1
|
Chuang YS, Berekute AK, Hsu HY, Wei HS, Gong WC, Hsu YY, Tsai CJ, Yu KP. Assessment of emissions and exposure in 3D printing workplaces in Taiwan. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2024; 21:270-286. [PMID: 38451632 DOI: 10.1080/15459624.2024.2313655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Three-dimensional (3D) printing is an emerging and booming industry in Taiwan. Compared to traditional manufacturing, 3D printing has various advantages, such as advanced customization, additive manufacturing, reduced mold opening time, and reduced consumption of precursors. In this study, the real-time monitoring of particulate matter (PM) and total volatile organic compound (TVOC) emissions from various filaments is investigated using fused deposition modeling with material extrusion technology, a liquid-crystal display, a stereolithography apparatus based on vat photopolymerization technology, and binder jetting for occupational settings. An exposure assessment for nearby workers using the 3D printing process was performed, and improvement measures were recommended. Nine 3D printing fields were measured. The generation rate of ultrafine particles ranged from 1.19 × 1010 to 4.90 × 1012 #/min, and the geometric mean particle size ranged from 30.91 to 55.50 nm. The average concentration of ultrafine particles ranged from 2.31 × 103 to 7.36 × 104 #/cm3, and the PM2.5 and PM10 concentrations in each field ranged from 0.74 ± 0.27 to 12.46 ± 5.61 μg/m3 and from 2.39 ± 0.60 to 30.65 ± 21.26 μg/m3, respectively. The TVOC concentration ranged from 0.127 ± 0.012 to 1.567 ± 0.172 ppm. The respiratory deposition (RDUFPs) dose ranged from 2.02 × 1013 to 5.54 × 1014 nm2/day. Depending on the operating conditions, appropriate control and protective measures should be employed to protect workers' health.
Collapse
Affiliation(s)
- Yung-Sheng Chuang
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Abiyu Kerebo Berekute
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Hsuan-Yu Hsu
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ho-Sheng Wei
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Cheng Gong
- Department of Chemistry, College of Natural and Computational Sciences, Arba Minch University, Arbaminch, Ethiopia
| | - Ya-Yuan Hsu
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City, Taiwan
| | - Chuen-Jinn Tsai
- Institute of Environmental Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Kuo-Pin Yu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
2
|
Hasan F, Potter PM, Al-Abed SR, Matheson J, Lomnicki SM. Investigating environmentally persistent free radicals (EPFRs) emissions of 3D printing process. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 480:1-6. [PMID: 38510278 PMCID: PMC10953813 DOI: 10.1016/j.cej.2023.148158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In recent years, the emission of particles and gaseous pollutants from 3D printing has attracted much attention due to potential health risks. This study investigated the generation of environmentally persistent free radicals (EPFRs, organic free radicals stabilized on or inside particles) in total particulate matter (TPM) released during the 3D printing process. Commercially available 3D printer filaments, made of acrylonitrile-butadiene-styrene (ABS) in two different colors and metal content, ABS-blue (19.66 μg/g Cu) and ABS-black (3.69 μg/g Fe), were used for printing. We hypothesized that the metal content/composition of the filaments contributes not only to the type and number of EPFRs in TPM emissions, but also impacts the overall yield of TPM emissions. TPM emissions during printing with ABS-blue (11.28 μg/g of printed material) were higher than with ABS-black (7.29 μg/g). Electron paramagnetic resonance (EPR) spectroscopy, employed to measure EPFRs in TPM emissions of both filaments, revealed higher EPFR concentrations in ABS-blue TPM (6.23 × 1017 spins/g) than in ABS-black TPM (9.72 × 1016 spins/g). The presence of copper in the ABS-blue contributed to the formation of mostly oxygen-centered EPFR species with a g-factor of ~2.0041 and a lifetime of 98 days. The ABS-black EPFR signal had a lower g-factor of ~2.0011, reflecting the formation of superoxide radicals during the printing process, which were shown to have an "estimated tentative" lifetime of 26 days. Both radical species (EPFRs and superoxides) translate to a potential health risk through inhalation of emitted particles.
Collapse
Affiliation(s)
- Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Phillip M. Potter
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Research and Emergency Response, Cincinnati, OH 45268, USA
| | - Souhail R. Al-Abed
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Environmental Research and Emergency Response, Cincinnati, OH 45268, USA
| | - Joanna Matheson
- U.S. Consumer Product and Safety Commission, Health Sciences Directorate, Rockville, MD 20850, USA
| | - Slawomir M. Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
3
|
Zhang Q, Black MS. Exposure hazards of particles and volatile organic compounds emitted from material extrusion 3D printing: Consolidation of chamber study data. ENVIRONMENT INTERNATIONAL 2023; 182:108316. [PMID: 37952412 DOI: 10.1016/j.envint.2023.108316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Ultrafine particles and volatile organic compounds (VOCs) have been detected from material extrusion 3D printing, which is widely used in non-industrial environments. This study consolidates data of 447 particle emission and 58 VOC emission evaluations from a chamber study using a standardized testing method with various 3D printing scenarios. The interquartile ranges of the observed emission rates were 109-1011 #/h for particles and 0.2-1.0 mg/h for total VOC. Print material contributed largely to the variations of particle and total VOC emissions and determined the most abundantly emitted VOCs. Printing conditions and filament specifications, included printer brand, print temperature and speed, build plate heating setup, filament brand, color and composite, also affected emissions and resulted in large variations observed in emission profiles. Multiple regression showed that particle emissions were more impacted by various print conditions than VOC emissions. According to indoor exposure modeling, personal and residential exposure scenarios were more likely to result in high exposure levels, often exceeding recommended exposure limits. Hazardous VOCs commonly emitted from 3D printing included aromatics, aldehydes, alcohols, ketones, esters and siloxanes, among which were various carcinogens, irritants and developmental and reproductive toxins. Therefore, 3D printing emits a complex mixture of ultrafine particles and various hazardous chemicals, exposure to which may exceed recommended exposure limits and potentially induce acute, chronic, or developmental health effects for users depending on exposure scenarios.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA.
| | - Marilyn S Black
- Chemical Insights Research Institute, UL Research Institutes, Marietta, GA 30067, USA
| |
Collapse
|
4
|
van Ree M, du Preez S, du Plessis JL. Emissions and Exposures Associated with the Use of an Inconel Powder during Directed Energy Deposition Additive Manufacturing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6206. [PMID: 37444054 PMCID: PMC10341570 DOI: 10.3390/ijerph20136206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023]
Abstract
Additive manufacturing (AM) has been linked to potential exposure-related health risks, however, there is a paucity of sufficient research. This study aimed to supply information regarding emissions and exposure during directed energy deposition (DED) AM using inconel 718, with the main constituents being nickel, chromium, and cobalt. By using standardized occupational hygiene methods, the measurement strategy consisted of a combined approach, including powder characterization, particle emission monitoring, and personal exposure monitoring of AM operators. Powder characterization of virgin and used powder indicated no significant difference in particle size, shape, or elemental composition. Particle number emissions ranged between 102 and 105 p/cm3 for submicron particles (<1 µm in size). There was no significant difference in the particle emission rate between the three phases of AM or the two types of DED machines (p > 0.05). The particle emission rate for submicron particles peaked at 2.8 × 109 p/min. Metals of concern to human health were detected during the AM process but were considerably lower than the relevant exposure limits. This study confirms particle emissions, predominantly in the submicron range, above the background concentration during DED AM and, although insignificant in terms of potential health effects, AM operators are exposed to detectable concentrations of the metal constituents of inconel.
Collapse
Affiliation(s)
| | - Sonette du Preez
- Occupational Hygiene and Health Research Initiative (OHHRI), North-West University, Potchefstroom 2531, South Africa
| | | |
Collapse
|
5
|
Felici G, Lachowicz JI, Milia S, Cannizzaro E, Cirrincione L, Congiu T, Jaremko M, Campagna M, Lecca LI. A pilot study of occupational exposure to ultrafine particles during 3D printing in research laboratories. Front Public Health 2023; 11:1144475. [PMID: 37333549 PMCID: PMC10272752 DOI: 10.3389/fpubh.2023.1144475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/11/2023] [Indexed: 06/20/2023] Open
Abstract
Introduction 3D printing is increasingly present in research environments, and could pose health risks to users due to air pollution and particulate emissions. We evaluated the nanoparticulate emissions of two different 3D printers, utilizing either fused filament fabrication with polylactic acid, or stereolithography (SLA) with light curing resin. Methods Nanoparticulate emissions were evaluated in two different research environments, both by environmental measurements in the laboratory and by personal sampling. Results The SLA printer had higher nanoparticulate emissions, with an average concentration of 4,091 parts/cm3, versus 2,203 particles/cm3 for the fused filament fabrication printer. The collected particulate matter had variable morphology and elemental composition with a preponderance of carbon, sulfur and oxygen, the main byproducts. Discussion Our study implies that when considering the health risks of particulate emissions from 3D printing in research laboratories, attention should be given to the materials used and the type of 3D printer.
Collapse
Affiliation(s)
- Giorgio Felici
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Simone Milia
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Emanuele Cannizzaro
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Luigi Cirrincione
- Department of Sciences for Health Promotion and Mother and Child Care “Giuseppe D’Alessandro”, University of Palermo, Palermo, Italy
| | - Terenzio Congiu
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Marcello Campagna
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| | - Luigi Isaia Lecca
- Department of Medical Sciences and Public Health, Division of Occupational Medicine, University of Cagliari, Cittadella Universitaria, Cagliari, Italy
| |
Collapse
|
6
|
Tedla G, Rogers K. Characterization of 3D printing filaments containing metal additives and their particulate emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162648. [PMID: 36906034 PMCID: PMC10947787 DOI: 10.1016/j.scitotenv.2023.162648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/01/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
Polylactic acid (PLA) filaments are widely used in fused filament fabrication (FFF) processes (3D printing). Filament additives such as metallic particles incorporated into PLA to modify functional and aesthetic features of print objects are becoming increasingly popular. However, the identities and concentrations of low percentage and trace metals in these filaments have not been well described in either the literature or product safety information included with the product. We report the structures and concentrations of metals in selected Copperfill, Bronzefill and Steelfill filaments. We also report size-weighted number concentrations and size-weighted mass concentrations of particulate emissions as a function of print temperature for each filament. Particulate emissions were heterogenous in shape and size with airborne particles below 50 nm diameter dominating the size-weighted particle concentrations and larger particles (approximately 300 nm) dominating the mass weighted particle concentration. Results indicate that potential exposure to particles in the nano-size range increase when using print temperatures above 200o C. Because inhalation exposure to nanoparticles has been linked to adverse health outcomes, we suggest that using lower print temperatures for specific metal-fill filaments may reduce their operational hazard.
Collapse
Affiliation(s)
- Getachew Tedla
- Oak Ridge Institute of Science and Education, Research Triangle Park, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
7
|
Lee H, Kwak DB, Choi CY, Ahn KH. Accurate measurements of particle emissions from a three-dimensional printer using a chamber test with a mixer-installed sampling system. Sci Rep 2023; 13:6495. [PMID: 37081153 PMCID: PMC10119104 DOI: 10.1038/s41598-023-33538-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/14/2023] [Indexed: 04/22/2023] Open
Abstract
Recently, three-dimensional (3D) printing has attracted attention as a new manufacturing technology. However, there is lack of data and regulations regarding the emissions of ultrafine particles from 3D printers. Therefore, we investigated particle emissions from a 3D printer using a chamber system. The test system was improved by installing a developed mixer for accurate measurement. Without a mixer, the particle concentration was unstable depending on the sampling point; however, reliable data with good uniformity were obtained by installing a mixer. Using the test system with a mixer, we investigated particle emissions from a 3D printer during operation. Filaments made each of acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) were used as the printing material. The effects of nozzle temperature and printing time were investigated. Compared to the effect of the printing time, the nozzle temperature had greater impact on the particle emissions. The dominant particle size for the emissions from a 3D printer is less than 10 nm, and the particle concentration decreased with increasing particle size.
