1
|
Luo ZQ, Huang YJ, Chen ZH, Lu CY, Zhou B, Gong XH, Shen Z, Wang T. A decade of insight: bibliometric analysis of gut microbiota's role in osteoporosis (2014-2024). Front Med (Lausanne) 2024; 11:1409534. [PMID: 38841589 PMCID: PMC11150527 DOI: 10.3389/fmed.2024.1409534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 04/30/2024] [Indexed: 06/07/2024] Open
Abstract
Purpose Osteoporosis represents a profound challenge to public health, underscoring the critical need to dissect its complex etiology and identify viable targets for intervention. Within this context, the gut microbiota has emerged as a focal point of research due to its profound influence on bone metabolism. Despite this growing interest, the literature has yet to see a bibliometric study addressing the gut microbiota's contribution to both the development and management of osteoporosis. This study aims to fill this gap through an exhaustive bibliometric analysis. Our objective is to uncover current research hotspots, delineate key themes, and identify future research trends. In doing so, we hope to provide direction for future studies and the development of innovative treatment methods. Methods Relevant publications in this field were retrieved from the Web of Science Core Collection database. We used VOSviewer, CiteSpace, an online analysis platform and the R package "Bibliometrix" for bibliometric analysis. Results A total of 529 publications (including 351 articles and 178 reviews) from 61 countries, 881 institutions, were included in this study. China leads in publication volume and boast the highest cumulative citation. Shanghai Jiao Tong University and Southern Medical University are the leading research institutions in this field. Nutrients contributed the largest number of articles, and J Bone Miner Res is the most co-cited journal. Of the 3,166 scholars who participated in the study, Ohlsson C had the largest number of articles. Li YJ is the most co-cited author. "Probiotics" and "inflammation" are the keywords in the research. Conclusion This is the first bibliometric analysis of gut microbiota in osteoporosis. We explored current research status in recent years and identified frontiers and hot spots in this research field. We investigate the impact of gut microbiome dysregulation and its associated inflammation on OP progression, a topic that has garnered international research interest in recent years. Additionally, our study delves into the potential of fecal microbiota transplantation or specific dietary interventions as promising avenues for future research, which can provide reference for the researchers who focus on this research filed.
Collapse
Affiliation(s)
- Zhi Qiang Luo
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ya Jing Huang
- Department of Rheumatology, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Ze Hua Chen
- Department of Orthopedics, The Orthopedics Hospital of Traditional Chinese Medicine, Zhuzhou, Hunan, China
| | - Chen Yin Lu
- Department of Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Biao Zhou
- Department of Orthopedics, The First People’s Hospital of Xiangtan City, Xiangtan, Hunan, China
| | - Xiang Hao Gong
- Department of Oncology, Hengyang Central Hospital, Hengyang, Hunan, China
| | - Zhen Shen
- Department of Rehabilitation, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Tao Wang
- Department of Orthopedics, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
2
|
Xue S, Abdullahi R, Wu N, Zheng J, Su M, Xu M. Gut microecological regulation on bronchiolitis and asthma in children: A review. THE CLINICAL RESPIRATORY JOURNAL 2023; 17:975-985. [PMID: 37105551 PMCID: PMC10542989 DOI: 10.1111/crj.13622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/22/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023]
Abstract
INTRODUCTION Asthma and bronchiolitis in children are considered common clinical problems associated with gut microbiota. However, the exact relationship between gut microbiota and the above-mentioned diseases remains unclear. Here, we discussed recent advances in understanding the potential mechanism underlying immune regulation of gut microbiota on asthma and bronchiolitis in children as well as the role of the gut-lung axis. METHODS We retrieved and assessed all relevant original articles related to gut microbiota, airway inflammation-induced wheezing in children, and gut-lung axis studies from databases that have been published so far, including PubMed/MEDLINE, Scopus, Google Scholar, China National Knowledge Infrastructure (CNKI) and the Wanfang Database. RESULTS The infant period is critical for the development of gut microbiota, which can be influenced by gestational age, delivery mode, antibiotic exposure and feeding mode. The gut microbiota in children with asthma and bronchiolitis is significantly distinct from those in healthy subjects. Gut microbiota dysbiosis is implicated in asthma and bronchiolitis in children. The presence of intestinal disturbances in lung diseases highlights the importance of the gut-lung axis. CONCLUSION Gut microbiota dysbiosis potentially increases the risk of asthma and bronchiolitis in children. Moreover, a deeper understanding of the gut-lung axis with regard to the gut microbiota of children with respiratory diseases could contribute to clinical practice for pulmonary diseases.
Collapse
Affiliation(s)
- Sichen Xue
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Rukkaiya Abdullahi
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Naisheng Wu
- Department of PediatricsThe First Affiliated Hospital of Ningbo UniversityNingboZhejiangChina
| | - Jishan Zheng
- Department of PediatricsThe Ningbo Women and Children's HospitalNingboChina
| | - Miaoshang Su
- Department of Pediatric Respiratory MedicineThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhouZhejiangChina
| | - Manhuan Xu
- College of Laboratory Medicine and Life ScienceWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
3
|
Ma Z, Akhtar M, Pan H, Liu Q, Chen Y, Zhou X, You Y, Shi D, Liu H. Fecal microbiota transplantation improves chicken growth performance by balancing jejunal Th17/Treg cells. MICROBIOME 2023; 11:137. [PMID: 37344888 DOI: 10.1186/s40168-023-01569-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
BACKGROUND Intestinal inflammation has become a threatening concern in chicken production worldwide and is closely associated with Th17/Treg cell imbalance. Several studies described that gut microbiota is significantly implicated in chicken growth by modulating intestinal immune homeostasis and immune cell differentiation. Whether reshaping gut microbiota by fecal microbiota transplantation (FMT) could improve chicken growth by balancing Th17/Treg cells is an interesting question. RESULTS Here, the chickens with significantly different body weight from three different breeds (Turpan cockfighting × White Leghorn chickens, white feather chickens, and yellow feather chickens) were used to compare Th17 and Treg cells. qPCR and IHC staining results indicated that Th17 cell-associated transcriptional factors Stat3 and rorγt and cytokines IL-6, IL-17A, and IL-21 were significantly (P < 0.05) higher in the jejunum of low body weight chickens, while Treg cell-associated transcriptional factor foxp3 and cytokines TGF-β and IL-10 were significantly (P < 0.05) lower in the jejunum of low body weight chickens, indicating imbalanced Th17/Treg cells were closely related to chicken growth performance. Transferring fecal microbiota from the healthy donor with better growth performance and abundant Lactobacillus in feces to 1-day-old chicks markedly increased growth performance (P < 0.001), significantly decreased Th17 cell-associated transcriptional factors and cytokines, and increased Treg cell-associated transcriptional factors and cytokines in the jejunum (P < 0.05). Furthermore, FMT increased the abundance of Lactobacillus (FMT vs Con; 84.98% vs 66.94%). Besides, the metabolites of tryptophan including serotonin, indole, and 5-methoxyindoleacetate were increased as well, which activated their receptor aryl-hydrocarbon-receptor (AhR) and expressed more CYP1A2 and IL-22 to maintain Th17/Treg cell balance and immune homeostasis. CONCLUSION These findings suggested that imbalanced Th17/Treg cells decreased chicken growth performance, while FMT-reshaped gut microbiota, i.e., higher Lactobacilli, increased chicken growth performance by balancing Th17/Treg cells. Video Abstract.
