1
|
Bruzzese A, Martino EA, Labanca C, Mendicino F, Lucia E, Olivito V, Rossi T, Neri A, Morabito F, Vigna E, Gentile M. The role of corticosteroids in the current treatment paradigm for myelofibrosis. Expert Opin Pharmacother 2024; 25:2015-2022. [PMID: 39385638 DOI: 10.1080/14656566.2024.2415710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/08/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a clonal hematological disorder characterized by bone marrow fibrosis, splenomegaly, and inflammatory cytokine dysregulation. While the role of steroids in MF is not fully defined, their anti-inflammatory properties may offer therapeutic benefits, particularly in managing anemia and other cytopenias. Steroids exert their effects by suppressing pro-inflammatory cytokines such as IL1, IL6, and TNF, and by enhancing anti-inflammatory cytokines like IL4 and IL10. Elevated levels of IL6 and other cytokines in MF are associated with anemia and poor prognosis, suggesting that steroid therapy could mitigate these effects. AREAS COVERED In this manuscript, we review clinical studies which evaluated the safety and efficacy of steroids in MF patients. Moreover, we examine clinical data of the combination of steroids with immunomodulatory agents and JAK inhibitors. Our literature search consisted of an extensive review of PubMed and clinicaltrials.gov. EXPERT OPINION The role of steroids in the management of MF remains poorly defined, though emerging evidence suggests a potential therapeutic benefit, particularly in managing anemia and other cytopenias. The combination with IMIDs has also yielded positive outcomes as demonstrated in several studies. Steroids may also play a crucial role in managing cytopenias in MF patients receiving JAKi.
Collapse
Affiliation(s)
| | | | | | | | - Eugenio Lucia
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | | | - Teresa Rossi
- Laboratorio di Ricerca Traslazionale Azienda USL-IRCSS Reggio Emilia, Emilia-Romagna, Italy
| | - Antonino Neri
- Scientific Directorate IRCCS of Reggio Emilia, Reggio Emilia, Italy
| | | | - Ernesto Vigna
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
| | - Massimo Gentile
- Hematology Unit, Azienda Ospedaliera Annunziata, Cosenza, Italy
- Department of Pharmacy, Health and Nutritional Science, University of Calabria, Rende, Italy
| |
Collapse
|
2
|
Tabata S, Yamashita Y, Inai Y, Morita S, Kosako H, Takagi T, Shide K, Manabe S, Matsuoka TA, Shimoda K, Sonoki T, Ihara Y, Tamura S. C-Mannosyl tryptophan is a novel biomarker for thrombocytosis of myeloproliferative neoplasms. Sci Rep 2024; 14:18858. [PMID: 39143127 PMCID: PMC11324734 DOI: 10.1038/s41598-024-69496-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
C-Mannosyl tryptophan (CMW), a unique glycosylated amino acid, is considered to be produced by degradation of C-mannosylated proteins in living organism. Although protein C-mannosylation is involved in the folding and secretion of substrate proteins, the pathophysiological function in the hematological system is still unclear. This study aimed to assess CMW in the human hematological disorders. The serum CMW levels of 94 healthy Japanese workers were quantified using hydrophilic interaction liquid chromatography. Platelet count was positively correlated with serum CMW levels. The clinical significance of CMW in thrombocytosis of myeloproliferative neoplasms (T-MPN) including essential thrombocythemia (ET) were investigated. The serum CMW levels of the 34 patients with T-MPN who presented with thrombocytosis were significantly higher than those of the 52 patients with control who had other hematological disorders. In patients with T-MPN, serum CMW levels were inversely correlated with anemia, which was related to myelofibrosis (MF). Bone marrow biopsy samples were obtained from 18 patients with ET, and serum CMW levels were simultaneously measured. Twelve patients with bone marrow fibrosis had significantly higher CMW levels than 6 patients without bone marrow fibrosis. Collectively, these results suggested that CMW could be a novel biomarker to predict MF progression in T-MPN.
Collapse
Affiliation(s)
- Shotaro Tabata
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yusuke Yamashita
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoko Inai
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan
| | - Shuhei Morita
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan.
| | - Hideki Kosako
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Tomoyuki Takagi
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
- Wakayama City Medical Association Seijinbyo Center, Wakayama, Japan
| | - Kotaro Shide
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Shino Manabe
- School of Pharmacy and Pharmaceutical Sciences, Hoshi University, Tokyo, Japan
- Research Center for Pharmaceutical Development, Graduate School of Pharmaceutical Science & Faculty of Pharmaceutical Sciences, Tohoku University, Miyagi, Japan
| | - Taka-Aki Matsuoka
- The First Department of Internal Medicine, Wakayama Medical University, Wakayama, Japan
| | - Kazuya Shimoda
- Division of Hematology, Diabetes, and Endocrinology, Department of Internal Medicine, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Takashi Sonoki
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan
| | - Yoshito Ihara
- Department of Biochemistry, Wakayama Medical University, Wakayama, Japan.
| | - Shinobu Tamura
- Department of Hematology/Oncology, Wakayama Medical University, Wakayama, Japan.
- Department of Emergency and Critical Care Medicine, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
3
|
Wang JC, Shi G, Chen C, Wong C, Gotlieb V, Joseph G, Nair KV, Boyapati L, Ladan E, Symanowski JT, Sun L. TLR2 Derangements Likely Play a Significant Role in the Inflammatory Response and Thrombosis in Patients with Ph(-) Classical Myeloproliferative Neoplasm. Mediators Inflamm 2024; 2024:1827127. [PMID: 39157201 PMCID: PMC11329310 DOI: 10.1155/2024/1827127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/17/2024] [Accepted: 06/17/2024] [Indexed: 08/20/2024] Open
Abstract
We investigated the role of toll-like receptors (TLRs) in inflammatory pathways in Philadelphia chromosome-negative myeloproliferative neoplasms (Ph(-)MPNs). TLR2 expression was increased in ET, PV, and MPN (grouped as (PV + (ET) + MF)), whereas TLR4 was elevated only in MPN. TLR3, 7, and 9 were not elevated. Cultured monocyte-derived dendritic cells and plasma assays in TLR2-elevated patients were found to secrete more cytokines than those from TLR2-normal patients. These facts suggest that TLR2 is the major inflammatory pathways in MPN. We also measured S100A9 and reactive oxygen species (ROS), revealing increased S100A9 in PV, MF, and MPN, while ROS were only increased in MF. These data suggests that MPNs initially involve TLR2, with minor contributions from TLR4, and with S100A9, leading to ROS formation, JAK2 mutation, and progression to MF or leukemia. Furthermore, patients with JAK2 mutations or leukocytosis exhibited higher TLR2 expression. In leukocyte-platelet interactions, cells from MPN patients displayed a stronger response to a TLR2 agonist than TLR4 agonist. A TLR2 inhibitor (but not a TLR4 inhibitor) attenuated this response. Thrombosis incidence was higher in TLR2-elevated patients (29%) than in TLR2-normal patients (19%). These findings suggest that TLR2 likely contributes to thrombosis in MPN.
Collapse
Affiliation(s)
- Jen Chin Wang
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Guanfang Shi
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Chi Chen
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Ching Wong
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Vladimir Gotlieb
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Gardith Joseph
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Kiron V Nair
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Lakshmi Boyapati
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - Enayati Ladan
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| | - James T. Symanowski
- Department of Biostatistics and Data SciencesLevine Cancer Institute, Charlotte, NC, USA
| | - Lishi Sun
- Division of Hematology/OncologyBrookdale University Hospital Medical Center, Brooklyn, NY, USA
| |
Collapse
|
4
|
Belmonte M, Cabrera-Cosme L, Øbro NF, Li J, Grinfeld J, Milek J, Bennett E, Irvine M, Shepherd MS, Cull AH, Boyd G, Riedel LM, Chi Che JL, Oedekoven CA, Baxter EJ, Green AR, Barlow JL, Kent DG. Increased CXCL10 (IP-10) is associated with advanced myeloproliferative neoplasms and its loss dampens erythrocytosis in mouse models. Exp Hematol 2024; 135:104246. [PMID: 38763471 DOI: 10.1016/j.exphem.2024.104246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Key studies in pre-leukemic disorders have linked increases in pro-inflammatory cytokines with accelerated phases of the disease, but the precise role of the cellular microenvironment in disease initiation and evolution remains poorly understood. In myeloproliferative neoplasms (MPNs), higher levels of specific cytokines have been previously correlated with increased disease severity (tumor necrosis factor-alpha [TNF-α], interferon gamma-induced protein-10 [IP-10 or CXCL10]) and decreased survival (interleukin 8 [IL-8]). Whereas TNF-α and IL-8 have been studied by numerous groups, there is a relative paucity of studies on IP-10 (CXCL10). Here we explore the relationship of IP-10 levels with detailed genomic and clinical data and undertake a complementary cytokine screen alongside functional assays in a wide range of MPN mouse models. Similar to patients, levels of IP-10 were increased in mice with more severe disease phenotypes (e.g., JAK2V617F/V617F TET2-/- double-mutant mice) compared with those with less severe phenotypes (e.g., CALRdel52 or JAK2+/V617F mice) and wild-type (WT) littermate controls. Although exposure to IP-10 did not directly alter proliferation or survival in single hematopoietic stem cells (HSCs) in vitro, IP-10-/- mice transplanted with disease-initiating HSCs developed an MPN phenotype more slowly, suggesting that the effect of IP-10 loss was noncell-autonomous. To explore the broader effects of IP-10 loss, we crossed IP-10-/- mice into a series of MPN mouse models and showed that its loss reduces the erythrocytosis observed in mice with the most severe phenotype. Together, these data point to a potential role for blocking IP-10 activity in the management of MPNs.
Collapse
Affiliation(s)
- Miriam Belmonte
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Lilia Cabrera-Cosme
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Nina F Øbro
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Li
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Jacob Grinfeld
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Joanna Milek
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Ellie Bennett
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Melissa Irvine
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Mairi S Shepherd
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - Alyssa H Cull
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Grace Boyd
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Lisa M Riedel
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - James Lok Chi Che
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Caroline A Oedekoven
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - E Joanna Baxter
- Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Anthony R Green
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, United Kingdom
| | - Jillian L Barlow
- Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom
| | - David G Kent
- Wellcome Medical Research Council (MRC) Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom; Department of Haematology, University of Cambridge, Cambridge, United Kingdom; Department of Biology, Centre for Blood Research, York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
5
|
Izzo F, Myers RM, Ganesan S, Mekerishvili L, Kottapalli S, Prieto T, Eton EO, Botella T, Dunbar AJ, Bowman RL, Sotelo J, Potenski C, Mimitou EP, Stahl M, El Ghaity-Beckley S, Arandela J, Raviram R, Choi DC, Hoffman R, Chaligné R, Abdel-Wahab O, Smibert P, Ghobrial IM, Scandura JM, Marcellino B, Levine RL, Landau DA. Mapping genotypes to chromatin accessibility profiles in single cells. Nature 2024; 629:1149-1157. [PMID: 38720070 PMCID: PMC11139586 DOI: 10.1038/s41586-024-07388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 04/04/2024] [Indexed: 05/19/2024]
Abstract
In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.
Collapse
Affiliation(s)
- Franco Izzo
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Robert M Myers
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Saravanan Ganesan
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Levan Mekerishvili
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Physiology, Biophysics and Systems Biology Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Sanjay Kottapalli
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Tamara Prieto
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Elliot O Eton
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Tri-Institutional MD-PhD Program, Weill Cornell Medicine, Rockefeller University, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Theo Botella
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Andrew J Dunbar
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert L Bowman
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jesus Sotelo
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Catherine Potenski
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Eleni P Mimitou
- New York Genome Center, New York, NY, USA
- Immunai, New York, NY, USA
| | - Maximilian Stahl
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medical Oncology, Division of Leukemia, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sebastian El Ghaity-Beckley
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - JoAnn Arandela
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ramya Raviram
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Daniel C Choi
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Ronald Hoffman
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ronan Chaligné
- New York Genome Center, New York, NY, USA
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- SAIL: Single-cell Analytics Innovation Lab, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Omar Abdel-Wahab
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Peter Smibert
- New York Genome Center, New York, NY, USA
- 10x Genomics, Pleasanton, CA, USA
| | - Irene M Ghobrial
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joseph M Scandura
- Laboratory of Molecular Hematopoiesis, Hematology and Oncology, Weill Cornell Medicine, New York, NY, USA
- Richard T. Silver MD Myeloproliferative Neoplasm Center, Weill Cornell Medicine, New York, NY, USA
- Regenerative Medicine, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Bridget Marcellino
- Division of Hematology/Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ross L Levine
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan A Landau
- New York Genome Center, New York, NY, USA.
