1
|
Marchand T, Lamy T, Loughran TP. A modern view of LGL leukemia. Blood 2024; 144:1910-1923. [PMID: 38848524 DOI: 10.1182/blood.2023021790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/29/2024] [Accepted: 05/27/2024] [Indexed: 06/09/2024] Open
Abstract
ABSTRACT Large granular lymphocytic leukemia (LGLL) is a rare lymphoproliferative chronic disorder characterized by expansion of either T or natural killer (NK) cytotoxic cells. In contrast to Epstein-Barr virus-induced aggressive NK-LGLL, chronic T-LGLL and NK-LGLL are indolent diseases affecting older patients with a median age of 66.5 years. LGLL is frequently associated with autoimmune disorders, most frequently rheumatoid arthritis. An auto-/alloantigen is tentatively implicated in disease initiation. Large granular lymphocyte expansion is then triggered by proinflammatory cytokines such as interleukin-15, macrophage inflammatory protein 1 (MIP-1), and RANTES (regulated upon activation, normal T cell expressed, and secreted). This proinflammatory environment contributes to deregulation of proliferative and apoptotic pathways. After the initial description of the JAK-STAT pathway signaling activation in the majority of patients, recurrent STAT3 gain-of-function mutations have been reported. The JAK-STAT pathway plays a key role in LGL pathogenesis by promoting survival, proliferation, and cytotoxicity. Several recent advances have been made toward understanding the molecular landscapes of T- and NK-LGLL, identifying multiple recurrent mutations affecting the epigenome, such as TET2 or KMT2D, and cross talk with the immune microenvironment, such as CCL22. Despite an indolent course, published series suggest that the majority of patients eventually need treatment. However, it is noteworthy that many patients may have a long-term observation period without ever requiring therapy. Treatments rely upon immunosuppressive drugs, namely cyclophosphamide, methotrexate, and cyclosporine. Recent advances have led to the development of targeted approaches, including JAK-STAT inhibitors, cytokine targeting, and hypomethylating agents, opening new developments in a still-incurable disease.
Collapse
Affiliation(s)
- Tony Marchand
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thierry Lamy
- Department of Hematology, Rennes University Hospital, Rennes, France
- Faculty of Medicine, Rennes University, Rennes, France
- UMR 1236, Rennes University, INSERM, Établissement Français du Sang Bretagne, Rennes, France
| | - Thomas P Loughran
- Division of Hematology and Oncology, Department of Medicine and University of Virginia Cancer Center, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
2
|
An X, Yu W, Liu J, Tang D, Yang L, Chen X. Oxidative cell death in cancer: mechanisms and therapeutic opportunities. Cell Death Dis 2024; 15:556. [PMID: 39090114 PMCID: PMC11294602 DOI: 10.1038/s41419-024-06939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Reactive oxygen species (ROS) are highly reactive oxygen-containing molecules generated as natural byproducts during cellular processes, including metabolism. Under normal conditions, ROS play crucial roles in diverse cellular functions, including cell signaling and immune responses. However, a disturbance in the balance between ROS production and cellular antioxidant defenses can lead to an excessive ROS buildup, causing oxidative stress. This stress damages essential cellular components, including lipids, proteins, and DNA, potentially culminating in oxidative cell death. This form of cell death can take various forms, such as ferroptosis, apoptosis, necroptosis, pyroptosis, paraptosis, parthanatos, and oxeiptosis, each displaying distinct genetic, biochemical, and signaling characteristics. The investigation of oxidative cell death holds promise for the development of pharmacological agents that are used to prevent tumorigenesis or treat established cancer. Specifically, targeting key antioxidant proteins, such as SLC7A11, GCLC, GPX4, TXN, and TXNRD, represents an emerging approach for inducing oxidative cell death in cancer cells. This review provides a comprehensive summary of recent progress, opportunities, and challenges in targeting oxidative cell death for cancer therapy.
Collapse
Affiliation(s)
- Xiaoqin An
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Wenfeng Yu
- Provincial Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou, PR China
| | - Jinbao Liu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Li Yang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou, PR China.
| | - Xin Chen
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
3
|
Qi K, Li J, Hu Y, Qiao Y, Mu Y. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species. Front Pharmacol 2024; 15:1416781. [PMID: 39076592 PMCID: PMC11284502 DOI: 10.3389/fphar.2024.1416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive buildup of highly reactive molecules can occur due to the generation and dysregulation of reactive oxygen species (ROS) and their associated signaling pathways. ROS have a dual function in cancer development, either leading to DNA mutations that promote the growth and dissemination of cancer cells, or triggering the death of cancer cells. Cancer cells strategically balance their fate by modulating ROS levels, activating pro-cancer signaling pathways, and suppressing antioxidant defenses. Consequently, targeting ROS has emerged as a promising strategy in cancer therapy. Shikonin and its derivatives, along with related drug carriers, can impact several signaling pathways by targeting components involved with oxidative stress to induce processes such as apoptosis, necroptosis, cell cycle arrest, autophagy, as well as modulation of ferroptosis. Moreover, they can increase the responsiveness of drug-resistant cells to chemotherapy drugs, based on the specific characteristics of ROS, as well as the kind and stage of cancer. This research explores the pro-cancer and anti-cancer impacts of ROS, summarize the mechanisms and research achievements of shikonin-targeted ROS in anti-cancer effects and provide suggestions for designing further anti-tumor experiments and undertaking further experimental and practical research.
Collapse
Affiliation(s)
- Ke Qi
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jiayi Li
- Department of Clinical Test Center, Medical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yang Hu
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yiyun Qiao
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
4
|
Liu X, Lu L, Zhang N, Jiang W. Regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. Talanta 2024; 269:125507. [PMID: 38056417 DOI: 10.1016/j.talanta.2023.125507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Apoptosis is a typical programmed death mode with complex molecular regulation mechanisms. Developing advanced strategies to monitor apoptosis progression is conducive to disease treatment related with apoptosis. Herein, we developed a regulator-carrying dual-responsive integrated AuNP composite fluorescence probe for in situ real time monitoring apoptosis progression. The nanoprobe is constructed by modifying specially designed double-stranded DNA (dsDNA) and caspase 3-specific cleavable peptides (pep) to the surface of AuNP. After uptake by cells, the nanoprobe recognizes miRNA 21 and triggers fluorescence recovery, enabling silencing and imaging of the upstream signaling molecule miRNA 21. Once miRNA 21 is silenced, the downstream signaling molecule caspase 3 is activated and cleaves the substrate peptides, and fluorescence is restored for in situ imaging of caspase 3. The apoptosis induced by silencing miRNA 21 has been successfully implemented in HeLa and A549 cells. The expression level of miRNA 21 and corresponding changes of caspase 3 have also been effectively monitored. These results suggested this nanoprobe will be a potential tool for apoptosis-related biomedical research and clinical application.
Collapse
Affiliation(s)
- Xiaoting Liu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Ling Lu
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China
| | - Nan Zhang
- Research Center of Basic Medicine, Breast Center, Jinan Central Hospital, Shandong University, 250013, Jinan, PR China.
| | - Wei Jiang
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
5
|
Rivalta B, Attardi E, Cifaldi C, Rosti V, Pacillo L, Hajrullaj H, Di Cesare S, Amodio D, Algeri M, Luciani M, Barzaghi F, Finocchi A, Di Matteo G, Aiuti A, Locatelli F, Voso MT, Palumbo G, Cancrini C. Natural history of Ras-associated autoimmune leukoproliferative disorder: A 20-year follow-up of a NRAS-mutated patient excluding a malignant progression. Br J Haematol 2024; 204:e6-e10. [PMID: 37921255 DOI: 10.1111/bjh.19150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Affiliation(s)
- B Rivalta
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - E Attardi
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - C Cifaldi
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - V Rosti
- Center for the Study of Myelofibrosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - L Pacillo
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - H Hajrullaj
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - S Di Cesare
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - D Amodio
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - M Algeri
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - M Luciani
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - F Barzaghi
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - A Finocchi
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - G Di Matteo
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - A Aiuti
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - F Locatelli
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Life Sciences and Public Health, Catholic University of the Sacred Heart, Rome, Italy
| | - M T Voso
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - G Palumbo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Department of Pediatric Hemato-Oncology and Cell and Gene Therapy, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
| | - C Cancrini
- Research Unit of Primary Immunodeficiencies, Academic Department of Pediatrics, Bambino Gesù Children's Hospital, Scientific Institute for Research and Healthcare (IRCCS), Rome, Italy
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
6
|
Hurtado-Navarro L, Cuenca-Zamora EJ, Zamora L, Bellosillo B, Such E, Soler-Espejo E, Martínez-Banaclocha H, Hernández-Rivas JM, Marco-Ayala J, Martínez-Alarcón L, Linares-Latorre L, García-Ávila S, Amat-Martínez P, González T, Arnan M, Pomares-Marín H, Carreño-Tarragona G, Chen-Liang TH, Herranz MT, García-Palenciano C, Morales ML, Jerez A, Lozano ML, Teruel-Montoya R, Pelegrín P, Ferrer-Marín F. NLRP3 inflammasome activation and symptom burden in KRAS-mutated CMML patients is reverted by IL-1 blocking therapy. Cell Rep Med 2023; 4:101329. [PMID: 38118408 PMCID: PMC10772462 DOI: 10.1016/j.xcrm.2023.101329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 12/22/2023]
Abstract
Chronic myelomonocytic leukemia (CMML) is frequently associated with mutations in the rat sarcoma gene (RAS), leading to worse prognosis. RAS mutations result in active RAS-GTP proteins, favoring myeloid cell proliferation and survival and inducing the NLRP3 inflammasome together with the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), which promote caspase-1 activation and interleukin (IL)-1β release. Here, we report, in a cohort of CMML patients with mutations in KRAS, a constitutive activation of the NLRP3 inflammasome in monocytes, evidenced by ASC oligomerization and IL-1β release, as well as a specific inflammatory cytokine signature. Treatment of a CMML patient with a KRASG12D mutation using the IL-1 receptor blocker anakinra inhibits NLRP3 inflammasome activation, reduces monocyte count, and improves the patient's clinical status, enabling a stem cell transplant. This reveals a basal inflammasome activation in RAS-mutated CMML patients and suggests potential therapeutic applications of NLRP3 and IL-1 blockers.
