1
|
Martínez-Puente DH, Garza-Morales R, Pérez-Trujillo JJ, Bernabé-Acosta F, Villanueva-Olivo A, García-García A, Zavala-Flores LM, Rodríguez-Rocha H, Valdés J, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Enhanced antitumor activity induced by a DNA vaccine encoding E7 antigen fused to an ERAD-targeting sequence. J Drug Target 2023; 31:100-108. [PMID: 35896308 DOI: 10.1080/1061186x.2022.2107651] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The endoplasmic reticulum (ER) is a key organelle in cell homeostasis and cell health through antigen presentation to immune cells. Thus, the ER has become a therapeutic target to induce cellular immune responses. We previously reported the antitumor effect of a DNA vaccine that expresses the E7 antigen fused to the cyclooxygenase-2 (COX-2) protein. This inflammation-related enzyme contains a degradation cassette associated with the endoplasmic reticulum-associated degradation (ERAD) pathway. To avoid the use of full-length COX-2 and any risk of adverse effects due to the activity of its catalytic site, we designed new versions of the fusion protein. These new constructs encode the E7 antigen fused to the signal peptide and the ERAD sequence of COX-2 with or without the membrane-binding domain (MBD) as well as deletion of the catalytic site. We evaluated the antigen-specific antitumor effect of these DNA constructs in murine prophylactic and therapeutic cancer models. These assays showed that the ERAD cassette is the minimum sequence in the COX-2 protein that induces an antitumor effect when fused to the E7 antigen with the advantage of eliminating any potential adverse effects from the use of full-length COX-2.
Collapse
Affiliation(s)
| | - Rodolfo Garza-Morales
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - José Juan Pérez-Trujillo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Federico Bernabé-Acosta
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Laura Mireya Zavala-Flores
- Department of Molecular Genetics, Northeast Biomedical Research Center (CIBIN) of IMSS, Nuevo Leon Delegation, Monterrey, México
| | - Humberto Rodríguez-Rocha
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Jesús Valdés
- Departamento de Bioquímica, CINVESTAV-México, México City, México
| | - Odila Saucedo-Cárdenas
- Histology Department, Faculty of Medicine, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | | |
Collapse
|
2
|
Martínez-Puente DH, Garza-Morales R, Pérez-Trujillo JJ, García-García A, Villanueva-Olivo A, Rodríguez-Rocha H, Zavala-Flores LM, Saucedo-Cárdenas O, Montes de Oca-Luna R, Loera-Arias MDJ. Targeting E7 antigen to the endoplasmic reticulum degradation pathway promotes a potent therapeutic antitumor effect. J Drug Target 2021; 29:1102-1110. [PMID: 33926356 DOI: 10.1080/1061186x.2021.1919124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
It has been previously reported that targeting and retaining antigens in the endoplasmic reticulum (ER) can induce an ER stress response. In this study, we evaluated the antitumor effect of E7 antigen fused to an ERresident protein, cyclooxygenase-2, which possesses a 19-aminoacid cassette that directs it to the endoplasmic reticulum-associated protein degradation (ERAD) pathway. The featured DNA constructs, COX2-E7 and COX2-E7ΔERAD, with a deletion in the 19-aminoacid cassette, were used to evaluate the importance of this sequence. In vitro analysis of protein expression and ER localisation were verified. We observed that both constructs induced an ER stress response. This finding correlated with the antitumor effect in mice injected with TC-1 cells and treated with different DNA constructs by biolistic vaccination. Immunisation with COX2-E7 and COX2-E7ΔERAD DNA constructs induced a significant antitumor effect in mice, without a significant difference between them, although the COX2-E7 construct induced a significant E7-specific immune response. These results demonstrate that targeting the E7 antigen to the ERAD pathway promotes a potent therapeutic antitumor effect. This strategy could be useful for the design of other antigen-specific therapies.
Collapse
Affiliation(s)
| | - Rodolfo Garza-Morales
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - José Juan Pérez-Trujillo
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Aracely García-García
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México
| | - Laura Mireya Zavala-Flores
- Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Monterrey, México
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Monterrey, México.,Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Monterrey, México
| | | | | |
Collapse
|
3
|
Mahdevar E, Safavi A, Abiri A, Kefayat A, Hejazi SH, Miresmaeili SM, Iranpur Mobarakeh V. Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. J Biomol Struct Dyn 2021; 40:6363-6380. [PMID: 33599191 DOI: 10.1080/07391102.2021.1883111] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Recently, cancer immunotherapy has gained lots of attention to replace the current chemoradiation approaches and multi-epitope cancer vaccines are manifesting as the next generation of cancer immunotherapy. Therefore, in this study, we used multiple immunoinformatics approaches along with other computational approaches to design a novel multi-epitope vaccine against breast cancer. The most immunogenic regions of the BORIS cancer-testis antigen were selected according to the binding affinity to MHC-I and II molecules as well as containing multiple cytotoxic T lymphocyte (CTL) epitopes by multiple immunoinformatics servers. The selected regions were linked together by GPGPG linker. Also, a T helper epitope (PADRE) and the TLR-4/MD-2 agonist (L7/L12 ribosomal protein from mycobacterium) were incorporated by A(EAAAK)3A linker to form the final vaccine construct. Then, its physicochemical properties, cleavage sites, TAP transport efficiency, B cell epitopes, IFN-γ inducing epitopes and population coverage were predicted. The final vaccine construct was reverse translated, codon-optimized and inserted into pcDNA3.1 to form the DNA vaccine. The final vaccine construct was a stable, immunogenic and non-allergenic protein that contained numerous CTL epitopes, IFN-γ inducing epitopes and several linear and conformational B cell epitopes. Also, the final vaccine construct formed stable and significant interactions with TLR-4/MD-2 complex according to molecular docking and dynamics simulations. Moreover, its world population coverage for HLA-I and HLA-II were about 93% and 96%, respectively. Taking together, these preliminary results can be used as an appropriate platform for further experimental investigations.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mohsen Miresmaeili
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | | |
Collapse
|
4
|
Ju Y, Guo H, Edman M, Hamm-Alvarez SF. Application of advances in endocytosis and membrane trafficking to drug delivery. Adv Drug Deliv Rev 2020; 157:118-141. [PMID: 32758615 PMCID: PMC7853512 DOI: 10.1016/j.addr.2020.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022]
Abstract
Multidisciplinary research efforts in the field of drug delivery have led to the development of a variety of drug delivery systems (DDS) designed for site-specific delivery of diagnostic and therapeutic agents. Since efficient uptake of drug carriers into target cells is central to effective drug delivery, a comprehensive understanding of the biological pathways for cellular internalization of DDS can facilitate the development of DDS capable of precise tissue targeting and enhanced therapeutic outcomes. Diverse methods have been applied to study the internalization mechanisms responsible for endocytotic uptake of extracellular materials, which are also the principal pathways exploited by many DDS. Chemical inhibitors remain the most commonly used method to explore endocytotic internalization mechanisms, although genetic methods are increasingly accessible and may constitute more specific approaches. This review highlights the molecular basis of internalization pathways most relevant to internalization of DDS, and the principal methods used to study each route. This review also showcases examples of DDS that are internalized by each route, and reviews the general effects of biophysical properties of DDS on the internalization efficiency. Finally, options for intracellular trafficking and targeting of internalized DDS are briefly reviewed, representing an additional opportunity for multi-level targeting to achieve further specificity and therapeutic efficacy.
Collapse
Affiliation(s)
- Yaping Ju
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Hao Guo
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA
| | - Maria Edman
- Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA
| | - Sarah F Hamm-Alvarez
- Department of Pharmacology and Pharmaceutical Sciences, USC School of Pharmacy, USA; Department of Ophthalmology, Roski Eye Institute, Keck School of Medicine, University of Southern California, USA.
| |
Collapse
|
5
|
Safavi A, Kefayat A, Abiri A, Mahdevar E, Behnia AH, Ghahremani F. In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Mol Immunol 2019; 112:93-102. [PMID: 31079006 DOI: 10.1016/j.molimm.2019.04.030] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/25/2019] [Accepted: 04/30/2019] [Indexed: 12/18/2022]
Abstract
Multiepitope cancer vaccines are announcing themselves as the future of melanoma treatment. Herein, high immunogenic regions of transmembrane protein 31 (TMEM31) antigen were selected according to cytotoxic T lymphocytes' (CTL) epitopes and major histocompatibility complex (MHC) binding affinity through in silico analyses. The 32-62, 77-105, and 125-165 residues of the TMEM31 were selected as the immunodominant fragments. They were linked together by RVRR and HEYGAEALERAG motifs to improve epitopes separation and presentation. In addition, to activate helper T lymphocytes (HTL), Pan HLA DR-binding epitope (PADRE) peptide sequence and tetanus toxin fragment C (TTFrC) were incorporated into the final construct. Also, the Beta-defensin conserved domain was utilized in the final construct as a novel adjuvant for Toll-like receptor 4/myeloid differentiation factor (TLR4-MD) activation. The CTL epitopes, cleavage sites, post-translational modifications, TAP transport efficiency, and B cells epitopes were predicted for the peptide vaccine. The final construct contained multiple CTL and B cell epitopes. In addition, it showed 93.55% and 99.13% population coverage in the world for HLA I and HLA II, respectively. According to these preliminary results, the multiepitope cancer vaccine can be an appropriate choice for further experimental investigations.
