1
|
Liu J, Wang M, Tian X, Wu S, Peng H, Zhu Y, Liu Y. New insights into allergic rhinitis treatment: MSC nanovesicles targeting dendritic cells. J Nanobiotechnology 2024; 22:575. [PMID: 39294599 PMCID: PMC11411834 DOI: 10.1186/s12951-024-02748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 08/02/2024] [Indexed: 09/20/2024] Open
Abstract
Allergic rhinitis (AR) is a condition with limited treatment options. This study investigates the potential use of mesenchymal stem cell (MSC) nanovesicles as a novel therapy for AR. Specifically, the study explores the underlying mechanisms of MSC nanovesicle therapy by targeting dendritic cells (DCs). The researchers fabricated DC-targeted P-D2-EVs nanovesicles and characterized their properties. Transcriptomic sequencing and single-cell sequencing analyses were performed to study the impact of P-D2-EVs on AR mice, identifying core genes involved in the treatment. In vitro cell experiments were conducted to validate the effects of P-D2-EVs on DC metabolism, Th2 differentiation, and ILC2 activation. The results showed that P-D2-EVs efficiently targeted DCs. Transcriptomic sequencing analysis revealed differential expression of 948 genes in nasal tissue DCs of mice treated with P-D2-EVs. Single-cell sequencing further revealed that P-D2-EVs had inhibitory effects on DC activation, Th2 differentiation, and ILC2 activation, with Fut1 identified as the core gene. Validation experiments demonstrated that P-D2-EVs improved IL10 metabolism in DCs by downregulating Fut1 expression, thereby suppressing Th2 differentiation and ILC2 activation. Animal experiments confirmed the inhibitory effects of P-D2-EVs and their ability to ameliorate AR symptoms in mice. The study suggests that P-D2-EVs reshape DC metabolism and suppress Th2 differentiation and ILC2 activation through the inhibition of the Fut1/ICAM1/P38 MAPK signaling pathway, providing a potential therapeutic approach for AR.
Collapse
Affiliation(s)
- Jianyu Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Meiqun Wang
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Xiaoyan Tian
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Shuhong Wu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Haisen Peng
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yaqiong Zhu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Yuehui Liu
- Department of Otolaryngology Head and Neck Surgery, Jiangxi Medical College, Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
2
|
Lui PP, Xu JZ, Aziz H, Sen M, Ali N. Jagged-1+ skin Tregs modulate cutaneous wound healing. Sci Rep 2024; 14:20999. [PMID: 39251686 PMCID: PMC11385218 DOI: 10.1038/s41598-024-71512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/28/2024] [Indexed: 09/11/2024] Open
Abstract
Skin-resident regulatory T cells (Tregs) play an irreplaceable role in orchestrating cutaneous immune homeostasis and repair, including the promotion of hair regeneration via the Notch signaling ligand Jagged-1 (Jag1). While skin Tregs are indispensable for facilitating tissue repair post-wounding, it remains unknown if Jag1-expressing skin Tregs impact wound healing. Using a tamoxifen inducible Foxp3creERT2Jag1fl/fl model, we show that loss of functional Jag1 in Tregs significantly delays the rate of full-thickness wound closure. Unlike in hair regeneration, skin Tregs do not utilize Jag1 to impact epithelial stem cells during wound healing. Instead, mice with Treg-specific Jag1 ablation exhibit a significant reduction in Ly6G + neutrophil accumulation at the wound site. However, during both homeostasis and wound healing, the loss of Jag1 in Tregs does not impact the overall abundance or activation profile of immune cell targets in the skin, such as CD4+ and CD8+ T cells, or pro-inflammatory macrophages. This collectively suggests that skin Tregs may utilize Jag1-Notch signalling to co-ordinate innate cell recruitment under conditions of injury but not homeostasis. Overall, our study demonstrates the importance of Jag1 expression in Tregs to facilitate adequate wound repair in the skin.
Collapse
Affiliation(s)
- Prudence PokWai Lui
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Jessie Z Xu
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Hafsah Aziz
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Monica Sen
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, King's College London, London, SE1 9RT, UK.
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, SE1 9RT, UK.
| |
Collapse
|
3
|
Kim D, Kim G, Yu R, Lee J, Kim S, Gleason MR, Qiu K, Montauti E, Wang LL, Fang D, Choi J, Chandel NS, Weinberg S, Min B. Inhibitory co-receptor Lag3 supports Foxp3 + regulatory T cell function by restraining Myc-dependent metabolic programming. Immunity 2024:S1074-7613(24)00407-2. [PMID: 39236718 DOI: 10.1016/j.immuni.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/22/2024] [Accepted: 08/07/2024] [Indexed: 09/07/2024]
Abstract
Lymphocyte activation gene 3 (Lag3) is an inhibitory co-receptor expressed on activated T cells and has been proposed to regulate regulatory T (Treg) cell function. However, its precise modality and mechanisms remain elusive. We generated Treg cell-specific Lag3-mutant mouse models and found that Lag3 was essential for Treg cell control of autoimmunity. RNA sequencing analysis revealed that Lag3 mutation altered genes associated with metabolic processes, especially Myc target genes. Myc expression in Lag3-mutant Treg cells was increased to the level seen in conventional T helper (Th)1-type effector cells and directly correlated with their metabolic profiles and in vivo suppressive functions. The phosphatidylinositol 3-kinase (PI3K)-Akt-Rictor pathway was activated in Lag3-mutant Treg cells, and inhibiting PI3K, Rictor, or lactate dehydrogenase A (Ldha), a key Myc target enzyme converting pyruvate to lactate, was sufficient to restore normal metabolism and suppressive function in Lag3-mutant Treg cells. These findings indicate that Lag3 supports Treg cell suppression partly by tuning Myc-dependent metabolic programming.
Collapse
Affiliation(s)
- Dongkyun Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Giha Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rongzhen Yu
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Juyeun Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Sohee Kim
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Mia R Gleason
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kevin Qiu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elena Montauti
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Li Lily Wang
- Department of Translational Hematology and Oncology Research, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | - Deyu Fang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaehyuk Choi
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Samuel Weinberg
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Booki Min
- Department of Microbiology and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
4
|
Sun L, Fang K, Yang Z. Combination therapy with probiotics and anti-PD-L1 antibody synergistically ameliorates sepsis in mouse model. Heliyon 2024; 10:e31747. [PMID: 38828304 PMCID: PMC11140784 DOI: 10.1016/j.heliyon.2024.e31747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 06/05/2024] Open
Abstract
The study investigated the protective effects and mechanisms of probiotics in conjunction with an anti-PD-L1 antibody on the immune functions of septic mice. Sixty-four mice were assigned to sepsis groups receiving vehicle, probiotics, and anti-PD-L1 antibody individually or in combination, with healthy mice as controls. Sepsis was induced by cecal ligation and puncture (CLP), followed by intraperitoneal Lipopolysaccharide (LPS) injection. Blood and tissues were collected one day post-injection for detecting inflammation-related cytokines, Treg, PI3K/Akt pathway-related protein expression, and lung tissue pathology. The survival time of the remaining ten mice was recorded over seven days. Compared to healthy mice, septic mice given PBS exhibited significantly different serum levels of IL-6, IL-8, IL-17, IL-10, and IFN-γ (all p < 0.001). Treatment with anti-PD-L1 antibody combined with probiotics significantly increased the 7-day survival rate in septic mice, accompanied by decreased pro-inflammatory cytokines, increased anti-inflammatory cytokines, improved oxidative stress, reduced lung injury, and enhanced Th17/Treg balance. This combined therapy demonstrated superior efficacy compared to antibodies or probiotics alone. Additionally, it facilitated peripheral blood polymorphonuclear neutrophil apoptosis, enhancing protection by blocking PD-L1 function and inhibiting PI3K-dependent AKT phosphorylation. In conclusion, combining probiotics with an anti-PD-L1 antibody enhances protective effects in septic mice by reducing serum inflammatory factors, promoting neutrophil apoptosis, regulating Th17/Treg balance, and inhibiting the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Leiming Sun
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Kun Fang
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| | - Zheng Yang
- Department of Critical Care Medicine, Hangzhou Red Cross Hospital, Hangzhou, 310003, Zhejiang Province, China
| |
Collapse
|
5
|
Jian Q, Fu Z, Wang H, Zhang H, Ma Y. Optimal conditions for adenoviral transduction of immature dendritic cells without affecting the tolerogenic activity of DC-based immunotherapy. J Virol Methods 2024; 327:114921. [PMID: 38552881 DOI: 10.1016/j.jviromet.2024.114921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in maintaining immune tolerance. Using recombinant adenovirus (rAd) to deliver vectors to immature dendritic cells (imDCs) is an important method for studying the tolerogenic function of DCs. We found that using RPMI medium and a higher MOI during transduction increased the expression of CD80, CD86, and MHC-II on the surface of imDCs. Our data reveal a significant increase in the secretion of the pro-inflammatory cytokine IL-6 in the group showing the most pronounced phenotypic changes. In the mouse heart transplant model, imDCs with unstable phenotype and function due to adenoviral transduction resulted in an increased proportion of Th1 and Th17 cells in recipients. However, these effects can be managed, and our proposed optimized transduction strategy significantly minimizes these adverse effects. Our study holds significant implications for the development and optimization of immunotherapy utilizing tolerogenic dendritic cells.
