catalysis. Especially in terms of electrochemical energy storage and conversion, the nanoelectrode has a large specific surface area with a unique yolk@shell structure, which can reduce the volume change of the electrode during the charging and discharging process and fast ion/electron transfer channels. The adsorption of products and the improvement of conversion reaction efficiency can greatly improve the stability, speed and cycle performance of the electrode, and it is a kind of ideal electrode material. In this research, heterojunction nanoreactors (FZT Y@WDS) Fe3O4@ZrO2-X@TiO2-X were firstly synthesized based on the solvothermal combined hard-template process, partial etching and calcination. The response surface method was used to determine the performance of the FZT Y@WDS heterojunction nanoreactors and the effects of four process factors: naproxen concentration (NAP), solution pH, the amount of charged photocatalyst, and the irradiation time for photocatalytic degradation of NAP under visible light irradiation. To maximize the photocatalytic activity, the parameters of the loaded catalyst, the pH of the reaction medium, the initial concentration of NAP, and the irradiation time were set to 0.5 g/L, 3, 10 mg/L, and 60 min, respectively, resulting in complete removal of NAP and the optimum amount was calculated to be 0.5 g/L, 5.246, 14.092 mg/L, and 57.362 min, respectively. Considering the promising photocatalytic activity of FZT Y@WDS under visible light and the separation performance of the nanocomposite, we proposed this photocatalyst as an alternative solution for the treatment of pharmaceutical wastewater.
Collapse
Affiliation(s)
- Masoud Habibi Zare
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
| | | |
Collapse
|
5
|
Sohail R, Mathew M, Patel KK, Reddy SA, Haider Z, Naria M, Habib A, Abdin ZU, Razzaq Chaudhry W, Akbar A. Effects of Non-steroidal Anti-inflammatory Drugs (NSAIDs) and Gastroprotective NSAIDs on the Gastrointestinal Tract: A Narrative Review. Cureus 2023; 15:e37080. [PMID: 37153279 PMCID: PMC10156439 DOI: 10.7759/cureus.37080] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used for their anti-inflammatory, antipyretic, and analgesic properties. However, their use is often associated with gastrointestinal tract (GIT) side effects due to the inhibition of both cyclooxygenase (COX)-1 and COX-2 enzymes, leading to a decrease in gastroprotective prostaglandins (PG). To minimize these adverse effects, various approaches have been explored, including selective COX-2 inhibitors, NO-NSAIDs (nitric oxide-releasing NSAIDs), and dual COX/LOX (lipoxygenase) NSAIDs. However, the effects of these gastroprotective NSAIDs on the GIT and their efficacy remains uncertain. This review aims to provide an overview of the current understanding of the effects of traditional NSAIDs and gastroprotective NSAIDs on GIT. We discuss the underlying mechanisms of GIT damage caused by NSAIDs, including mucosal injury, ulceration, and bleeding, and the potential of gastroprotective NSAIDs to mitigate these effects. We also summarize recent studies on the efficacy and safety of various gastroprotective NSAIDs and highlight the limitations and challenges of these approaches. The review concludes with recommendations for future research in this field.
Collapse
Affiliation(s)
- Rohab Sohail
- Internal Medicine, Quaid-e-Azam Medical College, Bahawalpur, PAK
| | - Midhun Mathew
- Department of Internal Medicine, Pennsylvania Hospital, Philadelphia, USA
| | - Khushbu K Patel
- Internal Medicine, Index Medical College Hospital & Research Center, Indore, IND
| | - Srija A Reddy
- Internal Medicine, Malla Reddy Institute of Medical Sciences, Hyderabad, IND
| | - Zaroon Haider
- Internal Medicine, Combined Military Hospital (CMH) Lahore Medical College and Institute of Dentistry, Lahore, PAK
| | - Mansi Naria
- Internal Medicine, American University of Barbados, Bridgetown, BRB
| | - Ayesha Habib
- Internal Medicine, Punjab Medical College, Faisalabad, PAK
| | - Zain U Abdin
- Medicine, District Head Quarter Hospital, Faisalabad, PAK
| | | | - Anum Akbar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
6
|
Alomair BM, Al‐Kuraishy HM, Al‐Gareeb AI, Al‐Buhadily AK, Alexiou A, Papadakis M, Alshammari MA, Saad HM, Batiha GE. Mixed storm in SARS-CoV-2 infection: A narrative review and new term in the Covid-19 era. Immun Inflamm Dis 2023; 11:e838. [PMID: 37102645 PMCID: PMC10132185 DOI: 10.1002/iid3.838] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/28/2023] Open
Abstract
Coronavirus disease 2019 (Covid-19) is caused by a novel severe acute respiratory syndrome coronavirus virus type 2 (SARS-CoV-2) leading to the global pandemic worldwide. Systemic complications in Covid-19 are mainly related to the direct SARS-CoV-2 cytopathic effects, associated hyperinflammation, hypercytokinemia, and the development of cytokine storm (CS). As well, Covid-19 complications are developed due to the propagation of oxidative and thrombotic events which may progress to a severe state called oxidative storm and thrombotic storm (TS), respectively. In addition, inflammatory and lipid storms are also developed in Covid-19 due to the activation of inflammatory cells and the release of bioactive lipids correspondingly. Therefore, the present narrative review aimed to elucidate the interrelated relationship between different storm types in Covid-19 and the development of the mixed storm (MS). In conclusion, SARS-CoV-2 infection induces various storm types including CS, inflammatory storm, lipid storm, TS and oxidative storm. These storms are not developing alone since there is a close relationship between them. Therefore, the MS seems to be more appropriate to be related to severe Covid-19 than CS, since it develops in Covid-19 due to the intricate interface between reactive oxygen species, proinflammatory cytokines, complement activation, coagulation disorders, and activated inflammatory signaling pathway.
Collapse
Affiliation(s)
- Basil Mohammed Alomair
- Department of Medicine, College of Medicine, Internal Medicine and EndocrinologyJouf UniversityAl‐JoufSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineAl‐Mustansiriya UniversityBaghdadIraq
| | - Ali K. Al‐Buhadily
- Department of Clinical Pharmacology, Medicine, and Therapeutic, Medical Faculty, College of MedicineAl‐Mustansiriyah UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- AFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐HerdeckeUniversity of Witten‐HerdeckeWuppertalGermany
| | - Majed Ayed Alshammari
- Department of MedicinePrince Mohammed Bin Abdulaziz Medical CitySakakaAl‐JoufSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMarsaMatruhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityDamanhourEgypt
| |
Collapse
|
7
|
Zhao H, Huang S, Huang S, Liu F, Shao W, Mei K, Ma J, Jiang Y, Wan J, Zhu W, Yu P, Liu X. Prevalence of NSAID use among people with COVID-19 and the association with COVID-19-related outcomes: Systematic review and meta-analysis. Br J Clin Pharmacol 2022; 88:5113-5127. [PMID: 36029185 PMCID: PMC9538204 DOI: 10.1111/bcp.15512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 03/23/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
AIM Recent reports of potential harmful effects of nonsteroidal anti-inflammatory drugs (NSAIDs) in treating patients with coronavirus disease 2019 (COVID-19) have raised great concern. METHODS We searched the PubMed, EMBASE, Cochrane Library and MedRxiv databases to examine the prevalence of NSAID use and associated COVID-19 risk, outcomes and safety. RESULTS Twenty-five studies with a total of 101 215 COVID-19 patients were included. Prevalence of NSAID use among COVID-19 patients was 19% (95% confidence interval [CI] 14-23%, no. of studies [n] = 22) and NSAID use prior to admission or diagnosis of COVID-19 was not associated with an increased risk of COVID-19 (adjusted odds ratio [aOR] = 0.93, 95% CI 0.82-1.06, I2 = 34%, n = 3), hospitalization (aOR = 1.06, 95% CI 0.76-1.48, I2 = 81%, n = 5), mechanical ventilation (aOR = 0.71, 95% CI 0.47-1.06, I2 = 38%, n = 4) or length of hospital stay. Moreover, prior use of NSAIDs was associated with a decreased risk of severe COVID-19 (aOR = 0.79, 95% CI 0.71-0.89, I2 = 0%, n = 7) and death (aOR = 0.68, 95% CI 0.52-0.89, I2 = 85%, n = 10). Prior NSAID administration might also be associated with an increased risk of stroke (aOR = 2.32, 95% CI 1.04-5.2, I2 = 0%, n = 2), but not myocardial infarction (aOR = 1.49, 95% CI 0.25-8.92, I2 = 0, n = 2) and composite thrombotic events (aOR = 1.56, 95% CI 0.66-3.69, I2 = 52%, n = 2). CONCLUSION Based on current evidence, NSAID use prior to admission or diagnosis of COVID-19 was not linked with increased odds or exacerbation of COVID-19. NSAIDs might provide a survival benefit, although they might potentially increase the risk of stroke. Controlled trials are still required to further assess the clinical benefit and safety (e.g., stroke and acute renal failure) of NSAIDs in treating patients with COVID-19.
Collapse
Affiliation(s)
- Huilei Zhao
- Department of AnesthesiologyThird Hospital of NanchangJiangxiChina
| | - Shanshan Huang
- Department of EndocrineSecond Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Shan Huang
- Department of PsychiatryThird People's Hospital of Gan ZhouJiangxiChina
| | - Fuwei Liu
- Department of CardiologyAffiliated Ganzhou Hospital of Nanchang UniversityJiangxiChina
| | - Wen Shao
- Department of EndocrineSecond Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Kaibo Mei
- Department of AnesthesiologyShangrao People's HospitalJiangxiChina
| | - Jianyong Ma
- Department of Pharmacology and Systems PhysiologyUniversity of Cincinnati College of MedicineCincinnatiOHUSA
| | - Yuan Jiang
- Department of PharmacyHarbin Medical UniversityHarbinChina
| | - Jingfeng Wan
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchangChina
| | - Wengen Zhu
- Department of CardiologyFirst Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouChina
| | - Peng Yu
- Department of EndocrineSecond Affiliated Hospital of Nanchang UniversityJiangxiChina
| | - Xiao Liu
- Institute for the Study of Endocrinology and Metabolism in Jiangxi ProvinceNanchangChina
| |
Collapse
|
8
|
Remuzzi G, Schiaffino S, Santoro MG, FitzGerald GA, Melino G, Patrono C. Drugs for the prevention and treatment of COVID-19 and its complications: An update on what we learned in the past 2 years. Front Pharmacol 2022; 13:987816. [PMID: 36304162 PMCID: PMC9595217 DOI: 10.3389/fphar.2022.987816] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 Committee of the Lincei Academy has reviewed the scientific evidence supporting the efficacy and safety of existing and new drugs/biologics for the preventing and treating of COVID-19 and its complications. This position paper reports what we have learned in the field in the past 2 years. The focus was on, but not limited to, drugs and neutralizing monoclonal antibodies, anti-SARS-CoV-2 agents, anti-inflammatory and immunomodulatory drugs, complement inhibitors and anticoagulant agents. We also discuss the risks/benefit of using cell therapies on COVID-19 patients. The report summarizes the available evidence, which supports recommendations from health authorities and panels of experts regarding some drugs and biologics, and highlights drugs that are not recommended, or drugs for which there is insufficient evidence to recommend for or against their use. We also address the issue of the safety of drugs used to treat underlying concomitant conditions in COVID-19 patients. The investigators did an enormous amount of work very quickly to understand better the nature and pathophysiology of COVID-19. This expedited the development and repurposing of safe and effective therapeutic interventions, saving an impressive number of lives in the community as well as in hospitals.