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Xiong H, Zhang H, Bai J, Li Y, Li L, Zhang L. Associations of the circulating levels of cytokines with the risk of myeloproliferative neoplasms: a bidirectional mendelian-randomization study. BMC Cancer 2024; 24:531. [PMID: 38671390 PMCID: PMC11046808 DOI: 10.1186/s12885-024-12301-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
OBJECTIVE In the pathogenesis of myeloproliferative neoplasms (MPN), inflammation plays an important role. However, it is unclear whether there is a causal link between inflammation and MPNs. We used a bidirectional, two-sample Mendelian randomization (MR) approach to investigate the causal relationship between systemic inflammatory cytokines and myeloproliferative neoplasms. METHODS A genome-wide association study (GWAS) of 8293 European participants identified genetic instrumental variables for circulating cytokines and growth factors. Summary statistics of MPN were obtained from a GWAS including 1086 cases and 407,155 controls of European ancestry. The inverse-variance-weighted method was mainly used to compute odds ratios (OR) and 95% confidence intervals (Cl). RESULTS Our results showed that higher Interleukin-2 receptor, alpha subunit (IL-2rα) levels, and higher Interferon gamma-induced protein 10 (IP-10) levels were associated with an increased risk of MPN (OR = 1.36,95%CI = 1.03-1.81, P = 0.032; OR = 1.55,95%CI = 1.09-2.22, P = 0.015; respectively).In addition, Genetically predicted MPN promotes expression of the inflammatory cytokines interleukin-10 (IL-10) (BETA = 0.033, 95% CI = 0.003 ~ 0.064, P = 0.032) and monokine induced by interferon-gamma (MIG) (BETA = 0.052, 95% CI = 0.002-0.102, P = 0.043) and, on activation, normal T cells express and secrete RANTES (BETA = 0.055, 95% CI = 0.0090.1, P = 0.018). CONCLUSION Our findings suggest that cytokines are essential to the pathophysiology of MPN. More research is required if these biomarkers can be used to prevent and treat MPN.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Huitao Zhang
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jun Bai
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| | - Liansheng Zhang
- Department of Hematology, The Second Hospital of Lanzhou University, Lanzhou, China.
| |
Collapse
|
7
|
Xiang D, Yang X, Qian H, Zhang L, Han Y, Sun Y, Lu Y, Chen Y, Cao D, Hu M, Wang L, Tang Q, Wu D, Tian G, Tong H, Jin J, Huang J. Development and validation of a model for the early prediction of progression from essential thrombocythemia to post-essential thrombocythemia myelofibrosis: a multicentre retrospective study. EClinicalMedicine 2024; 67:102378. [PMID: 38188688 PMCID: PMC10770426 DOI: 10.1016/j.eclinm.2023.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Background Essential thrombocythemia (ET), a myeloproliferative neoplasm (MPN), has a substantial risk of evolving into post-essential thrombocythemia myelofibrosis (post-ET MF). This study aims to establish a prediction nomogram for early prediction of post-ET MF in ET patients. Methods The training cohort comprised 558 patients from 8 haematology centres between January 1, 2010, and May 1, 2023, while the external validation cohort consisted of 165 patients from 6 additional haematology centres between January 1, 2010, and May 1, 2023. Univariable and multivariable Cox regression analysis was performed to identified independent risk factors and establish a nomogram to predict the post-ET MF free survival. Both bias-corrected area under the curve (AUC), calibration curves and concordance index (C-index) were employed to assess the predictive accuracy of the nomogram. Findings Multivariate Cox regression demonstrated that elevated red blood cell distribution width (RDW), elevated levels of lactate dehydrogenase (LDH) and the level of haemoglobin (Hb), a history of smoking and the presence of splenomegaly were independent risk factors for post-ET MF. The C-index displayed of the training and validation cohorts were 0.877 and 0.853. The 5 years, 10 years AUC values in training and external validation cohorts were 0.948, 0.769 and 0.978, 0.804 respectively. Bias-corrected curve is close to the ideal curve and revealed a strong consistency between actual observation and prediction. Interpretation We developed a nomogram capable of predicting the post-ET MF free survival probability at 5 years and 10 years in ET patients. This tool helps doctors identify patients who need close monitoring and appropriate counselling. Funding This research was funded by the Key R&D Program of Zhejiang (No. 2022C03137); the Public Technology Application Research Program of Zhejiang, China (No. LGF21H080003); and the Zhejiang Medical Association Clinical Medical Research special fund project (No. 2022ZYC-D09).
Collapse
Affiliation(s)
- Danhong Xiang
- Department of Haematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Haematology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
- Zhejiang Clinical Medical Research Centre of Haematology, Hangzhou, Zhejiang, China
| | - Xiudi Yang
- Department of Haematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Medical Research Centre of Haematology, Hangzhou, Zhejiang, China
| | - Honglan Qian
- Department of Haematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Li Zhang
- Department of Haematology, Taizhou Hospital of Zhejiang Province Affiliated with Wenzhou Medical University, Taizhou, Zhejiang, China
| | - Yanxia Han
- Department of Haematology, The Second Hospital of Jiaxing, Jiaxing, Zhejiang, China
| | - Yongcheng Sun
- Department of Haematology, The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Ying Lu
- Department of Haematology, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yu Chen
- Department of Haematology, College of Medicine, Lishui Hospital, Zhejiang University, Lishui, Zhejiang, China
| | - Dan Cao
- Department of Haematology, Huzhou Central Hospital, Huzhou, Zhejiang, China
| | - Meiwei Hu
- Department of Haematology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Lifeng Wang
- Department of Haematology, The Affiliated Xiaoshan Hospital, Hangzhou Normal University, Hangzhou, China
| | - Qinli Tang
- Department of Haematologist, The First People's Hospital of PingHu, PingHu, Zhejiang, China
| | - Dijiong Wu
- Department of Haematology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Guoyan Tian
- Department of Haematology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Hongyan Tong
- Department of Haematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Medical Research Centre of Haematology, Hangzhou, Zhejiang, China
| | - Jie Jin
- Department of Haematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Medical Research Centre of Haematology, Hangzhou, Zhejiang, China
| | - Jian Huang
- Department of Haematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Clinical Medical Research Centre of Haematology, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Nyamondo K, Wheadon H. Micro-environment alterations through time leading to myeloid malignancies. Br J Pharmacol 2024; 181:283-294. [PMID: 35844165 DOI: 10.1111/bph.15924] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/29/2022] Open
Abstract
The micro-environment plays a critical role in haematopoietic stem cell (HSC) development, self-renewal, differentiation and maintenance by providing a supportive cellular framework and essential molecular cues to sustain homeostasis. In ageing and development of age-related clonal haematopoiesis, the combined contribution of intrinsic alterations in haematopoietic stem cells and their surrounding micro-environment can promote myeloid skewing and release of pro-inflammatory cytokines. A pro-inflammatory micro-environment is a common feature in the initiation and sustenance of several myeloid malignancies. Furthermore, remodelling of the micro-environment is recognized to potentiate the survival of malignant over normal cells. This review explores micro-environmental interactions in the haematopoietic system of adults, especially how the bone marrow micro-environment is impacted by ageing, the onset of age-related clonal haematopoiesis and the development of myeloid malignancies. In addition, we also discuss the possible role age-related clonal haematopoiesis and chronic inflammatory conditions play in altering the bone marrow micro-environment dynamics. Finally, we explore the importance of in vitro models that accurately mimic different aspects of the bone marrow micro-environment in order to study normal and malignant haematopoiesis. LINKED ARTICLES: This article is part of a themed issue on Cancer Microenvironment and Pharmacological Interventions. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.2/issuetoc.
Collapse
Affiliation(s)
- Kudzai Nyamondo
- Paul O'Gorman Leukaemia Research Centre, Gartnavel Hospital, University of Glasgow, Glasgow, UK
| | - Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, Gartnavel Hospital, University of Glasgow, Glasgow, UK
| |
Collapse
|
9
|
Mahdi D, Spiers J, Rampotas A, Polverelli N, McLornan DP. Updates on accelerated and blast phase myeloproliferative neoplasms: Are we making progress? Br J Haematol 2023; 203:169-181. [PMID: 37527977 DOI: 10.1111/bjh.19010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023]
Abstract
Management approaches for accelerated and blast phase myeloproliferative neoplasms remain challenging for clinicians and patients alike. Despite many therapeutic advances, outcomes for those patients who are not allogeneic haematopoietic cell transplant eligible remain, in general, very poor. Estimated survival rates for such blast phase patients is frequently reported as less than 6 months. No specific immunological, genomic or clinicopathological signature currently exists that accurately predicts the risk and timing of transformation, which frequently induces a high degree of anxiety among patients and clinicians alike. Within this review article, we provide an up-to-date summary of current understanding of the underlying pathogenesis of accelerated and blast phase disease and discuss current therapeutic approaches and realistic outcomes. Finally, we discuss how the horizon may look with the introduction of more novel agents into the clinical arena.
Collapse
Affiliation(s)
- Dina Mahdi
- Department of Haematology, University College Hospital, London, UK
| | - Jessica Spiers
- Department of Haematology, University College Hospital, London, UK
| | | | - Nicola Polverelli
- Unit of Blood Diseases and Stem Cell Transplantation, University of Brescia, Brescia, Italy
| | - Donal P McLornan
- Department of Haematology, University College Hospital, London, UK
| |
Collapse
|
10
|
Pozzi G, Carubbi C, Cerreto GM, Scacchi C, Cortellazzi S, Vitale M, Masselli E. Functionally Relevant Cytokine/Receptor Axes in Myelofibrosis. Biomedicines 2023; 11:2462. [PMID: 37760903 PMCID: PMC10525259 DOI: 10.3390/biomedicines11092462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Dysregulated inflammatory signaling is a key feature of myeloproliferative neoplasms (MPNs), most notably of myelofibrosis (MF). Indeed, MF is considered the prototype of onco-inflammatory hematologic cancers. While increased levels of circulatory and bone marrow cytokines are a well-established feature of all MPNs, a very recent body of literature is intriguingly pinpointing the selective overexpression of cytokine receptors by MF hematopoietic stem and progenitor cells (HSPCs), which, by contrast, are nearly absent or scarcely expressed in essential thrombocythemia (ET) or polycythemia vera (PV) cells. This new evidence suggests that MF CD34+ cells are uniquely capable of sensing inflammation, and that activation of specific cytokine signaling axes may contribute to the peculiar aggressive phenotype and biological behavior of this disorder. In this review, we will cover the main cytokine systems peculiarly activated in MF and how cytokine receptor targeting is shaping a novel therapeutic avenue in this disease.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Giacomo Maria Cerreto
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Chiara Scacchi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Samuele Cortellazzi
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| | - Elena Masselli
- Anatomy Unit, Department of Medicine & Surgery (DiMeC), University of Parma, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, 43126 Parma, Italy
| |
Collapse
|
11
|
Chapman SP, Duprez E, Remy E. Logical modelling of myelofibrotic microenvironment predicts dysregulated progenitor stem cell crosstalk. Biosystems 2023; 231:104961. [PMID: 37392989 DOI: 10.1016/j.biosystems.2023.104961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Primary myelofibrosis is an untreatable age-related disorder of haematopoiesis in which a break in the crosstalk between progenitor Haematopoietic Stem Cells (HSCs) and neighbouring mesenchymal stem cells causes HSCs to rapidly proliferate and migrate out of the bone marrow. Around 90% of patients harbour mutations in driver genes that all converge to overactivate haematopoietic JAK-STAT signalling, which is thought to be critical for disease progression, as well as microenvironment modification induced by chronic inflammation. The trigger to the initial event is unknown but dysregulated thrombopoietin (TPO) and Toll-Like Receptor (TLR) signalling are hypothesised to initiate chronic inflammation which then disrupts stem cell crosstalk. Using a systems biology approach, we have constructed an intercellular logical model that captures JAK-STAT signalling and key crosstalk channels between haematopoietic and mesenchymal stem cells. The aim of the model is to decipher how TPO and TLR stimulation can perturb the bone marrow microenvironment and dysregulate stem cell crosstalk. The model predicted conditions in which the disease was averted and established for both wildtype and ectopically JAK mutated simulations. The presence of TPO and TLR are both required to disturb stem cell crosstalk and result in the disease for wildtype. TLR signalling alone was sufficient to perturb the crosstalk and drive disease progression for JAK mutated simulations. Furthermore, the model predicts probabilities of disease onset for wildtype simulations that match clinical data. These predictions might explain why patients who test negative for the JAK mutation can still be diagnosed with PMF, in which continual exposure to TPO and TLR receptor activation may trigger the initial inflammatory event that perturbs the bone marrow microenvironment and induce disease onset.
