1
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
2
|
Abdel-Haq H. Feasibility of Using a Type I IFN-Based Non-Animal Approach to Predict Vaccine Efficacy and Safety Profiles. Vaccines (Basel) 2024; 12:583. [PMID: 38932312 PMCID: PMC11209158 DOI: 10.3390/vaccines12060583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Animal-based tests are used for the control of vaccine quality. However, because highly purified and safe vaccines are now available, alternative approaches that can replace or reduce animal use for the assessment of vaccine outcomes must be established. In vitro tests for vaccine quality control exist and have already been implemented. However, these tests are specifically designed for some next-generation vaccines, and this makes them not readily available for testing other vaccines. Therefore, universal non-animal tests are still needed. Specific signatures of the innate immune response could represent a promising approach to predict the outcome of vaccines by non-animal methods. Type I interferons (IFNs) have multiple immunomodulatory activities, which are exerted through effectors called interferon stimulated genes (ISGs), and are one of the most important immune signatures that might provide potential candidate molecular biomarkers for this purpose. This paper will mainly examine if this idea might be feasible by analyzing all relevant published studies that have provided type I IFN-related biomarkers for evaluating the safety and efficacy profiles of vaccines using an advanced transcriptomic approach as an alternative to the animal methods. Results revealed that such an approach could potentially provide biomarkers predictive of vaccine outcomes after addressing some limitations.
Collapse
Affiliation(s)
- Hanin Abdel-Haq
- Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| |
Collapse
|
3
|
Wang X, Cottrell CA, Hu X, Ray R, Bottermann M, Villavicencio PM, Yan Y, Xie Z, Warner JE, Ellis-Pugh JR, Kalyuzhniy O, Liguori A, Willis JR, Menis S, Rämisch S, Eskandarzadeh S, Kubitz M, Tingle R, Phelps N, Groschel B, Himansu S, Carfi A, Kirsch KH, Weldon SR, Nair U, Schief WR, Batista FD. mRNA-LNP prime boost evolves precursors toward VRC01-like broadly neutralizing antibodies in preclinical humanized mouse models. Sci Immunol 2024; 9:eadn0622. [PMID: 38753808 PMCID: PMC11488661 DOI: 10.1126/sciimmunol.adn0622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/09/2024] [Indexed: 05/18/2024]
Abstract
Germline-targeting (GT) protein immunogens to induce VRC01-class broadly neutralizing antibodies (bnAbs) to the CD4-binding site of the HIV envelope (Env) have shown promise in clinical trials. Here, we preclinically validated a lipid nanoparticle-encapsulated nucleoside mRNA (mRNA-LNP) encoding eOD-GT8 60mer as a soluble self-assembling nanoparticle in mouse models. In a model with three humanized B cell lineages bearing distinct VRC01-precursor B cell receptors (BCRs) with similar affinities for eOD-GT8, all lineages could be simultaneously primed and undergo diversification and affinity maturation without exclusionary competition. Boosts drove precursor B cell participation in germinal centers; the accumulation of somatic hypermutations, including in key VRC01-class positions; and affinity maturation to boost and native-like antigens in two of the three precursor lineages. We have preclinically validated a prime-boost regimen of soluble self-assembling nanoparticles encoded by mRNA-LNP, demonstrating that multiple lineages can be primed, boosted, and diversified along the bnAb pathway.
Collapse
Affiliation(s)
- Xuesong Wang
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Christopher A. Cottrell
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Xiaozhen Hu
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
- Moderna Inc.; Cambridge, 02139, USA
| | - Rashmi Ray
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Maria Bottermann
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | | | - Yu Yan
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Zhenfei Xie
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - John E. Warner
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | | | - Oleksandr Kalyuzhniy
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Alessia Liguori
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Jordan R. Willis
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Sergey Menis
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Sebastian Rämisch
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Saman Eskandarzadeh
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Michael Kubitz
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Ryan Tingle
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Nicole Phelps
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | - Bettina Groschel
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
| | | | | | - Kathrin H. Kirsch
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Stephanie R. Weldon
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - Usha Nair
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
| | - William R. Schief
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
- Department of Immunology and Microbiology, The Scripps Research Institute; La Jolla, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute; La Jolla, 92037, USA
- Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute; La Jolla, 92037, USA
- Moderna Inc.; Cambridge, 02139, USA
| | - Facundo D. Batista
- The Ragon Institute of Mass General, MIT, and Harvard; Cambridge, 02139, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, 02139, USA
| |
Collapse
|
4
|
Wu K, Hou YJ, Makrinos D, Liu R, Zhu A, Koch M, Yu WH, Paila YD, Chandramouli S, Panther L, Henry C, DiPiazza A, Carfi A. Characterization of humoral and cellular immunologic responses to an mRNA-based human cytomegalovirus vaccine from a phase 1 trial of healthy adults. J Virol 2024; 98:e0160323. [PMID: 38526054 PMCID: PMC11019844 DOI: 10.1128/jvi.01603-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/25/2024] [Indexed: 03/26/2024] Open
Abstract
mRNA-1647 is an investigational mRNA-based vaccine against cytomegalovirus (CMV) that contains sequences encoding the CMV proteins glycoprotein B and pentamer. Humoral and cellular immune responses were evaluated in blood samples collected from healthy CMV-seropositive and CMV-seronegative adults who participated in a phase 1 trial of a three-dose series of mRNA-1647 (NCT03382405). Neutralizing antibody (nAb) titers against fibroblast and epithelial cell infection in sera from CMV-seronegative mRNA-1647 recipients were higher than those in sera from control CMV-seropositive samples and remained elevated up to 12 months after dose 3. nAb responses elicited by mRNA-1647 were comparable across 14 human CMV (HCMV) strains. Frequencies of antigen-specific memory B cells increased in CMV-seropositive and CMV-seronegative participants after each mRNA-1647 dose and remained elevated for up to 6 months after dose 3. mRNA-1647 elicited robust increases in frequencies and polyfunctionality of CD4+ T helper type 1 and effector CD8+ T cells in samples from CMV-seronegative and CMV-seropositive participants after stimulation with HCMV-specific peptides. The administration of three doses of mRNA-1647 to healthy adults elicited high nAb titers with wide-breadth, long-lasting memory B cells, and strong polyfunctional T-cell responses. These findings support further clinical development of the mRNA-1647 vaccine against CMV.IMPORTANCECytomegalovirus (CMV), a common virus that can infect people of all ages, may lead to serious health problems in unborn babies and those with a weakened immune system. Currently, there is no approved vaccine available to prevent CMV infection; however, the investigational messenger RNA (mRNA)-based CMV vaccine, mRNA-1647, is undergoing evaluation in clinical trials. The current analysis examined samples from a phase 1 trial of mRNA-1647 in healthy adults to better understand how the immune system reacts to vaccination. Three doses of mRNA-1647 produced a long-lasting immune response, thus supporting further investigation of the vaccine in the prevention of CMV infection.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT03382405).
