1
|
Sanson A, Krieg P, Schramm MM, Kellner K, Maloumby R, Klampfl SM, Brunton PJ, Bosch OJ. CRF binding protein activity in the hypothalamic paraventricular nucleus is essential for stress adaptations and normal maternal behaviour in lactating rats. Neurobiol Stress 2024; 30:100631. [PMID: 38601362 PMCID: PMC11004997 DOI: 10.1016/j.ynstr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/15/2024] [Accepted: 03/21/2024] [Indexed: 04/12/2024] Open
Abstract
To ensure the unrestricted expression of maternal behaviour peripartum, activity of the corticotropin-releasing factor (CRF) system needs to be minimised. CRF binding protein (CRF-BP) might be crucial for this adaptation, as its primary function is to sequester freely available CRF and urocortin1, thereby dampening CRF receptor (CRF-R) signalling. So far, the role of CRF-BP in the maternal brain has barely been studied, and a potential role in curtailing activation of the stress axis is unknown. We studied gene expression for CRF-BP and both CRF-R within the paraventricular nucleus (PVN) of the hypothalamus. In lactating rats, Crh-bp expression in the parvocellular PVN was significantly higher and Crh-r1 expression in the PVN significantly lower compared to virgin rats. Acute CRF-BP inhibition in the PVN with infusion of CRF(6-33) increased basal plasma corticosterone concentrations under unstressed conditions in dams. Furthermore, while acute intra-PVN infusion of CRF increased corticosterone secretion in virgin rats, it was ineffective in vehicle (VEH)-pre-treated lactating rats, probably due to a buffering effect of CRF-BP. Indeed, pre-treatment with CRF(6-33) reinstated a corticosterone response to CRF in lactating rats, highlighting the critical role of CRF-BP in maintaining attenuated stress reactivity in lactation. To our knowledge, this is the first study linking hypothalamic CRF-BP activity to hypothalamic-pituitary-adrenal axis regulation in lactation. In terms of behaviour, acute CRF-BP inhibition in the PVN under non-stress conditions reduced blanket nursing 60 min and licking/grooming 90 min after infusion compared to VEH-treated rats, while increasing maternal aggression towards an intruder. Lastly, chronic intra-PVN inhibition of CRF-BP strongly reduced maternal aggression, with modest effects on maternal motivation and care. Taken together, intact activity of the CRF-BP in the PVN during the postpartum period is essential for the dampened responsiveness of the stress axis, as well as for the full expression of appropriate maternal behaviour.
Collapse
Affiliation(s)
- Alice Sanson
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula Krieg
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Milena M. Schramm
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Kerstin Kellner
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Rodrigue Maloumby
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Stefanie M. Klampfl
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| | - Paula J. Brunton
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Oliver J. Bosch
- Department of Behavioural and Molecular Neurobiology, Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany
| |
Collapse
|
2
|
Luppi AI, Girn M, Rosas FE, Timmermann C, Roseman L, Erritzoe D, Nutt DJ, Stamatakis EA, Spreng RN, Xing L, Huttner WB, Carhart-Harris RL. A role for the serotonin 2A receptor in the expansion and functioning of human transmodal cortex. Brain 2024; 147:56-80. [PMID: 37703310 DOI: 10.1093/brain/awad311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
Integrating independent but converging lines of research on brain function and neurodevelopment across scales, this article proposes that serotonin 2A receptor (5-HT2AR) signalling is an evolutionary and developmental driver and potent modulator of the macroscale functional organization of the human cerebral cortex. A wealth of evidence indicates that the anatomical and functional organization of the cortex follows a unimodal-to-transmodal gradient. Situated at the apex of this processing hierarchy-where it plays a central role in the integrative processes underpinning complex, human-defining cognition-the transmodal cortex has disproportionately expanded across human development and evolution. Notably, the adult human transmodal cortex is especially rich in 5-HT2AR expression and recent evidence suggests that, during early brain development, 5-HT2AR signalling on neural progenitor cells stimulates their proliferation-a critical process for evolutionarily-relevant cortical expansion. Drawing on multimodal neuroimaging and cross-species investigations, we argue that, by contributing to the expansion of the human cortex and being prevalent at the apex of its hierarchy in the adult brain, 5-HT2AR signalling plays a major role in both human cortical expansion and functioning. Owing to its unique excitatory and downstream cellular effects, neuronal 5-HT2AR agonism promotes neuroplasticity, learning and cognitive and psychological flexibility in a context-(hyper)sensitive manner with therapeutic potential. Overall, we delineate a dual role of 5-HT2ARs in enabling both the expansion and modulation of the human transmodal cortex.
Collapse
Affiliation(s)
- Andrea I Luppi
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK
- The Alan Turing Institute, London, NW1 2DB, UK
| | - Manesh Girn
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
| | - Fernando E Rosas
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
- Data Science Institute, Imperial College London, London, SW7 2AZ, UK
- Centre for Complexity Science, Imperial College London, London, SW7 2AZ, UK
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David Erritzoe
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences and Division of Anaesthesia, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - R Nathan Spreng
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, H3A 2B4, Canada
| | - Lei Xing
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, 01307, Germany
| | - Robin L Carhart-Harris
- Psychedelics Division-Neuroscape, Department of Neurology, University of California SanFrancisco, San Francisco, CA 94158, USA
- Centre for Psychedelic Research, Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
3
|
Huang Y, Guo H, Wang S, Zhong S, He Y, Chen H, Zhou J, Wang X. Relationship between work-family conflict and anxiety/depression among Chinese correctional officers: a moderated mediation model of burnout and resilience. BMC Public Health 2024; 24:17. [PMID: 38166941 PMCID: PMC10759684 DOI: 10.1186/s12889-023-17514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Correctional officers tend to have high levels of work-family conflict (WFC). WFC has been found associated with various forms of psychological distress and to affect the overall well-being of correctional officers. Burnout and resilience may affect the relationship between WFC and psychological distress, however, this association still remains unclear. This study aimed to examine the mediating effect of burnout on the relationship between WFC and anxiety/depression and the moderating role of resilience, within the context of correctional officers. METHODS A cross-sectional online survey was conducted in China from October 2021 to January 2022. WFC, burnout, resilience, anxiety, and depression were evaluated using the Work-Family Conflict Scale (WFCS), Maslach Burnout Inventory-General Survey (MBI-GS), 10-item Connor-Davidson Resilience Scale (CD-RISC-10), and the Depression Anxiety Stress Scale (DASS). Mediation and moderation models were then tested using the PROCESS macro in SPSS, with burnout being a mediator and resilience playing a moderating role in the relationship between WFC and anxiety/depression. RESULTS A total of 472 correctional officers were included. Burnout was found to mediate the relationship between WFC and anxiety (b = 0.14, 95%CI [0.10, 0.19]) and the relationship between WFC and depression (b = 0.23, 95%CI [0.18, 0.28]). Additionally, resilience played a moderating role in the direct effect of WFC on anxiety (b = - 0.02, p < 0.01) and the first half of the indirect effect of WFC on anxiety (b = - 0.007, p < 0.05). Furthermore, resilience was also found to moderate the first half of the indirect effect of WFC on depression (b = - 0.02, p < 0.01), but not the direct effect of WFC on depression (b = - 0.005, p > 0.05). CONCLUSION The findings of the present study may improve our understanding by elucidating the fundamental mechanisms of the connection between WFC and psychological distress among correctional officers. The results have significant implications for policymakers and individuals, as they suggest that diverse interventions may help promote the mental well-being of correctional officers.
Collapse
Affiliation(s)
- Ying Huang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China
| | - Huijuan Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China
| | - Siyuan Wang
- Pingtang Compulsory Isolation Detoxification Institute in Hunan Province, Changsha, China
| | - Shaoling Zhong
- Department of Community Mental Health, the Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqiong He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China
| | - Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, The Second Xiangya Hospital of Central South University, National Technology Institute on Mental Disorders, No. 139 Middle Renmin Road, Changsha, Hunan Province, 410011, China.
| |
Collapse
|
4
|
Gyles TM, Nestler EJ, Parise EM. Advancing preclinical chronic stress models to promote therapeutic discovery for human stress disorders. Neuropsychopharmacology 2024; 49:215-226. [PMID: 37349475 PMCID: PMC10700361 DOI: 10.1038/s41386-023-01625-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/24/2023]
Abstract
There is an urgent need to develop more effective treatments for stress-related illnesses, which include depression, post-traumatic stress disorder, and anxiety. We view animal models as playing an essential role in this effort, but to date, such approaches have generally not succeeded in developing therapeutics with new mechanisms of action. This is partly due to the complexity of the brain and its disorders, but also to inherent difficulties in modeling human disorders in rodents and to the incorrect use of animal models: namely, trying to recapitulate a human syndrome in a rodent which is likely not possible as opposed to using animals to understand underlying mechanisms and evaluating potential therapeutic paths. Recent transcriptomic research has established the ability of several different chronic stress procedures in rodents to recapitulate large portions of the molecular pathology seen in postmortem brain tissue of individuals with depression. These findings provide crucial validation for the clear relevance of rodent stress models to better understand the pathophysiology of human stress disorders and help guide therapeutic discovery. In this review, we first discuss the current limitations of preclinical chronic stress models as well as traditional behavioral phenotyping approaches. We then explore opportunities to dramatically enhance the translational use of rodent stress models through the application of new experimental technologies. The goal of this review is to promote the synthesis of these novel approaches in rodents with human cell-based approaches and ultimately with early-phase proof-of-concept studies in humans to develop more effective treatments for human stress disorders.
Collapse
Affiliation(s)
- Trevonn M Gyles
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric M Parise
- Nash Family Department of Neuroscience & Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
5
|
Wayne CR, Karam AM, McInnis AL, Arms CM, Kaller MD, Maruska KP. Impacts of repeated social defeat on behavior and the brain in a cichlid fish. J Exp Biol 2023; 226:jeb246322. [PMID: 37909345 DOI: 10.1242/jeb.246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.