Collapse
Affiliation(s)
- S P Chapman
- I2M, Aix-Marseille University, CNRS, Marseille, France
| | - E Duprez
- Epigenetic Factors in Normal and Malignant Haematopoiesis Lab., CRCM, CNRS, INSERM, Institut Paoli Calmettes, Aix Marseille University, 13009 Marseille, France
| | - E Remy
- I2M, Aix-Marseille University, CNRS, Marseille, France.
| |
Collapse
|
12
|
Chen H, Lin C, Xue HM, Chen C, Yang M. The heat shock protein DNAJB2 as a novel biomarker for essential thrombocythemia diagnosis associated with immune infiltration. Thromb Res 2023; 223:131-138. [PMID: 36746103 DOI: 10.1016/j.thromres.2023.01.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Essential thrombocythemia (ET) is a rare myeloproliferative malignancy which may lead to severe thrombohemorrhagic complications. The diagnosis of ET is primarily based on bone marrow morphology and exclusion of other possibilities of myeloproliferative neoplastic diseases; the lack of gene biomarkers fails to provide a prompt diagnosis of ET. Therefore, this study was designed to identify biomarkers for early ET diagnosis, especially that associated with immune cell infiltration, by using the Gene Expression Omnibus (GEO) database and machine-learning algorithms. METHODS Two publicly available gene expression profiles (GSE9827 and GSE123732) from the GEO database were used to identify the differentially expressed genes (DEGs) between bone marrow samples of ET patients and healthy individuals, and functional enrichment analyses were conducted. The least absolute shrinkage and selection operator (LASSO) regression model and Support Vector Machine-Recursive Feature Elimination (SVM-RFE) machine-learning algorithm were performed to select the candidate gene biomarker. The expression level and diagnostic effectiveness of the identified gene biomarker were further validated using GSE567 and GSE2006 datasets. The involvement of infiltrating immune cells and their correlations with the gene biomarker were examined using cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm. RESULTS There were 105 DEGs identified between ET and healthy control samples. Disease Ontology (DO) analysis showed that the diseases enriched by those DEGs were mainly human cancers, neurological diseases and inflammation while Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis demonstrated that pathways related to immune responses were primarily involved. The heat shock protein, DNAJB2, was identified as the potential biomarker for ET diagnosis with high effectiveness, with the area under the receiver operating characteristic (ROC) curve (AUC) equals to 0.905 in the validation cohort. The expression level of DNAJB2 in ET samples was indeed significantly higher than that in healthy control ones. The immune cell infiltration analysis showed that DNAJB2 was positively correlated with CD8+ T cells in ET with the proportion significantly higher than that in normal controls. CONCLUSION The present study identified DNAJB2 as a novel diagnostic biomarker for ET with high effectiveness based on ET and normal samples from the GEO database, which provides new insights into predicting ET with accuracy and promptness in clinical practice.
Collapse
Affiliation(s)
- Hui Chen
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chao Lin
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Hong-Man Xue
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Chun Chen
- Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Mo Yang
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
13
|
Zhao Y, Wang D, Liang Y, Xu C, Shi L, Tong J. Expression profiles analysis identifies specific interferon-stimulated signatures as potential diagnostic and predictive indicators of JAK2V617F+ myelofibrosis. Front Genet 2022; 13:927018. [PMID: 36061178 PMCID: PMC9434717 DOI: 10.3389/fgene.2022.927018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/05/2022] [Indexed: 11/26/2022] Open
Abstract
Objective: This study aimed to identify specific dysregulated genes with potential diagnostic and predictive values for JAK2V617F+ myelofibrosis. Methods: Two gene expression datasets of CD34+ hematopoietic stem and progenitor cells (HSPCs) from patients with JAK2V617F+ myeloproliferative neoplasm (MPN) [n = 66, including polycythemia vera (PV), essential thrombocythemia (ET), and primary myelofibrosis (PMF)] and healthy controls (HC) (n = 30) were acquired from the GEO (Gene Expression Omnibus) database. The differentially expressed genes (DEGs) were screened between each JAK2V617F+ MPN entity and HC. Subsequently, functional enrichment analyses, including Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome, and Gene Set Enrichment Analysis (GSEA), were conducted to decipher the important biological effects of DEGs. Protein–protein interaction (PPI) networks of the DEGs were constructed to identify hub genes and significant modules. Another two gene expression profiles of patients with JAK2V617F+ MPN [n = 23, including PV, ET, secondary myelofibrosis (SMF), and PMF] and HC (n = 6) from GEO were used as external validation datasets to prove the reliability of the identified signatures. Results: KEGG analysis revealed the upregulated genes in three JAK2V617F+ MPN entities compared with HC were essentially enriched in inflammatory pathways and immune response signaling pathways, and the number of these pathways enriched in PMF was obviously more than that in PV and ET. Following the PPI analysis, 10 genes primarily related to inflammation and immune response were found upregulated in different JAK2V617F+ MPN entities. In addition, Reactome enrichment analysis indicated that interferon signaling pathways were enriched specifically in PMF but not in PV or ET. Furthermore, several interferon (IFN)-stimulated genes were identified to be uniquely upregulated in JAK2V617F+ PMF. The external datasets validated the upregulation of four interferon-related genes (OAS1, IFITM3, GBP1, and GBP2) in JAK2V617F+ myelofibrosis. The receiver operating characteristic (ROC) curves indicate that the four genes have high area under the ROC curve (AUC) values when distinguishing JAK2V617F+ myelofibrosis from PV or ET. Conclusion: Four interferon-stimulated genes (OAS1, IFITM3, GBP1, and GBP2) exclusively upregulated in JAK2V617F+ myelofibrosis might have the potential to be the auxiliary molecular diagnostic and predictive indicators of myelofibrosis.
Collapse
|
14
|
Whyte CE, Singh K, Burton OT, Aloulou M, Kouser L, Veiga RV, Dashwood A, Okkenhaug H, Benadda S, Moudra A, Bricard O, Lienart S, Bielefeld P, Roca CP, Naranjo-Galindo FJ, Lombard-Vadnais F, Junius S, Bending D, Ono M, Hochepied T, Halim TY, Schlenner S, Lesage S, Dooley J, Liston A. Context-dependent effects of IL-2 rewire immunity into distinct cellular circuits. J Exp Med 2022; 219:e20212391. [PMID: 35699942 PMCID: PMC9202720 DOI: 10.1084/jem.20212391] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/06/2022] [Accepted: 05/16/2022] [Indexed: 12/17/2022] Open
Abstract
Interleukin 2 (IL-2) is a key homeostatic cytokine, with therapeutic applications in both immunogenic and tolerogenic immune modulation. Clinical use has been hampered by pleiotropic functionality and widespread receptor expression, with unexpected adverse events. Here, we developed a novel mouse strain to divert IL-2 production, allowing identification of contextual outcomes. Network analysis identified priority access for Tregs and a competitive fitness cost of IL-2 production among both Tregs and conventional CD4 T cells. CD8 T and NK cells, by contrast, exhibited a preference for autocrine IL-2 production. IL-2 sourced from dendritic cells amplified Tregs, whereas IL-2 produced by B cells induced two context-dependent circuits: dramatic expansion of CD8+ Tregs and ILC2 cells, the latter driving a downstream, IL-5-mediated, eosinophilic circuit. The source-specific effects demonstrate the contextual influence of IL-2 function and potentially explain adverse effects observed during clinical trials. Targeted IL-2 production therefore has the potential to amplify or quench particular circuits in the IL-2 network, based on clinical desirability.
Collapse
Affiliation(s)
- Carly E. Whyte
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Kailash Singh
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Oliver T. Burton
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Meryem Aloulou
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Toulouse Institute for Infectious and Inflammatory Diseases (Infinity), Centre national de la recherche scientifique U5051, Institut national de la santé et de la recherche médicale U1291, University of Toulouse III, Toulouse, France
| | - Lubna Kouser
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Amy Dashwood
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Samira Benadda
- Immunology Programme, The Babraham Institute, Cambridge, UK
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
| | - Alena Moudra
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Orian Bricard
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | | | - Carlos P. Roca
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | | | - Félix Lombard-Vadnais
- Department of Microbiology and Immunology, McGill University, Montréal, Quebec, Canada
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montréal, Quebec, Canada
| | - Steffie Junius
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Masahiro Ono
- Department of Life Sciences, Imperial College London, London, UK
| | - Tino Hochepied
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Vlaams Instituut voor Biotechnologie, Ghent, Belgium
| | | | - Susan Schlenner
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Sylvie Lesage
- Centre de Recherche Sur L’inflammation, Centre national de la recherche scientifique ERL8252, Institut national de la santé et de la recherche médicale U1149, Université de Paris, Paris, France
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - James Dooley
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| | - Adrian Liston
- Immunology Programme, The Babraham Institute, Cambridge, UK
- VIB Center for Brain and Disease Research, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven—University of Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Tamai Y, Teshima S, Tsunoda S, Kamata W, Sato S. Case Report: A Case of Myeloproliferative Neoplasm Complicated by Alopecia Areata. Front Med (Lausanne) 2022; 9:895699. [PMID: 35721070 PMCID: PMC9198839 DOI: 10.3389/fmed.2022.895699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are caused by genetic abnormalities in the stem cells and manifest with various systemic symptoms. Here, we describe a case of MPN complicated by alopecia areata. A 51-year-old woman visited our hematology department for further evaluation of a slight platelet elevation. Her recent medical history included 3 years of concurrent severe alopecia, mild fatigue, and hot flashes but no fever and weight loss. Physical examination revealed unilateral hair loss on the entire body but no hepatosplenomegaly. Laboratory analysis revealed a normal hemoglobin level, normal white blood cell count, and platelet count of 377,000/μL. Genetic testing confirmed the presence of the JAK2 V617F mutation. Bone marrow examination revealed no morphologic dysplasia in any stem cell lineage and no fibrotic change. Skin biopsy revealed lymphocyte infiltration around the hair follicles. We diagnosed MPN, unclassifiable, which was believed to be the cause of alopecia. About 6 months after treatment with ruxolitinib began, the patient's hair growth dramatically improved. The differential diagnosis of MPNs should include hematological diseases when affected patients have alopecia areata.
Collapse
Affiliation(s)
- Yotaro Tamai
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shinichi Teshima
- Division of Pathology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shun Tsunoda
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Wataru Kamata
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| | - Shuku Sato
- Division of Hematology, Shonan Kamakura General Hospital, Kamakura, Japan
| |
Collapse
|
16
|
Wang JC, Sun L. PD-1/PD-L1, MDSC Pathways, and Checkpoint Inhibitor Therapy in Ph(-) Myeloproliferative Neoplasm: A Review. Int J Mol Sci 2022; 23:5837. [PMID: 35628647 PMCID: PMC9143160 DOI: 10.3390/ijms23105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/23/2022] Open
Abstract
There has been significant progress in immune checkpoint inhibitor (CPI) therapy in many solid tumor types. However, only a single failed study has been published in treating Ph(-) myeloproliferative neoplasm (MPN). To make progress in CPI studies on this disease, herein, we review and summarize the mechanisms of activation of the PD-L1 promoter, which are as follows: (a) the extrinsic mechanism, which is activated by interferon gamma (IFN γ) by tumor infiltration lymphocytes (TIL) and NK cells; (b) the intrinsic mechanism of EGFR or PTEN loss resulting in the activation of the MAPK and AKT pathways and then stat 1 and 3 activation; and (c) 9p24 amplicon amplification, resulting in PD-L1 and Jak2 activation. We also review the literature and postulate that many of the failures of CPI therapy in MPN are likely due to excessive MDSC activities. We list all of the anti-MDSC agents, especially those with ruxolitinib, IMID compounds, and BTK inhibitors, which may be combined with CPI therapy in the future as part of clinical trials applying CPI therapy to Ph(-) MPN.