Collapse
Affiliation(s)
- Ashkan Safavi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Amirhosein Kefayat
- Department of Oncology, Cancer Prevention Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ardavan Abiri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Elham Mahdevar
- Department of Biology, Faculty of Science and Engineering, Science and Arts University, Yazd, Iran
| | - Amir Hossein Behnia
- Department of Biology, Faculty of the Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fatemeh Ghahremani
- Department of Medical Physics and Radiotherapy, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
6
|
Martínez-Puente DH, Pérez-Trujillo JJ, Gutiérrez-Puente Y, Rodríguez-Rocha H, García-García A, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Loera-Arias MJ. Targeting HPV-16 antigens to the endoplasmic reticulum induces an endoplasmic reticulum stress response. Cell Stress Chaperones 2019; 24:149-158. [PMID: 30604352 PMCID: PMC6363615 DOI: 10.1007/s12192-018-0952-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 01/01/2023] Open
Abstract
Very promising results have been observed with a deoxyribonucleic acid (DNA) vaccine based on human papillomavirus type-16 (HPV-16) antigen retention and delivery system in the endoplasmic reticulum (ER). However, the mechanism by which these antigens are processed once they reach this organelle is still unknown. Therefore, we evaluated whether this system awakens a stress response in the ER. Different DNA constructs based on E6 and E7 mutant antigens fused to an ER signal peptide (SP), a signal for retention in the ER (KDEL), or both signals (SPK), were transfected into HEK-293 cells. Overexpression of E6 and E7 antigens targeted to the ER (SP, and SPK constructs) induced ER stress, which was indicated by an increase of the ER-stress markers GRP78/BiP and CHOP. Additionally, the ER stress response was mediated by the ATF4 transcription factor, which was translocated into the nucleus. Besides, the overexpressed antigens were degraded by the proteasome. Through a cycloheximide-chase assay, we demonstrated that when both protein synthesis and proteasome were inhibited, the overexpressed antigens were degraded. Interestingly, when proteasome was blocked autophagy was increased and the ER stress response decreased. Taken together, these results indicate that the antigens are initially degraded by the ERAD pathway, and autophagy degradation pathway can be induced to compensate the proteasome inhibition. Therefore, we provided a new insight into the mechanism by which E6 and E7 mutant antigens are processed once they reach the ER, which will help to improve the development of more effective vaccines against cancer.
Collapse
Affiliation(s)
- David H Martínez-Puente
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - José J Pérez-Trujillo
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Yolanda Gutiérrez-Puente
- Departamento de Química, Facultad de Ciencias Biológicas, Universidad Autonoma de Nuevo Leon, San Nicolás de los Garza, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Aracely García-García
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
- Departamento de Genética Molecular, Centro de Investigación Biomédica del Noreste, Delegación Nuevo León, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México
| | - María J Loera-Arias
- Departamento de Histología, Facultad de Medicina, Universidad Autonoma de Nuevo Leon, Madero y Aguirre Pequeño s/n Mitras Centro, 66460, Monterrey, Nuevo León, México.
| |
Collapse
|
7
|
In Silico Analysis of Synaptonemal Complex Protein 1 (SYCP1) and Acrosin Binding Protein (ACRBP) Antigens to Design Novel Multiepitope Peptide Cancer Vaccine Against Breast Cancer. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9780-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Starodubova ES, Kuzmenko YV, Latanova AA, Preobrazhenskaya OV, Karpov VL. C-terminal lysosome targeting domain of CD63 modifies cellular localization of rabies virus glycoprotein. Mol Biol 2017. [DOI: 10.1134/s0026893317020200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Kuzmenko YV, Starodubova ES, Shevtsova AS, Chernokhaeva LL, Latanova AA, Preobrazhenskaia OV, Timofeev AV, Karganova GG, Karpov VL. Intracellular degradation and localization of NS1 of tick-borne encephalitis virus affect its protective properties. J Gen Virol 2017; 98:50-55. [PMID: 28221100 DOI: 10.1099/jgv.0.000700] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Currently, many DNA vaccines against infectious diseases are in clinical trials; however, their efficacy needs to be improved. The potency of DNA immunogen can be optimized by targeting technologies. In the current study, to increase the efficacy of NS1 encoded by plasmid, proteasome targeting was applied. NS1 variants with or without translocation sequence and with ornithine decarboxylase as a signal of proteasomal degradation were tested for expression, localization, protein turnover, proteasomal degradation and protection properties. Deletion of translocation signal abrogated presentation of NS1 on the cell surface and increased proteasomal processing of NS1. Fusion with ornithine decarboxylase led to an increase of protein turnover and the proteasome degradation rate of NS1. Immunization with NS1 variants with increased proteasome processing protected mice from viral challenge only partially; however, the survival time of infected mice was prolonged in these groups. These data can give a presupposition for formulation of specific immune therapy for infected individuals.
Collapse
Affiliation(s)
- Yulia V Kuzmenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Anastasia S Shevtsova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov IPVE), Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Liubov L Chernokhaeva
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov IPVE), Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Anastasia A Latanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey V Timofeev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Galina G Karganova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides (Chumakov IPVE), Chumakov FSC R&D IBP RAS, Moscow, Russia
| | - Vadim L Karpov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
10
|
Clinical Use of DNA Vaccines. HANDBOOK OF ELECTROPORATION 2017. [PMCID: PMC7153459 DOI: 10.1007/978-3-319-32886-7_106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Owing to their unique advantages in simplicity, safety, scalability, and possibility of repeated administrations, DNA vaccines represent an appealing and competitive immunization approach for a wide array of conditions, including but not limited to infectious diseases and cancer immunotherapy. Despite the exciting efficacy observed in preclinical studies, DNA vaccines have faced challenges in inducing strong immune responses in humans. This unexpected poor immunogenicity has severely hampered the translation of DNA vaccines from investigational medications to licensed products. To overcome this obstacle, tremendous efforts have been made to improve antigen expression and enhance immunogenicity. Among these endeavors, in vivo DNA electroporation (EP) has proved to be a breakthrough technology capable of mediating efficient DNA uptake and resulting in enhanced antigen expression and vaccine immunogenicity. EP-mediated DNA delivery has become one of the major platforms used in clinical trials to evaluate DNA vaccines in humans. In this chapter, in addition to EP delivery, other progress made in DNA vaccine development including plasmid optimization, antigen design, and immunologic adjuvants is also reviewed. Finally, the use of DNA vaccines in the context of clinical trials for infectious diseases and cancer immunotherapy is summarized. Specifically, the strategies that allow DNA vaccines to overcome antigenic diversity for viral infection and break immune tolerance for cancer therapy are explored. Based on the advantages of DNA vaccines and the immense progress, led by the electroporation-mediated vaccine delivery, DNA vaccines appear to have the potential to fundamentally transform the vaccine field, providing important benefits for preventing and curing diseases.
Collapse
|
11
|
Ma X, Gong N, Zhong L, Sun J, Liang XJ. Future of nanotherapeutics: Targeting the cellular sub-organelles. Biomaterials 2016; 97:10-21. [DOI: 10.1016/j.biomaterials.2016.04.026] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 11/25/2022]
|
12
|
Abstract
Plasmids are currently an indispensable molecular tool in life science research and a central asset for the modern biotechnology industry, supporting its mission to produce pharmaceutical proteins, antibodies, vaccines, industrial enzymes, and molecular diagnostics, to name a few key products. Furthermore, plasmids have gradually stepped up in the past 20 years as useful biopharmaceuticals in the context of gene therapy and DNA vaccination interventions. This review provides a concise coverage of the scientific progress that has been made since the emergence of what are called today plasmid biopharmaceuticals. The most relevant topics are discussed to provide researchers with an updated overview of the field. A brief outline of the initial breakthroughs and innovations is followed by a discussion of the motivation behind the medical uses of plasmids in the context of therapeutic and prophylactic interventions. The molecular characteristics and rationale underlying the design of plasmid vectors as gene transfer agents are described and a description of the most important methods used to deliver plasmid biopharmaceuticals in vivo (gene gun, electroporation, cationic lipids and polymers, and micro- and nanoparticles) is provided. The major safety issues (integration and autoimmunity) surrounding the use of plasmid biopharmaceuticals is discussed next. Aspects related to the large-scale manufacturing are also covered, and reference is made to the plasmid products that have received marketing authorization as of today.
