1
|
Jose J, Fonteh AN. A charge reversal approach for the sensitive quantification of dicarboxylic acids using Liquid chromatography-tandem mass spectrometry. J Chromatogr A 2024; 1737:465426. [PMID: 39423602 DOI: 10.1016/j.chroma.2024.465426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Dicarboxylic acids (DCAs) are essential for intermediate metabolism and are implicated in multiple processes associated with various diseases. Several DCAs contribute to energy metabolism, impact mitochondrial function, and play a crucial role in body function. However, the low abundance of some DCAs in various body fluids makes their quantification particularly challenging. Therefore, an extremely sensitive method is required to determine DCA level fluctuations in biological samples in different diseases. We developed and optimized an LC-MS/MS method to quantify DCAs. We achieved charge reversal of the compounds from negative to positive ionization through chemical derivatization with dimethylaminophenacyl bromide (DmPABr) targeting the carboxyl group (R-COOH) under mild basic conditions. Derivatization enhanced sensitivity, mass fragmentation, and chromatographic separation for LC-tandem mass spectrometric quantification. The method was analytically optimized and demonstrated excellent linearity for individual DCAs (R2>0.99), as well as an exceptionally lower limit of detection (LLOD<266 fg) and lower limit of quantification (LLOQ<805 fg) for all DCAs. Furthermore, most derivatized DCAs were stable at room temperature and after ten repeated freeze-thaw cycles. After DCA extraction and quantification detection, we found differences in their distribution in plasma and urine. The rank order for DCAs in plasma is C4>C6>C7>C9>C5>C8>C22, whereas in the urine sample, the order is C4>C7>C6>C9>C5>C8>C10. For longer chains (C > 16), their proportions were >10x higher in plasma than in urine. Our optimized method using LC-MS/MS enables the quantification of DCAs with excellent sensitivity. The method will help in future studies investigating dicarboxylic acids' crucial role in health and biomarker discovery studies using targeted metabolomics.
Collapse
Affiliation(s)
- Joby Jose
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA
| | - Alfred N Fonteh
- Biomarker and Neuro-disease Mechanism Lab, Neuroscience Department, Huntington Medical Research Institutes, Pasadena, CA, USA.
| |
Collapse
|
2
|
Du X, Zhao C, Xi Y, Lin P, Liu H, Wang S, Guo F. Exploring the role of Yuxuebi tablet in neuropathic pain with the method of similarity research of drug pharmacological effects based on unsupervised machine learning. Front Pharmacol 2024; 15:1440542. [PMID: 39355777 PMCID: PMC11442203 DOI: 10.3389/fphar.2024.1440542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction Having multiple pharmacological effects is a characteristic of Traditional Chinese Medicine (TCM). Currently, there is a lack of suitable methods to explore and discover modern diseases suitable for TCM treatment using this characteristic. Unsupervised machine learning technology is an efficient strategy to predict the pharmacological activity of drugs. This study takes Yuxuebi Tablet (YXB) as the research object. Using the unsupervised machine learning technology of drug cell functional fingerprint similarity research, the potential pharmacological effects of YXB were discovered and verified. Methods LC-MS combined with the in vitro intestinal absorption method was used to identify components of YXB that could be absorbed by the intestinal tract of rats. Unsupervised learning hierarchical clustering was used to calculate the degree of similarity of cellular functional fingerprints between these components and 121 marketed Western drugs whose indications are diseases and symptoms that YXB is commonly used to treat. Then, based on the Library of Integrated Network-based Cellular Signatures database, pathway analysis was performed for selected Western drugs with high similarity in cellular functional fingerprints with the components of YXB to discover the potential pharmacological effects of YXB, which were validated by animal experiments. Results We identified 40 intestinally absorbed components of YXB. Through predictive studies, we found that they have pharmacological effects very similar to non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids. In addition, we found that they have very similar pharmacological effects to anti-neuropathic pain medications (such as gabapentin, duloxetine, and pethidine) and may inhibit the NF-κB signaling pathway and biological processes related to pain perception. Therefore, YXB may have an antinociceptive effect on neuropathic pain. Finally, we demonstrated that YXB significantly reduced neuropathic pain in a rat model of sciatic nerve chronic constriction injury (CCI). Transcriptome analysis further revealed that YXB regulates the expression of multiple genes involved in nerve injury repair, signal transduction, ion channels, and inflammatory response, with key regulatory targets including Sgk1, Sst, Isl1, and Shh. Conclusion This study successfully identified and confirmed the previously unknown pharmacological activity of YXB against neuropathic pain through unsupervised learning prediction and experimental verification.
Collapse
Affiliation(s)
- Xiao Du
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Chunhui Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Xi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengfei Lin
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd., Shenzhen, China
| | - Huihui Liu
- China Resources Sanjiu Medical and Pharmaceutical Co., Ltd., Shenzhen, China
| | - Shuling Wang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, China
| | - Feifei Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
3
|
Castagneto-Gissey L, Bornstein SR, Mingrone G. Dicarboxylic acids counteract the metabolic effects of a Western diet by boosting energy expenditure. J Clin Invest 2024; 134:e181978. [PMID: 38959440 PMCID: PMC11178524 DOI: 10.1172/jci181978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Obesity has reached pandemic proportion not only in the West but also in other countries around the world; it is now one of the leading causes of death worldwide. A Western diet is rich in saturated fats and provides more calories than necessary, contributing to the rise of the obesity rate. It also promotes the development of liver steatosis, insulin resistance, hyperglycemia, and hyperlipidemia. In this issue of the JCI, Goetzman and colleagues describe the effects of consuming dicarboxylic acids (DAs) as an alternative source of dietary fat. The 12-carbon dicarboxylic acid (DC12) was administered to mice at 20% of their daily caloric intake for nine weeks in place of triglycerides. Notably, the change in diet increased the metabolic rate, reduced body fat, reduced liver fat, and improved glucose tolerance. These findings highlight DAs as useful energy nutrients for combatting obesity and treating various metabolic disorders.
Collapse
Affiliation(s)
| | - Stefan R. Bornstein
- Department of Medicine III, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Germany
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
| | - Geltrude Mingrone
- Division of Diabetes & Nutritional Sciences, School of Cardiovascular and Metabolic Medicine and Sciences, King’s College London, London, United Kingdom
- Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Medical and Surgical Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
4
|
Huang CH, Lee WJ, Huang YL, Tsai TF, Chen LK, Lin CH. Sebacic Acid as a Potential Age-Related Biomarker of Liver Aging: Evidence Linking Mice and Human. J Gerontol A Biol Sci Med Sci 2023; 78:1799-1808. [PMID: 37148322 DOI: 10.1093/gerona/glad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Indexed: 05/08/2023] Open
Abstract
The aging process is complicated and involves diverse organ dysfunction; furthermore, the biomarkers that are able to reflect biological aging are eagerly sought after to monitor the system-wide decline associated with the aging process. To address this, we performed a metabolomics analysis using a longitudinal cohort study from Taiwan (N = 710) and established plasma metabolomic age using a machine learning algorithm. The resulting estimation of age acceleration among the older adults was found to be correlated with HOMA-insulin resistance. In addition, a sliding window analysis was used to investigate the undulating decrease in hexanoic and heptanoic acids that occurs among the older adults at different ages. A comparison of the metabolomic alterations associated with aging between humans and mice implied that ω-oxidation of medium-chain fatty acids was commonly dysregulated in older subjects. Among these fatty acids, sebacic acid, an ω-oxidation product produced by the liver, was significantly decreased in the plasma of both older humans and aged mice. Notably, an increase in the production and consumption of sebacic acid within the liver tissue of aged mice was observed, along with an elevation of pyruvate-to-lactate conversion. Taken together, our study reveals that sebacic acid and metabolites of ω-oxidation are the common aging biomarkers in both humans and mice. The further analysis suggests that sebacic acid may play an energetic role in supporting the production of acetyl-CoA during liver aging, and thus its alteration in plasma concentration potentially reflects the aging process.