Collapse
Affiliation(s)
- Qian Jian
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Zongli Fu
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanyu Wang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hanyuan Zhang
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Yi Ma
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Organ Donation and Transplant Immunology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial International Cooperation Base of Science and Technology (Organ Transplantation), The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
6
|
Ni H, Lin Q, Zhong J, Gan S, Cheng H, Huang Y, Ding X, Yu H, Xu Y, Nie H. Role of sulfatide-reactive vNKT cells in promoting lung Treg cells via dendritic cell modulation in asthma models. Eur J Pharmacol 2024; 970:176461. [PMID: 38460658 DOI: 10.1016/j.ejphar.2024.176461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/11/2024]
Abstract
Our previous studies have showed that sulfatide-reactive type II NKT (i.e. variant NKT, vNKT) cells inhibit the immunogenic maturation during the development of mature lung dendritic cells (LDCs), leading todeclined allergic airway inflammation in asthma. Nonetheless, the specific immunoregulatory roles of vNKT cells in LDC-mediated Th2 cell responses remain incompletely understood. Herein, we found that administration of sulfatide facilitated the generation of CD4+FoxP3+ regulatory T (Treg) cells in the lungs of wild-type mice, but not in CD1d-/- and Jα18-/- mice, after ovalbumin or house dust mite exposure. This finding implies that the enhancement of lung Treg cells by sulfatide requires vNKT cells, which dependent on invariant NKT (iNKT) cells. Furthermore, the CD4+FoxP3+ Treg cells induced by sulfatide-reactive vNKT cells were found to be associated with PD-L1 molecules expressed on LDCs, and this association was dependent on iNKT cells. Collectively, our findings suggest that in asthma-mimicking murine models, sulfatide-reactive vNKT cells facilitate the generation of lung Treg cells through inducing tolerogenic properties in LDCs, and this process is dependent on the presence of lung iNKT cells. These results may provide a potential therapeutic approach to treat allergic asthma.
Collapse
Affiliation(s)
- Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jieying Zhong
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Shaoding Gan
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hong Cheng
- Department of Parmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| |
Collapse
|
7
|
Wan Z, Huang J, Ou X, Lou S, Wan J, Shen Z. Psoriasis de novo or exacerbation by PD-1 checkpoint inhibitors. An Bras Dermatol 2024; 99:425-432. [PMID: 38388337 PMCID: PMC11074622 DOI: 10.1016/j.abd.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 02/24/2024] Open
Abstract
PD-1 (programmed Death-1) immune checkpoint inhibitors have provided significant benefits to tumor patients. However, a considerable proportion of the patients develop immune-related adverse events (irAEs), of which cutaneous irAEs (cirAEs, e.g., psoriasis) occur relatively early. This review provides an overview of the current progress in psoriasis de novo or exacerbation by PD-1 checkpoint inhibitors. It not only describes the relevant influencing factors but also theoretically analyzes the immunological mechanisms that lead to the onset or exacerbation of psoriasis. Finally, the authors present guidelines for the treatment of psoriasis de novo or exacerbation by PD-1 checkpoint inhibitors. The review is intended to assist dermatologists in the early recognition and effective individualized management of such cirAE, which is helpful to continue or adjust the tumor-targeted immunotherapy on the basis of ensuring the quality of life of tumor patients.
Collapse
Affiliation(s)
- Zi Wan
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiangyuan Huang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaojie Ou
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Shuang Lou
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jianji Wan
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zhu Shen
- Department of Dermatology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| |
Collapse
|
8
|
Santosh Nirmala S, Kayani K, Gliwiński M, Hu Y, Iwaszkiewicz-Grześ D, Piotrowska-Mieczkowska M, Sakowska J, Tomaszewicz M, Marín Morales JM, Lakshmi K, Marek-Trzonkowska NM, Trzonkowski P, Oo YH, Fuchs A. Beyond FOXP3: a 20-year journey unravelling human regulatory T-cell heterogeneity. Front Immunol 2024; 14:1321228. [PMID: 38283365 PMCID: PMC10811018 DOI: 10.3389/fimmu.2023.1321228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
The initial idea of a distinct group of T-cells responsible for suppressing immune responses was first postulated half a century ago. However, it is only in the last three decades that we have identified what we now term regulatory T-cells (Tregs), and subsequently elucidated and crystallized our understanding of them. Human Tregs have emerged as essential to immune tolerance and the prevention of autoimmune diseases and are typically contemporaneously characterized by their CD3+CD4+CD25high CD127lowFOXP3+ phenotype. It is important to note that FOXP3+ Tregs exhibit substantial diversity in their origin, phenotypic characteristics, and function. Identifying reliable markers is crucial to the accurate identification, quantification, and assessment of Tregs in health and disease, as well as the enrichment and expansion of viable cells for adoptive cell therapy. In our comprehensive review, we address the contributions of various markers identified in the last two decades since the master transcriptional factor FOXP3 was identified in establishing and enriching purity, lineage stability, tissue homing and suppressive proficiency in CD4+ Tregs. Additionally, our review delves into recent breakthroughs in innovative Treg-based therapies, underscoring the significance of distinct markers in their therapeutic utilization. Understanding Treg subsets holds the key to effectively harnessing human Tregs for immunotherapeutic approaches.