Collapse
Affiliation(s)
- Kai Wu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yixuan Jacob Hou
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Dan Makrinos
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Runxia Liu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Alex Zhu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Matthew Koch
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Wen-Han Yu
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Yamuna D. Paila
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | | | - Lori Panther
- Infectious Disease Development, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Carole Henry
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Anthony DiPiazza
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| | - Andrea Carfi
- Infectious Disease Research, Moderna, Inc., Cambridge, Massachusetts, USA
| |
Collapse
|
5
|
Ambegaonkar AA, Holla P, Sohn H, George R, Tran TM, Pierce SK. Isotype switching in human memory B cells sets intrinsic antigen-affinity thresholds that dictate antigen-driven fates. Proc Natl Acad Sci U S A 2024; 121:e2313672121. [PMID: 38502693 PMCID: PMC10990115 DOI: 10.1073/pnas.2313672121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Memory B cells (MBCs) play a critical role in protection against homologous and variant pathogen challenge by either differentiating to plasma cells (PCs) or to germinal center (GC) B cells. The human MBC compartment contains both switched IgG+ and unswitched IgM+ MBCs; however, whether these MBC subpopulations are equivalent in their response to B cell receptor cross-linking and their resulting fates is incompletely understood. Here, we show that IgG+ and IgM+ MBCs can be distinguished based on their response to κ-specific monoclonal antibodies of differing affinities. IgG+ MBCs responded only to high-affinity anti-κ and differentiated almost exclusively toward PC fates. In contrast, IgM+ MBCs were eliminated by apoptosis by high-affinity anti-κ but responded to low-affinity anti-κ by differentiating toward GC B cell fates. These results suggest that IgG+ and IgM+ MBCs may play distinct yet complementary roles in response to pathogen challenge ensuring the immediate production of high-affinity antibodies to homologous and closely related challenges and the generation of variant-specific MBCs through GC reactions.
Collapse
Affiliation(s)
- Abhijit A. Ambegaonkar
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| | - Tuan M. Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN46202
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD20852
| |
Collapse
|
6
|
Martini C, Araba V, Beniani M, Armoa Ortiz P, Simmons M, Chalbi M, Mellouk A, El Bakkouri M, Calmettes C. Unraveling the crystal structure of the HpaA adhesin: insights into cell adhesion function and epitope localization of a Helicobacter pylori vaccine candidate. mBio 2024; 15:e0295223. [PMID: 38376163 PMCID: PMC10936181 DOI: 10.1128/mbio.02952-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/26/2024] [Indexed: 02/21/2024] Open
Abstract
Helicobacter pylori is a bacterium that exhibits strict host restriction to humans and non-human primates, and the bacterium is widely acknowledged as a significant etiological factor in the development of chronic gastritis, peptic ulcers, and gastric cancers. The pathogenic potential of this organism lies in its adeptness at colonizing the gastric mucosa, which is facilitated by a diverse repertoire of virulence factors, including adhesins that promote the attachment of the bacteria to the gastric epithelium. Among these adhesins, HpaA stands out due to its conserved nature and pivotal role in establishing H. pylori colonization. Moreover, this lipoprotein holds promise as an antigen for the development of effective H. pylori vaccines, thus attracting considerable attention for in-depth investigations into its molecular function and identification of binding determinants. Here, we present the elucidation of the crystallographic structure of HpaA at 2.9 Å resolution. The folding adopts an elongated protein shape, which is distinctive to the Helicobacteraceae family, and features an apical domain extension that plays a critical role in the cell-adhesion activity on gastric epithelial cells. Our study also demonstrates the ability of HpaA to induce TNF-α expression in macrophages, highlighting a novel role as an immunoregulatory effector promoting the pro-inflammatory response in vitro. These findings not only contribute to a deeper comprehension of the multifaceted role of HpaA in H. pylori pathogenesis but also establish a fundamental basis for the design and development of structure-based derivatives, aimed at enhancing the efficacy of H. pylori vaccines. IMPORTANCE Helicobacter pylori is a bacterium that can cause chronic gastritis, peptic ulcers, and gastric cancers. The bacterium adheres to the lining of the stomach using proteins called adhesins. One of these proteins, HpaA, is particularly important for H. pylori colonization and is considered a promising vaccine candidate against H. pylori infections. In this work, we determined the atomic structure of HpaA, identifying a characteristic protein fold to the Helicobacter family and delineating specific amino acids that are crucial to support the attachment to the gastric cells. Additionally, we discovered that HpaA can trigger the production of TNF-α, a proinflammatory molecule, in macrophages. These findings provide valuable insights into how H. pylori causes disease and suggest that HpaA has a dual role in both attachment and immune activation. This knowledge could contribute to the development of improved vaccine strategies for preventing H. pylori infections.