Collapse
Affiliation(s)
- Chen-Hua Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Wei-Ju Lee
- Department of Geriatric Medicine, School of Medicine, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Department of Family Medicine, Taipei Veterans General Hospital Yuanshan Branch, Yilan, Taiwan
| | - Yi-Long Huang
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Geriatrics and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
5
|
Pigsborg K, Stentoft-Larsen V, Demharter S, Aldubayan MA, Trimigno A, Khakimov B, Engelsen SB, Astrup A, Hjorth MF, Dragsted LO, Magkos F. Predicting weight loss success on a new Nordic diet: an untargeted multi-platform metabolomics and machine learning approach. Front Nutr 2023; 10:1191944. [PMID: 37599689 PMCID: PMC10434509 DOI: 10.3389/fnut.2023.1191944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/12/2023] [Indexed: 08/22/2023] Open
Abstract
Background and aim Results from randomized controlled trials indicate that no single diet performs better than other for all people living with obesity. Regardless of the diet plan, there is always large inter-individual variability in weight changes, with some individuals losing weight and some not losing or even gaining weight. This raises the possibility that, for different individuals, the optimal diet for successful weight loss may differ. The current study utilized machine learning to build a predictive model for successful weight loss in subjects with overweight or obesity on a New Nordic Diet (NND). Methods Ninety-one subjects consumed an NND ad libitum for 26 weeks. Based on their weight loss, individuals were classified as responders (weight loss ≥5%, n = 46) or non-responders (weight loss <2%, n = 24). We used clinical baseline data combined with baseline urine and plasma untargeted metabolomics data from two different analytical platforms, resulting in a data set including 2,766 features, and employed symbolic regression (QLattice) to develop a predictive model for weight loss success. Results There were no differences in clinical parameters at baseline between responders and non-responders, except age (47 ± 13 vs. 39 ± 11 years, respectively, p = 0.009). The final predictive model for weight loss contained adipic acid and argininic acid from urine (both metabolites were found at lower levels in responders) and generalized from the training (AUC 0.88) to the test set (AUC 0.81). Responders were also able to maintain a weight loss of 4.3% in a 12 month follow-up period. Conclusion We identified a model containing two metabolites that were able to predict the likelihood of achieving a clinically significant weight loss on an ad libitum NND. This work demonstrates that models based on an untargeted multi-platform metabolomics approach can be used to optimize precision dietary treatment for obesity.
Collapse
Affiliation(s)
- Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Mona Adnan Aldubayan
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- King Saud bin Abdulaziz University for Health Sciences, College of Applied Medical Sciences, Riyadh, Saudi Arabia
| | - Alessia Trimigno
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Bekzod Khakimov
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Arne Astrup
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - Mads Fiil Hjorth
- Obesity and Nutritional Sciences, Novo Nordisk Foundation, Hellerup, Denmark
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Faidon Magkos
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Zhao Q, Wu ZE, Li B, Li F. Recent advances in metabolism and toxicity of tyrosine kinase inhibitors. Pharmacol Ther 2022; 237:108256. [DOI: 10.1016/j.pharmthera.2022.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/15/2022]
|
7
|
Kenar JA, Compton DL, Peterson SC, Felker FC. Characterization and properties of starch-dicarboxylic acid inclusion complexes prepared by excess steam jet cooking. Carbohydr Polym 2022; 296:119955. [DOI: 10.1016/j.carbpol.2022.119955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
|
8
|
Cohen CC, Dabelea D, Michelotti G, Tang L, Shankar K, Goran MI, Perng W. Metabolome Alterations Linking Sugar-Sweetened Beverage Intake with Dyslipidemia in Youth: The Exploring Perinatal Outcomes among CHildren (EPOCH) Study. Metabolites 2022; 12:metabo12060559. [PMID: 35736491 PMCID: PMC9228193 DOI: 10.3390/metabo12060559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
The objective of this study was to assess intermediary metabolic alterations that link sugar-sweetened beverage (SSB) intake to cardiometabolic (CM) risk factors in youth. A total of 597 participants from the multi-ethnic, longitudinal Exploring Perinatal Outcomes among CHildren (EPOCH) Study were followed in childhood (median 10 yrs) and adolescence (median 16 yrs). We used a multi-step approach: first, mixed models were used to examine the associations of SSB intake in childhood with CM measures across childhood and adolescence, which revealed a positive association between SSB intake and fasting triglycerides (β (95% CI) for the highest vs. lowest SSB quartile: 8.1 (−0.9,17.0); p-trend = 0.057). Second, least absolute shrinkage and selection operator (LASSO) regression was used to select 180 metabolite features (out of 767 features assessed by untargeted metabolomics) that were associated with SSB intake in childhood. Finally, 13 of these SSB-associated metabolites (from step two) were also prospectively associated with triglycerides across follow-up (from step one) in the same direction as with SSB intake (Bonferroni-adj. p < 0.0003). All annotated compounds were lipids, particularly dicarboxylated fatty acids, mono- and diacylglycerols, and phospholipids. In this diverse cohort, we identified a panel of lipid metabolites that may serve as intermediary biomarkers, linking SSB intake to dyslipidemia risk in youth.
Collapse
Affiliation(s)
- Catherine C. Cohen
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (K.S.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
- Correspondence:
| | - Dana Dabelea
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (K.S.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Lu Tang
- Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA;
| | - Kartik Shankar
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; (D.D.); (K.S.)
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Michael I. Goran
- Department of Pediatrics, Children’s Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA 90007, USA;
| | - Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Denver Anschutz Medical Campus, Aurora, CO 80045, USA;
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Guintivano J, Aberg KA, Clark SL, Rubinow DR, Sullivan PF, Meltzer-Brody S, van den Oord EJCG. Transcriptome-wide association study for postpartum depression implicates altered B-cell activation and insulin resistance. Mol Psychiatry 2022; 27:2858-2867. [PMID: 35365803 PMCID: PMC9156403 DOI: 10.1038/s41380-022-01525-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 12/12/2022]
Abstract
Postpartum depression (PPD) affects 1 in 7 women and has negative mental health consequences for both mother and child. However, the precise biological mechanisms behind the disorder are unknown. Therefore, we performed the largest transcriptome-wide association study (TWAS) for PPD (482 cases, 859 controls) to date using RNA-sequencing in whole blood and deconvoluted cell types. No transcriptional changes were observed in whole blood. B-cells showed a majority of transcriptome-wide significant results (891 transcripts representing 789 genes) with pathway analyses implicating altered B-cell activation and insulin resistance. Integration of other data types revealed cell type-specific DNA methylation loci and disease-associated eQTLs (deQTLs), but not hormones/neuropeptides (estradiol, progesterone, oxytocin, BDNF), serve as regulators for part of the transcriptional differences between cases and controls. Further, deQTLs were enriched for several brain region-specific eQTLs, but no overlap with MDD risk loci was observed. Altogether, our results constitute a convergence of evidence for pathways most affected in PPD with data across different biological mechanisms.