Collapse
Affiliation(s)
| | - Kayani Kayani
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Department of Academic Surgery, Queen Elizabeth Hospital, University of Birmingham, Birmingham, United Kingdom
- Department of Renal Surgery, Queen Elizabeth Hospital Birmingham, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Mateusz Gliwiński
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Yueyuan Hu
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | | | - Justyna Sakowska
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Martyna Tomaszewicz
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Kavitha Lakshmi
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| | | | - Piotr Trzonkowski
- Department of Medical Immunology, Medical University of Gdańsk, Gdańsk, Poland
| | - Ye Htun Oo
- Centre for Liver and Gastrointestinal Research and National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
- Liver Transplant and Hepatobiliary Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Birmingham Advanced Cellular Therapy Facility, University of Birmingham, Birmingham, United Kingdom
- Centre for Rare Diseases, European Reference Network - Rare Liver Centre, Birmingham, United Kingdom
| | - Anke Fuchs
- Center for Regenerative Therapies Dresden, Technical University Dresden, Dresden, Germany
| |
Collapse
|
9
|
Cuaycal AE, Teixeira LD, Lorca GL, Gonzalez CF. Lactobacillus johnsonii N6.2 phospholipids induce immature-like dendritic cells with a migratory-regulatory-like transcriptional signature. Gut Microbes 2023; 15:2252447. [PMID: 37675983 PMCID: PMC10486300 DOI: 10.1080/19490976.2023.2252447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/08/2023] Open
Abstract
Shifts in the gut microbiota composition, called dysbiosis, have been directly associated with acute and chronic diseases. However, the underlying biological systems connecting gut dysbiosis to systemic inflammatory pathologies are not well understood. Phospholipids (PLs) act as precursors of both, bioactive inflammatory and resolving mediators. Their dysregulation is associated with chronic diseases including cancer. Gut microbial-derived lipids are structurally unique and capable of modulating host's immunity. Lactobacillus johnsonii N6.2 is a Gram-positive gut symbiont with probiotic characteristics. L. johnsonii N6.2 reduces the incidence of autoimmunity in animal models of Type 1 Diabetes and improves general wellness in healthy volunteers by promoting, in part, local and systemic anti-inflammatory responses. By utilizing bioassay-guided fractionation methods with bone marrow-derived dendritic cells (BMDCs), we report here that L. johnsonii N6.2 purified lipids induce a transcriptional signature that resembles that of migratory (mig) DCs. RNAseq-based analysis showed that BMDCs stimulated with L. johnsonii N6.2 total lipids upregulate maturation-mig related genes Cd86, Cd40, Ccr7, Icam1 along with immunoregulatory genes including Itgb8, Nfkbiz, Jag1, Adora2a, IL2ra, Arg1, and Cd274. Quantitative reverse transcription (qRT)-PCR analysis indicated that PLs are the bioactive lipids triggering the BMDCs response. Antibody-blocking of surface Toll-like receptor (TLR)2 resulted in boosted PL-mediated upregulation of pro-inflammatory Il6. Chemical inhibition of the IKKα kinase from the non-canonical NF-κB pathway specifically restricted upregulation of Il6 and Tnf. Phenotypically, PL-stimulated BMDCs displayed an immature like-phenotype with significantly increased surface ICAM-1. This study provides insight into the immunoregulatory capacity of Gram-positive, gut microbial-derived phospholipids on innate immune responses.
Collapse
Affiliation(s)
- Alexandra E. Cuaycal
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Leandro Dias Teixeira
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Graciela L. Lorca
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Claudio F. Gonzalez
- Department of Microbiology and Cell Science, Genetics Institute, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Liu Q, Chen C, He Y, Mai W, Ruan S, Ning Y, Li Y. Notch Signaling Regulates the Function and Phenotype of Dendritic Cells in Helicobacter pylori Infection. Microorganisms 2023; 11:2818. [PMID: 38004829 PMCID: PMC10673485 DOI: 10.3390/microorganisms11112818] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Notch signaling manipulates the function and phenotype of dendritic cells (DCs), as well as the interaction between DCs and CD4+ T cells. However, the role of Notch signaling in Helicobacter pylori (H. pylori) infection remains elusive. Murine bone marrow-derived dendritic cells (BMDCs) were pretreated in the absence or presence of Notch signaling inhibitor DAPT prior to H. pylori stimulation and the levels of Notch components, cytokines and surface markers as well as the differentiation of CD4+ T cells in co-culture were measured using quantitative real-time PCR (qRT-PCR), Western blot, enzyme-linked immunosorbent assay (ELISA) and flow cytometry. Compared with the control, the mRNA expression of all Notch receptors and Notch ligands Dll4 and Jagged1 was up-regulated in H. pylori-stimulated BMDCs. The blockade of Notch signaling by DAPT influenced the production of IL-1β and IL-10 in H. pylori-pulsed BMDCs, and reduced the expression of Notch1, Notch3, Notch4, Dll1, Dll3 and Jagged2. In addition, DAPT pretreatment decreased the expression of maturation markers CD80, CD83, CD86, and major histocompatibility complex class II (MHC-II) of BMDCs, and further skewed Th17/Treg balance toward Treg. Notch signaling regulates the function and phenotype of DCs, thus mediating the differentiation of CD4+ T cells during H. pylori infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, No. 1023, South Shatai Road, Baiyun District, Guangzhou 510515, China (W.M.)
| |
Collapse
|
11
|
Zhang P, Wang Y, Miao Q, Chen Y. The therapeutic potential of PD-1/PD-L1 pathway on immune-related diseases: Based on the innate and adaptive immune components. Biomed Pharmacother 2023; 167:115569. [PMID: 37769390 DOI: 10.1016/j.biopha.2023.115569] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 09/30/2023] Open
Abstract
Currently, immunotherapy targeting programmed cell death 1 (PD-1) or programmed death ligand 1 (PD-L1) has revolutionized the treatment strategy of human cancer patients. Meanwhile, PD-1/PD-L1 pathway has also been implicated in the pathogenesis of many immune-related diseases, such as autoimmune diseases, chronic infection diseases and adverse pregnancy outcomes, by regulating components of the innate and adaptive immune systems. Given the power of the new therapy, a better understanding of the regulatory effects of PD-1/PD-L1 pathway on innate and adaptive immune responses in immune-related diseases will facilitate the discovery of novel biomarkers and therapeutic drug targets. Targeting this pathway may successfully halt or potentially even reverse these pathological processes. In this review, we discuss recent major advances in PD-1/PD-L1 axis regulating innate and adaptive immune components in immune-related diseases. We reveal that the impact of PD-1/PD-L1 axis on the immune system is complex and manifold and multi-strategies on the targeted PD-1/PD-L1 axis are taken in the treatment of immune-related diseases. Consequently, targeting PD-1/PD-L1 pathway, alone or in combination with other treatments, may represent a novel strategy for future therapeutic intervention on immune-related diseases.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Yuting Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Qianru Miao
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ying Chen
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention (China Medical University), Ministry of Education, Shenyang 110122, Liaoning, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China.
| |
Collapse
|
12
|
Liu G, Zhang Z, Wu Y, Feng J, Lan Y, Dong D, Liu Y, Yuan H, Tai G, Li S, Ni W. Anti-PD-L1 antibody reverses the immune tolerance induced by multiple MUC1-MBP vaccine immunizations by increasing the CD80/PD-L1 ratio, resulting in DC maturation, and decreasing Treg activity in B16-MUC1 melanoma-bearing mice. Int Immunopharmacol 2023; 121:110487. [PMID: 37364328 DOI: 10.1016/j.intimp.2023.110487] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
In this study, we explored the possible mechanism of tumor tolerance induced by multiple repeated immunizations with a tumor vaccine (MUC1-MBP fusion protein plus CpG2006). We first analyzed the mechanism of tolerance by immunizing tumor-bearing mice 2, 5, or 8 times and found that compared with five immunizations with the M-M vaccine, eight immunizations increased tumor volume and weight and Treg levels, while the proportions of Th1 and Tc1 cells in the spleen and lymph nodes were decreased. In particular, the M-M vaccine induced PD-L1 expression in CD11c + DCs and decreased their CD80/PD-L1 ratio. Therefore, the mechanism of tolerance induction by multiple immunizations with the M-M vaccine was investigated by focusing on the CD80/PD-L1 ratio, and an anti-PD-L1 antibody (αPD-L1) and the M-M vaccine were used in combination to treat melanoma. The results showed that αPD-L1 increased the CD80/PD-L1 ratio and enhanced the maturation of cDC1s by blocking PD-L1 on DCs, which potentially increased the activity of Th1 and Tc1 cells. Furthermore, the combination of the M-M vaccine with αPD-L1 decreased the activity and proportion of Tregs, which reversed the immune tolerance induced by eight immunizations with the vaccine. This study reveals the mechanism of the combination of M-M and αPD-L1 and provides a new combination strategy for improving the therapeutic effect of the M-M vaccine, laying a theoretical basis for the clinical application of the vaccine.