Collapse
Affiliation(s)
- Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | | | - Maria Gabriella Santoro
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | - Garret A. FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Philadelphia, Philadelphia, PA, United States
| | - Gennaro Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Carlo Patrono
- Department of Pharmacology, Catholic University of the Sacred Heart, Rome, Italy
| |
Collapse
|
9
|
Zhang Q, Melchert PW, Markowitz JS. In vitro evaluation of the impact of Covid-19 therapeutic agents on the hydrolysis of the antiviral prodrug remdesivir. Chem Biol Interact 2022; 365:110097. [PMID: 35964681 PMCID: PMC9367181 DOI: 10.1016/j.cbi.2022.110097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/01/2022] [Accepted: 08/06/2022] [Indexed: 11/27/2022]
Abstract
Remdesivir (RDV, Veklury®) is an FDA-approved prodrug for the treatment of hospitalized patients with COVID-19. Recent in vitro studies have indicated that human carboxylesterase 1 (CES1) is the major metabolic enzyme catalyzing RDV activation. COVID-19 treatment for hospitalized patients typically also involves a number of antibiotics and anti-inflammatory drugs. Further, individuals who are carriers of a CES1 variant (polymorphism in exon 4 codon 143 [G143E]) may experience impairment in their ability to metabolize therapeutic agents which are CES1 substrates. The present study assessed the potential influence of nine therapeutic agents (hydroxychloroquine, ivermectin, erythromycin, clarithromycin, roxithromycin, trimethoprim, ciprofloxacin, vancomycin, and dexamethasone) commonly used in treating COVID-19 and 5 known CES1 inhibitors on the metabolism of RDV. Additionally, we further analyzed the mechanism of inhibition of cannabidiol (CBD), as well as the impact of the G143E polymorphism on RDV metabolism. An in vitro S9 fraction incubation method and in vitro to in vivo pharmacokinetic scaling were utilized. None of the nine therapeutic agents evaluated produced significant inhibition of RDV hydrolysis; CBD was found to inhibit RDV hydrolysis by a mixed type of competitive and noncompetitive partial inhibition mechanism. In vitro to in vivo modeling suggested a possible reduction of RDV clearance and increase of AUC when coadministration with CBD. The same scaling method also suggested a potentially lower clearance and higher AUC in the presence of the G143E variant. In conclusion, a potential CES1-mediated DDI between RDV and the nine assessed medications appears unlikely. However, a potential CES1-mediated DDI between RDV and CBD may be possible with sufficient exposure to the cannabinoid. Patients carrying the CES1 G143E variant may exhibit a slower biotransformation and clearance of RDV. Further clinical studies would be required to evaluate and characterize the clinical significance of a CBD-RDV interaction.
Collapse
Affiliation(s)
- Qingchen Zhang
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - Philip W Melchert
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, Gainesville, FL, USA; Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Hayden KR, Jones M, Elkin KR, Shreve MJ, Clees WI, Clark S, Mashtare ML, Veith TL, Elliott HA, Watson JE, Silverman J, Richard TL, Read AF, Preisendanz HE. Impacts of the COVID-19 pandemic on pharmaceuticals in wastewater treated for beneficial reuse: Two case studies in central Pennsylvania. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:1066-1082. [PMID: 35919971 PMCID: PMC9538887 DOI: 10.1002/jeq2.20398] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
During the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation. Samples were analyzed for severe acute respiratory syndrome coronavirus 2 (influent only), two over-the-counter medicines (acetaminophen and naproxen), five antibiotics (ampicillin, doxycycline, ofloxacin, sulfamethoxazole, and trimethoprim), two therapeutic agents (remdesivir and dexamethasone), and hydroxychloroquine. Although there were no correlations between pharmaceutical and virus concentration, remdesivir detection occurred when the number of hospitalized patients with COVID-19 increased, and dexamethasone detection co-occurred with the presence of patients with COVID-19 on ventilators. Additionally, Penn State decision-making regarding instruction modes explained the temporal variation of influent pharmaceutical concentrations, with detection occurring primarily when students were on campus. Risk quotients calculated for pharmaceuticals with known effective and lethal concentrations at which 50% of a population is affected for fish, daphnia, and algae were generally low in the effluent; however, some acute risks from sulfamethoxazole were high when students returned to campus. Remdesivir and dexamethasone persisted through the wastewater treatment plants, thereby introducing novel pharmaceuticals directly to soils and surface water. These results highlight connections between human health and water quality and further demonstrate the broad utility of wastewater surveillance.
Collapse
Affiliation(s)
- Kathryn R. Hayden
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
| | - Matthew Jones
- Huck Institutes of Life SciencesThe Pennsylvania State Univ.University ParkPA16802USA
| | - Kyle R. Elkin
- USDA‐ARS Pasture Systems & Watershed Management Research UnitUniversity ParkPA16802USA
| | - Michael J. Shreve
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
| | - William Irvin Clees
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
| | - Shirley Clark
- School of Science, Engineering, and TechnologyThe Pennsylvania State Univ.HarrisburgPA17057USA
| | - Michael L. Mashtare
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
| | - Tamie L. Veith
- USDA‐ARS Pasture Systems & Watershed Management Research UnitUniversity ParkPA16802USA
| | - Herschel A. Elliott
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
| | - John E. Watson
- Dep. of Ecosystem Science and ManagementThe Pennsylvania State Univ.University ParkPA16802USA
| | - Justin Silverman
- College of Information Science and TechnologyThe Pennsylvania State Univ.University ParkPA16802USA
| | - Thomas L. Richard
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
- Institutes of Energy and the EnvironmentThe Pennsylvania State Univ.University ParkPA16802USA
| | - Andrew F. Read
- Huck Institutes of Life SciencesThe Pennsylvania State Univ.University ParkPA16802USA
- Dep. of EntomologyThe Pennsylvania State Univ.University ParkPA16802USA
| | - Heather E. Preisendanz
- Dep. of Agricultural and Biological EngineeringThe Pennsylvania State Univ.University ParkPA16802USA
- Institute for Sustainable Agriculture, Food, and Environmental ScienceThe Pennsylvania State Univ.University ParkPA16802USA
| |
Collapse
|
11
|
Mohamed BA, Fattah IMR, Yousaf B, Periyasamy S. Effects of the COVID-19 pandemic on the environment, waste management, and energy sectors: a deeper look into the long-term impacts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46438-46457. [PMID: 35499739 PMCID: PMC9059688 DOI: 10.1007/s11356-022-20259-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/10/2022] [Indexed: 05/13/2023]
Abstract
The COVID-19 pandemic not only has caused a global health crisis but also has significant environmental consequences. Although many studies are confirming the short-term improvements in air quality in several countries across the world, the long-term negative consequences outweigh all the claimed positive impacts. As a result, this review highlights the positive and the long-term negative environmental effects of the COVID-19 pandemic by evaluating the scientific literature. Remarkable reduction in the levels of CO (3 - 65%), NO2 (17 - 83%), NOx (24 - 47%), PM2.5 (22 - 78%), PM10 (23 - 80%), and VOCs (25 - 57%) was observed during the lockdown across the world. However, according to this review, the pandemic put enormous strain on the present waste collection and treatment system, resulting in ineffective waste management practices, damaging the environment. The extensive usage of face masks increased the release of microplastics/nanoplastics (183 to 1247 particles piece-1) and organic pollutants in land and water bodies. Furthermore, the significant usages of anti-bacterial hand sanitizers, disinfectants, and pharmaceuticals have increased the accumulation of various toxic emerging contaminants (e.g., triclocarban, triclosan, bisphenol-A, hydroxychloroquine) in the treated sludge/biosolids and discharged wastewater effluent, posing great threats to the ecosystems. This review also suggests strategies to create long-term environmental advantages. Thermochemical conversions of solid wastes including medical wastes and for treated wastewater sludge/biosolids offer several advantages through recovering the resources and energy and stabilizing/destructing the toxins/contaminants and microplastics in the precursors.
Collapse
Affiliation(s)
- Badr A Mohamed
- Department of Agricultural Engineering, Cairo University, Giza, 12613, Egypt.
| | - I M Rizwanul Fattah
- Centre for Technology in Water and Wastewater (CTWW), Faculty of Engineering and IT, University of Technology Sydney, Ultimo, 2007 NSW, Australia
| | - Balal Yousaf
- CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Selvakumar Periyasamy
- Department of Chemical Engineering, School of Mechanical, Chemical and Materials Engineering, Adama Science and Technology University, 1888, Adama, Ethiopia
| |
Collapse
|
12
|
Krivokolysko DS, Dotsenko VV, Bibik EY, Samokish AA, Venidiktova YS, Frolov KA, Krivokolysko SG, Pankov AA, Aksenov NA, Aksenova IV. New Hybrid Molecules Based on Sulfur-Containing Nicotinonitriles: Synthesis, Analgesic Activity in Acetic Acid-Induced Writhing Test, and Molecular Docking Studies. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022030104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Photocatalytic activity of ZrO 2/TiO 2/Fe 3O 4 ternary nanocomposite for the degradation of naproxen: characterization and optimization using response surface methodology. Sci Rep 2022; 12:10388. [PMID: 35725903 PMCID: PMC9208713 DOI: 10.1038/s41598-022-14676-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 06/10/2022] [Indexed: 11/24/2022] Open
Abstract
In this study, ZrO2, TiO2, and Fe3O4 components were synthesized by co-precipitation, sol–gel, and co-precipitation methods, respectively. In addition, solid-state dispersion method was used for synthesizing of ZrO2/TiO2/Fe3O4 ternary nanocomposite. The ZrO2/TiO2/Fe3O4 nanocomposite was characterized by different techniques including XRD, EDX, SEM, BET, FTIR, XPS, EELS, and Photoluminescence (PL). The FTIR analysis of ZrO2/TiO2/Fe3O4 photocatalyst showed strong peaks in the range of 450 to 700 cm−1, which represent stretching vibrations of Zr–O, Ti–O, and Fe–O. The results of FTIR and XRD, XPS analyses and PL spectra confirmed that the solid-state dispersion method produced ZrO2/TiO2/Fe3O4 nanocomposites. The EELS analysis confirmed the pure samples of Fe3O4, TiO2 and ZrO2. The EDAX analysis showed that the Zr:Ti:Fe atomic ratio was 0.42:2.08:1.00. The specific surface area, pores volume and average pores size of the photocatalyst were obtained 280 m2/g, 0.92 cm3/g, and 42 nm respectively. Furthermore, the performance of ZrO2/TiO2/Fe3O4 nanocomposite was evaluated for naproxen removal using the response surface method (RSM). The four parameters such as NPX concentration, time, pH and catalyst concentration was investigated. The point of zero charge of the photocatalyst was 6. The maximum and minimum degradation of naproxen using photocatalyst were 100% (under conditions: NPX concentration = 10 mg/L, time = 90 min, pH = 3 and catalyst concentration = 0.5 g/L) and 66.10% respectively. The stability experiment revealed that the ternary nanocatalyst demonstrates a relatively higher photocatalytic activity after 7 recycles.