Collapse
Affiliation(s)
- Jerry Guintivano
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Karolina A Aberg
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Shaunna L Clark
- Department of Psychiatry & Behavioral Sciences, Texas A&M University, College Station, TX, USA
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patrick F Sullivan
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Samantha Meltzer-Brody
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Edwin J C G van den Oord
- Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
10
|
Guo Y, Zhu G, Wang F, Zhang H, Chen X, Mao Y, Lv Y, Xia F, Jin Y, Ding G, Yu J. Distinct Serum and Fecal Metabolite Profiles Linking With Gut Microbiome in Older Adults With Frailty. Front Med (Lausanne) 2022; 9:827174. [PMID: 35479954 PMCID: PMC9035822 DOI: 10.3389/fmed.2022.827174] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 12/16/2022] Open
Abstract
Frailty is a critical aging-related syndrome but the underlying metabolic mechanism remains poorly understood. The aim of this study was to identify novel biomarkers and reveal potential mechanisms of frailty based on the integrated analysis of metabolome and gut microbiome. In this study, twenty subjects consisted of five middle-aged adults and fifteen older adults, of which fifteen older subjects were divided into three groups: non-frail, pre-frail, and frail, with five subjects in each group. The presence of frailty, pre-frailty, or non-frailty was established according to the physical frailty phenotype (PFP). We applied non-targeted metabolomics to serum and feces samples and used 16S rDNA gene sequencing to detect the fecal microbiome. The associations between metabolites and gut microbiota were analyzed by the Spearman’s correlation analysis. Serum metabolic shifts in frailty mainly included fatty acids and derivatives, carbohydrates, and monosaccharides. Most of the metabolites belonging to these classes increased in the serum of frail older adults. Propylparaben was found to gradually decrease in non-frail, pre-frail, and frail older adults. Distinct changes in fecal metabolite profiles and gut microbiota were also found among middle-aged adults, non-frail and frail older subjects. The relative abundance of Faecalibacteriu, Roseburia, and Fusicatenibacter decreased while the abundance of Parabacteroides and Bacteroides increased in frailty. The above altered microbes were associated with the changed serum metabolites in frailty, which included dodecanedioic acid, D-ribose, D-(-)-mannitol, creatine and indole, and their related fecal metabolites. The changed microbiome and related metabolites may be used as the biomarkers of frailty and is worthy of further mechanistic studies.
Collapse
Affiliation(s)
- Yan Guo
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Yancheng City No. 1 People’s Hospital, Yancheng, China
| | - Guoqin Zhu
- Division of Geriatric Gastroenterology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengliang Wang
- Department of Breast Surgery, Nanjing Maternity and Child Health Care Hospital, The Affiliated Obstetrics and Gynaecology Hospital of Nanjing Medical University, Nanjing, China
| | - Haoyu Zhang
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Human Biology Undergraduate, University of Toronto, Toronto, ON, Canada
| | - Xin Chen
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Mao
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yifan Lv
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fan Xia
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Jin
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guoxian Ding
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Guoxian Ding,
| | - Jing Yu
- Division of Geriatric Endocrinology, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Yu,
| |
Collapse
|
11
|
Serum Metabolites Associated with Blood Pressure in Chronic Kidney Disease Patients. Metabolites 2022; 12:metabo12040281. [PMID: 35448468 PMCID: PMC9027690 DOI: 10.3390/metabo12040281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
Blood pressure is one of the most basic health screenings and it has a complex relationship with chronic kidney disease (CKD). Controlling blood pressure for CKD patients is crucial for curbing kidney function decline and reducing the risk of cardiovascular disease. Two independent CKD cohorts, including matched controls (discovery n = 824; validation n = 552), were recruited. High-throughput metabolomics was conducted with the patients’ serum samples using mass spectrometry. After controlling for CKD severity and other clinical hypertension risk factors, we identified ten metabolites that have significant associations with blood pressure. The quantitative importance of these metabolites was verified in a fully connected neural network model. Of the ten metabolites, seven have not previously been associated with blood pressure. The metabolites that had the strongest positive association with blood pressure were aspartylglycosamine (p = 4.58 × 10−5), fructose-1,6-diphosphate (p = 1.19 × 10−4) and N-Acetylserine (p = 3.27 × 10−4). Three metabolites that were negatively associated with blood pressure (phosphocreatine, p = 6.39 × 10−3; dodecanedioic acid, p = 0.01; phosphate, p = 0.04) have been reported previously to have beneficial effects on hypertension. These results suggest that intake of metabolites as supplements may help to control blood pressure in CKD patients.
Collapse
|
12
|
Muller E, Algavi YM, Borenstein E. A meta-analysis study of the robustness and universality of gut microbiome-metabolome associations. MICROBIOME 2021; 9:203. [PMID: 34641974 PMCID: PMC8507343 DOI: 10.1186/s40168-021-01149-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/18/2021] [Indexed: 05/15/2023]
Abstract
BACKGROUND Microbiome-metabolome studies of the human gut have been gaining popularity in recent years, mostly due to accumulating evidence of the interplay between gut microbes, metabolites, and host health. Statistical and machine learning-based methods have been widely applied to analyze such paired microbiome-metabolome data, in the hope of identifying metabolites that are governed by the composition of the microbiome. Such metabolites can be likely modulated by microbiome-based interventions, offering a route for promoting gut metabolic health. Yet, to date, it remains unclear whether findings of microbially associated metabolites in any single study carry over to other studies or cohorts, and how robust and universal are microbiome-metabolites links. RESULTS In this study, we addressed this challenge by performing a comprehensive meta-analysis to identify human gut metabolites that can be predicted based on the composition of the gut microbiome across multiple studies. We term such metabolites "robustly well-predicted". To this end, we processed data from 1733 samples from 10 independent human gut microbiome-metabolome studies, focusing initially on healthy subjects, and implemented a machine learning pipeline to predict metabolite levels in each dataset based on the composition of the microbiome. Comparing the predictability of each metabolite across datasets, we found 97 robustly well-predicted metabolites. These include metabolites involved in important microbial pathways such as bile acid transformations and polyamines metabolism. Importantly, however, other metabolites exhibited large variation in predictability across datasets, suggesting a cohort- or study-specific relationship between the microbiome and the metabolite. Comparing taxonomic contributors to different models, we found that some robustly well-predicted metabolites were predicted by markedly different sets of taxa across datasets, suggesting that some microbially associated metabolites may be governed by different members of the microbiome in different cohorts. We finally examined whether models trained on a control group of a given study successfully predicted the metabolite's level in the disease group of the same study, identifying several metabolites where the model was not transferable, indicating a shift in microbial metabolism in disease-associated dysbiosis. CONCLUSIONS Combined, our findings provide a better understanding of the link between the microbiome and metabolites and allow researchers to put identified microbially associated metabolites within the context of other studies. Video abstract.
Collapse
Affiliation(s)
- Efrat Muller
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Yadid M. Algavi
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elhanan Borenstein
- The Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Santa Fe Institute, Santa Fe, NM USA
| |
Collapse
|
13
|
Metabolic Outcomes of Anaplerotic Dodecanedioic Acid Supplementation in Very Long Chain Acyl-CoA Dehydrogenase (VLCAD) Deficient Fibroblasts. Metabolites 2021; 11:metabo11080538. [PMID: 34436479 PMCID: PMC8412092 DOI: 10.3390/metabo11080538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/16/2022] Open
Abstract
Very long-chain acyl-CoA dehydrogenase deficiency (VLCADD, OMIM 609575) is associated with energy deficiency and mitochondrial dysfunction and may lead to rhabdomyolysis and cardiomyopathy. Under physiological conditions, there is a fine balance between the utilization of different carbon nutrients to maintain the Krebs cycle. The maintenance of steady pools of Krebs cycle intermediates is critical formitochondrial energy homeostasis especially in high-energy demanding organs such as muscle and heart. Even-chain dicarboxylic acids are established as alternative energy carbon sources that replenish the Krebs cycle by bypassing a defective β-oxidation pathway. Despite this, even-chain dicarboxylic acids are eliminated in the urine of VLCAD-affected individuals. In this study, we explore dodecanedioic acid (C12; DODA) supplementation and investigate its metabolic effect on Krebs cycle intermediates, glucose uptake, and acylcarnitine profiles in VLCAD-deficient fibroblasts. Our findings indicate that DODA supplementation replenishes the Krebs cycle by increasing the succinate pool, attenuates glycolytic flux, and reduces levels of toxic very long-chain acylcarnitines.