Collapse
Affiliation(s)
- Jen-Chin Wang
- Division of Hematology/Oncology, Brookdale University Hospital Medical Center, Brooklyn, NY 11212, USA;
| | | |
Collapse
|
17
|
Strickland M, Quek L, Psaila B. The immune landscape in BCR-ABL negative myeloproliferative neoplasms: inflammation, infections and opportunities for immunotherapy. Br J Haematol 2022; 196:1149-1158. [PMID: 34618358 PMCID: PMC9135025 DOI: 10.1111/bjh.17850] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 09/05/2021] [Accepted: 09/11/2021] [Indexed: 01/06/2023]
Abstract
Breakpoint cluster region-Abelson (BCR-ABL) negative myeloproliferative neoplasms (MPNs) are chronic myeloid neoplasms initiated by the acquisition of gene mutation(s) in a haematopoietic stem cell, leading to clonal expansion and over-production of blood cells and their progenitors. MPNs encompass a spectrum of disorders with overlapping but distinct molecular, laboratory and clinical features. This includes polycythaemia vera, essential thrombocythaemia and myelofibrosis. Dysregulation of the immune system is key to the pathology of MPNs, supporting clonal evolution, mediating symptoms and resulting in varying degrees of immunocompromise. Targeting immune dysfunction is an important treatment strategy. In the present review, we focus on the immune landscape in patients with MPNs - the role of inflammation in disease pathogenesis, susceptibility to infection and emerging strategies for therapeutic immune modulation. Further detailed work is required to delineate immune perturbation more precisely in MPNs to determine how and why vulnerability to infection differs between clinical subtypes and to better understand how inflammation results in a competitive advantage for the MPN clone. These studies may help shed light on new designs for disease-modifying therapies.
Collapse
Affiliation(s)
- Marie Strickland
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| | - Lynn Quek
- Department of Haematological MedicineKing's College Hospital NHS Foundation TrustLondon
- Department of Haematology, School of Cancer and Pharmaceutical SciencesKing's College LondonLondonUK
| | - Bethan Psaila
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular Medicine, University of OxfordOxford
- National Institutes for Health Research Biomedical Research CentreUniversity of OxfordOxford
| |
Collapse
|
18
|
Campanelli R, Massa M, Rosti V, Barosi G. New Markers of Disease Progression in Myelofibrosis. Cancers (Basel) 2021; 13:5324. [PMID: 34771488 PMCID: PMC8582535 DOI: 10.3390/cancers13215324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Primary myelofibrosis (PMF) is a myeloproliferative neoplasm due to the clonal proliferation of a hematopoietic stem cell. The vast majority of patients harbor a somatic gain of function mutation either of JAK2 or MPL or CALR genes in their hematopoietic cells, resulting in the activation of the JAK/STAT pathway. Patients display variable clinical and laboratoristic features, including anemia, thrombocytopenia, splenomegaly, thrombotic complications, systemic symptoms, and curtailed survival due to infections, thrombo-hemorrhagic events, or progression to leukemic transformation. New drugs have been developed in the last decade for the treatment of PMF-associated symptoms; however, the only curative option is currently represented by allogeneic hematopoietic cell transplantation, which can only be offered to a small percentage of patients. Disease prognosis is based at diagnosis on the classical International Prognostic Scoring System (IPSS) and Dynamic-IPSS (during disease course), which comprehend clinical parameters; recently, new prognostic scoring systems, including genetic and molecular parameters, have been proposed as meaningful tools for a better patient stratification. Moreover, new biological markers predicting clinical evolution and patient survival have been associated with the disease. This review summarizes basic concepts of PMF pathogenesis, clinics, and therapy, focusing on classical prognostic scoring systems and new biological markers of the disease.
Collapse
Affiliation(s)
- Rita Campanelli
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Margherita Massa
- General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy;
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, General Medicine 2—Center for Systemic Amyloidosis and High-Complexity Diseases, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy; (V.R.); (G.B.)
| |
Collapse
|
19
|
Sobas M, Podolak-Dawidziak M, Lewandowski K, Bator M, Wróbel T. Primary Immune Thrombocytopenia and Essential Thrombocythemia: So Different and yet Somehow Similar-Cases Series and a Review of the Literature. Int J Mol Sci 2021; 22:10918. [PMID: 34681577 PMCID: PMC8539407 DOI: 10.3390/ijms222010918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/02/2021] [Accepted: 10/06/2021] [Indexed: 12/02/2022] Open
Abstract
This article collects several published cases in which immune thrombocytopenic purpura (ITP) is followed by essential thrombocythemia (ET) and vice versa. This surprising clinical condition is possible, but very rare and difficult to diagnose and manage. We have made an attempt to analyse the possible causes of the sequential appearance of ITP and ET taking into consideration the following: alteration of the thrombopoietin (TPO) receptor, the role of autoimmunity and inflammation, and cytokine modulation. A better understanding of these interactions may provide opportunities to determine predisposing factors and aid in finding new treatment modalities both for ITP and ET patients.
Collapse
Affiliation(s)
- Marta Sobas
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Maria Podolak-Dawidziak
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Krzysztof Lewandowski
- Hematology and Bone Marrow Transplantation Department, University of Medical Sciences, 60-569 Poznan, Poland;
| | - Michał Bator
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| | - Tomasz Wróbel
- Department of Hematology, Blood Neoplasms and Bone Marrow Transplantation, Wroclaw Medical University, Pasteura 4, 50-367 Wroclaw, Poland; (M.P.-D.); (M.B.); (T.W.)
| |
Collapse
|
20
|
Cell-autonomous megakaryopoiesis associated with polyclonal hematopoiesis in triple-negative essential thrombocythemia. Sci Rep 2021; 11:17702. [PMID: 34489506 PMCID: PMC8421373 DOI: 10.1038/s41598-021-97106-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/20/2021] [Indexed: 01/14/2023] Open
Abstract
A subset of essential thrombocythemia (ET) cases are negative for disease-defining mutations on JAK2, MPL, and CALR and defined as triple negative (TN). The lack of recurrent mutations in TN-ET patients makes its pathogenesis ambiguous. Here, we screened 483 patients with suspected ET in a single institution, centrally reviewed bone marrow specimens, and identified 23 TN-ET patients. Analysis of clinical records revealed that TN-ET patients were mostly young female, without a history of thrombosis or progression to secondary myelofibrosis and leukemia. Sequencing analysis and human androgen receptor assays revealed that the majority of TN-ET patients exhibited polyclonal hematopoiesis, suggesting a possibility of reactive thrombocytosis in TN-ET. However, the serum levels of thrombopoietin (TPO) and interleukin-6 in TN-ET patients were not significantly different from those in ET patients with canonical mutations and healthy individuals. Rather, CD34-positive cells from TN-ET patients showed a capacity to form megakaryocytic colonies, even in the absence of TPO. No signs of thrombocytosis were observed before TN-ET development, denying the possibility of hereditary thrombocytosis in TN-ET. Overall, these findings indicate that TN-ET is a distinctive disease entity associated with polyclonal hematopoiesis and is paradoxically caused by hematopoietic stem cells harboring a capacity for cell-autonomous megakaryopoiesis.
Collapse
|
21
|
The Power of Extracellular Vesicles in Myeloproliferative Neoplasms: "Crafting" a Microenvironment That Matters. Cells 2021; 10:cells10092316. [PMID: 34571965 PMCID: PMC8464728 DOI: 10.3390/cells10092316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/14/2022] Open
Abstract
Myeloproliferative Neoplasms (MPN) are acquired clonal disorders of the hematopoietic stem cells and include Essential Thrombocythemia, Polycythemia Vera and Myelofibrosis. MPN are characterized by mutations in three driver genes (JAK2, CALR and MPL) and by a state of chronic inflammation. Notably, MPN patients experience increased risk of thrombosis, disease progression, second neoplasia and evolution to acute leukemia. Extracellular vesicles (EVs) are a heterogeneous population of microparticles with a role in cell-cell communication. The EV-mediated cross-talk occurs via the trafficking of bioactive molecules such as nucleic acids, proteins, metabolites and lipids. Growing interest is focused on EVs and their potential impact on the regulation of blood cancers. Overall, EVs have been suggested to orchestrate the complex interplay between tumor cells and the microenvironment with a pivotal role in "education" and "crafting" of the microenvironment by regulating angiogenesis, coagulation, immune escape and drug resistance of tumors. This review is focused on the role of EVs in MPN. Specifically, we will provide an overview of recent findings on the involvement of EVs in MPN pathogenesis and discuss opportunities for their potential application as diagnostic and prognostic biomarkers.
Collapse
|
22
|
Gleitz HF, Benabid A, Schneider RK. Still a burning question: the interplay between inflammation and fibrosis in myeloproliferative neoplasms. Curr Opin Hematol 2021; 28:364-371. [PMID: 34232140 PMCID: PMC8373448 DOI: 10.1097/moh.0000000000000669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Bone marrow fibrosis is the progressive replacement of blood-forming cells by reticulin fibres, caused by the acquisition of somatic mutations in hematopoietic stem cells. The molecular and cellular mechanisms that drive the progression of bone marrow fibrosis remain unknown, yet chronic inflammation appears to be a conserved feature in most patients suffering from myeloproliferative neoplasms. RECENT FINDINGS Here, we review recent literature pertaining to the role of inflammation in driving bone marrow fibrosis, and its effect on the various hematopoietic and nonhematopoietic cell populations. SUMMARY Recent evidence suggests that the pathogenesis of MPN is primarily driven by the hematopoietic stem and progenitor cells, together with their mutated progeny, which in turn results in chronic inflammation that disrupts the bone marrow niche and perpetuates a disease-permissive environment. Emerging data suggests that specifically targeting stromal inflammation in combination with JAK inhibition may be the way forward to better treat MPNs, and bone marrow fibrosis specifically.
Collapse
Affiliation(s)
- Hélène F.E. Gleitz
- Department of Developmental Biology
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Adam Benabid
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Rebekka K. Schneider
- Department of Developmental Biology
- Oncode Institute, Erasmus MC, Rotterdam, The Netherlands
- Institute for Biomedical Engineering, Department of Cell Biology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
23
|
Yang HM, Yim B, Lee BH, Park Y, Kim YG, Kim J, Yoo D. New Tool for Rapid and Accurate Detection of Interleukin-2 and Soluble Interleukin-2 Receptor α in Cancer Diagnosis Using a Bioresponsive Microgel and Multivalent Protein Binding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33782-33789. [PMID: 34258987 DOI: 10.1021/acsami.1c04827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Interleukin-2 (IL-2) and its α receptor in soluble form (sIL-2Rα) are considered biomarkers for cancers and immune-related diseases. Enzyme-linked immunosorbent assay is the most common method used to evaluate biomarkers in clinical practice; it is precise but time-consuming and involves complicated procedures. Here, we have developed a rapid yet accurate modality for cancer diagnosis that enables on-site evaluation of cancer markers, that is, IL-2 and sIL-2Rα, without complicated pretreatment of cancer patient-derived blood samples. Surface plasmon resonance and bioresponsive microgels conjugated with IL-2 receptors, that is, IL-2Rβ and IL-2Rγ, were utilized to measure IL-2 and sIL-2Rα levels via multivalent protein binding (MPB) between the ligands and their receptors. Our results showed that this novel method enables us to perform cancer diagnosis with a 1000-fold dilution of serum in 10 min. The advantage of MPB-based cancer diagnosis originates from its great selectivity for a target molecule and tolerance to a myriad of nonspecific substances in serum, which allows on-site clinical evaluation. Importantly, our finding implies that MPB-based cancer diagnosis provides a new paradigm not only for improving cancer treatment but also for evaluating a target molecule in unpurified and complex solutions such as blood.