Collapse
Affiliation(s)
| | - Ernesto José Cuenca-Zamora
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Lurdes Zamora
- Myeloid Neoplasms Group, Josep Carreras Leukaemia Research Institute, ICO-Hospital Germans Trias I Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Beatriz Bellosillo
- Molecular Biology Laboratory, Pathology Department, Hospital Del Mar, Hospital Del Mar Medical Research Institute, IMIM, Barcelona, Spain
| | - Esperanza Such
- Hematology Department, La Fe University Hospital, Valencia, Spain
| | - Eva Soler-Espejo
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Immunology Service, Hospital Universitario Virgen de La Arrixaca, Murcia, Spain
| | - Jesús M Hernández-Rivas
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Javier Marco-Ayala
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | | | - Lola Linares-Latorre
- Service of Clinical Analysis and Microbiology, Fundación Instituto Valenciano de Oncología, Valencia, Spain
| | - Sara García-Ávila
- Department of Hematology, Hospital Del Mar, Barcelona, Spain; IMIM (Hospital Del Mar Medical Research Institute), Barcelona, Spain
| | - Paula Amat-Martínez
- Hematology Service, Clinic University Hospital, INCLIVA Health Research Institute, Valencia, Spain
| | - Teresa González
- Department of Medicine, Universidad de Salamanca, Servicio de Hematología, Hospital Universitario de Salamanca, IBSAL, Salamanca, Spain
| | - Montserrat Arnan
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | - Helena Pomares-Marín
- Hematology Department, Institut Català D'Oncologia (ICO)-Hospital Duran I Reynals, IDIBELL, Barcelona, Spain
| | | | - Tzu Hua Chen-Liang
- Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - María T Herranz
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Servicio de Anestesiología y Reanimación, Hospital Clínico Universitario Virgen de La Arrixaca, Murcia, Spain
| | - María Luz Morales
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain
| | - Andrés Jerez
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - María L Lozano
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain
| | - Raúl Teruel-Montoya
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Department of Biochemistry and Molecular Biology B and Immunology, University of Murcia, Murcia, Spain.
| | - Francisca Ferrer-Marín
- Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), Murcia, Spain; Hematology Department, Hospital Universitario Morales-Meseguer, Centro Regional de Hemodonación, Murcia, Spain; CIBERER CB15/00055 (U765), Murcia, Spain; Universidad Católica San Antonio (UCAM), Murcia, Spain.
| |
Collapse
|
7
|
Xing L, Tang Y, Li L, Tao X. ROS in hepatocellular carcinoma: What we know. Arch Biochem Biophys 2023:109699. [PMID: 37499994 DOI: 10.1016/j.abb.2023.109699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Hepatocellular carcinoma (HCC), which is a primary liver cancer subtype, has a poor prognosis due to its high degree of malignancy. The lack of early diagnosis makes systemic therapy the only hope for HCC patients with advanced disease; however, resistance to drugs is a major obstacle. In recent years, targeted molecular therapy has gained popularity as a potential treatment for HCC. An increase in reactive oxygen species (ROS), which are cancer markers and a potential target for HCC therapy, can both promote and inhibit the disease. At present, many studies have examined targeted regulation of ROS in the treatment of HCC. Here, we reviewed the latest drugs that are still in the experimental stage, including nanocarrier drugs, exosome drugs, antibody drugs, aptamer drugs and polysaccharide drugs, to provide new hope for the clinical treatment of HCC patients.
Collapse
Affiliation(s)
- Lin Xing
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Yuting Tang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China; School of Pharmacy, Dalian Medical University, Dalian, 116044, China
| | - Lu Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| |
Collapse
|
8
|
Wang C, Yu C, Chang H, Song J, Zhang S, Zhao J, Wang J, Wang T, Qi Q, Shan C. Glucose-6-phosphate dehydrogenase: a therapeutic target for ovarian cancer. Expert Opin Ther Targets 2023; 27:733-743. [PMID: 37571851 DOI: 10.1080/14728222.2023.2247558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/04/2023] [Accepted: 08/09/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Ovarian cancer (OC) is a gynecological tumor disease, which is usually diagnosed at an advanced stage and has a poor prognosis. It has been established that the glucose metabolism rate of cancer cells is significantly higher than that of normal cells, and the pentose phosphate pathway (PPP) is an important branch pathway for glucose metabolism. Glucose-6-phosphate dehydrogenase (G6PD) is the key rate-limiting enzyme in the PPP, which plays an important role in the initiation and development of cancer (such as OC), and has been considered as a promisinganti-cancer target. AREAS COVERED In this review, based on the structure and biological function of G6PD, recent research on the roles of G6PD in the progression, metastasis, and chemoresistance of OC are summarized and accompanied by proposed molecular mechanisms, which may provide a systematic understanding of targeting G6PD for the treatment of patients with OC. EXPERT OPINION Accumulating evidence demonstrates that G6PD is a promising target of cancer. The development of G6PD inhibitors for cancer treatment merits broad application prospects.
Collapse
Affiliation(s)
- Chenxi Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Chenxi Yu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Hongkai Chang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Jiaqi Song
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Shuai Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jianguo Zhao
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Jiyan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Tao Wang
- Tianjin Key Laboratory of human development and reproductive regulation, Tianjin Central Hospital of Gynecology Obstetrics, Tianjin, China
| | - Qi Qi
- MOE Key Laboratory of Tumor Molecular Biology, Clinical Translational Center for Targeted Drug, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, China
| | - Changliang Shan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| |
Collapse
|
9
|
Vitale I, Pietrocola F, Guilbaud E, Aaronson SA, Abrams JM, Adam D, Agostini M, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Aqeilan RI, Arama E, Baehrecke EH, Balachandran S, Bano D, Barlev NA, Bartek J, Bazan NG, Becker C, Bernassola F, Bertrand MJM, Bianchi ME, Blagosklonny MV, Blander JM, Blandino G, Blomgren K, Borner C, Bortner CD, Bove P, Boya P, Brenner C, Broz P, Brunner T, Damgaard RB, Calin GA, Campanella M, Candi E, Carbone M, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chen GQ, Chen Q, Chen YH, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Ciliberto G, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Daugaard M, Dawson TM, Dawson VL, De Maria R, De Strooper B, Debatin KM, Deberardinis RJ, Degterev A, Del Sal G, Deshmukh M, Di Virgilio F, Diederich M, Dixon SJ, Dynlacht BD, El-Deiry WS, Elrod JW, Engeland K, Fimia GM, Galassi C, Ganini C, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Gerlic M, Ghosh S, Green DR, Greene LA, Gronemeyer H, Häcker G, Hajnóczky G, Hardwick JM, Haupt Y, He S, Heery DM, Hengartner MO, Hetz C, Hildeman DA, Ichijo H, Inoue S, Jäättelä M, Janic A, Joseph B, Jost PJ, Kanneganti TD, Karin M, Kashkar H, Kaufmann T, Kelly GL, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Kluck R, Krysko DV, Kulms D, Kumar S, Lavandero S, Lavrik IN, Lemasters JJ, Liccardi G, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Luedde T, MacFarlane M, Madeo F, Malorni W, Manic G, Mantovani R, Marchi S, Marine JC, Martin SJ, Martinou JC, Mastroberardino PG, Medema JP, Mehlen P, Meier P, Melino G, Melino S, Miao EA, Moll UM, Muñoz-Pinedo C, Murphy DJ, Niklison-Chirou MV, Novelli F, Núñez G, Oberst A, Ofengeim D, Opferman JT, Oren M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pentimalli F, Pereira DM, Pervaiz S, Peter ME, Pinton P, Porta G, Prehn JHM, Puthalakath H, Rabinovich GA, Rajalingam K, Ravichandran KS, Rehm M, Ricci JE, Rizzuto R, Robinson N, Rodrigues CMP, Rotblat B, Rothlin CV, Rubinsztein DC, Rudel T, Rufini A, Ryan KM, Sarosiek KA, Sawa A, Sayan E, Schroder K, Scorrano L, Sesti F, Shao F, Shi Y, Sica GS, Silke J, Simon HU, Sistigu A, Stephanou A, Stockwell BR, Strapazzon F, Strasser A, Sun L, Sun E, Sun Q, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Troy CM, Turk B, Urbano N, Vandenabeele P, Vanden Berghe T, Vander Heiden MG, Vanderluit JL, Verkhratsky A, Villunger A, von Karstedt S, Voss AK, Vousden KH, Vucic D, Vuri D, Wagner EF, Walczak H, Wallach D, Wang R, Wang Y, Weber A, Wood W, Yamazaki T, Yang HT, Zakeri Z, Zawacka-Pankau JE, Zhang L, Zhang H, Zhivotovsky B, Zhou W, Piacentini M, Kroemer G, Galluzzi L. Apoptotic cell death in disease-Current understanding of the NCCD 2023. Cell Death Differ 2023; 30:1097-1154. [PMID: 37100955 PMCID: PMC10130819 DOI: 10.1038/s41418-023-01153-w] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.
Collapse
Affiliation(s)
- Ilio Vitale
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy.