Collapse
Affiliation(s)
- Ziyu Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Muhammad Akhtar
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hong Pan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qiyao Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xinxin Zhou
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yingting You
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Deshi Shi
- Department of Preventive Veterinary Medicine, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Huazhen Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
4
|
Koshida K, Ito M, Yakabe K, Takahashi Y, Tai Y, Akasako R, Kimizuka T, Takano S, Sakamoto N, Haniuda K, Ogawa S, Kimura S, Kim YG, Hase K, Harada Y. Dysfunction of Foxp3 + Regulatory T Cells Induces Dysbiosis of Gut Microbiota via Aberrant Binding of Immunoglobulins to Microbes in the Intestinal Lumen. Int J Mol Sci 2023; 24:8549. [PMID: 37239894 PMCID: PMC10218244 DOI: 10.3390/ijms24108549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/08/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Foxp3+ regulatory T (Treg) cells prevent excessive immune responses against dietary antigens and commensal bacteria in the intestine. Moreover, Treg cells contribute to the establishment of a symbiotic relationship between the host and gut microbes, partly through immunoglobulin A. However, the mechanism by which Treg cell dysfunction disturbs the balanced intestinal microbiota remains unclear. In this study, we used Foxp3 conditional knockout mice to conditionally ablate the Foxp3 gene in adult mice and examine the relationship between Treg cells and intestinal bacterial communities. Deletion of Foxp3 reduced the relative abundance of Clostridia, suggesting that Treg cells have a role in maintaining Treg-inducing microbes. Additionally, the knockout increased the levels of fecal immunoglobulins and immunoglobulin-coated bacteria. This increase was due to immunoglobulin leakage into the gut lumen as a result of loss of mucosal integrity, which is dependent on the gut microbiota. Our findings suggest that Treg cell dysfunction leads to gut dysbiosis via aberrant antibody binding to the intestinal microbes.
Collapse
Affiliation(s)
- Kouhei Koshida
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Mitsuki Ito
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Kyosuke Yakabe
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Yoshimitsu Takahashi
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Yuki Tai
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Ryouhei Akasako
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Tatsuki Kimizuka
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Shunsuke Takano
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Natsumi Sakamoto
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| | - Kei Haniuda
- Department of Immunology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Shuhei Ogawa
- Division of Integrated Research, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda 278-0022, Japan;
| | - Shunsuke Kimura
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
| | - Yun-Gi Kim
- Research Center for Drug Discovery, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan;
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Sciences, Keio University, Tokyo 105-8512, Japan (S.K.); (K.H.)
- The Institute of Fermentation Sciences (IFeS), Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima 960-1296, Japan
| | - Yohsuke Harada
- Laboratory of Pharmaceutical Immunology, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan; (K.K.); (M.I.)
| |
Collapse
|
5
|
Chen C, Liu C, Zhang K, Xue W. The role of gut microbiota and its metabolites short-chain fatty acids in food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
6
|
ETS-1 facilitates Th1 cell-mediated mucosal inflammation in inflammatory bowel diseases through upregulating CIRBP. J Autoimmun 2022; 132:102872. [DOI: 10.1016/j.jaut.2022.102872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
|
7
|
Medina-Larqué AS, Rodríguez-Daza MC, Roquim M, Dudonné S, Pilon G, Levy É, Marette A, Roy D, Jacques H, Desjardins Y. Cranberry polyphenols and agave agavins impact gut immune response and microbiota composition while improving gut barrier function, inflammation, and glucose metabolism in mice fed an obesogenic diet. Front Immunol 2022; 13:871080. [PMID: 36052065 PMCID: PMC9424773 DOI: 10.3389/fimmu.2022.871080] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022] Open
Abstract
The consumption of plant-based bioactive compounds modulates the gut microbiota and interacts with the innate and adaptive immune responses associated with metabolic disorders. The present study aimed to evaluate the effect of cranberry polyphenols (CP), rich in flavonoids, and agavins (AG), a highly branched agave-derived neo-fructans, on cardiometabolic response, gut microbiota composition, metabolic endotoxemia, and mucosal immunomodulation of C57BL6 male mice fed an obesogenic high-fat and high-sucrose (HFHS) diet for 9 weeks. Interestingly, CP+AG-fed mice had improved glucose homeostasis. Oral supplementation with CP selectively and robustly (five-fold) increases the relative abundance of Akkermansia muciniphila, a beneficial bacteria associated with metabolic health. AG, either alone or combined with CP (CP+AG), mainly stimulated the glycan-degrading bacteria Muribaculum intestinale, Faecalibaculum rodentium, Bacteroides uniformis, and Bacteroides acidifaciens. This increase of glycan-degrading bacteria was consistent with a significantly increased level of butyrate in obese mice receiving AG, as compared to untreated counterparts. CP+AG-supplemented HFHS-fed mice had significantly lower levels of plasma LBP than HFHS-fed controls, suggesting blunted metabolic endotoxemia and improved intestinal barrier function. Gut microbiota and derived metabolites interact with the immunological factors to improve intestinal epithelium barrier function. Oral administration of CP and AG to obese mice contributed to dampen the pro-inflammatory immune response through different signaling pathways. CP and AG, alone or combined, increased toll-like receptor (TLR)-2 (Tlr2) expression, while decreasing the expression of interleukin 1ß (ILß1) in obese mice. Moreover, AG selectively promoted the anti-inflammatory marker Foxp3, while CP increased the expression of NOD-like receptor family pyrin domain containing 6 (Nlrp6) inflammasome. The intestinal immune system was also shaped by dietary factor recognition. Indeed, the combination of CP+AG significantly increased the expression of aryl hydrocarbon receptors (Ahr). Altogether, both CP and AG can shape gut microbiota composition and regulate key mucosal markers involved in the repair of epithelial barrier integrity, thereby attenuating obesity-associated gut dysbiosis and metabolic inflammation and improving glucose homeostasis.
Collapse
Affiliation(s)
- Ana-Sofía Medina-Larqué
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - María-Carolina Rodríguez-Daza
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Food Science, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Laval University, Québec, QC, Canada
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, Netherlands
| | - Marcela Roquim
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
| | - Stéphanie Dudonné
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Plant Science, FSAA, Laval University, Québec, QC, Canada
| | - Geneviève Pilon
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Émile Levy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Research Centre, Sainte- Justine Hospital, Montreal, QC, Canada
| | - André Marette
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Medicine, Faculty of Medicine, Cardiology Axis of Quebec Heart and Lung Institute, Laval University, Québec, QC, Canada
| | - Denis Roy
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Food Science, Faculté des sciences de l’agriculture et de l’alimentation (FSAA), Laval University, Québec, QC, Canada
| | - Hélène Jacques
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- School of Nutrition, Faculty of Agriculture and Food Sciences, Laval University, Québec, QC, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Laval University, Québec, QC, Canada
- Department of Plant Science, FSAA, Laval University, Québec, QC, Canada
- *Correspondence: Yves Desjardins,
| |
Collapse
|
8
|
Wang J, Wang J. Neutrophils, functions beyond host defense. Cell Immunol 2022; 379:104579. [PMID: 35901576 DOI: 10.1016/j.cellimm.2022.104579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/06/2022] [Accepted: 07/17/2022] [Indexed: 11/30/2022]
Abstract
Neutrophils are the most abundant, ephemeral cell type in human blood. As the first line of defense in the host immune system, neutrophils mature in the bone marrow after undergoing multiple stages of development and then are released into the peripheral blood and conduct a surveillance function. Recent advances in cutting-edge techniques such as single-cell sequencing have uncovered the complexity and plasticity of neutrophils under homeostatic and inflammatory conditions. The exploration of neutrophil heterogeneity and function under disease and homeostasis settings has revealed many unexpected roles of neutrophils beyond a phagocyte. Furthermore, neutrophils are known to actively communicate with innate and adaptive immunocytes via direct or indirect interactions, allowing the modulation of various immune cells. In this review, we will discuss the versatile identities of neutrophils that have been discovered in recent decades, as well as the interplay between neutrophils and other cells.
Collapse
Affiliation(s)
- Jin Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Making Sense of Quorum Sensing at the Intestinal Mucosal Interface. Cells 2022; 11:cells11111734. [PMID: 35681429 PMCID: PMC9179481 DOI: 10.3390/cells11111734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
The gut microbiome can produce metabolic products that exert diverse activities, including effects on the host. Short chain fatty acids and amino acid derivatives have been the focus of many studies, but given the high microbial density in the gastrointestinal tract, other bacterial products such as those released as part of quorum sensing are likely to play an important role for health and disease. In this review, we provide of an overview on quorum sensing (QS) in the gastrointestinal tract and summarise what is known regarding the role of QS molecules such as auto-inducing peptides (AIP) and acyl-homoserine lactones (AHL) from commensal, probiotic, and pathogenic bacteria in intestinal health and disease. QS regulates the expression of numerous genes including biofilm formation, bacteriocin and toxin secretion, and metabolism. QS has also been shown to play an important role in the bacteria–host interaction. We conclude that the mechanisms of action of QS at the intestinal neuro–immune interface need to be further investigated.