Collapse
Affiliation(s)
- Handol Lee
- Department of Environmental Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon, 22212, Republic of Korea
| | - Dong-Bin Kwak
- Particle Technology Laboratory, Mechanical Engineering, University of Minnesota, 111 Church St., Minneapolis, S.E., 55455, USA
| | - Chi Young Choi
- Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea
| | - Kang-Ho Ahn
- Department of Mechanical Engineering, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, Republic of Korea.
| |
Collapse
|
8
|
Zhang Q, Weber RJ, Luxton TP, Peloquin DM, Baumann EJ, Black MS. Metal compositions of particle emissions from material extrusion 3D printing: Emission sources and indoor exposure modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160512. [PMID: 36442638 PMCID: PMC10259682 DOI: 10.1016/j.scitotenv.2022.160512] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/22/2022] [Indexed: 06/14/2023]
Abstract
Material extrusion 3D printing has been widely used in industrial, educational and residential environments, while its exposure health impacts have not been well understood. High levels of ultrafine particles are found being emitted from 3D printing and could pose a hazard when inhaled. However, metals that potentially transfer from filament additives to emitted particles could also add to the exposure hazard, which have not been well characterized for their emissions. This study analyzed metal (and metalloid) compositions of raw filaments and in the emitted particles during printing; studied filaments included pure polymer filaments with metal additives and composite filaments with and without metal powder. Our chamber study found that crustal metals tended to have higher partitioning factors from filaments to emitted particles; silicon was the most abundant element in emitted particles and had the highest yield per filament mass. However, bronze and stainless-steel powder added in composite filaments were less likely to transfer from filament to particle. For some cases, boron, arsenic, manganese, and lead were only detected in particles, which indicated external sources, such as the printers themselves. Heavy metals with health concerns were also detected in emitted particles, while their estimated exposure concentrations in indoor air were below air quality standards and occupational regulations. However, total particle exposure concentrations estimated for indoor environments could exceed ambient air fine particulate standards.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA.
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Derek M Peloquin
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Eric J Baumann
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH 45224, USA
| | - Marilyn S Black
- Chemical Insights Research Institute, Underwriters Laboratories Inc., Marietta, GA 30067, USA
| |
Collapse
|
9
|
Sarkar S, Diab H, Thompson J. Microplastic Pollution: Chemical Characterization and Impact on Wildlife. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1745. [PMID: 36767120 PMCID: PMC9914693 DOI: 10.3390/ijerph20031745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Microplastics are small pieces of plastic that are less than 5 mm in size and can be found in most environments, including the oceans, rivers, and air. These small plastic particles can have negative impacts on wildlife and the environment. In this review of the literature, we analyze the presence of microplastics in various species of wildlife, including fish, birds, and mammals. We describe a variety of analytical techniques, such as microscopy and spectrometry, which identify and quantify the microplastics in the samples. In addition, techniques of sample preparation are discussed. Summary results show that microplastics are present in all the wildlife species studied, with the highest concentrations often found in fish and birds. The literature suggests that microplastics are widely distributed in the environment and have the potential to affect a wide range of species. Further research is required to fully understand the impacts of microplastics on wildlife and the environment.
Collapse
|
10
|
Hill WC, Seitz DW, Hull MS, Ballentine ML, Kennedy AJ. Additives influence 3D printer emission profiles: Implications for working safely with polymer filament composites. INDOOR AIR 2022; 32:e13130. [PMID: 36305064 DOI: 10.1111/ina.13130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
It is critical to thoroughly investigate, characterize, and understand the unique emission profiles of common and novel polymer feedstocks used in fused filament fabrication (FFF) 3D printers as these products become increasingly ubiquitous in consumer and industrial environments. This work contributes unique insights regarding the effects of polymer composite feedstocks with metal, ceramic, or carbonaceous particle additives on particulate emissions in a variety of filaments under various print conditions, including print temperature. In addition to active characterization of particulate size and concentration following the ANSI/CAN/UL 2904 method, particulate sampling and subsequent analysis by scanning electron microscopy revealed agglomeration behavior that may have important health implications. Specifically, fine particles (0.3-2.5 μm) generated by certain filaments including acrylonitrile butadiene styrene (ABS) and glycol-modified poly(ethylene terephthalate) (PETG) are shown to be formed via agglomeration of emitted ultrafine particles rather than composed of coherent primary particles; accordingly, transport and behavior of these particulates after inhalation may not follow expected patterns for micrometer-sized particles. Structures resembling carbonaceous additives (e.g., graphene and nanotubes) were also captured by airborne sampling during printing of filaments containing carbonaceous advanced materials.
Collapse
Affiliation(s)
| | | | - Matthew S Hull
- NanoSafe, Inc., Blacksburg, Virginia, USA
- Virginia Tech, Institute for Critical Technology and Applied Science, Blacksburg, Virginia, USA
| | - Mark L Ballentine
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
| | - Alan J Kennedy
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, USA
- Virginia Tech, Macromolecules Innovation Institute, Blacksburg, Virginia, USA
| |
Collapse
|
11
|
Hossain SKM, Toledo Vega A, Valles-Rosales D, Park YH, Kuravi S, Sohn H. Particulate suspension: a review of studies characterizing particulates and volatile organic compounds emissions during additive manufacturing processes. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2094301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
| | - Azul Toledo Vega
- Department of Industrial Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Delia Valles-Rosales
- Department of Industrial Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Young Ho Park
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Sarada Kuravi
- Department of Mechanical and Aerospace Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| | - Hansuk Sohn
- Department of Industrial Engineering, New Mexico State University, Las Cruces, New Mexico, USA
| |
Collapse
|
12
|
Väisänen A, Alonen L, Ylönen S, Hyttinen M. Volatile organic compound and particulate emissions from the production and use of thermoplastic biocomposite 3D printing filaments. JOURNAL OF OCCUPATIONAL AND ENVIRONMENTAL HYGIENE 2022; 19:381-393. [PMID: 35404756 DOI: 10.1080/15459624.2022.2063879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biocomposites (BCs) can be used as substitutes for unsustainable polymers in 3D printing, but their safety demands additional investigation as biological fillers may produce altered emissions during thermal processing. Commercial filament extruders can be used to produce custom feedstocks, but they are another source of airborne contaminants and demand further research. These knowledge gaps are targeted in this study. Volatile organic compound (VOC), carbonyl compound, ultrafine particle (UFP), and fine (PM2.5) and coarse (PM10) particle air concentrations were measured in this study as a filament extruder and a 3D printer were operated under an office environment using one PLA and four PLA-based BC feedstocks. Estimates of emission rates (ERs) for total VOCs (TVOC) and UFPs were also calculated. VOCs were analyzed with a GC-MS system, carbonyls were analyzed with an LC-MS/MS system, whereas real-time particle concentrations were monitored with continuously operating instruments. VOC concentrations were low throughout the experiment; TVOC ranged between 34-63 µg/m3 during filament extrusion and 41-56 µg/m3 during 3D printing, which represent calculated TVOC ERs of 2.6‒3.6 × 102 and 2.9‒3.6 × 102 µg/min. Corresponding cumulative carbonyls ranged between 60-91 and 190-253 µg/m3. Lactide and miscellaneous acids and alcohols were the dominant VOCs, while acetone, 2-butanone, and formaldehyde were the dominant carbonyls. Terpenes contributed for ca. 20-40% of TVOC during BC processing. The average UFP levels produced by the filament extruder were 0.85 × 102-1.05 × 103 #/cm3, while the 3D printer generated 6.05 × 102-2.09 × 103 #/cm3 particle levels. Corresponding particle ERs were 5.3 × 108-6.6 × 109 and 3.8 × 109-1.3 × 1010 #/min. PM2.5 and PM10 particles were produced in the following average quantities; PM2.5 levels ranged between 0.2-2.2 µg/m3, while PM10 levels were between 5-20 µg/m3 for all materials. The main difference between the pure PLA and BC feedstock emissions was terpenes, present during all BC extrusion processes. BCs are similar emission sources as pure plastics based on our findings, and a filament extruder produces contaminants at comparable or slightly lower levels in comparison to 3D printers.
Collapse
Affiliation(s)
- Antti Väisänen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Lauri Alonen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Sampsa Ylönen
- School of Engineering and Technology, Savonia University of Applied Sciences, Kuopio, Finland
| | - Marko Hyttinen
- Faculty of Science and Forestry, Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Farcas MT, McKinney W, Coyle J, Orandle M, Mandler WK, Stefaniak AB, Bowers L, Battelli L, Richardson D, Hammer MA, Friend SA, Service S, Kashon M, Qi C, Hammond DR, Thomas TA, Matheson J, Qian Y. Evaluation of Pulmonary Effects of 3-D Printer Emissions From Acrylonitrile Butadiene Styrene Using an Air-Liquid Interface Model of Primary Normal Human-Derived Bronchial Epithelial Cells. Int J Toxicol 2022; 41:312-328. [PMID: 35586871 DOI: 10.1177/10915818221093605] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study investigated the inhalation toxicity of the emissions from 3-D printing with acrylonitrile butadiene styrene (ABS) filament using an air-liquid interface (ALI) in vitro model. Primary normal human-derived bronchial epithelial cells (NHBEs) were exposed to ABS filament emissions in an ALI for 4 hours. The mean and mode diameters of ABS emitted particles in the medium were 175 ± 24 and 153 ± 15 nm, respectively. The average particle deposition per surface area of the epithelium was 2.29 × 107 ± 1.47 × 107 particle/cm2, equivalent to an estimated average particle mass of 0.144 ± 0.042 μg/cm2. Results showed exposure of NHBEs to ABS emissions did not significantly affect epithelium integrity, ciliation, mucus production, nor induce cytotoxicity. At 24 hours after the exposure, significant increases in the pro-inflammatory markers IL-12p70, IL-13, IL-15, IFN-γ, TNF-α, IL-17A, VEGF, MCP-1, and MIP-1α were noted in the basolateral cell culture medium of ABS-exposed cells compared to non-exposed chamber control cells. Results obtained from this study correspond with those from our previous in vivo studies, indicating that the increase in inflammatory mediators occur without associated membrane damage. The combination of the exposure chamber and the ALI-based model is promising for assessing 3-D printer emission-induced toxicity.