Collapse
Affiliation(s)
- C Rose Wayne
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Ava M Karam
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Alora L McInnis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Catherine M Arms
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
6
|
Díez-Solinska A, Azkona G, Muñoz-Culla M, Beitia-Oyarzabal G, Goñi-Balentziaga O, Gómez-Lazaro E, Vegas O. The role of sociability in social instability stress: Behavioral, neuroendocrine and monoaminergic effects. Physiol Behav 2023; 270:114306. [PMID: 37516231 DOI: 10.1016/j.physbeh.2023.114306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
Extensive literature has reported a link between social stress and mental health. In this complex relationship, individual strategies for coping with social stress are thought to have a possible modulating effect, with sociability being a key factor. Despite the higher incidence of affective disorders in females and sex-related neurochemical differences, female populations have been understudied. The aim of the present study was, therefore, to analyze the behavioral, neuroendocrine, and neurochemical effects of stress in female OF1 mice, paying special attention to social connectedness (female mice with high vs low sociability). To this end, subjects were exposed to the Chronic Social Instability Stress (CSIS) model for four weeks. Although female mice exposed to CSIS had increased arousal, there was no evidence of depressive-like behavior. Neither did exposure to CSIS affect corticosterone levels, although it did increase the MR/GR ratio by decreasing GR expression. Female mice exposed to CSIS had higher noradrenaline and dopamine levels in the hippocampus and striatum respectively, with a lower monoaminergic turnover, resulting in an increased arousal. CSIS increased serotonin levels in both the hippocampus and striatum. Similarly, CSIS was found to reduce kynurenic acid, 3-HK, and IDO and iNOS enzyme levels in the hippocampus. Interestingly, the observed decrease in IDO synthesis and the increased serotonin and dopamine levels in the striatum were only found in subjects with high sociability. These highly sociable female mice also had significantly lower levels of noradrenaline in the striatum after CSIS application. Overall, our model has produced neuroendocrine and neurochemical but not behavioral changes, so it has not allowed us to study sociability in depth. Therefore, a model that induces both molecular and behavioral phenotypes should be applied to determine the role of sociability.
Collapse
Affiliation(s)
- Alina Díez-Solinska
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Garikoitz Azkona
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain.
| | - Maider Muñoz-Culla
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain; Biodonostia Institute, 20018 Donostia-San Sebastian, Spain
| | - Garikoitz Beitia-Oyarzabal
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Olatz Goñi-Balentziaga
- Department of Clinical and Health Psychology, and Research Methods, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Eneritz Gómez-Lazaro
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Oscar Vegas
- Department of Basic Psychological Processes and their Development, School of Psychology, University of the Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain; Biodonostia Institute, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
7
|
Dos Santos MB, de Oliveira Guarnieri L, Lunardi P, Schenatto Pereira G. On the effect of social cue valence in contextual memory persistence. Behav Brain Res 2023; 447:114398. [PMID: 36966939 DOI: 10.1016/j.bbr.2023.114398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/13/2023] [Accepted: 03/10/2023] [Indexed: 04/15/2023]
Abstract
Social cues are valuable sensorial stimuli to the acquisition and retrieval of contextual memories. Here, we asked whether the valence of social cues would impact the formation of contextual memories. Adult male C57/BL6 mice were exposed to either conditioned place preference (CPP) or avoidance (CPA). As positive stimuli we used social interaction with a female (IF), while interaction with a male CD1 mice (IM) was used as negative stimulus. Contextual memory was tested 24 h and 7 days after conditioning. Aggressive behavior of CD1, as well as interaction with the female were quantified along the conditioning sessions. IM, but not IF, was salient enough to induce contextual memory estimated by the difference between the time in the conditioned context during test and habituation. Next, we chose two odors with innate behavioral responses and opposite valence to narrow down the sociability to one of its sensorial sources of information - the olfaction. We used urine from females in proestrus (U) and 2,4,5-trimethyl thiazoline (TMT), a predator odor. TMT decreased and U increased the time in the conditioned context during the test performed 24 h and 7 days after conditioning. Taken together, our results suggest that contextual memories conditioned to social encounters are difficult to stablish in mice, specially the one with positive valence. On the other hand, using odors with ecological relevance is a promising strategy to study long-term contextual memories with opposite valences. Ultimately, the behavioral protocol proposed here offers the advantage of studying contextual memories with opposite valences using unconditioned stimulus from the same sensorial category such as olfaction.
Collapse
Affiliation(s)
- Matheus Barbosa Dos Santos
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Leonardo de Oliveira Guarnieri
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Centro de Tecnologia e Pesquisa em Magneto Ressonância, Programa de Pós-Graduação em Engenharia Elétrica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Paula Lunardi
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Grace Schenatto Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
8
|
Elevated Hippocampal CRMP5 Mediates Chronic Stress-Induced Cognitive Deficits by Disrupting Synaptic Plasticity, Hindering AMPAR Trafficking, and Triggering Cytokine Release. Int J Mol Sci 2023; 24:ijms24054898. [PMID: 36902337 PMCID: PMC10003309 DOI: 10.3390/ijms24054898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Chronic stress is a critical risk factor for developing depression, which can impair cognitive function. However, the underlying mechanisms involved in chronic stress-induced cognitive deficits remain unclear. Emerging evidence suggests that collapsin response mediator proteins (CRMPs) are implicated in the pathogenesis of psychiatric-related disorders. Thus, the study aims to examine whether CRMPs modulate chronic stress-induced cognitive impairment. We used the chronic unpredictable stress (CUS) paradigm to mimic stressful life situations in C57BL/6 mice. In this study, we found that CUS-treated mice exhibited cognitive decline and increased hippocampal CRMP2 and CRMP5 expression. In contrast to CRMP2, CRMP5 levels strongly correlated with the severity of cognitive impairment. Decreasing hippocampal CRMP5 levels through shRNA injection rescued CUS-induced cognitive impairment, whereas increasing CRMP5 levels in control mice exacerbated memory decline after subthreshold stress treatment. Mechanistically, hippocampal CRMP5 suppression by regulating glucocorticoid receptor phosphorylation alleviates chronic stress-induced synaptic atrophy, disruption of AMPA receptor trafficking, and cytokine storms. Our findings show that hippocampal CRMP5 accumulation through GR activation disrupts synaptic plasticity, impedes AMPAR trafficking, and triggers cytokine release, thus playing a critical role in chronic stress-induced cognitive deficits.
Collapse
|
9
|
Rigney N, de Vries GJ, Petrulis A. Modulation of social behavior by distinct vasopressin sources. Front Endocrinol (Lausanne) 2023; 14:1127792. [PMID: 36860367 PMCID: PMC9968743 DOI: 10.3389/fendo.2023.1127792] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
The neuropeptide arginine-vasopressin (AVP) is well known for its peripheral effects on blood pressure and antidiuresis. However, AVP also modulates various social and anxiety-related behaviors by its actions in the brain, often sex-specifically, with effects typically being stronger in males than in females. AVP in the nervous system originates from several distinct sources which are, in turn, regulated by different inputs and regulatory factors. Based on both direct and indirect evidence, we can begin to define the specific role of AVP cell populations in social behavior, such as, social recognition, affiliation, pair bonding, parental behavior, mate competition, aggression, and social stress. Sex differences in function may be apparent in both sexually-dimorphic structures as well as ones without prominent structural differences within the hypothalamus. The understanding of how AVP systems are organized and function may ultimately lead to better therapeutic interventions for psychiatric disorders characterized by social deficits.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| | | | | |
Collapse
|
10
|
Effects of Group Size on Behavior, Reproduction, and mRNA Expression in Brains of Brandt's Voles. Brain Sci 2023; 13:brainsci13020311. [PMID: 36831854 PMCID: PMC9954483 DOI: 10.3390/brainsci13020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/24/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
For social animals, a moderate group size is greatly important to maintain their reproductive success. However, the underlying neurobiological mechanism of group size on behavior and reproduction has rarely been investigated. In this study, we examined the effects of group size (1, 2, 4 pairs of adult male and female voles raised per cage) on behavior and reproduction. Meanwhile, the mRNA expression of stress and reproduction response-related genes in male brains was detected. We found that Brandt's voles (Lasiopodomys brandtii) in the large-sized group fight more severely than those in the small-sized group. Meanwhile, male voles were more anxious than females. The average number of embryos and litters per female in the medium-sized group was significantly higher than that of large-sized group. In male voles, stress- or reproduction-response mRNA expressions were more related to final group size or final density due to death caused by fighting. Our results indicated that a moderate group size was beneficial to the reproductive output of Brandt's voles. Our study highlights the combined effects of stress- or reproduction-related gene expression or behavior in regulating the fitness of voles with different group sizes.
Collapse
|
11
|
Ródenas-González F, Arenas MC, Blanco-Gandía MC, Manzanedo C, Rodríguez-Arias M. Vicarious Social Defeat Increases Conditioned Rewarding Effects of Cocaine and Ethanol Intake in Female Mice. Biomedicines 2023; 11:biomedicines11020502. [PMID: 36831038 PMCID: PMC9953170 DOI: 10.3390/biomedicines11020502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/29/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Stress is a critical factor in the development of mood and drug use disorders. The social defeat model is not appropriate for female rodents due to their low level of aggression. Therefore, a robust female model of social stress needs to be developed and validated. The aim of the present study was to unravel the long-lasting effects of vicarious social defeat (VSD) on the conditioned rewarding effects of cocaine and ethanol intake in female mice. Although VSD seems to be a good model for inducing behavioral and physiologic endophenotypes induced by stress, there are no studies to date that characterize the effect of VSD on cocaine or alcohol use. The results confirm that VSD females showed an increase in corticosterone levels after a vicarious experience while also displaying an increase in anxiety- and anhedonic-like behaviors. Three weeks after the last VSD, vicariously defeated female mice showed an increased developed preference for a non-effective dose of cocaine in the conditioned place preference (CPP) paradigm and showed an increase in ethanol intake. Our results suggest that female mice vicariously experience a state of distress through the social observation of others suffering from adverse events, confirming the use of VSD as a valid model to study the response to social stress in females. The fact that VSD in females induced a comparable behavioral phenotype to that observed in physically defeated males could indicate a relationship with the higher rate of psychopathologies observed in women. Notwithstanding, more studies are needed to dissect the neurobiological and behavioral peculiarities of the female response to social stress.