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy.
| | - Federico Pietrocola
- Department of Biosciences and Nutrition, Karolinska Institute, Huddinge, Sweden
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institut für Immunologie, Kiel University, Kiel, Germany
| | - Massimiliano Agostini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patrizia Agostinis
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- VIB Center for Cancer Biology, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
- BIOGEM, Avellino, Italy
| | - Ivano Amelio
- Division of Systems Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - David W Andrews
- Sunnybrook Research Institute, Toronto, ON, Canada
- Departments of Biochemistry and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Rami I Aqeilan
- Hebrew University of Jerusalem, Lautenberg Center for Immunology & Cancer Research, Institute for Medical Research Israel-Canada (IMRIC), Faculty of Medicine, Jerusalem, Israel
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Siddharth Balachandran
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Daniele Bano
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Nickolai A Barlev
- Department of Biomedicine, Nazarbayev University School of Medicine, Astana, Kazakhstan
| | - Jiri Bartek
- Department of Medical Biochemistry and Biophysics, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Francesca Bernassola
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Mathieu J M Bertrand
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Marco E Bianchi
- Università Vita-Salute San Raffaele, School of Medicine, Milan, Italy and Ospedale San Raffaele IRCSS, Milan, Italy
| | | | - J Magarian Blander
- Department of Medicine, Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Pediatric Hematology and Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Medical Faculty, Albert Ludwigs University of Freiburg, Freiburg, Germany
| | - Carl D Bortner
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Pierluigi Bove
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Patricia Boya
- Centro de Investigaciones Biologicas Margarita Salas, CSIC, Madrid, Spain
| | - Catherine Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, Villejuif, France
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Epalinges, Vaud, Switzerland
| | - Thomas Brunner
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - George A Calin
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- UCL Consortium for Mitochondrial Research, London, UK
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Michele Carbone
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | | | - Francesco Cecconi
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francis K-M Chan
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Guo-Qiang Chen
- State Key Lab of Oncogene and its related gene, Ren-Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Quan Chen
- College of Life Sciences, Nankai University, Tianjin, China
| | - Youhai H Chen
- Shenzhen Institute of Advanced Technology (SIAT), Shenzhen, Guangdong, China
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, USA
| | - Aaron Ciechanover
- The Technion-Integrated Cancer Center, The Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | - Marcus Conrad
- Helmholtz Munich, Institute of Metabolism and Cell Death, Neuherberg, Germany
| | - Juan R Cubillos-Ruiz
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Mads Daugaard
- Department of Urologic Sciences, Vancouver Prostate Centre, Vancouver, BC, Canada
| | - Ted M Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Institute for Cell Engineering and the Departments of Neurology, Neuroscience and Pharmacology & Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ruggero De Maria
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Bart De Strooper
- VIB Centre for Brain & Disease Research, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at UCL, University College London, London, UK
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J Deberardinis
- Howard Hughes Medical Institute and Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Alexei Degterev
- Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Marc Diederich
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University Cancer Institute, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Division of Hematology/Oncology, Brown University and the Lifespan Cancer Institute, Providence, RI, USA
- Legorreta Cancer Center at Brown University, The Warren Alpert Medical School, Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - John W Elrod
- Cardiovascular Research Center, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Kurt Engeland
- Molecular Oncology, University of Leipzig, Leipzig, Germany
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Carlo Ganini
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
| | - Ana J Garcia-Saez
- CECAD, Institute of Genetics, University of Cologne, Cologne, Germany
| | - Abhishek D Garg
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM, UMR, 1231, Dijon, France
- Faculty of Medicine, Université de Bourgogne Franche-Comté, Dijon, France
- Anti-cancer Center Georges-François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, New York, NY, USA
| | - Motti Gerlic
- Department of Clinical Microbiology and Immunology, Sackler school of Medicine, Tel Aviv university, Tel Aviv, Israel
| | - Sourav Ghosh
- Department of Neurology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Hinrich Gronemeyer
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Departments of Molecular Microbiology and Immunology, Pharmacology, Oncology and Neurology, Johns Hopkins Bloomberg School of Public Health and School of Medicine, Baltimore, MD, USA
| | - Ygal Haupt
- VITTAIL Ltd, Melbourne, VIC, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Sudan He
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, Jiangsu, China
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Center for Molecular Studies of the Cell, Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
- Buck Institute for Research on Aging, Novato, CA, USA
| | - David A Hildeman
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, The University of Tokyo, Tokyo, Japan
| | - Satoshi Inoue
- National Cancer Center Research Institute, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Ana Janic
- Department of Medicine and Life Sciences, Pompeu Fabra University, Barcelona, Spain
| | - Bertrand Joseph
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Philipp J Jost
- Clinical Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - Michael Karin
- Departments of Pharmacology and Pathology, School of Medicine, University of California San Diego, San Diego, CA, USA
| | - Hamid Kashkar
- CECAD Research Center, Institute for Molecular Immunology, University of Cologne, Cologne, Germany
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Oliver Kepp
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Biochemistry, Albert Einstein College of Medicine, New York, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, New York, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY, USA
| | | | - Ruth Kluck
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Dmitri V Krysko
- Cell Death Investigation and Therapy Lab, Department of Human Structure and Repair, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Dagmar Kulms
- Department of Dermatology, Experimental Dermatology, TU-Dresden, Dresden, Germany
- National Center for Tumor Diseases Dresden, TU-Dresden, Dresden, Germany
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Sergio Lavandero
- Universidad de Chile, Facultad Ciencias Quimicas y Farmaceuticas & Facultad Medicina, Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
- Department of Internal Medicine, Cardiology Division, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Inna N Lavrik
- Translational Inflammation Research, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - John J Lemasters
- Departments of Drug Discovery & Biomedical Sciences and Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Gianmaria Liccardi
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Andreas Linkermann
- Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center and Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Richard A Lockshin
- Department of Biology, Queens College of the City University of New York, Flushing, NY, USA
- St. John's University, Jamaica, NY, USA
| | - Carlos López-Otín
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología (IUOPA), Universidad de Oviedo, Oviedo, Spain
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Heinrich Heine University, Duesseldorf, Germany
| | - Marion MacFarlane
- Medical Research Council Toxicology Unit, University of Cambridge, Cambridge, UK
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - Walter Malorni
- Center for Global Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- IIGM - Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy
- Candiolo Cancer Institute, FPO -IRCCS, Candiolo, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Jean-Christophe Marine
- VIB Center for Cancer Biology, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | | | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Pier G Mastroberardino
- Department of Molecular Genetics, Rotterdam, the Netherlands
- IFOM-ETS The AIRC Institute for Molecular Oncology, Milan, Italy
- Department of Life, Health, and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer, and Development Laboratory, Equipe labellisée 'La Ligue', LabEx DEVweCAN, Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK
| | - Gerry Melino
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Sonia Melino
- Department of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Ute M Moll
- Department of Pathology and Stony Brook Cancer Center, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Spain
| | - Daniel J Murphy
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | - Flavia Novelli
- Thoracic Oncology, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, The University of Michigan, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Dimitry Ofengeim
- Rare and Neuroscience Therapeutic Area, Sanofi, Cambridge, MA, USA
| | - Joseph T Opferman
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, The Weizmann Institute, Rehovot, Israel
| | - Michele Pagano
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine and Howard Hughes Medical Institute, New York, NY, USA
| | - Theocharis Panaretakis
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of GU Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Josef M Penninger
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, Canada
| | | | - David M Pereira
- REQUIMTE/LAQV, Laboratório de Farmacognosia, Departamento de Química, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, YLL School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, Singapore
- National University Cancer Institute, NUHS, Singapore, Singapore
- ISEP, NUS Graduate School, National University of Singapore, Singapore, Singapore
| | - Marcus E Peter
- Department of Medicine, Division Hematology/Oncology, Northwestern University, Chicago, IL, USA
| | - Paolo Pinton
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giovanni Porta
- Center of Genomic Medicine, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland (RCSI) University of Medicine and Health Sciences, Dublin 2, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Gabriel A Rabinovich
- Laboratorio de Glicomedicina. Instituto de Biología y Medicina Experimental (IBYME), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Kodi S Ravichandran
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Cell Clearance, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Jean-Ehrland Ricci
- Université Côte d'Azur, INSERM, C3M, Equipe labellisée Ligue Contre le Cancer, Nice, France
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Barak Rotblat
- Department of Life sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
- The NIBN, Beer Sheva, Israel
| | - Carla V Rothlin
- Department of Immunobiology and Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, Cambridge, UK
- UK Dementia Research Institute, University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Thomas Rudel
- Microbiology Biocentre, University of Würzburg, Würzburg, Germany
| | - Alessandro Rufini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
- University of Leicester, Leicester Cancer Research Centre, Leicester, UK
| | - Kevin M Ryan
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Kristopher A Sarosiek
- John B. Little Center for Radiation Sciences, Harvard School of Public Health, Boston, MA, USA
- Department of Systems Biology, Lab of Systems Pharmacology, Harvard Program in Therapeutics Science, Harvard Medical School, Boston, MA, USA
- Department of Environmental Health, Molecular and Integrative Physiological Sciences Program, Harvard School of Public Health, Boston, MA, USA
| | - Akira Sawa
- Johns Hopkins Schizophrenia Center, Johns Hopkins University, Baltimore, MD, USA
| | - Emre Sayan
- Faculty of Medicine, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, PR China
| | - Yufang Shi
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, Suzhou, Jiangsu, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Giuseppe S Sica
- Department of Surgical Science, University Tor Vergata, Rome, Italy
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Institute of Biochemistry, Brandenburg Medical School, Neuruppin, Germany
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Flavie Strapazzon
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Univ Lyon, Univ Lyon 1, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyogène CNRS, INSERM, Lyon, France
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Liming Sun
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Erwei Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Sun
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, Consortium for Mitochondrial Research, University College London, London, UK
| | - Stephen W G Tait
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Daolin Tang
- Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Carol M Troy
- Departments of Pathology & Cell Biology and Neurology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Nicoletta Urbano
- Department of Oncohaematology, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Peter Vandenabeele
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Methusalem Program, Ghent University, Ghent, Belgium
| | - Tom Vanden Berghe
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- Infla-Med Centre of Excellence, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Achucarro Center for Neuroscience, IKERBASQUE, Bilbao, Spain
- School of Forensic Medicine, China Medical University, Shenyang, China
- State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Andreas Villunger
- Institute for Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- The Research Center for Molecular Medicine (CeMM) of the Austrian Academy of Sciences (OeAW), Vienna, Austria
- The Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases (LBI-RUD), Vienna, Austria
| | - Silvia von Karstedt
- Department of Translational Genomics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Daniela Vuri
- Department of Experimental Medicine, University of Rome Tor Vergata, TOR, Rome, Italy
| | - Erwin F Wagner
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Henning Walczak
- Center for Biochemistry, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Ruoning Wang
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children's Hospital, The Ohio State University, Columbus, OH, USA
| | - Ying Wang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Achim Weber
- University of Zurich and University Hospital Zurich, Department of Pathology and Molecular Pathology, Zurich, Switzerland
- University of Zurich, Institute of Molecular Cancer Research, Zurich, Switzerland
| | - Will Wood
- Centre for Inflammation Research, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Huang-Tian Yang
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Queens College and Graduate Center, City University of New York, Flushing, NY, USA
| | - Joanna E Zawacka-Pankau
- Department of Medicine Huddinge, Karolinska Institute, Stockholm, Sweden
- Department of Biochemistry, Laboratory of Biophysics and p53 protein biology, Medical University of Warsaw, Warsaw, Poland
| | - Lin Zhang
- Department of Pharmacology & Chemical Biology, UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Boris Zhivotovsky
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Wenzhao Zhou
- Laboratory of Cell Engineering, Institute of Biotechnology, Beijing, China
- Research Unit of Cell Death Mechanism, 2021RU008, Chinese Academy of Medical Science, Beijing, China
| | - Mauro Piacentini
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Center, Université Paris Saclay, Villejuif, France
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.
| |
Collapse
|
10
|
Giardino G, Romano R, Lougaris V, Castagnoli R, Cillo F, Leonardi L, La Torre F, Soresina A, Federici S, Cancrini C, Pacillo L, Toriello E, Cinicola BL, Corrente S, Volpi S, Marseglia GL, Pignata C, Cardinale F. Immune tolerance breakdown in inborn errors of immunity: Paving the way to novel therapeutic approaches. Clin Immunol 2023; 251:109302. [PMID: 36967025 DOI: 10.1016/j.clim.2023.109302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 05/12/2023]
Abstract
Up to 25% of the patients with inborn errors of immunity (IEI) also exhibit immunodysregulatory features. The association of immune dysregulation and immunodeficiency may be explained by different mechanisms. The understanding of mechanisms underlying immune dysregulation in IEI has paved the way for the development of targeted treatments. In this review article, we will summarize the mechanisms of immune tolerance breakdown and the targeted therapeutic approaches to immune dysregulation in IEI.