Collapse
|
14
|
Khirfan F, Jarrar Y, Al-Qirim T, Goh KW, Jarrar Q, Ardianto C, Awad M, Al-Ameer HJ, Al-Awaida W, Moshawih S, Ming LC. Analgesics Induce Alterations in the Expression of SARS-CoV-2 Entry and Arachidonic-Acid-Metabolizing Genes in the Mouse Lungs. Pharmaceuticals (Basel) 2022; 15:696. [PMID: 35745615 PMCID: PMC9227818 DOI: 10.3390/ph15060696] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/22/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022] Open
Abstract
Paracetamol and nonsteroidal anti-inflammatory drugs are widely used in the management of respiratory viral infections. This study aimed to determine the effects of the most commonly used analgesics (paracetamol, ibuprofen, and diclofenac) on the mRNA expression of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry and arachidonic-acid-metabolizing genes in mouse lungs. A total of twenty eight Balb/c mice were divided into four groups and treated separately with vehicle, paracetamol, ibuprofen, and diclofenac in clinically equivalent doses for 14 days. Then, the expressions of SARS-CoV-2 entry, ACE2, TMPRSS2, and Ctsl genes, in addition to the arachidonic-acid-metabolizing cyp450, cox, and alox genes, were analyzed using real-time PCR. Paracetamol increased the expressions of TMPRSS2 and Ctsl genes by 8.5 and 5.6 folds, respectively, while ibuprofen and diclofenac significantly decreased the expression of the ACE2 gene by more than 2.5 folds. In addition, all tested drugs downregulated (p < 0.05) cox2 gene expression, and paracetamol reduced the mRNA levels of cyp4a12 and 2j5. These molecular alterations in diclofenac and ibuprofen were associated with pathohistological alterations, where both analgesics induced the infiltration of inflammatory cells and airway wall thickening. It is concluded that analgesics such as paracetamol, ibuprofen, and diclofenac alter the expression of SARS-CoV-2 entry and arachidonic-acid-metabolizing genes in mouse lungs.
Collapse
Affiliation(s)
- Fatima Khirfan
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Yazun Jarrar
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Tariq Al-Qirim
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Khang Wen Goh
- Faculty of Data Science and Information Technology, INTI International University, Nilai 71800, Malaysia;
| | - Qais Jarrar
- Department of Applied Pharmaceutical Sciences, Faculty of Pharmacy, Al-Isra University, Amman 11622, Jordan;
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Mohammad Awad
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11731, Jordan; (F.K.); (T.A.-Q.); (M.A.)
| | - Hamzeh J. Al-Ameer
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Wajdy Al-Awaida
- Department of Biology and Biotechnology, American University of Madaba, Madaba 17110, Jordan; (H.J.A.-A.); (W.A.-A.)
| | - Said Moshawih
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei Darussalam;
| |
Collapse
|
15
|
Zhou Q, Zhao S, Gan L, Wang Z, Peng S, Li Q, Liu H, Liu X, Wang Z, Shi Q, Estill J, Luo Z, Wang X, Liu E, Chen Y. Use of non-steroidal anti-inflammatory drugs and adverse outcomes during the COVID-19 pandemic: A systematic review and meta-analysis. EClinicalMedicine 2022; 46:101373. [PMID: 35434582 PMCID: PMC8989274 DOI: 10.1016/j.eclinm.2022.101373] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 01/15/2022] [Accepted: 03/21/2022] [Indexed: 01/08/2023] Open
Abstract
Background There are concerns that the use of non-steroidal anti-inflammatory drugs (NSAIDs) may increase the risk of adverse outcomes among patients with coronavirus COVID-19. This study aimed to synthesize the evidence on associations between the use of NSAIDs and adverse outcomes. Methods A systematic search of WHO COVID-19 Database, Medline, the Cochrane Library, Web of Science, Embase, China Biology Medicine disc, China National Knowledge Infrastructure, and Wanfang Database for all articles published from January 1, 2020, to November 7, 2021, as well as a supplementary search of Google Scholar. We included all comparative studies that enrolled patients who took NSAIDs during the COVID-19 pandemic. Data extraction and quality assessment of methodology of included studies were completed by two reviewers independently. We conducted a meta-analysis on the main adverse outcomes, as well as selected subgroup analyses stratified by the type of NSAID and population (both positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or not). Findings Forty comparative studies evaluating 4,867,795 adult cases were identified. Twenty-eight (70%) of the included studies enrolled patients positive to SARS-CoV-2 tests. The use of NSAIDs did not reduce mortality outcomes among people with COVID-19 (number of studies [N] = 29, odds ratio [OR] = 0.93, 95% confidence interval [CI]: 0.75 to 1.14, I2 = 89%). Results suggested that the use of NSAIDs was not significantly associated with higher risk of SARS-CoV-2 infection in patients with or without COVID-19 (N = 10, OR = 0.96, 95% CI: 0.86 to 1.07, I2 = 78%; N = 8, aOR = 1.01, 95% CI: 0.94 to 1.09, I2 = 26%), or an increased probability of intensive care unit (ICU) admission (N = 12, OR = 1.28, 95% CI: 0.94 to 1.75, I2 = 82% ; N = 4, aOR = 0.89, 95% CI: 0.65 to 1.22, I2 = 60%), requiring mechanical ventilation (N = 11, OR = 1.11, 95% CI: 0.79 to 1.54, I2 = 63%; N = 5, aOR = 0.80, 95% CI: 0.52 to 1.24, I2 = 66%), or administration of supplemental oxygen (N = 5, OR = 0.80, 95% CI: 0.52 to 1.24, I2 = 63%; N = 2, aOR = 1.00, 95% CI: 0.89 to 1.12, I2 = 0%). The subgroup analysis revealed that, compared with patients not using any NSAIDs, the use of ibuprofen (N = 5, OR = 1.09, 95% CI: 0.50 to 2.39; N = 4, aOR = 0.95, 95% CI: 0.78 to 1.16) and COX-2 inhibitor (N = 4, OR = 0.62, 95% CI: 0.35 to 1.11; N = 2, aOR = 0.73, 95% CI: 0.45 to 1.18) were not associated with an increased risk of death. Interpretation Data suggests that NSAIDs such as ibuprofen, aspirin and COX-2 inhibitor, can be used safely among patients positive to SARS-CoV-2. However, for some of the analyses the number of studies were limited and the quality of evidence was overall low, therefore more research is needed to corroborate these findings. Funding There was no funding source for this study.
Collapse
Affiliation(s)
- Qi Zhou
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Lanzhou University Institute of Health Data Science, Lanzhou, China
| | - Siya Zhao
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Lidan Gan
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Zhili Wang
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Shuai Peng
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Qinyuan Li
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hui Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Xiao Liu
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Zijun Wang
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qianling Shi
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Janne Estill
- Institute of Global Health, University of Geneva, Geneva, Switzerland
- Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland
| | - Zhengxiu Luo
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xiaohui Wang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Enmei Liu
- Department of Respiratory Medicine Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yaolong Chen
- Evidence-based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Lanzhou University Institute of Health Data Science, Lanzhou, China
- School of Public Health, Lanzhou University, Lanzhou, China
- WHO Collaborating Centre for Guideline Implementation and Knowledge Translation, Lanzhou, China
- Research Unit of Evidence-Based Evaluation and Guidelines, Chinese Academy of Medical Sciences (2021RU017), School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Oh JE, Kim SN. Anti-Inflammatory Effects of Acupuncture at ST36 Point: A Literature Review in Animal Studies. Front Immunol 2022; 12:813748. [PMID: 35095910 PMCID: PMC8790576 DOI: 10.3389/fimmu.2021.813748] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
So far, a number of acupuncture studies have shown anti-inflammatory effects of acupuncture treatment, mostly known at specific point ST36. However, there is no literature that oversaw the inflammation-regulatory effects of acupuncture in each tissue. Therefore, we investigated how acupuncture at specific acupoint ST36 regulates inflammation and its underlying mechanisms. We searched literatures on PubMed until July 2021 using the keywords “animal, acupuncture, ST36, inflammation, immune,” and 292 literatures were searched. We ultimately selected 69 studies to determine the anti-inflammatory actions of acupuncture at ST36 and classified the changes of inflammatory mediators according to target regions. Forty-three studies were included in body fluids, 27 studies in the digestive system, 17 studies in the nervous system, and 30 studies in other tissues or organs. In this review, we found that acupuncture at ST36 has clinical benefits in relieving inflammation through several mechanisms such as vagus nerve activation, toll-like receptor 4 (TLR4)/NF-κB signaling, macrophage polarization, mitogen-activated protein kinase (MAPK) signaling pathway, and cholinergic anti-inflammatory pathway. We expect that these data will inform further studies related to ST36 acupuncture on inflammation.
Collapse
Affiliation(s)
- Ji-Eun Oh
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| | - Seung-Nam Kim
- College of Korean Medicine, Dongguk University, Goyang, South Korea
| |
Collapse
|
17
|
Mirocki A, Lopresti M, Palin L, Conterosito E, Sikorski A, Milanesio M. Exploring the molecular landscape of multicomponent crystals formed by naproxen drug and acridines. CrystEngComm 2022. [DOI: 10.1039/d2ce00890d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three cocrystals were obtained by naproxen and acridines, optimizing the yield to more than 99% with LAG. The two structures by solution show a host-guest structure, while that by LAG a layered one, with no interconversion between parent structures.
Collapse
Affiliation(s)
- Artur Mirocki
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Mattia Lopresti
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Luca Palin
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
- Nova Res s.r.l., Via D. Bello 3, 28100 Novara, Italy
| | - Eleonora Conterosito
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| | - Artur Sikorski
- Faculty of Chemistry of the University of Gdansk, ul. Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Marco Milanesio
- Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, Viale T. Michel 11, 15121 Alessandria, Italy
| |
Collapse
|
18
|
Mihaescu G, Chifiriuc MC, Vrancianu CO, Constantin M, Filip R, Popescu MR, Burlibasa L, Nicoara AC, Bolocan A, Iliescu C, Gradisteanu Pircalabioru G. Antiviral Immunity in SARS-CoV-2 Infection: From Protective to Deleterious Responses. Microorganisms 2021; 9:2578. [PMID: 34946179 PMCID: PMC8703918 DOI: 10.3390/microorganisms9122578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
After two previous episodes, in 2002 and 2012, when two highly pathogenic coronaviruses (SARS, MERS) with a zoonotic origin emerged in humans and caused fatal respiratory illness, we are today experiencing the COVID-19 pandemic produced by SARS-CoV-2. The main question of the year 2021 is if naturally- or artificially-acquired active immunity will be effective against the evolving SARS-CoV-2 variants. This review starts with the presentation of the two compartments of antiviral immunity-humoral and cellular, innate and adaptive-underlining how the involved cellular and molecular actors are intrinsically connected in the development of the immune response in SARS-CoV-2 infection. Then, the SARS-CoV-2 immunopathology, as well as the derived diagnosis and therapeutic approaches, will be discussed.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Mariana Carmen Chifiriuc
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
- Life, Environmental and Earth Sciences Division, Research Institute of the University of Bucharest, 050096 Bucharest, Romania;
- The Romanian Academy, 25 Calea Victoriei, Sector 1, 010071 Bucharest, Romania
| | | | | | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, 720229 Suceava, Romania;
- Regional County Emergency Hospital, 720284 Suceava, Romania
| | - Mihaela Roxana Popescu
- Department of Cardiology, Elias Emergency University Hospital “Carol Davila”, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Liliana Burlibasa
- Faculty of Biology, University of Bucharest, 030018 Bucharest, Romania; (G.M.); (C.O.V.); (L.B.)