Collapse
Affiliation(s)
- Francisco Ródenas-González
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - María Carmen Arenas
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - María Carmen Blanco-Gandía
- Departamento de Psicología y Sociología, Facultad de Ciencias Sociales y Humanas, Universidad de Zaragoza, 44003 Teruel, Spain
| | - Carmen Manzanedo
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
| | - Marta Rodríguez-Arias
- Unidad de Investigación Psicobiología de las Drogodependencias, Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, 46010 Valencia, Spain
- Correspondence:
| |
Collapse
|
12
|
Neuner F. Physical and social trauma: Towards an integrative transdiagnostic perspective on psychological trauma that involves threats to status and belonging. Clin Psychol Rev 2023; 99:102219. [PMID: 36395560 DOI: 10.1016/j.cpr.2022.102219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
Current theories of psychological trauma assume that posttraumatic symptoms originate from stress reactions caused by extremely adverse life experiences. Since the diagnosis of PTSD is restricted to events that involve threats to the physical or sexual integrity of a person, such as accidents and physical and sexual violence, these theories are not well suited to explain the psychopathological consequences of severe violations of one's social integrity, such as emotional abuse and bullying. However, it is evident that social threats contribute to a broad range of mental disorders and increase symptom severity in patients with posttraumatic stress disorder. The aim of the Physical and Social Trauma (PAST) framework is to extend current memory theories of psychological trauma to incorporate threats to a person's social integrity. Within this perspective, the harmful effects of events that involve social threats result from violations of core social motives such as the need for status and belonging that bring about intense affective reactions, including despair and defeat. Within associative threat structures, these emotions are tied to the stimulus characteristics of the experiences and can be re-activated in social situations. The resulting psychopathology transcends PTSD criteria and other current classifications and suggests a transdiagnostic perspective of psychological trauma. Implications for treatment and further directions for research are discussed.
Collapse
Affiliation(s)
- Frank Neuner
- Bielefeld University, Department of Psychology, Postbox 100131, 33501 Bielefeld, Germany.
| |
Collapse
|
13
|
Reis TO, Noronha SISR, Lima PMA, De Abreu ARR, Mesquita LBT, Ferreira FI, Silva FC, Chianca-Jr DA, De Menezes RC. Abdominal TRPV1 channel desensitization enhances stress-induced hyperthermia during social stress in rats. Auton Neurosci 2023; 246:103073. [PMID: 36736078 DOI: 10.1016/j.autneu.2023.103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
AIMS In rats, stress-induced hyperthermia caused by social interaction depends on brown adipose tissue (BAT) thermogenesis and peripheral vasoconstriction. However, the peripheral mechanisms responsible for regulating the level of hyperthermia during social stress are still unknown. The transient receptor potential vanilloid 1 (TRPV1) subfamily, expressed in sensory and visceral neurons, can serve as a thermoreceptor. Here, we tested the hypothesis that the abdominal TRPV1 is essential in regulating stress-induced hyperthermia during social stress. MAIN METHODS Male Wistar rats received an intraperitoneal injection of Resiniferatoxin (RTX) - an ultra-potent capsaicin analog, (i.e., to desensitize the TRPV1 channels) or vehicle. Seven days later, we evaluated the effects of abdominal TRPV1 channels desensitization on core body temperature (CBT), brown adipose tissue (BAT) temperature, tail skin temperature, and heart rate (HR) of rats subjected to a social stress protocol. KEY FINDINGS We found abdominal TRPV1 desensitization increased CBT and BAT temperature but did not change tail skin temperature and HR during rest. However, under social stress, we found that abdominal TRPV1 desensitization heightened the increase in CBT and BAT caused by stress. Also, it abolished the increase in tail skin temperature that occurs during and after social stress. TRPV1 desensitization also delayed the HR recovery after the exposure to the social stress. SIGNIFICANCE These results show that abdominal TRPV1 channels desensitization heightens stress-induced hyperthermia, causing heat dissipation during and after social stress, enabling optimal thermal control during social encounters.
Collapse
Affiliation(s)
- T O Reis
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - S I S R Noronha
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - P M A Lima
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - A R R De Abreu
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - L B T Mesquita
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F I Ferreira
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil
| | - F C Silva
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - D A Chianca-Jr
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| | - R C De Menezes
- Department of Biological Science, Laboratory of Cardiovascular Physiology, University of Ouro Preto, Ouro Preto, MG 35400-000, Brazil..
| |
Collapse
|
14
|
Short-Term Consequences of Single Social Defeat on Accumbal Dopamine and Behaviors in Rats. Biomolecules 2022; 13:biom13010035. [PMID: 36671420 PMCID: PMC9855991 DOI: 10.3390/biom13010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
The present study aimed to explore the consequences of a single exposure to a social defeat on dopamine release in the rat nucleus accumbens measured with a fast-scan cyclic voltammetry. We found that 24 h after a social defeat, accumbal dopamine responses, evoked by a high frequency electrical stimulation of the ventral tegmental area, were more profound in socially defeated rats in comparison with non-defeated control animals. The enhanced dopamine release was associated with the prolonged immobility time in the forced swim test. The use of the dopamine depletion protocol revealed no alteration in the reduction and recovery of the amplitude of dopamine release following social defeat stress. However, administration of dopamine D2 receptor antagonist, raclopride (2 mg/kg, i.p.), resulted in significant increase of the electrically evoked dopamine release in both groups of animals, nevertheless exhibiting less manifested effect in the defeated rats comparing to control animals. Taken together, our data demonstrated profound alterations in the dopamine transmission in the association with depressive-like behavior following a single exposure to stressful environment. These voltammetric findings pointed to a promising path for the identification of neurobiological mechanisms underlying stress-promoted behavioral abnormalities.
Collapse
|
15
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
16
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
17
|
Chronic social instability stress down-regulates IL-10 and up-regulates CX3CR1 in tumor-bearing and non-tumor-bearing female mice. Behav Brain Res 2022; 435:114063. [PMID: 35988637 DOI: 10.1016/j.bbr.2022.114063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
Abstract
Extensive literature has reported a link between stress and tumor progression, and between both of these factors and mental health. Despite the higher incidence of affective disorders in females and the neurochemical differences according to sex, female populations have been understudied. The aim of this study was therefore to analyze the effect of stress on tumor development in female OF1 mice. For this purpose, subjects were inoculated with B16F10 melanoma cells and exposed to the Chronic Social Instability Stress (CSIS) model. Behavioral, neurochemical and neuroendocrine parameters were analyzed. Female mice exposed to CSIS exhibited reduced body weight and increased arousal, but there was no evidence of depressive behavior or anxiety. Exposure to CSIS did not affect either corticosterone levels or tumor development, although it did provoke an imbalance in cerebral inflammatory cytokines, decreasing IL-10 expression (IL-6/IL-10 and TNF-α/IL-10); chemokines, increasing CX3CR1 expression (CX3CL1/CX3CR1); and glucocorticoid receptors, decreasing GR expression (MR/GR). In contrast, tumor development did not alter body weight and, although it did alter behavior, it did so to a much lesser extent. Tumor inoculation did not affect corticosterone levels, but increased the MR/GR ratio in the hippocampus and provoked an imbalance in cerebral inflammatory cytokines and chemokines, although differently from stress. These results underscore the need for experimental approaches that allow us to take sex differences into account when exploring this issue, since these results appear to indicate that the female response to stress is mediated by mechanisms different from those often proposed in relation to male mice.
Collapse
|
18
|
Barroca NCB, Della Santa G, Suchecki D, García-Cairasco N, Umeoka EHDL. Challenges in the use of animal models and perspectives for a translational view of stress and psychopathologies. Neurosci Biobehav Rev 2022; 140:104771. [PMID: 35817171 DOI: 10.1016/j.neubiorev.2022.104771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/15/2022] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
The neurobiology and development of treatments for stress-related neuropsychiatric disorders rely heavily on animal models. However, the complexity of these disorders makes it difficult to model them entirely, so only specific features of human psychopathology are emulated and these models should be used with great caution. Importantly, the effects of stress depend on multiple factors, like duration, context of exposure, and individual variability. Here we present a review on pre-clinical studies of stress-related disorders, especially those developed to model posttraumatic stress disorder, major depression, and anxiety. Animal models provide relevant evidence of the underpinnings of these disorders, as long as face, construct, and predictive validities are fulfilled. The translational challenges faced by scholars include reductionism and anthropomorphic/anthropocentric interpretation of the results instead of a more naturalistic and evolutionary understanding of animal behavior that must be overcome to offer a meaningful model. Other limitations are low statistical power of analysis, poor evaluation of individual variability, sex differences, and possible conflicting effects of stressors depending on specific windows in the lifespan.
Collapse
Affiliation(s)
- Nayara Cobra Barreiro Barroca
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Giovanna Della Santa
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Deborah Suchecki
- Department of Psychobiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Norberto García-Cairasco
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; Department of Physiology, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Eduardo Henrique de Lima Umeoka
- Department of Neuroscience and Behavioral Science, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil; School of Medicine, University Center UniCerrado, Goiatuba, GO, Brazil
| |
Collapse
|
19
|
Resilience and the Gut Microbiome: Insights from Chronically Socially Stressed Wild-Type Mice. Microorganisms 2022; 10:microorganisms10061077. [PMID: 35744594 PMCID: PMC9231072 DOI: 10.3390/microorganisms10061077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/12/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
The microbiome is an important player within physiological homeostasis of the body but also in pathophysiological derailments. Chronic social stress is a challenge to the organism, which results in psychological illnesses such as depression in some individuals and can be counterbalanced by others, namely resilient individuals. In this study, we wanted to elucidate the potential contribution of the microbiome to promote resilience. Male mice were subjected to the classical chronic social defeat paradigm. Defeated or undefeated mice were either controls (receiving normal drinking water) or pre-treated with antibiotics or probiotics. Following social defeat, resilient behavior was assessed by means of the social interaction test. Neither depletion nor probiotic-shifted alteration of the microbiome influenced stress-associated behavioral outcomes. Nevertheless, clear changes in microbiota composition due to the defeat stress were observed such as elevated Bacteroides spp. This stress-induced increase in Bacteroides in male mice could be confirmed in a related social stress paradigm (instable social hierarchy) in females. This indicates that while manipulation of the microbiome via the antibiotics- and probiotics-treatment regime used here has no direct impact on modulating individual stress susceptibility in rodents, it clearly affects the microbiome in the second line and in a sex-independent manner regarding Bacteroides.