Collapse
Affiliation(s)
- Hae Min Yang
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Bora Yim
- R&D center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea
| | - Byung-Hyun Lee
- Department of Internal Medicine, Korea University College of Medicine, Anam Hospital, Seoul 02841, Republic of Korea
| | - Yongdoo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Young Gyu Kim
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongseong Kim
- R&D center, Scholar Foxtrot Co. Ltd., Seoul 02841, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Dongwon Yoo
- School of Chemical and Biological Engineering, and Institute of Chemical Process, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Chen P, Wu B, Ji L, Zhan Y, Li F, Cheng L, Cao J, Chen H, Ke Y, Min Z, Sun L, Hua F, Chen H, Cheng Y. Cytokine Consistency Between Bone Marrow and Peripheral Blood in Patients With Philadelphia-Negative Myeloproliferative Neoplasms. Front Med (Lausanne) 2021; 8:598182. [PMID: 34249954 PMCID: PMC8264196 DOI: 10.3389/fmed.2021.598182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 04/09/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Inflammation might play a critical role in the pathogenesis and progression of Philadelphia-negative myeloproliferative neoplasms (Ph−MPNs) with elevated inflammatory cytokines in peripheral blood (PB). However, the inflammatory status inside the bone marrow (BM), which is the place of malignancy origin and important microenvironment of neoplasm evolution, has not yet been elucidated. Methods: Inflammatory cytokine profiles in PB and BM of 24 Ph-MPNs patients were measured by a multiplex quantitative inflammation array. Cytokines that correlated between PB and BM were selected and then validated by ELISA in a separate cohort of 52 MPN patients. Furthermore, a panel of cytokines was identified and examined for potential application as non-invasive markers for the diagnosis and prediction of fibrosis progress of MPN subtypes. Results: The levels of G-CSF, I-309, IL-1β, IL-1ra, IL-12p40, IL-15, IL-16, M-CSF, MIG, PDGF-BB, and TIMP-1 in BM supernatants were significantly higher than those in PB (all p < 0.05). Linear correlations between BM and PB levels were found in 13 cytokines, including BLC, Eotaxin-2, I-309, sICAM-1, IL-15, M-CSF, MIP-1α, MIP-1δ, RANTES, TIMP-1, TIMP-2, sTNFRI, and sTNFRII (all R > 0.4 and p < 0.05). Levels of BLC, Eotaxin-2, M-CSF, and TIMP-1 in PB were significantly different from those in health controls (all p < 0.05). In PB, levels of TIMP-1 and Eotaxin-2 in essential thrombocythemia (ET) group were significantly lower than those in groups of prefibrotic primary myelofibrosis (pre-PMF) [TIMP-1: 685.2 (322.2–1,229) ng/ml vs. 1,369 (1,175–1,497) ng/ml, p = 0.0221; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 942.4 (699.3–1,474) pg/ml, p = 0.0393] and primary myelofibrosis (PMF) [TIMP-1: 685.2 (322.2–1229) ng/ml vs. 1,365 (1,115–1,681) ng/ml, p = 0.0043; Eotaxin-2: 531.4 (317.9–756.6) pg/ml vs. 1,010 (818–1,556) pg/ml, p = 0.0030]. The level of TIMP-1 in myelofibrosis (MF) >1 group was significantly higher than that in MF ≤ 1 group. Conclusion: Abnormal inflammatory status is present in MPN, especially in its BM microenvironment. Consistency between PB and BM levels was found in multiple inflammatory cytokines. Circulating cytokine levels of BLC, M-CSF, Eotaxin-2, and TIMP-1 reflected inflammation inside BM niche, suggesting potential diagnostic value for MPN subtypes and prognostic value for fibrosis progression.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Boting Wu
- Department of Transfusion Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lili Ji
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanxia Zhan
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Li
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Luya Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jingjing Cao
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hehui Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Ke
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhihui Min
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lihua Sun
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Fanli Hua
- Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Thoracic Surgery, Zhongshan Hospital Xuhui Branch, Fudan University, Shanghai, China
| | - Yunfeng Cheng
- Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Hematology, Zhongshan Hospital Qingpu Branch, Fudan University, Shanghai, China.,Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.,Center for Tumor Diagnosis & Therapy, Jinshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Fisher DAC, Fowles JS, Zhou A, Oh ST. Inflammatory Pathophysiology as a Contributor to Myeloproliferative Neoplasms. Front Immunol 2021; 12:683401. [PMID: 34140953 PMCID: PMC8204249 DOI: 10.3389/fimmu.2021.683401] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Myeloid neoplasms, including acute myeloid leukemia (AML), myeloproliferative neoplasms (MPNs), and myelodysplastic syndromes (MDS), feature clonal dominance and remodeling of the bone marrow niche in a manner that promotes malignant over non-malignant hematopoiesis. This take-over of hematopoiesis by the malignant clone is hypothesized to include hyperactivation of inflammatory signaling and overproduction of inflammatory cytokines. In the Ph-negative MPNs, inflammatory cytokines are considered to be responsible for a highly deleterious pathophysiologic process: the phenotypic transformation of polycythemia vera (PV) or essential thrombocythemia (ET) to secondary myelofibrosis (MF), and the equivalent emergence of primary myelofibrosis (PMF). Bone marrow fibrosis itself is thought to be mediated heavily by the cytokine TGF-β, and possibly other cytokines produced as a result of hyperactivated JAK2 kinase in the malignant clone. MF also features extramedullary hematopoiesis and progression to bone marrow failure, both of which may be mediated in part by responses to cytokines. In MF, elevated levels of individual cytokines in plasma are adverse prognostic indicators: elevated IL-8/CXCL8, in particular, predicts risk of transformation of MF to secondary AML (sAML). Tumor necrosis factor (TNF, also known as TNFα), may underlie malignant clonal dominance, based on results from mouse models. Human PV and ET, as well as MF, harbor overproduction of multiple cytokines, above what is observed in normal aging, which can lead to cellular signaling abnormalities separate from those directly mediated by hyperactivated JAK2 or MPL kinases. Evidence that NFκB pathway signaling is frequently hyperactivated in a pan-hematopoietic pattern in MPNs, including in cells outside the malignant clone, emphasizes that MPNs are pan-hematopoietic diseases, which remodel the bone marrow milieu to favor persistence of the malignancy. Clinical evidence that JAK2 inhibition by ruxolitinib in MF neither reliably reduces malignant clonal burden nor eliminates cytokine elevations, suggests targeting cytokine mediated signaling as a therapeutic strategy, which is being pursued in new clinical trials. Greater knowledge of inflammatory pathophysiology in MPNs can therefore contribute to the development of more effective therapy.
Collapse
Affiliation(s)
- Daniel Arthur Corpuz Fisher
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Jared Scott Fowles
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Amy Zhou
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| | - Stephen Tracy Oh
- Divisions of Hematology & Oncology, School of Medicine, Washington University in St. Louis, Saint Louis, MO, United States
| |
Collapse
|
26
|
Gao J, Hou S, Yuan S, Wang Y, Gao Y, Sun X, Wang W, Chu Y, Zhou Y, Feng X, Luo HR, Cheng T, Shi J, Yuan W, Wang X. Rheb1-Deficient Neutrophils Promote Hematopoietic Stem/Progenitor Cell Proliferation via Mesenchymal Stem Cells. Front Cell Dev Biol 2021; 9:650599. [PMID: 34124040 PMCID: PMC8191467 DOI: 10.3389/fcell.2021.650599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Myeloid cells have been identified as hematopoietic stem cell (HSC)-regulating cells. However, the mechanisms by which myeloid cells regulate the function of HSCs are not fully defined. Our previous study indicated that the HSCs are over-expanded in Vav1-Cre;Rheb1 f l/fl mice. Here, using in vivo and in vitro models, we found that Rheb1-deficient neutrophils remodeled the bone marrow environment and induced expansion of HSCs in vivo. Further studies showed that loss of Rheb1 impaired neutrophils' ability to secrete IL-6, led mesenchymal stem cells (MSCs) to produce more SCF, and promote HSC proliferation. We further found that IL-6 suppressed SCF mRNA expression in human MSCs. Interesting, the high level of IL-6 was also related with poor survival of chronic myeloid leukemia (CML) patients, and higher expression of IL-6 in CML cells is associated with the lower expression of SCF in MSCs in patients. Our studies suggested that blocking IL-6 signaling pathway might stimulate MSCs to secrete more SCF, and to support hematopoietic stem/progenitor cells proliferation.
Collapse
Affiliation(s)
- Juan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Tianjin Key Laboratory of Ophthalmology and Visual Science, Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Eye Institute, Tianjin Medical University, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Shuaibing Hou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Shengnan Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuxia Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yanan Gao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Pathology, Tianjin Medical University Cancer Institute and Hospital, Tianjin Medical University, Tianjin, China
| | - Xiaolu Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weili Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yajing Chu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hongbo R Luo
- Department of Pathology, Dana-Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA, United States
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jun Shi
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Weiping Yuan
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Xiaomin Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.,Department of Neuro-Oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
27
|
Jain A, Deo P, Sachdeva MUS, Bose P, Lad D, Prakash G, Khadwal A, Varma N, Varma S, Malhotra P. Aberrant expression of cytokines in polycythemia vera correlate with the risk of thrombosis. Blood Cells Mol Dis 2021; 89:102565. [PMID: 33831662 DOI: 10.1016/j.bcmd.2021.102565] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND Thrombo-hemorrhagic complications cause significant morbidity and mortality in patients with polycythemia vera (PV). OBJECTIVES To assay and correlate inflammatory cytokines with the thrombotic risk in PV patients. METHODS This prospective observational study was carried out at Postgraduate Institute of Medical Education and Research, Chandigarh, India over 18-months. The study enrolled 52 patients with PV (newly diagnosed = 28, follow-up = 24), and 20 age/sex-matched controls. Cytokine analysis for IL 1β, IL2, IL4, IL6, IL8, IL10, IL11, IL12/23p40, TNFα, and IFN-γ was performed on the peripheral blood (before treatment initiation for newly diagnosed cases, and after 7 days of stopping drugs for follow-up cases) by flow cytometry-based cytokine bead analysis (CBA) using CBA kits (BD™ biosciences, USA). Results were analyzed using SPSS Statistics 22.0. RESULTS The mean age of patients was 51.9 ± 13 years. Levels of IL-6, IL-1β, IL-8, IL-11, IL-12/23p40 were significantly raised, however, TNF-α, and IFN-γ levels were significantly lower in the PV population as compared to controls. A significant correlation between the levels of IL-6, IL-2, and IL-8 with the overall risk of thrombosis in PV patients was observed. CONCLUSIONS PV patients display an aberrant pattern of plasma cytokine expression, the levels of which correlate with the thrombotic risk.
Collapse
Affiliation(s)
- Ankur Jain
- Department of Haematology, Vardhman Mahavir Medical College and Safdarjung Hospital, Delhi 110029, India
| | - Prateek Deo
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Man Updesh Singh Sachdeva
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Parveen Bose
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Deepesh Lad
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Gaurav Prakash
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Alka Khadwal
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Neelam Varma
- Department of Haematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Subhash Varma
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
28
|
Abstract
Megakaryocytes give rise to platelets, which have a wide variety of functions in coagulation, immune response, inflammation, and tissue repair. Dysregulation of megakaryocytes is a key feature of in the myeloproliferative neoplasms, especially myelofibrosis. Megakaryocytes are among the main drivers of myelofibrosis by promoting myeloproliferation and bone marrow fibrosis. In vivo targeting of megakaryocytes by genetic and pharmacologic approaches ameliorates the disease, underscoring the important role of megakaryocytes in myeloproliferative neoplasms. Here we review the current knowledge of the function of megakaryocytes in the JAK2, CALR, and MPL-mutant myeloproliferative neoplasms.