Collapse
Affiliation(s)
- Cyrielle Martini
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Victoria Araba
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Meriem Beniani
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Paula Armoa Ortiz
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Mimi Simmons
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Mariem Chalbi
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Abdelkader Mellouk
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
| | - Majida El Bakkouri
- National Research Council of Canada (NRC), Human Health Therapeutics Research Center, Montréal, Québec, Canada
| | - Charles Calmettes
- Institut National de la Recherche Scientifique (INRS), Centre Armand Frappier Santé Biotechnologie, Institut Pasteur International Network, Laval, Québec, Canada
- PROTEO, the Quebec Network for Research on Protein Function, Structure, and Engineering, Québec city, Québec, Canada
| |
Collapse
|
7
|
Srivastava V, Godara P, Jena SP, Naik B, Singh S, Prajapati VK, Prusty D. Peptide-ligand conjugate based immunotherapeutic approach for targeted dismissal of non-structural protein 1 of dengue virus: A novel therapeutic solution for mild and severe dengue infections. Int J Biol Macromol 2024; 260:129562. [PMID: 38246445 DOI: 10.1016/j.ijbiomac.2024.129562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Dengue virus infection has significantly increased, with reported cases soaring from 505,430 in 2000 to 2,809,818 in 2022, emphasizing the need for effective treatments. Among the eleven structural and non-structural proteins of DENV, Non-structural protein 1 (NS1) has emerged as a promising target due to its diverse role in modulating the immune response, inducing vascular leakage, and facilitating viral replication and assembly. Monoclonal antibodies are the sole therapeutics to target NS1, but concerns about their cross-reactivity persist. Given these concerns, our study focuses on designing a novel Peptide Ligand Conjugate (PLC) as a potential alternative immunotherapeutic agent against NS1. This PLC aims to mediate the immune elimination of soluble NS1 and NS1-presenting DENV-infected host cells by pre-existing vaccine-induced immunity. By employing the High Throughput Virtual Screening (HTVS) method, QikProp analysis, and Molecular Dynamics studies, we identified three hits from Asinex Biodesigned Ligands out of 220,177 compounds that show strong binding affinity towards the monoclonal binding site of NS1 protein. After a rigorous analysis of physicochemical characteristics, antigenicity, allergenicity, and toxicity using various servers, we selected two peptides: the minimum epitopic region of the Diphtheria and Tetanus toxins as the peptide components of the PLCs. A non-cleavable, non-reactive oxime linker connected the ligand with the peptide through oxime and amide bonds. DPT vaccine is widely used in dengue-endemic countries, and it has been reported that antibodies titer against MER of Diphtheria toxin and Tetanus toxins persist lifelong in DPT-vaccinated people. Therefore, once the rationally designed PLCs bind to NS1 through the ligands, the peptide will induce an immune response against NS1 by triggering pre-existing DPT antibodies and activating memory cells. This orchestrated immune response will destroy soluble NS1 and NS1-expressing DENV-infected cells, thereby reducing the illness of severe dengue hemorrhagic fever and the DENV infection, respectively. Given the increasing demand for new therapeutics for DENV treatment, further investigation into this novel immune-therapeutic strategy may offer a new avenue for treating mild and severe dengue infections.
Collapse
Affiliation(s)
- Varshita Srivastava
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Priya Godara
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Sudip Prasad Jena
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Biswajit Naik
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Satyendra Singh
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi 110021, India
| | - Dhaneswar Prusty
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, 305817, India.
| |
Collapse
|
8
|
Partey FD, Dowuona JNN, Pobee ANA, Walker MR, Aculley B, Prah DA, Ofori MF, Barfod LK. Atypical memory B cell frequency correlates with antibody breadth and function in malaria immune adults. Sci Rep 2024; 14:4888. [PMID: 38418831 PMCID: PMC10902325 DOI: 10.1038/s41598-024-55206-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/02/2024] Open
Abstract
Clinical immunity to malaria develops slowly after repeated episodes of infection and antibodies are essential in naturally acquired immunity against malaria. However, chronic exposure to malaria has been linked to perturbation in B-cell homeostasis with the accumulation of atypical memory B cells. It is unclear how perturbations in B cell subsets influence antibody breadth, avidity, and function in individuals naturally exposed to malaria. We show that individuals living in high malaria transmission regions in Ghana have higher Plasmodium falciparum merozoite antigen-specific antibodies and an increased antibody breadth score but lower antibody avidities relative to low transmission regions. The frequency of circulating atypical memory B cells is positively associated with an individual's antibody breadth. In vitro growth inhibition is independent of the ability to bind to free merozoites but associated with the breadth of antibody reactivity in an individual. Taken together, our data shows that repeated malaria episodes hamper the development of high avid antibodies which is compensated for by an increase in antibody breadth. Our results provide evidence to reinforce the idea that in regions with high malaria prevalence, repeated malaria infections lead to the broadening of antibody diversity and the continued presence of atypical memory B cell populations.
Collapse
Affiliation(s)
| | | | | | - Melanie Rose Walker
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Belinda Aculley
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Diana Ahu Prah
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Ghana
| | - Michael Fokuo Ofori
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Lea Klingenberg Barfod
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Saad HA, Elsayed RS, Riad M, El-Taher AK, Eraky ME, Abdelmonem A. Revitalize splenic functions. Following a splenectomy for trauma, a small amount of splenic autotransplantation was performed. BMC Surg 2023; 23:230. [PMID: 37568135 PMCID: PMC10422790 DOI: 10.1186/s12893-023-02126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION The spleen is a responsible significant part of the immune system; after Splenectomy following trauma, the immune system changes; splenic autotransplantation can preserve the immune system after trauma and Splenectomy. BACKGROUND Patients can be protected from immune dysfunction by autotransplanting splenic tissues after splenectomy following trauma because their immune systems and spleens are changed. Patients can gain their immune function after splenic autotransplantation. METHODS Patient classification methods are into three categories, Group A, 6 cases with auto-translation; Group B, 6 cases without transplantation; Group C, seven regular people serving as the control. AIM OF WORK The aim of the work is not to compare outcome methods or compare types of autotransplantation; This work aims to document postoperative radiological, immunological, clinical, and hematological investigations. We concentrated on the results of investigations more than the types of operation or approach or types of autotransplantation. RESULTS We showed that, after comparing each group with normal individuals subjects, patients who did not undergo autotransplantation had significantly higher platelet counts, a more significant percentage of micronucleated reticulocytes, increased levels of naive B lymphocytes, changes in class-switched memory and class-unswitched memory B cells, and higher levels of PD1 on CD8 + T lymphocytes. Nevertheless, neither splenic autotransplant patients nor the average general population showed any appreciable variations in any of the parameters. CONCLUSIONS Spleen's activities with adequate hemocatheter activity and recovery of the immunological deficit after splenic autotransplantation.