Collapse
|
14
|
Moon S, Tsay JJ, Lampert H, Md Dom ZI, Kostic AD, Smiles A, Niewczas MA. Circulating short and medium chain fatty acids are associated with normoalbuminuria in type 1 diabetes of long duration. Sci Rep 2021; 11:8592. [PMID: 33883567 PMCID: PMC8060327 DOI: 10.1038/s41598-021-87585-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 03/30/2021] [Indexed: 11/08/2022] Open
Abstract
A substantial number of subjects with Type 1 Diabetes (T1D) of long duration never develop albuminuria or renal function impairment, yet the underlying protective mechanisms remain unknown. Therefore, our study included 308 Joslin Kidney Study subjects who had T1D of long duration (median: 24 years), maintained normal renal function and had either normoalbuminuria or a broad range of albuminuria within the 2 years preceding the metabolomic determinations. Serum samples were subjected to global metabolomic profiling. 352 metabolites were detected in at least 80% of the study population. In the logistic analyses adjusted for multiple testing (Bonferroni corrected α = 0.000028), we identified 38 metabolites associated with persistent normoalbuminuria independently from clinical covariates. Protective metabolites were enriched in Medium Chain Fatty Acids (MCFAs) and in Short Chain Fatty Acids (SCFAs) and particularly involved odd-numbered and dicarboxylate Fatty Acids. One quartile change of nonanoate, the top protective MCFA, was associated with high odds of having persistent normoalbuminuria (OR (95% CI) 0.14 (0.09, 0.23); p < 10-12). Multivariable Random Forest analysis concordantly indicated to MCFAs as effective classifiers. Associations of the relevant Fatty Acids with albuminuria seemed to parallel associations with tubular biomarkers. Our findings suggest that MCFAs and SCFAs contribute to the metabolic processes underlying protection against albuminuria development in T1D that are independent from mechanisms associated with changes in renal function.
Collapse
Affiliation(s)
- Salina Moon
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
| | - John J Tsay
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Medicine, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| | - Heather Lampert
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Family Medicine, Brown University, Providence, RI, USA
| | - Zaipul I Md Dom
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Aleksandar D Kostic
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Adam Smiles
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA
| | - Monika A Niewczas
- Research Division, Joslin Diabetes Center, One Joslin Place, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Bowerman KL, Rehman SF, Vaughan A, Lachner N, Budden KF, Kim RY, Wood DLA, Gellatly SL, Shukla SD, Wood LG, Yang IA, Wark PA, Hugenholtz P, Hansbro PM. Disease-associated gut microbiome and metabolome changes in patients with chronic obstructive pulmonary disease. Nat Commun 2020; 11:5886. [PMID: 33208745 PMCID: PMC7676259 DOI: 10.1038/s41467-020-19701-0] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third commonest cause of death globally, and manifests as a progressive inflammatory lung disease with no curative treatment. The lung microbiome contributes to COPD progression, but the function of the gut microbiome remains unclear. Here we examine the faecal microbiome and metabolome of COPD patients and healthy controls, finding 146 bacterial species differing between the two groups. Several species, including Streptococcus sp000187445, Streptococcus vestibularis and multiple members of the family Lachnospiraceae, also correlate with reduced lung function. Untargeted metabolomics identifies a COPD signature comprising 46% lipid, 20% xenobiotic and 20% amino acid related metabolites. Furthermore, we describe a disease-associated network connecting Streptococcus parasanguinis_B with COPD-associated metabolites, including N-acetylglutamate and its analogue N-carbamoylglutamate. While correlative, our results suggest that the faecal microbiome and metabolome of COPD patients are distinct from those of healthy individuals, and may thus aid in the search for biomarkers for COPD. Chronic obstructive pulmonary disease (COPD) is a progressing disease, with lung but not gut microbiota implicated in its etiology. Here the authors compare the stool from patients with COPD and healthy controls to find specific gut bacteria and metabolites associated with active disease, thereby hinting at a potential role for the gut microbiome in COPD.
Collapse
Affiliation(s)
- Kate L Bowerman
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Saima Firdous Rehman
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Annalicia Vaughan
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Nancy Lachner
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Kurtis F Budden
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia
| | - David L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Shaan L Gellatly
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Shakti D Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Ian A Yang
- Thoracic Research Centre, Faculty of Medicine, The University of Queensland, and Department of Thoracic Medicine, The Prince Charles Hospital, Brisbane, QLD, Australia
| | - Peter A Wark
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, and The University of Newcastle, Newcastle, NSW, Australia. .,Centre for Inflammation, Centenary Institute & University of Technology Sydney, School of Life Sciences, Faculty of Science, Sydney, NSW, Australia.
| |
Collapse
|
16
|
Liu Y, Li Y, Zhang T, Zhao H, Fan S, Cai X, Liu Y, Li Z, Gao S, Li Y, Yu C. Analysis of biomarkers and metabolic pathways in patients with unstable angina based on ultra‑high‑performance liquid chromatography‑quadrupole time‑of‑flight mass spectrometry. Mol Med Rep 2020; 22:3862-3872. [PMID: 32901869 PMCID: PMC7533448 DOI: 10.3892/mmr.2020.11476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 06/26/2020] [Indexed: 12/29/2022] Open
Abstract
Unstable angina (UA) is a coronary disease with a high mortality and morbidity worldwide. The present study aimed to use non-invasive techniques to identify urine biomarkers in patients with UA, so as to provide more information for the early diagnosis and treatment of the disease. Based on metabolomics, urine samples from 28 patients with UA and 28 healthy controls (HCs) were analyzed using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS). A total of 16 significant biomarkers that could distinguish between patients with UA and HCs, including D-glucuronic acid, creatinine, succinic acid and N-acetylneuraminic acid, were identified. The major metabolic pathways associated with UA were subsequently analyzed by non-targeted metabolomics. The results demonstrated that amino acid and energy metabolism, fatty acid metabolism, purine metabolism and steroid hormone biosynthetic metabolism may serve important roles in UA. The results of the current study may provide a theoretical basis for the early diagnosis of UA and novel treatment strategies for clinicians. The trial was registered with the Chinese Clinical Trial Registration Center (registration no. ChiCTR-ROC-17013957) at Tianjin University of Traditional Chinese Medicine.
Collapse
Affiliation(s)
- Yuechen Liu
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yue Li
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Tianpu Zhang
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Huan Zhao
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Simiao Fan
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xuemeng Cai
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yijia Liu
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Zhu Li
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Shan Gao
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Yubo Li
- College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Chunquan Yu
- Research Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
17
|
Mendonça Machado N, Torrinhas RS, Sala P, Ishida RK, Guarda IFMS, Moura EGHD, Sakai P, Santo MA, Linetzky Waitzberg D. Type 2 Diabetes Metabolic Improvement After Roux-en-Y Gastric Bypass May Include a Compensatory Mechanism That Balances Fatty Acid β and ω Oxidation. JPEN J Parenter Enteral Nutr 2020; 44:1417-1427. [PMID: 32654184 DOI: 10.1002/jpen.1960] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND More than half of patients who undergo Roux-en-Y gastric bypass (RYGB) can experience type 2 diabetes (T2D) remission, but the systemic and gastrointestinal (GI) metabolic mechanisms of this improvement are still elusive. METHODS Paired samples collected before and 3 months after RYGB from 28 women with obesity and T2D were analyzed by metabolomics with gas chromatography coupled to mass spectrometry. Samples include plasma (n = 56) and biopsies of gastric pouch (n = 18), gastric remnant (n = 10), duodenum (n = 16), jejunum (n = 18), and ileum (n = 18), collected by double-balloon enteroscopy. RESULTS After RYGB, improvements in body composition and weight-related and glucose homeostasis parameters were observed. Plasma-enriched metabolic pathways included arginine and proline metabolism, urea and tricarboxylic acid (TCA) cycles, gluconeogenesis, malate-aspartate shuttle, and carnitine synthesis. In GI tissue, we observed alterations of ammonia recycling and carnitine synthesis in gastric pouch, phenylacetate metabolism and trehalose degradation in duodenum and jejunum, ketone bodies in jejunum, and lactose degradation in ileum. Intermediates molecules of the TCA cycle were enriched, particularly in plasma, jejunum, and ileum. Fluctuations of dicarboxylic acids (DCAs) were relevant in several metabolomic tests, and metabolite alterations included aminomalonate and fumaric, malic, oxalic, and succinic acids. The product/substrate relationship between these molecules and its pathways may reflect a compensatory mechanism to balance metabolism. CONCLUSIONS RYGB was associated with systemic and GI metabolic reprogramming. DCA alterations link ω and β fatty acid oxidation to homeostatic mechanisms, including TCA cycle improvement.