Collapse
|
10
|
Gehlhaar A, Inala A, Llivichuzhca-Loja D, Silva TN, Adegboye CY, O’Connell AE, Konnikova L. Insights into the Role of Commensal-Specific T Cells in Intestinal Inflammation. J Inflamm Res 2022; 15:1873-1887. [PMID: 35342295 PMCID: PMC8943607 DOI: 10.2147/jir.s288288] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 02/19/2022] [Indexed: 12/21/2022] Open
Abstract
Trillions of microorganisms exist in the human intestine as commensals and contribute to homeostasis through their interactions with the immune system. In this review, we use previous evidence from published papers to elucidate the involvement of commensal-specific T cells (CSTCs) in regulating intestinal inflammatory responses. CSTCs are generated centrally in the thymus or peripherally at mucosal interfaces and present as CD4+ or CD8+ T cells. Bacteria, fungi, and even viruses act commensally with humans, warranting consideration of CSTCs in this critical relationship. Dysregulation of this immunological balance can result in both intestinal inflammation or damaging autoimmune responses elsewhere in the body. Given the relative novelty of CSTCs in the literature, we aim to introduce the importance of their role in maintaining immune homeostasis at barrier sites such as the intestine.
Collapse
Affiliation(s)
- Arne Gehlhaar
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Ashwin Inala
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | | | - Tatiana N Silva
- Department of Pediatrics, Yale University, New Haven, CT, USA
| | - Comfort Y Adegboye
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
| | - Amy E O’Connell
- Division of Newborn Medicine, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Liza Konnikova
- Department of Pediatrics, Yale University, New Haven, CT, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University, New Haven, CT, USA
- Program in Human and Translational Immunology, Yale University, New Haven, CT, USA
| |
Collapse
|
11
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
12
|
Ailioaie LM, Litscher G. Probiotics, Photobiomodulation, and Disease Management: Controversies and Challenges. Int J Mol Sci 2021; 22:ijms22094942. [PMID: 34066560 PMCID: PMC8124384 DOI: 10.3390/ijms22094942] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/26/2021] [Accepted: 04/29/2021] [Indexed: 02/06/2023] Open
Abstract
In recent decades, researchers around the world have been studying intensively how micro-organisms that are present inside living organisms could affect the main processes of life, namely health and pathological conditions of mind or body. They discovered a relationship between the whole microbial colonization and the initiation and development of different medical disorders. Besides already known probiotics, novel products such as postbiotics and paraprobiotics have been developed in recent years to create new non-viable micro-organisms or bacterial-free extracts, which can provide benefits to the host with additional bioactivity to probiotics, but without the risk of side effects. The best alternatives in the use of probiotics and postbiotics to maintain the health of the intestinal microbiota and to prevent the attachment of pathogens to children and adults are highlighted and discussed as controversies and challenges. Updated knowledge of the molecular and cellular mechanisms involved in the balance between microbiota and immune system for the introspection on the gut-lung-brain axis could reveal the latest benefits and perspectives of applied photobiomics for health. Multiple interconditioning between photobiomodulation (PBM), probiotics, and the human microbiota, their effects on the human body, and their implications for the management of viral infectious diseases is essential. Coupled complex PBM and probiotic interventions can control the microbiome, improve the activity of the immune system, and save the lives of people with immune imbalances. There is an urgent need to seek and develop innovative treatments to successfully interact with the microbiota and the human immune system in the coronavirus crisis. In the near future, photobiomics and metabolomics should be applied innovatively in the SARS-CoV-2 crisis (to study and design new therapies for COVID-19 immediately), to discover how bacteria can help us through adequate energy biostimulation to combat this pandemic, so that we can find the key to the hidden code of communication between RNA viruses, bacteria, and our body.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania;
- Ultramedical & Laser Clinic, 83 Arcu Street, 700135 Iasi, Romania
| | - Gerhard Litscher
- Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, and Traditional Chinese Medicine (TCM) Research Center Graz, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
- Correspondence: ; Tel.: +43-316-385-83907
| |
Collapse
|
13
|
Gu BH, Kim M, Yun CH. Regulation of Gastrointestinal Immunity by Metabolites. Nutrients 2021; 13:nu13010167. [PMID: 33430497 PMCID: PMC7826526 DOI: 10.3390/nu13010167] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
The gastrointestinal tract contains multiple types of immune cells that maintain the balance between tolerance and activation at the first line of host defense facing non-self antigens, including dietary antigens, commensal bacteria, and sometimes unexpected pathogens. The maintenance of homeostasis at the gastrointestinal tract requires stringent regulation of immune responses against various environmental conditions. Dietary components can be converted into gut metabolites with unique functional activities through host as well as microbial enzymatic activities. Accumulating evidence demonstrates that gastrointestinal metabolites have significant impacts on the regulation of intestinal immunity and are further integrated into the immune response of distal mucosal tissue. Metabolites, especially those derived from the microbiota, regulate immune cell functions in various ways, including the recognition and activation of cell surface receptors, the control of gene expression by epigenetic regulation, and the integration of cellular metabolism. These mucosal immune regulations are key to understanding the mechanisms underlying the development of gastrointestinal disorders. Here, we review recent advancements in our understanding of the role of gut metabolites in the regulation of gastrointestinal immunity, highlighting the cellular and molecular regulatory mechanisms by macronutrient-derived metabolites.
Collapse
Affiliation(s)
- Bon-Hee Gu
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
| | - Myunghoo Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Korea;
- Department of Animal Science, College of Natural Resources & Life Science, Pusan National University, Miryang 50463, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Korea
- Correspondence: (M.K.); (C.-H.Y.)
| |
Collapse
|
14
|
Abstract
Periodontitis is a complex disease: (a) various causative factors play a role simultaneously and interact with each other; and (b) the disease is episodic in nature, and bursts of disease activity can be recognized, ie, the disease develops and cycles in a nonlinear fashion. We recognize that various causative factors determine the immune blueprint and, consequently, the immune fitness of a subject. Normally, the host lives in a state of homeostasis or symbiosis with the oral microbiome; however, disturbances in homeostatic balance can occur, because of an aberrant host response (inherited and/or acquired during life). This imbalance results from hyper- or hyporesponsiveness and/or lack of sufficient resolution of inflammation, which in turn is responsible for much of the disease destruction seen in periodontitis. The control of this destruction by anti-inflammatory processes and proresolution processes limits the destruction to the tissues surrounding the teeth. The local inflammatory processes can also become systemic, which in turn affect organs such as the heart. Gingival inflammation also elicits changes in the ecology of the subgingival environment providing optimal conditions for the outgrowth of gram-negative, anaerobic species, which become pathobionts and can propagate periodontal inflammation and can further negatively impact immune fitness. The factors that determine immune fitness are often the same factors that determine the response to the resident biofilm, and are clustered as follows: (a) genetic and epigenetic factors; (b) lifestyle factors, such as smoking, diet, and psychosocial conditions; (c) comorbidities, such as diabetes; and (d) local and dental factors, as well as randomly determined factors (stochasticity). Of critical importance are the pathobionts in a dysbiotic biofilm that drive the viscious cycle. Focusing on genetic factors, currently variants in at least 65 genes have been suggested as being associated with periodontitis based on genome-wide association studies and candidate gene case control studies. These studies have found pleiotropy between periodontitis and cardiovascular diseases. Most of these studies point to potential pathways in the pathogenesis of periodontal disease. Also, most contribute to a small portion of the total risk profile of periodontitis, often limited to specific racial and ethnic groups. To date, 4 genetic loci are shared between atherosclerotic cardiovascular diseases and periodontitis, ie, CDKN2B-AS1(ANRIL), a conserved noncoding element within CAMTA1 upstream of VAMP3, PLG, and a haplotype block at the VAMP8 locus. The shared genes suggest that periodontitis is not causally related to atherosclerotic diseases, but rather both conditions are sequelae of similar (the same?) aberrant inflammatory pathways. In addition to variations in genomic sequences, epigenetic modifications of DNA can affect the genetic blueprint of the host responses. This emerging field will yield new valuable information about susceptibility to periodontitis and subsequent persisting inflammatory reactions in periodontitis. Further studies are required to verify and expand our knowledge base before final cause and effect conclusions about the role of inflammation and genetic factors in periodontitis can be made.