Collapse
Affiliation(s)
- Guomu Liu
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Zenan Zhang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yixuan Wu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Jingyue Feng
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yue Lan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Dai Dong
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Yu Liu
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Hongyan Yuan
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Guixiang Tai
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Shanshan Li
- Department of Dermatology and Venereology, The First Hospital of Jilin University, Changchun 130021, Jilin, China.
| | - Weihua Ni
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
13
|
Li J, Wang S, Chi X, He Q, Tao C, Ding Y, Wang J, Zhao J, Wang W. Identification of heterogeneous subtypes and a prognostic model for gliomas based on mitochondrial dysfunction and oxidative stress-related genes. Front Immunol 2023; 14:1183475. [PMID: 37334354 PMCID: PMC10272431 DOI: 10.3389/fimmu.2023.1183475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/22/2023] [Indexed: 06/20/2023] Open
Abstract
Objective Mitochondrial dysfunction and oxidative stress are known to involved in tumor occurrence and progression. This study aimed to explore the molecular subtypes of lower-grade gliomas (LGGs) based on oxidative stress-related and mitochondrial-related genes (OMRGs) and construct a prognostic model for predicting prognosis and therapeutic response in LGG patients. Methods A total of 223 OMRGs were identified by the overlap of oxidative stress-related genes (ORGs) and mitochondrial-related genes (MRGs). Using consensus clustering analysis, we identified molecular subtypes of LGG samples from TCGA database and confirmed the differentially expressed genes (DEGs) between clusters. We constructed a risk score model using LASSO regression and analyzed the immune-related profiles and drug sensitivity of different risk groups. The prognostic role of the risk score was confirmed using Cox regression and Kaplan-Meier curves, and a nomogram model was constructed to predict OS rates. We validated the prognostic role of OMRG-related risk score in three external datasets. Quantitative real-time PCR (qRT-PCR) and immunohistochemistry (IHC) staining confirmed the expression of selected genes. Furthermore, wound healing and transwell assays were performed to confirm the gene function in glioma. Results We identified two OMRG-related clusters and cluster 1 was significantly associated with poor outcomes (P<0.001). The mutant frequencies of IDH were significantly lower in cluster 1 (P<0.05). We found that the OMRG-related risk scores were significantly correlated to the levels of immune infiltration and immune checkpoint expression. High-risk samples were more sensitive to most chemotherapeutic agents. We identified the prognostic role of OMRG-related risk score in LGG patients (HR=2.665, 95%CI=1.626-4.369, P<0.001) and observed that patients with high-risk scores were significantly associated with poor prognosis (P<0.001). We validated our findings in three external datasets. The results of qRT-PCR and IHC staining verified the expression levels of the selected genes. The functional experiments showed a significant decrease in the migration of glioma after knockdown of SCNN1B. Conclusion We identified two molecular subtypes and constructed a prognostic model, which provided a novel insight into the potential biological function and prognostic significance of mitochondrial dysfunction and oxidative stress in LGG. Our study might help in the development of more precise treatments for gliomas.
Collapse
Affiliation(s)
- Junsheng Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Siyu Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaojing Chi
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Qiheng He
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Chuming Tao
- Department of Neurosurgery, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yaowei Ding
- Department of Clinical Diagnosis, Laboratory of Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jia Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
- Savaid Medical School, University of the Chinese Academy of Sciences, Beijing, China
| | - Wen Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China
- Beijing Translational Engineering Center for 3D Printer in Clinical Neuroscience, Beijing, China
| |
Collapse
|
14
|
Kim D, Kim G, Yu R, Lee J, Kim S, Qiu K, Montauti E, Fang D, Chandel NS, Choi J, Min B. Lymphocyte activation gene 3 (Lag3) supports Foxp3 + Treg cell function by restraining c-Myc-dependent aerobic glycolysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528371. [PMID: 36824824 PMCID: PMC9949104 DOI: 10.1101/2023.02.13.528371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Lymphocyte activation gene 3 (Lag3) has emerged as the next-generation immune checkpoint molecule due to its ability to inhibit effector T cell activity. Foxp3 + regulatory T (Treg) cells, a master regulator of immunity and tolerance, also highly express Lag3. While Lag3 is thought to be necessary for Treg cell-mediated regulation of immunity, the precise roles and underlying mechanisms remain largely elusive. In this study, we report that Lag3 is indispensable for Treg cells to control autoimmune inflammation. Utilizing a newly generated Treg cell specific Lag3 mutant mouse model, we found that these animals are highly susceptible to autoimmune diseases, suggesting defective Treg cell function. Genome wide transcriptome analysis further uncovered that Lag3 mutant Treg cells upregulated genes involved in metabolic processes. Mechanistically, we found that Lag3 limits Treg cell expression of Myc, a key regulator of aerobic glycolysis. We further found that Lag3-dependent Myc expression determines Treg cells’ metabolic programming as well as the in vivo function to suppress autoimmune inflammation. Taken together, our results uncovered a novel function of Lag3 in supporting Treg cell suppressive function by regulating Myc-dependent metabolic programming.
Collapse
|
15
|
Kimura S, Dupee Z, Lima F, Allen R, Kazmi S, Diodati N, Lukacs NW, Kunkel SL, Schaller M. Jagged-1 Reduces Th2 Inflammation and Memory Cell Expansion in Allergic Airway Disease. Immunohorizons 2023; 7:168-176. [PMID: 36729482 PMCID: PMC10563391 DOI: 10.4049/immunohorizons.2300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
Notch ligands present during interactions between T cells and dendritic cells (DCs) dictate cell phenotype through a myriad of effects including the induction of T cell regulation, survival, and cytokine response. The presence of Notch ligands on DCs varies with the context of the inflammatory response; Jagged-1 is constitutively expressed, whereas Delta-like 1 and Delta-like 4 are induced in response to pathogen exposure. Although Delta-like and Jagged ligands send different signals through the same Notch receptor, the role of these two ligands in peripheral T cell immunity is not clear. The goal of our studies was to determine the role of Jagged-1 in the pathogen-free inflammation induced by OVA during allergic airway disease in mice. Our studies show that a deletion in DC-expressed Jagged-1 causes a significant increase in cytokine production, resulting in increased mucus production and increased eosinophilia in the lungs of mice sensitized and challenged with OVA. We also observed that a reduction of Jagged-1 expression is correlated with increased expression of the Notch 1 receptor on the surface of CD4+ T cells in both the lung and lymph node. Through transfer studies using OT-II transgenic T cells, we demonstrate that Jagged-1 represses the expansion of CD44+CD62L+CCR7+ memory cells and promotes the expansion of CD44+CD62L- effector cells, but it has no effect on the expansion of naive cells during allergic airway disease. These data suggest that Jagged-1 may have different roles in Ag-specific T cell responses, depending on the maturity of the stimulated T cell.