Collapse
Affiliation(s)
- Natasha Mendonça Machado
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Raquel Susana Torrinhas
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Priscila Sala
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Robson Kiyoshi Ishida
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Ismael Francisco Mota Siqueira Guarda
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Eduardo Guimarães Hourneaux de Moura
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Paulo Sakai
- Gastrointestinal Endoscopy Unit, Department of Gastroenterology, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marco Aurélio Santo
- Bariatric and Metabolic Surgery Unit, Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Dan Linetzky Waitzberg
- Department of Gastroenterology, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
18
|
Kim SJ, Miller B, Mehta HH, Xiao J, Wan J, Arpawong TE, Yen K, Cohen P. The mitochondrial-derived peptide MOTS-c is a regulator of plasma metabolites and enhances insulin sensitivity. Physiol Rep 2020; 7:e14171. [PMID: 31293078 PMCID: PMC6640593 DOI: 10.14814/phy2.14171] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
MOTS‐c is an exercise mimetic and improves insulin sensitivity in aged and diet‐induced obese mice. Although plasma markers are good markers for the metabolic condition, whether MOTS‐c changes plasma markers in diet‐induced obese mice has not been examined. Here, we used an unbiased metabolomics approach to examine the effect of MOTS‐c on plasma markers of metabolic dysfunction. We found that three pathways – sphingolipid metabolism, monoacylglycerol metabolism, and dicarboxylate metabolism – were reduced in MOTS‐c–injected mice. Interestingly, these pathways are upregulated in obese and T2D models. MOTS‐c improves insulin sensitivity and increases beta‐oxidation to prevent fat accumulation in DIO mice through these pathways. These results provide us a better understanding of the mechanism of how MOTS‐c improves insulin sensitivity and reduces the body weight and fatty liver and opens a new venue for further study.
Collapse
Affiliation(s)
- Su-Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Jialin Xiao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Junxiang Wan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Thalida E Arpawong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA
| |
Collapse
|
19
|
Bharathi SS, Zhang Y, Gong Z, Muzumdar R, Goetzman ES. Role of mitochondrial acyl-CoA dehydrogenases in the metabolism of dicarboxylic fatty acids. Biochem Biophys Res Commun 2020; 527:162-166. [PMID: 32446361 DOI: 10.1016/j.bbrc.2020.04.105] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 10/24/2022]
Abstract
Dicarboxylic fatty acids, taken as a nutritional supplement or produced endogenously via omega oxidation of monocarboxylic fatty acids, may have therapeutic potential for rare inborn errors of metabolism as well as common metabolic diseases such as type 2 diabetes. Breakdown of dicarboxylic acids yields acetyl-CoA and succinyl-CoA as products, the latter of which is anaplerotic for the TCA cycle. However, little is known about the metabolic pathways responsible for degradation of dicarboxylic acids. Here, we demonstrated with whole-cell fatty acid oxidation assays that both mitochondria and peroxisomes contribute to dicarboxylic acid degradation. Several mitochondrial acyl-CoA dehydrogenases were tested for activity against dicarboxylyl-CoAs. Medium-chain acyl-CoA dehydrogenase (MCAD) exhibited activity with both six and 12 carbon dicarboxylyl-CoAs, and the capacity for dehydrogenation of these substrates was significantly reduced in MCAD knockout mouse liver. However, when dicarboxylic acids were fed to normal mice, the expression of MCAD did not change, while expression of peroxisomal fatty acid oxidation enzymes was greatly upregulated. In conclusion, mitochondrial fatty acid oxidation, and in particular MCAD, contributes to dicarboxylic acid degradation, but feeding dicarboxylic acids induces only the peroxisomal pathway.
Collapse
Affiliation(s)
- Sivakama S Bharathi
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Yuxun Zhang
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Zhenwei Gong
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Radhika Muzumdar
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA
| | - Eric S Goetzman
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15224, USA.
| |
Collapse
|
20
|
Peron G, Sut S, Dal Ben S, Voinovich D, Dall'Acqua S. Untargeted UPLC-MS metabolomics reveals multiple changes of urine composition in healthy adult volunteers after consumption of curcuma longa L. extract. Food Res Int 2019; 127:108730. [PMID: 31882111 DOI: 10.1016/j.foodres.2019.108730] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/28/2019] [Indexed: 01/21/2023]
Abstract
Curcuma longa L. is used as food supplement to prevent diseases, although limited studies have been performed on healthy subjects up to now. In the present work, an untargeted UPLC-MS metabolomics approach was applied to study the changes of 24-hours urinary composition on healthy volunteers due to a 28-days daily consumption of a dried C. longa extract containing a standardized amount of curcuminoids. Changes in the excretion of different metabolites were observed after supplementation. Curcumin and two metabolic derivatives (hexahydrocurcumin and dihydrocurcumin) were detected in urine, indicating the absorption of the main curcuminoid from the extract and its further metabolism by liver and gut microbiota. For the first time ar-turmerone, the main apolar constituent of curcuma, was detected in urine in intact form, and its presence was confirmed by a targeted GC-MS analysis. The increase of tetranor-PGJM and tetranor-PGDM, two prostaglandin-D2 metabolites, was observed, being related to the anti-inflammatory effect exerted by curcuma. The variation of the amounts of HPAG, PAG, proline-betaine and hydroxyphenyllactic acid indicate that the supplementation induced changes to the activity of gut microbiota. Finally, the reduced excretion of niacin metabolites (nicotinuric acid, trigonelline and 2PY) and medium- and short-chain acylcarnitines suggests that curcuma could induce the mitochondrial β-oxidation of fatty acids for energy production in healthy subjects. Overall, the results indicate that a prolonged daily consumption of a dried curcuma extract exerts multiple effects on healthy subjects, furthermore they show the opportunity offered by untargeted metabolomics for the study of the bioactivity of natural extracts in healthy human volunteers.
Collapse
Affiliation(s)
- Gregorio Peron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Stefania Sut
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| | - Simone Dal Ben
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, I-34127 Trieste, Italy.
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131 Padova, Italy.
| |
Collapse
|
21
|
Viltard M, Durand S, Pérez-Lanzón M, Aprahamian F, Lefevre D, Leroy C, Madeo F, Kroemer G, Friedlander G. The metabolomic signature of extreme longevity: naked mole rats versus mice. Aging (Albany NY) 2019; 11:4783-4800. [PMID: 31346149 PMCID: PMC6682510 DOI: 10.18632/aging.102116] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/16/2019] [Indexed: 04/11/2023]
Abstract
The naked mole-rat (Heterocephalus glaber) is characterized by a more than tenfold higher life expectancy compared to another rodent species of the same size, namely, the laboratory mouse (Mus musculus). We used mass spectrometric metabolomics to analyze circulating plasma metabolites in both species at different ages. Interspecies differences were much more pronounced than age-associated alterations in the metabolome. Such interspecies divergences affected multiple metabolic pathways involving amino, bile and fatty acids as well as monosaccharides and nucleotides. The most intriguing metabolites were those that had previously been linked to pro-health and antiaging effects in mice and that were significantly increased in the long-lived rodent compared to its short-lived counterpart. This pattern applies to α-tocopherol (also known as vitamin E) and polyamines (in particular cadaverine, N8-acetylspermidine and N1,N8-diacetylspermidine), all of which were more abundant in naked mole-rats than in mice. Moreover, the age-associated decline in spermidine and N1-acetylspermidine levels observed in mice did not occur, or is even reversed (in the case of N1-acetylspermidine) in naked mole-rats. In short, the present metabolomics analysis provides a series of testable hypotheses to explain the exceptional longevity of naked mole-rats.