Collapse
|
20
|
Teng M, Zhao X, Wu F, Wang C, Wang C, White JC, Zhao W, Zhou L, Yan S, Tian S. Charge-specific adverse effects of polystyrene nanoplastics on zebrafish (Danio rerio) development and behavior. ENVIRONMENT INTERNATIONAL 2022; 163:107154. [PMID: 35334375 DOI: 10.1016/j.envint.2022.107154] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
Nanoplastics are being detected with increasing frequency in aquatic environments. Although evidence suggests that nanoplastics can cause overt toxicity to biota across different trophic levels, but there is little understanding of how materials such as differently charged polystyrene nanoplastics (PS-NP) impact fish development and behavior. Following exposure to amino-modified (positive charge) PS-NP, fluorescence accumulation was observed in the zebrafish brain and gastrointestinal tract. Positively charged PS-NP induced stronger developmental toxicity (decreased spontaneous movement, heartbeat, hatching rate, and length) and cell apoptosis in the brain and induced greater neurobehavioral impairment as compared to carboxyl-modified (negative charge) PS-NP. These findings correlated well with fluorescence differences indicating PS-NP presence. Targeted neuro-metabolite analysis by UHPLC-MS/MS reveals that positively charged PS-NP decreased levels of glycine, cysteine, glutathione, and glutamic acid, while the increased levels of spermine, spermidine, and tyramine were induced by negatively charged PS-NP. Positively charged PS-NP interacted with the neurotransmitter receptor N-methyl-D-aspartate receptor 2B (NMDA2B), whereas negatively charged PS-NP impacted the G-protein-coupled receptor 1 (GPR1), each with different binding energies that led to behavioral differences. These findings reveal the charge-specific toxicity of nanoplastics to fish and provide new perspective for understanding PS-NP neurotoxicity that is needed to accurately assess potential environmental and health risks of these emerging contaminants.
Collapse
Affiliation(s)
- Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Chengju Wang
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Chen Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Sen Yan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Sinuo Tian
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
21
|
Gamal NG, Abd El-Salam RM, Gadelrub LN, Ahmed-Farid OA, Khayyal MT. The herbal preparation STW 5 affects serotonergic pathways in the brain and colon as well as stress parameters in experimental irritable bowel syndrome. Neurogastroenterol Motil 2022; 34:e14301. [PMID: 34817922 DOI: 10.1111/nmo.14301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Exposure to stress has been related to disturbance in 5-hydroxytryptamine (5-HT) signaling in the brain-gut axis and is considered as a major predisposing factor for the development of irritable bowel syndrome (IBS). The present study aimed to investigate the possible involvement of 5-HT and some other stress-related parameters in the effectiveness of STW 5 against stress-induced IBS. METHODS Rats were subjected to restraint stress (RS) for 1 h/day for 14 consecutive days to induce IBS-like symptoms and were given STW 5 orally at the same time. At the end of the experiment, blood samples were withdrawn, then animals were euthanized and the brain hippocampi, cerebral cortices, as well as colons were isolated for biochemical and histopathological assessments. RESULTS RS increased the plasma corticotrophin releasing factor (CRF) with concomitant increase in hippocampal and cortical 5-HT levels, as well as mast cell inflammatory mediators, oxidative stress biomarkers, and histopathological inflammatory changes observed in rat colon. It also decreased the colonic content of 5-HT with consequent decrease in fecal pellet output (FPO). Treatment with STW 5 protected against these changes. CONCLUSION The protective effect of STW 5 against RS-induced IBS is related to its ability to normalize the induced changes in 5-HT in the brain-gut axis and counteract the stress-induced oxidative stress and inflammation.
Collapse
Affiliation(s)
- Nehal G Gamal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rania M Abd El-Salam
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | | - Omar A Ahmed-Farid
- Physiology Department, National Organization for Drug Control and Research, Cairo, Egypt
| | - Mohamed T Khayyal
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
22
|
Abstract
Anhedonia is a core feature of psychopathological conditions that have recent exposure to stress and trauma as central to their etiology. Indeed, evolutionary accounts of depression suggest that decreased motivation to pursue reward may be an adaptive strategy in the face of social stress, in particular, as it may serve to defuse interpersonal conflict. Through a review of rodent models and research with humans, we show that exposure to stress, particularly when it is chronic, repeated, and/or involves themes of social rejection or defeat, is consistently associated with reduced hedonic capacity ("liking"), motivation to pursue reward ("wanting"), and ability to learn from reward ("reward learning"). Further, across rodent and human research, there is evidence that females show greater stress-induced blunting of reward processing than males. In humans, this sex difference emerges most strongly when examining individual differences in the stress response rather than group differences in stress exposure. We discuss the implications of these findings for understanding the etiology of, and sex differences in, stress-related psychopathology, including depression and addiction.
Collapse
Affiliation(s)
- Kate L Harkness
- Department of Psychology, Queen's University, Kingston, ON, Canada.
| | | | | |
Collapse
|
23
|
Gryksa K, Neumann ID. Consequences of pandemic-associated social restrictions: Role of social support and the oxytocin system. Psychoneuroendocrinology 2022; 135:105601. [PMID: 34837776 PMCID: PMC8605825 DOI: 10.1016/j.psyneuen.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 12/15/2022]
Abstract
During pandemics, governments take drastic actions to prevent the spreading of the disease, as seen during the present COVID-19 crisis. Sanctions of lockdown, social distancing and quarantine urge people to exclusively work and teach at home and to restrict social contacts to a minimum; lonely people get into further isolation, while families` nerves are strained to the extreme. Overall, this results in a dramatic and chronic increase in the level of psychosocial stress over several months mainly caused by i) social isolation and ii) psychosocial stress associated with overcrowding, social tension in families, and domestic violence. Moreover, pandemic-associated social restrictions are accompanied by loss of an essential stress buffer and important parameter for general mental and physical health: social support. Chronic psychosocial stress and, in particular, social isolation and lack of social support affect not only mental health, but also the brain oxytocin system and the immune system. Hence, pandemic-associated social restrictions are expected to increase the risk of developing psychopathologies, such as depression, anxiety-related and posttraumatic stress disorders, on the one hand, but also to induce a general inflammatory state and to impair the course of infectious disorders on the other. Due to its pro-social and stress-buffering effects, resulting in an anti-inflammatory state in case of disease, the role of the neuropeptide oxytocin will be discussed and critically considered as an emerging treatment option in cases of pandemic-induced psychosocial stress, viral infection and during recovery. In this review, we aim to critically focus on possible short- and long-term consequences of social restrictions on mental health and the immune system, while discussion oxytocin as a possible treatment option.
Collapse
Affiliation(s)
- Katharina Gryksa
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
24
|
Mancha-Gutiérrez HM, Estrada-Camarena E, Mayagoitia-Novales L, López-Pacheco E, López-Rubalcava C. Chronic Social Defeat During Adolescence Induces Short- and Long-Term Behavioral and Neuroendocrine Effects in Male Swiss-Webster Mice. Front Behav Neurosci 2021; 15:734054. [PMID: 34658806 PMCID: PMC8514669 DOI: 10.3389/fnbeh.2021.734054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic stress exposure during adolescence is a significant risk factor for the development of depression. Chronic social defeat (CSD) in rodents is an animal model of depression with excellent ethological, predictive, discriminative, and face validity. Because the CSD model has not been thoroughly examined as a model of stress-induced depression within the adolescence stage, the present study analyzed the short- and long-term behavioral and neuroendocrine effects of CSD during early adolescence. Therefore, adolescent male Swiss-Webster (SW) mice were exposed to the CSD model from postnatal day (PND) 28 to PND37. Twenty-four hours (mid-adolescence) or 4 weeks (early adulthood) later, mice were tested in two models of depression; the social interaction test (SIT) and forced swimming test (FST); cognitive deficits were evaluated in the Barnes maze (BM). Finally, corticosterone and testosterone content was measured before, during, and after CSD exposure, and serotonin transporter (SERT) autoradiography was studied after CSD in adolescent and adult mice. CSD during early adolescence induced enduring depression-like behaviors as inferred from increased social avoidance and immobility behavior in the SIT and FST, respectively, which correlated in an age-dependent manner with SERT binding in the hippocampus; CSD during early adolescence also induced long-lasting learning and memory impairments in the Barnes maze (BM). Finally, CSD during early adolescence increased serum corticosterone levels in mid-adolescence and early adulthood and delayed the expected increase in serum testosterone levels observed at this age. In conclusion: (1) CSD during early adolescence induced long-lasting depression-like behaviors, (2) sensitivity of SERT density during normal brain development was revealed, (3) CSD during early adolescence induced enduring cognitive deficits, and (4) results highlight the vulnerability of the adolescent brain to social stressors on the adrenal and gonadal axes, which emphasizes the importance of an adequate interaction between both axes during adolescence for normal development of brain and behavior.
Collapse
Affiliation(s)
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Lilian Mayagoitia-Novales
- Departamento de Etologia, Dirección de Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Elena López-Pacheco
- Departamento de Farmacobiología, CINVESTAV-Sede Sur Coapa, Mexico City, Mexico
| | | |
Collapse
|
25
|
Arsenault E, Lavigne AA, Mansouri S, Gagné AM, Francis K, Bittar TP, Quessy F, Abdallah K, Barbeau A, Hébert M, Labonté B. Sex-Specific Retinal Anomalies Induced by Chronic Social Defeat Stress in Mice. Front Behav Neurosci 2021; 15:714810. [PMID: 34483859 PMCID: PMC8415161 DOI: 10.3389/fnbeh.2021.714810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/20/2021] [Indexed: 01/04/2023] Open
Abstract
Major depressive disorder (MDD) is one of the most common consequences of chronic stress. Still, there is currently no reliable biomarker to detect individuals at risk to develop the disease. Recently, the retina emerged as an effective way to investigate psychiatric disorders using the electroretinogram (ERG). In this study, cone and rod ERGs were performed in male and female C57BL/6 mice before and after chronic social defeat stress (CSDS). Mice were then divided as susceptible or resilient to stress. Our results suggest that CSDS reduces the amplitude of both oscillatory potentials and a-waves in the rods of resilient but not susceptible males. Similar effects were revealed following the analysis of the cone b-waves, which were faster after CSDS in resilient mice specifically. In females, rod ERGs revealed age-related changes with no change in cone ERGs. Finally, our analysis suggests that baseline ERG can predict with an efficacy up to 71% the expression of susceptibility and resilience before stress exposition in males and females. Overall, our findings suggest that retinal activity is a valid biomarker of stress response that could potentially serve as a tool to predict whether males and females will become susceptible or resilient when facing CSDS.