Collapse
Affiliation(s)
- Mariana T Farcas
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Walter McKinney
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Jayme Coyle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Marlene Orandle
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - W Kyle Mandler
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Aleksandr B Stefaniak
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lauren Bowers
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA.,Department of Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, USA
| | - Lori Battelli
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Diana Richardson
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Mary A Hammer
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Samantha Service
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Michael Kashon
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Chaolong Qi
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Duane R Hammond
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Treye A Thomas
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Joanna Matheson
- Respiratory Health Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - Yong Qian
- Health Effects Laboratory Division, 114426National Institute for Occupational Safety and Health, Morgantown, WV, USA
| |
Collapse
|
14
|
Yeom S, Kim H, Hong T, Jeong K. Analysis of ways to reduce potential health risk from ultrafine and fine particles emitted from 3D printers in the makerspace. INDOOR AIR 2022; 32:e13053. [PMID: 35622719 DOI: 10.1111/ina.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/20/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Due to the growing maker culture, maker spaces using multiple fused deposition modeling (FDM)-3D printers have spread around the world. However, the 3D printing process is known to cause the release of ultrafine and fine particles, which may have adverse health effects on occupants. Therefore, this experiment-based study was conducted on FDM-3D printers placed in an actual makerspace by the following three scenarios: the number of operating FDM-3D printers, ventilation, and measurement location to compare the concentrations of ultrafine and fine particles. In addition, the deposited dose in alveolar region for ultrafine and fine particles was predicted using a respiratory deposition model to analyze the potential health risk on occupants. As a result, the scenario-based comparison revealed that if the number of operating 3D printers is reduced by less than half, the potential health risk can be decreased by 34.1%, proper ventilation can reduce potential health risk by 55.5%, and working away from the 3D printer can also reduce potential health risk by up to 27.5%. This study analyzed the potential health risk of multiple FDM-3D printers on users in an actual makerspace, and proposed various improvement measures to reduce the potential health risk of ultrafine and fine particles.
Collapse
Affiliation(s)
- Seungkeun Yeom
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Hakpyeong Kim
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Taehoon Hong
- Department of Architecture and Architectural Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kwangbok Jeong
- Deep Learning Architecture Research Center, Department of Architectural Engineering, Sejong University, Seoul, Republic of Korea
| |
Collapse
|
15
|
Tedla G, Jarabek AM, Byrley P, Boyes W, Rogers K. Human exposure to metals in consumer-focused fused filament fabrication (FFF)/ 3D printing processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152622. [PMID: 34963600 PMCID: PMC8961686 DOI: 10.1016/j.scitotenv.2021.152622] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/16/2021] [Accepted: 12/19/2021] [Indexed: 05/31/2023]
Abstract
Fused filament fabrication (FFF) or 3D printing is a growing technology used in industry, cottage industry and for consumer applications. Low-cost 3D printing devices have become increasingly popular among children and teens. Consequently, 3D printers are increasingly common in households, schools, and libraries. Because the operation of 3D printers is associated with the release of inhalable particles and volatile organic compounds (VOCs), there are concerns of possible health implications, particularly for use in schools and residential environments that may not have adequate ventilation such as classrooms bedrooms and garages, etc. Along with the growing consumer market for low-cost printers and printer pens, there is also an expanding market for a range of specialty filaments with additives such as inorganic colorants, metal particles and nanomaterials as well as metal-containing flame retardants, antioxidants, heat stabilizers and catalysts. Inhalation of particulate-associated metals may represent a health risk depending on both the metal and internal dose to the respiratory tract. Little has been reported, however, about the presence, speciation, and source of metals in the emissions; or likewise the effect of metals on emission processes and toxicological implications of these 3D printer generated emissions. This report evaluates various issues including the following: metals in feedstock with a focus on filament characteristics and function of metals; the effect of metals on the emissions and metals detected in emissions; printer emissions, particle formation, transport, and transformation; exposure and translation to internal dose; and potential toxicity on inhaled dose. Finally, data gaps and potential areas of future research are discussed within these contexts.
Collapse
Affiliation(s)
- Getachew Tedla
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America
| | - Annie M Jarabek
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Peter Byrley
- Health and Environmental Effects Assessment Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - William Boyes
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, USEPA, RTP, NC 27711, United States of America
| | - Kim Rogers
- Watershed and Ecosystem Characterization Division, Center for Environmental Measurement and Modeling, USEPA, RTP, NC 27711, United States of America.
| |
Collapse
|
16
|
Tang CL, Seeger S. Systematic ranking of filaments regarding their particulate emissions during fused filament fabrication 3D printing by means of a proposed standard test method. INDOOR AIR 2022; 32:e13010. [PMID: 35347793 DOI: 10.1111/ina.13010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The diversity of fused filament fabrication (FFF) filaments continues to grow rapidly as the popularity of FFF-3D desktop printers for the use as home fabrication devices has been greatly increased in the past decade. Potential harmful emissions and associated health risks when operating indoors have induced many emission studies. However, the lack of standardization of measurements impeded an objectifiable comparison of research findings. Therefore, we designed a chamber-based standard method, i.e., the strand printing method (SPM), which provides a standardized printing procedure and quantifies systematically the particle emission released from individual FFF-3D filaments under controlled conditions. Forty-four marketable filament products were tested. The total number of emitted particles (TP) varied by approximately four orders of magnitude (109 ≤ TP ≤ 1013 ), indicating that origin of polymers, manufacturer-specific additives, and undeclared impurities have a strong influence. Our results suggest that TP characterizes an individual filament product and particle emissions cannot be categorized by the polymer type (e.g., PLA or ABS) alone. The user's choice of a filament product is therefore decisive for the exposure to released particles during operation. Thus, choosing a filament product awarded for low emissions seems to be an easily achievable preemptive measure to prevent health hazards.
Collapse
Affiliation(s)
- Chi-Long Tang
- Division 4.2 - Materials and Air Pollutants, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| | - Stefan Seeger
- Division 4.2 - Materials and Air Pollutants, Federal Institute for Materials Research and Testing (BAM), Berlin, Germany
| |
Collapse
|
17
|
Kim D, Lee K. Characteristics of ultrafine particles emitted from 3D-pens and effect of partition on children's exposure during 3D-pen operation. INDOOR AIR 2022; 32:e12978. [PMID: 34939703 DOI: 10.1111/ina.12978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/12/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
A three-dimensional (3D) printing pen is a popular writing instrument that uses a heated nozzle, and is similar to a 3D-printer. Processing thermoplastic filaments with a 3D-pen can emit ultrafine particles (UFPs). 3D-pen education sessions were held with "∏"-shaped partitions for the prevention of coronavirus disease (COVID-19). This study aimed to characterize UFP emissions from two types of 3D-pens and evaluate the influence of "∏"-shaped partitions on UFP exposure. Measurements of UFP emission rates and the size distribution of particles emitted from 3D-pens were conducted in a chamber (2.5 m3 ). The partition's influence on UFP exposure was evaluated with and without a "∏"-shaped partition on a desk. A scanning mobility particle sizer (SMPS) and an optical particle spectrometer (OPS) were used to measure the particle number concentration (PNC) and size distribution. For both 3D-pen A and B, the average emission rates were statistically significantly highest for acrylonitrile butadiene styrene (ABS) filament (8.4 × 106 [3.4] particles/min and 1.1 × 106 [1.8] particles/min), followed by polylactic acid (PLA) (2.8 × 105 [1.5] particles/min and 4.8 × 104 [1.8] particles/min) and polycaprolactone (PCL) filaments (1.4 × 104 [2.8] particles/min and 2.0 × 104 [2.8] particles/min). For all filaments, particles in the Aitken mode (30-100 nm) accounted for the highest proportion. In 3D-pen A, PNCs were higher with the partition than without it for ABS (1.2 × 106 [1.15] particles/cm3 vs. 1.4 × 105 [1.29] particles/cm3 ) and PLA (6.2 × 105 [1.38] particles/cm3 vs. 8.9 × 104 [1.12] particles/cm3 ), whereas for 3D-pen B, they were higher with the partition for ABS (9.6 × 105 [1.13] particles/cm3 vs. 4.9 × 105 [1.22] particles/cm3 ) only. With the partition installed, PNCs decreased to the background level after the operation ended, whereas it took 2-6 min without the partition. However, the mass concentrations of PLA and PCL with 3D-pen A were not statistically significantly different with respect to the partition status. The use of 3D-pens with a partition can lead to high UFP exposure. Therefore, guidelines are required for the safe use of 3D-pens and partitions.
Collapse
Affiliation(s)
- Donghyun Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Kiyoung Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Gwanak-gu, Seoul, Korea
- Institute of Health and Environment, Seoul National University, Gwanak-gu, Seoul, Korea
| |
Collapse
|
18
|
Stefaniak AB, Bowers LN, Cottrell G, Erdem E, Knepp AK, Martin SB, Pretty J, Duling MG, Arnold ED, Wilson Z, Krider B, Fortner AR, LeBouf RF, Virji MA, Sirinterlikci A. Towards sustainable additive manufacturing: The need for awareness of particle and vapor releases during polymer recycling, making filament, and fused filament fabrication 3-D printing. RESOURCES, CONSERVATION, AND RECYCLING 2022; 176:10.1016/j.resconrec.2021.105911. [PMID: 35982992 PMCID: PMC9380603 DOI: 10.1016/j.resconrec.2021.105911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fused filament fabrication three-dimensional (FFF 3-D) printing is thought to be environmentally sustainable; however, significant amounts of waste can be generated from this technology. One way to improve its sustainability is via distributed recycling of plastics in homes, schools, and libraries to create feedstock filament for printing. Risks from exposures incurred during recycling and reuse of plastics has not been incorporated into life cycle assessments. This study characterized contaminant releases from virgin (unextruded) and recycled plastics from filament production through FFF 3-D printing. Waste polylactic acid (PLA) and acrylonitrile butadiene styrene (ABS) plastics were recycled to create filament; virgin PLA, ABS, high and low density polyethylenes, high impact polystyrene, and polypropylene pellets were also extruded into filament. The release of particles and chemicals into school classrooms was evaluated using standard industrial hygiene methodologies. All tasks released particles that contained hazardous metals (e.g., manganese) and with size capable of depositing in the gas exchange region of the lung, i.e., granulation of waste PLA and ABS (667 to 714 nm) and filament making (608 to 711 nm) and FFF 3-D printing (616 to 731 nm) with waste and virgin plastics. All tasks released vapors, including respiratory irritants and potential carcinogens (benzene and formaldehyde), mucus membrane irritants (acetone, xylenes, ethylbenzene, and methyl methacrylate), and asthmagens (styrene, multiple carbonyl compounds). These data are useful for incorporating risks of exposure to hazardous contaminants in future life cycle evaluations to demonstrate the sustainability and circular economy potential of FFF 3-D printing in distributed spaces.
Collapse
Affiliation(s)
- Aleksandr B. Stefaniak
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Gabe Cottrell
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Ergin Erdem
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Jack Pretty
- National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Cincinnati, OH, 45213, United States
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Elizabeth D. Arnold
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Zachary Wilson
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Benjamin Krider
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| | - Alyson R. Fortner
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, WV, 26505, United States
| | - Arif Sirinterlikci
- Robert Morris University, School of Engineering, Mathematics, and Science, Moon Township, PA, 15108, United States
| |
Collapse
|
19
|
Chýlek R, Kudela L, Pospíšil J, Šnajdárek L. Parameters Influencing the Emission of Ultrafine Particles during 3D Printing. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111670. [PMID: 34770184 PMCID: PMC8582798 DOI: 10.3390/ijerph182111670] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
This paper presents a complex and extensive experimental evaluation of fine particle emissions released by an FDM 3D printer for four of the most common printing materials (ABS, PLA, PET-G, and TPU). These thermoplastic filaments were examined at three printing temperatures within their recommended range. In addition, these measurements were extended using various types of printing nozzles, which influenced the emissions considerably. This research is based on more than a hundred individual measurements for which a standardized printing method was developed. The study presents information about differences between particular printing conditions in terms of the amount of fine particles emitted as well as the particle size distributions during printing periods. This expands existing knowledge about the emission of ultrafine particles during 3D printing, and it can help reduce the emissions of these devices to achieve cleaner and safer 3D printer operations.