Collapse
Affiliation(s)
- Bruno G Loos
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Thomas E Van Dyke
- Center for Clinical and Translational Research, Forsyth Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Stathopoulou C, Nikoleri D, Bertsias G. Immunometabolism: an overview and therapeutic prospects in autoimmune diseases. Immunotherapy 2020; 11:813-829. [PMID: 31120393 DOI: 10.2217/imt-2019-0002] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Metabolism is a critical immune regulator under physiologic and pathologic conditions. Culminating evidence has disentangled the contribution of distinct metabolic pathways, namely glucolysis, pentose phosphate, fatty acid oxidation, glutaminolysis, Krebs cycle and oxidative phosphorylation, in modulating innate and adaptive immune cells based on their activation/differentiation state. Metabolic aberrations and changes in the intracellular levels of specific metabolites are linked to the inflammatory phenotype of immune cells implicated in autoimmune disorders such as systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis and diabetes. Notably, targeting metabolism such as the mTOR by rapamycin, hexokinase by 2-deoxy-D-glucose, AMP-activated protein kinase by metformin, may be used to ameliorate autoimmune inflammation. Accordingly, research in immunometabolism is expected to offer novel opportunities for monitoring and treating immune-mediated diseases.
Collapse
Affiliation(s)
- Chrysoula Stathopoulou
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - Dimitra Nikoleri
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| | - George Bertsias
- Department of Rheumatology, Clinical Immunology & Allergy, University Hospital of Heraklion, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Laboratory of Rheumatology, Autoimmunity & Inflammation, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, N. Plastira 100, 70013 Heraklion, Greece
| |
Collapse
|
16
|
Campbell C, Rudensky A. Roles of Regulatory T Cells in Tissue Pathophysiology and Metabolism. Cell Metab 2020; 31:18-25. [PMID: 31607562 PMCID: PMC7657366 DOI: 10.1016/j.cmet.2019.09.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022]
Abstract
Regulatory T (Treg) cells expressing the X-chromosome-encoded transcription factor Foxp3 represent a specialized immunosuppressive lineage with a well-recognized, essential function in preventing fatal autoimmunity and inflammation. Recent studies revealed that Treg cells can also exert systemic effects on metabolism and partake in tissue repair, suggesting a dual role for these cells in serving and protecting tissues. Here, we review multiple means by which Treg cells support tissue function and organismal homeostasis.
Collapse
Affiliation(s)
- Clarissa Campbell
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA; Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Alexander Rudensky
- Howard Hughes Medical Institute and Immunology Program, Sloan Kettering Institute, New York, NY 10065, USA; Ludwig Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA.
| |
Collapse
|
17
|
Rowan-Nash AD, Korry BJ, Mylonakis E, Belenky P. Cross-Domain and Viral Interactions in the Microbiome. Microbiol Mol Biol Rev 2019; 83:e00044-18. [PMID: 30626617 PMCID: PMC6383444 DOI: 10.1128/mmbr.00044-18] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The importance of the microbiome to human health is increasingly recognized and has become a major focus of recent research. However, much of the work has focused on a few aspects, particularly the bacterial component of the microbiome, most frequently in the gastrointestinal tract. Yet humans and other animals can be colonized by a wide array of organisms spanning all domains of life, including bacteria and archaea, unicellular eukaryotes such as fungi, multicellular eukaryotes such as helminths, and viruses. As they share the same host niches, they can compete with, synergize with, and antagonize each other, with potential impacts on their host. Here, we discuss these major groups making up the human microbiome, with a focus on how they interact with each other and their multicellular host.
Collapse
Affiliation(s)
- Aislinn D Rowan-Nash
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Benjamin J Korry
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Eleftherios Mylonakis
- Infectious Diseases Division, Warren Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| |
Collapse
|
18
|
Strain specific maturation of Dendritic cells and production of IL-1β controls CD40-driven colitis. PLoS One 2019; 14:e0210998. [PMID: 30653608 PMCID: PMC6336277 DOI: 10.1371/journal.pone.0210998] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Intestinal integrity is maintained by balanced numbers of CD103+ Dendritic cells (DCs), which generate peripherally induced regulatory T cells (iTregs). We have developed a mouse model where DC-specific constitutive CD40 signals caused a strong reduction of CD103+ DCs in the lamina propria (LP) and intestinal lymph nodes (LN). As a consequence, also iTregs were strongly reduced and transgenic mice on the C57Bl/6-background (B6) developed fatal colitis. Here we describe that transgenic mice on a pure Balb/c-background (B/c) do not show any pathologies, while transgenic C57Bl/6 x Balb/c (F1) mice develop weak colon inflammation, without fatal colitis. This graded pathology correlated with the effects of CD40-signalling on DCs in each background, with striking loss of CD103+ DCs in B6, but reduced in F1 and diminished in B/c background. We further show direct correlation of CD103+ DC-numbers with numbers of iTregs, the frequencies of which behave correspondingly. Striking effects on B6-DCs reflected robust loss of surface MHCII, known to be crucial for iTreg induction. Furthermore, elevated levels of IL-23 together with IL-1, found only in B6 mice, support generation of intestinal IFN-γ+IL-17+ Th17 cells and IFN-γ+ Th1 cells, responsible for onset of disease. Together, this demonstrates a novel aspect of colitis-control, depending on genetic background. Moreover, strain-specific environmental sensing might alter the CD103+ DC/iTreg-axis to tip intestinal homeostatic balance to pathology.
Collapse
|
19
|
Zang L, Ma Y, Huang W, Ling Y, Sun L, Wang X, Zeng A, Dahlgren RA, Wang C, Wang H. Dietary Lactobacillus plantarum ST-III alleviates the toxic effects of triclosan on zebrafish (Danio rerio) via gut microbiota modulation. FISH & SHELLFISH IMMUNOLOGY 2019; 84:1157-1169. [PMID: 30423455 DOI: 10.1016/j.fsi.2018.11.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 10/29/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
The probiotics, Lactobacillus plantarum ST-III, plays an important role in modulating microbiota and alleviating intestinal metabolic disorders. Herein, we reported that Lactobacillus increases biodiversity of zebrafish gut flora, and attenuates toxic effects from chronic triclosan (TCS) exposure. Lactobacillus-feeding recovered the species and amount of microorganisms in the intestines of zebrafish, and inhibited toxin production by saprophytic bacterial growth. Abnormal physiological indexes and malonaldeyhde content resulting from TCS exposure were effectively alleviated. Additionally, lipid-metabolism disorders, such as increased triglyceride and total cholesterol levels, were attenuated by a probiotics diet. The number of CD4+ T cell lymphocytes in the lamina propria of the duodenal mucosa was decreased in zebrafish receiving a Lactobacillus diet compared to the TCS-exposed group, showing a consistent expression trend for six immune genes (NF-κB, IL-1β, TNF-α, lysozyme, TLR4α, IL-10) in the intestinal mucosa. Histopathological observations of intestines, spleen and kidney showed that TCS exposure produced severe damage to the morphology and structure of immune and metabolism-related organs. Lactobacillus was capable of mitigating this damage, but bile salt hydrolase, an active extract of Lactobacillus, was not an effective mitigation strategy. The Lactobacillus-induced decrease in the number of inflammatory cells confirmed its role in preventing inflammatory injury. Three behavioral tests (T-maze, bottom dwelling and social interaction) indicated that a probiotics diet improved zebrafish movement and learning/memory capacity, effectively alleviating anxiety behavior due to TCS exposure. These findings inform development of beneficial strategies to alleviate intestinal metabolic syndromes and neurodegenerative diseases resulting from exposure to environmental contaminants through modifying gut flora with a probiotics diet.
Collapse
Affiliation(s)
- Luxiu Zang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yan Ma
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Wenhao Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yuhang Ling
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Limei Sun
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xuedong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Aibing Zeng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Caihong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou, 215009, China.
| |
Collapse
|
20
|
Sorini C, Cardoso RF, Gagliani N, Villablanca EJ. Commensal Bacteria-Specific CD4 + T Cell Responses in Health and Disease. Front Immunol 2018; 9:2667. [PMID: 30524431 PMCID: PMC6256970 DOI: 10.3389/fimmu.2018.02667] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022] Open
Abstract
Over the course of evolution, mammalian body surfaces have adapted their complex immune system to allow a harmless coexistence with the commensal microbiota. The adaptive immune response, in particular CD4+ T cell-mediated, is crucial to maintain intestinal immune homeostasis by discriminating between harmless (e.g., dietary compounds and intestinal microbes) and harmful stimuli (e.g., pathogens). To tolerate food molecules and microbial components, CD4+ T cells establish a finely tuned crosstalk with the environment whereas breakdown of these mechanisms might lead to chronic disease associated with mucosal barriers and beyond. How commensal-specific immune responses are regulated and how these molecular and cellular mechanisms can be manipulated to treat chronic disorders is yet poorly understood. In this review, we discuss current knowledge of the regulation of commensal bacteria-specific CD4+ T cells. We place particular focus on the key role of commensal-specific CD4+ T cells in maintaining tolerance while efficiently eradicating local and systemic infections, with a focus on factors that trigger their aberrant activation.