Collapse
Affiliation(s)
- Eric Arsenault
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Andrée-Anne Lavigne
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Samaneh Mansouri
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Anne-Marie Gagné
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Kimberley Francis
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Thibault P Bittar
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Francis Quessy
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Khaled Abdallah
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Annie Barbeau
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada
| | - Marc Hébert
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Ophthalmology and Otorhinolaryngology-Head and Neck Surgery, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| | - Benoit Labonté
- CERVO Brain Research Centre, Centre Intégré Universitaire de Santé et des Services Sociaux de la Capitale Nationale, Quebec City, QC, Canada.,Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
26
|
Giménez-Gómez P, Ballestín R, Gil de Biedma-Elduayen L, Vidal R, Ferrer-Pérez C, Reguilón MD, O'Shea E, Miñarro J, Colado MI, Rodríguez-Arias M. Decreased kynurenine pathway potentiate resilience to social defeat effect on cocaine reward. Neuropharmacology 2021; 197:108753. [PMID: 34389399 DOI: 10.1016/j.neuropharm.2021.108753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 02/08/2023]
Abstract
The kynurenine (KYN) pathway of tryptophan (TRP) degradation is activated by stress and inflammatory factors. It is now well established that social stress induces the activation of the immune system, with central inflammation and KYN metabolism being two of the main factors linking stress with depression. The aim of the present study was to evaluate the long-lasting changes in the KYN pathway induced by social defeat (SD) associated with the resilience or susceptibility to an increase in the conditioned rewarding effects of cocaine. Mice were exposed to repeated SD and 3 weeks later, a conditioned place preference (CPP) induced by a subthreshold dose of cocaine (1.5 mg/kg) was developed. KYN levels in plasma, cerebellum, hippocampus, striatum and limbic forebrain were studied at the end of the CPP procedure. Changes in the KYN pathway after exposure to pharmacological (oxytocin and indomethacin) and environmental interventions (environmental enrichment) were also evaluated. Our results showed that defeated susceptible (SD-S) mice had higher conditioning scores than resilient mice (SD-R). In addition, although KYN concentration was elevated in all defeated mice, SD-R mice showed smaller increases in KYN concentration in the cerebellum than SD-S mice. Oxytocin or Indomethacin treatment before SD normalized cocaine-induced CPP, although the increase in the KYN pathway was maintained. However, environmental enrichment before SD normalized cocaine-induced CPP and prevented the increase in the KYN pathway. The present study highlights the role of the KYN pathway and anti-inflammatory drugs acting on TRP metabolism as pharmacological targets to potentiate resilience to social stress effects.
Collapse
Affiliation(s)
- Pablo Giménez-Gómez
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Raúl Ballestín
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Leticia Gil de Biedma-Elduayen
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Rebeca Vidal
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Carmen Ferrer-Pérez
- Departmento de Psicología and Sociología, Universidad de Zaragoza, C/ Ciudad Escolar s/n, 44003, Teruel, Spain
| | - Marina D Reguilón
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain
| | - Esther O'Shea
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - José Miñarro
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - María Isabel Colado
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Hospital 12 de Octubre, Instituto Universitario de Investigación Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain
| | - Marta Rodríguez-Arias
- Departamento de Psicobiología, Facultad de Psicología, Universitat de Valencia, Avda. Blasco Ibáñez, 21, 46010, Valencia, Spain; Red Temática de Investigación Cooperativa en Salud (RETICS-Trastornos Adictivos), Instituto de Salud Carlos III, MICINN and FEDER, Madrid, Spain.
| |
Collapse
|
27
|
Lin YF, Wang LY, Chen CS, Li CC, Hsiao YH. Cellular senescence as a driver of cognitive decline triggered by chronic unpredictable stress. Neurobiol Stress 2021; 15:100341. [PMID: 34095365 PMCID: PMC8163993 DOI: 10.1016/j.ynstr.2021.100341] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/13/2022] Open
Abstract
When an individual is under stress, the undesired effect on the brain often exceeds expectations. Additionally, when stress persists for a long time, it can trigger serious health problems, particularly depression. Recent studies have revealed that depressed patients have a higher rate of brain aging than healthy subjects and that depression increases dementia risk later in life. However, it remains unknown which factors are involved in brain aging triggered by chronic stress. The most critical change during brain aging is the decline in cognitive function. In addition, cellular senescence is a stable state of cell cycle arrest that occurs because of damage and/or stress and is considered a sign of aging. We used the chronic unpredictable stress (CUS) model to mimic stressful life situations and found that, compared with nonstressed control mice, CUS-treated C57BL/6 mice exhibited depression-like behaviors and cognitive decline. Additionally, the protein expression of the senescence marker p16INK4a was increased in the hippocampus, and senescence-associated β-galactosidase (SA-β-gal)-positive cells were found in the hippocampal dentate gyrus (DG) in CUS-treated mice. Furthermore, the levels of SA-β-gal or p16INK4a were strongly correlated with the severity of memory impairment in CUS-treated mice, whereas clearing senescent cells using the pharmacological senolytic cocktail dasatinib plus quercetin (D + Q) alleviated CUS-induced cognitive deficits, suggesting that targeting senescent cells may be a promising candidate approach to study chronic stress-induced cognitive decline. Our findings open new avenues for stress-related research and provide new insight into the association of chronic stress-induced cellular senescence with cognitive deficits.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Yun Wang
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chi-Sheng Chen
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Chun Li
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
28
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
29
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
30
|
An exploratory investigation into the effects of mental defeat on pain threshold, pain rating, pain anticipation, and mood. CURRENT PSYCHOLOGY 2021. [DOI: 10.1007/s12144-021-01548-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AbstractIn chronic pain, mental defeat is considered as a disabling type of self-evaluation triggered by repeated episodes of debilitating pain. This exploratory study experimentally tested the effect of an activated sense of defeat, as well as its interaction with pain catastrophizing, on pain and mood. Participants (N = 71) were allocated to either high or low pain catastrophizing groups and then randomly assigned to receive either defeat or neutral manipulations. A cold pressor task administered before and after the thought manipulation measured pain threshold, alongside visual analogue scales for mental defeat, attention, pain intensity, pain anticipation as well as mood. Thought manipulation checks supported successful defeat activation. Defeat activation was associated with increased negative mood and attentional disengagement from the nociceptive stimuli, irrespective of pain catastrophizing tendency. There were no changes in pain threshold, pain or pain anticipation ratings. The results suggest that mental defeat can be experimentally activated using an autobiographical memory task and that an activated sense of defeat appears to operate independently from pain catastrophizing in influencing mood and attentional disengagement from the nociceptive stimuli. Future research can utilize our experimental approach to evaluate the effect of an activated sense of mental defeat in people with chronic pain, for whom the magnitude of pain, mood and attentional responses may be stronger and broader.
Collapse
|
31
|
Lin YF, Chen KC, Yang YK, Hsiao YH. Collapsin response mediator protein 5 (CRMP5) modulates susceptibility to chronic social defeat stress in mice. Mol Neurobiol 2021; 58:3175-3186. [PMID: 33638112 DOI: 10.1007/s12035-021-02336-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/17/2021] [Indexed: 11/25/2022]
Abstract
Collapsin response mediator protein 5 (CRMP5), a member of the CRMP family, is expressed in the brain, particularly in the hippocampus, an area of the brain that can modulate stress responses. Social stress has a well-known detrimental effect on health and can lead to depression, but not all individuals are equally sensitive to stress. To date, researchers have not conclusively determined how social stress increases the susceptibility of the brain to depression. Here, we used the chronic social defeat stress (CSDS) model and observed higher hippocampal CRMP5 expression in stress-susceptible (SS) mice than in control and stress-resilient (RES) mice. A negative correlation was observed between the expression levels of CRMP5 and the social interaction (SI) ratio. Reduced hippocampal CRMP5 expression increased the SI ratio in SS mice, whereas CRMP5 overexpression was sufficient to induce social avoidance behaviors in control mice following exposure to subthreshold social stress induced by lentivirus-based overexpression and inducible tetracycline-on strategies to upregulate CRMP5. Interestingly, increased CRMP5 expression in SS and lenti-CRMP5-treated mice also caused serum corticosterone concentrations to increase. These findings improve our understanding of the potential mechanism by which CRMP5 triggers susceptibility to social stress, and they support the further development of therapeutic agents for the treatment of stress disorders in humans.
Collapse
Affiliation(s)
- Yu-Fen Lin
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Kao Chin Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen Kuang Yang
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
32
|
Bipolar disorder: An evolutionary psychoneuroimmunological approach. Neurosci Biobehav Rev 2021; 122:28-37. [PMID: 33421542 DOI: 10.1016/j.neubiorev.2020.12.031] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022]
Abstract
Bipolar disorder is a mental health disorder characterized by extreme shifts in mood, high suicide rate, sleep problems, and dysfunction of psychological traits like self-esteem (feeling inferior when depressed and superior when manic). Bipolar disorder is rare among populations that have not adopted contemporary Western lifestyles, which supports the hypothesis that bipolar disorder results from a mismatch between Homo sapiens's evolutionary and current environments. Recent studies have connected bipolar disorder with low-grade inflammation, the malfunctioning of the internal clock, and the resulting sleep disturbances. Stress is often a triggering factor for mania and sleep problems, but stress also causes low-grade inflammation. Since inflammation desynchronizes the internal clock, chronic stress and inflammation are the primary biological mechanisms behind bipolar disorder. Chronic stress and inflammation are driven by contemporary Western lifestyles, including stressful social environments, unhealthy dietary patterns, limited physical activity, and obesity. The treatment of bipolar disorder should focus on reducing stress, stress sensitivity, and inflammation by lifestyle changes rather than just temporarily alleviating symptoms with psychopharmacological interventions.
Collapse
|
33
|
Baeken C, Xu Y, Wu GR, Dockx R, Peremans K, De Raedt R. Hostility in medication-resistant major depression and comorbid generalized anxiety disorder is related to increased hippocampal-amygdala 5-HT 2A receptor density. Eur Arch Psychiatry Clin Neurosci 2021; 271:1369-1378. [PMID: 33904978 PMCID: PMC8429407 DOI: 10.1007/s00406-021-01243-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/24/2021] [Indexed: 11/03/2022]
Abstract
Major depressive disorder (MDD) and generalized anxiety disorder (GAD) are severe and difficult-to-treat psychiatric illnesses with high rates of comorbidity. Although both disorders are treated with serotonergic based psychotropic agents, little is known on the influence of the serotonergic neurotransmitter system on the occurrence of comorbid GAD when clinically depressed. To investigate this poorly understood clinical question, we examined the involvement of frontolimbic post-synaptic 5-HT2A receptors in 20 medication-resistant depressed (MRD) patients with half of them diagnosed with comorbid GAD with 123I-5-I-R91150 SPECT. To explore whether 5-HT2A receptor-binding indices (BI) associated with comorbid GAD could be related to distinct psychopathological symptoms, all were assessed with the symptom Checklist-90-Revised (SCL-90-R). MRD patients with comorbid GAD displayed significantly higher 5-HT2A receptor BI in the hippocampal-amygdala complex, compared to MRD patients without GAD. Correlation analyses revealed that the 5-HT2A receptor BI in these areas were significantly related to the SCL-90-R subscale hostility (HOS), especially for those MRD patients with comorbid GAD. Comorbid MRD-GAD may be characterized with increased hippocampal-amygdala 5-HT2A receptor BI which could represent enhanced levels in hostility in such kinds of patients. Adapted psychotherapeutic interventions may be warranted.