| | - Anca Cecilia Nicoara
- Faculty of Pharmacy, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Alexandra Bolocan
- General Surgery, University of Medicine and Pharmacy “Carol Davila”, 020021 Bucharest, Romania;
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania;
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, 010071 Bucharest, Romania
| | | |
Collapse
|
19
|
Prada L, D. Santos C, Baião RA, Costa J, Ferreira JJ, Caldeira D. Risk of SARS-CoV-2 Infection and COVID-19 Severity Associated With Exposure to Nonsteroidal Anti-Inflammatory Drugs: Systematic Review and Meta-Analysis. J Clin Pharmacol 2021; 61:1521-1533. [PMID: 34352112 PMCID: PMC8426976 DOI: 10.1002/jcph.1949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/02/2021] [Indexed: 12/04/2022]
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs) were thought to increase the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus entrance into cells. Hence, it was suggested in the media that NSAIDs could lead to a higher risk of infection and/or disease severity. To determine the existence or absence of this association, we aimed to systematically evaluate the risk of SARS-CoV-2 infection and mortality and the risk of severe coronavirus disease 2019 (COVID-19) associated with previous exposure to NSAIDs. MEDLINE, Cochrane Central Register of Controlled Trials (CENTRAL), and EMBASE were searched in February 2021 for controlled studies. The results were calculated through random-effect meta-analyses and reported in terms of odds ratios (ORs) with 95% confidence intervals (CIs). Heterogeneity was assessed with I2 test. Eleven studies were included, comprising a total of 683 715 patients. NSAID exposure did not increase the risk of having a positive test for SARS-CoV-2 infection (OR, 0.97; 95%CI, 0.85-1.11, I2 = 24%; 5 studies). The exposure to NSAIDs did not increase the risk of severe/critical COVID-19 disease (OR, 0.92; 95%CI, 0.80-1.05; I2 = 0%; 5 studies) nor all-cause mortality among patients with COVID-19 (OR, 0.86; 95%CI, 0.75-0.99; I2 = 14%, 4 studies). Our data did not suggest that exposure to NSAIDs increases the risk of having SARS-CoV-2 infection or increases the severity of COVID-19 disease. Also, the fragility of the studies included precludes definite conclusions and highlights the need for further robust data.
Collapse
Affiliation(s)
- Luísa Prada
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Catarina D. Santos
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Rita A. Baião
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - João Costa
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Joaquim J. Ferreira
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- CNS ‐ Campus Neurológico SéniorTorres VedrasLisbonPortugal
| | - Daniel Caldeira
- Laboratory of Clinical Pharmacology and TherapeuticsFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Instituto de Medicina MolecularFaculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Centro Cardiovascular da Universidade de Lisboa ‐ CCULCAML, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
- Serviço de CardiologiaHospital Universitário de Santa Maria – CHULNLisbonPortugal
| |
Collapse
|
20
|
Daverey A, Dutta K, Joshi S, Daverey A. Sophorolipid: a glycolipid biosurfactant as a potential therapeutic agent against COVID-19. Bioengineered 2021; 12:9550-9560. [PMID: 34709115 PMCID: PMC8810061 DOI: 10.1080/21655979.2021.1997261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/16/2021] [Accepted: 10/16/2021] [Indexed: 12/12/2022] Open
Abstract
Biosurfactants are natural surfactants produced by a variety of microorganisms. In recent years, biosurfactants have garnered a lot of interest due to their biomedical and pharmaceutical applications. Sophorolipids are glycolipid types of biosurfactants produced by selected nonpathogenic yeasts. In addition to the detergent activity (reduction in surface and interfacial tension), which is commonly utilized by biomedical applications, sophorolipids have shown some unique properties such as, antiviral activity against enveloped viruses, immunomodulation, and anticancer activity. Considering their antiviral activity, the potential of sophorolipids as an antiviral therapy for the treatment of COVID-19 is discussed in this review. Being a surfactant molecule, sophorolipid could solubilize the lipid envelope of SARS-CoV-2 and inactivate it. As an immunomodulator, sophorolipid could attenuate the cytokine storm caused by the SARS-CoV-2 upon infection, and inhibit the progression of COVID-19 in patients. Sophorolipids could also be used as an effective treatment strategy for COVID-19 patients suffering from cancer. However, there is limited research on the use of sophorolipid as a therapeutic agent for the treatment of cancer and viral diseases, and to modulate the immune response. Nevertheless, the multitasking capabilities of sophorolipids make them potential therapeutic candidates for the bench-to-bedside research for the treatment of COVID-19.
Collapse
Affiliation(s)
- Amita Daverey
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology, Rourkela, India
| | - Sanket Joshi
- Oil & Gas Research Center, Central Analytical and Applied Research Unit, Sultan Qaboos University, Muscat, Oman
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun, India
- School of Biological Sciences, Doon University, Dehradun, India
| |
Collapse
|
21
|
Chiou WC, Hsu MS, Chen YT, Yang JM, Tsay YG, Huang HC, Huang C. Repurposing existing drugs: identification of SARS-CoV-2 3C-like protease inhibitors. J Enzyme Inhib Med Chem 2021; 36:147-153. [PMID: 33430659 PMCID: PMC7808739 DOI: 10.1080/14756366.2020.1850710] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for coronavirus disease 2019 (COVID-19). Since its emergence, the COVID-19 pandemic has not only distressed medical services but also caused economic upheavals, marking urgent the need for effective therapeutics. The experience of combating SARS-CoV and MERS-CoV has shown that inhibiting the 3-chymotrypsin-like protease (3CLpro) blocks the replication of the virus. Given the well-studied properties of FDA-approved drugs, identification of SARS-CoV-2 3CLpro inhibitors in an FDA-approved drug library would be of great therapeutic value. Here, we screened a library consisting of 774 FDA-approved drugs for potent SARS-CoV-2 3CLpro inhibitors, using an intramolecularly quenched fluorescence (IQF) peptide substrate. Ethacrynic acid, naproxen, allopurinol, butenafine hydrochloride, raloxifene hydrochloride, tranylcypromine hydrochloride, and saquinavir mesylate have been found to block the proteolytic activity of SARS-CoV-2 3CLpro. The inhibitory activity of these repurposing drugs against SARS-CoV-2 3CLpro highlights their therapeutic potential for treating COVID-19 and other Betacoronavirus infections.
Collapse
Affiliation(s)
- Wei-Chung Chiou
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Meng-Shiuan Hsu
- Departments of Infectious Disease, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Chiao Tung University, Hsinchu, Taiwan
- Faculty of Internal Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung City, Taiwan
- Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | - Yeou-Guang Tsay
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei, Taiwan
| | - Hsiu-Chen Huang
- Department of Applied Science, National Tsing Hua University South Campus, Hsinchu, Taiwan
| | - Cheng Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
22
|
Al-Hayder MN, Aledani TH, Al-Mayyahi RS. Amelioration of the hepatotoxic effects of nonsteroidal drugs using vitamin C and determination of their relationship with the lipid profile. J Taibah Univ Med Sci 2021; 17:715-723. [PMID: 35983440 PMCID: PMC9356344 DOI: 10.1016/j.jtumed.2021.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/27/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022] Open
Abstract
Objective Despite the various clinical benefits of nonsteroidal anti-inflammatory drugs, their frequent and prolonged use has led to numerous health risks, including hepatotoxicity. Hepatotoxicity mediated by oxidative stress can affect the lipid profile. The objective was to investigate whether post-treatment with vitamin C can ameliorate the effects of diclofenac and naproxen in the livers of prepubertal rats and to highlight their relationship with lipid profile. Methods Forty prepubertal female albino rats were distributed among the control group, the diclofenac-administered group (5 mg/kg/day), and the naproxen-administered group (50 mg/kg/day). This study included two phases. In Phase 1, only five rats from each group were dissected after 21 days of oral administration to assess the hepatotoxic effects of nonsteroidal drugs. In Phase 2, five of the remaining animals in each intervention group were post-treated with 25 mg/kg/day of vitamin C for an additional 21 days. After the administration and post-treatment, serum biochemical parameters and histopathological signs were evaluated. Results Extreme elevation in the levels of aspartate and alanine aminotransferases was observed in the diclofenac and naproxen groups compared with those in the control (p < 0.001). In addition, the levels of high- and low-density lipoproteins were significantly impacted in these drug groups (p < 0.01, p < 0.05 respectively). Several pathological signs in the liver histology were observed in both drug groups. After post-treatment with vitamin C, noticeable amelioration of these alterations was observed. There were slightly elevation in the liver enzymes and insignificant increase and decrease in the high and low-density lipoproteins respectively. Conclusion Vitamin C post-treatment ameliorated the hepatotoxicity induced by diclofenac sodium and naproxen.
Collapse
Affiliation(s)
- Manal N. Al-Hayder
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Basrah, Basrah, Iraq
| | - Tamadir H.W. Aledani
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
- Corresponding address: Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, 61004, Iraq.
| | - Rawaa S. Al-Mayyahi
- Department of Clinical Laboratory Sciences, College of Pharmacy, University of Basrah, Basrah, Iraq
| |
Collapse
|
23
|
Pandolfi S, Chirumbolo S, Ricevuti G, Valdenassi L, Bjørklund G, Lysiuk R, Doşa MD, Lenchyk L, Fazio S. Home pharmacological therapy in early COVID-19 to prevent hospitalization and reduce mortality: Time for a suitable proposal. Basic Clin Pharmacol Toxicol 2021; 130:225-239. [PMID: 34811895 PMCID: PMC9011697 DOI: 10.1111/bcpt.13690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 01/08/2023]
Abstract
The COVID‐19 pandemic is a highly dramatic concern for mankind. In Italy, the pandemic exerted its major impact throughout the period of February to June 2020. To date, the awkward amount of more than 134,000 deaths has been reported. Yet, post‐mortem autopsy was performed on a very modest number of patients who died from COVID‐19 infection, leading to a first confirmation of an immune‐thrombosis of the lungs as the major COVID‐19 pathogenesis, likewise for SARS. Since then (June–August 2020), no targeted early therapy considering this pathogenetic issue was approached. The patients treated with early anti‐inflammatory, anti‐platelet, anticoagulant and antibiotic therapy confirmed that COVID‐19 was an endothelial inflammation with immuno‐thrombosis. Patients not treated or scarcely treated with the most proper and appropriate therapy and in the earliest, increased the hospitalization rate in the intensive care units and also mortality, due to immune‐thrombosis from the pulmonary capillary district and alveoli. The disease causes widespread endothelial inflammation, which can induce damage to various organs and systems. Therapy must be targeted in this consideration, and in this review, we demonstrate how early anti‐inflammatory therapy may treat endothelia inflammation and immune‐thrombosis caused by COVID‐19, by using drugs we are going to recommend in this paper.