Collapse
|
29
|
Tremblay D, Kosiorek HE, Dueck AC, Hoffman R. Evaluation of Therapeutic Strategies to Reduce the Number of Thrombotic Events in Patients With Polycythemia Vera and Essential Thrombocythemia. Front Oncol 2021; 10:636675. [PMID: 33665170 PMCID: PMC7921696 DOI: 10.3389/fonc.2020.636675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Thrombosis is the largest contributor to morbidity and mortality in patients with polycythemia vera (PV) and essential thrombocythemia (ET). Our understanding of the risk factors and pathophysiology of thrombosis in PV and ET patients is developing, including recent insights into the role of aberrant platelet-neutrophil interactions, JAK2 mutated endothelial cells and the pro-thrombotic inflammatory milieu. To date, few available therapies have demonstrated the ability to reduce the thrombotic burden in patients with these diseases. Although numerous therapeutic agents have been investigated in both PV and ET patients, few studies are designed to assess their impact on thrombotic events. In this review, we first describe the burden of thrombosis in patients with these myeloproliferative neoplasms (MPNs) and briefly explore their pathophysiologic mechanisms. We then critically assess and summarize the evidence behind currently available therapies with attention toward thrombotic endpoints. Finally, we describe a path forward for clinical research in MPNs that involves surrogate endpoint validation, biomarker development, and clinical trial design strategies in order to accurately assess reduction of thrombotic events when evaluating novel therapies.
Collapse
Affiliation(s)
- Douglas Tremblay
- Hematology/Oncology Section, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Heidi E. Kosiorek
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Amylou C. Dueck
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, AZ, United States
| | - Ronald Hoffman
- Hematology/Oncology Section, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
30
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021; 22:ijms22041906. [PMID: 33672997 PMCID: PMC7918142 DOI: 10.3390/ijms22041906] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
- Correspondence: ; Tel.: +39-059-422-2173
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy;
| | - Rossella Manfredini
- Centre for Regenerative Medicine “S. Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (L.R.); (A.M.)
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy; (A.P.); (F.F.); (M.M.); (A.M.); (V.P.); (A.G.); (F.B.); (D.G.); (P.B.); (I.L.); (R.M.); (R.M.); (L.P.); (M.L.)
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy; (G.R.); (B.L.); (E.T.); (T.T.)
| |
Collapse
|
31
|
Nasillo V, Riva G, Paolini A, Forghieri F, Roncati L, Lusenti B, Maccaferri M, Messerotti A, Pioli V, Gilioli A, Bettelli F, Giusti D, Barozzi P, Lagreca I, Maffei R, Marasca R, Potenza L, Comoli P, Manfredini R, Maiorana A, Tagliafico E, Luppi M, Trenti T. Inflammatory Microenvironment and Specific T Cells in Myeloproliferative Neoplasms: Immunopathogenesis and Novel Immunotherapies. Int J Mol Sci 2021. [PMID: 33672997 DOI: 10.3390/ijms22041906.pmid:33672997;pmcid:pmc7918142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
The Philadelphia-negative myeloproliferative neoplasms (MPNs) are malignancies of the hematopoietic stem cell (HSC) arising as a consequence of clonal proliferation driven by somatically acquired driver mutations in discrete genes (JAK2, CALR, MPL). In recent years, along with the advances in molecular characterization, the role of immune dysregulation has been achieving increasing relevance in the pathogenesis and evolution of MPNs. In particular, a growing number of studies have shown that MPNs are often associated with detrimental cytokine milieu, expansion of the monocyte/macrophage compartment and myeloid-derived suppressor cells, as well as altered functions of T cells, dendritic cells and NK cells. Moreover, akin to solid tumors and other hematological malignancies, MPNs are able to evade T cell immune surveillance by engaging the PD-1/PD-L1 axis, whose pharmacological blockade with checkpoint inhibitors can successfully restore effective antitumor responses. A further interesting cue is provided by the recent discovery of the high immunogenic potential of JAK2V617F and CALR exon 9 mutations, that could be harnessed as intriguing targets for innovative adoptive immunotherapies. This review focuses on the recent insights in the immunological dysfunctions contributing to the pathogenesis of MPNs and outlines the potential impact of related immunotherapeutic approaches.
Collapse
Affiliation(s)
- Vincenzo Nasillo
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Giovanni Riva
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Ambra Paolini
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Fabio Forghieri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Luca Roncati
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Beatrice Lusenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Monica Maccaferri
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Messerotti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Valeria Pioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Andrea Gilioli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Francesca Bettelli
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Davide Giusti
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Barozzi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Ivana Lagreca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Rossana Maffei
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Roberto Marasca
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Leonardo Potenza
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology Unit and Cell Factory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico San Matteo, 27100 Pavia, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Antonino Maiorana
- Institute of Pathology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Enrico Tagliafico
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| | - Mario Luppi
- Section of Hematology, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, AOU Policlinico, 41124 Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathology, Diagnostic Hematology and Clinical Genomics, AUSL/AOU Policlinico, 41124 Modena, Italy
| |
Collapse
|
32
|
Ramanathan G, Fleischman AG. The Microenvironment in Myeloproliferative Neoplasms. Hematol Oncol Clin North Am 2020; 35:205-216. [PMID: 33641864 DOI: 10.1016/j.hoc.2020.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Chronic inflammation is a hallmark of myeloproliferative neoplasms (MPNs), with elevated levels of proinflammatory cytokines being commonly found in all 3 subtypes. Systemic inflammation is responsible for the constitutional symptoms, thrombosis risk, premature atherosclerosis, and disease evolution in MPN. Although the neoplastic clone and their differentiated progeny drive the inflammatory process, they also induce ancillary cytokine secretion from nonmalignant cells. Here, the authors describe the inflammatory milieu in MPN based on soluble factors and cellular mediators. They also discuss the prognostic value of cytokine measurements in patients with MPN and potential therapeutic strategies that target the cellular players in inflammation.
Collapse
Affiliation(s)
- Gajalakshmi Ramanathan
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA
| | - Angela G Fleischman
- Division of Hematology/Oncology, Department of Medicine, University of California, 839 Health Sciences Road, Sprague Hall B100, Irvine, CA 92617, USA; Department of Biological Chemistry, Irvine Chao Family Comprehensive Cancer Center, University of California, 839 Health Sciences Road, Sprague Hall 126, Irvine, CA 92617, USA.
| |
Collapse
|
33
|
Janjetovic S, Beckmann L, Holstein K, Rolling C, Thiele B, Schafhausen P, Schön G, Bokemeyer C, Langer F, Voigtlaender M. Prevalence of definite antiphospholipid syndrome in carriers of the JAK2 V617F mutation. Thromb Res 2020; 198:55-61. [PMID: 33290883 DOI: 10.1016/j.thromres.2020.11.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/28/2020] [Accepted: 11/20/2020] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Patients with Philadelphia-negative myeloproliferative neoplasms (MPNs), particularly those carrying the JAK2V617F mutation, are at increased risk of thrombosis. While an association of MPNs with autoimmune disorders has been established, the prevalence of inherited or acquired thrombophilias in JAK2V617F-positive patients remains obscure. We therefore investigated the coincidence of the JAK2V617F mutation with additional thrombogenic risk factors. METHODS In a retrospective study, we analyzed all patients referred for thrombophilia work-up between 01/2011 and 08/2019, in whom additional JAK2V617F mutation analysis was performed because of thromboembolic events that were recurrent, atypically located and/or associated with abnormal blood counts. RESULTS Of 472 tested patients, 49 (10.4%) were JAK2V617F-positive. While the frequency of inherited thrombophilias (factor V Leiden and prothrombin G20210A mutation, deficiency of antithrombin, protein C, protein S) was not different between the two groups, the prevalence of definite antiphospholipid syndrome (APS), mostly associated with a moderate- or high-risk antibody profile, was significantly higher in patients with (22.4%) than in those without (8.4%) JAK2V617F mutation (p < 0.01). All evaluable JAK2V617F-positive patients with APS were subsequently diagnosed with MPN. In patients with JAK2V617F mutation, presence of concomitant APS was associated with a significantly younger age (49 ± 14 vs. 60 ± 15 years) at the time of thrombophilia work-up (p < 0.05). CONCLUSION We found a significant association between JAK2V617F-positive MPN and definite APS. The presence of concomitant APS in patients carrying the JAK2V617F mutation may lead to earlier manifestation of thromboembolic events and may warrant more aggressive antithrombotic treatment strategies to prevent recurrence.
Collapse
Affiliation(s)
- Snjezana Janjetovic
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Lennart Beckmann
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Katharina Holstein
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Christina Rolling
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Benjamin Thiele
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Philippe Schafhausen
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Gerhard Schön
- Department of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Florian Langer
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany
| | - Minna Voigtlaender
- Department of Oncology, Hematology and Bone Marrow Transplantation with Section Pneumology, University Cancer Center Hamburg (UCCH), University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246 Hamburg, Germany.
| |
Collapse
|
34
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020. [PMID: 32967342 DOI: 10.3390/cells9092136.pmid:32967342;pmcid:pmc7564952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
35
|
Masselli E, Pozzi G, Gobbi G, Merighi S, Gessi S, Vitale M, Carubbi C. Cytokine Profiling in Myeloproliferative Neoplasms: Overview on Phenotype Correlation, Outcome Prediction, and Role of Genetic Variants. Cells 2020; 9:cells9092136. [PMID: 32967342 PMCID: PMC7564952 DOI: 10.3390/cells9092136] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/16/2022] Open
Abstract
Among hematologic malignancies, the classic Philadelphia-negative chronic myeloproliferative neoplasms (MPNs) are considered a model of inflammation-related cancer development. In this context, the use of immune-modulating agents has recently expanded the MPN therapeutic scenario. Cytokines are key mediators of an auto-amplifying, detrimental cross-talk between the MPN clone and the tumor microenvironment represented by immune, stromal, and endothelial cells. This review focuses on recent advances in cytokine-profiling of MPN patients, analyzing different expression patterns among the three main Philadelphia-negative (Ph-negative) MPNs, as well as correlations with disease molecular profile, phenotype, progression, and outcome. The role of the megakaryocytic clone as the main source of cytokines, particularly in myelofibrosis, is also reviewed. Finally, we report emerging intriguing evidence on the contribution of host genetic variants to the chronic pro-inflammatory state that typifies MPNs.
Collapse
Affiliation(s)
- Elena Masselli
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Giulia Pozzi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Giuliana Gobbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| | - Stefania Merighi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Stefania Gessi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (S.M.); (S.G.)
| | - Marco Vitale
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (M.V.); Tel.: +39-052-190-6655 (E.M.); +39-052-103-3032 (M.V.)
| | - Cecilia Carubbi
- Department of Medicine and Surgery, Anatomy Unit, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.)
| |
Collapse
|
36
|
Jutzi JS, Mullally A. Remodeling the Bone Marrow Microenvironment - A Proposal for Targeting Pro-inflammatory Contributors in MPN. Front Immunol 2020; 11:2093. [PMID: 32983162 PMCID: PMC7489333 DOI: 10.3389/fimmu.2020.02093] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 07/31/2020] [Indexed: 12/31/2022] Open
Abstract
Philadelphia-negative myeloproliferative neoplasms (MPN) are malignant bone marrow (BM) disorders, typically arising from a single somatically mutated hematopoietic stem cell. The most commonly mutated genes, JAK2, CALR, and MPL lead to constitutively active JAK-STAT signaling. Common clinical features include myeloproliferation, splenomegaly and constitutional symptoms. This review covers the contributions of cellular components of MPN pathology (e.g., monocytes, megakaryocytes, and mesenchymal stromal cells) as well as cytokines and soluble mediators to the development of myelofibrosis (MF) and highlights recent therapeutic advances. These findings outline the importance of malignant and non-malignant BM constituents to the pathogenesis and treatment of MF.
Collapse
Affiliation(s)
- Jonas Samuel Jutzi
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ann Mullally
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, United States.,Cancer Program, Broad Institute, Cambridge, MA, United States
| |
Collapse
|
37
|
MPN: The Molecular Drivers of Disease Initiation, Progression and Transformation and their Effect on Treatment. Cells 2020; 9:cells9081901. [PMID: 32823933 PMCID: PMC7465511 DOI: 10.3390/cells9081901] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/07/2020] [Accepted: 08/11/2020] [Indexed: 02/07/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) constitute a group of disorders identified by an overproduction of cells derived from myeloid lineage. The majority of MPNs have an identifiable driver mutation responsible for cytokine-independent proliferative signalling. The acquisition of coexisting mutations in chromatin modifiers, spliceosome complex components, DNA methylation modifiers, tumour suppressors and transcriptional regulators have been identified as major pathways for disease progression and leukemic transformation. They also confer different sensitivities to therapeutic options. This review will explore the molecular basis of MPN pathogenesis and specifically examine the impact of coexisting mutations on disease biology and therapeutic options.