Collapse
Affiliation(s)
- Chris Baeken
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.8767.e0000 0001 2290 8069Department of Psychiatry, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZBrussel), Laarbeeklaan 101, 1090 Brussels, Belgium ,grid.6852.90000 0004 0398 8763Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Yanfeng Xu
- grid.5342.00000 0001 2069 7798Department of Psychiatry and Medical Psychology, Ghent Experimental Psychiatry (GHEP) Lab, Ghent University, Ghent, Belgium ,grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Guo-Rong Wu
- Key Laboratory of Cognition and Personality, Faculty of Psychology, Southwest University, Chongqing, China.
| | - Robrecht Dockx
- grid.5342.00000 0001 2069 7798Department of Nutrition, Genetics and Ethology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Kathelijne Peremans
- grid.5342.00000 0001 2069 7798Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Rudi De Raedt
- grid.5342.00000 0001 2069 7798Department of Experimental Clinical and Health Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
34
|
Zheng P, Wu J, Zhang H, Perry SW, Yin B, Tan X, Chai T, Liang W, Huang Y, Li Y, Duan J, Wong ML, Licinio J, Xie P. The gut microbiome modulates gut-brain axis glycerophospholipid metabolism in a region-specific manner in a nonhuman primate model of depression. Mol Psychiatry 2021; 26:2380-2392. [PMID: 32376998 PMCID: PMC8440210 DOI: 10.1038/s41380-020-0744-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/09/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022]
Abstract
Emerging research demonstrates that microbiota-gut-brain (MGB) axis changes are associated with depression onset, but the mechanisms underlying this observation remain largely unknown. The gut microbiome of nonhuman primates is highly similar to that of humans, and some subordinate monkeys naturally display depressive-like behaviors, making them an ideal model for studying these phenomena. Here, we characterized microbial composition and function, and gut-brain metabolic signatures, in female cynomolgus macaque (Macaca fascicularis) displaying naturally occurring depressive-like behaviors. We found that both microbial and metabolic signatures of depressive-like macaques were significantly different from those of controls. The depressive-like monkeys had characteristic disturbances of the phylum Firmicutes. In addition, the depressive-like macaques were characterized by changes in three microbial and four metabolic weighted gene correlation network analysis (WGCNA) clusters of the MGB axis, which were consistently enriched in fatty acyl, sphingolipid, and glycerophospholipid metabolism. These microbial and metabolic modules were significantly correlated with various depressive-like behaviors, thus reinforcing MGB axis perturbations as potential mediators of depression onset. These differential brain metabolites were mainly mapped into the hippocampal glycerophospholipid metabolism in a region-specific manner. Together, these findings provide new microbial and metabolic frameworks for understanding the MGB axis' role in depression, and suggesting that the gut microbiome may participate in the onset of depressive-like behaviors by modulating peripheral and central glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Peng Zheng
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China ,grid.411023.50000 0000 9159 4457Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Jing Wu
- grid.203458.80000 0000 8653 0555The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Seth W. Perry
- grid.411023.50000 0000 9159 4457Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Bangmin Yin
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Xunmin Tan
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Tingjia Chai
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Weiwei Liang
- Department of Neurology, Yongchuan Hospital University, Chongqing, China
| | - Yu Huang
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Yifan Li
- grid.452206.7Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China ,grid.203458.80000 0000 8653 0555NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China ,Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Jiajia Duan
- grid.203458.80000 0000 8653 0555The M.O.E. Key Laboratory of Laboratory Medical Diagnostics, the College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ma-Li Wong
- grid.411023.50000 0000 9159 4457Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China. .,NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, Chongqing Medical University, Chongqing, China. .,Chongqing Key Laboratory of Neurobiology, Chongqing, China.
| |
Collapse
|
35
|
Stress-induced sleep-like inactivity modulates stress susceptibility in mice. Sci Rep 2020; 10:19800. [PMID: 33188274 PMCID: PMC7666172 DOI: 10.1038/s41598-020-76717-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 11/09/2022] Open
Abstract
Severe environmental and social stress induces dysregulation of sleep along with mood and cognitive disturbances. However, the role and mechanism of this sleep dysregulation remain elusive. Here we evaluated sleep-like inactivity measured by voluntary movements and its relationship to social behaviors in mice without or with social defeat stress as well as the stressed mice with subsequent sleep deprivation. Social defeat stress immediately induced sleep-like inactivity with decreased body temperature. In the social interaction test, the control mice showed high social interest and its correlation with social sniffing intensity, the latter of which indicates positive valence of social sniffing. After the stress, these social characteristics were maintained in stress-resilient mice, but disrupted in stress-susceptible mice, leading to social avoidance. Sleep deprivation after the stress decreased social sniffing intensity along with reduced social interest, but enhanced the exploratory activity with the positive valence of social sniffing. We also found by c-Fos immunohistochemistry that the stress activated sleep-related brain regions, the dorsomedial hypothalamus and ventrolateral periaqueductal gray. Collectively, these findings show that stress activates sleep-related brain regions and induces sleep-like inactivity, contributing to multiple roles of stress-induced sleep for social behaviors.
Collapse
|
36
|
Lyte JM, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Dinan TG, Cryan JF, Clarke G. Gut-brain axis serotonergic responses to acute stress exposure are microbiome-dependent. Neurogastroenterol Motil 2020; 32:e13881. [PMID: 32391630 DOI: 10.1111/nmo.13881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/06/2020] [Accepted: 04/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Understanding the mechanisms underpinning the response to acute stress is critical for determining how this can be modulated in both health and disease and across sexes. Stress can markedly alter the microbiome and gut-brain axis signaling with the serotonergic system being particularly sensitive to acute stress. As the impact of acute stress on regional serotonergic dynamics in the gut-brain axis and the contribution of the microbiome to this are poorly appreciated, we used microbiota-deficient mice to assess whether the serotonergic response to acute stress exposure is microbiome dependent. METHODS Adult male and female conventional, germ-free, and colonized germ-free mice underwent a single acute stressor and samples were harvested immediately or 45 minutes following stress. Serotonin and related metabolites and serotonergic gene expression were determined. KEY RESULTS Our data clearly show the microbiota influenced gastrointestinal serotonergic response to acute stress in a sex- and region-dependent manner. Male-specific poststress increases in colonic serotonin were absent in germ-free mice but normalized following colonization. mRNA serotonergic gene expression was differentially expressed in colon and ileum of germ-free mice on a sex-dependent basis. Within the frontal cortex, absence of the microbiome altered basal serotonin, its main metabolite 5-hydroxyindoleacetic acid, and prevented stress-induced increases in serotonin turnover. CONCLUSIONS AND INFERENCES The gut microbiome influences the set points of the brain and gastrointestinal serotonergic systems and affected their response to acute stress in a sex- and region-dependent manner.
Collapse
Affiliation(s)
- Joshua M Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Nancy Kelley-Loughnane
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, OH, USA
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
37
|
Kim HR, Lee YJ, Kim TW, Lim RN, Hwang DY, Moffat JJ, Kim S, Seo JW, Ka M. Asparagus cochinchinensis extract ameliorates menopausal depression in ovariectomized rats under chronic unpredictable mild stress. BMC Complement Med Ther 2020; 20:325. [PMID: 33109198 PMCID: PMC7590795 DOI: 10.1186/s12906-020-03121-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Depression is a serious and common psychiatric disorder generally affecting more women than men. A woman's risk of developing depression increases steadily with age, and higher incidence is associated with the onset of menopause. Here we evaluated the antidepressant properties of Asparagus cochinchinensis (AC) extract and investigated its underlying mechanisms in a rat menopausal depression model. METHODS To model this menopausal depression, we induced a menopause-like state in rats via ovariectomy and exposed them to chronic unpredictable mild stress (CUMS) for 6 weeks, which promotes the development of depression-like symptoms. During the final 4 weeks of CUMS, rats were treated with either AC extract (1000 or 2000 mg/kg, PO), which has been reported to provide antidepressant effects, or with the tricyclic antidepressant imipramine (10 mg/kg, IP). RESULTS We report that CUMS promotes depression-like behavior and significantly increases serum corticosterone and inflammatory cytokine levels in the serum of ovariectomized (OVX) rats. We also found that CUMS decreases the expression of brain-derived neurotrophic factor (BDNF) and its primary receptor, tropomyosin receptor kinase B (TrkB), in OVX rats, and treatment with AC extract rescues both BDNF and TrkB expression levels. CONCLUSION These results suggest that AC extract exerts antidepressant effects, possibly via modulation of the BDNF-TrkB pathway, in a rat model of menopausal depression.
Collapse
Affiliation(s)
- Hye Ryeong Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.,Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea.,Laboratory Animal Center, Korea Brain Research Institute, Daegu, 61062, Republic of Korea
| | - Young-Ju Lee
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Tae-Wan Kim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Ri-Na Lim
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea
| | - Dae Youn Hwang
- Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Jeffrey J Moffat
- Department of Neurology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Soonil Kim
- Olmanfood Co., Ltd, Seoul, 03709, Republic of Korea
| | - Joung-Wook Seo
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| | - Minhan Ka
- Pharmacology and Drug Abuse Research Group, Research Center for Convergence Toxicology, Korea Institute of Toxicology, KRICT, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
38
|
Love J, Zelikowsky M. Stress Varies Along the Social Density Continuum. Front Syst Neurosci 2020; 14:582985. [PMID: 33192349 PMCID: PMC7606998 DOI: 10.3389/fnsys.2020.582985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Social stress is ubiquitous in the lives of social animals. While significant research has aimed to understand the specific forms of stress imparted by particular social interactions, less attention has been paid to understanding the behavioral effects and neural underpinnings of stress produced by the presence and magnitude of social interactions. However, in humans and rodents alike, chronically low and chronically high rates of social interaction are associated with a suite of mental health issues, suggesting the need for further research. Here, we review literature examining the behavioral and neurobiological findings associated with changing social density, focusing on research on chronic social isolation and chronic social crowding in rodent models, and synthesize findings in the context of the continuum of social density that can be experienced by social animals. Through this synthesis, we aim to both summarize the state of the field and describe promising avenues for future research that would more clearly define the broad effects of social interaction on the brain and behavior in mammals.