Collapse
Affiliation(s)
- Sergio Pandolfi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy.,Unit of Neurosurgery, Villa Mafalda Health Clinics, Rome, Italy
| | - Salvatore Chirumbolo
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Italy
| | | | - Luigi Valdenassi
- High School of Oxygen Ozone Therapy, University of Pavia, Pavia, Italy
| | - Geir Bjørklund
- Department of Direction Board, Council for Nutritional an Environmental Medicine (CONEM), Mo i Rana, Norway
| | - Roman Lysiuk
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | - Monica Daniela Doşa
- Department of Pharmacology, Faculty of Medicine, Ovidius University, Constanta, Romania
| | - Larysa Lenchyk
- CONEM Ukraine Pharmacognosy and Natural Product Chemistry Research Group, National University of Pharmacy, Kharkiv, Ukraine
| | - Serafino Fazio
- Department of Internal Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Asadi M, Sayar S, Radmanesh E, Naghshi S, Mousaviasl S, Jelvay S, Ebrahimzadeh M, Mohammadi A, Abbasi S, Mobarak S, Bitaraf S, Zardehmehri F, Cheldavi A. Efficacy of naproxen in the management of patients hospitalized with COVID-19 infection: A randomized, double-blind, placebo-controlled, clinical trial. Diabetes Metab Syndr 2021; 15:102319. [PMID: 34700294 PMCID: PMC8530771 DOI: 10.1016/j.dsx.2021.102319] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS The current study was done to examine the efficacy of naproxen in the management of patients with COVID-19 infection. METHODS This randomized, double-blind, placebo-controlled, clinical trial was done on hospitalized adult patients with confirmed COVID-19 infection. Patients were randomly assigned to receive either naproxen (two capsules per day each containing 500 mg naproxen sodium) or placebo (containing starch) for five days along with the routine treatment that was nationally recommended for COVID-19 infection. Clinical symptoms of COVID-19 infection, the time to clinical improvement, blood pressure, laboratory parameters, and death due to COVID-19 infection were considered as the outcome variables in the present study. RESULTS Treatment with naproxen improved cough and shortness of breath in COVID-19 patients; such that, compared with placebo, naproxen intake was associated with 2.90 (95% CI: 1.10-7.66) and 2.82 (95% CI: 1.05-7.55) times more improvement in cough and shortness of breath, respectively. In addition, naproxen administration resulted in a significant increase in mean corpuscular volume (MCV) and had a preventive effect on the reduction of systolic blood pressure in COVID-19 patients. CONCLUSION Treatment with naproxen can improve cough and shortness of breath in COVID-19-infected patients. Further studies are required to confirm our findings.
Collapse
Affiliation(s)
| | - Sara Sayar
- Abadan University of Medical Sciences, Abadan, Iran
| | | | - Sina Naghshi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Saeed Jelvay
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | | | - Sara Mobarak
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Saeid Bitaraf
- Department of Epidemiology, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Cheldavi
- Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
25
|
Rufaida, Mahmood T, Kedwai I, Ahsan F, Shamim A, Shariq M, Parveen S. A dossier on COVID-19 chronicle. J Basic Clin Physiol Pharmacol 2021; 33:45-54. [PMID: 34280963 DOI: 10.1515/jbcpp-2020-0511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/28/2021] [Indexed: 01/08/2023]
Abstract
The dissemination of the 2019 novel coronavirus (2019-nCoV) is presenting the planet with a new health emergency response or threat to health. The virus emerged in bats and was disseminated to humans in December 2019 via still unknown intermediate species in Wuhan, China. It is disseminated by inhalation or breaks out with infected droplets and the incubation period is between 2 and 14 days. The symptoms usually include high body temperature, cough, sore throat, dyspnea, low energy or tiredness, and weakness. The condition is moderate in most people; but in the elderly and those with comorbidities, it advances to pneumonia, acute respiratory distress syndrome (ARDS), and multiple organ failure. Popular research work includes normal/low WBC with upraised C-reactive protein (CRP). Treatment is generally supportive and requires home seclusion of suspected persons and rigorous infection control methods at hospitals. The Covid-19 has lower fatality than SARS and MERS. Among the proposed therapeutic regimen, hydroxychloroquine, chloroquine, remdisevir, azithromycin, toclizumab, and cromostat mesylate have shown promising results, and the limited benefit was seen with lopinavir-ritonavir treatment in hospitalized adult patients with severe COVID-19. Early development of the SARS-CoV-2 vaccine started based on the full-length genome analysis of severe acute respiratory syndrome coronavirus. Several subunit vaccines, peptides, nucleic acids, plant-derived, and recombinant vaccines are under pipeline. Research work, development of new medicines and vaccines, and efforts to reduce disease morbidity and mortality must be encouraged to improve our position in the fight against this disease and to protect human life.
Collapse
Affiliation(s)
- Rufaida
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| | - Tarique Mahmood
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| | - Ismail Kedwai
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farogh Ahsan
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| | - Arshiya Shamim
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| | - Mohammad Shariq
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| | - Saba Parveen
- Department of Pharmacology, Faculty of Pharmacy, Integral University, Lucknow (U.P.), India
| |
Collapse
|
26
|
Boraschi P, Giugliano L, Mercogliano G, Donati F, Romano S, Neri E. Abdominal and gastrointestinal manifestations in COVID-19 patients: Is imaging useful? World J Gastroenterol 2021; 27:4143-4159. [PMID: 34326615 PMCID: PMC8311532 DOI: 10.3748/wjg.v27.i26.4143] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/08/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) can be considered a systemic disease with a specific tropism for the vascular system, in which the alterations of the microcirculation have an important pathogenetic role. The lungs are the main organ involved in COVID-19, and severe progressive respiratory failure is the leading cause of death in the affected patients; however, many other organs can be involved with variable clinical manifestations. Concerning abdominal manifestations, the gastrointestinal tract and the hepatobiliary system are mainly affected, although the pancreas, urinary tract and spleen may also be involved. The most common gastrointestinal symptoms are loss of appetite, followed by nausea and vomiting, diarrhea and abdominal pain. Gastrointestinal imaging findings include bowel wall thickening, sometimes associated with hyperemia and mesenteric thickening, fluid-filled segments of the large bowel and rarely intestinal pneumatosis and ischemia. Hepatic involvement manifests as an increase in the enzymatic levels of alanine aminotransferase, aspartate aminotransferase, serum bilirubin and γ-glutamyl transferase with clinical manifestations in most cases mild and transient. The most frequent radiological features are hepatic steatosis, biliary sludge and gallstones. Edematous acute pancreatitis, kidney infarct and acute kidney injury from acute tubular necrosis have been described more rarely in COVID-19. Lastly, splenic involvement is characterized by splenomegaly and by the development of solitary or multifocal splenic infarcts with classic wedge-shaped or even rounded morphology, with irregular or smooth profiles. In summary, the abdominal radiological findings of COVID-19 are nonspecific and with poor pathological correlation reported in the literature. Ultrasound and particularly computed tomography with multiphasic acquisition are the diagnostic methods mainly utilized in COVID-19 patients with abdominal clinical symptoms and signs. Although radiological signs are not specific of abdominal and gastrointestinal involvement, the diagnostic imaging modalities and in particular computed tomography are helpful for the clinician in the management, evaluation of the severity and evolution of the COVID-19 patients.
Collapse
Affiliation(s)
- Piero Boraschi
- Department of Diagnostic Imaging, Second Division of Radiology, Azienda Ospedaliero-Universitaria Pisana-University of Pisa, Pisa 56124, Italy
| | - Luigi Giugliano
- Department of Radiology, University of Naples “Federico II”, Naples 80131, Italy
| | - Giuseppe Mercogliano
- Department of Radiology, University of Naples “Federico II”, Naples 80131, Italy
| | - Francescamaria Donati
- Department of Diagnostic Imaging, Second Division of Radiology, Azienda Ospedaliero-Universitaria Pisana-University of Pisa, Pisa 56124, Italy
| | - Stefania Romano
- Department of Diagnostic Imaging, Santa Maria delle Grazie Hospital, Naples 80078, Italy
| | - Emanuele Neri
- Diagnostic and Interventional Radiology, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa 56126, Italy
| |
Collapse
|
27
|
Immunomodulatory Effects of the Cyclooxygenase Inhibitor Lornoxicam on Phenotype and Function of Camel Blood Leukocytes. Animals (Basel) 2021; 11:ani11072023. [PMID: 34359151 PMCID: PMC8300418 DOI: 10.3390/ani11072023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary The present study investigated the immunomodulatory effects of the unspecific cyclooxygenase inhibitor lornoxicam on the immunophenotype and some functions of dromedary camel blood leukocytes. Intravenous injection of camels with a single dose of lornoxicam induced a significant change in the camel leukogram, which is characterized by reduced cell numbers of all leukocyte subpopulations. In vitro analysis of cell vitality revealed a pro-apoptotic effect of lornoxicam on camel leukocytes, which may be responsible for the lornoxicam-induced leukocytopenia in vivo. Functional ex vivo and in vitro analysis of the key antimicrobial functions, phagocytosis and ROS production indicates inhibitory effects of lornoxicam on the antimicrobial capacity of the blood phagocytes, monocytes and neutrophils. Furthermore, lornoxicam induced an anti-inflammatory phenotype of monocytes, characterized by reduced expression of major histocompatibility complex (MHC) class II molecules and increased expression of CD163 molecules. The present study identified for the first time inhibitory effects of the COX-inhibitor lornoxicam on some phenotypic and functional properties of camel blood immune cells and recommends considering these effects when using lornoxicam in camel medicine. Abstract (1) Background: Lornoxicam is a nonsteroidal anti-inflammatory drug (NSAID) with analgesic, antiphlogistic and antipyretic effects. The improved tolerance of lornoxicam due to the relatively shorter elimination half-life in comparison to other members of the oxicams may favor its application in the management of pain and inflammation in race dromedary camels. There are no studies conducted yet on the immunomodulatory or immunotoxilogic effect of lornoxicam in camels. Therefore, the current study aimed to evaluate the immunomodulatory effects of the cyclooxygenase inhibitor lornoxicam on some phenotypic and functional properties of camel blood leukocytes; (2) Methods: Using flow cytometry, blood leukocyte composition, monocyte phenotype, and antimicrobial functions of neutrophils and monocytes were analyzed ex vivo after a single dose injection with lornoxicam. In addition, the effect of in vitro incubation of camel blood with lornoxicam on leukocyte cell vitality and antimicrobial functions were evaluated; (3) Results: The injection of camels with a single dose of lornoxicam resulted in a significant change in their leukogram with reduced numbers of total leukocytes, neutrophils, eosinophils, monocytes, and lymphocytes. Within the lymphocyte population, the numbers of CD4+ T cells, γδ T cells, and B cells decreased significantly in blood after injection of camels with lornoxicam. In addition, injection of lornoxicam resulted in decreased abundance of major histocompatibility complex (MHC) class II molecules and increased abundance of the scavenger receptor CD163 on blood monocytes, indicating an anti-inflammatory phenotype of monocytes. Functionally, administration of lornoxicam decreased the capacity of camel neutrophils and monocytes to uptake bacteria and to produce reactive oxygen species (ROS) after bacterial stimulation. Similarly, the in vitro whole blood incubation with lornoxicam resulted in reduced phagocytosis and ROS production activity of the camel blood phagocytes. Flow cytometric analysis of cell vitality, including cell necrosis and apoptosis, revealed a pro-apoptotic effect of lornoxicam on camel leukocytes; (4) Conclusions: Lornoxicam administration, at the dose and intervals utilized herein, induces significant changes in the phenotype and function of camel blood leukocytes. The reduced cell numbers of all studied leukocyte subpopulations in lornoxicam-treated camels, which seems to be a result of enhanced cell apoptosis, indicates an inhibitory effect rather than a modulatory effect of lornoxicam on the camel immune system, which need to be considered when using lornoxicam in camel medicine.