Collapse
Affiliation(s)
- Chiara Sorini
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Rebeca F. Cardoso
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Nicola Gagliani
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
- Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Eduardo J. Villablanca
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
21
|
Tanaka S, Suto A, Iwamoto T, Kageyama T, Tamachi T, Takatori H, Suzuki K, Hirose K, Ohara O, Lefebvre V, Nakajima H. Sox12 promotes T reg differentiation in the periphery during colitis. J Exp Med 2018; 215:2509-2519. [PMID: 30190287 PMCID: PMC6170178 DOI: 10.1084/jem.20172082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 07/02/2018] [Accepted: 08/16/2018] [Indexed: 12/22/2022] Open
Abstract
Peripherally induced regulatory T (pT reg) cells play indispensable roles in regulating gut inflammation; however, the mechanism underling the differentiation of pT reg cells under inflammatory conditions remains largely unknown. Here, we show that the expression of Sox12, a member of SoxC family, is significantly induced in T reg cells in colitic mice. We also show that TCR-NFAT signaling induces Sox12 expression in CD4+ T cells. Although Sox12 is not required for the development of thymus-derived T reg (tT reg) cells, Sox12 is involved in the development of pT reg cells under inflammatory conditions in an adoptive transfer colitis model. Moreover, we found that enforced expression of Sox12 is sufficient to promote Foxp3 expression in CD4+ T cells even in the absence of TGF-β or IL-2 and that Sox12 binds to Foxp3 promoter and drives its transcription. These results suggest that TCR-NFAT signaling induces the development of pT reg cells in colitic mice partly through Sox12 induction.
Collapse
Affiliation(s)
- Shigeru Tanaka
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Akira Suto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
- Institute for Global Prominent Research, Chiba University, Chiba, Japan
| | - Taro Iwamoto
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Takahiro Kageyama
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Tomohiro Tamachi
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Hiroaki Takatori
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Kotaro Suzuki
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Koichi Hirose
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| | - Osamu Ohara
- Department of Technology Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hiroshi Nakajima
- Department of Allergy and Clinical Immunology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
22
|
Balakrishnan A, Jama B, Morris GP. Endogenous co‐expression of two T cell receptors promotes lymphopenia‐induced proliferation via increased affinity for self‐antigen. J Leukoc Biol 2018; 104:1097-1104. [DOI: 10.1002/jlb.1ab0618-214rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 11/11/2022] Open
Affiliation(s)
- Amritha Balakrishnan
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Burhan Jama
- Department of PathologyUniversity of California San Diego La Jolla California USA
| | - Gerald P. Morris
- Department of PathologyUniversity of California San Diego La Jolla California USA
| |
Collapse
|
23
|
The Brain-Intestinal Mucosa-Appendix- Microbiome-Brain Loop. Diseases 2018; 6:diseases6020023. [PMID: 29614774 PMCID: PMC6023457 DOI: 10.3390/diseases6020023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 02/28/2018] [Accepted: 03/29/2018] [Indexed: 12/20/2022] Open
Abstract
The brain and the gut are connected from early fetal life. The mother's exposure to microbial molecules is thought to exert in utero developmental effects on the fetus. These effects could importantly underpin the groundwork for subsequent pathophysiological mechanisms for achieving immunological tolerance and metabolic equilibrium post birth, events that continue through to 3-4 years of age. Furthermore, it is understood that the microbiome promotes cues that instruct the neonate's mucosal tissues and skin in the language of molecular and cellular biology. Post birth mucosal lymphoid tissue formation and maturation (most probably including the vermiform appendix) is microbiota-encouraged co-establishing the intestinal microbiome with a developing immune system. Intestinal mucosal tissue maturation loops the brain-gut-brain and is postulated to influence mood dispositions via shifts in the intestinal microbiome phyla. A plausible appreciation is that dysregulated pro-inflammatory signals from intestinal resident macrophages could breach the loop by providing adverse mood signals via vagus nerve afferents to the brain. In this commentary, we further suggest that the intestinal resident macrophages act as an upstream traffic controller of translocated microbes and metabolites in order to maintain local neuro-endocrine-immunological equilibrium. When macrophages are overwhelmed through intestinal microbiome and intestinal epithelial cell dysbiosis, pro-inflammatory signals are sustained, which may then lead to mood disorders. The administration of probiotics as an adjunctive medicine co-administered with antidepressant medications in improving depressed mood may have biological and clinical standing.
Collapse
|
24
|
Saltzman ET, Palacios T, Thomsen M, Vitetta L. Intestinal Microbiome Shifts, Dysbiosis, Inflammation, and Non-alcoholic Fatty Liver Disease. Front Microbiol 2018; 9:61. [PMID: 29441049 PMCID: PMC5797576 DOI: 10.3389/fmicb.2018.00061] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 01/10/2018] [Indexed: 12/16/2022] Open
Abstract
Adverse fluctuations in the distribution of the intestinal microbiome cohort has been associated with the onset of intra- and extra-intestinal inflammatory conditions, like the metabolic syndrome (MetS) and it's hepatic manifestation, non-alcoholic fatty liver disease (NAFLD). The intestinal microbial community of obese compared to lean subjects has been shown to undergo configurational shifts in various genera, including but not limited to increased abundances of Prevotella, Escherichia, Peptoniphilus, and Parabacteroides and decreased levels of Bifidobacteria, Roseburia, and Eubacteria genera. At the phylum level, decreased Bacteroidetes and increased Firmicutes have been reported. The intestinal microbiota therefore presents an important target for designing novel therapeutic modalities that target extra-intestinal inflammatory disorders, such as NAFLD. This review hypothesizes that disruption of the intestinal-mucosal macrophage interface is a key factor in intestinal-liver axis disturbances. Intestinal immune responses implicated in the manifestation, maintenance and progression of NAFLD provide insights into the dialogue between the intestinal microbiome, the epithelia and mucosal immunity. The pro-inflammatory activity and immune imbalances implicated in NAFLD pathophysiology are reported to stem from dysbiosis of the intestinal epithelia which can serve as a source of hepatoxic effects. We posit that the hepatotoxic consequences of intestinal dysbiosis are compounded through intestinal microbiota-mediated inflammation of the local mucosa that encourages mucosal immune dysfunction, thus contributing important plausible insight in NAFLD pathogenesis. The administration of probiotics and prebiotics as a cure-all remedy for all chronic diseases is not advocated, instead, the incorporation of evidence based probiotic/prebiotic formulations as adjunctive modalities may enhance lifestyle modification management strategies for the amelioration of NAFLD.
Collapse
Affiliation(s)
- Emma T. Saltzman
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Talia Palacios
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Michael Thomsen
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| | - Luis Vitetta
- Sydney Medical School, University of Sydney, Sydney, NSW, Australia
- Medlab Clinical, Sydney, NSW, Australia
| |
Collapse
|
25
|
The Human Stomach in Health and Disease: Infection Strategies by Helicobacter pylori. Curr Top Microbiol Immunol 2017; 400:1-26. [PMID: 28124147 DOI: 10.1007/978-3-319-50520-6_1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Helicobacter pylori is a bacterial pathogen which commonly colonizes the human gastric mucosa from early childhood and persists throughout life. In the vast majority of cases, the infection is asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer, however, and these outcomes occur in 10-15% of those infected. Gastric adenocarcinoma is the third most common cause of cancer-associated death, and peptic ulcer disease is a significant cause of morbidity. Disease risk is related to the interplay of numerous bacterial host and environmental factors, many of which influence chronic inflammation and damage to the gastric mucosa. This chapter summarizes what is known about health and disease in H. pylori infection, and highlights the need for additional research in this area.