Collapse
Affiliation(s)
- Jay Love
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, United States
| | - Moriel Zelikowsky
- Department of Neurobiology and Anatomy, School of Medicine, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
39
|
Italia M, Forastieri C, Longaretti A, Battaglioli E, Rusconi F. Rationale, Relevance, and Limits of Stress-Induced Psychopathology in Rodents as Models for Psychiatry Research: An Introductory Overview. Int J Mol Sci 2020; 21:E7455. [PMID: 33050350 PMCID: PMC7589795 DOI: 10.3390/ijms21207455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/18/2022] Open
Abstract
Emotional and cognitive information processing represent higher-order brain functions. They require coordinated interaction of specialized brain areas via a complex spatial and temporal equilibrium among neuronal cell-autonomous, circuitry, and network mechanisms. The delicate balance can be corrupted by stressful experiences, increasing the risk of developing psychopathologies in vulnerable individuals. Neuropsychiatric disorders affect twenty percent of the western world population, but therapies are still not effective for some patients. Elusive knowledge of molecular pathomechanisms and scarcity of objective biomarkers in humans present complex challenges, while the adoption of rodent models helps to improve our understanding of disease correlate and aids the search for novel pharmacological targets. Stress administration represents a strategy to induce, trace, and modify molecular and behavioral endophenotypes of mood disorders in animals. However, a mouse or rat model will only display one or a few endophenotypes of a specific human psychopathology, which cannot be in any case recapitulated as a whole. To override this issue, shared criteria have been adopted to deconstruct neuropsychiatric disorders, i.e., depression, into specific behavioral aspects, and inherent neurobiological substrates, also recognizable in lower mammals. In this work, we provide a rationale for rodent models of stress administration. In particular, comparing each rodent model with a real-life human traumatic experience, we intend to suggest an introductive guide to better comprehend and interpret these paradigms.
Collapse
|
40
|
Huang YJ, Lu KH, Lin YE, Panyod S, Wu HY, Chang WT, Sheen LY. Garlic essential oil mediates acute and chronic mild stress-induced depression in rats via modulation of monoaminergic neurotransmission and brain-derived neurotrophic factor levels. Food Funct 2020; 10:8094-8105. [PMID: 31735946 DOI: 10.1039/c9fo00601j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Garlic essential oil (GEO) and its major organosulfur component (diallyl disulfide, DADS) possess diverse biological properties; however, limited information on their antidepressant-like effects is available. This study is the first to investigate these effects of GEO using the forced swimming test (FST) and unpredictable chronic mild stress (UCMS) induced depression in rats. After oral administration for 28 consecutive days, GEO (25 and 50 mg per kg bw) significantly reduced the immobility time in the FST. Additionally, GEO and DADS significantly reversed the sucrose preference index decrease induced by 5 weeks of UCMS. GEO (25 mg per kg bw) effectively decreased the frontal cortex turnover ratio of serotonin (5-HT) and dopamine (DA), thus increasing the 5-HT and DA levels, with no hippocampal effects. Chronic GEO treatment increased hippocampal brain-derived neurotrophic factor (BDNF), c-AMP response element binding protein (CREB), and protein kinase B (AKT) expression, exhibiting its effects via monoamine neurotransmitter modulation and the BDNF-related signaling pathway.
Collapse
Affiliation(s)
- Yun-Ju Huang
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
41
|
Favoretto CA, Nunes YC, Macedo GC, Lopes JSR, Quadros IMH. Chronic social defeat stress: Impacts on ethanol-induced stimulation, corticosterone response, and brain monoamine levels. J Psychopharmacol 2020; 34:412-419. [PMID: 31965898 DOI: 10.1177/0269881119900983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Chronic exposure to stress may dysregulate the hypothalamic-pituitary-adrenal axis and brain monoamine levels, contributing to the development of ethanol dependence. Exposure to chronic social defeat stress may impact ethanol-related effects, neural, and endocrine functions. AIM This study assessed ethanol-induced locomotor activity, corticosterone responses, and brain monoamine levels in Swiss albino mice 10 days post-exposure to chronic social defeat stress. METHODS During a period of 10 days, male Swiss mice were exposed to daily defeat episodes, followed by housing with an aggressive mouse for 24 h. Control mice were housed in pairs and rotated every 24 h. Ten days post-stress, locomotor behavior was recorded after a challenge with ethanol (2.2 g/kg; intraperitoneal) or saline. After the test, blood and brain samples were collected for determination of plasma corticosterone and brain monoamines across different brain areas through high-performance liquid chromatography. RESULTS Defeated mice failed to show a stimulant locomotor response to ethanol, while controls displayed the expected ethanol-induced stimulation. Ethanol increased plasma corticosterone levels, with lower corticosterone secretion in defeated mice. Brain monoamines were affected by social defeat and ethanol, varying in different brain regions. Social stress reduced levels of dopamine, noradrenaline, and serotonin in the hypothalamus. Defeated mice presented reduced serotonin and dopamine levels in the frontal cortex. In the striatum, ethanol treatment increased dopamine levels in controls, but failed to do so in defeated mice. CONCLUSIONS Our results suggest that chronic exposure to social defeat blunted ethanol-induced locomotor stimulation, and reduced ethanol-induced corticosterone secretion. Social stress promoted differential reductions in brain monoamine levels in the hypothalamus and frontal cortex and blunted ethanol-induced dopamine increases in the striatum.
Collapse
Affiliation(s)
- Cristiane A Favoretto
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Yasmin C Nunes
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giovana C Macedo
- Department of Psychobiology, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | | | | |
Collapse
|
42
|
Fontaine R, Ciani E, Haug TM, Hodne K, Ager-Wick E, Baker DM, Weltzien FA. Gonadotrope plasticity at cellular, population and structural levels: A comparison between fishes and mammals. Gen Comp Endocrinol 2020; 287:113344. [PMID: 31794734 DOI: 10.1016/j.ygcen.2019.113344] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 11/26/2019] [Indexed: 12/22/2022]
Abstract
Often referred to as "the master gland", the pituitary is a key organ controlling growth, maturation, and homeostasis in vertebrates. The anterior pituitary, which contains several hormone-producing cell types, is highly plastic and thereby able to adjust the production of the hormones governing these key physiological processes according to the changing needs over the life of the animal. Hypothalamic neuroendocrine control and feedback from peripheral tissues modulate pituitary cell activity, adjusting levels of hormone production and release according to different functional or environmental requirements. However, in some physiological processes (e.g. growth, puberty, or metamorphosis), changes in cell activity may be not sufficient to meet the needs and a general reorganization of cell composition and pituitary structure may occur. Focusing on gonadotropes, this review examines plasticity at the cellular level, which allows precise and rapid control of hormone production and secretion, as well as plasticity at the population and structural levels, which allows more substantial changes in hormone production. Further, we compare current knowledge of the anterior pituitary plasticity in fishes and mammals in order to assess what has been conserved or not throughout evolution, and highlight important remaining questions.
Collapse
Affiliation(s)
- Romain Fontaine
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Elia Ciani
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, 0316 Oslo, Norway
| | - Trude Marie Haug
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, 0372 Oslo, Norway
| | - Kjetil Hodne
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Eirill Ager-Wick
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway
| | - Dianne M Baker
- Department of Biological Sciences, University of Mary Washington, VA22401 Fredericksburg, VA, USA
| | - Finn-Arne Weltzien
- Department of Basic Sciences and Aquatic Medicine, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 0454 Oslo, Norway.
| |
Collapse
|
43
|
Abstract
Understanding the neurobiological basis of post-traumatic stress disorder (PTSD) is fundamental to accurately diagnose this neuropathology and offer appropriate treatment options to patients. The lack of pharmacological effects, too often observed with the most currently used drugs, the selective serotonin reuptake inhibitors (SSRIs), makes even more urgent the discovery of new pharmacological approaches. Reliable animal models of PTSD are difficult to establish because of the present limited understanding of the PTSD heterogeneity and of the influence of various environmental factors that trigger the disorder in humans. We summarize knowledge on the most frequently investigated animal models of PTSD, focusing on both their behavioral and neurobiological features. Most of them can reproduce not only behavioral endophenotypes, including anxiety-like behaviors or fear-related avoidance, but also neurobiological alterations, such as glucocorticoid receptor hypersensitivity or amygdala hyperactivity. Among the various models analyzed, we focus on the social isolation mouse model, which reproduces some deficits observed in humans with PTSD, such as abnormal neurosteroid biosynthesis, changes in GABAA receptor subunit expression and lack of pharmacological response to benzodiazepines. Neurosteroid biosynthesis and its interaction with the endocannabinoid system are altered in PTSD and are promising neuronal targets to discover novel PTSD agents. In this regard, we discuss pharmacological interventions and we highlight exciting new developments in the fields of research for novel reliable PTSD biomarkers that may enable precise diagnosis of the disorder and more successful pharmacological treatments for PTSD patients.
Collapse
|
44
|
Wang L, He Z, Zhu Z, Yuan W, Cai W, Li L, Zhang J, Hou W, Yang Y, Zhang X, Guo Q, Wang X, Lian Z, Tai F. The serotonin system in the hippocampus CA3 involves in effects of CSDS on social recognition in adult female mandarin voles (Microtus mandarinus). Prog Neuropsychopharmacol Biol Psychiatry 2019; 95:109704. [PMID: 31330217 DOI: 10.1016/j.pnpbp.2019.109704] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/28/2019] [Accepted: 07/17/2019] [Indexed: 12/27/2022]
Abstract
Chronic social defeat stress (CSDS) exacerbated the development of stress-related psychiatric disorders, and the social recognition dysfunction is the core feature of many psychiatric disorders. However, the effects of CSDS on female social recognition and the underlying neural mechanisms remain unclear. Using highly aggressive adult female mandarin voles (Microtus mandarinus) as animal model, the aim of this work is to investigate the effects of CSDS on social recognition in adult female rodents and the neurobiological mechanisms underlying these effects. Our results indicate the CSDS disrupted the normal social recognition in adult female voles. Meanwhile, defeated voles exhibited increased neural activity in the DG, CA1 and CA3 of the hippocampus. Furthermore, CSDS reduced levels of serotonin (5-HT) and serotonin 1A receptors (5-HT1AR) in the CA3. We also discovered that microinjection of 8-OH-DPAT into the CA3 effectively reversed the social recognition deficits induced by CSDS, and an infusion of WAY-100635 into the CA3 of control female voles impaired social recognition. Moreover, targeted activation of the 5-HT neuron projection from the DRN to CA3 by long-term administration of CNO significantly prevented the CSDS induced social recognition deficits. Taken together, our study demonstrated that CSDS induced social recognition deficits in adult female voles, and these effects were mediated by the action of 5-HT on the 5-HT1AR in the hippocampus CA3. The projection from the DRN to CA3 may be involved in social recognition deficits induced by CSDS.