Collapse
|
28
|
Wong AY, MacKenna B, Morton CE, Schultze A, Walker AJ, Bhaskaran K, Brown JP, Rentsch CT, Williamson E, Drysdale H, Croker R, Bacon S, Hulme W, Bates C, Curtis HJ, Mehrkar A, Evans D, Inglesby P, Cockburn J, McDonald HI, Tomlinson L, Mathur R, Wing K, Forbes H, Eggo RM, Parry J, Hester F, Harper S, Evans SJ, Smeeth L, Douglas IJ, Goldacre B. Use of non-steroidal anti-inflammatory drugs and risk of death from COVID-19: an OpenSAFELY cohort analysis based on two cohorts. Ann Rheum Dis 2021; 80:943-951. [PMID: 33478953 PMCID: PMC7823433 DOI: 10.1136/annrheumdis-2020-219517] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To assess the association between routinely prescribed non-steroidal anti-inflammatory drugs (NSAIDs) and deaths from COVID-19 using OpenSAFELY, a secure analytical platform. METHODS We conducted two cohort studies from 1 March to 14 June 2020. Working on behalf of National Health Service England, we used routine clinical data in England linked to death data. In study 1, we identified people with an NSAID prescription in the last 3 years from the general population. In study 2, we identified people with rheumatoid arthritis/osteoarthritis. We defined exposure as current NSAID prescription within the 4 months before 1 March 2020. We used Cox regression to estimate HRs for COVID-19 related death in people currently prescribed NSAIDs, compared with those not currently prescribed NSAIDs, accounting for age, sex, comorbidities, other medications and geographical region. RESULTS In study 1, we included 536 423 current NSAID users and 1 927 284 non-users in the general population. We observed no evidence of difference in risk of COVID-19 related death associated with current use (HR 0.96, 95% CI 0.80 to 1.14) in the multivariable-adjusted model. In study 2, we included 1 708 781 people with rheumatoid arthritis/osteoarthritis, of whom 175 495 (10%) were current NSAID users. In the multivariable-adjusted model, we observed a lower risk of COVID-19 related death (HR 0.78, 95% CI 0.64 to 0.94) associated with current use of NSAID versus non-use. CONCLUSIONS We found no evidence of a harmful effect of routinely prescribed NSAIDs on COVID-19 related deaths. Risks of COVID-19 do not need to influence decisions about the routine therapeutic use of NSAIDs.
Collapse
Affiliation(s)
- Angel Ys Wong
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Brian MacKenna
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Caroline E Morton
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Anna Schultze
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alex J Walker
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Krishnan Bhaskaran
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Jeremy P Brown
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Christopher T Rentsch
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Williamson
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Henry Drysdale
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Richard Croker
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Seb Bacon
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - William Hulme
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Helen J Curtis
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Amir Mehrkar
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - David Evans
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Peter Inglesby
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| | | | - Helen I McDonald
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Laurie Tomlinson
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Rohini Mathur
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Kevin Wing
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Harriet Forbes
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Rosalind M Eggo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | | | | | - Stephen Jw Evans
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Liam Smeeth
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ian J Douglas
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Ben Goldacre
- The DataLab, Nuffield Department of Primary Care Health Sciences, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
29
|
Dar-Odeh N, Elsayed S, Babkair H, Abu-Hammad S, Althagafi N, Bahabri R, Eldeen YS, Aljohani W, Abu-Hammad O. What the dental practitioner needs to know about pharmaco-therapeutic modalities of COVID-19 treatment: A review. J Dent Sci 2021; 16:806-816. [PMID: 33230404 PMCID: PMC7674127 DOI: 10.1016/j.jds.2020.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/12/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/PURPOSE Several pharmacotherapeutic methods have been used for the treatment of COVID-19 with varying degrees of success. No definitive treatment or vaccine has been officially approved to-date. This review aimed to highlight COVID-19 pharmacotherapeutic agents that are relevant to dental practice in terms of their clinical indications in COVID-19 and dental practice, as well as their adverse effects as they impact the dental patient. MATERIAL AND METHODS Systematic search was performed using the following keywords combinations: Pharmacotherapy AND COVID-19 OR Pharmacotherapy AND SARS-CoV-2 OR Treatment AND COVID-19. Studies were categorized according to the type of pharmacotherapy used. Pharmacotherapeutic agents were extracted and only those relevant to dental practice were included for review. RESULTS For analysis, a total of 79 clinical trials research articles were included that included COVID-19 pharmacotherapeutic agents relevant to dental practice. Those were analgesics (paracetamol; non-steroidal anti-inflammatory agents); antibiotics (azithromycin, doxycycline, metronidazole); antivirals (penciclovir); and immunomodulatory agents (hydroxychloroquine, corticosteroids). While some COVID-19 drugs are less relevant to dental practice, as antivirals and hydroxychloroquine, their association with long-term adverse effects requires adequate knowledge among dental practitioners. CONCLUSION Many of COVID-19 pharmacotherapeutic agents are used to treat oral diseases particularly orofacial pain and inflammatory conditions. Furthermore, some of these drugs may induce adverse effects that complicate dental treatment. Thorough knowledge of COVID-19 therapy and its dental implications is essential for dental practitioners, and is expected to contribute to a better understanding and effective utilization of these therapeutic agents.
Collapse
Affiliation(s)
- Najla Dar-Odeh
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
| | - Shadia Elsayed
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- Faculty of Dental Medicine for Girls, Al-Azhar, University, Cairo, Egypt
| | - Hamzah Babkair
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | | | - Nebras Althagafi
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | - Rayan Bahabri
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | | | - Wejdan Aljohani
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
| | - Osama Abu-Hammad
- College of Dentistry, Taibah University, Al Madinah, Al Munawara, Saudi Arabia
- School of Dentistry, University of Jordan, Amman, Jordan
| |
Collapse
|
30
|
Haji Aghajani M, Toloui A, Aghamohammadi M, Pourhoseingholi A, Taherpour N, Sistanizad M, Madani Neishaboori A, Asadpoordezaki Z, Miri R. Electrocardiographic Findings and In-Hospital Mortality of COVID-19 Patients; a Retrospective Cohort Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2021; 9:e45. [PMID: 34223190 PMCID: PMC8221543 DOI: 10.22037/aaem.v9i1.1250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background: Although current evidence points to the possible prognostic value of electrocardiographic (ECG) findings for in-hospital mortality of COVID-19 patients, most of these studies have been performed on a small sample size. In this study, our aim was to investigate the ECG changes as prognostic indicators of in-hospital mortality. Methods: In a retrospective cohort study, the findings of the first and the second ECGs of COVID-19 patients were extracted and changes in the ECGs were examined. Any abnormal finding in the second ECG that wasn’t present in the initial ECG at the time of admission was defined as an ECG change. ECGs were interpreted by a cardiologist and the prognostic value of abnormal ECG findings for in-hospital mortality of COVID-19 patients was evaluated using multivariate analysis and the report of the relative risk (RR). Results: Data of the ECGs recorded at the time of admission were extracted from the files of 893 patients; likewise, the second ECGs could be extracted from the records of 328 patients who had an initial ECG. The presence of sinus tachycardia (RR = 2.342; p <0.001), supraventricular arrhythmia (RR = 1.688; p = 0.001), ventricular arrhythmia (RR = 1.854; p = 0.011), interventricular conduction delays (RR = 1.608; p = 0.009), and abnormal R wave progression (RR = 1.766; p = 0.001) at the time of admission were independent prognostic factors for in-hospital mortality. In the second ECG, sinus tachycardia (RR = 2.222; p <0.001), supraventricular arrhythmia (RR = 1.632; p <0.001), abnormal R wave progression (RR = 2.151; p = 0.009), and abnormal T wave (RR = 1.590; p = 0.001) were also independent prognostic factors of in-hospital mortality. Moreover, by comparing the first and the second ECGs, it was found that the incidence of supraventricular arrhythmia (RR = 1.973; p = 0.005) and ST segment elevation/depression (RR = 2.296; p <0.001) during hospitalization (ECG novel changes) are two independent prognostic factors of in-hospital mortality in COVID-19 patients. Conclusion: Due to the fact that using electrocardiographic data is easy and accessible and it is easy to continuously monitor patients with this tool, ECGs can be useful in identifying high-risk COVID-19 patients for mortality.
Collapse
Affiliation(s)
- Mohammad Haji Aghajani
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirmohammad Toloui
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Moazzameh Aghamohammadi
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asma Pourhoseingholi
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloufar Taherpour
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ziba Asadpoordezaki
- Human Health Institute, National University of Ireland, Mynooth, Mynooth, Ireland.,Department of Psychology, National University of Ireland, Mynooth, Mynooth, Ireland.,Imam-Hussein Medical and Educational Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Miri
- Prevention of Cardiovascular Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Cardiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Silva SS, Gomes JM, Reis RL, Kundu SC. Green Solvents Combined with Bioactive Compounds as Delivery Systems: Present Status and Future Trends. ACS APPLIED BIO MATERIALS 2021; 4:4000-4013. [PMID: 35006819 DOI: 10.1021/acsabm.1c00013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Green solvents such as ionic liquids (ILs) unlock possibilities for developing innovative biomedical and pharmaceutical solutions. ILs are the most investigated solvents for compound extractions, as reaction media and/or catalysts, and a desired eco-friendly solvent to process biomacromolecules for biomaterial production. Investigations demonstrate that the tunable nature and physicochemical features of ILs are also beneficial for building up delivery systems through their combination with bioactive compounds. Bioactive compounds from synthetic origins, like ibuprofen, ketoprofen, and natural sources such as curcumin, flavonoids, and polyphenols are essential starting points as preventive and therapeutic agents for treating diseases. Therefore, the association of those compounds with ILs opens up windows of opportunities in this research field. This Review assesses some of the main and important recent information and the current challenges concerning delivery platforms based on ILs combined with bioactive compounds of both natural and synthetic origins. Moreover, the chemistry, bioavailability, and biological functions of the main bioactive compounds used in the ILs-based delivery platforms are described. These data are presented and are discussed, together with the main delivery routes of the systems.
Collapse
Affiliation(s)
- Simone S Silva
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Joana M Gomes
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Subhas C Kundu
- 3B́s Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, 4805-017 Barco, Guimarães, Portugal.,ICVS/3B́s-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
32
|
Fakhri S, Nouri Z, Moradi SZ, Akkol EK, Piri S, Sobarzo-Sánchez E, Farzaei MH, Echeverría J. Targeting Multiple Signal Transduction Pathways of SARS-CoV-2: Approaches to COVID-19 Therapeutic Candidates. Molecules 2021; 26:2917. [PMID: 34068970 PMCID: PMC8156180 DOI: 10.3390/molecules26102917] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/30/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Due to the complicated pathogenic pathways of coronavirus disease 2019 (COVID-19), related medicinal therapies have remained a clinical challenge. COVID-19 highlights the urgent need to develop mechanistic pathogenic pathways and effective agents for preventing/treating future epidemics. As a result, the destructive pathways of COVID-19 are in the line with clinical symptoms induced by severe acute coronary syndrome (SARS), including lung failure and pneumonia. Accordingly, revealing the exact signaling pathways, including inflammation, oxidative stress, apoptosis, and autophagy, as well as relative representative mediators such as tumor necrosis factor-α (TNF-α), nuclear factor erythroid 2-related factor 2 (Nrf2), Bax/caspases, and Beclin/LC3, respectively, will pave the road for combating COVID-19. Prevailing host factors and multiple steps of SARS-CoV-2 attachment/entry, replication, and assembly/release would be hopeful strategies against COVID-19. This is a comprehensive review of the destructive signaling pathways and host-pathogen interaction of SARS-CoV-2, as well as related therapeutic targets and treatment strategies, including potential natural products-based candidates.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Zeinab Nouri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah 6714415153, Iran;
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, Ankara 06330, Turkey;
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; (S.F.); (S.Z.M.); (S.P.)