Collapse
|
13
|
Khalili S, Rahbar MR, Dezfulian MH, Jahangiri A. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer. J Theor Biol 2015; 379:66-78. [DOI: 10.1016/j.jtbi.2015.04.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 02/25/2015] [Accepted: 04/20/2015] [Indexed: 02/06/2023]
|
14
|
Parodi A, Corbo C, Cevenini A, Molinaro R, Palomba R, Pandolfi L, Agostini M, Salvatore F, Tasciotti E. Enabling cytoplasmic delivery and organelle targeting by surface modification of nanocarriers. Nanomedicine (Lond) 2015; 10:1923-40. [PMID: 26139126 PMCID: PMC5561781 DOI: 10.2217/nnm.15.39] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nanocarriers are designed to specifically accumulate in diseased tissues. In this context, targeting of intracellular compartments was shown to enhance the efficacy of many drugs and to offer new and more effective therapeutic approaches. This is especially true for therapies based on biologicals that must be encapsulated to favor cell internalization, and to avoid intracellular endosomal sequestration and degradation of the payload. In this review, we discuss specific surface modifications designed to achieve cell cytoplasm delivery and to improve targeting of major organelles; we also discuss the therapeutic applications of these approaches. Last, we describe some integrated strategies designed to sequentially overcome the biological barriers that separate the site of administration from the cell cytoplasm, which is the drug's site of action.
Collapse
Affiliation(s)
- Alessandro Parodi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Claudia Corbo
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Armando Cevenini
- Department of Molecular Medicine & Medical Biotechnology, University of Naples “Federico II”, Via Sergio Pansini 5, Naples 80131, Italy
- CEINGE, Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Roberto Molinaro
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- Clinica Chirurgica I, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroeterologiche, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Roberto Palomba
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Laura Pandolfi
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
- College of Materials Science & Optoelectronic Technology, University of Chinese Academy of Science, 19A Yuquanlu, Beijing, China
| | - Marco Agostini
- Clinica Chirurgica I, Dipartimento di Scienze Chirurgiche Oncologiche e Gastroeterologiche, Università di Padova, Via Giustiniani 2, 35128 Padova, Italy
| | - Francesco Salvatore
- Fondazione IRCCS SDN, Via Gianturco 113, 80143 Naples, Italy
- CEINGE, Biotecnologie Avanzate s.c.a.r.l., Via G. Salvatore 486, 80145 Naples, Italy
| | - Ennio Tasciotti
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA
| |
Collapse
|
15
|
Legisa DM, Perez Aguirreburualde MS, Gonzalez FN, Marin-Lopez A, Ruiz V, Wigdorovitz A, Martinez-Escribano JA, Ortego J, Dus Santos MJ. An experimental subunit vaccine based on Bluetongue virus 4 VP2 protein fused to an antigen-presenting cells single chain antibody elicits cellular and humoral immune responses in cattle, guinea pigs and IFNAR(-/-) mice. Vaccine 2015; 33:2614-9. [PMID: 25858859 DOI: 10.1016/j.vaccine.2015.03.067] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 03/18/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Abstract
Bluetongue virus (BTV), the causative agent of bluetongue disease (BT) in domestic and wild ruminants, is worldwide distributed. A total of 27 serotypes have been described so far, and several outbreaks have been reported. Vaccination is critical for controlling the spread of BTV. In the last years, subunit vaccines, viral vector vaccines and reverse genetic-based vaccines have emerged as new alternatives to conventional ones. In this study, we developed an experimental subunit vaccine against BTV4, with the benefit of targeting the recombinant protein to antigen-presenting cells. The VP2 protein from an Argentine BTV4 isolate was expressed alone or fused to the antigen presenting cell homing (APCH) molecule, in the baculovirus insect cell expression system. The immunogenicity of both proteins was evaluated in guinea pigs and cattle. Titers of specific neutralizing antibodies in guinea pigs and cattle immunized with VP2 or APCH-VP2 were high and similar to those induced by a conventional inactivated vaccine. The immunogenicity of recombinant proteins was further studied in the IFNAR(-/-) mouse model where the fusion of VP2 to APCH enhanced the cellular immune response and the neutralizing activity induced by VP2.
Collapse
Affiliation(s)
- D M Legisa
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| | | | - F N Gonzalez
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Marin-Lopez
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - V Ruiz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | - A Wigdorovitz
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina
| | | | - J Ortego
- Centro de Investigación en Sanidad Animal, INIA, Valdeolmos, Madrid, Spain
| | - M J Dus Santos
- Instituto de Virología, CNIA Hurlingham (1686), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Jones CH, Hakansson AP, Pfeifer BA. Biomaterials at the interface of nano- and micro-scale vector-cellular interactions in genetic vaccine design. J Mater Chem B 2014; 46:8053-8068. [PMID: 29887986 PMCID: PMC5990286 DOI: 10.1039/c4tb01058b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The development of safe and effective vaccines for the prevention of elusive infectious diseases remains a public health priority. Immunization, characterized by adaptive immune responses to specific antigens, can be raised by an array of delivery vectors. However, current commercial vaccination strategies are predicated on the retooling of archaic technology. This review will discuss current and emerging strategies designed to elicit immune responses in the context of genetic vaccination. Selected strategies at the biomaterial-biological interface will be emphasized to illustrate the potential of coupling both fields towards a common goal.
Collapse
Affiliation(s)
- Charles H Jones
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Anders P Hakansson
- Department of Microbiology and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
- The Witebsky Center for Microbial Pathogenesis and Immunology, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| | - Blaine A Pfeifer
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260-4200, USA
| |
Collapse
|
17
|
Pavlenko M, Leder C, Pisa P. Plasmid DNA vaccines against cancer: cytotoxic T-lymphocyte induction against tumor antigens. Expert Rev Vaccines 2014; 4:315-27. [PMID: 16026247 DOI: 10.1586/14760584.4.3.315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In recent years, a number of tumor vaccination strategies have been developed. Most of these rely on the identification of tumor antigens that can be recognized by the immune system. DNA vaccination represents one such approach for the induction of both humoral and cellular immune responses against tumor antigens. Studies in animal models have demonstrated the feasibility of utilizing DNA vaccination to elicit protective antitumor immune responses. However, most tumor antigens expressed by cancer cells in humans are weakly immunogenic, and therefore require the development of strategies to potentiate DNA vaccine efficacy in the clinical setting. This review focuses on recent advances in understanding of the immunology of DNA vaccines, as well as strategies used to increase DNA vaccine potency with respect to cytotoxic T-lymphocyte activity.
Collapse
Affiliation(s)
- Maxim Pavlenko
- Department of Oncology and Pathology, Cancer Center Karolinska, Karolinska Institute, Stockholm S-171 76, Sweden.
| | | | | |
Collapse
|
18
|
Abstract
The goal of active vaccination is to induce all the immune effector pathways and to establish immunological memory allowing prolonged surveillance against pathogens or cancer cells. DNA vaccination platform is an intriguing strategy owing to its ability to mobilize both branches of the immune system (i.e., innate immunity as well as adaptive immunity). Since plasmids offer several advantages for biotechnological applications due to their modular structure and easy manipulation, a wide range of strategies can be applied to improve DNA vaccine performance. This chapter discusses this topic in detail taking into account antigen/epitope selection and optimization, inclusion of intracellular targeting sequences and genetic adjuvants, and provision of T cell help.
Collapse
|
19
|
Freitas EB, Henriques AM, Fevereiro M, Prazeres DM, Monteiro GA. Enhancement of DNA vaccine efficacy by intracellular targeting strategies. Methods Mol Biol 2014; 1143:33-59. [PMID: 24715281 DOI: 10.1007/978-1-4939-0410-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Immune response against an encoded antigenic protein can be elicited by including targeting sequences to DNA vaccines that promote protein sorting to processing pathways, related with antigen presentation by major histocompatibility complexes (MHC). Candidate DNA vaccines coding for neuraminidase 3 of the avian influenza virus were designed to encode different sequences that direct the protein to specific cellular compartments such as endoplasmic reticulum (i.e., adenovirus E1A), lysosomes (i.e., LAMP), and the combination of protein targeting to the endoplasmic reticulum and lysosome (i.e., E1A-LAMP). The DNA vaccine prototypes were engineered by biomolecular techniques and subsequently produced in E. coli cells. The biological activity of the vaccines was tested firstly in vitro, in Chinese hamster ovary cells, through flow cytometry and real-time polymerase chain reaction analysis. Then, an essential in vivo study was performed in chickens, in order to evaluate the efficacy of DNA prototype vaccines, by measuring the antibody production by enzyme-linked immunosorbent assay.