Collapse
Affiliation(s)
- Soichiro Kimura
- Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan
- Division of Infection Prevention and Control, Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, Kanagawa, Japan
| | - Zadia Dupee
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL; and
| | - Felipe Lima
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL; and
| | - Ronald Allen
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Soha Kazmi
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL; and
| | - Nickolas Diodati
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL; and
| | | | | | - Matthew Schaller
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Florida, Gainesville, FL; and
| |
Collapse
|
16
|
Phares TW, Huang J, Kotraiah V, Hauser MJ, Domi A, Oruganti S, Browne CD, Buontempo P, Mansour M, Pannucci J, Tsuji M, Gutierrez GM. Viral delivery of a peptide-based immunomodulator enhances T cell priming during vaccination. Front Pharmacol 2022; 13:1029636. [PMID: 36582528 PMCID: PMC9792674 DOI: 10.3389/fphar.2022.1029636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/18/2022] [Indexed: 12/15/2022] Open
Abstract
Modern, subunit-based vaccines have so far failed to induce significant T cell responses, contributing to ineffective vaccination against many pathogens. Importantly, while today's adjuvants are designed to trigger innate and non-specific immune responses, they fail to directly stimulate the adaptive immune compartment. Programmed cell death 1 (PD-1) partly regulates naïve-to-antigen-specific effector T cell transition and differentiation by suppressing the magnitude of activation. Indeed, we previously reported on a microbial-derived, peptide-based PD-1 checkpoint inhibitor, LD01, which showed potent T cell-stimulating activity when combined with a vaccine. Here we sought to improve the potency of LD01 by designing and testing new LD01 derivatives. Accordingly, we found that a modified version of an 18-amino acid metabolite of LD01, LD10da, improved T cell activation capability in a malaria vaccine model. Specifically, LD10da demonstrates improved antigen-specific CD8+ T cell expansion when combined prophylactically with an adenovirus-based malaria vaccine. A single dose of LD10da at the time of vaccination is sufficient to increase antigen-specific CD8+ T cell expansion in wild-type mice. Further, we show that LD10 can be encoded and delivered by a Modified Vaccinia Ankara viral vector and can enhance antigen-specific CD8+ T cell expansion comparable to that of synthetic peptide administration. Therefore, LD10da represents a promising biologic-based immunomodulator that can be genetically encoded and delivered, along with the antigen, by viral or other nucleic acid vectors to improve the efficacy and delivery of vaccines for ineradicable and emerging infectious diseases.
Collapse
Affiliation(s)
| | - Jing Huang
- The Aaron Diamond AIDS Research Center, New York, NY, United States,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | | | | | | | | | | | | | - Marc Mansour
- MM Scientific Consultants Inc., Halifax, NS, Canada
| | | | - Moriya Tsuji
- The Aaron Diamond AIDS Research Center, New York, NY, United States,Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - Gabriel M. Gutierrez
- Hibiscus Biotechnology, LLC, Rockville, MD, United States,*Correspondence: Gabriel M. Gutierrez,
| |
Collapse
|
17
|
Cui X, Ye Z, Wang D, Yang Y, Jiao C, Ma J, Tang N, Zhang H. Aryl hydrocarbon receptor activation ameliorates experimental colitis by modulating the tolerogenic dendritic and regulatory T cell formation. Cell Biosci 2022; 12:46. [PMID: 35461286 PMCID: PMC9034494 DOI: 10.1186/s13578-022-00780-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/30/2022] [Indexed: 02/08/2023] Open
Abstract
Background Intestinal immune dysfunction is involved in the onset of Crohn’s disease (CD). Dendritic cells (DCs), antigen-presenting cells, play a key role in the maintenance of intestinal immune homeostasis. The aryl hydrocarbon receptor (AhR) is a ligand-dependent transcription factor widely expressed in various immune cells, including DCs. Although AhR plays an important role in immune tolerance, its role in the DCs is unclear. The purpose of this study was to investigate whether the activation of AhR can induce tolerogenic DCs (tolDCs) and the differentiation of regulatory T (Treg) cells, as well as ameliorate experimental colitis. Results AhR activation in the DCs resulted in a lower expression of surface markers such as CD80, CD83, CD86, and pro-inflammatory cytokine production, and higher anti-inflammatory production (IL-1β, IL-23, and IL-12) compared to the control DCs. The surface dendrites in DCs were significantly reduced following AhR activation by 6-formylindolo [3,2-b]carbazole (FICZ). Such DCs with FICZ-mediated activation of AhR, namely tolDCs, promoted Treg cell differentiation. Adoptive transfer of tolDCs to a TNBS-induced colitis mouse model significantly alleviated the severity of inflammation by improving the colon length and decreasing the disease activity index (DAI) and histopathological score. Moreover, the transferred tolDCs decreased the frequency of Th17 cells and increased the frequency of Treg cells in the spleen and mesenteric lymph nodes (MLNs) in murine colitis models. Conclusions Activation of AhR in the DCs could induce tolDCs, and the transplantation of tolDCs may help in relieving intestinal inflammation and maintaining the Th17/Treg differentiation balance. Thus, our data suggest that AhR may be a potential therapeutic target for CD.
Collapse
|
18
|
Lee DY, Im E, Yoon D, Lee YS, Kim GS, Kim D, Kim SH. Pivotal role of PD-1/PD-L1 immune checkpoints in immune escape and cancer progression: Their interplay with platelets and FOXP3+Tregs related molecules, clinical implications and combinational potential with phytochemicals. Semin Cancer Biol 2022; 86:1033-1057. [PMID: 33301862 DOI: 10.1016/j.semcancer.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 01/27/2023]
Abstract
Immune checkpoint proteins including programmed cell death protein 1 (PD-1), its ligand PD-L1 and cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) are involved in proliferation, angiogenesis, metastasis, chemoresistance via immune escape and immune tolerance by disturbing cytotoxic T cell activation. Though many clinical trials have been completed in several cancers by using immune checkpoint inhibitors alone or in combination with other agents to date, recently multi-target therapy is considered more attractive than monotherapy, since immune checkpoint proteins work with other components such as surrounding blood vessels, dendritic cells, fibroblasts, macrophages, platelets and extracellular matrix within tumor microenvironment. Thus, in the current review, we look back on research history of immune checkpoint proteins and discuss their associations with platelets or tumor cell induced platelet aggregation (TCIPA) and FOXP3+ regulatory T cells (Tregs) related molecules involved in immune evasion and tumor progression, clinical implications of completed trial results and signaling networks by phytochemicals for combination therapy with immune checkpoint inhibitors and suggest future research perspectives.
Collapse
Affiliation(s)
- Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dahye Yoon
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Young-Seob Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Geum-Soog Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Donghwi Kim
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
19
|
Ge T, Phung A, Jhala G, Trivedi P, Principe N, De George DJ, Pappas EG, Litwak S, Sanz‐Villanueva L, Catterall T, Fynch S, Boon L, Kay TW, Chee J, Krishnamurthy B, Thomas HE. Diabetes induced by checkpoint inhibition in nonobese diabetic mice can be prevented or reversed by a JAK1/JAK2 inhibitor. Clin Transl Immunology 2022; 11:e1425. [PMID: 36325490 PMCID: PMC9618467 DOI: 10.1002/cti2.1425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES Immune checkpoint inhibitors have achieved clinical success in cancer treatment, but this treatment causes immune-related adverse events, including type 1 diabetes (T1D). Our aim was to test whether a JAK1/JAK2 inhibitor, effective at treating spontaneous autoimmune diabetes in nonobese diabetic (NOD) mice, can prevent diabetes secondary to PD-L1 blockade. METHODS Anti-PD-L1 antibody was injected into NOD mice to induce diabetes, and JAK1/JAK2 inhibitor LN3103801 was administered by oral gavage to prevent diabetes. Flow cytometry was used to study T cells and beta cells. Mesothelioma cells were inoculated into BALB/c mice to induce a transplantable tumour model. RESULTS Anti-PD-L1-induced diabetes was associated with increased immune cell infiltration in the islets and upregulated MHC class I on islet cells. Anti-PD-L1 administration significantly increased islet T cell proliferation and islet-specific CD8+ T cell numbers in peripheral lymphoid organs. JAK1/JAK2 inhibitor treatment blocked IFNγ-mediated MHC class I upregulation on beta cells and T cell proliferation mediated by cytokines that use the common γ chain receptor. As a result, anti-PD-L1-induced diabetes was prevented by JAK1/JAK2 inhibitor administered before or after checkpoint inhibitor therapy. Diabetes was also reversed when the JAK1/JAK2 inhibitor was administered after the onset of anti-PD-L1-induced hyperglycaemia. Furthermore, JAK1/JAK2 inhibitor intervention after checkpoint inhibitors did not reverse or abrogate the antitumour effects in a transplantable tumour model. CONCLUSION A JAK1/JAK2 inhibitor can prevent and reverse anti-PD-L1-induced diabetes by blocking IFNγ and γc cytokine activities. Our study provides preclinical validation of JAK1/JAK2 inhibitor use in checkpoint inhibitor-induced diabetes.