Collapse
|
38
|
Lucijanic M, Galusic D, Krecak I, Sedinic M, Soric E, Holik H, Perisa V, Moric Peric M, Zekanovic I, Stoos-Veic T, Kusec R. C reactive protein to albumin ratio as prognostic marker in primary and secondary myelofibrosis. Leuk Lymphoma 2020; 61:2969-2974. [PMID: 32654566 DOI: 10.1080/10428194.2020.1789627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
We retrospectively investigated C reactive protein to albumin ratio (CAR) in a cohort of 142 patients with myelofibrosis [101 primary (PMF); 41 secondary (SMF)] and compared it to hematological and clinical parameters. Among other associations, higher CAR was significantly associated with higher grade of bone marrow fibrosis, lower frequency of Calreticulin (CALR) mutations, presence of constitutional symptoms, massive splenomegaly, transfusion dependency, blast phase disease, lower hemoglobin, lower platelets, higher ferritin and higher lactate dehydrogenase (LDH) (p < .05 for all analyses). Higher CAR was able to predict inferior survival in PMF independently of DIPSS [hazard ratio (HR)=2.17; p = .015 for high CAR and HR = 2.05; p < .001 for DIPSS] and in SMF independently of Mysec-PM (HR = 6.48; p = .022 for high CAR and HR = 2.63; p = .013 for Mysec-PM) demonstrating its good prognostic potential. CAR seems to be an independent and prognostically relevant parameter, both in PMF and SMF, and might aid in timely recognition of most vulnerable patients.
Collapse
Affiliation(s)
- Marko Lucijanic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Davor Galusic
- Department of Hematology, University Hospital of Split, Split, Croatia
| | - Ivan Krecak
- Hematology Department, General Hospital Sibenik, Sibenik, Croatia
| | - Martina Sedinic
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Ena Soric
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia
| | - Hrvoje Holik
- Department of Internal Medicine, "Dr. Josip Bencevic" General Hospital, Ul. Andrije Štampara, Slavonski Brod, Croatia
| | - Vlatka Perisa
- Department of Hematology, Osijek University Hospital, Osijek, Croatia.,Faculty of Medicine, University of Osijek, Osijek, Croatia
| | | | - Ivan Zekanovic
- Department of Internal Medicine, General Hospital Zadar, Zadar, Croatia
| | - Tajana Stoos-Veic
- Department of Clinical Cytology and Cytometry, University Hospital Dubrava, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Rajko Kusec
- Hematology Department, University Hospital Dubrava, Zagreb, Croatia.,School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
39
|
Lee J, Godfrey AL, Nangalia J. Genomic heterogeneity in myeloproliferative neoplasms and applications to clinical practice. Blood Rev 2020; 42:100708. [PMID: 32571583 DOI: 10.1016/j.blre.2020.100708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/22/2020] [Accepted: 04/18/2020] [Indexed: 12/14/2022]
Abstract
The myeloproliferative neoplasms (MPN) polycythaemia vera, essential thrombocythaemia and primary myelofibrosis are chronic myeloid disorders associated most often with mutations in JAK2, MPL and CALR, and in some patients with additional acquired genomic lesions. Whilst the molecular mechanisms downstream of these mutations are now clearer, it is apparent that clinical phenotype in MPN is a product of complex interactions, acting between individual mutations, between disease subclones, and between the tumour and background host factors. In this review we first discuss MPN phenotypic driver mutations and the factors that interact with them to influence phenotype. We consider the importance of ongoing studies of clonal haematopoiesis, which may inform a better understanding of why MPN develop in specific individuals. We then consider how best to deploy genomic testing in a clinical environment and the challenges as well as opportunities that may arise from more routine, comprehensive genomic analysis of patients with MPN.
Collapse
Affiliation(s)
- Joe Lee
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK
| | - Anna L Godfrey
- Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK
| | - Jyoti Nangalia
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, UK; Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Puddicombe Way, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge, UK; Haematopathology and Oncology Diagnostics Service/ Department of Haematology, Cambridge University Hospitals NHS Foundation Trust, Hills Rd, Cambridge CB2 0QQ, UK.
| |
Collapse
|
40
|
Abstract
Myeloproliferative diseases, including myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS), are driven by genetic abnormalities and increased inflammatory signaling and are at high risk to transform into acute myeloid leukemia (AML). Myeloid-derived suppressor cells were reported to enhance leukemia immune escape by suppressing an effective anti-tumor immune response. MPNs are a potentially immunogenic disease as shown by their response to interferon-α treatment and allogeneic hematopoietic stem-cell transplantation (allo-HSCT). Novel immunotherapeutic approaches such as immune checkpoint inhibition, tumor vaccination, or cellular therapies using target-specific lymphocytes have so far not shown strong therapeutic efficacy. Potential reasons could be the pro-inflammatory and immunosuppressive microenvironment in the bone marrow of patients with MPN, driving tumor immune escape. In this review, we discuss the biology of MPNs with respect to the pro-inflammatory milieu in the bone marrow (BM) and potential immunotherapeutic approaches.
Collapse
|
41
|
Øbro NF, Grinfeld J, Belmonte M, Irvine M, Shepherd MS, Rao TN, Karow A, Riedel LM, Harris OB, Baxter EJ, Nangalia J, Godfrey A, Harrison CN, Li J, Skoda RC, Campbell PJ, Green AR, Kent DG. Longitudinal Cytokine Profiling Identifies GRO-α and EGF as Potential Biomarkers of Disease Progression in Essential Thrombocythemia. Hemasphere 2020; 4:e371. [PMID: 32647796 PMCID: PMC7306314 DOI: 10.1097/hs9.0000000000000371] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 03/09/2020] [Indexed: 12/17/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by deregulation of mature blood cell production and increased risk of myelofibrosis (MF) and leukemic transformation. Numerous driver mutations have been identified but substantial disease heterogeneity remains unexplained, implying the involvement of additional as yet unidentified factors. The inflammatory microenvironment has recently attracted attention as a crucial factor in MPN biology, in particular whether inflammatory cytokines and chemokines contribute to disease establishment or progression. Here we present a large-scale study of serum cytokine profiles in more than 400 MPN patients and identify an essential thrombocythemia (ET)-specific inflammatory cytokine signature consisting of Eotaxin, GRO-α, and EGF. Levels of 2 of these markers (GRO-α and EGF) in ET patients were associated with disease transformation in initial sample collection (GRO-α) or longitudinal sampling (EGF). In ET patients with extensive genomic profiling data (n = 183) cytokine levels added significant prognostic value for predicting transformation from ET to MF. Furthermore, CD56+CD14+ pro-inflammatory monocytes were identified as a novel source of increased GRO-α levels. These data implicate the immune cell microenvironment as a significant player in ET disease evolution and illustrate the utility of cytokines as potential biomarkers for reaching beyond genomic classification for disease stratification and monitoring.
Collapse
Affiliation(s)
- Nina F. Øbro
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Jacob Grinfeld
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Miriam Belmonte
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| | - Melissa Irvine
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Mairi S. Shepherd
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Tata Nageswara Rao
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Axel Karow
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
- Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lisa M. Riedel
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Oliva B. Harris
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - E. Joanna Baxter
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Jyoti Nangalia
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anna Godfrey
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Claire N. Harrison
- Department of Hematology, Guy's and St. Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Juan Li
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
| | - Radek C. Skoda
- Experimental Hematology, Department of Biomedicine, University Hospital Basel and University of Basel, 4031 Basel, Switzerland
| | - Peter J. Campbell
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Anthony R. Green
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - David G. Kent
- Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge, CB2 0XY, United Kingdom
- Department of Hematology, University of Cambridge, CB2 0XY, United Kingdom
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5NG, United Kingdom
| |
Collapse
|
42
|
Immunoproteasome Genes Are Modulated in CD34 + JAK2 V617F Mutated Cells from Primary Myelofibrosis Patients. Int J Mol Sci 2020; 21:ijms21082926. [PMID: 32331228 PMCID: PMC7216198 DOI: 10.3390/ijms21082926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 12/17/2022] Open
Abstract
Primary myelofibrosis (PMF) is a rare myeloproliferative neoplasm characterized by stem-cell-derived clonal over-proliferation of mature myeloid lineages, bone marrow fibrosis, osteosclerosis, defective erythropoiesis, and pro-inflammatory cytokine over-expression. The aim of the present study was to highlight possible differences in the transcriptome among CD34+ cells from peripheral blood (PB) of PMF patients. Therefore, we merged two microarray datasets of healthy control subjects and PMF (34 JAK2V617F MUTATED and 28 JAK2 wild-type). The GO analysis of upregulated genes revealed enrichment for JAK2/STAT1 pathway gene set in PB CD34+ cells of PMF patients with and without the JAK2V617F mutation comparing to the healthy control subjects, and in particular a significant upregulation of immunoproteasome (IP)-belonging genes as PSMB8, PSMB9, and PSMB10. A more detailed investigation of the IFN-gamma (IFNG) pathway also revealed that IFNG, IRF1, and IFNGR2 were significantly upregulated in PB CD34+ cells of PMF patients carrying the mutation for JAK2V617F compared to JAK2 wild-type PMF patients. Finally, we showed an upregulation of HLA-class I genes in PB CD34+ cells from PMF JAK2V617F mutated patients compared to JAK2 wild-type and healthy controls. In conclusion, our results demonstrate that IPs and IFNG pathways could be involved in PMF disease and in particular in patients carrying the JAK2V617F mutation.
Collapse
|
43
|
miR-146a rs2431697 identifies myeloproliferative neoplasm patients with higher secondary myelofibrosis progression risk. Leukemia 2020; 34:2648-2659. [PMID: 32107471 DOI: 10.1038/s41375-020-0767-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/21/2020] [Accepted: 02/12/2020] [Indexed: 12/17/2022]
Abstract
Myelofibrosis (MF) occurs as part of the natural history of polycythemia vera (PV) and essential thrombocythemia (ET), and remarkably shortens survival. Although JAK2V617F and CALR allele burden are the main transformation risk factors, inflammation plays a critical role by driving clonal expansion toward end-stage disease. NF-κB is a key mediator of inflammation-induced carcinogenesis. Here, we explored the involvement of miR-146a, a brake in NF-κB signaling, in MPN susceptibility and progression. rs2910164 and rs2431697, that affect miR-146a expression, were analyzed in 967 MPN (320 PV/333 ET/314 MF) patients and 600 controls. We found that rs2431697 TT genotype was associated with MF, particularly with post-PV/ET MF (HR = 1.5; p < 0.05). Among 232 PV/ET patients (follow-up time=8.5 years), 18 (7.8%) progressed to MF, being MF-free-survival shorter for rs2431697 TT than CC + CT patients (p = 0.01). Multivariate analysis identified TT genotype as independent predictor of MF progression. In addition, TT (vs. CC + CT) patients showed increased plasma inflammatory cytokines. Finally, miR-146a-/- mice showed significantly higher Stat3 activity with aging, parallel to the development of the MF-like phenotype. In conclusion, we demonstrated that rs2431697 TT genotype is an early predictor of MF progression independent of the JAK2V617F allele burden. Low levels of miR-146a contribute to the MF phenotype by increasing Stat3 signaling.
Collapse
|
44
|
Barosi G, Campanelli R, Catarsi P, De Amici M, Abbà C, Viarengo G, Villani L, Gale RP, Rosti V, Massa M. Plasma sIL-2Rα levels are associated with disease progression in myelofibrosis with JAK2 V617F but not CALR mutation. Leuk Res 2020; 90:106319. [PMID: 32081398 DOI: 10.1016/j.leukres.2020.106319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Affiliation(s)
- Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy.