Collapse
Affiliation(s)
- Elisabete Borges Freitas
- Institute of Biotechnology and Bioengineering, Centre for Chemical and Biological Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | | | | | | | | |
Collapse
|
20
|
Starodubova E, Krotova O, Hallengärd D, Kuzmenko Y, Engström G, Legzdina D, Latyshev O, Eliseeva O, Maltais AK, Tunitskaya V, Karpov V, Bråve A, Isaguliants M. Cellular Immunogenicity of Novel Gene Immunogens in Mice Monitored by in Vivo Imaging. Mol Imaging 2012. [DOI: 10.2310/7290.2012.00011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Elizaveta Starodubova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olga Krotova
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - David Hallengärd
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Yulia Kuzmenko
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Gunnel Engström
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Diana Legzdina
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Oleg Latyshev
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Olesja Eliseeva
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Anna Karin Maltais
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vera Tunitskaya
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Vadim Karpov
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Andreas Bråve
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| | - Maria Isaguliants
- From the Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden; WA Engelhardt Institute of Molecular Biology, Moscow, Russia; Center of Medical Research, University of Oslo, Moscow, Russia; DI Ivanovsky Institute of Virology, Moscow, Russia; and Cytopulse AB, Stockholm, Sweden
| |
Collapse
|
21
|
Sacquin A, Chaigneau T, Defaweux V, Adam M, Schneider B, Bruley Rosset M, Eloit M. Prolongation of prion disease-associated symptomatic phase relates to CD3+ T cell recruitment into the CNS in murine scrapie-infected mice. Brain Behav Immun 2012; 26:919-30. [PMID: 22522067 DOI: 10.1016/j.bbi.2012.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 04/05/2012] [Accepted: 04/09/2012] [Indexed: 02/04/2023] Open
Abstract
Prion diseases are caused by the transconformation of the host cellular prion protein PrP(c) into an infectious neurotoxic isoform called PrP(Sc). While vaccine-induced PrP-specific CD4(+) T cells and antibodies partially protect scrapie-infected mice from disease, the potential autoreactivity of CD8(+) cytotoxic T lymphocytes (CTLs) received little attention. Beneficial or pathogenic influence of PrP(c)-specific CTL was evaluated by stimulating a CD8(+) T-cell-only response against PrP in scrapie-infected C57BL/6 mice. To circumvent immune tolerance to PrP, five PrP-derived nonamer peptides identified using prediction algorithms were anchored-optimized to improve binding affinity for H-2D(b) and immunogenicity (NP-peptides). All of the NP-peptides elicited a significant number of IFNγ secreting CD8(+) T cells that better recognized the NP-peptides than the natives; three of them induced T cells that were lytic in vivo for NP-peptide-loaded target cells. Peptides 168 and 192 were naturally processed and presented by the 1C11 neuronal cell line. Minigenes encoding immunogenic NP-peptides inserted into adenovirus (rAds) vectors enhanced the specific CD8(+) T-cell responses. Immunization with rAd encoding 168NP before scrapie inoculation significantly prolonged the survival of infected mice. This effect was attributable to a significant lengthening of the symptomatic phase and was associated with enhanced CD3(+) T cell recruitment to the CNS. However, immunization with Ad168NP in scrapie-incubating mice induced IFNγ-secreting CD8(+) T cells that were not cytolytic in vivo and did not influence disease progression nor infiltrated the brain. In conclusion, the data suggest that vaccine-induced PrP-specific CD8(+) T cells interact with prions into the CNS during the clinical phase of the disease.
Collapse
Affiliation(s)
- Antoine Sacquin
- UMR-S 938, Hôpital St-Antoine, Bât. R. Kourilsky, 184 rue du Fg St-Antoine, 75012 Paris, France
| | | | | | | | | | | | | |
Collapse
|
22
|
Iurescia S, Fioretti D, Fazio VM, Rinaldi M. Epitope-driven DNA vaccine design employing immunoinformatics against B-cell lymphoma: A biotech's challenge. Biotechnol Adv 2012; 30:372-83. [DOI: 10.1016/j.biotechadv.2011.06.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Revised: 06/16/2011] [Accepted: 06/23/2011] [Indexed: 12/16/2022]
|
23
|
Enhancing DNA immunization by targeting ASFV antigens to SLA-II bearing cells. Vaccine 2011; 29:5379-85. [PMID: 21679736 DOI: 10.1016/j.vaccine.2011.05.084] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/17/2011] [Accepted: 05/23/2011] [Indexed: 01/08/2023]
Abstract
One of the main criticisms to DNA vaccines is the poor immunogenicity that they confer on occasions, at least in large animals. Confirming this theory, immunization with plasmid DNA encoding two African swine fever virus genes in frame (pCMV-PQ), failed in inducing detectable immune responses in pigs, while it was successful in mice. Aiming to improve the immune responses induced in swine, a new plasmid was constructed, encoding the viral genes fused in frame with a single chain variable fragment of an antibody specific for a swine leukocyte antigen II (pCMV-APCH1PQ). Our results clearly demonstrate that targeting antigens to antigen professional cells exponentially enhanced the immune response induced in pigs, albeit that the DNA vaccine was not able to confer protection against lethal viral challenge. Indeed, a viremia exacerbation was observed in each of the pigs that received the pCMV-APCH1PQ plasmid, this correlating with the presence of non-neutralizing antibodies and antigen-specific SLA II-restricted T-cells. The implications of our discoveries for the development of future vaccines against African swine fever virus and other swine pathogens are discussed.
Collapse
|
24
|
Brun A, Bárcena J, Blanco E, Borrego B, Dory D, Escribano JM, Le Gall-Reculé G, Ortego J, Dixon LK. Current strategies for subunit and genetic viral veterinary vaccine development. Virus Res 2011; 157:1-12. [PMID: 21316403 DOI: 10.1016/j.virusres.2011.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 02/03/2011] [Accepted: 02/04/2011] [Indexed: 12/24/2022]
Abstract
Developing vaccines for livestock provides researchers with the opportunity to perform efficacy testing in the natural hosts. This enables the evaluation of different strategies, including definition of effective antigens or antigen combinations, and improvement in delivery systems for target antigens so that protective immune responses can be modulated or potentiated. An impressive amount of knowledge has been generated in recent years on vaccine strategies and consequently a wide variety of antigen delivery systems is now available for vaccine research. This paper reviews several antigen production and delivery strategies other than those based on the use of live viral vectors. Genetic and protein subunit vaccines as well as alternative production systems are considered in this review.
Collapse
Affiliation(s)
- Alejandro Brun
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, 28130 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wu Y, Liu C, Sun M, Shen H, Guo D, Gao B. A specific cytotoxic T-lymphocyte epitope presentation system for antitumor immunity. Int J Cancer 2010; 126:2373-86. [PMID: 19810094 DOI: 10.1002/ijc.24932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The magnitude of CTL-mediated immunity response is highly dependent on the density of antigenic peptide-MHC I complexes at the cell surface. In this study, we adopt a novel strategy to promote the surface level of specific peptide-MHC I complexes. The strategy combines the inhibition of transporter associated with antigen processing (TAP) with the delivery of specific peptide into endoplasmic reticulum directly without the help of TAP. First, RNA interference (RNAi) technology was used to inhibit TAP expression for blocking endogenous epitope-assembled MHC class I on cell surface. Second, a peptide epitope of interest was covalently linked onto human beta-2-microglobulin (beta2m). Both TAP-specific siRNA and the peptide-linked beta2m were delivered into antigen-presentation cells sequentially or simultaneously using a retrovirus delivery system. The combined strategy produces a significant amount of MHC I loaded with specific epitopes on the surface while reducing endogenously peptide-assembled MHC class I both in vitro and in vivo. The efficacy of induction of specific immune response with the strategy against tumor cells is demonstrated in both tumor cell lines and a syngenic graft tumor model.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | | | | | | | | | | |
Collapse
|
26
|
DNA vaccines: developing new strategies against cancer. J Biomed Biotechnol 2010; 2010:174378. [PMID: 20368780 PMCID: PMC2846346 DOI: 10.1155/2010/174378] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/05/2010] [Indexed: 12/14/2022] Open
Abstract
Due to their rapid and widespread development, DNA vaccines have entered into a variety of human clinical trials for vaccines against various diseases including cancer. Evidence that DNA vaccines are well tolerated and have an excellent safety profile proved to be of advantage as many clinical trials combines the first phase with the second, saving both time and money. It is clear from the results obtained in clinical trials that such DNA vaccines require much improvement in antigen expression and delivery methods to make them sufficiently effective in the clinic. Similarly, it is clear that additional strategies are required to activate effective immunity against poorly immunogenic tumor antigens. Engineering vaccine design for manipulating antigen presentation and processing pathways is one of the most important aspects that can be easily handled in the DNA vaccine technology. Several approaches have been investigated including DNA vaccine engineering, co-delivery of immunomodulatory molecules, safe routes of administration, prime-boost regimen and strategies to break the immunosuppressive networks mechanisms adopted by malignant cells to prevent immune cell function. Combined or single strategies to enhance the efficacy and immunogenicity of DNA vaccines are applied in completed and ongoing clinical trials, where the safety and tolerability of the DNA platform are substantiated.