Collapse
Affiliation(s)
- Hassan A Saad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt.
| | - Rasha S Elsayed
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Riad
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed K El-Taher
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed E Eraky
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ashraf Abdelmonem
- Surgical Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
10
|
Zhai S, Cao M, Zhou H, Zhu H, Xu T, Wang Y, Wang X, Cai Z. H3K36 methyltransferase NSD1 is essential for normal B1 and B2 cell development and germinal center formation. Front Immunol 2022; 13:959021. [PMID: 36532012 PMCID: PMC9750791 DOI: 10.3389/fimmu.2022.959021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
B cells, which consist of two well-defined populations: B1 and B2 cells, which can produce antibodies that are essential for host protection against infections, through virus neutralization, opsonization and antibody-dependent cellular cytotoxicity. Epigenetic modifications, such as DNA methylation and histone modification could regulate immune cell differentiation and functions. In this study, we found a significant reduction of GC response in the B cell specific knockout of H3K36 methyltransferase NSD1 (Mb1-Cre+ NSD1fl/fl, NSD1B KO) mice compared with the wildtype control (Mb1-Cre+ NSD1+/+, NSD1B WT). We also demonstrated reduced production of high-affinity antibody, but increased production of low-affinity antibody in the NSD1B KO mice. Further analysis revealed that loss of NSD1 promoted the development of B1 cells by increasing the expression of Rap1b and Arid3a. In conclusion, our data suggest that NSD1 plays an important role in regulation the development of B1 and B2 cells, and the process of germinal center formation and high-affinity antibody production.
Collapse
Affiliation(s)
- Sulan Zhai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Min Cao
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Han Zhou
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China,Reproductive Medicine Centre, Changzhou No. 2 People’s Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Huamin Zhu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Tongchang Xu
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Yuliang Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China
| | - Xiaoming Wang
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China,National Health Commission (NHC) Key Laboratory of Antibody Technique, Nanjing Medical University, Nanjing, China,*Correspondence: Xiaoming Wang, ; Zhenming Cai,
| | - Zhenming Cai
- Department of Immunology, Key Laboratory of Immune Microenvironment and Diseases, Nanjing Medical University, Nanjing, China,*Correspondence: Xiaoming Wang, ; Zhenming Cai,
| |
Collapse
|
11
|
Efficient antigen delivery by dendritic cell-targeting peptide via nucleolin confers superior vaccine effects in mice. iScience 2022; 25:105324. [PMID: 36304121 PMCID: PMC9593262 DOI: 10.1016/j.isci.2022.105324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/28/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Efficient delivery of subunit vaccines to dendritic cells (DCs) is necessary to improve vaccine efficacy, because the vaccine antigen alone cannot induce sufficient protective immunity. Here, we identified DC-targeting peptides using a phage display system and demonstrated the potential of these peptides as antigen-delivery carriers to improve subunit vaccine effectiveness in mice. The fusion of antigen proteins and peptides with DC-targeting peptides induced strong antigen-specific IgG responses, even in the absence of adjuvants. In addition, the DC-targeting peptide improved the distribution of antigens to DCs and antigen presentation by DCs. The combined use of an adjuvant with a DC-targeting peptide improved the effectiveness of the vaccine. Furthermore, nucleolin, located on the DC surface, was identified as the receptor for DC-targeting peptide, and nucleolin was indispensable for the vaccine effect of the DC-targeting peptide. Overall, the findings of this study could be useful for developing subunit vaccines against infectious diseases. We successfully identified an efficient DC-targeting peptide using a phage display system Fusion of the peptide improves the efficacy of vaccine even in the absence of adjuvants The peptide improves the distribution of antigens to DCs and antigen presentation by DCs Nucleolin is indispensable for the vaccine effect of the DC-targeting peptide
Collapse
|
12
|
Nicoli F, Mantelli B, Gallerani E, Telatin V, Squarzon L, Masiero S, Gavioli R, Palù G, Barzon L, Caputo A. Effects of the age of vaccination on the humoral responses to a human papillomavirus vaccine. NPJ Vaccines 2022; 7:37. [PMID: 35292655 PMCID: PMC8924199 DOI: 10.1038/s41541-022-00458-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 02/11/2022] [Indexed: 11/11/2022] Open
Abstract
Adult vaccination programs are receiving increasing attention however, little is known regarding the impact of age on the maintenance of the immune response. We investigated this issue in the context of a human papillomavirus (HPV) vaccination program collecting real-world data on the durability of humoral immunity in 315 female subjects stratified according to vaccination age (adolescents and adults) and sampled at early or late time points after the last vaccine dose. HPV-specific IgGs, but not memory B cells, were induced and maintained at higher levels in subjects vaccinated during adolescence. Nonetheless, antibody functions waned over time to a similar degree in adolescents and adults. To shed light on this phenomena, we analyzed quantitative and qualitative properties of lymphocytes. Similar biochemical features were observed between B-cell subsets from individuals belonging to the two age groups. Long term humoral responses toward vaccines administered at an earlier age were comparably maintained between adolescents and adults. The percentages of naïve B and CD4+ T cells were significantly higher in adolescents, and the latter directly correlated with IgG titers against 3 out of 4 HPV types. Our results indicate that age-specific HPV vaccine responsiveness is mostly due to quantitative differences of immune cell precursors rather than qualitative defects in B cells. In addition, our results indicate that adults also have a good humoral immunogenic profile, suggesting that their inclusion in catch-up programmes is desirable.
Collapse
Affiliation(s)
- Francesco Nicoli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Barbara Mantelli
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Eleonora Gallerani
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Valentina Telatin
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Laura Squarzon
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Serena Masiero
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Riccardo Gavioli
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy
| | - Antonella Caputo
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121, Ferrara, Italy.