Collapse
Affiliation(s)
- Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy.
| | - Roberta Romano
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Vassilios Lougaris
- Department of Clinical and Experimental Sciences, Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | - Riccardo Castagnoli
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Francesca Cillo
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Leonardi
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco La Torre
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| | - Annarosa Soresina
- Unit of Pediatric Immunology, Pediatrics Clinic, University of Brescia, ASST Spedali Civili Brescia, Brescia, Italy
| | - Silvia Federici
- Division of Rheumatology, IRCCS, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Caterina Cancrini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Lucia Pacillo
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy; Research Unit of Primary Immunodeficiencies, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Toriello
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Bianca Laura Cinicola
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Stefano Volpi
- Center for Autoinflammatory Diseases and Immunodeficiency, IRCCS Istituto Giannina Gaslini, Università degli Studi di Genova, Genoa, Italy
| | - Gian Luigi Marseglia
- Department of Pediatrics, Pediatric Clinic, Fondazione IRCCS Policlinico San Matteo, University of Pavia, Pavia, Italy
| | - Claudio Pignata
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Fabio Cardinale
- Department of Pediatrics, Giovanni XXIII Pediatric Hospital, University of Bari, Bari, Italy
| |
Collapse
|
11
|
Zhang D, Liu Z, Zhou Y, Tang L, Hou J, Li Y. Alcohol induces intrahepatic humoral immunity-related suppression and delays the clearance of HBV infection. Int Immunopharmacol 2023. [DOI: 10.1016/j.intimp.2023.109811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
12
|
Wan G, Chen Z, Lei L, Geng X, Zhang Y, Yang C, Cao W, Pan Z. The total polyphenolic glycoside extract of Lamiophlomis rotata ameliorates hepatic fibrosis through apoptosis by TGF-β/Smad signaling pathway. Chin Med 2023; 18:20. [PMID: 36829153 PMCID: PMC9951520 DOI: 10.1186/s13020-023-00723-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/07/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Hepatic fibrosis is characterized by the excessive deposition of extracellular matrix (ECM) which is mainly secreted by activated hepatic stellate cells (HSCs). Lamiophlomis rotata (L. rotata) was recorded to treat jaundice in the traditional Tibetan medical system with the potential of hepatoprotection. However, the bioactivities and the possible mechanism of L. rotata on hepatic fibrosis is still largely unknown. AIM OF THE STUDY To investigate the anti-hepatic fibrosis effects of bioactivities in L. rotata and the probable mechanism of action. MATERIALS AND METHODS Herein, total polyphenolic glycosides of L. rotata (TPLR) was purified with the selectivity adsorption resin and was analyzed by ultrahigh-performance liquid chromatography coupled with time-of-flight mass spectrometry (UPLC-Q/TOF/MSn). The anti-hepatic fibrosis effect of TPLR was evaluated by carbon tetrachloride (CCl4)-induced liver fibrosis, and was evaluated with the apoptosis of activated HSCs. RESULTS In total, sixteen compounds, including nine phenylpropanoids and six flavonoids, were identified in the UPLC-TOF-MSn profile of the extracts. TPLR significantly ameliorated hepatic fibrosis in CCl4-induced mice and inhibited HSCs proliferation, Moreover, TPLR notably increased the apoptosis of activated HSCs along with up-regulated caspase-3, -8, -9, and -10. Furthermore, TPLR inhibited TGF-β/Smad pathway ameliorating hepatic fibrosis though downregulation the expression of Smad2/3, Smad4, and upregulation the expression of Smad7 in vivo and in vitro. Simultaneously, the expression of fibronectin (FN), α-smooth muscle actin (α-SMA), and Collagen I (Col1α1) were decreased in tissues and in cells with TPLR administration. CONCLUSION These results initially demonstrated that TPLR has the potential to ameliorate hepatic fibrosis through an apoptosis mechanism via TGF-β/Smad signaling pathway.
Collapse
Affiliation(s)
- Guoguo Wan
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Zhiwei Chen
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Lei Lei
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Xiaoyu Geng
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Yi Zhang
- grid.411304.30000 0001 0376 205XCentre for Academic Inheritance and Innovation of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 611130 China
| | - Congwen Yang
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Wenfu Cao
- grid.203458.80000 0000 8653 0555Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016 People’s Republic of China
| | - Zheng Pan
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, College of Traditional Chinese Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Yuzhong District, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
13
|
Kietz C, Meinander A. Drosophila caspases as guardians of host-microbe interactions. Cell Death Differ 2023; 30:227-236. [PMID: 35810247 PMCID: PMC9950452 DOI: 10.1038/s41418-022-01038-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/09/2022] Open
Abstract
An intact cell death machinery is not only crucial for successful embryonic development and tissue homeostasis, but participates also in the defence against pathogens and contributes to a balanced immune response. Centrally involved in the regulation of both cell death and inflammatory immune responses is the evolutionarily conserved family of cysteine proteases named caspases. The Drosophila melanogaster genome encodes for seven caspases, several of which display dual functions, participating in apoptotic signalling and beyond. Among the Drosophila caspases, the caspase-8 homologue Dredd has a well-characterised role in inflammatory signalling activated by bacterial infections, and functions as a driver of NF-κB-mediated immune responses. Regarding the other Drosophila caspases, studies focusing on tissue-specific immune signalling and host-microbe interactions have recently revealed immunoregulatory functions of the initiator caspase Dronc and the effector caspase Drice. The aim of this review is to give an overview of the signalling cascades involved in the Drosophila humoral innate immune response against pathogens and of their caspase-mediated regulation. Furthermore, the apoptotic role of caspases during antibacterial and antiviral immune activation will be discussed.
Collapse
Affiliation(s)
- Christa Kietz
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, BioCity, Turku, Finland.
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
14
|
Akçapınar R, Armutcu C, Uzun L. Upconversion nanoparticles as an immunocomplexing agent for selective detection of caspases via sandwich-like supracomplexes. Colloids Surf B Biointerfaces 2023; 221:113028. [PMID: 36410190 DOI: 10.1016/j.colsurfb.2022.113028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/02/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
In this study, a nanoparticle-based sandwich-like immunoassay was designed in dispersion medium to precisely detect apoptosis over caspase antibodies in order to overcome the disadvantages of traditional apoptosis determination methods such as high cost, large sampling requirement, and appropriate laboratory and equipment conditions. For this purpose, a complementary particulate system including magnetic (MNPs) and upconversion silica (UC-SiNPs) nanoparticles while immobilizing antibodies (primary antibody to MNPs, secondary antibody to UC-SiNPs) were synthesized and characterized. Optimization and selectivity studies of the complex formed by primary antibody immobilized MNPs with standard caspase proteins were examined by the HPLC system. Within the scope of optimization studies, protein concentrations, optimal duration, and temperature parameters were evaluated. Optimal conditions were determined for pH, initial concentration, time, and temperature as 7.4, 5.6 μg/mL, 45 min, and room temperature, respectively. Furthermore, the adsorption of competitive proteins was investigated in selectivity studies as well. Moreover, the primary antibody immobilized MNPs were treated with standard caspase proteins under optimal conditions; subsequently, they were interacted with secondary antibody immobilized UC-SiNPs to demonstrate the supracomplex formation meanwhile zeta potential/size measurements and fluorescence emission spectrometry analyses were performed. As a result of these analyses, it was observed that the sandwich-like supracomplexes were successfully formed that significantly varied upconversion emission intensities of UC-SiNPs in dependence on the amounts of caspase proteins. Because this approach enabled a quantitative result, the nanoparticle-based sandwich-like immunoassay should be classified as an easy-to-handled, fast, and promising alternative to benchmark apoptosis assays.
Collapse
Affiliation(s)
- Rumeysa Akçapınar
- Hacettepe University, Institute of Science, Bioengineering Division, Ankara, Turkey
| | - Canan Armutcu
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| | - Lokman Uzun
- Hacettepe University, Institute of Science, Bioengineering Division, Ankara, Turkey; Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
15
|
Li Y, Chen G. Upconversion Nanoparticles for Cancer Therapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Yang Li
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Guanying Chen
- School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
16
|
Barmettler S, Sharapova SO, Milota T, Greif PA, Magg T, Hauck F. Genomics Driving Diagnosis and Treatment of Inborn Errors of Immunity With Cancer Predisposition. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1725-1736.e2. [PMID: 35364342 DOI: 10.1016/j.jaip.2022.03.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 12/14/2022]
Abstract
Inborn errors of immunity (IEI) are genetically and clinically heterogeneous disorders that, in addition to infection susceptibility and immune dysregulation, can have an enhanced cancer predisposition. The increasing availability of upfront next-generation sequencing diagnostics in immunology and oncology have uncovered substantial overlap of germline and somatic genetic conditions that can result in immunodeficiency and cancer. However, broad application of unbiased genetics in these neighboring disciplines still needs to be deployed, and joined therapeutic strategies guided by germline and somatic genetic risk factors are lacking. We illustrate the current difficulties encountered in clinical practice, summarize the historical development of pathophysiological concepts of cancer predisposition, and review select genetic, molecular, and cellular mechanisms of well-defined and illustrative disease entities such as DNA repair defects, combined immunodeficiencies with Epstein-Barr virus susceptibility, autoimmune lymphoproliferative syndromes, regulatory T-cell disorders, and defects in cell intrinsic immunity. We review genetic variants that, when present in the germline, cause IEI with cancer predisposition but, when arising as somatic variants, behave as oncogenes and cause specific cancer entities. We finally give examples of small molecular compounds that are developed and studied to target genetically defined cancers but might also proof useful to treat IEI.