Collapse
|
20
|
Dobrzyńska E, Kondej D, Kowalska J, Szewczyńska M. State of the art in additive manufacturing and its possible chemical and particle hazards-review. INDOOR AIR 2021; 31:1733-1758. [PMID: 34081372 PMCID: PMC8596642 DOI: 10.1111/ina.12853] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/29/2021] [Accepted: 04/21/2021] [Indexed: 05/27/2023]
Abstract
Additive manufacturing, enabling rapid prototyping and so-called on-demand production, has become a common method of creating parts or whole devices. On a 3D printer, real objects are produced layer by layer, thus creating extraordinary possibilities as to the number of applications for this type of devices. The opportunities offered by this technique seem to be pushing new boundaries when it comes to both the use of 3D printing in practice and new materials from which the 3D objects can be printed. However, the question arises whether, at the same time, this solution is safe enough to be used without limitations, wherever and by everyone. According to the scientific reports, three-dimensional printing can pose a threat to the user, not only in terms of physical or mechanical hazards, but also through the potential emissions of chemical substances and fine particles. Thus, the presented publication collects information on the additive manufacturing, different techniques, and ways of printing with application of diverse raw materials. It presents an overview of the last 5 years' publications focusing on 3D printing, especially regarding the potential chemical and particle emission resulting from the use of such printers in both the working environment and private spaces.
Collapse
Affiliation(s)
- Elżbieta Dobrzyńska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Dorota Kondej
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | - Joanna Kowalska
- Central Institute for Labour Protection—National Research InstituteWarsawPoland
| | | |
Collapse
|
21
|
Runström Eden G, Tinnerberg H, Rosell L, Möller R, Almstrand AC, Bredberg A. Exploring Methods for Surveillance of Occupational Exposure from Additive Manufacturing in Four Different Industrial Facilities. Ann Work Expo Health 2021; 66:163-177. [PMID: 34486024 PMCID: PMC8855698 DOI: 10.1093/annweh/wxab070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 01/11/2023] Open
Abstract
3D printing, a type of additive manufacturing (AM), is a rapidly expanding field. Some adverse health effects have been associated with exposure to printing emissions, which makes occupational exposure studies important. There is a lack of exposure studies, particularly from printing methods other than material extrusion (ME). The presented study aimed to evaluate measurement methods for exposure assessment in AM environments and to measure exposure and emissions from four different printing methods [powder bed fusion (PBF), material extrusion (ME), material jetting (MJ), and vat photopolymerization] in industry. Structured exposure diaries and volatile organic compound (VOC) sensors were used over a 5-day working week. Personal and stationary VOC samples and real-time particle measurements were taken for 1 day per facility. Personal inhalable and respirable dust samples were taken during PBF and MJ AM. The use of structured exposure diaries in combination with measurement data revealed that comparatively little time is spent on actual printing and the main exposure comes from post-processing tasks. VOC and particle instruments that log for a longer period are a useful tool as they facilitate the identification of work tasks with high emissions, highlight the importance of ventilation and give a more gathered view of variations in exposure. No alarming levels of VOCs or dust were detected during print nor post-processing in these facilities as adequate preventive measures were installed. As there are a few studies reporting negative health effects, it is still important to keep the exposure as low as reasonable.
Collapse
Affiliation(s)
- Gunilla Runström Eden
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Håkan Tinnerberg
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Lars Rosell
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| | - Rickie Möller
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Ann-Charlotte Almstrand
- University of Gothenburg, Institute of Medicine, Sahlgrenska Academy, School of Public Health and Community Medicine, Gothenburg, Sweden
| | - Anna Bredberg
- RISE, Research Institutes of Sweden, Gothenburg, Sweden
| |
Collapse
|
22
|
Potter PM, Al-Abed SR, Hasan F, Lomnicki SM. Influence of polymer additives on gas-phase emissions from 3D printer filaments. CHEMOSPHERE 2021; 279:130543. [PMID: 33901889 PMCID: PMC8521456 DOI: 10.1016/j.chemosphere.2021.130543] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 05/06/2023]
Abstract
A collection of six commercially available, 3D printer filaments were analyzed with respect to their gas-phase emissions, specifically volatile organic compounds (VOCs), during simulated fused filament fabrication (FFF). Filaments were chosen because they were advertised to contain metal particles or carbon nanotubes. During experimentation, some were found to contain other non-advertised additives that greatly influenced gas-phase emissions. Three polylactic acid (PLA) filaments containing either copper, bronze, or stainless steel particles were studied along in addition to three carbon nanotube (CNT) filaments made from PLA, acrylonitrile-butadiene-styrene (ABS), and polycarbonate (PC). The metal-additive PLA filaments were found to emit primarily lactide, acetaldehyde, and 1-chlorododecane. The presence of metal particles in the PLA is a possible cause of the increased total emissions, which were higher than any other PLA filament reported in the literature. In addition, the filament with stainless steel particles had a threefold increase in total VOCs compared to the copper and bronze particles. Two of three CNT-containing filaments emitted compounds that have not been reported before for PLA and PC. A comparison between certain emitted VOCs and their suggested maximum inhalation limits shows that printing as little as 20 g of certain filaments in a small, unventilated room can subject the user to hazardous concentrations of multiple toxic VOCs with carcinogenic properties (e.g., acetaldehyde, 1,4-dioxane, and bis(2-ethylhexyl) phthalate). The use of certain additives, whether advertised or not, should be reevaluated due to their effects on VOC emissions during 3D printing.
Collapse
Affiliation(s)
- Phillip M Potter
- Oak Ridge Institute for Science and Education (ORISE), EPA, Cincinnati, OH, 45268, USA
| | - Souhail R Al-Abed
- Center for Environmental Solutions and Emergency Response (CESER), EPA, Cincinnati, OH, 45268, USA.
| | - Farhana Hasan
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Slawomir M Lomnicki
- Department of Environmental Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
23
|
Stefaniak AB, Bowers LN, Cottrell G, Erdem E, Knepp AK, Martin S, Pretty J, Duling MG, Arnold ED, Wilson Z, Krider B, LeBouf RF, Virji MA, Sirinterlikci A. Use of 3-Dimensional Printers in Educational Settings: The Need for Awareness of the Effects of Printer Temperature and Filament Type on Contaminant Releases. ACS CHEMICAL HEALTH & SAFETY 2021; 28:444-456. [PMID: 35979087 PMCID: PMC9377640 DOI: 10.1021/acs.chas.1c00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Material extrusion-type fused filament fabrication (FFF) 3-D printing is a valuable tool for education. During FFF 3-D printing, thermal degradation of the polymer releases small particles and chemicals, many of which are hazardous to human health. In this study, particle and chemical emissions from 10 different filaments made from virgin (never printed) and recycled polymers were used to print the same object at the polymer manufacturer's recommended nozzle temperature ("normal") and at a temperature higher than recommended ("hot") to simulate the real-world scenarios of a person intentionally or unknowingly printing on a machine with a changed setting. Emissions were evaluated in a college teaching laboratory using standard sampling and analytical methods. From mobility sizer measurements, particle number-based emission rates were 81 times higher; the proportion of ultrafine particles (diameter <100 nm) were 4% higher, and median particle sizes were a factor of 2 smaller for hot-temperature prints compared with normal-temperature prints (all p-values <0.05). There was no difference in emission characteristics between recycled and virgin acrylonitrile butadiene styrene and polylactic acid polymer filaments. Reducing contaminant release from FFF 3-D printers in educational settings can be achieved using the hierarchy of controls: (1) elimination/substitution (e.g., training students on principles of prevention-through-design, limiting the use of higher emitting polymer when possible); (2) engineering controls (e.g., using local exhaust ventilation to directly remove contaminants at the printer or isolating the printer from students); (3) administrative controls such as password protecting printer settings and establishing and enforcing adherence to a standard operating procedure based on a proper risk assessment for the setup and use (e.g., limiting the use of temperatures higher than those specified for the filaments used); and (4) maintenance of printers.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N Bowers
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Gabe Cottrell
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Ergin Erdem
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Alycia K Knepp
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen Martin
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Jack Pretty
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Matthew G Duling
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Elizabeth D Arnold
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Zachary Wilson
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Benjamin Krider
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| | - Ryan F LeBouf
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - M Abbas Virji
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Arif Sirinterlikci
- School of Engineering, Mathematics, and Science, Robert Morris University, Moon Township, Pennsylvania 15108, United States
| |
Collapse
|
24
|
Mohammadian Y, Nasirzadeh N. Toxicity risks of occupational exposure in 3D printing and bioprinting industries: A systematic review. Toxicol Ind Health 2021; 37:573-584. [PMID: 34399648 DOI: 10.1177/07482337211031691] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
3-Dimensional (3D) printing and bioprinting are the new technologies. In 3D printing, synthetic polymers such as acrylonitrile, butadiene, and styrene, polylactic acid, nylon, and some metals are used as feedstocks. During 3D printing, volatile organic compounds (VOCs) and nanoparticles can be released. In the bioprinting process, natural polymers are most commonly used. All of these materials have direct and indirect toxic effects in exposed people. Therefore, the aim of this study was to provide a comprehensive review of toxicity risks due to occupational exposure to pollutants in the 3D printing and bioprinting industries. The Cochrane review method was used as a guideline for systematic review. Articles were searched in the databases including PubMed, Scopus, Web of Science, and Google Scholar. This systematic review showed that VOCs and ultra-fine particles are often released in fused deposition modeling and selective laser sintering, respectively. Asthma, chronic obstructive pulmonary disease, allergic rhinitis, and DNA damage were observed in occupational exposure to synthetic polymers. Metal nanoparticles can induce adverse health effects on the respiratory and nervous systems. This study emphasized the need to further study the toxicity of 3D printing and bioprinting-induced air pollutants. Also, consideration of safety and health principles is necessary in 3D printing and bioprinting workplaces.
Collapse
Affiliation(s)
- Yousef Mohammadian
- Department of Occupational Health Engineering, 48432Faculty of Health, Tabriz University of Medical Science, Tabriz, Iran
| | - Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, 48439Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
25
|
Robust topological designs for extreme metamaterial micro-structures. Sci Rep 2021; 11:15221. [PMID: 34315962 PMCID: PMC8316366 DOI: 10.1038/s41598-021-94520-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/06/2021] [Indexed: 11/09/2022] Open
Abstract
We demonstrate that the consideration of material uncertainty can dramatically impact the optimal topological micro-structural configuration of mechanical metamaterials. The robust optimization problem is formulated in such a way that it facilitates the emergence of extreme mechanical properties of metamaterials. The algorithm is based on the bi-directional evolutionary topology optimization and energy-based homogenization approach. To simulate additive manufacturing uncertainty, combinations of spatial variation of the elastic modulus and/or, parametric variation of the Poisson's ratio at the unit cell level are considered. Computationally parallel Monte Carlo simulations are performed to quantify the effect of input material uncertainty to the mechanical properties of interest. Results are shown for four configurations of extreme mechanical properties: (1) maximum bulk modulus (2) maximum shear modulus (3) minimum negative Poisson's ratio (auxetic metamaterial) and (4) maximum equivalent elastic modulus. The study illustrates the importance of considering uncertainty for topology optimization of metamaterials with extreme mechanical performance. The results reveal that robust design leads to improvement in terms of (1) optimal mean performance (2) least sensitive design, and (3) elastic properties of the metamaterials compared to the corresponding deterministic design. Many interesting topological patterns have been obtained for guiding the extreme material robust design.