- Department of Molecular Medicine, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
13
|
Weisel NM, Joachim SM, Smita S, Callahan D, Elsner RA, Conter LJ, Chikina M, Farber DL, Weisel FJ, Shlomchik MJ. Surface phenotypes of naive and memory B cells in mouse and human tissues. Nat Immunol 2022; 23:135-145. [PMID: 34937918 PMCID: PMC8712407 DOI: 10.1038/s41590-021-01078-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 10/22/2021] [Indexed: 11/09/2022]
Abstract
Memory B cells (MBCs) protect the body from recurring infections. MBCs differ from their naive counterparts (NBCs) in many ways, but functional and surface marker differences are poorly characterized. In addition, although mice are the prevalent model for human immunology, information is limited concerning the nature of homology in B cell compartments. To address this, we undertook an unbiased, large-scale screening of both human and mouse MBCs for their differential expression of surface markers. By correlating the expression of such markers with extensive panels of known markers in high-dimensional flow cytometry, we comprehensively identified numerous surface proteins that are differentially expressed between MBCs and NBCs. The combination of these markers allows for the identification of MBCs in humans and mice and provides insight into their functional differences. These results will greatly enhance understanding of humoral immunity and can be used to improve immune monitoring.
Collapse
Affiliation(s)
- Nadine M. Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,these authors contributed equally
| | - Stephen M. Joachim
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,these authors contributed equally
| | - Shuchi Smita
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Derrick Callahan
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Rebecca A. Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Laura J. Conter
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Maria Chikina
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, USA
| | - Donna L. Farber
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA,Department of Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Florian J. Weisel
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,these authors jointly supervised this work
| | - Mark J. Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA.,these authors jointly supervised this work,Correspondence to:
| |
Collapse
|
14
|
Morales-Núñez JJ, Muñoz-Valle JF, Torres-Hernández PC, Hernández-Bello J. Overview of Neutralizing Antibodies and Their Potential in COVID-19. Vaccines (Basel) 2021; 9:vaccines9121376. [PMID: 34960121 PMCID: PMC8706198 DOI: 10.3390/vaccines9121376] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/12/2021] [Accepted: 11/20/2021] [Indexed: 01/08/2023] Open
Abstract
The antibody response to respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a major focus of COVID-19 research due to its clinical relevance and importance in vaccine and therapeutic development. Neutralizing antibody (NAb) evaluations are useful for the determination of individual or herd immunity against SARS-CoV-2, vaccine efficacy, and humoral protective response longevity, as well as supporting donor selection criteria for convalescent plasma therapy. In the current manuscript, we review the essential concepts of NAbs, examining their concept, mechanisms of action, production, and the techniques used for their detection; as well as presenting an overview of the clinical use of antibodies in COVID-19.
Collapse
Affiliation(s)
- José Javier Morales-Núñez
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | - José Francisco Muñoz-Valle
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
| | | | - Jorge Hernández-Bello
- Institute of Research in Biomedical Sciences, University Center of Health Sciences (CUCS), University of Guadalajara, Guadalajara 44340, Mexico; (J.J.M.-N.); (J.F.M.-V.)
- Correspondence: ; Tel.: +52-333-450-9355
| |
Collapse
|
15
|
Pape KA, Dileepan T, Kabage AJ, Kozysa D, Batres R, Evert C, Matson M, Lopez S, Krueger PD, Graiziger C, Vaughn BP, Shmidt E, Rhein J, Schacker TW, Khoruts A, Jenkins MK. High-affinity memory B cells induced by SARS-CoV-2 infection produce more plasmablasts and atypical memory B cells than those primed by mRNA vaccines. Cell Rep 2021; 37:109823. [PMID: 34610291 PMCID: PMC8463313 DOI: 10.1016/j.celrep.2021.109823] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Accepted: 09/20/2021] [Indexed: 02/03/2023] Open
Abstract
Although both infections and vaccines induce memory B cell (MBC) populations that participate in secondary immune responses, the MBCs generated in each case can differ. Here, we compare SARS-CoV-2 spike receptor binding domain (S1-RBD)-specific primary MBCs that form in response to infection or a single mRNA vaccination. Both primary MBC populations have similar frequencies in the blood and respond to a second S1-RBD exposure by rapidly producing plasmablasts with an abundant immunoglobulin (Ig)A+ subset and secondary MBCs that are mostly IgG+ and cross-react with the B.1.351 variant. However, infection-induced primary MBCs have better antigen-binding capacity and generate more plasmablasts and secondary MBCs of the classical and atypical subsets than do vaccine-induced primary MBCs. Our results suggest that infection-induced primary MBCs have undergone more affinity maturation than vaccine-induced primary MBCs and produce more robust secondary responses.
Collapse
Affiliation(s)
- Kathryn A Pape
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Thamotharampillai Dileepan
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Amanda J Kabage
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Daria Kozysa
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Rodolfo Batres
- Department of Medicine, Division of Infectious Disease, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Clayton Evert
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Michael Matson
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Sharon Lopez
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Peter D Krueger
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Carolyn Graiziger
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Byron P Vaughn
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Eugenia Shmidt
- Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Joshua Rhein
- Department of Medicine, Division of Infectious Disease, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Timothy W Schacker
- Department of Medicine, Division of Infectious Disease, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Alexander Khoruts
- Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Department of Medicine, Division of Gastroenterology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Marc K Jenkins
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA; Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Bentes AA, Maia De Castro Romanelli R, Crispim APC, Marinho PES, Loutfi KS, Araujo ST, Campos E Silva LM, Guedes I, Martins Alvarenga A, Santos MA, Geessien Kroon E. Neurological manifestations due to dengue virus infection in children: clinical follow-up. Pathog Glob Health 2021; 115:476-482. [PMID: 34223795 PMCID: PMC8635603 DOI: 10.1080/20477724.2021.1942680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The aim was to assess neurological complications in children with an invasive neurological disease by dengue virus (DENV) and the time to resolve symptoms after hospital discharge. A prospective study was conducted at a referral hospital for infectious diseases in Brazil between March 2014 and July 2019. All children hospitalized with neurologic manifestations and DENV RNA detected by real-time reverse transcription-polymerase chain reaction (RT-qPCR) in cerebrospinal fluid (CSF) were followed up until complete resolution of neurological complications. On average, they were followed up for 16 months. Among 56 DENV-positive children, 39% had some neurologic complications after hospital discharge and found that 19.6% were discharged with anticonvulsants due to seizures, 10.7% developed motor complications (e.g. muscle weakness, paresis, ataxia, and walking disability), 5.4% had headaches, and 14.3% had sleep disorders. Among the 56 children, only three had a clinical diagnosis of dengue because the symptoms are nonspecific and 35% showed no change in cerebrospinal fluid (CSF). The average time to resolve complications was 5.9 months (ranging from 1 m to 32 m). These results should alert physicians to the difficulties of a clinical diagnosis of an infection that causes neurological complications after discharge in a significant number of children. RT-qPCR's etiological diagnosis of DENV infection enabled better clinical follow-up for early intervention in children with neurological complications.