Collapse
Affiliation(s)
- Sara Barmettler
- Allergy and Clinical Immunology Unit, Division of Rheumatology, Allergy, & Immunology, Massachusetts General Hospital, Boston, Mass
| | - Svetlana O Sharapova
- Research Department, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology, Minsk, Belarus
| | - Tomas Milota
- Department of Immunology, Second Faculty of Medicine, Charles University Hospital and Motol University Hospital, Prague, Czechia
| | - Philipp A Greif
- Department of Medicine III, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, 81377 Munich, Germany; German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Thomas Magg
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
17
|
Sharafutdinov I, Ekici A, Vieth M, Backert S, Linz B. Early and late genome-wide gastric epithelial transcriptome response during infection with the human carcinogen Helicobacterpylori. CELL INSIGHT 2022; 1:100032. [PMID: 37193047 PMCID: PMC10120309 DOI: 10.1016/j.cellin.2022.100032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 05/18/2023]
Abstract
Infection of the stomach by Helicobacter pylori is a major risk factor for the development of gastric cancer. Colonization of the gastric epithelium leads to the activation of multiple disease-related signaling pathways. Serine protease HtrA represents an important secreted virulence factor that mediates cleavage of cellular junctions. However, its potential role in nuclear responses is unknown. Here, we performed a genome-wide RNA-seq analysis of polarized gastric epithelial cells infected by wild-type (wt) and ΔhtrA mutant bacteria. Fluorescence microscopy showed that H. pylori wt, but not ΔhtrA bacteria, preferably localized at cellular junctions. Our results pinpointed early (2 h) and late (6 h) transcriptional responses, with most differentially expressed genes at 6 h post infection. The transcriptomes revealed HtrA-dependent targeting of genes associated with inflammation and apoptosis (e.g. IL8, ZFP36, TNF). Accordingly, infection with the ΔhtrA mutant induced increased apoptosis rates in host cells, which was associated with reduced H. pylori CagA expression. In contrast, transcription of various carcinogenesis-associated genes (e.g. DKK1, DOCK8) was affected by H. pylori independent of HtrA. These findings suggest that H. pylori disturbs previously unknown molecular pathways in an HtrA-dependent and HtrA-independent manner, and provide valuable new insights of this significant pathogen in humans and thus potential targets for better controlling the risk of malignant transformation.
Collapse
Affiliation(s)
- Irshad Sharafutdinov
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, University Hospital, Friedrich Alexander Universität Erlangen-Nürnberg, Schwabachanlage 10, D-91054, Erlangen, Germany
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Klinikum Bayreuth, Preuschwitzer Str 101, D-95445, Bayreuth, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Bodo Linz
- Department of Biology, Division of Microbiology, Friedrich Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, D-91058, Erlangen, Germany
| |
Collapse
|
18
|
Echinacoside Induces Mitochondria-Mediated Pyroptosis through Raf/MEK/ERK Signaling in Non-Small Cell Lung Cancer Cells. J Immunol Res 2022; 2022:3351268. [PMID: 35571569 PMCID: PMC9106467 DOI: 10.1155/2022/3351268] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 12/24/2022] Open
Abstract
Background Various natural compounds are effective in cancer prevention and treatment with fewer side effects than conventional radiotherapy and chemotherapy. Considering the uncertainty of the antitumor mechanism of Echinacoside (Ech) and the fact that no study on Ech against non-small cell lung cancer (NSCLC) has been explored previously, this study inquired into the anti-NSCLC effect of Ech and explored its potential mechanisms. Methods The IC50 to Ech of the NSCLC cells was calculated based on a series of cell viability assays. Different concentrations of Ech were used to treat the cells; the proliferation activity of the cells was evaluated using EdU staining. Mitochondrial membrane potential was detected by JC-1 staining. Levels of cytokines IL-1β and IL-18 were measured by ELISA. GSH and MDA levels were measured by microplate reader. Expression of cytochrome c, NLRP3, caspase-1, IL-1β, c-Myc, c-Fos, and Raf/MEK/ERK pathway proteins was evaluated by western blot. Meanwhile, we used xenograft, immunohistochemical staining, and H&E staining to evaluate the pharmacological effects of Ech in mice in vivo. Results ECH inhibited the proliferation of NSCLC cells. Ech increased the expression of pyroptosis-related proteins. Besides, Ech perturbed the mitochondrial membrane potential with the release of mitochondrial cytochrome c, accompanied by increased oxidative stress. Ech inhibited the phosphorylation levels of Raf/MEK/ERK signaling pathway and subsequently reduced c-myc and c-fos protein expression. In addition, Ech effectively restrained the growth of tumors in vivo. Conclusions Ech inhibited the Raf/MEK/ERK signaling. Impaired mitochondria activated inflammasome, which in turn led to the pyroptosis of NSCLC cells. These findings can provide some ideas on how to use pyroptosis to treat NSCLC.
Collapse
|
19
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
20
|
Li H, Fan J, Zhao Y, Yang J, Xu H, Manthari RK, Cheng X, Wang J, Wang J. Calcium alleviates fluoride-induced kidney damage via FAS/FASL, TNFR/TNF, DR5/TRAIL pathways in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112851. [PMID: 34619480 DOI: 10.1016/j.ecoenv.2021.112851] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Long-term excessive intake of fluoride (F) can cause osseous and non-osseous damage. The kidney is the main fluoride excretion organ of the body. This study aimed to explore whether dietary calcium (Ca) supplementation can alleviate kidney damage caused by fluorosis and to further investigate the effects of Ca on the mitigation mechanism of renal cell apoptosis triggered by F. We evaluated the histopathological structure, renal function indicators, and gene and protein expression levels of death receptor-mediated apoptosis pathways in Sprague Dawley (SD) rats treated with sodium fluoride (NaF) and/or calcium carbonate (CaCO3) for 120 days. The results showed that 100 mg/L NaF induced kidney histopathological injury and apoptosis, increased the concentrations of Creatinine (CRE), uric acid (UA), blood urea nitrogen (BUN), potassium (K), phosphorus (P) and F (p < 0.05), and decrease the level of serum magnesium (Mg) (p < 0.05). Moreover, NaF increased the mRNA and protein expression levels of Fas cell surface death receptor (FAS), tumor necrosis factor (TNF), TNF-related apoptosis-inducing ligand (TRAIL), Caspase 8, Caspase 3 and poly ADP-ribose polymerase (PARP) (p < 0.01), which finally activated the death receptor pathway. Inversely, Ca supplementation reversed the decrease of CRE, BUN, UA, F and P levels induced by F, alleviated histopathological damage and apoptosis, and reduced the gene and protein expression levels of death receptor pathway-related markers. In conclusion, 1% Ca alleviates F-induced kidney apoptosis through FAS/FASL, TNFR/TNF, DR5/TRAIL signaling pathways.
Collapse
Affiliation(s)
- Haojie Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Junjiang Fan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Yangfei Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jiarong Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Huimiao Xu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Ram Kumar Manthari
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Xiaofang Cheng
- Department of Basic Science, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jundong Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China
| | - Jinming Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China; Shanxi Key Laboratory of Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, PR China.
| |
Collapse
|
21
|
Meng GD, Xu BS. Circular RNA hsa_circ_0001658 Inhibits Intervertebral Disc Degeneration Development by Regulating hsa-miR-181c-5p/FAS. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:7853335. [PMID: 34925543 PMCID: PMC8683186 DOI: 10.1155/2021/7853335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 11/15/2021] [Indexed: 12/29/2022]
Abstract
METHODS We obtained microarray data (GSE116726, GSE67566) from Gene Expression Omnibus database, and differential expression level of ncRNA in nucleus pulposus (NP) tissues of IDD patients was analyzed. The potential circRNA-miRNA-mRNA regulatory network was analyzed by starBase. The effect of the interaction between hsa_circ_0001658, hsa-miR-181c-5p, and FAS on the proliferation and apoptosis of human neural progenitor cells (hNPCs) was studied. RESULTS hsa_circ_0001658 was significantly upregulated (logFC > 2.0 and adj.P.Val < 0.01) in the NP tissues of IDD patients, and hsa-miR-181c-5p expression was downregulated (logFC < -2.0 and adj.P.Val < 0.01). Silencing of hsa-miR-181c-5p or overexpression of hsa_circ_0001658 inhibited the proliferation of hNPCs and promoted their apoptosis. hsa_circ_0001658 acted as a sponge of hsa-miR-181c-5p. hsa-miR-181c-5p downregulated the expression of Fas cell surface death receptor (FAS), promoted the proliferation, and inhibited the apoptosis of hNPCs. hsa_circ_0001658 functioned in hNPCs through targeting hsa-miR-181c-5p/FAS. CONCLUSION Circular RNA hsa_circ_0001658 inhibits IDD development by regulating hsa-miR-181c-5p/FAS. It is expected to be a potential target for the therapy of IDD.
Collapse
Affiliation(s)
- Ge-dong Meng
- Tianjin Medical University, Tianjin 300070, China
- Department of Spine Surgery, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010010 Inner Mongolia Autonomous Region, China
| | - Bao-shan Xu
- Department of Minimally Invasive Spine Surgery, Tianjin Hospital, Tianjin University, Tianjin 300211, China
| |
Collapse
|
22
|
Huang J, Xu X, Wang X, Yang J, Xue M, Yang Y, Zhang R, Yang X, Yang J. MicroRNA-590-3p inhibits T helper 17 cells and ameliorates inflammation in lupus mice. Immunology 2021; 165:260-273. [PMID: 34775599 DOI: 10.1111/imm.13434] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 09/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
T helper 17 (Th17) cells have a pathogenic effect in many autoimmune diseases. Inhibition of Th17 cells can alleviate the inflammatory damage in autoimmune diseases. Our previous study found that microRNA-590-3p (miR-590-3p) was involved in the differentiation of Th17 cells in systemic lupus erythematosus (SLE). Here, we demonstrated that an increase in Th17 cells was correlated with low expression of miR-590-3p in patients with SLE and in lupus mice. Upregulation of miR-590-3p reduced the differentiation and promoted apoptosis of Th17 cells. Subsequent experiments demonstrated that miR-590-3p promoted apoptosis in Th17 cells by inhibiting autophagy. Autophagy-related 7 (Atg7) was the direct target of miR-590-3p that blocked the autophagy pathway. Finally, treatment of MRL/lpr mice with miR-590-3p agomir ameliorated lupus nephritis and skin lesions. Our work revealed that miR-590-3p inhibited Th17 cells by suppressing autophagy and that increased miR-590-3p expression was able to ameliorate the clinical symptoms of lupus. Therefore, miR-590-3p may be a promising therapeutic target for SLE and other Th17 cell-dependent autoimmune diseases.