Collapse
|
26
|
Barthels C, Ogrinc A, Steyer V, Meier S, Simon F, Wimmer M, Blutke A, Straub T, Zimber-Strobl U, Lutgens E, Marconi P, Ohnmacht C, Garzetti D, Stecher B, Brocker T. CD40-signalling abrogates induction of RORγt + Treg cells by intestinal CD103 + DCs and causes fatal colitis. Nat Commun 2017; 8:14715. [PMID: 28276457 PMCID: PMC5347138 DOI: 10.1038/ncomms14715] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 01/25/2017] [Indexed: 12/23/2022] Open
Abstract
Immune homeostasis in intestinal tissues depends on the generation of regulatory T (Treg) cells. CD103+ dendritic cells (DCs) acquire microbiota-derived material from the gut lumen for transport to draining lymph nodes and generation of receptor-related orphan γt+ (RORγt+) Helios−-induced Treg (iTreg) cells. Here we show CD40-signalling as a microbe-independent signal that can induce migration of CD103+ DCs from the lamina propria (LP) to the mesenteric lymph nodes. Transgenic mice with constitutive CD11c-specific CD40-signalling have reduced numbers of CD103+ DCs in LP and a low frequency of RORγt+Helios− iTreg cells, exacerbated inflammatory Th1/Th17 responses, high titres of microbiota-specific immunoglobulins, dysbiosis and fatal colitis, but no pathology is detected in other tissues. Our data demonstrate a CD40-dependent mechanism capable of abrogating iTreg cell induction by DCs, and suggest that the CD40L/CD40-signalling axis might be able to intervene in the generation of new iTreg cells in order to counter-regulate immune suppression to enhance immunity. CD103+ dendritic cells induce iTreg cells to maintain immune balance in the gut, but how CD40-signalling regulates this process is unclear. Here the authors show that mice with constitutive CD11c-specific CD40-signalling have altered CD103+ dendritic cell migration, reduced iTreg cell induction, and fatal colitis.
Collapse
Affiliation(s)
- Christian Barthels
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Ana Ogrinc
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Verena Steyer
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Stefanie Meier
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Ferdinand Simon
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| | - Maria Wimmer
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg 85764, Germany
| | - Andreas Blutke
- Section of Animal Pathology, Department of Veterinary Clinical Sciences, LMU Munich, Munich 80539, Germany
| | - Tobias Straub
- Bioinformatics core unit, BMC, LMU Munich, Großhaderner Strasse 9, Planegg-Munich 82152, Germany
| | | | - Esther Lutgens
- Institut für Prophylaxe und Epidemiologie der Kreislaufkrankheiten, LMU Munich, Munich 80336, Germany.,Department of Medical Biochemistry, AMC, Amsterdam 1105AZ, The Netherlands
| | - Peggy Marconi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara 44121, Italy
| | - Caspar Ohnmacht
- Center of Allergy Environment (ZAUM), Helmholtz Center and TU Munich, Neuherberg 85764, Germany
| | - Debora Garzetti
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Munich, LMU Munich, Munich 80336, Germany
| | - Bärbel Stecher
- Max von Pettenkofer Institute of Hygiene and Medical Microbiology, German Center for Infection Research (DZIF), Partner Site Munich, LMU Munich, Munich 80336, Germany
| | - Thomas Brocker
- Institute for Immunology, LMU Munich, Großhaderner Strasse 9, Planegg-Martinsried 82152, Germany
| |
Collapse
|
27
|
Gupta N, Agrawal B, Kumar R. Controlling inflammation: a superior way to control TB. Immunotherapy 2016; 8:1157-61. [DOI: 10.2217/imt-2016-0070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Nancy Gupta
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Babita Agrawal
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Canada
| | - Rakesh Kumar
- Department of Laboratory Medicine & Pathology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
28
|
Carrasco A, Fernández-Bañares F, Pedrosa E, Salas A, Loras C, Rosinach M, Aceituno M, Andújar X, Forné M, Zabana Y, Esteve M. Regional Specialisation of T Cell Subsets and Apoptosis in the Human Gut Mucosa: Differences Between Ileum and Colon in Healthy Intestine and Inflammatory Bowel Diseases. J Crohns Colitis 2016; 10:1042-54. [PMID: 26995182 DOI: 10.1093/ecco-jcc/jjw066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/29/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS There is very limited information regarding region-specific immunological response in human intestine. We aimed to determine differences in immune compartmentalisation between ileum and colon in healthy and inflamed mucosa. METHODS T cell profile and its apoptosis were measured by flow cytometry, Th1, Th17, Treg [CD4(+)CD25(+)FOXP3(+)], double positive [DP, CD3(+)CD4(+)CD8(+)] and double negative T cells [DN, CD3(+)CD4(-)CD8(-)], immunohistochemistry [FOXP3, caspase-3], and real-time polymerase chain reaction [PCR] [IFN-γ, IL-17-A, and FOXP3] on biopsies from different regions of healthy intestine and of intestine in inflammatory bowel diseases. RESULTS Healthy colon showed higher percentages of Treg, Th17, and DN, and lower numbers of DP T cells compared with ileum [p < 0.05]. Some but not all region-specific differences were lost in inflammatory conditions. Disease-specific patterns were found: a Th1/Th17 pattern and a Th17 pattern in Crohn's disease and ulcerative colitis respectively, whereas a reduction in Th1/Th17 was found in microscopic colitis. In colonic Crohn's disease and microscopic colitis, DN T cells had a pattern inverse to that of Th1/Th17 (increase in microscopic colitis [p < 0.05] and decrease in Crohn's disease [p < 0.005]). Higher levels of lymphocyte apoptosis were found in healthy colon compared with the ileal counterparts [p = 0.001]. All forms of colonic inflammation presented a dramatic decrease in apoptosis compared with healthy colon. By contrast ileal Crohn's disease showed higher levels of cleaved-Caspase(+) CD3(+) cells. CONCLUSIONS Immunological differences exist in healthy gastrointestinal tract. Inflammatory processes overwhelm some location-specific differences, whereas others are maintained. Care has to be taken when analysing immune response in intestinal inflammation, as location-specific differences may be relevant.
Collapse
Affiliation(s)
- Anna Carrasco
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Fernando Fernández-Bañares
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Elisabet Pedrosa
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Antonio Salas
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain Department of Pathology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Carme Loras
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Mercè Rosinach
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Montserrat Aceituno
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain
| | - Xavier Andújar
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Montserrat Forné
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Yamile Zabana
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| | - Maria Esteve
- Department of Gastroenterology, Hospital Universitari Mutua Terrassa, Universitat de Barcelona, Catalonia, Spain Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas [CIBERehd], Barcelona, Catalonia, Spain
| |
Collapse
|
29
|
Murad HAS, Abdallah HM, Ali SS. Mentha longifolia protects against acetic-acid induced colitis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:354-361. [PMID: 27282663 DOI: 10.1016/j.jep.2016.06.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/22/2016] [Accepted: 06/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Mentha longifolia L (Wild Mint or Habak) (ML) is used in traditional medicine in treatment of many gastrointestinal disorders. AIM OF THE STUDY This study aimed to evaluate potential protecting effect of ML and its major constituent, eucalyptol, against acetic acid-induced colitis in rats, a model of human inflammatory bowel disease (IBD). MATERIALS AND METHODS Rats were divided into ten groups (n=8) given orally for three days (mg/kg/day) the following: normal control, acetic acid-induced colitis (un-treated, positive control), vehicle (DMSO), sulfasalazine (500), ML extract (100, 500, 1000), and eucalyptol (100, 200, 400). After 24h-fasting, two ML of acetic acid (3%) was administered intrarectally. On the fifth day, serum and colonic biochemical markers, and histopathological changes were evaluated. RESULTS Colitis significantly increased colonic myeloperoxidase activity and malonaldehyde level, and serum tumor necrosis factor-α, interleukin-6, and malonaldehyde levels while significantly decreased colonic and serum glutathione levels. All treatments (except ML 100, ML 1000, and eucalyptol 100) significantly reversed these changes where eucalyptol (400) showed the highest activity in a dose-dependent manner. The colitis-induced histopathological changes were mild in sulfasalazine and eucalyptol 400 groups, moderate in ML 500 and eucalyptol 200 groups, and severe in ML 100, ML 1000, and eucalyptol 100 groups nearly similar to colitis-untreated rats. CONCLUSION ML (in moderate doses) and eucalyptol (dose-dependently) exerted protective effects against acetic acid-induced colitis in rats possibly through antioxidant and antiinflammatory properties suggesting a potential benefit in treatments of IBD. To our knowledge this is the first report addressing this point.