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile
| |
Collapse
|
33
|
Cabbab ILN, Manalo RVM. Anti-inflammatory drugs and the renin-angiotensin-aldosterone system: Current knowledge and potential effects on early SARS-CoV-2 infection. Virus Res 2021; 291:198190. [PMID: 33039544 PMCID: PMC7543703 DOI: 10.1016/j.virusres.2020.198190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease 19 (COVID-19), and is genetically related to the 2003 SARS and Middle East respiratory syndrome (MERS-CoV) coronaviruses. Recent studies have reported that similar to SARS-CoV, this strain expresses a spike protein (S) with a receptor binding domain (RBD) that binds to angiotensin-converting enzyme 2 (ACE2) - an enzyme expressed mostly in the endothelium, kidneys, heart, gastrointestinal tract and lungs - to facilitate viral entry and intracellular replication. Incidentally, the renin-angiotensin-aldosterone system (RAAS) is integral to physiologic control of both ACE and ACE2 expression, and is an essential system utilized by SARS-CoV-2, albeit with varying schools of thought on how it can affect viral entry. In this paper, we will review current knowledge on the RAAS and how it can be affected by non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroid use at the organ and cellular levels. We will then discuss the relevance of these interactions on organ-specific ACE2 expression, and provide scientific insights on how this mechanism can potentially affect SARS-CoV-2 infection in the early phases of disease. From the standpoint of other known viruses, we will then aim to discuss the potential uses or restrictions of these drugs in viral infection, and provide an update on relevant studies about COVID-19.
Collapse
Affiliation(s)
- Iris Louise N Cabbab
- College of Medicine - William Quasha H. Memorial, St. Luke's Medical Center, Quezon City, 1112, Philippines; National Institutes of Health, University of the Philippines Manila, Ermita, Manila, 1000, Philippines
| | - Rafael Vincent M Manalo
- College of Medicine, University of the Philippines Manila, Ermita, Manila, 1000, Philippines.
| |
Collapse
|
34
|
Prescription, over-the-counter (OTC), herbal, and other treatments and preventive uses for COVID-19. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237643 DOI: 10.1016/b978-0-323-85780-2.00001-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The current COVID-19 pandemic has spread rapidly worldwide and has challenged fragile health care systems, vulnerable socioeconomic conditions, and population risk factors, and has led to an overwhelming tendency to misuse prescription drugs and self-medication with prescription drugs, over-the-counter (OTC) drugs, herbals products, and unproven chemicals as a desperate preventive or curative measure for COVID-19. In this chapter, we present the legislative differences between prescription drugs, OTC drugs, and herbals. Various approved and nonapproved prescription and OTC drugs as symptomatic treatment for COVID-19 are listed and evaluated based on their reported efficacy, safety, and toxicological profile. We also present the various herbal products that are currently studied and used as treatment and preventive for COVID-19. The efficacy, toxicology profile, safety, and legal issues of some speculative preventive and treatment options against COVID-19, such as Miracle Mineral Solution (MMS), chlorine dioxide solution (CDS), colloidal silver, and hydrogen peroxide is presented. The chapter also emphasizes the specific strategies that need to be implemented to guide the population in the effective and safe use of prescribed medications, such as the Medication Therapy Management or Pharmaceutical Care process. Finally, this chapter aims to provide a deeper insight into the lack of health literacy in the population and the effect that drug utilization research (DUR) has in the decision making of health authorities and general public. We aim to provide the current information about the various treatment and preventive options used for COVID-19.
Collapse
|
35
|
Golubev AG. COVID-19: A Challenge to Physiology of Aging. Front Physiol 2020; 11:584248. [PMID: 33343386 PMCID: PMC7745705 DOI: 10.3389/fphys.2020.584248] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/23/2020] [Indexed: 12/15/2022] Open
Abstract
The death toll of the current COVID-19 pandemic is strongly biased toward the elderly. COVID-19 case fatality rate (CFR) increases with age exponentially, its doubling time being about 7 years, irrespective of countries and epidemic stages. The same age-dependent mortality pattern known as the Gompertz law is featured by the total mortality and its main constituents attributed to cardiovascular, metabolic, neurological, and oncological diseases. Among patients dying of COVID-19, most have at least one of these conditions, whereas none is found in most of those who pass it successfully. Thus, gerontology is indispensable in dealing with the pandemic, which becomes a benchmark for validating the gerontological concepts and advances. The two basic alternative gerontological concepts imply that either aging results from the accumulation of stochastic damage, or is programmed. Based on these different grounds, several putative anti-aging drugs have been proposed as adjuvant means for COVID-19 prevention and/or treatment. These proposals are reviewed in the context of attributing the molecular targets of these drugs to the signaling pathways between the sensors of resource availability and the molecular mechanisms that allocate resources to storage, growth and reproduction or to self-maintenance and repair. Each of the drugs appears to reproduce only a part of the physiological responses to reduced resource availability caused by either dietary calories restriction or physical activity promotion, which are the most robust means of mitigating the adverse manifestations of aging. In the pathophysiological terms, the conditions of the endothelium, which worsen as age increases and may be significantly improved by the physical activity, is a common limiting factor for the abilities to withstand both physical stresses and challenges imposed by COVID-19. However, the current anti-epidemic measures promote sedentary indoor lifestyles, at odds with the most efficient behavioral interventions known to decrease the vulnerability to both the severe forms of COVID-19 and the prevalent aging-associated diseases. To achieve a proper balance in public health approaches to COVID-19, gerontologists should be involved in crosstalk between virologists, therapists, epidemiologists, and policy makers. The present publication suggests a conceptual background for that.
Collapse
Affiliation(s)
- Aleksei G. Golubev
- N.N. Petrov National Medical Research Center of Oncology, Saint Petersburg, Russia
| |
Collapse
|
36
|
Babaei F, Mirzababaei M, Nassiri-Asl M, Hosseinzadeh H. Review of registered clinical trials for the treatment of COVID-19. Drug Dev Res 2020; 82:474-493. [PMID: 33251593 PMCID: PMC7753306 DOI: 10.1002/ddr.21762] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/05/2020] [Accepted: 11/13/2020] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID‐19) is a viral disease caused by severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). The disease was first reported in December 2019 in Wuhan, China, but now more than 200 countries have been affected and the coronavirus pandemic is still ongoing. The severity of COVID‐19 symptoms can range from mild to severe. FDA approved remdesivir as a treatment of COVID‐19 so far. Various clinical trials are underway to find an effective method to treat patients with COVID‐19. This review aimed at summarizing 219 registered clinical trials in the ClinicalTrials.gov database with possible mechanisms, and novel findings of them, and other recent publications related to COVID‐19. According to our analyses, various treatment approaches and drugs are being investigated to find an effective drug to cure COVID‐19 and among all strategies, three important mechanisms are suggested to be important against COVID‐19 including antiviral, anti‐inflammatory, and immunomodulatory properties. Our review can help future studies get on the way to finding an effective drug for COVID‐19 treatment by providing ideas for similar researches.
Collapse
Affiliation(s)
- Fatemeh Babaei
- Department of Clinical Biochemistry, School of Medicine, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Mirzababaei
- Department of Clinical Biochemistry, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Marjan Nassiri-Asl
- Department of Pharmacology and Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
37
|
Shrestha DB, Budhathoki P, Khadka S, Shah PB, Pokharel N, Rashmi P. Favipiravir versus other antiviral or standard of care for COVID-19 treatment: a rapid systematic review and meta-analysis. Virol J 2020; 17:141. [PMID: 32972430 PMCID: PMC7512218 DOI: 10.1186/s12985-020-01412-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The COVID-19 causing coronavirus is an enveloped RNA virus that utilizes an enzyme RNA dependent RNA polymerase for its replication. Favipiravir (FVP) triphosphate, a purine nucleoside analog, inhibits that enzyme. We have conducted this systematic review and meta-analysis on efficacy and safety of the drug FVP as a treatment for COVID-19. METHODS Databases like Pubmed, Pubmed Central, Scopus, Embase, Google Scholar, preprint sites, and clinicaltirals.gov were searched. The studies with the standard of care (SOC) and FVP as a treatment drug were considered as the treatment group and the SOC with other antivirals and supportive care as the control group. Quantitative synthesis was done using RevMan 5.4. Clinical improvement, negative conversion of reverse transcription-polymerase chain reaction (RT-PCR), adverse effects, and oxygen requirements were studied. RESULTS We identified a total of 1798 studies after searching the electronic databases. Nine in the qualitative studies and four studies in the quantitative synthesis met the criteria. There was a significant clinical improvement in the FVP group on the 14th day compared to the control group (RR 1.29, 1.08-1.54). Clinical deterioration rates were less likely in the FVP group though statistically not significant (OR 0.59, 95% CI 0.30-1.14) at the endpoint of study (7-15 days). The meta-analysis showed no significant differences between the two groups on viral clearance (day 14: RR 1.06, 95% CI 0.84-1.33), non-invasive ventilation or oxygen requirement (OR 0.76, 95% CI 0.42-1.39), and adverse effects (OR 0.69, 0.13-3.57). There are 31 randomized controlled trials (RCTs) registered in different parts of the world focusing FVP for COVID-19 treatment. CONCLUSION There is a significant clinical and radiological improvement following treatment with FVP in comparison to the standard of care with no significant differences on viral clearance, oxygen support requirement and side effect profiles.
Collapse
Affiliation(s)
| | | | - Sitaram Khadka
- Shree Birendra Hospital, Nepalese Army Institute of Health Sciences, Kathmandu, Nepal
| | | | - Nisheem Pokharel
- KIST Medical College and Teaching Hospital, Lalitpur, Kathmandu, Nepal
| | - Prama Rashmi
- Nepal Medical College and Teaching Hospital, Kathmandu, Nepal
| |
Collapse
|
38
|
Gudadappanavar AM, Benni J. An evidence-based systematic review on emerging therapeutic and preventive strategies to treat novel coronavirus (SARS-CoV-2) during an outbreak scenario. J Basic Clin Physiol Pharmacol 2020; 31:jbcpp-2020-0113. [PMID: 32924964 DOI: 10.1515/jbcpp-2020-0113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/19/2020] [Indexed: 04/30/2023]
Abstract
A novel coronavirus infection coronavirus disease 2019 (COVID-19) emerged from Wuhan, Hubei Province of China, in December 2019 caused by SARS-CoV-2 is believed to be originated from bats in the local wet markets. Later, animal to human and human-to-human transmission of the virus began and resulting in widespread respiratory illness worldwide to around more than 180 countries. The World Health Organization declared this disease as a pandemic in March 2020. There is no clinically approved antiviral drug or vaccine available to be used against COVID-19. Nevertheless, few broad-spectrum antiviral drugs have been studied against COVID-19 in clinical trials with clinical recovery. In the current review, we summarize the morphology and pathogenesis of COVID-19 infection. A strong rational groundwork was made keeping the focus on current development of therapeutic agents and vaccines for SARS-CoV-2. Among the proposed therapeutic regimen, hydroxychloroquine, chloroquine, remdisevir, azithromycin, toclizumab and cromostat mesylate have shown promising results, and limited benefit was seen with lopinavir-ritonavir treatment in hospitalized adult patients with severe COVID-19. Early development of SARS-CoV-2 vaccine started based on the full-length genome analysis of severe acute respiratory syndrome coronavirus. Several subunit vaccines, peptides, nucleic acids, plant-derived, recombinant vaccines are under pipeline. This article concludes and highlights ongoing advances in drug repurposing, therapeutics and vaccines to counter COVID-19, which collectively could enable efforts to halt the pandemic virus infection.