Collapse
Affiliation(s)
- Junxia Huang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinzhi Xu
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiuyuan Wang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Yang
- Blood Engineering Lab, Shanghai Blood Center, Shanghai, China
| | - Meijuan Xue
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Yang
- Blood Engineering Lab, Shanghai Blood Center, Shanghai, China
| | - Ruomei Zhang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xue Yang
- Division of Rheumatology, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Rheumatology, Immunology and Allergy, Fudan University, Shanghai, China
| | - Ji Yang
- Department of Dermatology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Designing of various biosensor devices for determination of apoptosis: A comprehensive review. Biochem Biophys Res Commun 2021; 578:42-62. [PMID: 34536828 DOI: 10.1016/j.bbrc.2021.08.089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022]
Abstract
Apoptosis is a type of cell death caused by the occurrence of both pathological and physiological conditions triggered by ligation of death receptors outside the cell or triggered by DNA damage and/or cytoskeleton disruption. Timely monitoring of apoptosis can effectively help early diagnosis of related diseases and continuous assessment of the effectiveness of drugs. Detecting caspases, a protease family closely related to cellular apoptosis, and its identification as markers of apoptosis is a popular procedure. Biosensors are used for early diagnosis and play a very important role in preventing disease progression in various body sections. Recently, there has been a widespread increase in the desire to use materials made of paper (e.g. nitrocellulose membrane) for Point-of-Care (POC) testing systems since paper and paper-like materials are cheap, abundant and degradable. Microfluidic paper-based analytical devices (μPADs) are highly promising as they are cost-effective, easy to use, fast, precise and sustainable over time and under different environmental conditions. In this review, we focused our efforts on compiling the different approaches on identifying apoptosis pathway while giving brief information about apoptosis and biosensors. This review includes recent advantages in biosensing techniques to simply determine what happened in the cell life and which direction it would continue. As a conclusion, we believed that the review may help to researchers to compare/update the knowledge about diagnosis of the apoptosis pathway while reminding the basic definitions about the apoptosis and biosensor technologies.
Collapse
|
24
|
Berger RML, Weck JM, Kempe SM, Hill O, Liedl T, Rädler JO, Monzel C, Heuer-Jungemann A. Nanoscale FasL Organization on DNA Origami to Decipher Apoptosis Signal Activation in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101678. [PMID: 34057291 DOI: 10.1002/smll.202101678] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Cell signaling is initiated by characteristic protein patterns in the plasma membrane, but tools to decipher their molecular organization and activation are hitherto lacking. Among the well-known signaling pattern is the death inducing signaling complex with a predicted hexagonal receptor architecture. To probe this architecture, DNA origami-based nanoagents with nanometer precise arrangements of the death receptor ligand FasL are introduced and presented to cells. Mimicking different receptor geometries, these nanoagents act as signaling platforms inducing fastest time-to-death kinetics for hexagonal FasL arrangements with 10 nm inter-molecular spacing. Compared to naturally occurring soluble FasL, this trigger is faster and 100× more efficient. Nanoagents with different spacing, lower FasL number or higher coupling flexibility impede signaling. The results present DNA origami as versatile signaling scaffolds exhibiting unprecedented control over molecular number and geometry. They define molecular benchmarks in apoptosis signal initiation and constitute a new strategy to drive particular cell responses.
Collapse
Affiliation(s)
- Ricarda M L Berger
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Johann M Weck
- Max Planck Institute of Biochemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Simon M Kempe
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Oliver Hill
- Apogenix AG, University of Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
25
|
Klaric L, Gisby JS, Papadaki A, Muckian MD, Macdonald-Dunlop E, Zhao JH, Tokolyi A, Persyn E, Pairo-Castineira E, Morris AP, Kalnapenkis A, Richmond A, Landini A, Hedman ÅK, Prins B, Zanetti D, Wheeler E, Kooperberg C, Yao C, Petrie JR, Fu J, Folkersen L, Walker M, Magnusson M, Eriksson N, Mattsson-Carlgren N, Timmers PRHJ, Hwang SJ, Enroth S, Gustafsson S, Vosa U, Chen Y, Siegbahn A, Reiner A, Johansson Å, Thorand B, Gigante B, Hayward C, Herder C, Gieger C, Langenberg C, Levy D, Zhernakova DV, Smith JG, Campbell H, Sundstrom J, Danesh J, Michaëlsson K, Suhre K, Lind L, Wallentin L, Padyukov L, Landén M, Wareham NJ, Göteson A, Hansson O, Eriksson P, Strawbridge RJ, Assimes TL, Esko T, Gyllensten U, Baillie JK, Paul DS, Joshi PK, Butterworth AS, Mälarstig A, Pirastu N, Wilson JF, Peters JE. Mendelian randomisation identifies alternative splicing of the FAS death receptor as a mediator of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.04.01.21254789. [PMID: 33851187 PMCID: PMC8043484 DOI: 10.1101/2021.04.01.21254789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe COVID-19 is characterised by immunopathology and epithelial injury. Proteomic studies have identified circulating proteins that are biomarkers of severe COVID-19, but cannot distinguish correlation from causation. To address this, we performed Mendelian randomisation (MR) to identify proteins that mediate severe COVID-19. Using protein quantitative trait loci (pQTL) data from the SCALLOP consortium, involving meta-analysis of up to 26,494 individuals, and COVID-19 genome-wide association data from the Host Genetics Initiative, we performed MR for 157 COVID-19 severity protein biomarkers. We identified significant MR results for five proteins: FAS, TNFRSF10A, CCL2, EPHB4 and LGALS9. Further evaluation of these candidates using sensitivity analyses and colocalization testing provided strong evidence to implicate the apoptosis-associated cytokine receptor FAS as a causal mediator of severe COVID-19. This effect was specific to severe disease. Using RNA-seq data from 4,778 individuals, we demonstrate that the pQTL at the FAS locus results from genetically influenced alternate splicing causing skipping of exon 6. We show that the risk allele for very severe COVID-19 increases the proportion of transcripts lacking exon 6, and thereby increases soluble FAS. Soluble FAS acts as a decoy receptor for FAS-ligand, inhibiting apoptosis induced through membrane-bound FAS. In summary, we demonstrate a novel genetic mechanism that contributes to risk of severe of COVID-19, highlighting a pathway that may be a promising therapeutic target.
Collapse
Affiliation(s)
- Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Jack S Gisby
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Artemis Papadaki
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
| | - Marisa D Muckian
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Erin Macdonald-Dunlop
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Jing Hua Zhao
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Alex Tokolyi
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Elodie Persyn
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Erola Pairo-Castineira
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Andrew P Morris
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | | | - Anne Richmond
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Arianna Landini
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Åsa K Hedman
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Sweden
| | - Bram Prins
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Daniela Zanetti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Eleanor Wheeler
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Chen Yao
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - John R Petrie
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Mark Walker
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Martin Magnusson
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
- Hypertension in Africa Research Team (HART), North West University, Potchefstroom, South Africa
| | - Niclas Eriksson
- Uppsala Clinical Research Center (UCR), Uppsala University, Uppsala, Sweden
| | - Niklas Mattsson-Carlgren
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Paul R H J Timmers
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Shih-Jen Hwang
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Stefan Enroth
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | | | - Urmo Vosa
- Institute of Genomics, University of Tartu, 51010, Estonia
| | - Yan Chen
- Department of Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Alexander Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Barbara Thorand
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bruna Gigante
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Christian Gieger
- Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, München-Neuherberg, Germany
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Claudia Langenberg
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Computational Medicine, Berlin Institute of Health (BIH) at Charité - Universitäts Medizin Berlin, Germany
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Daniel Levy
- Population Sciences Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
- Framingham Heart Study, Framingham, MA, USA
| | - Daria V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, St. Petersburg, Russia
| | - J Gustav Smith
- Department of Cardiology, Clinical Sciences, Lund University
- Skåne University Hospital, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Lund University, Sweden
- Lund University Diabetes Center, Lund University, Lund, Sweden
- The Wallenberg Laboratory/Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University
- Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Johan Sundstrom
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Karl Michaëlsson
- Department of Surgical Sciences, Unit of Medical Epidemiology, Uppsala University, Uppsala, Sweden
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Lars Wallentin
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Leonid Padyukov
- Division of Rheumatology, Department of Medicine Solna, Karolinska Institutet, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Landén
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas J Wareham
- MRC Epidemiology Unit, Institute of Metabolic Science, University of Cambridge School of Clinical Medicine, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| | - Andreas Göteson
- Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Hansson
- Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| | - Per Eriksson
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Karolinska University Hospital, Stockholm, Sweden
| | - Rona J Strawbridge
- Institute of Health and Wellbeing, College of Medicine, Veterinary and Life Sciences, University of Glasgow, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- Division of Cardiovascular Medicine, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Themistocles L Assimes
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto VA Healthcare System, Palo Alto, CA, USA
| | - Tonu Esko
- Institute of Genomics, University of Tartu, 51010, Estonia
| | - Ulf Gyllensten
- Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - J Kenneth Baillie
- Intensive Care Unit, Royal Infirmary of Edinburgh, 54 Little France Drive, Edinburgh, EH16 5SA, UK
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, UK
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Dirk S Paul
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, Addenbrookes Hospital, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Peter K Joshi
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, United Kingdom
| | - Anders Mälarstig
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Pfizer Worldwide Research, Development and Medical, Sweden
| | - Nicola Pirastu
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
- Centre for Global Health Research, Usher Institute, University of Edinburgh, Teviot Place, Edinburgh, UK
| | - James E Peters
- Department of Immunology and Inflammation, Faculty of Medicine, Imperial College London, London, UK
- Health Data Research UK, Wellcome Genome Campus and University of Cambridge, Cambridge, UK
| |
Collapse
|
26
|
Wang Y, Qi H, Liu Y, Duan C, Liu X, Xia T, Chen D, Piao HL, Liu HX. The double-edged roles of ROS in cancer prevention and therapy. Theranostics 2021; 11:4839-4857. [PMID: 33754031 PMCID: PMC7978298 DOI: 10.7150/thno.56747] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/31/2021] [Indexed: 12/20/2022] Open
Abstract
Reactive oxygen species (ROS) serve as cell signaling molecules generated in oxidative metabolism and are associated with a number of human diseases. The reprogramming of redox metabolism induces abnormal accumulation of ROS in cancer cells. It has been widely accepted that ROS play opposite roles in tumor growth, metastasis and apoptosis according to their different distributions, concentrations and durations in specific subcellular structures. These double-edged roles in cancer progression include the ROS-dependent malignant transformation and the oxidative stress-induced cell death. In this review, we summarize the notable literatures on ROS generation and scavenging, and discuss the related signal transduction networks and corresponding anticancer therapies. There is no doubt that an improved understanding of the sophisticated mechanism of redox biology is imperative to conquer cancer.