Collapse
Affiliation(s)
- Hussam A S Murad
- Department of Pharmacology, Faculty of Medicine, Rabigh, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia; Department of Pharmacology, Faculty of Medicine, Ain Shams University, Cairo 11562, Egypt.
| | - Hossam M Abdallah
- Department of Natural Products, Faculty of Pharmacy, KAU, Jeddah 21589, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Soad S Ali
- Department of Anatomy, Faculty of Medicine, KAU, Jeddah, Saudi Arabia.
| |
Collapse
|
30
|
Li YT, Yu CB, Yan D, Huang JR, Li LJ. Effects of Salmonella infection on hepatic damage following acute liver injury in rats. Hepatobiliary Pancreat Dis Int 2016; 15:399-405. [PMID: 27498580 DOI: 10.1016/s1499-3872(16)60113-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Acute liver injury is a common clinical disorder associated with intestinal barrier injury and disturbance of intestinal microbiota. Probiotic supplementation has been reported to reduce liver injury; however, it is unclear whether enteropathogen infection exacerbates liver injury. The purpose of this study was to address this unanswered question using a rat model. METHODS Oral supplementation with Salmonella enterica serovar enteritidis (S. enteritidis) was given to rats for 7 days. Different degrees of acute liver injury were then induced by intraperitoneal injection of D-galactosamine. The presence and extent of liver injury was assayed by measuring the concentrations of serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin. Histology was used to observe liver tissue damage. Additionally, we measured the changes in plasma endotoxin, serum cytokines and bacterial translocation to clarify the mechanisms underlying intestinal microbiota associated liver injury. RESULTS The levels of liver damage and endotoxin were significantly increased in the Salmonella infected rats with severe liver injury compared with the no infection rats with severe liver injury (P<0.01); The peyer's patch CD3+ T cell counts were increased significantly when the Salmonella infection with severe injury group was compared with the normal group (P<0.05). S. enteritidis pretreatment enhanced intestinal barrier impairment and bacterial translocation. CONCLUSIONS Oral S. enteritidis administration exacerbates acute liver injury, especially when injury was severe. Major factors of the exacerbation include inflammatory and oxidative stress injuries induced by the translocated bacteria and associated endotoxins, as well as over-activation of the immune system in the intestine and liver.
Collapse
Affiliation(s)
- Yong-Tao Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | |
Collapse
|
31
|
Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol 2016; 9:428-43. [PMID: 26286232 PMCID: PMC4677460 DOI: 10.1038/mi.2015.73] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 06/26/2015] [Indexed: 02/04/2023]
Abstract
Helminth infection is frequently associated with the expansion of regulatory T cells (Tregs) and suppression of immune responses to bystander antigens. We show that infection of mice with the chronic gastrointestinal helminth Heligmosomoides polygyrus drives rapid polyclonal expansion of Foxp3(+)Helios(+)CD4(+) thymic (t)Tregs in the lamina propria and mesenteric lymph nodes while Foxp3(+)Helios(-)CD4(+) peripheral (p)Treg expand more slowly. Notably, in partially resistant BALB/c mice parasite survival positively correlates with Foxp3(+)Helios(+)CD4(+) tTreg numbers. Boosting of Foxp3(+)Helios(+)CD4(+) tTreg populations by administration of recombinant interleukin-2 (rIL-2):anti-IL-2 (IL-2C) complex increased worm persistence by diminishing type-2 responsiveness in vivo, including suppression of alternatively activated macrophage and granulomatous responses at the sites of infection. IL-2C also increased innate lymphoid cell (ILC) numbers, indicating that Treg functions dominate over ILC effects in this setting. Surprisingly, complete removal of Tregs in transgenic Foxp3-DTR mice also resulted in increased worm burdens, with "immunological chaos" evident in high levels of the pro-inflammatory cytokines IL-6 and interferon-γ. In contrast, worm clearance could be induced by anti-CD25 antibody-mediated partial depletion of early Treg, alongside increased T helper type 2 responses and without incurring pathology. These findings highlight the overarching importance of the early Treg response to infection and the non-linear association between inflammation and the prevailing Treg frequency.
Collapse
|
32
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
33
|
Abstract
Regulatory T (Treg) cells that express the transcription factor FoxP3 play a key role in self-tolerance and the control of inflammation. In mice and humans, there is a wide interindividual range in Treg frequency, but little is known about the underlying genetic or epigenetic mechanisms. We explored this issue in inbred strains of mice, with a special focus on the low proportion of Treg cells found in NZW mice. Mixed bone marrow chimera experiments showed this paucity to be intrinsic to NZW Treg cells, a dearth that could be tied to poor stability of the Treg pool and of FoxP3 expression. This instability was not a consequence of differential epigenetic marks, because Treg-specific CpG hypomethylation profiles at the Foxp3 locus were similar in all strains tested. It was also unrelated to the high expression of IFN signature genes in NZW, as shown by intercross to mice with an Ifnar1 knockout. NZW Tregs were less sensitive to limiting doses of trophic cytokines, IL-2 and -33, for population homeostasis and for maintenance of FoxP3 expression. Gene-expression profiles highlighted specific differences in the transcriptome of NZW Tregs compared with those of other strains, but no single defect could obviously account for the instability. Rather, NZW Tregs showed a general up-regulation of transcripts normally repressed in Treg cells, and we speculate that this network-level bias may account for NZW Treg instability.
Collapse
|
34
|
Vitetta L, Hall S, Coulson S. Metabolic Interactions in the Gastrointestinal Tract (GIT): Host, Commensal, Probiotics, and Bacteriophage Influences. Microorganisms 2015; 3:913-32. [PMID: 27682125 PMCID: PMC5023274 DOI: 10.3390/microorganisms3040913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/25/2015] [Accepted: 12/07/2015] [Indexed: 12/25/2022] Open
Abstract
Life on this planet has been intricately associated with bacterial activity at all levels of evolution and bacteria represent the earliest form of autonomous existence. Plants such as those from the Leguminosae family that form root nodules while harboring nitrogen-fixing soil bacteria are a primordial example of symbiotic existence. Similarly, cooperative activities between bacteria and animals can also be observed in multiple domains, including the most inhospitable geographical regions of the planet such as Antarctica and the Lower Geyser Basin of Yellowstone National Park. In humans bacteria are often classified as either beneficial or pathogenic and in this regard we posit that this artificial nomenclature is overly simplistic and as such almost misinterprets the complex activities and inter-relationships that bacteria have with the environment as well as the human host and the plethora of biochemical activities that continue to be identified. We further suggest that in humans there are neither pathogenic nor beneficial bacteria, just bacteria embraced by those that tolerate the host and those that do not. The densest and most complex association exists in the human gastrointestinal tract, followed by the oral cavity, respiratory tract, and skin, where bacteria—pre- and post-birth—instruct the human cell in the fundamental language of molecular biology that normally leads to immunological tolerance over a lifetime. The overall effect of this complex output is the elaboration of a beneficial milieu, an environment that is of equal or greater importance than the bacterium in maintaining homeostasis.
Collapse
Affiliation(s)
- Luis Vitetta
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| | - Sean Hall
- Medlab Clinical Ltd., Sydney 2015 Australia.
| | - Samantha Coulson
- Medlab Clinical Ltd., Sydney 2015 Australia.