Collapse
Affiliation(s)
- Tingting Ge
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Amber‐Lee Phung
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - Gaurang Jhala
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Prerak Trivedi
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Nicola Principe
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - David J De George
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Evan G Pappas
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Sara Litwak
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Laura Sanz‐Villanueva
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Tara Catterall
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | - Stacey Fynch
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia
| | | | - Thomas W Kay
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute for Respiratory HealthThe University of Western AustraliaCrawleyWAAustralia
| | - Balasubramanian Krishnamurthy
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| | - Helen E Thomas
- Immunology and Diabetes UnitSt Vincent's InstituteFitzroyVICAustralia,The University of MelbourneParkvilleVICAustralia
| |
Collapse
|
20
|
Yu XY, Zhang ZQ, Huang JC, Lin JY, Cai XP, Liu CF. IL-7-Treated Periodontal Ligament Cells Regulate Local Immune Homeostasis by Modulating Treg/Th17 Cell Polarization. Front Med (Lausanne) 2022; 9:754341. [PMID: 35280902 PMCID: PMC8905254 DOI: 10.3389/fmed.2022.754341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
Both interleukin (IL)-7 and human periodontal ligament cells (hPDLCs) have immunomodulatory properties. However, their combined effect on CD4+T cells has never been studied. In this study, we aimed to investigate the effect of conditioned medium of hPDLCs treated with rhIL-7 on the differentiation of CD4+T cells into regulatory T cells/T helper 17 cells (Treg/Th17 cells) and observe the effect of IL-7 on the immunomodulatory properties of PDLCs. After hPDLCs were treated with different concentrations of rhIL-7 for 24 h, the collected supernatants were used to incubate CD4+T cells for 3 days. A gamma-secretase inhibitor (DAPT) was used to suppress the activation of the Notch1 signaling pathway. Cell proliferation, apoptosis, and necrosis were determined using the cell counting kit-8 (CCK-8) and flow cytometry (FCM). The expressions of forkhead box P3 (Foxp3) in CD4+T cells and transforming growth factor (TGF-β) and IL-6 in the supernatants were determined by ELISA. Reverse transcription-quantitative PCR (RT-qPCR), and the Western blot (WB) determined the mRNA levels and protein expression of various target factors. FCM was used to detect the mean fluorescence intensity of PD-L1 in hPDLCs and to analyze the differentiation of Treg/Th17 cells. Our results showed that IL-7 promoted proliferation and inhibited apoptosis in hPDLCs, promoted the expression of TGF-β, PD-L1, Notch1, Jagged1, and Hes1, and inhibited the levels of hypoxia-inducible factor (HIF)-1α and TCF7, whereas the addition of DAPT effectively reversed these effects. Importantly, we found that the conditioned medium of hPDLCs treated with rhIL-7 promoted the polarization of CD4+T cells into Treg cells but had no significant effect on the differentiation of Th17 cells. Our study indicated that treatment of PDLCs with IL-7 can promote the polarization of CD4+T cells into Treg cells by modulating the expression of inflammatory factors and signaling molecules through activating the Notch1 signaling pathway, thus participating in the regulation of immune homeostasis in the periodontal microenvironment.
Collapse
Affiliation(s)
- Xin-Yi Yu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Zhao-Qiang Zhang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Chang Huang
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jia-Yu Lin
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xue-Pei Cai
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Chu-Feng Liu
- Department of Orthodontics, Stomatological Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
21
|
Chang JH, Chuang HC, Hsiao G, Hou TY, Wang CC, Huang SC, Li BY, Lee YL. Acteoside exerts immunomodulatory effects on dendritic cells via aryl hydrocarbon receptor activation and ameliorates Th2-mediated allergic asthma by inducing Foxp3 + regulatory T cells. Int Immunopharmacol 2022; 106:108603. [PMID: 35123286 DOI: 10.1016/j.intimp.2022.108603] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/14/2022] [Accepted: 01/30/2022] [Indexed: 01/10/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that play a key role in directing T-cell responses and are involved in the pathogenesis of allergic asthma. Acteoside, an active phenylethanoid glycoside, is widely distributed in many medicinal plants. Herein, we explored the immunomodulatory effects of acteoside on bone marrow-derived DCs in vitro, and further investigated the immunosuppressive ability of acteoside to manipulate T helper type 2 (Th2)-mediated allergic asthma in mice. Following lipopolysaccharide activation, 50 μM of acteoside significantly reduced the production of proinflammatory mediators, including interleukin (IL)-12 and tumor necrosis factor (TNF)-α, whereas it enhanced secretion of the anti-inflammatory cytokine, IL-10, by DCs. However, these effects of acteoside on DCs were reversed by pretreatment with CH223191, an aryl hydrocarbon receptor (AhR) antagonist. Additionally, coculture of acteoside-treated DCs with CD4+ T cells promoted the generation of forkhead box P3-positive (Foxp3+) regulatory T cells (Tregs) via AhR activation. Using a murine asthma model, our results demonstrated that oral administration of 50 mg/kg of acteoside decreased levels of Th2-type cytokines, such as IL-4, IL-5, and IL-13, whereas the level of IL-10 and the frequency of CD4+Foxp3+ Tregs were augmented. Moreover, acteoside treatment markedly inhibited the elevated serum level of ovalbumin-specific immunoglobulin E, attenuated the development of airway hyperresponsiveness, and reduced inflammatory cell counts in bronchoalveolar lavage fluid. Additionally, histological results reveled that acteoside ameliorated pulmonary inflammation in asthmatic mice. Taken together, these results indicated that acteoside exhibits immunomodulatory effects on DCs and plays an anti-inflammatory role in the treatment of allergic asthma.
Collapse
Affiliation(s)
- Jer-Hwa Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - George Hsiao
- Graduate Institute of Medical Sciences and Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tsung-Yun Hou
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Chiung Wang
- Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Shih-Chun Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Bo-Yi Li
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yueh-Lun Lee
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
22
|
Schisandrin B promotes Foxp3+ regulatory T cell expansion by activating heme oxygenase-1 in dendritic cells and exhibits immunomodulatory effects in Th2-mediated allergic asthma. Eur J Pharmacol 2022; 918:174775. [DOI: 10.1016/j.ejphar.2022.174775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 02/07/2023]
|
23
|
Jin H, Zhou Y, Wang L. The mechanism of rapamycin in promoting asthmatic regulatory T cell differentiation and function. Zhejiang Da Xue Xue Bao Yi Xue Ban 2021; 50:621-626. [PMID: 34986526 PMCID: PMC8732247 DOI: 10.3724/zdxbyxb-2021-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/30/2021] [Indexed: 06/14/2023]
Abstract
To investigate the mechanism of rapamycin in promoting asthmatic regulatory T cell differentiation . Asthma model was prepared by sensitization and challenge of ovalbumin in mice. Spleen CD4CD25 T cells were sorted from the asthmatic mice and normal mice by ultrahigh speed flow cytometer, and divided into three groups. Transforming growth factor-β and interleukin-2, or combined with rapamycin (final concentration of 500 nmol/L) were given in the model group or the rapamycin group. The levels of Treg cells and CD4CD25 T cells were detected by flow cytometry. The phosphorylation level of downstream proteins of S6 and Akt in the mTORC1/2 signaling pathway were examined by Western blotting. Compared with the model group, the differentiation level of Treg cells in the rapamycin group was significantly increased, the proliferation level of CD4CD25 T cells was decreased, and the phosphorylations of the mTORC1/2 substrates, S6 protein and Akt were decreased (all <0.05). Rapamycin can promote the differentiation and function of Treg cells via inhibition of the mTORC1/2 signaling pathway.