Collapse
Affiliation(s)
- Anupama M Gudadappanavar
- Department of Pharmacology, J N Medical College, KLE Academy of Higher Education and, Research (KAHER), Belagavi, Karnataka, India
| | - Jyoti Benni
- Department of Pharmacology, J N Medical College, KLE Academy of Higher Education and, Research (KAHER), Belagavi, Karnataka, India
| |
Collapse
|
39
|
Bruce E, Barlow-Pay F, Short R, Vilches-Moraga A, Price A, McGovern A, Braude P, Stechman MJ, Moug S, McCarthy K, Hewitt J, Carter B, Myint PK. Prior Routine Use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) and Important Outcomes in Hospitalised Patients with COVID-19. J Clin Med 2020; 9:jcm9082586. [PMID: 32785086 PMCID: PMC7465199 DOI: 10.3390/jcm9082586] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 08/04/2020] [Indexed: 12/30/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) infection causes acute lung injury, resulting from aggressive inflammation initiated by viral replication. There has been much speculation about the potential role of non-steroidal inflammatory drugs (NSAIDs), which increase the expression of angiotensin-converting enzyme 2 (ACE2), a binding target for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to enter the host cell, which could lead to poorer outcomes in COVID-19 disease. The aim of this study was to examine the association between routine use of NSAIDs and outcomes in hospitalised patients with COVID-19. This was a multicentre, observational study, with data collected from adult patients with COVID-19 admitted to eight UK hospitals. Of 1222 patients eligible to be included, 54 (4.4%) were routinely prescribed NSAIDs prior to admission. Univariate results suggested a modest protective effect from the use of NSAIDs, but in the multivariable analysis, there was no association between prior NSAID use and time to mortality (adjusted HR (aHR) = 0.89, 95% CI 0.52–1.53, p = 0.67) or length of stay (aHR 0.89, 95% CI 0.59–1.35, p = 0.58). This study found no evidence that routine NSAID use was associated with higher COVID-19 mortality in hospitalised patients; therefore, patients should be advised to continue taking these medications until further evidence emerges. Our findings suggest that NSAID use might confer a modest benefit with regard to survival. However, as this finding was underpowered, further research is required.
Collapse
Affiliation(s)
- Eilidh Bruce
- Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, Scotland, UK;
- Institute of Applied Health Science, University of Aberdeen, Aberdeen AB25 2ZN, Scotland, UK
| | - Fenella Barlow-Pay
- Royal Alexandra Hospital, Paisley PA2 9PJ, Scotland, UK; (F.B.-P.); (S.M.)
| | - Roxanna Short
- Department of Biostatistics & Health Informatics, King’s College London, London WC2R 2LS, UK; (R.S.); (B.C.)
| | | | - Angeline Price
- Salford Royal NHS Trust, Salford M6 8HD, UK; (A.V.-M.); (A.P.)
| | - Aine McGovern
- Glasgow Royal Infirmary, Glasgow G4 0SF, Scotland, UK;
| | - Philip Braude
- North Bristol NHS Trust, Bristol BS10 5NB, UK; (P.B.); (K.M.)
| | - Michael J. Stechman
- School of Medicine, Cardiff University, Cardiff CF10 3AT, Wales, UK; (M.J.S.); (J.H.)
| | - Susan Moug
- Royal Alexandra Hospital, Paisley PA2 9PJ, Scotland, UK; (F.B.-P.); (S.M.)
| | | | - Jonathan Hewitt
- School of Medicine, Cardiff University, Cardiff CF10 3AT, Wales, UK; (M.J.S.); (J.H.)
| | - Ben Carter
- Department of Biostatistics & Health Informatics, King’s College London, London WC2R 2LS, UK; (R.S.); (B.C.)
| | - Phyo Kyaw Myint
- Aberdeen Royal Infirmary, Aberdeen AB25 2ZN, Scotland, UK;
- Institute of Applied Health Science, University of Aberdeen, Aberdeen AB25 2ZN, Scotland, UK
- Correspondence: ; Tel.: +44-1224-437841
| |
Collapse
|
40
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Majewski P, Rotter I, Kotfis K. COVID-19: Pain Management in Patients with SARS-CoV-2 Infection-Molecular Mechanisms, Challenges, and Perspectives. Brain Sci 2020; 10:E465. [PMID: 32698378 PMCID: PMC7407489 DOI: 10.3390/brainsci10070465] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/20/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the pandemic of the new Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). Available evidence suggests that pain is a common symptom during Coronavirus Disease 2019 (COVID-19). According to the World Health Organization, many patients suffer from muscle pain (myalgia) and/or joint pain (arthralgia), sore throat and headache. The exact mechanisms of headache and myalgia during viral infection are still unknown. Moreover, many patients with respiratory failure get admitted to the intensive care unit (ICU) for ventilatory support. Pain in ICU patients can be associated with viral disease itself (myalgia, arthralgia, peripheral neuropathies), may be caused by continuous pain and discomfort associated with ICU treatment, intermittent procedural pain and chronic pain present before admission to the ICU. Undertreatment of pain, especially when sedation and neuromuscular blocking agents are used, prone positioning during mechanical ventilation or extracorporeal membrane oxygenation (ECMO) may trigger delirium and cause peripheral neuropathies. This narrative review summarizes current knowledge regarding challenges associated with pain assessment and management in COVID-19 patients. A structured prospective evaluation should be undertaken to analyze the probability, severity, sources and adequate treatment of pain in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Pharmacokinetics and Monitored Therapy, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (J.R.); (F.M.); (B.S.)
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (J.R.); (F.M.); (B.S.)
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland; (J.R.); (F.M.); (B.S.)
| | - Paweł Majewski
- Department of Anesthesiology and Intensive Therapy, Regional Specialist Hospital, 72-300 Gryfice, Department of Cardiac Surgery, Ceynowa Hospital, 84-200 Wejherowo, Poland;
| | - Iwona Rotter
- Department of Medical Rehabilitation and Clinical Physiotherapy, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland;
| |
Collapse
|
41
|
Hammock BD, Wang W, Gilligan MM, Panigrahy D. Eicosanoids: The Overlooked Storm in Coronavirus Disease 2019 (COVID-19)? THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1782-1788. [PMID: 32650004 PMCID: PMC7340586 DOI: 10.1016/j.ajpath.2020.06.010] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/17/2020] [Accepted: 06/30/2020] [Indexed: 02/08/2023]
Abstract
Severe coronavirus disease 2019 (COVID-19) symptoms, including systemic inflammatory response and multisystem organ failure, are now affecting thousands of infected patients and causing widespread mortality. Coronavirus infection causes tissue damage, which triggers the endoplasmic reticulum stress response and subsequent eicosanoid and cytokine storms. Although proinflammatory eicosanoids, including prostaglandins, thromboxanes, and leukotrienes, are critical mediators of physiological processes, such as inflammation, fever, allergy, and pain, their roles in COVID-19 are poorly characterized. Arachidonic acid–derived epoxyeicosatrienoic acids could alleviate the systemic hyperinflammatory response in COVID-19 infection by modulating endoplasmic reticulum stress and stimulating the resolution of inflammation. Soluble epoxide hydrolase (sEH) inhibitors, which increase endogenous epoxyeicosatrienoic acid levels, exhibit potent anti-inflammatory activity and inhibit various pathologic processes in preclinical disease models, including pulmonary fibrosis, thrombosis, and acute respiratory distress syndrome. Therefore, targeting eicosanoids and sEH could be a novel therapeutic approach in combating COVID-19. In this review, we discuss the predominant role of eicosanoids in regulating the inflammatory cascade and propose the potential application of sEH inhibitors in alleviating COVID-19 symptoms. The host-protective action of omega-3 fatty acid–derived epoxyeicosanoids and specialized proresolving mediators in regulating anti-inflammation and antiviral response is also discussed. Future studies determining the eicosanoid profile in COVID-19 patients or preclinical models are pivotal in providing novel insights into coronavirus-host interaction and inflammation modulation.
Collapse
Affiliation(s)
- Bruce D Hammock
- Department of Entomology and Nematology, University of California, Davis, California; UCD Comprehensive Cancer Center, University of California, Davis, California.
| | - Weicang Wang
- Department of Entomology and Nematology, University of California, Davis, California; UCD Comprehensive Cancer Center, University of California, Davis, California
| | - Molly M Gilligan
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
42
|
Zhang H, Dai H, Xie X. Solid Organ Transplantation During the COVID-19 Pandemic. Front Immunol 2020; 11:1392. [PMID: 32612614 PMCID: PMC7308422 DOI: 10.3389/fimmu.2020.01392] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/01/2020] [Indexed: 01/08/2023] Open
Abstract
Since December 2019, the ongoing coronavirus disease 2019 (COVID-19) pandemic has significantly affected solid organ transplantation (SOT) worldwide and has become a threat to the lives of SOT recipients. Here, we have reviewed, condensed, and organized the available information on COVID-19 to provide recommendations to transplant healthcare workers. Our review of reported cases shows that the symptoms of SOT patients with COVID-19 are similar to those of the normal population, but their severity and outcomes are worse. Thus far, there is no evidence that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly causes permanent damage to kidney, liver, or heart allografts.
Collapse
Affiliation(s)
- Hedong Zhang
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation, Changsha, China
- Clinical Immunology Center, Central South University, Changsha, China
| | - Helong Dai
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation, Changsha, China
- Clinical Immunology Center, Central South University, Changsha, China
| | - Xubiao Xie
- Department of Kidney Transplantation, The Second Xiangya Hospital of Central South University, Changsha, China
- Clinical Research Center for Organ Transplantation, Changsha, China
- Clinical Immunology Center, Central South University, Changsha, China
| |
Collapse
|
43
|
Consolini R, Costagliola G, Gattorno M. The Challenge of Managing Children With Periodic Fever Syndromes in the Era of COVID-19. Front Pediatr 2020; 8:620621. [PMID: 33490003 PMCID: PMC7815684 DOI: 10.3389/fped.2020.620621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/08/2020] [Indexed: 12/15/2022] Open
Affiliation(s)
- Rita Consolini
- Section of Clinical Immunology and Rheumatology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Giorgio Costagliola
- Section of Clinical Immunology and Rheumatology, Division of Pediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marco Gattorno
- Center for Autoinflammatory Diseases and Immunodeficiencies, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| |
Collapse
|