In this review on DNA vaccines, salient aspects on this topic going from basic research to the clinic are evaluated. Some representative DNA cancer vaccine studies are also discussed.
Collapse
|
27
|
Kraynyak KA, Kutzler MA, Cisper NJ, Khan AS, Draghia-Akli R, Sardesal NY, Lewis MG, Yan J, Weiner DB. Systemic immunization with CCL27/CTACK modulates immune responses at mucosal sites in mice and macaques. Vaccine 2010; 28:1942-51. [PMID: 20188250 PMCID: PMC4396814 DOI: 10.1016/j.vaccine.2009.10.095] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Plasmid DNA is a promising vaccine platform that has been shown to be safe and able to be administered repeatedly without vector interference. Enhancing the potency of DNA vaccination through co-delivery of molecular adjuvants is one strategy currently under investigation. Here we describe the use of the novel chemokine adjuvant CCL27/CTACK to enhance immune responses to an HIV-1 or SIV antigen in mice and rhesus macaques. CCL27 has been shown to play a role in inflammatory responses through chemotaxis of CCR10+ cells, and we hypothesized that CCL27 may modulate adaptive immune responses. Immunizations in mice with HIV-1gag/CCL27 enhanced immune responses both at peripheral and, surprisingly, at mucosal sites. To confirm these findings in a large-animal model, we created optimized CCL27 and SIV antigenic plasmid constructs for rhesus macaques. 10 macaques (n=5/group) were immunized intramuscularly with 1mg/construct of antigenic plasmids+/-CCL27 with electroporation. We observed significant IFN-gamma secretion and CD8+ T-cell proliferation in peripheral blood. Interestingly, CCL27 co-immunized macaques exhibited a trend toward greater effector CD4+ T cells in the bronchiolar lavage (BAL). CCL27 co-delivery also elicited greater antigen-specific IgA at unique sites including BAL and fecal samples but not in the periphery. Future studies incorporating CCL27 as an adjuvant in vaccine or therapy models where eliciting immune responses in the lung are warranted.
Collapse
Affiliation(s)
- Kimberly A. Kraynyak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - Michele A. Kutzler
- Department of Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA
| | - Neil J. Cisper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | | | | | | | | | - Jian Yan
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA
| |
Collapse
|
28
|
Poláková I, Pokorná D, Dušková M, Šmahel M. DNA vaccine against human papillomavirus type 16: Modifications of the E6 oncogene. Vaccine 2010; 28:1506-13. [DOI: 10.1016/j.vaccine.2009.11.069] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 11/16/2009] [Accepted: 11/21/2009] [Indexed: 11/29/2022]
|
29
|
Loera-Arias MJ, Martínez-Pérez AG, Barrera-Hernández A, Ibarra-Obregón ER, González-Saldívar G, Martínez-Ortega JI, Rosas-Taraco A, Villanueva-Olivo A, Esparza-González SC, Villatoro-Hernandez J, Saucedo-Cárdenas O, Montes-de-Oca-Luna R. Targeting and retention of HPV16 E7 to the endoplasmic reticulum enhances immune tumour protection. J Cell Mol Med 2009; 14:890-4. [PMID: 19818090 PMCID: PMC3823120 DOI: 10.1111/j.1582-4934.2009.00934.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The endoplasmic reticulum (ER) is where the major histocompatibility complex (MHC) class I molecules are loaded with epitopes to cause an immune cellular response. Most of the protein antigens are degraded in the cytoplasm to amino acids and few epitopes reach the ER. Antigen targeting of this organelle by Calreticulin (CRT) fusion avoids this degradation and enhances the immune response. We constructed a recombinant adenovirus to express the E7 antigen with an ER-targeting signal peptide (SP) plus an ER retention signal (KDEL sequence). In cell-culture experiments we demonstrated that this new E7 antigen, SP-E7-KDEL, targeted the ER. Infection of mice with this recombinant adenovirus that expresses SP-E7-KDEL showed interferon induction and tumour-protection response, similar to that provided by an adenovirus expressing the E7 antigen fused to CRT. This work demonstrated that just by adding a SP and the KDEL sequence, antigens can be targeted and retained in the ER with a consequent enhancement of immune response and tumour protection. These results will have significant clinical applications.
Collapse
Affiliation(s)
- M J Loera-Arias
- Departamento de Histología, Facultad de Medicina. Universidad Autónoma de Nuevo León, Monterrey, N.L., México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Kraynyak KA, Kutzler MA, Cisper NJ, Laddy DJ, Morrow MP, Waldmann TA, Weiner DB. Plasmid-encoded interleukin-15 receptor alpha enhances specific immune responses induced by a DNA vaccine in vivo. Hum Gene Ther 2009; 20:1143-56. [PMID: 19530914 PMCID: PMC2829284 DOI: 10.1089/hum.2009.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Accepted: 06/16/2009] [Indexed: 11/12/2022] Open
Abstract
Plasmid-encoded DNA vaccines appear to be a safe and effective method for delivering antigen; however, the immunogenicity of such vaccines is often suboptimal. Cytokine adjuvants including interleukin (IL)-12, RANTES, granulocyte-macrophage colony-stimulating factor, IL-15, and others have been used to augment the immune response against DNA vaccines. In particular, IL-15 binds to a unique high-affinity receptor, IL-15R alpha; is trans-presented to CD8(+) T cells expressing the common betagamma chain; and has been shown to play a role in the generation, maintenance, and proliferation of antigen-specific CD8(+) T cells. In this study, we took the unique approach of using both a cytokine and its receptor as an adjuvant in an HIV-1 vaccine strategy. To study IL-15R alpha expression, a unique monoclonal antibody (KK1.23) was generated to confirm receptor expression in vitro. Coimmunization of IL-15 and IL-15R alpha plasmids with HIV-1 antigenic plasmids in mice enhanced the antigen-specific immune response 2-fold over IL-15 immunoadjuvant alone. Furthermore, plasmid-encoded IL-15R alpha augments immune responses in the absence of IL-15, suggesting its role as a novel adjuvant. Moreover, pIL-15R alpha enhanced the cellular, but not the humoral, immune response as measured by antigen-specific IgG antibody. This is the first report describing that IL-15R alpha itself can act as an adjuvant by enhancing an antigen-specific T cell response. Uniquely, pIL-15 and pIL-15R alpha adjuvants combined, but not the receptor alpha chain alone, may be useful as a strategy for generating and maintaining memory CD8(+) T cells in a DNA vaccine.