- Sydney Medical School, University of Sydney, Sydney 2006, Australia.
| |
Collapse
|
35
|
Sefik E, Geva-Zatorsky N, Oh S, Konnikova L, Zemmour D, McGuire AM, Burzyn D, Ortiz-Lopez A, Lobera M, Yang J, Ghosh S, Earl A, Snapper SB, Jupp R, Kasper D, Mathis D, Benoist C. MUCOSAL IMMUNOLOGY. Individual intestinal symbionts induce a distinct population of RORγ⁺ regulatory T cells. Science 2015; 349:993-7. [PMID: 26272906 PMCID: PMC4700932 DOI: 10.1126/science.aaa9420] [Citation(s) in RCA: 643] [Impact Index Per Article: 71.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 12/18/2022]
Abstract
T regulatory cells that express the transcription factor Foxp3 (Foxp3(+) T(regs)) promote tissue homeostasis in several settings. We now report that symbiotic members of the human gut microbiota induce a distinct T(reg) population in the mouse colon, which constrains immuno-inflammatory responses. This induction—which we find to map to a broad, but specific, array of individual bacterial species—requires the transcription factor Rorγ, paradoxically, in that Rorγ is thought to antagonize FoxP3 and to promote T helper 17 (T(H)17) cell differentiation. Rorγ's transcriptional footprint differs in colonic T(regs) and T(H)17 cells and controls important effector molecules. Rorγ, and the T(regs) that express it, contribute substantially to regulating colonic T(H)1/T(H)17 inflammation. Thus, the marked context-specificity of Rorγ results in very different outcomes even in closely related cell types.
Collapse
Affiliation(s)
- Esen Sefik
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Naama Geva-Zatorsky
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Sungwhan Oh
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Liza Konnikova
- Division of Gastroenterology and Hepatology, Brigham and Women's Hospital, Boston, MA 02115, USA, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - David Zemmour
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | | | - Dalia Burzyn
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Adriana Ortiz-Lopez
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Mercedes Lobera
- Tempero Pharmaceuticals, a GSK Company, Cambridge, MA 02115, USA
| | - Jianfei Yang
- Tempero Pharmaceuticals, a GSK Company, Cambridge, MA 02115, USA
| | - Shomir Ghosh
- Tempero Pharmaceuticals, a GSK Company, Cambridge, MA 02115, USA
| | - Ashlee Earl
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Scott B Snapper
- Division of Gastroenterology and Hepatology, Brigham and Women's Hospital, Boston, MA 02115, USA, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Ray Jupp
- UCB Pharma, Slough, Berkshire, UK
| | - Dennis Kasper
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA
| | - Diane Mathis
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| | - Christophe Benoist
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston 02115, MA, USA. Evergrande Center for Immunologic Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
36
|
White JR, Winter JA, Robinson K. Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 2015; 8:137-47. [PMID: 26316793 PMCID: PMC4540215 DOI: 10.2147/jir.s64888] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host-pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.
Collapse
Affiliation(s)
- Jonathan Richard White
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - Jody Anne Winter
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Robinson
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
37
|
Zu H, Li Q, Huang P. Expression of Treg subsets on intestinal T cell immunity and endotoxin translocation in porcine sepsis after severe burns. Cell Biochem Biophys 2015; 70:1699-704. [PMID: 25239020 DOI: 10.1007/s12013-014-0116-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In the present study, the changes of the regulatory T cells (Treg) expression, endotoxin translocation, and the relationships in intestinal lymph nodes were investigated in porcine sepsis induced by severe burns. Flow cytometry, western blot, and Tachypleus amebocyte lysate were applied to study after the burn injury model was built. We found that the upregulated Treg expression was negatively related to the CD3(+)CD4(+)/CD3(+)CD8(+) ratio (r = -0.832, P < 0.05) after burn injury-induced sepsis. While Treg expression and portal venous plasma endotoxin translocation levels were positively correlated (r = 0.876, P < 0.05) when compared with the control group. Moreover, we detected a transforming of T cell subsets from T helper 1 cells to T helper 2 cells. Therefore, intestinal Treg cells expression exerts immunosuppressive effects on other intestinal T lymphocytes and was closely related to endotoxin translocation in porcine sepsis after severe burns injuries. Above all, the intestinal Treg cells may play an important role in the intestinal immune barrier system after severe burns injuries.
Collapse
Affiliation(s)
- HongXu Zu
- Department of Burns, First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China,
| | | | | |
Collapse
|
38
|
Hepworth MR, Fung TC, Masur SH, Kelsen JR, McConnell FM, Dubrot J, Withers DR, Hugues S, Farrar MA, Reith W, Eberl G, Baldassano RN, Laufer TM, Elson CO, Sonnenberg GF. Immune tolerance. Group 3 innate lymphoid cells mediate intestinal selection of commensal bacteria-specific CD4⁺ T cells. Science 2015; 348:1031-5. [PMID: 25908663 PMCID: PMC4449822 DOI: 10.1126/science.aaa4812] [Citation(s) in RCA: 374] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Inflammatory CD4(+) T cell responses to self or commensal bacteria underlie the pathogenesis of autoimmunity and inflammatory bowel disease (IBD), respectively. Although selection of self-specific T cells in the thymus limits responses to mammalian tissue antigens, the mechanisms that control selection of commensal bacteria-specific T cells remain poorly understood. Here, we demonstrate that group 3 innate lymphoid cell (ILC3)-intrinsic expression of major histocompatibility complex class II (MHCII) is regulated similarly to thymic epithelial cells and that MHCII(+) ILC3s directly induce cell death of activated commensal bacteria-specific T cells. Further, MHCII on colonic ILC3s was reduced in pediatric IBD patients. Collectively, these results define a selection pathway for commensal bacteria-specific CD4(+) T cells in the intestine and suggest that this process is dysregulated in human IBD.
Collapse
Affiliation(s)
- Matthew R Hepworth
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Thomas C Fung
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA. Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samuel H Masur
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Judith R Kelsen
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fiona M McConnell
- Medical Research Council, Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Juan Dubrot
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - David R Withers
- Medical Research Council, Centre for Immune Regulation, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Stephanie Hugues
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Michael A Farrar
- Center for Immunology, Department of Laboratory Medicine and Pathology, University of Minnesota, MN, USA
| | - Walter Reith
- Department of Pathology and Immunology, University of Geneva Medical School, Geneva, Switzerland
| | - Gérard Eberl
- Institut Pasteur, Microenvironment and Immunity Unit, Paris, France
| | - Robert N Baldassano
- Division of Gastroenterology, Hepatology, and Nutrition, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Terri M Laufer
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA. Philadelphia Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Charles O Elson
- Departments of Medicine and Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Gregory F Sonnenberg
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Gastroenterology Division, and Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
39
|
Robinson K. Helicobacter pylori-Mediated Protection against Extra-Gastric Immune and Inflammatory Disorders: The Evidence and Controversies. Diseases 2015; 3:34-55. [PMID: 28943607 PMCID: PMC5548235 DOI: 10.3390/diseases3020034] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 12/11/2022] Open
Abstract
A large number of studies link H. pylori infection with a reduced risk of developing extra-gastric conditions such as allergy, asthma, inflammatory bowel disease, coeliac disease and multiple sclerosis. The strength of the evidence for these protective associations is quite variable, and published studies often do not agree. This review article discusses some of the reasons for these discrepancies, and the difficulties faced when designing studies. Examples of some protective disease associations are described in detail, where the evidence is most abundant and thought to be more reliable. The most convincing of these are supported by published mechanistic data, for example with animal models, or incidence of disease exacerbation in humans following H. pylori eradication. Although controversial, this field is very important as the prevalence of H. pylori is decreasing throughout the world whilst many chronic diseases are becoming more common. These trends are likely to continue in the future, therefore it is important that we fully understand if and how H. pylori confers protection.
Collapse
Affiliation(s)
- Karen Robinson
- Nottingham Digestive Diseases Biomedical Research Unit, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
40
|
|
41
|
Chai JN, Zhou YW, Hsieh CS. T cells and intestinal commensal bacteria--ignorance, rejection, and acceptance. FEBS Lett 2014; 588:4167-75. [PMID: 24997344 DOI: 10.1016/j.febslet.2014.06.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/23/2014] [Accepted: 06/24/2014] [Indexed: 02/01/2023]
Abstract
Trillions of commensal bacteria cohabit our bodies to mutual benefit. In the past several years, it has become clear that the adaptive immune system is not ignorant of intestinal commensal bacteria, but is constantly interacting with them. For T cells, the response to commensal bacteria does not appear uniform, as certain commensal bacterial species appear to trigger effector T cells to reject and control them, whereas other species elicit Foxp3(+) regulatory T (Treg) cells to accept and be tolerant of them. Here, we review our current knowledge of T cell differentiation in response to commensal bacteria, and how this process leads to immune homeostasis in the intestine.
Collapse
Affiliation(s)
- Jiani N Chai
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - You W Zhou
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States
| | - Chyi-Song Hsieh
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St. Louis, MO 63132, United States.
| |
Collapse
|