Collapse
Affiliation(s)
- Aline Almeida Bentes
- Departamento De Pediatria, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
- Hospital Infantil João Paulo II, FHEMIG, Minas Gerais, Brazil
| | | | - Ana Paula Correa Crispim
- Laboratório De Vírus, Departamento De Microbiologia, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | | | - Sara Tavares Araujo
- Faculdade De Medicina, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | - Isabela Guedes
- Faculdade De Medicina, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| | | | | | - Erna Geessien Kroon
- Laboratório De Vírus, Departamento De Microbiologia, Universidade Federal De Minas Gerais, Minas Gerais, Brazil
| |
Collapse
|
17
|
Baumgarth N, Nikolich-Žugich J, Lee FEH, Bhattacharya D. Antibody Responses to SARS-CoV-2: Let's Stick to Known Knowns. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:2342-2350. [PMID: 32887754 PMCID: PMC7578055 DOI: 10.4049/jimmunol.2000839] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/12/2020] [Indexed: 02/06/2023]
Abstract
The scale of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has thrust immunology into the public spotlight in unprecedented ways. In this article, which is part opinion piece and part review, we argue that the normal cadence by which we discuss science with our colleagues failed to properly convey likelihoods of the immune response to SARS-CoV-2 to the public and the media. As a result, biologically implausible outcomes were given equal weight as the principles set by decades of viral immunology. Unsurprisingly, questionable results and alarmist news media articles have filled the void. We suggest an emphasis on setting expectations based on prior findings while avoiding the overused approach of assuming nothing. After reviewing Ab-mediated immunity after coronavirus and other acute viral infections, we posit that, with few exceptions, the development of protective humoral immunity of more than a year is the norm. Immunity to SARS-CoV-2 is likely to follow the same pattern.
Collapse
Affiliation(s)
- Nicole Baumgarth
- Center for Immunology and Infectious Diseases, Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA 95616
| | - Janko Nikolich-Žugich
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
- University of Arizona Center on Aging, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Emory University, Atlanta, GA 30322
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322; and
- Lowance Center for Human Immunology, Department of Pediatrics, Emory University, Atlanta, GA 30322
| | - Deepta Bhattacharya
- Department of Immunobiology, University of Arizona College of Medicine-Tucson, Tucson, AZ 85724;
| |
Collapse
|
18
|
Wong R, Belk JA, Govero J, Uhrlaub JL, Reinartz D, Zhao H, Errico JM, D'Souza L, Ripperger TJ, Nikolich-Zugich J, Shlomchik MJ, Satpathy AT, Fremont DH, Diamond MS, Bhattacharya D. Affinity-Restricted Memory B Cells Dominate Recall Responses to Heterologous Flaviviruses. Immunity 2020; 53:1078-1094.e7. [PMID: 33010224 DOI: 10.1016/j.immuni.2020.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 06/11/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Memory B cells (MBCs) can respond to heterologous antigens either by molding new specificities through secondary germinal centers (GCs) or by selecting preexisting clones without further affinity maturation. To distinguish these mechanisms in flavivirus infections and immunizations, we studied recall responses to envelope protein domain III (DIII). Conditional deletion of activation-induced cytidine deaminase (AID) between heterologous challenges of West Nile, Japanese encephalitis, Zika, and dengue viruses did not affect recall responses. DIII-specific MBCs were contained mostly within the plasma-cell-biased CD80+ subset, and few GCs arose following heterologous boosters, demonstrating that recall responses are confined by preexisting clonal diversity. Measurement of monoclonal antibody (mAb) binding affinity to DIII proteins, timed AID deletion, single-cell RNA sequencing, and lineage tracing experiments point to selection of relatively low-affinity MBCs as a mechanism to promote diversity. Engineering immunogens to avoid this MBC diversity may facilitate flavivirus-type-specific vaccines with minimized potential for infection enhancement.
Collapse
Affiliation(s)
- Rachel Wong
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Julia A Belk
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jennifer Govero
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Jennifer L Uhrlaub
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Dakota Reinartz
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Haiyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - John M Errico
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Lucas D'Souza
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | - Tyler J Ripperger
- Department of Immunobiology, University of Arizona, Tucson, AZ 85724, USA
| | | | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Michael S Diamond
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | | |
Collapse
|
19
|
Han L, Wei XX, Zheng YJ, Zhang LL, Wang XM, Yang HY, Ma X, Zhao LH, Tong XL. Potential mechanism prediction of Cold-Damp Plague Formula against COVID-19 via network pharmacology analysis and molecular docking. Chin Med 2020; 15:78. [PMID: 32754224 PMCID: PMC7391051 DOI: 10.1186/s13020-020-00360-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is a new global public health emergency. The therapeutic benefits of Cold‒Damp Plague Formula (CDPF) against COVID-19, which was used to treat "cold‒dampness stagnation in the lung" in Trial Versions 6 and 7 of the "Diagnosis and Treatment Protocol for COVID-19", have been demonstrated, but the effective components and their mechanism of action remain unclear. METHODS In this study, a network pharmacology approach was employed, including drug-likeness evaluation, oral bioavailability prediction, protein‒protein interaction (PPI) network construction and analysis, Gene Ontology (GO) terms, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation, and virtual docking, to predict the bioactive components, potential targets, and molecular mechanism of CDPF for COVID-19 treatment. RESULTS The active compound of herbs in CDPF and their candidate targets were obtained through database mining, and an herbs-ingredients-targets network was constructed. Subsequently, the candidate targets of the active compounds were compared to those relevant to COVID-19, to identify the potential targets of CDPF for COVID-19 treatment. Subsequently, the PPI network was constructed, which provided a basis for cluster analysis and hub gene screening. The seed targets in the most significant module were selected for further functional annotation. GO enrichment analysis identified four main areas: (1) cellular responses to external stimuli, (2) regulation of blood production and circulation, (3) free radical regulation, (4) immune regulation and anti-inflammatory effects. KEGG pathway analysis also revealed that CDPF could play pharmacological roles against COVID-19 through "multi components‒multi targets‒multi pathways" at the molecular level, mainly involving anti-viral, immune-regulatory, and anti-inflammatory pathways; consequently, a "CDPF-herbs-ingredients-targets-pathways-COVID-19" network was constructed. In hub target analysis, the top hub target IL6, and ACE2, the receptor via which SARS-CoV-2 typically enters host cells, were selected for molecular docking analyses, and revealed good binding activities. CONCLUSIONS This study revealed the active ingredients and potential molecular mechanism by which CDPF treatment is effective against COVID-19, and provides a reference basis for the wider application and further mechanistic investigations of CDPF in the fight against COVID-19.