Collapse
Affiliation(s)
- Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Sylvère Durand
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Maria Pérez-Lanzón
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, France
| | - Fanny Aprahamian
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Deborah Lefevre
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christine Leroy
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
| | - Frank Madeo
- Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Guido Kroemer
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Equipe Labellisée par la Ligue contre le Cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Gérard Friedlander
- INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM), Paris, France
- Service de Physiologie et Explorations Fonctionnelles, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Paris, France
- Université de Paris - Paris Descartes, Faculté de Médecine, Paris, France
| |
Collapse
|
22
|
Stanfill B, Reehl S, Bramer L, Nakayasu ES, Rich SS, Metz TO, Rewers M, Webb-Robertson BJ. Extending Classification Algorithms to Case-Control Studies. Biomed Eng Comput Biol 2019; 10:1179597219858954. [PMID: 31320812 PMCID: PMC6630079 DOI: 10.1177/1179597219858954] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/26/2019] [Indexed: 12/16/2022] Open
Abstract
Classification is a common technique applied to 'omics data to build predictive models and identify potential markers of biomedical outcomes. Despite the prevalence of case-control studies, the number of classification methods available to analyze data generated by such studies is extremely limited. Conditional logistic regression is the most commonly used technique, but the associated modeling assumptions limit its ability to identify a large class of sufficiently complicated 'omic signatures. We propose a data preprocessing step which generalizes and makes any linear or nonlinear classification algorithm, even those typically not appropriate for matched design data, available to be used to model case-control data and identify relevant biomarkers in these study designs. We demonstrate on simulated case-control data that both the classification and variable selection accuracy of each method is improved after applying this processing step and that the proposed methods are comparable to or outperform existing variable selection methods. Finally, we demonstrate the impact of conditional classification algorithms on a large cohort study of children with islet autoimmunity.
Collapse
Affiliation(s)
- Bryan Stanfill
- Computing and Analytics Division, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah Reehl
- Computing and Analytics Division, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Lisa Bramer
- Computing and Analytics Division, National Security Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Ernesto S Nakayasu
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Thomas O Metz
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado Denver, Aurora, CO, USA
| | - Bobbie-Jo Webb-Robertson
- Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | | |
Collapse
|
23
|
Kaldas K, Preegel G, Muldma K, Lopp M. Reactivity of Aliphatic Dicarboxylic Acids in Wet Air Oxidation Conditions. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b01643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kristiina Kaldas
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Gert Preegel
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Kati Muldma
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| | - Margus Lopp
- Department of Chemistry and Biotechnology, Faculty of Science, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia
| |
Collapse
|
24
|
di Giuseppe R, Koch M, Nöthlings U, Kastenmüller G, Artati A, Adamski J, Jacobs G, Lieb W. Metabolomics signature associated with circulating serum selenoprotein P levels. Endocrine 2019; 64:486-495. [PMID: 30448992 DOI: 10.1007/s12020-018-1816-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/07/2018] [Indexed: 10/27/2022]
Abstract
PURPOSE Selenoprotein P (SELENOP) has been previously related to various metabolic traits with partially conflicting results. The identification of SELENOP-associated metabolites, using an untargeted metabolomics approach, may provide novel biological insights relevant to disentangle the role of SELENOP in human health. METHODS In this cross-sectional study, 572 serum metabolites were identified by comparing the obtained LC-MS/MS spectra with spectra stored in Metabolon's spectra library. Serum SELENOP levels were measured in 832 men and women using an ELISA kit. RESULTS Circulating SELENOP levels were associated with 24 out of 572 metabolites after accounting for the number of independent dimensions in the metabolomics data, including inverse associations with alanine, glutamate, leucine, isoleucine and valine, an unknown compound X-12063, urate and the peptides gamma-glutamyl-leucine, and N-acetylcarnosine. Positive associations were observed between SELENOP and several lipid compounds. Of the identified metabolites, each standard deviation increase in the branched-chain amino acids (isoleucine, leucine, valine), alanine and gamma-glutamyl-leucine was related to higher odds of having T2DM [OR (95% CI): 1.96 (1.41-2.73); 1.62 (1.15-2.28); 1.94 (1.45-2.60), 1.57 (1.17-2.11), and 1.52 (1.13-2.05), respectively]. CONCLUSIONS Higher serum SELENOP levels were associated with an overall healthy metabolomics profile, which may provide further insights into potential mechanisms of SELENOP-associated metabolic disorders.
Collapse
Affiliation(s)
| | - Manja Koch
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Ute Nöthlings
- Department of Nutrition and Food Sciences, University of Bonn, Bonn, Germany
| | - Gabi Kastenmüller
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
| | - Anna Artati
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Jerzy Adamski
- Deutsches Zentrum für Diabetesforschung (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Genome Analysis Center, Helmholtz Zentrum München, Neuherberg, Germany
- Experimental Genetics, Technical University of Munich, Freising, Germany
| | - Gunnar Jacobs
- Institute of Epidemiology, Kiel University, Kiel, Germany
- Biobank PopGen, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Wolfgang Lieb
- Institute of Epidemiology, Kiel University, Kiel, Germany
- Biobank PopGen, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| |
Collapse
|
25
|
Cao W, Wang Y, Luo J, Yin J, Wan Y. Improving α, ω-dodecanedioic acid productivity from n-dodecane and hydrolysate of Candida cells by membrane integrated repeated batch fermentation. BIORESOURCE TECHNOLOGY 2018; 260:9-15. [PMID: 29604565 DOI: 10.1016/j.biortech.2018.03.070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 03/12/2018] [Accepted: 03/13/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study is to develop an effective production process for α, ω-dodecanedioic acid (DC12) biosynthesis using n-dodecane and hydrolysate of Candida cells as substrates by membrane integrated repeated batch fermentation. Cells and n-dodecane were simultaneously recycled during the filtration of fermentation broth (FB) with a 150 kDa ceramic membrane under a cross-flow velocity of 4 m/s and a trans-membrane pressure of 0.2 MPa, and it was also revealed that the cells in the broth could alleviate the membrane fouling during the FB filtration. Moreover, the hydrolysate of the collected cells could be successfully used as a nitrogen source to replace 50% yeast extract for decreasing the DC12 production cost. With repeated-batch culture in a membrane bioreactor, the maximal DC12 productivity could be enhanced by 57.8% compared with the batch culture, meanwhile n-dodecane and cells could be recovered and used for the next fermentation cycle.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing 100036, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
26
|
Cao W, Wang Y, Luo J, Yin J, Wan Y. Simultaneous decolorization and deproteinization of α,ω-dodecanedioic acid fermentation broth by integrated ultrafiltration and adsorption treatments. Bioprocess Biosyst Eng 2018; 41:1271-1281. [PMID: 29767339 DOI: 10.1007/s00449-018-1955-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/08/2018] [Indexed: 01/28/2023]
Abstract
α,ω-Dicarboxylic acids (DC) are versatile chemical intermediates with different chain length. For biosynthesis of DC, to obtain the highly pure product via crystallization, it is required to remove pigments and proteins in fermentation broth. However, a trade-off between decolorization/deproteinization ratio and DC recovery during the purification process was found, which impeded DC production by fermentation. When ultrafiltration (UF) was applied to treat α,ω-dodecanedioic acid (DC12) broth, 93.4% of DC12 recovery, 80.5% of decolorization ratio and 61.7% of deproteinization ratio were achieved by a PES 3 membrane. However, the membrane technology could not effectively retain the pigments or proteins with low molecular weight when a high DC12 permeation was required. Meanwhile, the selected activated charcoal or macroporous resins were not good adsorbents for the present system. Furthermore, an integrated process for decolorization and deproteinization was developed. After filtration with PES3 membrane, an activated charcoal was used to remove the small proteins and pigments in the UF permeate. As a result, 91.4% of DC12 recovery, 94.7% of decolorization ratio and 84.8% of deproteinization ratio were obtained by such two-stage strategy. These results would serve as a valuable guide for process design and practical operation in subsequent industrial application.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing, 100036, People's Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Chinese Academy of Sciences, University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
27
|
Cao W, Liu B, Luo J, Yin J, Wan Y. α, ω-Dodecanedioic acid production by Candida viswanathii ipe-1 with co-utilization of wheat straw hydrolysates and n-dodecane. BIORESOURCE TECHNOLOGY 2017; 243:179-187. [PMID: 28662387 DOI: 10.1016/j.biortech.2017.06.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Candida viswanathii ipe-1 was used to produce α, ω-dodecanedioic acid (DC12), which showed capability to ferment xylose and glucose simultaneously, while arabinose utilization was less efficient. A low concentration of furfural enhanced cell growth, and the addition of 4.0g/L sodium acetate largely increased DC12 production. It indicated that detoxification of the wheat straw hydrolysates was not necessary for the biosynthesis of DC12. Based on the promising features of our strain, an efficient process was developed to produce DC12 from co-utilization of wheat straw hydrolysates and n-dodecane. Using this process, 129.7g/L DC12 with a corresponding productivity of 1.13g·L-1·h-1 could be produced, which was increased by 40.0% compared with a sole carbon of glucose. The improved DC12 yield by the co-utilization of wheat straw hydrolysates and n-dodecane using C. viswanathii ipe-1 demonstrates the great potential of using biomass as a feedstock in the production of DC12.