Collapse
|
27
|
Blanchard-Rohner G, Ragotte RJ, Junker AK, Sharma M, Del Bel KL, Lu HY, Erdle S, Chomyn A, Gill H, Tucker LB, Schreiber RA, Rozmus J, Biggs CM, Hildebrand KJ, Wu J, Stockler-Ipsiroglu S, Turvey SE. Idiopathic splenomegaly in childhood and the spectrum of RAS-associated lymphoproliferative disease: a case report. BMC Pediatr 2021; 21:45. [PMID: 33472608 PMCID: PMC7819237 DOI: 10.1186/s12887-021-02508-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/14/2021] [Indexed: 01/02/2023] Open
Abstract
Background KRAS (KRAS proto-oncogene, GTPase; OMIM: 190,070) encodes one of three small guanosine triphosphatase proteins belonging to the RAS family. This group of proteins is responsible for cell proliferation, differentiation and inhibition of apoptosis. Gain-of-function variants in KRAS are commonly found in human cancers. Non-malignant somatic KRAS variants underlie a subset of RAS-associated autoimmune leukoproliferative disorders (RALD). RALD is characterized by splenomegaly, persistent monocytosis, hypergammaglobulinemia and cytopenia, but can also include autoimmune features and lymphadenopathy. In this report, we describe a non-malignant somatic variant in KRAS with prominent clinical features of massive splenomegaly, thrombocytopenia and lymphopenia. Case presentation A now-11-year-old girl presented in early childhood with easy bruising and bleeding, but had an otherwise unremarkable medical history. After consulting for the first time at 5 years of age, she was discovered to have massive splenomegaly. Clinical follow-up revealed thrombocytopenia, lymphopenia and increased polyclonal immunoglobulins and C-reactive protein. The patient had an unremarkable bone marrow biopsy, flow cytometry showed no indication of expanded double negative T-cells, while malignancy and storage disorders were also excluded. When the patient was 8 years old, whole exome sequencing performed on DNA derived from whole blood revealed a heterozygous gain-of-function variant in KRAS (NM_004985.5:c.37G > T; (p.G13C)). The variant was absent from DNA derived from a buccal swab and was thus determined to be somatic. Conclusions This case of idiopathic splenomegaly in childhood due to a somatic variant in KRAS expands our understanding of the clinical spectrum of RAS-associated autoimmune leukoproliferative disorder and emphasizes the value of securing a molecular diagnosis in children with unusual early-onset presentations with a suspected monogenic origin.
Collapse
Affiliation(s)
- Geraldine Blanchard-Rohner
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada.,Children's Hospital of Geneva, University Hospitals Geneva, Geneva, Switzerland
| | - Robert J Ragotte
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anne K Junker
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Mehul Sharma
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Kate L Del Bel
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Henry Y Lu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Stephanie Erdle
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Alanna Chomyn
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Harinder Gill
- Department of Medical Genetics, The University of British Columbia, Vancouver, BC, Canada
| | - Lori B Tucker
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Richard A Schreiber
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Jacob Rozmus
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Catherine M Biggs
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Kyla J Hildebrand
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - John Wu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Sylvia Stockler-Ipsiroglu
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, British Columbia Children's Hospital, The University of British Columbia, 950 West 28th Avenue, V5Z 4H4, Vancouver, BC, Canada.
| |
Collapse
|
28
|
DURAN GG, MELEK İM, DUMAN T, GÜNEŞAÇAR R. Multipl Sklerozisli Hastalarda Serum sFas, sFas Ligand Düzeyleri ile FAS ve FASLG Polimorfizmleri Arasındaki İlişkinin Araştırılması. DICLE MEDICAL JOURNAL 2020. [DOI: 10.5798/dicletip.755730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
29
|
Tummers B, Mari L, Guy CS, Heckmann BL, Rodriguez DA, Rühl S, Moretti J, Crawford JC, Fitzgerald P, Kanneganti TD, Janke LJ, Pelletier S, Blander JM, Green DR. Caspase-8-Dependent Inflammatory Responses Are Controlled by Its Adaptor, FADD, and Necroptosis. Immunity 2020; 52:994-1006.e8. [PMID: 32428502 DOI: 10.1016/j.immuni.2020.04.010] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/29/2020] [Accepted: 04/22/2020] [Indexed: 12/17/2022]
Abstract
Cell death pathways regulate various homeostatic processes. Autoimmune lymphoproliferative syndrome (ALPS) in humans and lymphoproliferative (LPR) disease in mice result from abrogated CD95-induced apoptosis. Because caspase-8 mediates CD95 signaling, we applied genetic approaches to dissect the roles of caspase-8 in cell death and inflammation. Here, we describe oligomerization-deficient Caspase-8F122GL123G/F122GL123G and non-cleavable Caspase-8D387A/D387A mutant mice with defective caspase-8-mediated apoptosis. Although neither mouse developed LPR disease, removal of the necroptosis effector Mlkl from Caspase-8D387A/D387A mice revealed an inflammatory role of caspase-8. Ablation of one allele of Fasl, Fadd, or Ripk1 prevented the pathology of Casp8D387A/D387AMlkl-/- animals. Removing both Fadd alleles from these mice resulted in early lethality prior to post-natal day 15 (P15), which was prevented by co-ablation of either Ripk1 or Caspase-1. Our results suggest an in vivo role of the inflammatory RIPK1-caspase-8-FADD (FADDosome) complex and reveal a FADD-independent inflammatory role of caspase-8 that involves activation of an inflammasome.
Collapse
Affiliation(s)
- Bart Tummers
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Luigi Mari
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Bradlee L Heckmann
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Diego A Rodriguez
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sebastian Rühl
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Julien Moretti
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jeremy Chase Crawford
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Laura J Janke
- Department of Pathology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Stephane Pelletier
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - J Magarian Blander
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10021, USA; Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Douglas R Green
- Department of Immunology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA.
| |
Collapse
|
30
|
Jia H, Song Y, Huang B, Ge W, Luo KQ. Engineered Sensor Zebrafish for Fast Detection and Real-Time Tracking of Apoptosis at Single-Cell Resolution in Live Animals. ACS Sens 2020; 5:823-830. [PMID: 32090557 DOI: 10.1021/acssensors.9b02489] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apoptosis plays crucial roles during development and in disease conditions. While there are some methods to detect apoptosis in vitro, most of them are end-point assays that cannot be used to detect apoptosis in the physiological context of live animals. In this study, transgenic sensor zebrafish were generated that specifically produce a fluorescence resonance energy transfer (FRET)-based biosensor in the zebrafish skin. Under normal conditions, the skin cells of the sensor zebrafish emit green fluorescence; when caspase-3 is activated during apoptosis, the skin cells of the sensor zebrafish switch to emitting blue fluorescence. Through time-lapse FRET imaging with the sensor zebrafish, we observed that caspase-3 can be activated within 5 min and apoptosis can be completed in around 30 min in live zebrafish, no matter the apoptosis occurs several hours after UV irradiation or during the normal development. Using the sensor zebrafish, we found that apoptosis can occur in different parts of the zebrafish skin including the skin covering the trunk, eye, yolk sac, and head during development. Interestingly, we observed that the yolk sac diameter of the zebrafish reduced from 723.8 ± 25.1 μm at 24 h postfertilization (hpf) to 346.1 ± 24.6 μm at 120 hpf. To accommodate this dramatic reduction of the yolk sac size, we found that some excess skin cells on the surface of the yolk sac were removed by apoptosis during this process. The sensor zebrafish provide a powerful and convenient tool for the noninvasive and real-time detection of apoptosis at the single-cell resolution in live zebrafish.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Yanlong Song
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Bin Huang
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Wei Ge
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao SAR, China
| |
Collapse
|
31
|
Wang Y, Huang Z, Chen CZ, Liu C, Evans CP, Gao AC, Zhou F, Chen HW. Therapeutic Targeting of MDR1 Expression by RORγ Antagonists Resensitizes Cross-Resistant CRPC to Taxane via Coordinated Induction of Cell Death Programs. Mol Cancer Ther 2020; 19:364-374. [PMID: 31712394 DOI: 10.1158/1535-7163.mct-19-0327] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022]
Abstract
Overexpression of ATP-binding cassette subfamily B member 1 (ABCB1)-encoded multidrug resistance protein 1 (MDR1) constitutes a major mechanism of cancer drug resistance including docetaxel (DTX) and cabazitaxel (CTX) resistance in castration-resistant prostate cancer (CRPC). However, no therapeutics that targets MDR1 is available at clinic for taxane sensitization. We report here that retinoic acid receptor-related orphan receptor γ (RORγ), a nuclear receptor family member, unexpectedly mediates MDR1/ABCB1 overexpression. RORγ plays an important role in controlling the functions of subsets of immune cells and has been an attractive target for autoimmune diseases. We found that its small-molecule antagonists are efficacious in resensitizing DTX and CTX cross-resistant CRPC cells and tumors to taxanes in both androgen receptor-positive and -negative models. Our mechanistic analyses revealed that combined treatment with RORγ antagonists and taxane elicited a robust synergy in killing the resistant cells, which involves a coordinated alteration of p53, Myc, and E2F-controlled programs critical for both intrinsic and extrinsic apoptosis, survival, and cell growth. Our results suggest that targeting RORγ with small-molecule inhibitors is a novel strategy for chemotherapy resensitization in tumors with MDR1 overexpression.
Collapse
Affiliation(s)
- Yongqiang Wang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California.,Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zenghong Huang
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California
| | - Christopher Z Chen
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California
| | - Chengfei Liu
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California
| | - Christopher P Evans
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California
| | - Allen C Gao
- Department of Urology, University of California, Davis, School of Medicine, Sacramento, California.,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System-Mather, Mather, California
| | - Fangjian Zhou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China.