Collapse
Affiliation(s)
- Lin Han
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiu-Xiu Wei
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Yu-Jiao Zheng
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Li-Li Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xin-Miao Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Hao-Yu Yang
- Beijing University of Chinese Medicine, Beijing, 100029 China
| | - Xu Ma
- Gansu University of Chinese Medicine, Lanzhou, 730000 China
| | - Lin-Hua Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| | - Xiao-Lin Tong
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053 China
| |
Collapse
|
20
|
Ma’roef CN, Dhenni R, Megawati D, Fadhilah A, Lucanus A, Artika IM, Masyeni S, Lestarini A, Sari K, Suryana K, Yudhaputri FA, Jaya UA, Sasmono RT, Ledermann JP, Powers AM, Myint KSA. Japanese encephalitis virus infection in non-encephalitic acute febrile illness patients. PLoS Negl Trop Dis 2020; 14:e0008454. [PMID: 32663209 PMCID: PMC7360021 DOI: 10.1371/journal.pntd.0008454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 06/05/2020] [Indexed: 11/18/2022] Open
Abstract
Although Japanese encephalitis virus (JEV) is considered endemic in Indonesia, there are only limited reports of JEV infection from a small number of geographic areas within the country with the majority of these being neuroinvasive disease cases. Here, we report cases of JEV infection in non-encephalitic acute febrile illness patients from Bali, Indonesia. Paired admission (S1) and discharge (S2) serum specimens from 144 acute febrile illness patients (without evidence of acute dengue virus infection) were retrospectively tested for anti-JEV IgM antibody and confirmed by plaque reduction neutralization test (PRNT) for JEV infection. Twenty-six (18.1%) patients were anti-JEV IgM-positive or equivocal in their S2 specimens, of which 5 (3.5%) and 8 (5.6%) patients met the criteria for confirmed and probable JEV infection, respectively, based on PRNT results. Notably, these non-encephalitic JE cases were less likely to have thrombocytopenia, leukopenia, and lower hematocrit compared with confirmed dengue cases of the same cohort. These findings highlight the need to consider JEV in the diagnostic algorithm for acute febrile illnesses in endemic areas and suggest that JEV as a cause of non-encephalitic disease has likely been underestimated in Indonesia. Japanese encephalitis virus (JEV) is an important cause of central nervous system (CNS) infections in Asia and is considered endemic in Indonesia. However, reports of JEV infection in non-encephalitic disease cases are lacking because diagnosis is difficult to confirm and JEV is rarely considered as a cause of non-encephalitic disease. Here, with robust serological testing, we identified cases of JEV infection in patients presenting at a regency hospital in Bali with fever but without symptoms of CNS infection. This finding supports the need to include JEV in routine clinical diagnostic algorithms for patients with fever in endemic areas.
Collapse
Affiliation(s)
- Chairin Nisa Ma’roef
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Rama Dhenni
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Dewi Megawati
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Araniy Fadhilah
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Anton Lucanus
- School of Anatomy, Physiology and Human Biology, University of Western Australia, Perth, Australia
| | - I Made Artika
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Department of Biochemistry, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Bogor, Indonesia
| | - Sri Masyeni
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Asri Lestarini
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | - Kartika Sari
- Faculty of Medicine and Health Sciences, Warmadewa University, Denpasar, Bali, Indonesia
| | | | | | - Ungke Anton Jaya
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute for Molecular Biology Jakarta, Indonesia
| | - R. Tedjo Sasmono
- Dengue Research Unit, Eijkman Institute for Molecular Biology Jakarta, Indonesia
| | - Jeremy P. Ledermann
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Ann M. Powers
- Division of Vector-Borne Diseases, Centers for Disease Control and Prevention, Fort Collins, Colorado, United States of America
| | - Khin Saw Aye Myint
- Emerging Virus Research Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- * E-mail: ,
| |
Collapse
|
21
|
Molari M, Eyer K, Baudry J, Cocco S, Monasson R. Quantitative modeling of the effect of antigen dosage on B-cell affinity distributions in maturating germinal centers. eLife 2020; 9:e55678. [PMID: 32538783 PMCID: PMC7360369 DOI: 10.7554/elife.55678] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Affinity maturation is a complex dynamical process allowing the immune system to generate antibodies capable of recognizing antigens. We introduce a model for the evolution of the distribution of affinities across the antibody population in germinal centers. The model is amenable to detailed mathematical analysis and gives insight on the mechanisms through which antigen availability controls the rate of maturation and the expansion of the antibody population. It is also capable, upon maximum-likelihood inference of the parameters, to reproduce accurately the distributions of affinities of IgG-secreting cells we measure in mice immunized against Tetanus Toxoid under largely varying conditions (antigen dosage, delay between injections). Both model and experiments show that the average population affinity depends non-monotonically on the antigen dosage. We show that combining quantitative modeling and statistical inference is a concrete way to investigate biological processes underlying affinity maturation (such as selection permissiveness), hardly accessible through measurements.