Collapse
Affiliation(s)
- Kimberly A. Kraynyak
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Michele A. Kutzler
- Division of Infectious Diseases and HIV Medicine, Drexel University College of Medicine, Philadelphia, PA 19102
| | - Neil J. Cisper
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Dominick J. Laddy
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Matthew P. Morrow
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Thomas A. Waldmann
- National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - David B. Weiner
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| |
Collapse
|
31
|
Babiuk S, Babiuk LA, van Drunen Littel-van den Hurk S. Editorial: DNA Vaccination: A Simple Concept with Challenges Regarding Implementation. Int Rev Immunol 2009; 25:51-81. [PMID: 16818365 DOI: 10.1080/08830180600743008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
32
|
Vertuani S, Triulzi C, Roos AK, Charo J, Norell H, Lemonnier F, Pisa P, Seliger B, Kiessling R. HER-2/neu mediated down-regulation of MHC class I antigen processing prevents CTL-mediated tumor recognition upon DNA vaccination in HLA-A2 transgenic mice. Cancer Immunol Immunother 2009; 58:653-64. [PMID: 18820911 PMCID: PMC11030827 DOI: 10.1007/s00262-008-0587-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 08/30/2008] [Indexed: 10/21/2022]
Abstract
To study DNA vaccination directed against human HER-2 in the HHD mouse Tg strain, we created a novel HER-2-expressing syngeneic tumor transplantation model. We found that a DNA vaccine encoding the full length HER-2 DNA protected HHD mice from HER-2(+) tumor challenge by a CTL independent mechanism. A more efficient approach to induce HLA-A2 restricted CTLs, through immunization with a multi-epitope DNA vaccine expressing the HLA-A2 restricted HER-2 369-377, 435-443 and 689-697 epitopes, resulted in high numbers of peptide specific T cells but failed to induce tumor protection. Subsequently we discovered that HER-2 transfected tumor cells down-regulated MHC class I antigen expression and exhibited a series of defects in the antigen processing pathway which impaired the capacity to produce and display MHC class I peptide-ligands to specific CTLs. Our data demonstrate that HER-2 transfection is associated with defects in the MHC class I presentation pathway, which may be the underlying mechanism behind the inability of CTLs to recognize tumors in this HLA-A2 transgenic model. As defective MHC class I presentation may be a common characteristic of HER-2 expressing tumors, vaccines targeting HER-2 should aim at inducing an integrated immune response where also CD4(+) T cells and antibodies are important components.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation
- Base Sequence
- Cancer Vaccines/immunology
- Epitopes, T-Lymphocyte/immunology
- Genes, MHC Class I
- Genes, erbB-2
- HLA-A2 Antigen/genetics
- HLA-A2 Antigen/immunology
- Humans
- Lymphocyte Depletion
- Mice
- Mice, Inbred Strains
- Mice, Transgenic
- Molecular Sequence Data
- Peptide Fragments/genetics
- Peptide Fragments/immunology
- Receptor, ErbB-2/genetics
- Receptor, ErbB-2/immunology
- Sarcoma, Experimental/chemically induced
- Sarcoma, Experimental/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Transfection
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Simona Vertuani
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Antigen mRNA-transfected, allogeneic fibroblasts loaded with NKT-cell ligand confer antitumor immunity. Blood 2009; 113:4262-72. [DOI: 10.1182/blood-2008-08-176446] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Abstract
The maturation of dendritic cells (DCs) in situ by danger signals plays a central role in linking innate and adaptive immunity. We previously demonstrated that the activation of invariant natural killer T (iNKT) cells by administration of α-galactosylceramide (α-GalCer)–loaded tumor cells can act as a cellular adjuvant through the DC maturation. In the current study, we used allogeneic fibroblasts loaded with α-GalCer and transfected with antigen-encoding mRNA, thus combining the adjuvant effects of iNKT-cell activation with delivery of antigen to DCs in vivo. We found that these cells produce antigen protein and activate NK and iNKT cells. When injected into major histocompatibility complex (MHC)–mismatched mice, they elicited antigen-specific T-cell responses and provided tumor protection, suggesting that these immune responses depend on host DCs. In addition, antigen-expressing fibroblasts loaded with α-GalCer lead to a more potent T-cell response than those expressing NK cell ligands. Thus, glycolipid-loaded, mRNA-transfected allogeneic fibroblasts act as cellular vectors to provide iNKT-cell activation, leading to DC maturation and T-cell immunity. By harnessing the innate immune system and generating an adaptive immune response to a variety of antigens, this unique tool could prove clinically beneficial in the development of immunotherapies against malignant and infectious diseases.
Collapse
|
34
|
Ma X, Serna A, Xu RH, Sigal LJ. The amino acid sequences flanking an antigenic determinant can strongly affect MHC class I cross-presentation without altering direct presentation. THE JOURNAL OF IMMUNOLOGY 2009; 182:4601-7. [PMID: 19342634 DOI: 10.4049/jimmunol.0803806] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Direct presentation (DP) and cross presentation (CP) on MHC I by professional APCs are defined by the internal or external source of the Ag, respectively. Although some Ags are substrates for both DP and CP, others are only substrates for DP. The reasons for this difference remain largely unknown. In this study, we studied in tissue culture and also in vivo, the effects of altering the length and sequence of the amino acid chains flanking an MHC class I restricted determinant (the chicken OVA OVA(258-265), SIINFEKL) that is normally a good substrate for both DP and CP. We demonstrate that CP but not DP strictly requires flanking N and C-terminal extensions of minimal length. Furthermore, we show that removal but not replacement of just one amino acid 22 residues downstream from the determinant is sufficient to strongly affect CP without affecting either protein stability or DP. Thus, our work shows that the flanking residues of an antigenic determinant can differentially affect CP and DP, and that features of the Ag other than half-life can have a major impact in CP. Our studies may have implications for understanding CP in viral infections and possibly for the design of new vaccines.
Collapse
Affiliation(s)
- Xueying Ma
- Fox Chase Cancer Center, Basic Sciences Division, Viral Pathogenesis Program, Philadelphia, PA 19111, USA
| | | | | | | |
Collapse
|
35
|
Williams JA, Carnes AE, Hodgson CP. Plasmid DNA vaccine vector design: impact on efficacy, safety and upstream production. Biotechnol Adv 2009; 27:353-70. [PMID: 19233255 DOI: 10.1016/j.biotechadv.2009.02.003] [Citation(s) in RCA: 121] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/02/2009] [Accepted: 02/07/2009] [Indexed: 10/21/2022]
Abstract
Critical molecular and cellular biological factors impacting design of licensable DNA vaccine vectors that combine high yield and integrity during bacterial production with increased expression in mammalian cells are reviewed. Food and Drug Administration (FDA), World Health Organization (WHO) and European Medical Agencies (EMEA) regulatory guidance's are discussed, as they relate to vector design and plasmid fermentation. While all new vectors will require extensive preclinical testing to validate safety and performance prior to clinical use, regulatory testing burden for follow-on products can be reduced by combining carefully designed synthetic genes with existing validated vector backbones. A flowchart for creation of new synthetic genes, combining rationale design with bioinformatics, is presented. The biology of plasmid replication is reviewed, and process engineering strategies that reduce metabolic burden discussed. Utilizing recently developed low metabolic burden seed stock and fermentation strategies, optimized vectors can now be manufactured in high yields exceeding 2 g/L, with specific plasmid yields of 5% total dry cell weight.
Collapse
|
36
|
Granados DP, Tanguay PL, Hardy MP, Caron E, de Verteuil D, Meloche S, Perreault C. ER stress affects processing of MHC class I-associated peptides. BMC Immunol 2009; 10:10. [PMID: 19220912 PMCID: PMC2657905 DOI: 10.1186/1471-2172-10-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 02/16/2009] [Indexed: 12/19/2022] Open
Abstract
Background Viral infection and neoplastic transformation trigger endoplasmic reticulum (ER) stress. Thus, a large proportion of the cells that must be recognized by the immune system are stressed cells. Cells respond to ER stress by launching the unfolded protein response (UPR). The UPR regulates the two key processes that control major histocompatibility complex class I (MHC I)-peptide presentation: protein synthesis and degradation. We therefore asked whether and how the UPR impinges on MHC I-peptide presentation. Results We evaluated the impact of the UPR on global MHC I expression and on presentation of the H2Kb-associated SIINFEKL peptide. EL4 cells stably transfected with vectors coding hen egg lysozyme (HEL)-SIINFEKL protein variants were stressed with palmitate or exposed to glucose deprivation. UPR decreased surface expression of MHC I but did not affect MHC I mRNA level nor the total amount of intracellular MHC I proteins. Impaired MHC I-peptide presentation was due mainly to reduced supply of peptides owing to an inhibition of overall protein synthesis. Consequently, generation of H2Kb-SIINFEKL complexes was curtailed during ER stress, illustrating how generation of MHC I peptide ligands is tightly coupled to ongoing protein synthesis. Notably, the UPR-induced decline of MHC I-peptide presentation was more severe when the protein source of peptides was localized in the cytosol than in the ER. This difference was not due to changes in the translation rates of the precursor proteins but to increased stability of the cytosolic protein during ER stress. Conclusion Our results demonstrate that ER stress impairs MHC I-peptide presentation, and that it differentially regulates expression of ER- vs. cytosol-derived peptides. Furthermore, this work illustrates how ER stress, a typical feature of infected and malignant cells, can impinge on cues for adaptive immune recognition.
Collapse
Affiliation(s)
- Diana P Granados
- Department of Medicine, Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada.
| | | | | | | | | | | | | |
Collapse
|
37
|
Theil DJ, Libbey JE, Rodriguez F, Whitton JL, Tsunoda I, Derfuss TJ, Fujinami RS. Targeting myelin proteolipid protein to the MHC class I pathway by ubiquitination modulates the course of experimental autoimmune encephalomyelitis. J Neuroimmunol 2008; 204:92-100. [PMID: 18706703 PMCID: PMC2646907 DOI: 10.1016/j.jneuroim.2008.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Revised: 07/07/2008] [Accepted: 07/09/2008] [Indexed: 02/08/2023]
Abstract
Relapsing-remitting experimental autoimmune encephalomyelitis (EAE), a multiple sclerosis model, is induced in mice by injection of myelin proteolipid protein (PLP) encephalitogenic peptide, PLP139-151, in adjuvant. In this study, prior to EAE induction, mice were vaccinated with a bacterial plasmid encoding a PLP-ubiquitin fusion (pCMVUPLP). During the relapse phase of EAE, clinical signs, histopathologic changes, in vitro lymphoproliferation to PLP139-151 and interferon-gamma levels were reduced in pCMVUPLP-vaccinated mice, compared to mock-vaccinated mice (controls). Lymphocytes from pCMVUPLP-vaccinated mice produced interleukin-4, a cytokine lacking in controls. Thus, pCMVUPLP vaccination can modulate the relapse after EAE induction.