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California. .,UC Davis Comprehensive Cancer Center, University of California, Davis, Sacramento, California.,VA Northern California Health Care System-Mather, Mather, California
| |
Collapse
|
32
|
Yun S, Chu D, He X, Zhang W, Feng C. Protective effects of grape seed proanthocyanidins against iron overload-induced renal oxidative damage in rats. J Trace Elem Med Biol 2020; 57:126407. [PMID: 31570250 DOI: 10.1016/j.jtemb.2019.126407] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Excessive exposure to iron can cause kidney damage, and chelating drugs such as deferoxamine and deferiprone have limited usefulness in treating iron poisoning. This study was designed to investigate the protective effects of grape seed proanthocyanidins (GSPAs) against iron overload induced nephrotoxicity in rats. The roles of GSPAs in chelating iron, antioxidant activity, renal function, pathological section, and apoptosis-related gene expression were assessed. METHODS Newly weaned male Sprague-Dawley rats aged 21 days (weight, 65 ± 5 g) were randomly divided into four groups containing 10 rats each: normal control (negative) group, iron overload (positive) group, GSPAs group, and GSPAs + iron overload (test) group. Iron dextran injections (2.5 mg⋅ kg-1) and GSPAs (25 mg⋅ kg-1) were intraperitoneally and intragastrically administered to rats daily for 7 weeks, respectively. Measurements included red blood cell (RBC) count and hemoglobin (Hb) level, serum total iron-binding capacity (TIBC), renal iron content, glutathione peroxidase (GSH-Px) activity, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, total antioxidant activity (T-AOC), creatinine (CR) and blood urea nitrogen (BUN) levels, pathological changes, and apoptotic Fas, Bax expressions in the kidney tissue. Differences among the dietary groups were determined using one-way analysis of variance with post-hoc Tukey's test. P < 0.05 was considered statistically significant. RESULTS RBC count, Hb level, renal iron content, MDA content, CR and BUN levels, and Fas, Bax expressions significantly increased in the positive group than in the negative group; contrarily, TIBC, GSH-Px activity, and T-AOC significantly decreased in the positive group than in the negative group (P < 0.05). Although not statistically significant, SOD activity was slightly reduced in the positive group than in the negative group. Inflammatory cell infiltration and fibrous tissue proliferation were observed in the kidney tissue of the rats in the positive group; in contrast, the rats exhibited better recovery when GSPAs were used instead of iron alone. Compared with the positive group, RBC counts, Hb levels, renal iron contents, the MDA content, CR and BUN levels, and Fas, Bax expressions significantly decreased, whereas the TIBC, the GSH-Px and SOD activities as well as T-AOC significantly increased in the test group rats (P < 0.05). There were no significant differences in the RBC counts, Hb levels, TIBC, renal iron contents, the SOD activity and MDA content, CR and BUN levels, and Fas expression between the GSPAs and negative groups. The GSH-Px activity and T-AOC were significantly increased whereas Bax expression was significantly decreased in the GSPAs group rats than in the negative group rats (P < 0.05). The rats in the GSPAs, test, and negative groups displayed glomeruli and tubules with a clear structure; further, the epithelial cells in the renal tubules were neatly arranged. CONCLUSIONS GSPAs have protective effects on nephrotoxicity in rats with iron overload. Thus, further investigation of GSPAs as a new and natural phytochemo-preventive agent against iron overload is warranted.
Collapse
Affiliation(s)
- Shaojun Yun
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Dongyang Chu
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Xingshuai He
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Wenfang Zhang
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China
| | - Cuiping Feng
- College of Food Science and Engineering, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
33
|
Notarangelo LD, Uzel G, Rao VK. Primary immunodeficiencies: novel genes and unusual presentations. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2019; 2019:443-448. [PMID: 31808899 PMCID: PMC6913429 DOI: 10.1182/hematology.2019000051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Recent advances in genomics have greatly expanded the spectrum of primary immune deficiencies (PIDs). Along with the identification of pathogenic variants in novel genes, distinct phenotypes have been associated with different variants in the same gene. Although PIDs have been historically defined based on increased susceptibility to infections, immune dysregulation has emerged as a frequent and in some cases, predominant phenotype. Autoimmune cytopenias with onset in childhood, lasting longer than 12 months, and affecting multiple lineages should raise the suspicion of a possible PID with monogenic origin. Characterization of the various molecular and cellular mechanisms responsible for these unusual manifestations of PIDs, although at times resource intensive, may allow for targeted intervention in many of them.
Collapse
Affiliation(s)
- Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Gulbu Uzel
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
34
|
Lenardo MJ, Holland SM. Introduction: Continuing insights into the healthy and diseased immune system through human genetic investigation. Immunol Rev 2019; 287:5-8. [PMID: 30565248 DOI: 10.1111/imr.12730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Michael J Lenardo
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Steven M Holland
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
35
|
Van Opdenbosch N, Lamkanfi M. Caspases in Cell Death, Inflammation, and Disease. Immunity 2019; 50:1352-1364. [PMID: 31216460 DOI: 10.1016/j.immuni.2019.05.020] [Citation(s) in RCA: 730] [Impact Index Per Article: 146.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 01/01/2023]
Abstract
Caspases are an evolutionary conserved family of cysteine proteases that are centrally involved in cell death and inflammation responses. A wealth of foundational insight into the molecular mechanisms that control caspase activation has emerged in recent years. Important advancements include the identification of additional inflammasome platforms and pathways that regulate activation of inflammatory caspases; the discovery of gasdermin D as the effector of pyroptosis and interleukin (IL)-1 and IL-18 secretion; and the existence of substantial crosstalk between inflammatory and apoptotic initiator caspases. A better understanding of the mechanisms regulating caspase activation has supported initial efforts to modulate dysfunctional cell death and inflammation pathways in a suite of communicable, inflammatory, malignant, metabolic, and neurodegenerative diseases. Here, we review current understanding of caspase biology with a prime focus on the inflammatory caspases and outline important topics for future experimentation.
Collapse
Affiliation(s)
- Nina Van Opdenbosch
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, 2340, Belgium
| | - Mohamed Lamkanfi
- Janssen Immunosciences, World Without Disease Accelerator, Pharmaceutical Companies of Johnson & Johnson, Beerse, 2340, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, 9000, Belgium.
| |
Collapse
|
36
|
Huachansu Capsule inhibits the proliferation of human gastric cancer cells via Akt/mTOR pathway. Biomed Pharmacother 2019; 118:109241. [DOI: 10.1016/j.biopha.2019.109241] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 12/12/2022] Open
|
37
|
Singh A, Jindal AK, Joshi V, Anjani G, Rawat A. An updated review on phenocopies of primary immunodeficiency diseases. Genes Dis 2019; 7:12-25. [PMID: 32181272 PMCID: PMC7063430 DOI: 10.1016/j.gendis.2019.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 02/07/2023] Open
Abstract
Primary immunodeficiency diseases (PIDs) refer to a heterogenous group of disorders characterized clinically by increased susceptibility to infections, autoimmunity and increased risk of malignancies. These group of disorders present with clinical manifestations similar to PIDs with known genetic defects but have either no genetic defect or have a somatic mutation and thus have been labelled as “Phenocopies of PIDs”. These diseases have been further subdivided into those associated with somatic mutations and those associated with presence of auto-antibodies against various cytokines. In this review, we provide an update on clinical manifestations, diagnosis and management of these diseases.
Collapse
Affiliation(s)
- Ankita Singh
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Vibhu Joshi
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gummadi Anjani
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Amit Rawat
- Allergy Immunology Unit, Department of Pediatrics, Advanced Pediatrics Centre, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
38
|
Yang HC, Wu YH, Yen WC, Liu HY, Hwang TL, Stern A, Chiu DTY. The Redox Role of G6PD in Cell Growth, Cell Death, and Cancer. Cells 2019; 8:cells8091055. [PMID: 31500396 PMCID: PMC6770671 DOI: 10.3390/cells8091055] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/02/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
The generation of reducing equivalent NADPH via glucose-6-phosphate dehydrogenase (G6PD) is critical for the maintenance of redox homeostasis and reductive biosynthesis in cells. NADPH also plays key roles in cellular processes mediated by redox signaling. Insufficient G6PD activity predisposes cells to growth retardation and demise. Severely lacking G6PD impairs embryonic development and delays organismal growth. Altered G6PD activity is associated with pathophysiology, such as autophagy, insulin resistance, infection, inflammation, as well as diabetes and hypertension. Aberrant activation of G6PD leads to enhanced cell proliferation and adaptation in many types of cancers. The present review aims to update the existing knowledge concerning G6PD and emphasizes how G6PD modulates redox signaling and affects cell survival and demise, particularly in diseases such as cancer. Exploiting G6PD as a potential drug target against cancer is also discussed.
Collapse
Affiliation(s)
- Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan.
| | - Yi-Hsuan Wu
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Wei-Chen Yen
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Hui-Ya Liu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Tsong-Long Hwang
- Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| | - Arnold Stern
- New York University School of Medicine, New York, NY, USA.
| | - Daniel Tsun-Yee Chiu
- Department of Medical Biotechnology and Laboratory Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
- Department of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
39
|
Deng H, Lin L, Wang S, Yu G, Zhou Z, Liu Y, Niu G, Song J, Chen X. X-ray-Controlled Bilayer Permeability of Bionic Nanocapsules Stabilized by Nucleobase Pairing Interactions for Pulsatile Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1903443. [PMID: 31379091 DOI: 10.1002/adma.201903443] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/13/2019] [Indexed: 06/10/2023]
Abstract
The targeted and sustained drug release from stimuli-responsive nanodelivery systems is limited by the irreversible and uncontrolled disruption of the currently used nanostructures. Bionic nanocapsules are designed by cross-linking polythymine and photoisomerized polyazobenzene (PETAzo) with adenine-modified ZnS (ZnS-A) nanoparticles (NPs) via nucleobase pairing. The ZnS-A NPs convert X-rays into UV radiation that isomerizes the azobenzene groups, which allows controlled diffusion of the active payloads across the bilayer membranes. In addition, the nucleobase pairing interactions between PETAzo and ZnS-A prevent drug leakage during their in vivo circulation, which not only enhances tumor accumulation but also maintains stability. These nanocapsules with tunable permeability show prolonged retention, remotely controlled drug release, enhanced targeted accumulation, and effective antitumor effects, indicating their potential as an anticancer drug delivery system.
Collapse
Affiliation(s)
- Hongzhang Deng
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Sheng Wang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Gang Niu
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|