Collapse
Affiliation(s)
- Marco Molari
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Klaus Eyer
- Laboratory for Functional Immune Repertoire Analysis, Institute of Pharmaceutical Sciences, ETH ZurichZurichSwitzerland
| | - Jean Baudry
- Laboratoire Colloides et Materiaux Divises (LCMD), Chemistry, Biology and Innovation (CBI), ESPCI, PSL Research and CNRSParisFrance
| | - Simona Cocco
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| | - Rémi Monasson
- Laboratoire de Physique de l’École Normale Supérieure, ENS, PSL University, CNRS UMR8023, Sorbonne Université, Université Paris-Diderot, Sorbonne Paris CitéParisFrance
| |
Collapse
|
22
|
Gore MM. Vaccines Against Dengue and West Nile Viruses in India: The Need of the Hour. Viral Immunol 2020; 33:423-433. [PMID: 32320353 DOI: 10.1089/vim.2019.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of flaviviruses, dengue (DEN), Japanese encephalitis (JE) and West Nile (WN) viruses, and others, is generating a major concern in many countries. Both JE along with DEN have been endemic in large regions of India. WN virus infection, although circulating in southern regions for many years, in recent years, WN encephalitis patients have been demonstrated. While vaccines against JE have been developed and decrease outbreaks, in case of DEN and WN, vaccines are still in developing level, especially, it has been difficult to achieve the long-term protective immune response. The first licensed DEN vaccine, which is a live attenuated vaccine, was administered in countries where the virus is endemic, and has a potential to cause serious side effects, especially when administered to younger population as observed in the Philippines vaccination drive. In the case of WN, although the purified inactivated virion-based vaccine worked effectively as a veterinary vaccine for horses, no effective vaccine has yet been licensed for humans. The induction of CD4+ and CD8+ T cell responses is essential to complete protection by these viruses, as evidenced by responses to asymptomatic infections. Many studies have shown that neutralizing antibody (NAb) response is against surface structural proteins; CD4+ and CD8+ responses are mainly directed against nonstructural proteins rather than NAb response. New data suggest that encapsulating virus vaccines in nanoparticles (NPs) will direct antigen in cytoplasmic compartment by antigen-presenting cells, which will improve presentation to CD4+ and CD8+ T cells. Since tissue culture-derived, purified inactivated viruses are easier to manufacture and safer than developing live virus vaccines, inclusion of NP provides an attractive alternative for generating robust flaviviral vaccines that are affordable with long-lived protection.
Collapse
Affiliation(s)
- Milind M Gore
- Emeritus Scientist, ICMR-National Institute of Virology, Pune, India
| |
Collapse
|
23
|
Toro A, Parrinello NL, Schembari E, Mannino M, Corsale G, Triolo A, Palermo F, Romano A, Di Raimondo F, Di Carlo I. Single segment of spleen autotransplantation, after splenectomy for trauma, can restore splenic functions. World J Emerg Surg 2020; 15:17. [PMID: 32131858 PMCID: PMC7057566 DOI: 10.1186/s13017-020-00299-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 01/18/2023] Open
Abstract
Background Splenectomy is sometimes necessary after abdominal trauma, but splenectomized patients are at risk of sepsis due to impaired immunological functions. To overcome this risk, autotransplantation of the spleen by using a new technique has been proposed, but so far, a demonstration of functionality of the transplanted tissue is lacking. Methods We therefore evaluated 5 patients who underwent a splenic autotransplant in comparison with 5 splenectomized patients without splenic autotransplant and 7 normal subjects. Results We confirmed that the patients not undergoing autotransplantation, when compared to normal subjects, had a higher platelet count, higher percentage of micronucleated reticulocytes (p = 0.002), increased levels of naive B lymphocytes (p = 0.01), a defect of class-switched memory (p = 0.001) and class-unswitched memory B cells (p = 0.002), and increased levels of PD1 on T lymphocytes CD8+ (p = 0.08). In contrast, no significant differences for any of the abovementioned parameters were recorded between patients who underwent spleen autotransplantation and normal subjects. Conclusion These findings suggest that splenic autotransplantation is able to restore an adequate hemocatheretic activity as well as recover the immunological deficit after splenectomy.
Collapse
Affiliation(s)
- Adriana Toro
- Department of General Surgery, E. Muscatello Hospital, Augusta, SR, Italy
| | | | - Elena Schembari
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy
| | - Maurizio Mannino
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy
| | | | - Anna Triolo
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Filippo Palermo
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Alessandra Romano
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Division of Hematology, AOU Policlinico Vittorio Emanuele, University of Catania, Catania, Italy
| | - Isidoro Di Carlo
- Department of Surgical Sciences and Advanced Technologies "GF Ingrassia", University of Catania, Cannizzaro Hospital, Via Messina 829, 95126, Catania, Italy.
| |
Collapse
|
24
|
Establishment of a Standardized Vaccine Protocol for the Analysis of Protective Immune Responses During Experimental Trypanosome Infections in Mice. Methods Mol Biol 2020; 2116:721-738. [PMID: 32221951 DOI: 10.1007/978-1-0716-0294-2_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To date, trypanosomosis control in humans and animals is achieved by a combination of parasitological screening and treatment. While this approach has successfully brought down the number of reported T. b. gambiense Human African Trypanosomosis (HAT) cases, the method does not offer a sustainable solution for animal trypanosomosis (AT). The main reasons for this are (i) the worldwide distribution of AT, (ii) the wide range of insect vectors involved in transmission of AT, and (iii) the existence of a wildlife parasite reservoir that can serve as a source for livestock reinfection. Hence, in order to control livestock trypanosomosis the only viable long-term solution is an effective antitrypanosome vaccination strategy. Over the last decades, multiple vaccine approaches have been proposed. Despite repeated reports of promising experimental approaches, none of those made it to a field applicable vaccine format. This failure can in part be attributed to flaws in the experimental design that favor a positive laboratory result. This chapter provides a vaccine protocol that should allow for a proper outcome prediction in experimental anti-AT vaccine approaches.
Collapse
|