Collapse
Affiliation(s)
- Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Bin Liu
- College of Food Science and Engineering, Qilu University of Technology, Jinan 250353, PR China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Junxiang Yin
- China National Center for Biotechnology Development, Beijing 100036, PR China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
28
|
Wilson KA, Han Y, Zhang M, Hess JP, Chapman KA, Cline GW, Tochtrop GP, Brunengraber H, Zhang GF. Inter-relations between 3-hydroxypropionate and propionate metabolism in rat liver: relevance to disorders of propionyl-CoA metabolism. Am J Physiol Endocrinol Metab 2017; 313:E413-E428. [PMID: 28634175 PMCID: PMC5668600 DOI: 10.1152/ajpendo.00105.2017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/25/2017] [Accepted: 06/14/2017] [Indexed: 12/15/2022]
Abstract
Propionate, 3-hydroxypropionate (3HP), methylcitrate, related compounds, and ammonium accumulate in body fluids of patients with disorders of propionyl-CoA metabolism, such as propionic acidemia. Although liver transplantation alleviates hyperammonemia, high concentrations of propionate, 3HP, and methylcitrate persist in body fluids. We hypothesized that conserved metabolic perturbations occurring in transplanted patients result from the simultaneous presence of propionate and 3HP in body fluids. We investigated the inter-relations of propionate and 3HP metabolism in perfused livers from normal rats using metabolomic and stable isotopic technologies. In the presence of propionate, 3HP, or both, we observed the following metabolic perturbations. First, the citric acid cycle (CAC) is overloaded but does not provide sufficient reducing equivalents to the respiratory chain to maintain the homeostasis of adenine nucleotides. Second, there is major CoA trapping in the propionyl-CoA pathway and a tripling of liver total CoA within 1 h. Third, liver proteolysis is stimulated. Fourth, propionate inhibits the conversion of 3HP to acetyl-CoA and its oxidation in the CAC. Fifth, some propionate and some 3HP are converted to nephrotoxic maleate by different processes. Our data have implications for the clinical management of propionic acidemia. They also emphasize the perturbations of the liver intermediary metabolism induced by supraphysiological, i.e., millimolar, concentrations of labeled propionate used to trace the intermediary metabolism, in particular, inhibition of CAC flux and major decreases in the [ATP]/[ADP] and [ATP]/[AMP] ratios.
Collapse
Affiliation(s)
- Kirkland A Wilson
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Yong Han
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Miaoqi Zhang
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio
| | - Jeremy P Hess
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Kimberly A Chapman
- Children's National Medical Center, Washington, District of Columbia
- George Washington University, Washington, District of Columbia
| | - Gary W Cline
- Department of Internal Medicine, Yale University, New Haven, Connecticut; and
| | - Gregory P Tochtrop
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio
| | - Henri Brunengraber
- Department of Nutrition, Case Western Reserve University, Cleveland, Ohio;
| | - Guo-Fang Zhang
- Division of Endocrinology, Metabolism and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University, Durham, North Carolina
| |
Collapse
|
29
|
Cao W, Li H, Luo J, Yin J, Wan Y. High-level productivity of α,ω-dodecanedioic acid with a newly isolated Candida viswanathii strain. ACTA ACUST UNITED AC 2017; 44:1191-1202. [DOI: 10.1007/s10295-017-1948-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 04/18/2017] [Indexed: 12/18/2022]
Abstract
Abstract
α,ω-Dicarboxylic acids (DC) are versatile chemical intermediates with different chain lengths, which are well-known as polymer building block. In this work, a new strain with high productivity of DC was isolated from oil-contaminated soil. Based on the morphology and phylogenetic analyses of the internal transcribed spacer sequences, it was characterized as Candida viswanathii. It was found that the contribution of carbon flux to the cell growth and DC production from n-dodecane could be regulated by the sucrose and yeast extract concentrations in the medium, and besides the broth pH, a suitable proportioning of sucrose and yeast extract was the key to achieve the optimal transition from cell growth phase to DC production phase. By optimizing culture conditions in a 7.5-L bioreactor, a higher DC productivity of 1.59 g·L−1 h−1 with a corresponding concentration of 181.6 g/L was obtained. After the purification of DC from the culture, the results from gas chromatography–mass spectrometry, infrared spectroscopy and 1H-NMR showed that α,ω-dodecanedioic acid (DC12) was the major product of C. viswanathii ipe-1 using pure n-dodecane as substrate. For the first time, we reported that a high productivity of DC12 could be produced by C. viswanathii.
Collapse
Affiliation(s)
- Weifeng Cao
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| | - Hongbao Li
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
- 0000 0004 1805 7347 grid.462323.2 College of Bioscience and Bioengineering Hebei University of Science and Technology 050018 Shijiazhuang People’s Republic of China
| | - Jianquan Luo
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| | - Junxiang Yin
- 0000 0004 0386 1885 grid.433160.3 China National Center for Biotechnology Development 100036 Beijing People’s Republic of China
| | - Yinhua Wan
- 0000000119573309 grid.9227.e State Key Laboratory of Biochemical Engineering, Institute of Process Engineering Chinese Academy of Sciences 100190 Beijing People’s Republic of China
| |
Collapse
|
30
|
Natarajan J, Madras G, Chatterjee K. Tailoring the degradation rate and release kinetics from poly(galactitol sebacate) by blending with chitosan, alginate or ethyl cellulose. Int J Biol Macromol 2016; 93:1591-1602. [DOI: 10.1016/j.ijbiomac.2016.02.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/30/2016] [Accepted: 02/12/2016] [Indexed: 11/25/2022]
|
31
|
Sun L, Liang L, Gao X, Zhang H, Yao P, Hu Y, Ma Y, Wang F, Jin Q, Li H, Li R, Liu Y, Hu FB, Zeng R, Lin X, Wu J. Early Prediction of Developing Type 2 Diabetes by Plasma Acylcarnitines: A Population-Based Study. Diabetes Care 2016; 39:1563-70. [PMID: 27388475 DOI: 10.2337/dc16-0232] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/16/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Acylcarnitines were suggested as early biomarkers even prior to insulin resistance in animal studies, but their roles in predicting type 2 diabetes were unknown. Therefore, we aimed to determine whether acylcarnitines could independently predict type 2 diabetes by using a targeted metabolic profiling approach. RESEARCH DESIGN AND METHODS A population-based prospective study was conducted among 2,103 community-living Chinese individuals aged 50-70 years from Beijing and Shanghai with a mean follow-up duration of 6 years. Fasting glucose, glycohemoglobin, and insulin were determined at baseline and in a follow-up survey. Baseline plasma acylcarnitines were profiled by liquid chromatography-tandem mass spectrometry. RESULTS Over the 6-year period, 507 participants developed diabetes. A panel of acylcanitines, especially with long chain, was significantly associated with increased risk of type 2 diabetes. The relative risks of type 2 diabetes per SD increase of the predictive model score were 2.48 (95% CI 2.20-2.78) for the conventional and 9.41 (95% CI 7.62-11.62) for the full model including acylcarnitines, respectively. Moreover, adding selected acylcarnitines substantially improved predictive ability for incident diabetes, as area under the receiver operator characteristic curve improved to 0.89 in the full model compared with 0.73 in the conventional model. Similar associations were obtained when the predictive models were established separately among Beijing or Shanghai residents. CONCLUSIONS A panel of acylcarnitines, mainly involving mitochondrial lipid dysregulation, significantly improved predictive ability for type 2 diabetes beyond conventional risk factors. These findings need to be replicated in other populations, and the underlying mechanisms should be elucidated.