Collapse
Affiliation(s)
- Hualiang Jin
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yan Zhou
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Limin Wang
- Department of Respiratory Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
24
|
Wu H, Li X, Zhou C, Yu Q, Ge S, Pan Z, Zhao Y, Xia S, Zhou X, Liu X, Wang H, Shao Q. Circulating mature dendritic cells homing to the thymus promote thymic epithelial cells involution via the Jagged1/Notch3 axis. Cell Death Discov 2021; 7:225. [PMID: 34462426 PMCID: PMC8404188 DOI: 10.1038/s41420-021-00619-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 11/24/2022] Open
Abstract
Multiple proinflammatory conditions, including chemotherapy, radiotherapy, transplant rejection, and microbial infections, have been identified to induce involution of the thymus. However, the underlying cellular and molecular mechanisms of these inflammatory conditions inducing apoptosis of thymic epithelial cells (TECs), the main components of the thymus, remain largely unknown. In the circulation, mature dendritic cells (mDCs), the predominant initiator of innate and adaptive immune response, can migrate into the thymus. Herein, we demonstrated that mDCs were able to directly inhibit TECs proliferation and induce their apoptosis by activating the Jagged1/Notch3 signaling pathway. Intrathymic injection of either mDCs or recombinant mouse Jagged1-human Fc fusion protein (rmJagged1-hFc) into mice resulted in acute atrophy of the thymus. Furthermore, DAPT, a γ-secretase inhibitor, reversed the effects induced by mDC or rmJagged1-hFc. These findings suggest that acute or aging-related thymus degeneration can be induced either by mass migration of circulating mDCs in a short period of time or by a few but constantly homing mDCs.
Collapse
Affiliation(s)
- Haojie Wu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xiaohan Li
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Chen Zhou
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Qihong Yu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Shiyao Ge
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Zihui Pan
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Yangjing Zhao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Sheng Xia
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xiaoming Zhou
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Pathology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Xia Liu
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China
| | - Hui Wang
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
| | - Qixiang Shao
- Reproductive Sciences Institute, Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, P. R. China.
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai'an, 223002, Jiangsu, P. R. China.
| |
Collapse
|
25
|
Tu G, Peng W, Cai Q, Zhao Z, Peng X, He B, Zhang P, Shi S, Tao Y, Wang X. Construction and validation of a 15-gene ferroptosis signature in lung adenocarcinoma. PeerJ 2021; 9:e11687. [PMID: 34277151 PMCID: PMC8272465 DOI: 10.7717/peerj.11687] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/07/2021] [Indexed: 12/24/2022] Open
Abstract
Background Ferroptosis is a novel form of programmed cell death characterized by the excessive accumulation of intracellular iron and an increase in reactive oxygen species. Emerging studies have shown that ferroptosis plays a vital role in the progression of lung adenocarcinoma, but the effect of ferroptosis-related genes on prognosis has been poorly studied. The purpose of this study was to explore the prognostic value of ferroptosis-related genes. Methods Lung adenocarcinoma samples were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The least absolute shrinkage and selection operator (LASSO) Cox regression algorithm was used to establish a predictive signature for risk stratification. Kaplan–Meier (K–M) survival analysis and receiver operating characteristic (ROC) curve analysis were conducted to evaluate the signature. We further explored the potential correlation between the risk score model and tumor immune status. Results A 15-gene ferroptosis signature was constructed to classify patients into different risk groups. The overall survival (OS) of patients in the high-risk group was significantly shorter than that of patients in the low-risk group. The signature could predict OS independent of other risk factors. Single-sample gene set enrichment analysis (ssGSEA) identified the difference in immune status between the two groups. Patients in the high-risk group had stronger immune suppression, especially in the antigen presentation process. Conclusions The 15-gene ferroptosis signature identified in this study could be a potential biomarker for prognosis prediction in lung adenocarcinoma. Targeting ferroptosis might be a promising therapeutic alternative for lung adenocarcinoma.
Collapse
Affiliation(s)
- Guangxu Tu
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weilin Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qidong Cai
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenyu Zhao
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiong Peng
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Boxue He
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuai Shi
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China.,NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan, China
| | - Xiang Wang
- Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
26
|
Catalpol exerts antiallergic effects in IgE/ovalbumin-activated mast cells and a murine model of ovalbumin-induced allergic asthma. Int Immunopharmacol 2021; 96:107782. [PMID: 34022666 DOI: 10.1016/j.intimp.2021.107782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/17/2021] [Accepted: 05/07/2021] [Indexed: 12/22/2022]
Abstract
Immunoglobulin E (IgE) and mast cells play important roles in the pathogenesis of allergic asthma. Catalpol, an iridoid glycoside, exerts many biological functions including anti-inflammatory activities. Herein, we investigated catalpol to determine both its antiallergic effects on IgE/ovalbumin (OVA)-stimulated mouse bone marrow-derived mast cells and its therapeutic actions in murine allergic asthma. We found that catalpol dramatically suppressed IgE/OVA-induced mast cell degranulation. Meanwhile, 5 ~ 100 μM of catalpol neither affected the expression level of the high-affinity receptor of IgE (FcεRI) by mast cells nor induced mast cell apoptosis. In addition, mRNA expression levels of inflammatory enzymes including cyclooxygenase (COX)-1, COX-2, and 5-lipoxygenase were downregulated. Administration of catalpol also suppressed production of prostaglandin D2 (PGD2), interleukin (IL)-6, and IL-13, while not affecting tumor necrosis factor (TNF)-α production. Further, catalpol pretreatment significantly attenuated the FcεRI-mediated Akt signaling pathway. In mice with IgE/OVA-induced asthma, oral administration of catalpol remarkably suppressed the production of OVA-specific IgE, the development of airway hyperresponsiveness (AHR), and the infiltration of eosinophils and neutrophils into the lungs. Histological studies demonstrated that catalpol substantially inhibited the recruitment of mast cells and increased mucus production in lung tissues. Catalpol-treated mice had significantly lower levels of helper T cell type 2 (Th2) cytokines (IL-4, IL-5, and IL-13), PGD2, eotaxin-1, and C-X-C chemokine ligand-1 (CXCL1) in bronchoalveolar lavage fluid (BALF) than did the allergic group. Collectively, these results indicated that the suppressive effects of catalpol on degranulation and mediator generation by mast cells were beneficial in treating allergic asthma.