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Mara De Amici
- Laboratory of Immuno-Allergology of Clinical Chemistry and Pediatric Clinic, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Carlotta Abbà
- Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Gianluca Viarengo
- Immunohematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Laura Villani
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Robert P Gale
- Haematology Research Centre, Division of Experimental Medicine, Department of Medicine, Imperial College, London, UK
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biochemistry-Biotechnology and Advanced Diagnosis, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Policlinico S. Matteo, Pavia, Italy
| |
Collapse
|
45
|
Defective negative regulation of Toll-like receptor signaling leads to excessive TNF-α in myeloproliferative neoplasm. Blood Adv 2020; 3:122-131. [PMID: 30647074 PMCID: PMC6341195 DOI: 10.1182/bloodadvances.2018026450] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/12/2018] [Indexed: 12/12/2022] Open
Abstract
Patients with myeloproliferative neoplasms (MPN) have high levels of inflammatory cytokines, some of which drive many of the debilitating constitutional symptoms associated with the disease and may also promote expansion of the neoplastic clone. We report here that monocytes from patients with MPN have defective negative regulation of Toll-like receptor (TLR) signaling that leads to unrestrained production of the inflammatory cytokine tumor necrosis factor α (TNF-α) after TLR activation. Specifically, monocytes of patients with MPN are insensitive to the anti-inflammatory cytokine interleukin 10 (IL-10) that negatively regulates TLR-induced TNF-α production. This inability to respond to IL-10 is a not a direct consequence of JAK2 V617F , as the phenotype of persistent TNF-α production is a feature of JAK2 V617F and wild-type monocytes alike from JAK2 V617F -positive patients. Moreover, persistent TNF-α production was also discovered in the unaffected identical twin of a patient with MPN, suggesting it could be an intrinsic feature of those predisposed to acquire MPN. This work implicates sustained TLR signaling as not only a contributor to the chronic inflammatory state of MPN patients but also a potential predisposition to acquire MPN.
Collapse
|
46
|
Oda Y, Sato S, Kanbe E, Kamata W, Okada S, Tamai Y. JAK2 V617F-positive essential thrombocythemia with subsequent development of immune thrombocytopenia: A case report. Medicine (Baltimore) 2019; 98:e17766. [PMID: 31689837 PMCID: PMC6946387 DOI: 10.1097/md.0000000000017766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Although essential thrombocythemia (ET) and immune thrombocytopenia (ITP) have different etiologies, 3 previous reports have described ET development in ITP patients, all of whom were positive for the JAK2 V617F mutation. Here, we report the first published case of ITP following ET in the absence of other platelet disorders. PATIENT CONCERNS A 70-year-old woman with a five-year history of ET with JAK2 V617F mutation treated with hydroxycarbamide for five months presented with petechiae on her limbs. DIAGNOSIS Her platelet count was 3 × 10/L, with the immature platelet fraction being 29%. White blood cell count and hemoglobin level were normal. Bone marrow examination showed increased number of megakaryocytes, but no morphologic dysplasia in any lineage. G-band analysis revealed no abnormalities. Platelet transfusion and cessation of hydroxycarbamide did not affect the platelet count. Thrombocytopenia was unlikely to have been induced by drugs, heparin, systemic lupus erythematosus, or human immunodeficiency virus. Hence, a diagnosis of ITP was made. INTERVENTIONS The patient received oral prednisolone combined with intravenous immunoglobulin. OUTCOMES Her platelet count rose to 310 × 10/L and remained stable, while her steroid dose was reduced. Further blood tests revealed the presence of antibodies against Helicobacter pylori, and appropriate treatment was administered. Resumption of hydroxycarbamide did not induce thrombocytopenia. LESSONS Although ET and ITP have different etiologies, chronic inflammation and immune deregulation underlie both and may play an important role in the progression from one to the other. Further research is warranted to understand the relationship between ET and ITP.
Collapse
|
47
|
Singer JW, Al-Fayoumi S, Taylor J, Velichko S, O'Mahony A. Comparative phenotypic profiling of the JAK2 inhibitors ruxolitinib, fedratinib, momelotinib, and pacritinib reveals distinct mechanistic signatures. PLoS One 2019; 14:e0222944. [PMID: 31560729 PMCID: PMC6764664 DOI: 10.1371/journal.pone.0222944] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
Janus kinase-signal transducers and activators of transcription (JAK-STAT) signaling is critical to multiple cellular processes, including survival, differentiation, and proliferation. JAK-STAT signaling dysregulation has been noted in inflammatory disorders, and aberrant JAK2 pathway activation has been implicated in myelofibrosis and polycythemia vera. Moreover, 4 therapeutic JAK2 inhibitors (ruxolitinib, fedratinib, momelotinib, and pacritinib) have either been approved or are in advanced clinical development for myelofibrosis. Although all inhibit JAK2, reports indicate that they also inhibit other kinases. Profiling based solely on in vitro potencies is insufficient to predict the observed clinical effects. To provide further translational insights into clinical outcomes, we compared phenotypic biomarker profiles of ruxolitinib, fedratinib, momelotinib, and pacritinib in the BioMAP® Diversity PLUS panel of 12 human primary cell systems designed to recapitulate key aspects of tissue and disease states. Biomarker activity profiles that represent mechanistic signatures for each agent were compared with each other and a database of reference benchmark profiles. At clinically relevant concentrations, these agents had distinct biomarker impacts indicating diverse mechanistic signatures, suggesting divergent clinical effects for each agent. They disparately modulated inflammatory cytokine production and immune function. At clinically relevant concentrations, ruxolitinib had the broadest scope of activities across all 12 cellular systems, whereas pacritinib was more specific for the BT system (modelling T cell-dependent B cell activation) and exhibited the strongest inhibition of sIL-17A, sIL-2, and sIL-6. All 4 agents were antiproliferative to B cells, but ruxolitinib and momelotinib were also antiproliferative to T cells. These differential activities likely reflect distinct secondary pharmacology for these agents known primarily as JAK2 inhibitors. The phenotypic analysis reported herein represents key data on distinct modes-of-action that may provide insights on clinical outcomes reported for these agents. Such translational findings may also inform the development of next-generation molecules with improved efficacy and safety.
Collapse
Affiliation(s)
- Jack W Singer
- CTI BioPharma Corp., Seattle, Washington, United States of America.,Elson Floyd College of Medicine, Washington State University, Seattle, Washington, United States of America
| | | | - Jason Taylor
- CTI BioPharma Corp., Seattle, Washington, United States of America
| | - Sharlene Velichko
- Eurofins Discovery, Phenotypic Services, Burlingame, California, United States of America
| | - Alison O'Mahony
- Eurofins Discovery, Phenotypic Services, Burlingame, California, United States of America
| |
Collapse
|
48
|
Gene expression profiling distinguishes prefibrotic from overtly fibrotic myeloproliferative neoplasms and identifies disease subsets with distinct inflammatory signatures. PLoS One 2019; 14:e0216810. [PMID: 31071164 PMCID: PMC6534080 DOI: 10.1371/journal.pone.0216810] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/29/2019] [Indexed: 02/06/2023] Open
Abstract
The Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) share similar molecular characteristics in that they frequently harbor hotspot mutations in JAK2, CALR or MPL, leading to activated JAK/STAT signaling. However, these MPN have distinct symptoms, morphology, and natural histories, including different tendencies to progress to fibrosis. Although the role of inflammation in tissue fibrosis is well recognized, inflammatory gene expression in bone marrows involved by MPN has been understudied. We analyzed the expression of inflammatory genes by directly measuring RNA transcript abundance in bone marrow biopsies of 108 MPN patients. Unsupervised analyses identified gene expression patterns that distinguish prefibrotic (grade 1–2) MPN from overtly fibrotic (grade 2–3) MPN with high sensitivity and specificity in two independent cohorts. Furthermore, prefibrotic and overtly fibrotic MPN are separable into subsets with different activities in biological pathways linked to inflammation, including cytokines, chemokines, interferon response, and toll-like receptor signaling. In conclusion, this study demonstrates that MPN with overt fibrosis is associated with significant inflammatory gene upregulation in the bone marrow, revealing potential roles for multiple pro-inflammatory signaling networks in the development of myelofibrosis and suggesting potential therapeutic mechanisms to alleviate this process in the bone marrow microenvironment.
Collapse
|
49
|
Wang Y, Zuo X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019; 1:100005. [PMID: 33604548 PMCID: PMC7885877 DOI: 10.1016/j.cytox.2019.100005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
MPN is a chronic inflammation-driven tumor model. Many cytokines are involved in pathogenesis and progression of MPN. IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, TGF-β and IFNs are critical in MPN. Cytokine directed therapy could be an alternative treatment for MPN in future.
Classical myeloproliferative neoplasms (MPN) include polycythemia vera (PV), essential thrombocythemia (ET) and primary myelofibrosis (PMF). MPN has been defined as a chronic inflammation-driven tumor model. It is clear that there is a close link between chronic inflammation and MPN pathogenesis. Several studies have demonstrated cytokine profiles in MPN patients. Other studies have used cell lines or animal models aiming to clarify the underlying mechanism of cytokines in the pathogenesis of MPN. However, important questions remain: (1) among all these cytokines, which are more predictive? and (2) which are more critical? In this review, we summarize cytokines that have been investigated in MPN and highlight several cytokines that may be more significant in MPN. We suggest that cytokines are more critical in PMF than PV or ET. These cytokines include IL-1β, TNF-α, IL-6, IL-8, VEGF, PDGF, IFNs and TGF-β, all of which should be more closely investigated in MPN. Based on our extensive literature search, several key factors have emerged in our understanding of MPN: first, TNF-α could correlate with MPN progression including PMF, PV and ET. IL-1β plays a role in PMF progression, while it showed no relation with PV or ET. Second, IL-8 could be a prognostic factor for PMF, and IL-6 could be important for MPN progression. Third, VEGF and PDGF play an indirect role in MPN development and their inhibitors could be effective. Fourth, different subtypes of IFNs could have different effects in MPN. Finally, TGF-β is closely linked to MF, although the data are inconsistent. Agents that have targeted these cytokines described above are already in clinical trials, and some of them have even been used to treat MPN patients. Taken together, it will be critical to continue to investigate the precise role of these cytokines in the pathogenesis and progression of MPN.
Collapse
Affiliation(s)
- Yingying Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| | - Xuelan Zuo
- Department of Hematology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang, Wuhan, Hubei 430071, PR China
| |
Collapse
|
50
|
Kuepper MK, Bütow M, Herrmann O, Ziemons J, Chatain N, Maurer A, Kirschner M, Maié T, Costa IG, Eschweiler J, Koschmieder S, Brümmendorf TH, Müller-Newen G, Schemionek M. Stem cell persistence in CML is mediated by extrinsically activated JAK1-STAT3 signaling. Leukemia 2019; 33:1964-1977. [PMID: 30842608 DOI: 10.1038/s41375-019-0427-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/14/2018] [Accepted: 01/02/2019] [Indexed: 02/06/2023]
Abstract
Tyrosine kinase inhibitor (TKI) therapy effectively blocks oncogenic Bcr-Abl signaling and induces molecular remission in the majority of CML patients. However, the disease-driving stem cell population is not fully targeted by TKI therapy in the majority of patients, and leukemic stem cells (LSCs) capable of re-inducing the disease can persist. In TKI-resistant CML, STAT3 inhibition was previously shown to reduce malignant cell survival. Here, we show therapy-resistant cell-extrinsic STAT3 activation in TKI-sensitive CML cells, using cell lines, HoxB8-immortalized murine BM cells, and primary human stem cells. Moreover, we identified JAK1 but not JAK2 as the STAT3-activating kinase by applying JAK1/2 selective inhibitors and genetic inactivation. Employing an IL-6-blocking peptide, we identified IL-6 as a mediator of STAT3 activation. Combined inhibition of Bcr-Abl and JAK1 further reduced CFUs from murine CML BM, human CML MNCs, as well as CD34+ CML cells, and similarly decreased LT-HSCs in a transgenic CML mouse model. In line with these observations, proliferation of human CML CD34+ cells was strongly reduced upon combined Bcr-Abl and JAK1 inhibition. Remarkably, the combinatory therapy significantly induced apoptosis even in quiescent LSCs. Our findings suggest JAK1 as a potential therapeutic target for curative CML therapies.
Collapse
Affiliation(s)
- Maja Kim Kuepper
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Marlena Bütow
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Oliver Herrmann
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Janine Ziemons
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Nicolas Chatain
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Angela Maurer
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Martin Kirschner
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tiago Maié
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, Joint Research Center for Computational Biomedicine, RWTH Aachen University, Aachen, Germany
| | - Jörg Eschweiler
- Department of Orthopedics, Aachen University Hospital, Aachen, Germany
| | - Steffen Koschmieder
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tim H Brümmendorf
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany
| | - Gerhard Müller-Newen
- Institute of Biochemistry and Molecular Biology, RWTH Aachen University, Aachen, Germany
| | - Mirle Schemionek
- Department of Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|