Collapse
Affiliation(s)
- Diethilde J. Theil
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Jane E. Libbey
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Fernando Rodriguez
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - J. Lindsay Whitton
- Department of Immunology and Microbial Science, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037
| | - Ikuo Tsunoda
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Tobias J. Derfuss
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| | - Robert S. Fujinami
- Department of Pathology, University of Utah School of Medicine, 30 North 1900 East, RM 3R330, Salt Lake City, Utah 84132
| |
Collapse
|
38
|
Starodubova ES, Boberg A, Litvina M, Morozov A, Petrakova NV, Timofeev A, Latyshev O, Tunitskaya V, Wahren B, Isaguliants MG, Karpov VL. HIV-1 reverse transcriptase artificially targeted for proteasomal degradation induces a mixed Th1/Th2-type immune response. Vaccine 2008; 26:5170-6. [PMID: 18468738 DOI: 10.1016/j.vaccine.2008.03.070] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Targeting of a DNA vaccine encoded protein for degradation via the proteasome is attempted since it may enhance the immunogenicity of the vaccine. We have fused HIV-1 reverse transcriptase (RT) to mouse ornithine decarboxylase (ODC), a protein rapidly degraded by proteasome in an ubiquitine-independent fashion, to enhance the introduction of RT into the MHC class I pathway. We also designed a fusion of RT with two short signals from the C-terminus of ODC (ODCsig) representing a minimal proteasome-targeting moiety of ODC (PEST signal). Fusion to ODC or ODC signal domain led to a marked enhancement of RT degradation. Plasmids encoding RT-ODC and RT-ODCsig chimera were used to immunize BALB/c mice. The administration of the plasmids was not associated with autoimmune disease. Moreover, mice receiving RT-ODCsig gene mounted a mixed Th1/Th2 response characterized by the in vitro secretion of IFN-gamma, IL-2, TNF-alpha, IL-4, and IL-10 upon stimulation of splenocytes with RT protein or RT derived peptides. Serum titers of 10(2) to 10(3) were observed in more than 50% of animals in that group, whereas fewer animals mounted an anti-RT response in the RT-ODC gene immunized group. Chimeras of the type described here can, therefore, be used in vaccinations aiming to induce HIV-1 RT-specific immune response.
Collapse
|
39
|
Sacco RE. DNA vaccines against infectious agents: recent strategies for enhancing immune responses. Expert Opin Ther Pat 2008. [DOI: 10.1517/13543776.18.4.365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
40
|
Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer 2008; 8:108-20. [PMID: 18219306 DOI: 10.1038/nrc2326] [Citation(s) in RCA: 295] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
DNA vaccination has suddenly become a favoured strategy for inducing immunity. The molecular precision offered by gene-based vaccines, together with the facility to include additional genes to direct and amplify immunity, has always been attractive. However, the apparent failure to translate operational success in preclinical models to the clinic, for reasons that are now rather obvious, reduced initial enthusiasm. Recently, novel delivery systems, especially electroporation, have overcome this translational block. Here, we assess the development, current performance and potential of DNA vaccines for the treatment of cancer.
Collapse
Affiliation(s)
- Jason Rice
- Genetic Vaccine Group, Cancer Sciences Division, University of Southampton School of Medicine, Southampton General Hospital, Southampton,SO16 6YD, UK
| | | | | |
Collapse
|
41
|
Facciabene A, Aurisicchio L, Elia L, Palombo F, Mennuni C, Ciliberto G, La Monica N. Vectors encoding carcinoembryonic antigen fused to the B subunit of heat-labile enterotoxin elicit antigen-specific immune responses and antitumor effects. Vaccine 2007; 26:47-58. [DOI: 10.1016/j.vaccine.2007.10.060] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/14/2007] [Accepted: 10/21/2007] [Indexed: 11/26/2022]
|
42
|
Ganges L, Núñez JI, Sobrino F, Borrego B, Fernández-Borges N, Frías-Lepoureau MT, Rodríguez F. Recent advances in the development of recombinant vaccines against classical swine fever virus: cellular responses also play a role in protection. Vet J 2007; 177:169-77. [PMID: 17804267 DOI: 10.1016/j.tvjl.2007.01.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 11/26/2022]
Abstract
Classical swine fever virus (CSFV) is the causative agent of one of the most devastating porcine haemorrhagic viral diseases, classical swine fever (CSF). CSFV mainly infects endothelial cells and macrophages and at the same time promotes bystander apoptosis of the surrounding T cells, causing strong immune suppression and high mortality rates. Most animals experience acute infection, during which they either die or survive by producing neutralising antibodies to the virus. However, in a few cases, the impaired immune system cannot control viral progression, leading to chronic infection. Efficient live attenuated vaccines against CSFV exist and are routinely used only in endemic countries. The ability of these vaccines to replicate in the host, even at very low rates, makes it extremely difficult to distinguish vaccinated from infected animals, favouring a restricted policy regarding vaccination against CSFV in non-endemic countries. There is a clear need for efficient and safer marker vaccines to assist in the control of future CSF outbreaks. In this review article, some of the most recent advances in the field of recombinant vaccines against CSFV are presented and the nature of the protective immune responses they induce is discussed.
Collapse
Affiliation(s)
- Llilianne Ganges
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
43
|
Murashev B, Kazennova E, Kozlov A, Murasheva I, Dukhovlinova E, Galachyants Y, Dorofeeva E, Dukhovlinov I, Smirnova G, Masharsky A, Klimov N, Kozlov AP. Immunogenicity of candidate DNA vaccine based on subtype A of human immunodeficiency virus type 1 predominant in Russia. Biotechnol J 2007; 2:871-8. [PMID: 17582822 DOI: 10.1002/biot.200700024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Human immunodeficiency virus (HIV)-1 subtype A strains circulating among the majority of HIVinfected individuals in the former Soviet Union (FSU) countries demonstrate low genetic diversity. The consensus sequence of the FSU region-specific isolate has been used for the candidate DNA vaccine development. We constructed recombinant plasmids with four viral genes: env (gp140), gag, pol (reverse transcriptase), and nef. We immunized BALB/c mice intramuscularly using equimolar mixture of four recombinant plasmids, and observed significant cytotoxic T lymphocyte response and specific CD8(+) cell production against cells presenting HIV-1 peptides. Overall, the Th1 pathway of immune response clearly dominated. Immunological properties of this candidate DNA vaccine against HIV-1 suggest the possibility of its further study in clinical trials.
Collapse
|
44
|
Herd KA, Wiethe C, Tindle RW. Co-immunisation with DNA encoding RANK/RANKL or 4-1BBL costimulatory molecules does not enhance effector or memory CTL responses afforded by immunisation with a tumour antigen-encoding DNA vaccine. Vaccine 2007; 25:5209-19. [PMID: 17544551 DOI: 10.1016/j.vaccine.2007.04.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2006] [Revised: 04/15/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
T cell mediated immune responses are induced following interaction of MHC-presented epitope on professional antigen presenting cells such as dendritic cells (DCs) with cognate T cell receptor. Up-regulation of receptor-ligand pairs of costimulatory molecules linking DC to T cell enhances the resulting T cell responses. This 'second signalling' occurs through the B7 molecules CD80/86 expressed by DCs, and importantly through members of the TNF ligand/TNF receptor superfamilies. We have previously shown that co-expression of RANK/RANKL or 41BB-L in addition to tumour antigen in dendritic cells augmented cognate effector and memory tumour antigen-directed cytotoxic T cell responses when the DCs were used to immunise mice. Here, we examined whether co-immunisation with naked plasmid DNAs encoding antigen and these costimulatory molecule(s), would enhance antigen specific T cell responses. We demonstrate that co-immunisation with DNAs encoding tumour antigen and costimulatory molecules failed to enhance antigen-directed CTL responses, or tumour protection, afforded by immunisation with DNA encoding tumour antigen alone.
Collapse
MESH Headings
- 4-1BB Ligand/genetics
- 4-1BB Ligand/metabolism
- Animals
- Antigens, Neoplasm/genetics
- Cell Line
- Cell Line, Tumor
- Cells, Cultured
- DNA/administration & dosage
- DNA/immunology
- Female
- Flow Cytometry
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunization
- Male
- Mice
- Mice, Inbred C57BL
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/prevention & control
- Plasmids/administration & dosage
- Plasmids/genetics
- Plasmids/immunology
- Proteins/genetics
- Proteins/metabolism
- RANK Ligand/genetics
- RANK Ligand/metabolism
- Receptor Activator of Nuclear Factor-kappa B/genetics
- Receptor Activator of Nuclear Factor-kappa B/metabolism
- Survival Analysis
- T-Lymphocytes/cytology
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
Collapse
Affiliation(s)
- Karen A Herd
- Sir Albert Sakzewski Virus Research Centre, Royal Children's Hospital, Brisbane, Australia
| | | | | |
Collapse
|
45
|
Abstract
Because of the large preexisting antigenic load and immunosuppressive environment within a tumor, inducing therapeutically useful antitumor immunity in cancer patients requires the development of powerful vaccination protocols. An approach gaining increasing popularity in the tumor vaccine field is to immunize cancer patients with their own DCs loaded ex vivo with tumor antigens. The underlying premise of this approach is that the efficiency and control over the vaccination process provided by ex vivo manipulation of the DCs generates an optimally potent APC and a superior method for stimulating antitumor immunity in vivo compared with the more conventional direct vaccination methods, offsetting the added cost and complexity associated with this form of customized cell therapy.