Collapse
|
27
|
Liu Q, Zhou Y, Gao Y, Shu Z, Zhang J, Liu H, Cao M, Liu G, Sun J. Degraded Porphyra haitanensis sulfated polysaccharide relieves ovalbumin-induced food allergic response by restoring the balance of T helper cell differentiation. Food Funct 2021; 12:4707-4719. [PMID: 33929475 DOI: 10.1039/d1fo00335f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously described that Porphyra haitanensis sulfated polysaccharide (PHSP) maintains the balance of pro-inflammation and immunosuppression. However, it is unclear whether degraded PHSP (DPHSP) still shows the immunomodulatory activity. Here, we degraded PHSP by four different methods alone or combined in pairs, and the results showed that the molecular weight and viscosity of DPHSP were significantly decreased, while the main chemical bonds and functional structure were consistent with those of PHSP. We then investigated the immunomodulatory function of DPHSP in vitro and in vivo. Actually, DPHSP enhances the inhibitory effects on mast cell activation and improves the suppression activity of PHSP on the food anaphylactic response. In an ovalbumin-induced food allergy mouse model, the production of allergic mediators and cytokines (interleukin-4 and 13, and interferon-γ) was inhibited by DPHSP. Meanwhile, DPHSP had a stronger ability to up-regulate the differentiation of regulatory T (Treg) cells and its related cytokines. These results suggested that DPHSP showed a better anti-food allergic ability than PHSP by regulating T helper cell balance and promoting Treg cell differentiation, which indicates that DPHSP is a novel potential nutrient component against food allergy.
Collapse
Affiliation(s)
- Qingmei Liu
- Allergy Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Critical Roles of Balanced T Helper 9 Cells and Regulatory T Cells in Allergic Airway Inflammation and Tumor Immunity. J Immunol Res 2021; 2021:8816055. [PMID: 33748292 PMCID: PMC7943311 DOI: 10.1155/2021/8816055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/12/2021] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
CD4+T helper (Th) cells are important mediators of immune responses in asthma and cancer. When counteracted by different classes of pathogens, naïve CD4+T cells undergo programmed differentiation into distinct types of Th cells. Th cells orchestrate antigen-specific immune responses upon their clonal T-cell receptor (TCR) interaction with the appropriate peptide antigen presented on MHC class II molecules expressed by antigen-presenting cells (APCs). T helper 9 (Th9) cells and regulatory T (Treg) cells and their corresponding cytokines have critical roles in tumor and allergic immunity. In the context of asthma and cancer, the dynamic internal microenvironment, along with chronic inflammatory stimuli, influences development, differentiation, and function of Th9 cells and Treg cells. Furthermore, the dysregulation of the balance between Th9 cells and Treg cells might trigger aberrant immune responses, resulting in development and exacerbation of asthma and cancer. In this review, the development, differentiation, and function of Th9 cells and Treg cells, which are synergistically regulated by various factors including cytokine signals, transcriptional factors (TFs), costimulatory signals, microenvironment cues, metabolic pathways, and different signal pathways, will be discussed. In addition, we focus on the recent progress that has helped to achieve a better understanding of the roles of Th9 cells and Treg cells in allergic airway inflammation and tumor immunity. We also discuss how various factors moderate their responses in asthma and cancer. Finally, we summarize the recent findings regarding potential mechanisms for regulating the balance between Th9 and Treg cells in asthma and cancer. These advances provide opportunities for novel therapeutic strategies that are aimed at reestablishing the balance of these cells in the diseases.
Collapse
|
29
|
Yan J, Deng N, Wang Q, Du X, Li C, Xie T, Liu Y, Liu M. Xiaoqinglong decoction reduces dendritic cell differentiation and regulates the Th1/Th2 balance in a mouse model of allergic asthma. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Li X, Dong Y, Yin H, Qi Z, Wang D, Ren S. Mesenchymal stem cells induced regulatory dendritic cells from hemopoietic progenitor cells through Notch pathway and TGF-β synergistically. Immunol Lett 2020; 222:49-57. [PMID: 32199868 DOI: 10.1016/j.imlet.2020.03.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are one of the attractive candidates in regenerative medicine of many clinical applications because of their low immunogenicity and immunomodulatory property. Our previous studies provided that mouse bone marrow-derived Sca-1+MSCs could drive the differentiation of regulatory DC (regDCs) (Scal-1+ BM-MSC-driven DC [sBM-DCs]) from hemopoietic progenitor cells (HPCs) and the Notch pathway played a critical role in maintaining the immunomodulatory property. However, the detailed mechanisms of their immunoregulatory capacity are not fully defined. In the present study, we show that BM-MSCs expressed high levels of Jagged 1 while sBM-DCs expressed high levels of Notch1. Jagged1 expressed on the surface of BM-MSCs initiated Notch signaling to maintain the immunomodulatory property of the sBM-DCs. The level of TGF-β is high in MSCs, either alone or coculture with HPCs medium. TGF-β plays a vital role in the proliferation and differentiation of sBM-DCs and inhibition of TGF-β reduce the number and increase the percentage of CD34, CD117, CD135 of generation cells. Thus, MSCs induced the regDCs from HPCs via the Notch signaling pathway and TGF-β synergistically. This study further broadens our understanding of the immunomodulatory mechanism and the potential therapeutic efficacy of MSCs.
Collapse
Affiliation(s)
- Xiaojing Li
- Department of Pharmacy, Liaocheng University, Shandong, 252000, People's Republic of China; Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Yulei Dong
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Science, Beijing, 100730, People's Republic of China
| | - Han Yin
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Zhanfeng Qi
- Department of Orthopedic Surgery, Dongchang People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China
| | - Dawei Wang
- Department of Orthopedic Surgery, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| | - Shaoda Ren
- Stem Cell Clinical Research Laboratory, Institute for Stem Cell Clinical Research, Liaocheng People's Hospital, Liaocheng, Shandong, 252000, People's Republic of China.
| |
Collapse
|
31
|
Cai J, Wang D, Zhang G, Guo X. The Role Of PD-1/PD-L1 Axis In Treg Development And Function: Implications For Cancer Immunotherapy. Onco Targets Ther 2019; 12:8437-8445. [PMID: 31686860 PMCID: PMC6800566 DOI: 10.2147/ott.s221340] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/21/2019] [Indexed: 12/17/2022] Open
Abstract
During the past decade, immunotherapy targeting immune checkpoints has become an important component of the treatment paradigm for numerous malignancies, especially PD-1/PD-L1 blockade which was demonstrated to rejuvenate disabled T cells in cancer patients to achieve long-term remissions. However, the clinical outcome of PD-1/PD-L1 targeted monotherapy against solid malignancies is not satisfactory which may be related with the intricate tumor microenvironment. As a vital suppressive immunocyte in tumor microenvironment, Tregs are characterized by PD-1 and PD-L1 and demonstrated to contribute to the tumor progression. The latest studies have suggested that Tregs might be involved in the treatment of PD-1/PD-L1 blockade and PD-1/PD-L1 axis could influence Treg differentiation and function. However, the complicated relationship between PD-1/PD-L1 pathway and Tregs has not been fully clarified. Here, we explored the role of PD-1/PD-L1 axis in Treg development and function, as well as the potential mechanisms of PD-1/PD-L1 blockade resistance related with Tregs. Meanwhile, we discussed the combination therapy aimed at targeting PD-1/PD-L1 axis and Tregs, hoping to provide novel insights for the future cancer treatment.
Collapse
Affiliation(s)
- Jiajing Cai
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Dongsheng Wang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Guoyuan Zhang
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| | - Xiaolan Guo
- Department of Laboratory Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China.,Department of Laboratory Medicine, North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China.,Translational Medicine Research Center, North Sichuan Medical College, Nanchong, Sichuan 637000, People's Republic of China
| |
Collapse
|
32
|
Notch ligand-expressing adenovirus infection enhances the efficacy of dendritic cell-based immunotherapy for allergic asthma in mice. Cell Mol Immunol 2019; 16:730-732. [PMID: 31197254 DOI: 10.1038/s41423-019-0250-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 05/27/2019] [Indexed: 12/22/2022] Open
|