Collapse
|
26
|
Viitanen AK, Kallonen K, Kukko K, Kanerva T, Saukko E, Hussein T, Hämeri K, Säämänen A. Technical control of nanoparticle emissions from desktop 3D printing. INDOOR AIR 2021; 31:1061-1071. [PMID: 33647162 DOI: 10.1111/ina.12791] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/24/2020] [Indexed: 05/05/2023]
Abstract
Material extrusion (ME) desktop 3D printing is known to strongly emit nanoparticles (NP), and the need for risk management has been recognized widely. Four different engineering control measures were studied in real-life office conditions by means of online NP measurements and indoor aerosol modeling. The studied engineering control measures were general ventilation, local exhaust ventilation (LEV), retrofitted enclosure, and retrofitted enclosure with LEV. Efficiency between different control measures was compared based on particle number and surface area (SA) concentrations from which SA concentration was found to be more reliable. The study found out that for regular or long-time use of ME desktop 3D printers, the general ventilation is not sufficient control measure for NP emissions. Also, the LEV with canopy hood attached above the 3D printer did not control the emission remarkably and successful position of the hood in relation to the nozzle was found challenging. Retrofitted enclosure attached to the LEV reduced the NP emissions 96% based on SA concentration. Retrofitted enclosure is nearly as efficient as enclosure attached to the LEV (reduction of 89% based on SA concentration) but may be considered more practical solution than enclosure with LEV.
Collapse
Affiliation(s)
| | - Kimmo Kallonen
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Helsinki Institute of Physics (HIP), University of Helsinki, Helsinki, Finland
| | - Kirsi Kukko
- Department of Mechanical Engineering, Aalto University, Espoo, Finland
| | - Tomi Kanerva
- Finnish Institute of Occupational Health, Helsinki, Finland
| | | | - Tareq Hussein
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
- Department of Physics, School of Science, University of Jordan, Amman, Jordan
| | - Kaarle Hämeri
- Institute for Atmospheric and Earth System Research (INAR), University of Helsinki, Helsinki, Finland
| | - Arto Säämänen
- Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
27
|
Stefaniak A, Du Preez S, Du Plessis JL. Additive Manufacturing for Occupational Hygiene: A Comprehensive Review of Processes, Emissions, & Exposures. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:1-50. [PMID: 34139957 PMCID: PMC8678392 DOI: 10.1080/10937404.2021.1936319] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
This comprehensive review introduces occupational (industrial) hygienists and toxicologists to the seven basic additive manufacturing (AM) process categories. Forty-six articles were identified that reported real-world measurements for all AM processes, except sheet lamination. Particles released from powder bed fusion (PBF), material jetting (MJ), material extrusion (ME), and directed energy deposition (DED) processes exhibited nanoscale to submicron scale; real-time particle number (mobility sizers, condensation nuclei counters, miniDiSC, electrical diffusion batteries) and surface area monitors (diffusion chargers) were generally sufficient for these processes. Binder jetting (BJ) machines released particles up to 8.5 µm; optical particle sizers (number) and laser scattering photometers (mass) were sufficient for this process. PBF and DED processes (powdered metallic feedstocks) released particles that contained respiratory irritants (chromium, molybdenum), central nervous system toxicants (manganese), and carcinogens (nickel). All process categories, except those that use metallic feedstocks, released organic gases, including (but not limited to), respiratory irritants (toluene, xylenes), asthmagens (methyl methacrylate, styrene), and carcinogens (benzene, formaldehyde, acetaldehyde). Real-time photoionization detectors for total volatile organics provided useful information for processes that utilize polymer feedstock materials. More research is needed to understand 1) facility-, machine-, and feedstock-related factors that influence emissions and exposures, 2) dermal exposure and biological burden, and 3) task-based exposures. Harmonized emissions monitoring and exposure assessment approaches are needed to facilitate inter-comparison of study results. Improved understanding of AM process emissions and exposures is needed for hygienists to ensure appropriate health and safety conditions for workers and for toxicologists to design experimental protocols that accurately mimic real-world exposure conditions.ABBREVIATIONS ABS : acrylonitrile butadiene styrene; ACGIH® TLV® : American Conference of Governmental Industrial Hygienists Threshold Limit Value; ACH : air change per hour; AM : additive manufacturing; ASA : acrylonitrile styrene acrylate; AVP : acetone vapor polishing; BJ : binder jetting; CAM-LEM : computer-aided manufacturing of laminated engineering materials; CNF : carbon nanofiber; CNT : carbon nanotube; CP : co-polyester; CNC : condensation nuclei counter; CVP : chloroform vapor polishing; DED : directed energy deposition; DLP : digital light processing; EBM : electron beam melting; EELS : electron energy loss spectrometry; EDB : electrical diffusion batteries; EDX : energy dispersive x-ray analyzer; ER : emission rate; FDM™ : fused deposition modeling; FFF : fused filament fabrication; IAQ : indoor air quality; LSP : laser scattering photometer; LCD : liquid crystal display; LDSA : lung deposited particle surface area; LOD : limit of detection; LOM : laminated object manufacturing; LOQ : limit of quantitation; MCE : mixed cellulose ester filter; ME : material extrusion; MJ : material jetting; OEL : occupational exposure limit; OPS : optical particle sizer; PBF : powder bed fusion; PBZ : personal breathing zone; PC : polycarbonate; PEEK : poly ether ether ketone; PET : polyethylene terephthalate; PETG : Polyethylene terephthalate glycol; PID : photoionization detector; PLA : polylactic acid; PM1 : particulate matter with aerodynamic diameter less than 1 µm; PM2.5 : particulate matter with aerodynamic diameter less than 2.5 µm; PM10 : particulate matter with aerodynamic diameter less than 10 µm; PSL : plastic sheet lamination; PVA : polyvinyl alcohol; REL : recommended exposure limit; SDL : selective deposition lamination; SDS : safety data sheet; SEM : scanning electron microscopy; SL : sheet lamination; SLA : stereolithography; SLM : selective laser melting; SMPS : scanning mobility particle sizer; SVOC : semi-volatile organic compound; TEM : transmission electron microscopy; TGA : thermal gravimetric analysis; TPU : thermo polyurethane; UAM : ultrasonic additive manufacturing; UC : ultrasonic consolidation; TVOC : total volatile organic compounds; TWA : time-weighted average; VOC : volatile organic compound; VP : vat photopolymerization.
Collapse
Affiliation(s)
- A.B. Stefaniak
- Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, USA
| | - S Du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| | - JL Du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom, South Africa
| |
Collapse
|
28
|
Rojek I, Mikołajewski D, Macko M, Szczepański Z, Dostatni E. Optimization of Extrusion-Based 3D Printing Process Using Neural Networks for Sustainable Development. MATERIALS 2021; 14:ma14112737. [PMID: 34067326 PMCID: PMC8196833 DOI: 10.3390/ma14112737] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/06/2021] [Accepted: 05/20/2021] [Indexed: 01/17/2023]
Abstract
Technological and material issues in 3D printing technologies should take into account sustainable development, use of materials, energy, emitted particles, and waste. The aim of this paper is to investigate whether the sustainability of 3D printing processes can be supported by computational intelligence (CI) and artificial intelligence (AI) based solutions. We present a new AI-based software to evaluate the amount of pollution generated by 3D printing systems. We input the values: printing technology, material, print weight, etc., and the expected results (risk assessment) and determine if and what precautions should be taken. The study uses a self-learning program that will improve as more data are entered. This program does not replace but complements previously used 3D printing metrics and software.
Collapse
Affiliation(s)
- Izabela Rojek
- Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (I.R.); (D.M.)
| | - Dariusz Mikołajewski
- Institute of Computer Science, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (I.R.); (D.M.)
| | - Marek Macko
- Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.M.); (Z.S.)
| | - Zbigniew Szczepański
- Department of Mechatronic Systems, Faculty of Mechatronics, Kazimierz Wielki University, 85-064 Bydgoszcz, Poland; (M.M.); (Z.S.)
| | - Ewa Dostatni
- Institute of Materials Technology, Faculty of Mechanical Engineering, Poznan University of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznań, Poland
- Correspondence:
| |
Collapse
|
29
|
Monitoring of Particulate Matter Emissions from 3D Printing Activity in the Home Setting. SENSORS 2021; 21:s21093247. [PMID: 34067219 PMCID: PMC8125858 DOI: 10.3390/s21093247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/16/2022]
Abstract
Consumer-level 3D printers are becoming increasingly prevalent in home settings. However, research shows that printing with these desktop 3D printers can impact indoor air quality (IAQ). This study examined particulate matter (PM) emissions generated by 3D printers in an indoor domestic setting. Print filament type, brand, and color were investigated and shown to all have significant impacts on the PM emission profiles over time. For example, emission rates were observed to vary by up to 150-fold, depending on the brand of a specific filament being used. Various printer settings (e.g., fan speed, infill density, extruder temperature) were also investigated. This study identifies that high levels of PM are triggered by the filament heating process and that accessible, user-controlled print settings can be used to modulate the PM emission from the 3D printing process. Considering these findings, a low-cost home IAQ sensor was evaluated as a potential means to enable a home user to monitor PM emissions from their 3D printing activities. This sensing approach was demonstrated to detect the timepoint where the onset of PM emission from a 3D print occurs. Therefore, these low-cost sensors could serve to inform the user when PM levels in the home become elevated significantly on account of this activity and furthermore, can indicate the time at which PM levels return to baseline after the printing process and/or after adding ventilation. By deploying such sensors at home, domestic users of 3D printers can assess the impact of filament type, color, and brand that they utilize on PM emissions, as well as be informed of how their selected print settings can impact their PM exposure levels.
Collapse
|
30
|
Stefaniak AB, Bowers LN, Martin SB, Hammond DR, Ham JE, Wells JR, Fortner AR, Knepp AK, du Preez S, Pretty JR, Roberts JL, du Plessis JL, Schmidt A, Duling MG, Bader A, Virji MA. Large-Format Additive Manufacturing and Machining Using High-Melt-Temperature Polymers. Part I: Real-Time Particulate and Gas-Phase Emissions. ACS CHEMICAL HEALTH & SAFETY 2021; 28:190-200. [PMID: 35979329 PMCID: PMC9380575 DOI: 10.1021/acs.chas.0c00128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The literature on emissions during material extrusion additive manufacturing with 3-D printers is expanding; however, there is a paucity of data for large-format additive manufacturing (LFAM) machines that can extrude high-melt-temperature polymers. Emissions from two LFAM machines were monitored during extrusion of six polymers: acrylonitrile butadiene styrene (ABS), polycarbonate (PC), high-melt-temperature polysulfone (PSU), poly(ether sulfone) (PESU), polyphenylene sulfide (PPS), and Ultem (poly(ether imide)). Particle number, total volatile organic compound (TVOC), carbon monoxide (CO), and carbon dioxide (CO2) concentrations were monitored in real-time. Particle emission rate values (no./min) were as follows: ABS (1.7 × 1011 to 7.7 × 1013), PC (5.2 × 1011 to 3.6 × 1013), Ultem (5.7 × 1012 to 3.1 × 1013), PPS (4.6 × 1011 to 6.2 × 1012), PSU (1.5 × 1012 to 3.4 × 1013), and PESU (2.0 to 5.0 × 1013). For print jobs where the mass of extruded polymer was known, particle yield values (g-1 extruded) were as follows: ABS (4.5 × 108 to 2.9 × 1011), PC (1.0 × 109 to 1.7 × 1011), PSU (5.1 × 109 to 1.2 × 1011), and PESU (0.8 × 1011 to 1.7 × 1011). TVOC emission yields ranged from 0.005 mg/g extruded (PESU) to 0.7 mg/g extruded (ABS). The use of wall-mounted exhaust ventilation fans was insufficient to completely remove airborne particulate and TVOC from the print room. Real-time CO monitoring was not a useful marker of particulate and TVOC emission profiles for Ultem, PPS, or PSU. Average CO2 and particle concentrations were moderately correlated (r s = 0.76) for PC polymer. Extrusion of ABS, PC, and four high-melt-temperature polymers by LFAM machines released particulate and TVOC at levels that could warrant consideration of engineering controls. LFAM particle emission yields for some polymers were similar to those of common desktop-scale 3-D printers.