Collapse
Affiliation(s)
- Eli Gilboa
- Department of Microbiology and Immunology, Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, 1550 NW 10th Avenue Medical Campus, Miami, FL 33136, USA.
| |
Collapse
|
46
|
Nitschke C, Flechsig E, van den Brandt J, Lindner N, Lührs T, Dittmer U, Klein MA. Immunisation strategies against prion diseases: prime-boost immunisation with a PrP DNA vaccine containing foreign helper T-cell epitopes does not prevent mouse scrapie. Vet Microbiol 2007; 123:367-76. [PMID: 17499458 DOI: 10.1016/j.vetmic.2007.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Vaccination against prion diseases constitutes a promising approach for the treatment and prevention of the disease. Passive immunisation with antibodies binding to the cellular prion protein (PrP(C)) can protect against prion disease. However, immunotherapeutic strategies with active immunisation are limited due to the immune tolerance against the self-antigen. In order to develop an anti-prion vaccine, we designed a novel DNA fusion vaccine composed of mouse PrP and immune stimulatory helper T-cell epitopes of the tetanus toxin that have previously been reported to break tolerance to other self-antigens. This approach provoked a strong PrP(C)-specific humoral and cellular immune response in PrP null mice, but only low antibody titres were found in vaccinated wild-type mice. Furthermore, prime-boost immunisation with the DNA vaccine and recombinant PrP protein increased antibody titres in PrP null mice, but failed to protect wild-type mice from mouse scrapie.
Collapse
Affiliation(s)
- Cindy Nitschke
- Institute of Virology and Immunobiology, University of Wuerzburg, Versbacherstr. 7, D-97078 Wuerzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
47
|
Starodubova ES, Isaguliants MG, Karpov VL. Artificial acceleration of HIV-1 reverse transcriptase turnover via the proteasome pathway. Mol Biol 2006. [DOI: 10.1134/s0026893306060069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Borrego B, Fernandez-Pacheco P, Ganges L, Domenech N, Fernandez-Borges N, Sobrino F, Rodríguez F. DNA vaccines expressing B and T cell epitopes can protect mice from FMDV infection in the absence of specific humoral responses. Vaccine 2006; 24:3889-99. [PMID: 16563575 DOI: 10.1016/j.vaccine.2006.02.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Revised: 02/09/2006] [Accepted: 02/13/2006] [Indexed: 11/22/2022]
Abstract
Despite foot-and-mouth disease virus (FMDV) being responsible for one of the most devastating animal diseases, little is known about the cellular immune mechanisms involved in protection against this virus. In this work we have studied the potential of DNA vaccines based on viral minigenes corresponding to three major B and T-cell FMDV epitopes (isolate C-S8c1) originally identified in natural hosts. The BTT epitopes [VP1 (133-156)-3A (11-40)-VP4 (20-34)] were cloned into the plasmid pCMV, either alone or fused to ubiquitin, the lysosomal targeting signal from LIMPII, a soluble version of CTLA4 or a signal peptide from the human prion protein, to analyze the effect of processing through different antigenic presentation pathways on the immunogenicity of the FMDV epitopes. As a first step in the analysis of modulation exerted by these target signals, a FMDV infection inhibition assay in Swiss outbred mice was developed and used to analyze the protection conferred by the different BTT-expressing plasmids. Only one of the 37 mice immunized with minigene-bearing plasmids developed specific neutralizing antibodies prior to FMDV challenge. As expected, this single mouse that had been immunized with the BTT tandem epitopes fused to a signal peptide (pCMV-spBTT) was protected against FMDV infection. Interestingly, nine more of the animals immunized with BTT-expressing plasmids did not show viremia at 48 h post-infection (pi), even in the absence of anti-FMDV antibodies prior to challenge. The highest protection (50%, six out of 12 mice) was observed with the plasmid expressing BTT alone, indicating that the targeting strategies used did not result in an improvement of the protection conferred by BTT epitopes. Interestingly, peptide specific CD4+ T-cells were detected for some of the BTT-protected mice. Thus, a DNA vaccine based on single FMDV B and T cell epitopes can protect mice, in the absence of specific antibodies at the time of challenge. Further work must be done to elucidate the mechanisms involved in protection and to determine the protective potential of these vaccines in natural FMDV hosts.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antigens, CD
- Antigens, Differentiation/genetics
- CD36 Antigens/genetics
- CD4-Positive T-Lymphocytes/immunology
- CTLA-4 Antigen
- Disease Models, Animal
- Epitopes, B-Lymphocyte/genetics
- Epitopes, B-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Foot-and-Mouth Disease/immunology
- Foot-and-Mouth Disease/pathology
- Foot-and-Mouth Disease/prevention & control
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Genetic Vectors
- Immunity, Cellular
- Lysosomal Membrane Proteins/genetics
- Mice
- Neutralization Tests
- Protein Transport/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Ubiquitin/genetics
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
- Viremia
Collapse
|
49
|
Csaba N, Sánchez A, Alonso MJ. PLGA:poloxamer and PLGA:poloxamine blend nanostructures as carriers for nasal gene delivery. J Control Release 2006; 113:164-72. [PMID: 16759732 DOI: 10.1016/j.jconrel.2006.03.017] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 03/21/2006] [Accepted: 03/27/2006] [Indexed: 11/26/2022]
Abstract
We have recently reported the formation of a new type of nanoparticles consisting of blends of poly (lactic-co-glycolic acid) (PLGA) and polyethylene oxide (PEO) derivatives, which exhibit the capacity to associate and release plasmid DNA in a controlled manner. In the present work our goal was to investigate the ability of these nanoparticles to overcome cellular and mucosal barriers (i.e. nasal mucosa) and thus, to work as gene delivery carriers. First, we studied the in vitro cellular uptake (HEK 293 cell line) of FITC-labelled plasmid DNA nanoencapsulated in PLGA: Pluronic F68 and PLGA: Tetronic T904 particles by confocal microscopy. Second, we investigated the uptake of rhodamine-labelled nanoparticles by the nasal mucosa following intranasal administration to mice. Third, we monitored the immune response generated by the nanoparticles containing a beta-galactosidase encoding gene, following nasal administration to mice, using the ELISA technique. The results of the in vitro cell culture studies showed the ability of these new nanoparticles to enter the cells and transport the associated DNA molecule across the cell membrane. Moreover, the results obtained following in vivo administration of the fluorescent nanoparticles evidenced their capability to overcome the nasal mucosal barrier. Finally, the results of the immunisation studies showed that DNA-loaded nanoparticles elicit a fast and strong response, significantly more pronounced than that corresponding to the naked plasmid DNA for up to 6 weeks. Overall, these results suggest that these new nanoparticles have a potential as carriers for the delivery of DNA across the nasal mucosa.
Collapse
Affiliation(s)
- N Csaba
- Department Pharmaceutical Technology, School of Pharmacy, University of Santiago de Compostela, 15782, Santiago, Spain
| | | | | |
Collapse
|
50
|
Nayak BP, Sailaja G, Jabbar AM. Augmenting the immunogenicity of DNA vaccines: role of plasmid-encoded Flt-3 ligand, as a molecular adjuvant in genetic vaccination. Virology 2006; 348:277-88. [PMID: 16563456 DOI: 10.1016/j.virol.2006.02.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 12/22/2022]
Abstract
In this study, we have taken advantage of the unique property of a potent dendritic cell (DC) growth factor, Flt-3 ligand (FL), which could act as a vaccine adjuvant. Accordingly, a single injection of plasmid DNA coding for soluble FL (FLex) was shown to induce large numbers of DCs in various tissue compartments and was critical for generating high frequencies of antigen-specific (HIV gp120 and LCMV NP) immune responses in mice. Interestingly, this enhanced level of immune response is strictly dependent on the co-delivery (i.m.) of the DNA vaccines and hFLex DNA to mice harboring large numbers of DCs. The high frequencies of antigen-specific CD8(+) T cells were largely associated with the expansion phase of DCs in vivo. However, DC expansion and immune enhancement have not reciprocally maintained a linear correlation, suggesting that other factors, cytokines/chemokines, which have the potential to modulate the microenvironment of DCs, could influence immunological outcome in this vaccination modality.
Collapse
Affiliation(s)
- Bishnu P Nayak
- Emory Vaccine Center, Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA 30329, USA
| | | | | |
Collapse
|