Collapse
Affiliation(s)
- Liang Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Xianfu Gao
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Huiping Zhang
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pang Yao
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Yao Hu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Yiwei Ma
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Feijie Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Qianlu Jin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Huaixing Li
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Rongxia Li
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Frank B Hu
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA Department of Nutrition, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rong Zeng
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Department of Life Sciences and Technology, ShanghaiTech University, Shanghai, China
| | - Xu Lin
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and University of the Chinese Academy of Sciences, Shanghai, China
| | - Jiarui Wu
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China Department of Life Sciences and Technology, ShanghaiTech University, Shanghai, China Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Natarajan J, Madras G, Chatterjee K. Localized delivery and enhanced osteogenic differentiation with biodegradable galactitol polyester elastomers. RSC Adv 2016. [DOI: 10.1039/c6ra11476h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cytocompatible galactitol based polyesters showed variations in physical properties, degradation, dye release and ability to direct cells towards bone lineage.
Collapse
Affiliation(s)
- Janeni Natarajan
- Centre for Nano Science and Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Giridhar Madras
- Department of Chemical Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| | - Kaushik Chatterjee
- Department of Materials Engineering
- Indian Institute of Science
- Bangalore-560012
- India
| |
Collapse
|
33
|
Jia P, Wang S, Xiao C, Yang L, Chen Y, Jiang W, Zheng X, Zhao G, Zang W, Zheng X. The anti-atherosclerotic effect of tanshinol borneol ester using fecal metabolomics based on liquid chromatography-mass spectrometry. Analyst 2015; 141:1112-20. [PMID: 26689835 DOI: 10.1039/c5an01970b] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tanshinol borneol ester (DBZ) is a novel experimental compound that consists of two chemical structural units from danshensu and borneol. It exhibits efficacious anti-ischemic and anti-atherosclerosis activities in rats. A fecal metabolomics based on Liquid Chromatography-Mass Spectrometry combined with clinical histopathology and blood lipid estimation was employed to assess the efficacy and the metabolic changes caused by administration of DBZ in atherosclerotic rats. There were the typical pathological features of atherosclerosis and significantly increased levels of TC, TG and LDL-C in the atherosclerotic rat group. Nevertheless, atherosclerotic rats administered both DBZ (at a dose of 40 mg kg(-1)) and simvastatin (at a dose of 20 mg kg(-1)) showed good therapeutic effects. The results of the metabolomics studies showed that 55 differential metabolites such as sebacic acid, enterodiol, nonanedioic acid, dodecanedioic acid, cholic acid, 13(S)-HPODE, deoxycholic acid, some phosphatidylglycerol and phosphatidic acids were found, indicating that abnormal metabolism occurred in the pathways of fatty acid oxidation, linoleic acid metabolism, bile acid biosynthesis and glycerophospholipid metabolism in atherosclerotic rats. Compared to those in the model group, the contents of 41 differential metabolites showed a tendency to recover to a healthy level after DBZ administration. Metabolomics studies suggested that DBZ exhibited good treatment efficacy against atherosclerosis by adjusting disturbed metabolic pathways related to atherosclerosis. This study could provide an experimental basis for DBZ's application to act as a candidate drug with anti-atherosclerosis activity.
Collapse
Affiliation(s)
- Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Mora-Cubillos X, Tulipani S, Garcia-Aloy M, Bulló M, Tinahones FJ, Andres-Lacueva C. Plasma metabolomic biomarkers of mixed nuts exposure inversely correlate with severity of metabolic syndrome. Mol Nutr Food Res 2015; 59:2480-90. [DOI: 10.1002/mnfr.201500549] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 09/08/2015] [Accepted: 09/10/2015] [Indexed: 01/30/2023]
Affiliation(s)
- Ximena Mora-Cubillos
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - Sara Tulipani
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
- Biomedical Research Institute (IBIMA); Service of Endocrinology and Nutrition; Málaga Hospital Complex (Virgen de la Victoria), Campus de Teatinos s/n; University of Málaga; Málaga Spain
| | - Mar Garcia-Aloy
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| | - Mònica Bulló
- Human Nutrition Unit; Faculty of Medicine and Health Sciences; IISPV; Universitat Rovira i Virgili; Reus Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Francisco J Tinahones
- Biomedical Research Institute (IBIMA); Service of Endocrinology and Nutrition; Málaga Hospital Complex (Virgen de la Victoria), Campus de Teatinos s/n; University of Málaga; Málaga Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn); Instituto de Salud Carlos III (ISCIII); Madrid Spain
| | - Cristina Andres-Lacueva
- Biomarkers & Nutrimetabolomic Lab; Department of Nutrition and Food Science, XaRTA, INSA, Campus Torribera, Faculty of Pharmacy; University of Barcelona; Barcelona Spain
| |
Collapse
|
35
|
Jin Z, Bian F, Tomcik K, Kelleher JK, Zhang GF, Brunengraber H. Compartmentation of Metabolism of the C12-, C9-, and C5-n-dicarboxylates in Rat Liver, Investigated by Mass Isotopomer Analysis: ANAPLEROSIS FROM DODECANEDIOATE. J Biol Chem 2015; 290:18671-7. [PMID: 26070565 DOI: 10.1074/jbc.m115.651737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Indexed: 12/14/2022] Open
Abstract
We investigated the compartmentation of the catabolism of dodecanedioate (DODA), azelate, and glutarate in perfused rat livers, using a combination of metabolomics and mass isotopomer analyses. Livers were perfused with recirculating or nonrecirculating buffer containing one fully (13)C-labeled dicarboxylate. Information on the peroxisomal versus mitochondrial catabolism was gathered from the labeling patterns of acetyl-CoA proxies, i.e. total acetyl-CoA, the acetyl moiety of citrate, C-1 + 2 of β-hydroxybutyrate, malonyl-CoA, and acetylcarnitine. Additional information was obtained from the labeling patterns of citric acid cycle intermediates and related compounds. The data characterize the partial oxidation of DODA and azelate in peroxisomes, with terminal oxidation in mitochondria. We did not find evidence of peroxisomal oxidation of glutarate. Unexpectedly, DODA contributes a substantial fraction to anaplerosis of the citric acid cycle. This opens the possibility to use water-soluble DODA in nutritional or pharmacological anaplerotic therapy when other anaplerotic substrates are impractical or contraindicated, e.g. in propionic acidemia and methylmalonic acidemia.
Collapse
Affiliation(s)
- Zhicheng Jin
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Fang Bian
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Kristyen Tomcik
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Joanne K Kelleher
- the Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Guo-Fang Zhang
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| | - Henri Brunengraber
- From the Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106 and
| |
Collapse
|
36
|
Yoon J, Jadhav JR, Kim JM, Cheong M, Kim HS, Kim J. Electrochemical discrimination of phthalic acid among three phthalic acid isomers based on an N-butylaminomethyl-ferrocene derivative. Chem Commun (Camb) 2014; 50:7670-2. [DOI: 10.1039/c4cc01659a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Ding J, Loizides-Mangold U, Rando G, Zoete V, Michielin O, Reddy JK, Wahli W, Riezman H, Thorens B. The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Rep 2013; 5:248-58. [PMID: 24075987 DOI: 10.1016/j.celrep.2013.08.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/08/2013] [Accepted: 08/20/2013] [Indexed: 12/22/2022] Open
Abstract
Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.
Collapse
Affiliation(s)
- Jun Ding
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Schmitt J, Ferro A. Nutraceuticals: is there good science behind the hype? Br J Clin Pharmacol 2013; 75:585-7. [PMID: 23384079 DOI: 10.1111/bcp.12061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|