Collapse
Affiliation(s)
- Aleksandr B Stefaniak
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Lauren N Bowers
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Stephen B Martin
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Duane R Hammond
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jason E Ham
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - J R Wells
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alyson R Fortner
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Alycia K Knepp
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Sonette du Preez
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom 2520, South Africa
| | - Jack R Pretty
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Jennifer L Roberts
- National Institute for Occupational Safety and Health, Cincinnati, Ohio 45213, United States
| | - Johan L du Plessis
- North-West University, Occupational Hygiene and Health Research Initiative, Potchefstroom 2520, South Africa
| | - Austin Schmidt
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - Matthew G Duling
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| | - Andrew Bader
- Additive Engineering Solutions, Akron, Ohio 44305, United States
| | - M Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, West Virginia 26505, United States
| |
Collapse
|
31
|
Park J, Kwon OH, Yoon C, Park M. Estimates of particulate matter inhalation doses during three-dimensional printing: How many particles can penetrate into our body? INDOOR AIR 2021; 31:392-404. [PMID: 32875646 DOI: 10.1111/ina.12736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/22/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Harmful emissions including particulates, volatile organic compounds, and aldehydes are generated during three-dimensional (3D) printing. Ultrafine particles are particularly important due to their ability to penetrate deep into the lung. We modeled inhalation exposure by particle size during 3D printing. A total of six thermoplastic filaments were used for printing under manufacturer's recommended conditions, and particle emissions in the size range between 10 nm and 10 μm were measured. The inhalation exposure dose including inhaled and deposited doses was estimated using a mathematical model. For all materials, the number of particles between 10 nm and 1 μm accounted for a large proportion among the released particles, with nano-sized particles being the dominant size. More than 1.3 × 109 nano-sized particles/kgbw/g (95.3 ± 104.0 ng/kgbw/g) could be inhaled, and a considerable amount was deposited in respiratory regions. The total deposited dose in terms of particle number was 3.1 × 108 particles/kgbw/g (63.6% of the total inhaled dose), and most (41.3%) were deposited in the alveolar region. The total mass of particles deposited was 19.8 ± 16.6 ng/kgbw/g, with 10.1% of the total mass deposited in the alveolar region. Given our findings, the inhalation exposure level is mainly determined by printing conditions, particularly the filament type and manufacturer-recommended extruder temperature.
Collapse
Affiliation(s)
- Jihoon Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe Forschungsgesellschaft mbH, Saarbrücken, Germany
- Accident Response Division, National Institute of Chemical Safety, The Ministry of Environment, Daejeon, Republic of Korea
| | - Oh-Hun Kwon
- Samsung Electronics Vietnam Co., Ltd., BắcNinh, Socialist Republic of Vietnam
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Mijin Park
- Department of Environmental Health Sciences, Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Bernatikova S, Dudacek A, Prichystalova R, Klecka V, Kocurkova L. Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18030929. [PMID: 33494483 PMCID: PMC7908560 DOI: 10.3390/ijerph18030929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/15/2021] [Accepted: 01/16/2021] [Indexed: 12/14/2022]
Abstract
Currently, widely available three-dimensional (3D) printers are very popular with the public. Previous research has shown that these printers can emit ultrafine particles (UFPs) and volatile organic compounds (VOCs). Several studies have examined the emissivity of filaments from 3D printing, except glycol modified polyethylene terephthalate (PETG) and styrene free co-polyester (NGEN) filaments. The aim of this study was to evaluate UFP and VOC emissions when printing using a commonly available 3D printer (ORIGINAL PRUSA i3 MK2 printer) using PETG and NGEN. The concentrations of UFPs were determined via measurements of particle number concentration and size distribution. A thermal analysis was carried out to ascertain whether signs of fiber decomposition would occur at printing temperatures. The total amount of VOCs was determined using a photoionization detector, and qualitatively analyzed via gas chromatography-mass spectrometry. The total particle concentrations were 3.88 × 1010 particles for PETG and 6.01 × 109 particles for NGEN. VOCs at very low concentrations were detected in both filaments, namely ethylbenzene, toluene, and xylene. In addition, styrene was identified in PETG. On the basis of our results, we recommend conducting additional measurements, to more accurately quantify personal exposure to both UFPs and VOCs, focusing on longer exposure as it can be a source of potential cancer risk.
Collapse
Affiliation(s)
- Sarka Bernatikova
- Department of Fire Protection, Faculty of Safety Engineering, VSB—Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic; (A.D.); (V.K.)
- Correspondence:
| | - Ales Dudacek
- Department of Fire Protection, Faculty of Safety Engineering, VSB—Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic; (A.D.); (V.K.)
| | - Radka Prichystalova
- Department of Occupational and Process Safety, Faculty of Safety Engineering, VSB—Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic; (R.P.); (L.K.)
| | - Vit Klecka
- Department of Fire Protection, Faculty of Safety Engineering, VSB—Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic; (A.D.); (V.K.)
| | - Lucie Kocurkova
- Department of Occupational and Process Safety, Faculty of Safety Engineering, VSB—Technical University of Ostrava, CZ708 00 Ostrava, Czech Republic; (R.P.); (L.K.)
| |
Collapse
|
33
|
Stabile L, De Luca G, Pacitto A, Morawska L, Avino P, Buonanno G. Ultrafine particle emission from floor cleaning products. INDOOR AIR 2021; 31:63-73. [PMID: 32638396 DOI: 10.1111/ina.12713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/23/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The new particle formation due to the use of cleaning products containing volatile organic compounds (VOCs) in indoor environments is well documented in the scientific literature. Indeed, the physical-chemical process occurring in particle nucleation due to VOC-ozone reactions was deepened as well as the effect of the main influencing parameters (ie, temperature, ozone). Nonetheless, proper quantification of the emission under actual meteo-climatic conditions and ozone concentrations is not available. To this end, in the present paper the emission factors of newly generated ultrafine particles due to the use of different floor cleaning products under actual temperature and relative humidity conditions and ozone concentrations typical of the summer periods were evaluated. Tests in a chamber and in an actual indoor environment were performed measuring continuously particle number concentrations and size distributions during cleaning activities. The tests revealed that a significant particle emission in the nucleation mode was present for half of the products under investigation with emission factors up to 1.1 × 1011 part./m2 (8.8 × 1010 part./mLproduct ), then leading to an overall particle emission comparable to other well-known indoor sources when cleaning wide surfaces.
Collapse
Affiliation(s)
- Luca Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Gianmarco De Luca
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Antonio Pacitto
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - Lidia Morawska
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia
| | | | - Giorgio Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
34
|
Ding S, Wan MP, Ng BF. Dynamic Analysis of Particle Emissions from FDM 3D Printers through a Comparative Study of Chamber and Flow Tunnel Measurements. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14568-14577. [PMID: 33135417 DOI: 10.1021/acs.est.0c05309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrafine particle emissions originating from fused deposition modeling (FDM) three-dimensional (3D) printers have received widespread attention recently. However, the obvious inconsistency and uncertainty in particle emission rates (PERs, #/min) measured by chamber systems still remain, owing to different measurement conditions and calculation models used. Here, a dynamic analysis of the size-resolved PER is conducted through a comparative study of chamber and flow tunnel measurements. Two models to resolve PER from the chamber and a model for flow tunnel measurements were examined. It was found that chamber measurements for different materials underestimated PER by up to an order of magnitude and overestimated particle diameters by up to 2.3 times, while the flow tunnel measurements provided more accurate results. Field measurements of the time-resolved particle size distribution (PSD) in a typical room environment could be predicted well by the flow tunnel measurements, while the chamber measurements could not represent the main PSD characteristics (e.g., particle diameter mode). Secondary aerosols (>30 nm) formed in chambers were not observed in field measurements. Flow tunnel measurements were adopted for the first time as a possible alternative for the study of 3D printer emissions to overcome the disadvantages in chamber methods and as a means to predict exposure levels.
Collapse
|
35
|
Manigrasso M, Protano C, Vitali M, Avino P. Where Do Ultrafine Particles and Nano-Sized Particles Come From? J Alzheimers Dis 2020; 68:1371-1390. [PMID: 31006689 DOI: 10.3233/jad-181266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This paper presents an overview of the literature studies on the sources of ultrafine particles (UFPs), nanomaterials (NMs), and nanoparticles (NPs) occurring in indoor (occupational and residential) and outdoor environments. Information on the relevant emission factors, particle concentrations, size, and compositions is provided, and health relevance of UFPs and NPs is discussed. Particular attention is focused on the fraction of particles that upon inhalation deposit on the olfactory bulb, because these particles can possibly translocate to brain and their possible role in neurodegenerative diseases is an important issue emerging in the recent literature.
Collapse
Affiliation(s)
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences (DiAAA), University of Molise, Campobasso, Italy
| |
Collapse
|
36
|
Brinsko-Beckert K, Palenik CS. The Analysis of 3D Printer Dust for Forensic Applications,. J Forensic Sci 2020; 65:1480-1496. [PMID: 32569437 DOI: 10.1111/1556-4029.14486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/01/2020] [Accepted: 05/26/2020] [Indexed: 10/24/2022]
Abstract
3D printers are becoming increasingly efficient and economical, and thus more widespread and easily accessible to consumers and businesses. They have been used to print nefarious objects such as guns and suppressors. Previous research has documented the release of dust particles during the printing process; however, little has been written about the morphology and chemical features that define the dust emitted by these printers. This study was undertaken to recover, analyze, and identify the dust produced during the printing process in the context of forensic trace evidence analysis. Samples were collected from a variety of 3D fused deposition modeler printers, representing both consumer and commercial grade models. This work focused on printers that use thermoplastic filaments composed of acrylonitrile butadiene styrene (ABS) or polylactic acid (PLA), two of the most commonly used filament polymers. Swabs were used to collect dust within the printer chamber and then processed to isolate the dust particles. Particles produced from ABS filaments are most easily recognized via light microscopy through a combination of color, morphology, and fluorescence. The composition of these particles can be confirmed through analysis by either FTIR or Raman microspectroscopy. These methods can also be used to identify ABS fillers and pigments within the printer dust particles. In contrast, dust from PLA printers consistently contained finer, submicron-sized particles that could be observed by field emission scanning electron microscopy. Because the size of the particles precludes their identification using vibrational spectroscopy methods, pyrolysis-GC-MS was used to confirm the presence of PLA.
Collapse
|
37
|
Bernard P, Mendez JD. Drawing in 3D: Using 3D printer pens to draw chemical models. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:253-258. [PMID: 31899605 DOI: 10.1002/bmb.21334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Development of three-dimensional (3D) printing technology has started a new chapter for in-classroom modeling of chemical molecules. The technology provides the opportunity to design and produce various types of personalized models. However, using classical 3D printers is time consuming, and it is hard to involve students in the modeling process during traditional class times. One solution can be using hand-held 3D printers (3D pens) that allow users to instantly draw geometrical structures. Unfortunately, drawing directly in 3D is very difficult, and precise modeling of even small molecules is simply not possible. In this article, a new approach to 3D modeling is described. It is based on 3D templates that enable the drawing of molecular models directly in three dimensions. The modular nature of the templates allows for the creation of a wide variety of structures. The resulting models provide an accurate representation of molecules including correct bond angles and geometry. This approach makes 3D pens a powerful tool for the modeling of chemical structures.
Collapse
Affiliation(s)
- Paweł Bernard
- Department of Chemical Education, Jagiellonian University, Krakow, Poland
| | - James D Mendez
- Indiana University - Purdue University Columbus, Columbus, Indiana
| |
Collapse
|
38
|
Pacitto A, Amato F, Moreno T, Pandolfi M, Fonseca A, Mazaheri M, Stabile L, Buonanno G, Querol X. Effect of ventilation strategies and air purifiers on the children's exposure to airborne particles and gaseous pollutants in school gyms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135673. [PMID: 31810696 DOI: 10.1016/j.scitotenv.2019.135673] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 05/05/2023]
Abstract
Indoor school gyms are environments characterized by high concentrations of different airborne particulate and gaseous pollutants. In particular, like other naturally-ventilated school environments, in addition to indoor pollutants children can be exposed to sub-micron particles and gaseous pollutants emitted by outdoor sources and penetrating the building envelope; moreover, high concentrations of super-micron particles can be reached due to the resuspension phenomena related to the physical activity performed therein. The present paper aims to evaluate the effect of different ventilation methods (natural ventilation, manual airing) and the use of air purifiers in reducing the indoor concentrations of different airborne particles and gaseous pollutants in school gyms. To this end, an experimental campaign was performed in two naturally-ventilated school gyms in Barcelona (Spain) of different volumes and different distance to major urban roads. Indoor and outdoor measurements of particle number, black carbon and PM1-10 concentrations were performed as well as indoor measurements of CO2 and NO2 concentrations. The study revealed that the use of air purifiers with windows kept closed (natural ventilation) can lead to a significant reduction in terms of indoor-to-outdoor concentration ratios. In the smaller gym (air changes per hour of the purifiers, ACH, equal to 9.2 h-1) the I/O ratios were reduced by 93% and 95% in terms of particle number and PM1-10, respectively; whereas in the larger school gym (ACH = 1.7 h-1) the corresponding reductions were 70% and 84%. For manual airing scenarios, the effect of the air purifiers on outdoor-generated sub-micron particles is reduced; in particular, for low ACH values (i.e. ACH = 1.7 h-1), the reduction is quite negligible (6%).
Collapse
Affiliation(s)
- A Pacitto
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain; Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - F Amato
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain.
| | - T Moreno
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - M Pandolfi
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - A Fonseca
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain
| | - M Mazaheri
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - L Stabile
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy
| | - G Buonanno
- Department of Civil and Mechanical Engineering, University of Cassino and Southern Lazio, Cassino, FR, Italy; International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane, Australia
| | - X Querol
- Institute of Environmental Assessment and Water Research (IDÆA), Spanish National Research Council (CSIC), Barcelona, Spain
| |
Collapse
|
39
|
Chan FL, Hon CY, Tarlo SM, Rajaram N, House R. Emissions and health risks from the use of 3D printers in an occupational setting. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:279-287. [PMID: 32316869 DOI: 10.1080/15287394.2020.1751758] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The aim of this study was to determine concentrations of particulates and volatile organic compounds (VOCs) emitted from 3D printers using polylactic acid (PLA) filaments at a university workroom to assess exposure and health risks in an occupational setting. Under typical-case (one printer) and worst-case (three printers operating simultaneously) scenarios, particulate concentration (total and respirable), VOCs and formaldehyde were measured. Air samples were collected in the printing room and adjacent hallway. Size-resolved levels of nano-diameter particles were also collected in the printing room. Total particulate levels were higher in the worst-case scenario (0.7 mg/m3) vs. typical-case scenario (0.3 mg/m3). Respirable particulate and formaldehyde concentrations were similar between the two scenarios. Size-resolved measurements showed that most particles ranged from approximately 27 to 116 nm. Total VOC levels were approximately 6-fold higher during the worst-case scenario vs. typical situation with isopropyl alcohol being the predominant VOC. Airborne concentrations in the hallway were generally lower than inside the printing room. All measurements were below their respective occupational exposure limits. In summary, emissions of particulates and VOCs increased when multiple 3D printers were operating simultaneously. Airborne levels in the adjacent hallway were similar between the two scenarios. Overall, data suggest a low risk of significant and persistent adverse health effects. Nevertheless, the health effects attributed to 3D printing are not fully known and adherence to good hygiene principles is recommended during use of this technology.
Collapse
Affiliation(s)
- Felix L Chan
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Chun-Yip Hon
- School of Occupational and Public Health, Ryerson University, Toronto, ON, Canada
| | - Susan M Tarlo
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Research Expertise in Occupational Disease, Toronto, ON, Canada
| | - Nikhil Rajaram
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ronald House
- Division of Occupational Medicine, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Centre for Research Expertise in Occupational Disease, Toronto, ON, Canada
| |
Collapse
|
40
|
Novel Synthesis of Core-Shell Biomaterials from Polymeric Filaments with a Bioceramic Coating for Biomedical Applications. COATINGS 2020. [DOI: 10.3390/coatings10030283] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bone tissue engineering is constantly in need of new material development with improved biocompatibility or mechanical features closer to those of natural bone. Other important factors are the sustainability, cost, and origin of the natural precursors involved in the technological process. This study focused on two widely used polymers in tissue engineering, namely polylactic acid (PLA) and thermoplastic polyurethane (TPU), as well as bovine-bone-derived hydroxyapatite (HA) for the manufacturing of core-shell structures. In order to embed the ceramic particles on the polymeric filaments surface, the materials were introduced in an electrical oven at various temperatures and exposure times and under various pressing forces. The obtained core-shell structures were characterized in terms of morphology and composition, and a pull-out test was used to demonstrate the particles adhesion on the polymeric filaments structure. Thermal properties (modulated temperature and exposure time) and the pressing force’s influence upon HA particles’ insertion degree were evaluated. More to the point, the form variation factor and the mass variation led to the optimal technological parameters for the synthesis of core-shell materials for prospect additive manufacturing and regenerative medicine applications.
Collapse
|
41
|
Umgang und Gebrauch von additiven Fertigungsverfahren („3D-Druckern“) in Privathaushalten. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:370-371. [DOI: 10.1007/s00103-020-03095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
42
|
Secondo LE, Adawi HI, Cuddehe J, Hopson K, Schumacher A, Mendoza L, Cartin C, Lewinski NA. Comparative analysis of ventilation efficiency on ultrafine particle removal in university MakerSpaces. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2020; 224:117321. [PMID: 34305433 PMCID: PMC8301741 DOI: 10.1016/j.atmosenv.2020.117321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The proliferation of 3D printing MakerSpaces in university settings has led to an increased risk of student and technician exposure to ultrafine particles. New MakerSpaces do not have standardized specifications to aid in the design of the space; therefore, a need exists to characterize the impacts of different engineering controls on MakerSpace air quality. This study compares three university MakerSpaces: a library MakerSpace operating ≤4 devices under typical office space ventilation with no engineering controls, a laboratory MakerSpace operating 29 printers inside grated cabinets, with laboratory-grade ventilation, and a center MakerSpace operating ≤4 devices with neither engineering controls nor internal ventilation. All MakerSpaces were studied under both controlled (using a standard print design) and uncontrolled (real-time user operation) conditions measuring emitted particle concentrations in the near-field. Additionally, volatile organic emissions and the difference between near-field and far-field particle concentrations were investigated in multiple MakerSpaces. The center MakerSpace had the greatest net increase in mean particle number concentration (+1378.9% relative to background during a print campaign using polylactic acid (PLA) filament in a MakerBot (MakerBot-PLA)). The number-weighted mean diameter had the greatest change relative to background during the library campaign, +37.1% for the Lulzbot-PLA and -56.1% for the Ultimaker-PLA studies. For the standard NIST design with MakerBot-PLA, the laboratory's particle removal ratio was 30 times greater than in the library with open cabinets and 54 times greater when the cabinet doors were closed. The average particle removal rate from the center MakerSpace was up to 2.5 times less efficient than that of the library for the same MakerBot-PLA combination. These results suggest ventilation as a key priority in the design of a new university MakerSpace.
Collapse
Affiliation(s)
- Lynn E. Secondo
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| | - Hayat I. Adawi
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| | - John Cuddehe
- Department of Chemistry, Virginia Commonwealth University, 1001 W. Main St, Richmond, VA, 23284, United States
| | - Kenneth Hopson
- James Branch Cabell Library, Virginia Commonwealth University, 901 Park Ave, Richmond, VA, 23284, United States
| | - Allison Schumacher
- da Vinci Center, Virginia Commonwealth University, 807 S Cathedral Pl, Richmond, VA, 23284, United States
| | - Larry Mendoza
- Environmental Health and Safety, Safety and Risk Management, Virginia Commonwealth University, 1008 East Clay Street Box 980112, Richmond Va, 23298, United States
| | - Charles Cartin
- Department of Mechanical and Nuclear Engineering, Virginia Commonwealth University, 401 W. Main St, Richmond, VA, 23284, United States
| | - Nastassja A. Lewinski
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, 601 W. Main St, Richmond, VA, 23284, United States
| |
Collapse
|
43
|
Salthammer T. Emerging indoor pollutants. Int J Hyg Environ Health 2020; 224:113423. [DOI: 10.1016/j.ijheh.2019.113423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/19/2019] [Accepted: 11/19/2019] [Indexed: 10/25/2022]
|
44
|
Jeon H, Park J, Kim S, Park K, Yoon C. Effect of nozzle temperature on the emission rate of ultrafine particles during 3D printing. INDOOR AIR 2020; 30:306-314. [PMID: 31743481 DOI: 10.1111/ina.12624] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/14/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Ultrafine particles and other hazardous materials are emitted during 3D printing, but the effect of temperature on such particles has not been studied systematically. The aim of this study was to evaluate the effect of temperature on the emission rate of particulate matter during fused deposition modeling (FDM) three-dimensional (3D) printing using different filament types. The number concentration of particles was measured with direct-reading instruments in an exposure chamber at various temperatures while using four filament materials during 3D printing. The temperature was increased from 185 to 290°C in 15°C increments, while incorporating the manufacturer-recommended operating conditions. The emission rate increased gradually as the temperature increased for all filament types, and temperature was the key factor affecting the emission rate after filament type. For all filaments, at the lowest operating temperature, the emission rate was 107 -109 particles/min, whereas the emission rate at the highest temperature was about 1011 particles/min, that is, 100-10 000 times higher than the emission rate at the lowest temperature. To reduce particle emissions from 3D printing, we recommend printing at the lowest temperature possible or using low-emission materials.
Collapse
Affiliation(s)
- Haejoon Jeon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Jihoon Park
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Sunju Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kyungho Park
- The Center of Green Complex Technologies, Korea Conformity Laboratories, Gunpo, Korea
| | - Chungsik Yoon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul, Korea
- Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, Korea
| |
Collapse
|
45
|
Katz EF, Goetz JD, Wang C, Hart JL, Terranova B, Taheri ML, Waring MS, DeCarlo PF. Chemical and Physical Characterization of 3D Printer Aerosol Emissions with and without a Filter Attachment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:947-954. [PMID: 31834782 DOI: 10.1021/acs.est.9b04012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Fused filament fabrication three-dimensional (3D) printers have been shown to emit ultrafine particles (UFPs) and volatile organic compounds (VOCs). Previous studies have quantified bulk 3D printer particle and VOC emission rates, as well as described particle chemical composition via ex situ analysis. Here, we present size-resolved aerosol composition measurements from in situ aerosol mass spectrometry and ex situ transmission electron microscopy (TEM). Particles were sampled for in situ analysis during acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) 3D printing activities and ex situ analysis during ABS printing. We examined the effect of a high-efficiency particulate air filter attachment on ABS emissions and particle chemical composition and demonstrate that filtration was effective in preventing UFP emissions and that particles sampled during filtered prints did not have a high contribution (∼4% vs ∼10%) from aromatic ions in the mass spectrum. Ex situ analysis of particles collected during ABS printing was performed via TEM and electron energy loss spectroscopy, which indicated a high level of sp2 bonding type consistent with polymeric styrene. One 3D print with PLA resulted in an aerosol mass size distribution with a peak at ∼300 nm. Unfiltered ABS prints resulted in particle mass size distributions with peak diameters of ∼100 nm.
Collapse
Affiliation(s)
| | - J Douglas Goetz
- Laboratory for Atmospheric and Space Physics , University of Colorado , Boulder , Colorado 80309 , United States
| | | | | | | | | | - Michael S Waring
- Laboratory for Atmospheric and Space Physics , University of Colorado , Boulder , Colorado 80309 , United States
| | | |
Collapse
|
46
|
Poikkimäki M, Koljonen V, Leskinen N, Närhi M, Kangasniemi O, Kausiala O, Dal Maso M. Nanocluster Aerosol Emissions of a 3D Printer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13618-13628. [PMID: 31697477 DOI: 10.1021/acs.est.9b05317] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Many studies exist that characterize the aerosol emissions from fused filament fabrication three-dimensional (3D) printers. However, nanocluster aerosol (NCA) particles, that is particles in a size range under 3 nm, are rarely studied. The purpose of this study was to characterize the NCA emissions and the contribution of NCA to the total particle number emissions from a 3D printer. We used a particle size magnifier and a scanning mobility particle sizer to measure the time evolution of particle size distribution, which was used to calculate the average NCA emission rates during a printer operation in a chamber. The NCA emission rates ranged from 1.4 × 106 to 7.3 × 109 s-1 depending on the applied combination of filament material and nozzle temperature, showing increasing emission with increasing temperature. The NCA emissions constitute from 9 to 48% of the total emissions, that is, almost half of the particle emissions may have been previously neglected. Therefore, it is essential to include the low NCA size range in, for example, future 3D-printer-testing protocols, emission measurement standards, and risk management measures.
Collapse
|
47
|
Ding S, Ng BF, Shang X, Liu H, Lu X, Wan MP. The characteristics and formation mechanisms of emissions from thermal decomposition of 3D printer polymer filaments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:984-994. [PMID: 31540002 DOI: 10.1016/j.scitotenv.2019.07.257] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 06/10/2023]
Abstract
Ultrafine particles (UFP) and volatile organic compounds (VOC) emitted from fused deposition modelling (FDM) 3D printing have received widespread attention. Here, we characterize the formation mechanisms of emissions from polymer filaments commonly used in FDM 3D printing. The temporal relationship between the amount and species of total VOC (TVOC) at any desired operating thermal condition is obtained through a combination of evolved gas analysis (EGA) and thermogravimetric analysis (TGA) to capture physicochemical reactions, in which the furnace of EGA or TGA closely resembles the heating process of the nozzle in the FDM 3D printer. It is generally observed that emissions initiate at the start of the glass transition process and peak during liquefaction for filaments. Initial increment in emissions during liquefaction and the relatively constant decomposition of products in the liquid phase are two main TVOC formation mechanisms. More importantly, low heating rate has the potential to restrain the formation of carcinogenic monomer, styrene, from ABS. A TVOC measurement method based on weight loss is further proposed and found that TVOC mass yield was 0.03%, 0.21% and 2.14% for PLA, ABS, and PVA, respectively, at 220 °C. Among TVOC, UFP mass accounts for 1% to 5% of TVOC mass depending on the type of filaments used. Also, for the first time, emission of UFP from the nozzle is directly observed through laser imaging.
Collapse
Affiliation(s)
- Shirun Ding
- Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Bing Feng Ng
- Singapore Centre for 3D Printing, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
| | - Xiaopeng Shang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Hu Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xuehong Lu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Man Pun Wan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| |
Collapse
|
48
|
Yi J, Duling MG, Bowers LN, Knepp AK, LeBouf RF, Nurkiewicz TR, Ranpara A, Luxton T, Martin SB, Burns DA, Peloquin DM, Baumann EJ, Virji MA, Stefaniak AB. Particle and organic vapor emissions from children's 3-D pen and 3-D printer toys. Inhal Toxicol 2019; 31:432-445. [PMID: 31874579 PMCID: PMC6995422 DOI: 10.1080/08958378.2019.1705441] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023]
Abstract
Objective: Fused filament fabrication "3-dimensional (3-D)" printing has expanded beyond the workplace to 3-D printers and pens for use by children as toys to create objects.Materials and methods: Emissions from two brands of toy 3-D pens and one brand of toy 3-D printer were characterized in a 0.6 m3 chamber (particle number, size, elemental composition; concentrations of individual and total volatile organic compounds (TVOC)). The effects of print parameters on these emission metrics were evaluated using mixed-effects models. Emissions data were used to model particle lung deposition and TVOC exposure potential.Results: Geometric mean particle yields (106-1010 particles/g printed) and sizes (30-300 nm) and TVOC yields (
Collapse
Affiliation(s)
- Jinghai Yi
- Department of Physiology and Pharmacology, and the Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Matthew G. Duling
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Lauren N. Bowers
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Alycia K. Knepp
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Ryan F. LeBouf
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Timothy R. Nurkiewicz
- Department of Physiology and Pharmacology, and the Center for Inhalation Toxicology, West Virginia University School of Medicine, Morgantown, WV, 26506
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Anand Ranpara
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Todd Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, Cincinnati, OH, 45224
| | - Stephen B. Martin
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | - Dru A. Burns
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | | | | | - M. Abbas Virji
- National Institute for Occupational Safety and Health, Morgantown, WV, 26505
| | | |
Collapse
|
49
|
Zhang Q, Pardo M, Rudich Y, Kaplan-Ashiri I, Wong JPS, Davis AY, Black MS, Weber RJ. Chemical Composition and Toxicity of Particles Emitted from a Consumer-Level 3D Printer Using Various Materials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12054-12061. [PMID: 31513393 DOI: 10.1021/acs.est.9b04168] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Consumer-level 3D printers emit ultrafine and fine particles, though little is known about their chemical composition or potential toxicity. We report chemical characteristics of the particles in comparison to raw filaments and assessments of particle toxicity. Particles emitted from polylactic acid (PLA) appeared to be largely composed of the bulk filament material with mass spectra similar to the PLA monomer spectra. Acrylonitrile butadiene styrene (ABS), extruded at a higher temperature than PLA, emitted vastly more particles and their composition differed from that of the bulk filament, suggesting that trace additives may control particle formation. In vitro cellular assays and in vivo mice exposure all showed toxic responses when exposed to PLA and ABS-emitted particles, where PLA-emitted particles elicited higher response levels than ABS-emitted particles at comparable mass doses. A chemical assay widely used in ambient air-quality studies showed that particles from various filament materials had comparable particle oxidative potentials, slightly lower than those of ambient particulate matter (PM2.5). However, particle emissions from ABS filaments are likely more detrimental when considering overall exposure due to much higher emissions. Our results suggest that 3D printer particle emissions are not benign and exposures should be minimized.
Collapse
Affiliation(s)
- Qian Zhang
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | | | | | | | - Jenny P S Wong
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| | - Aika Y Davis
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | - Marilyn S Black
- Chemical Safety and Human Health , Underwriters Laboratories Inc. , Marietta , Georgia 30067 , United States
| | - Rodney J Weber
- School of Earth and Atmospheric Sciences , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States
| |
Collapse
|
50
|
Farcas MT, Stefaniak AB, Knepp AK, Bowers L, Mandler WK, Kashon M, Jackson SR, Stueckle TA, Sisler JD, Friend SA, Qi C, Hammond DR, Thomas TA, Matheson J, Castranova V, Qian Y. Acrylonitrile butadiene styrene (ABS) and polycarbonate (PC) filaments three-dimensional (3-D) printer emissions-induced cell toxicity. Toxicol Lett 2019; 317:1-12. [PMID: 31562913 DOI: 10.1016/j.toxlet.2019.09.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/30/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
During extrusion of some polymers, fused filament fabrication (FFF) 3-D printers emit billions of particles per minute and numerous organic compounds. The scope of this study was to evaluate FFF 3-D printer emission-induced toxicity in human small airway epithelial cells (SAEC). Emissions were generated from a commercially available 3-D printer inside a chamber, while operating for 1.5 h with acrylonitrile butadiene styrene (ABS) or polycarbonate (PC) filaments, and collected in cell culture medium. Characterization of the culture medium revealed that repeat print runs with an identical filament yield various amounts of particles and organic compounds. Mean particle sizes in cell culture medium were 201 ± 18 nm and 202 ± 8 nm for PC and ABS, respectively. At 24 h post-exposure, both PC and ABS emissions induced a dose dependent significant cytotoxicity, oxidative stress, apoptosis, necrosis, and production of pro-inflammatory cytokines and chemokines in SAEC. Though the emissions may not completely represent all possible exposure scenarios, this study indicate that the FFF could induce toxicological effects. Further studies are needed to quantify the detected chemicals in the emissions and their corresponding toxicological effects.
Collapse
Affiliation(s)
- Mariana T Farcas
- Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA; Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26505, USA.
| | - Aleksandr B Stefaniak
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Alycia K Knepp
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Lauren Bowers
- Field Studies Branch, Respiratory Health Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - William K Mandler
- Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Michael Kashon
- Biostatistics and Epidemiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Stephen R Jackson
- Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Todd A Stueckle
- Allergy and Clinical Immunology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Jenifer D Sisler
- Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Sherri A Friend
- Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| | - Chaolong Qi
- Engineering and Physical Hazards Branch, Division of Applied Research & Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
| | - Duane R Hammond
- Engineering and Physical Hazards Branch, Division of Applied Research & Technology, National Institute for Occupational Safety and Health, Cincinnati, OH, USA.
| | - Treye A Thomas
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA.
| | - Joanna Matheson
- Office of Hazard Identification and Reduction, U.S. Consumer Product Safety Commission, Rockville, MD, USA.
| | - Vincent Castranova
- Pharmaceutical and Pharmacological Sciences, School of Pharmacy, West Virginia University, Morgantown, WV, 26505, USA.
| | - Yong Qian
- Pathology and Physiology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV, 26505, USA.
| |
Collapse
|