Collapse
Affiliation(s)
- Limin Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhixiong He
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenxiang Zhu
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wei Yuan
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenqi Cai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Laifu Li
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Jing Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Wenjuan Hou
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yang Yang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xueni Zhang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Qianqian Guo
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Xia Wang
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhenmin Lian
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Fadao Tai
- Institute of Brain and Behavioral Sciences, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
45
|
Cafazzo S, Bonanni R, Natoli E. Neutering Effects on Social Behaviour of Urban Unowned Free-Roaming Domestic Cats. Animals (Basel) 2019; 9:ani9121105. [PMID: 31835397 PMCID: PMC6940995 DOI: 10.3390/ani9121105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/16/2019] [Accepted: 12/05/2019] [Indexed: 11/16/2022] Open
Abstract
The "trap, spay/neuter, and release" programs to manage unowned free-roaming cat populations are diffused worldwide and they are largely advised even in countries where the suppression of unowned cats is enforced by law. Despite the massive neutering campaigns in the world, there is little information on the influence of neutering on individual cat behaviour, as well as on the social structure of cat colonies. The aim of this study is to verify such effects. Before neutering, the group consisted of 17 free-roaming domestic cats, who were totally unrestrained. After neutering it consisted of 16 individuals. Data on the outcomes of aggressive, submissive, affiliative, and territorial behaviour were collected, using classic ethological methods ("focal animal", "all occurrences", and "1/0" sampling methods) (735 h of observation before and 537 h after neutering). The dominance hierarchy did not change after neutering. On the other hand, the frequency of aggressive, territorial behaviour as well as proximity among individuals decreased significantly. Affiliative behaviour has been observed among neutered adult males that never performed it before neutering. The results of this study suggest that, after neutering: (i) The group of free-ranging cats was stable over time; (ii) the hierarchical structure of the cat social group did not change; (iii) the general level of activity, decreased; (iv) urine spraying marking behaviour almost disappeared; (v) the level of social proximity among group members decreased, although it tended to increase in some male-male dyads. The most obvious effect of neutering, detected on individual behaviour, was that cats were less active.
Collapse
Affiliation(s)
- Simona Cafazzo
- Independent researcher, Via Giovanni Cagliero 17, 20125 Milan, Italy;
| | - Roberto Bonanni
- Independent Researcher, via Giuseppe Donati 32, 00159 Rome, Italy;
| | - Eugenia Natoli
- Canile Sovrazonale, ASL Roma 3, Via della Magliana 856H, 00148 Roma, Italy
- Correspondence:
| |
Collapse
|
46
|
Yang R, Zhang MQ, Xue Y, Yang R, Tang MM. Dietary of n-3 polyunsaturated fatty acids influence neurotransmitter systems of rats exposed to unpredictable chronic mild stress. Behav Brain Res 2019; 376:112172. [DOI: 10.1016/j.bbr.2019.112172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022]
|
47
|
Yohn CN, Dieterich A, Bazer AS, Maita I, Giedraitis M, Samuels BA. Chronic non-discriminatory social defeat is an effective chronic stress paradigm for both male and female mice. Neuropsychopharmacology 2019; 44:2220-2229. [PMID: 31493767 PMCID: PMC6898575 DOI: 10.1038/s41386-019-0520-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/08/2019] [Accepted: 08/29/2019] [Indexed: 01/24/2023]
Abstract
Stress-related mood disorders are more prevalent in females than males, yet preclinical chronic stress paradigms were developed in male rodents and are less effective in female rodents. Here we characterize a novel chronic non-discriminatory social defeat stress (CNSDS) paradigm that results in comparable stress effects in both sexes. Male and female C57BL/6J mice were simultaneously introduced into the home cage of resident CD-1 aggressors for 10 daily 5-min sessions. CD-1 aggressors attacked males and females indiscriminately, resulting in stress resilient and susceptible subpopulations in both sexes. CD-1 aggressors attacked C57BL/6J male intruders faster and more frequently than female intruders. However, CNSDS similarly induced negative valence behaviors in SUS mice of both sexes relative to RES and CNTRL mice. Furthermore, SUS male and female mice displayed similar increases in plasma corticosterone levels following CNSDS exposure relative to pre-stress exposure levels. The estrous cycle did not impact CD-1 attack behavior or negative valence behaviors. Thus, CNSDS induces chronic stress behavioral and neuroendocrine effects in both male and female C57BL/6J mice and allows direct comparisons between sexes. Adoption of this modified social defeat paradigm will help advance the initiative to include female rodents in preclinical chronic stress research.
Collapse
Affiliation(s)
- Christine N Yohn
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| | - Andrew Dieterich
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, Piscataway, NJ, 08854, USA
| | - Allyson S Bazer
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Isabella Maita
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, Piscataway, NJ, 08854, USA
| | - Megan Giedraitis
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Benjamin Adam Samuels
- Department of Psychology, Behavioral and Systems Neuroscience Area, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Graduate Program in Neuroscience, Rutgers, The State University of New Jersey, New Brunswick, Piscataway, NJ, 08854, USA.
| |
Collapse
|
48
|
Rantala MJ, Luoto S, Krama T, Krams I. Eating Disorders: An Evolutionary Psychoneuroimmunological Approach. Front Psychol 2019; 10:2200. [PMID: 31749720 PMCID: PMC6842941 DOI: 10.3389/fpsyg.2019.02200] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 09/12/2019] [Indexed: 12/18/2022] Open
Abstract
Eating disorders are evolutionarily novel conditions. They lead to some of the highest mortality rates of all psychiatric disorders. Several evolutionary hypotheses have been proposed for eating disorders, but only the intrasexual competition hypothesis is extensively supported by evidence. We present the mismatch hypothesis as a necessary extension to the current theoretical framework of eating disorders. This hypothesis explains the evolutionarily novel adaptive metaproblem that has arisen when mating motives conflict with the large-scale and easy availability of hyper-rewarding but obesogenic foods. This situation is exacerbated particularly in those contemporary environments that are characterized by sedentary lifestyles, ever-present junk foods, caloric surplus and the ubiquity of social comparisons that take place via social media. Our psychoneuroimmunological model connects ultimate-level causation with proximate mechanisms by showing how the adaptive metaproblem between mating motives and food rewards leads to chronic stress and, further, to disordered eating. Chronic stress causes neuroinflammation, which increases susceptibility to OCD-like behaviors that typically co-occur with eating disorders. Chronic stress upregulates the serotonergic system and causes dysphoric mood in anorexia nervosa patients. Dieting, however, reduces serotonin levels and dysphoric mood, leading to a vicious serotonergic-homeostatic stress/starvation cycle whereby cortisol and neuroinflammation increase through stringent dieting. Our psychoneuroimmunological model indicates that between-individual and within-individual variation in eating disorders partially arises from (co)variation in gut microbiota and stress responsivity, which influence neuroinflammation and the serotonergic system. We review the advances that have been made in recent years in understanding how to best treat eating disorders, outlining directions for future clinical research. Current evidence indicates that eating disorder treatments should aim to reduce the chronic stress, neuroinflammation, stress responsivity and gut dysbiosis that fuel the disorders. Connecting ultimate causes with proximate mechanisms and treating biopsychosocial causes rather than manifest symptoms is expected to bring more effective and sophisticated long-term interventions for the millions of people who suffer from eating disorders.
Collapse
Affiliation(s)
| | - Severi Luoto
- English, Drama and Writing Studies, University of Auckland, Auckland, New Zealand
- School of Psychology, University of Auckland, Auckland, New Zealand
| | - Tatjana Krama
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
| | - Indrikis Krams
- Department of Biotechnology, Daugavpils University, Daugavpils, Latvia
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| |
Collapse
|
49
|
Yohn CN, Ashamalla SA, Bokka L, Gergues MM, Garino A, Samuels BA. Social instability is an effective chronic stress paradigm for both male and female mice. Neuropharmacology 2019; 160:107780. [PMID: 31536736 DOI: 10.1016/j.neuropharm.2019.107780] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
Despite stress-associated disorders having a higher incidence rate in females, preclinical research mainly focuses on males. Chronic stress paradigms, such as chronic social defeat and chronic corticosterone (CORT) administration, were mainly designed and validated in males and subsequent attempts to use these paradigms in females has demonstrated sex differences in the behavioral and HPA axis response to stress. Here, we assessed the behavioral response to chronic CORT exposure and developed a social stress paradigm, social instability stress (SIS), which exposes adult mice to unstable social hierarchies every 3 days for 7 weeks. Sex differences in response to chronic CORT emerged, with negative valence behaviors induced in CORT treated males, not females. SIS effectively induces negative valence behaviors in the open field, light dark, and novelty suppressed feeding tests, increases immobility in the forced swim test, and activates the hypothalamus-pituitary-adrenal (HPA) axis in both males and females. Importantly, while there were effects of estrous cycle on behavior, this variability did not impact the overall effects of SIS on behavior, suggesting estrous does not need to be tracked while utilizing SIS. Furthermore, the effects of SIS on negative valence behaviors were also reversed following chronic antidepressant treatment with fluoxetine (FLX) in both males and females. SIS also reduced adult hippocampal neurogenesis in female mice, while chronic FLX treatment increased adult hippocampal neurogenesis in both males and females. Overall, these data demonstrate that the SIS paradigm is an ethologically valid approach that effectively induces chronic stress in both adult male and adult female mice.
Collapse
Affiliation(s)
- Christine N Yohn
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Sandra A Ashamalla
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Leshya Bokka
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Mark M Gergues
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Alexander Garino
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA
| | - Benjamin A Samuels
- Behavioral & Systems Neuroscience, Department of Psychology, Rutgers, The State University of New Jersey, 152 Frelinghuysen Rd, Piscataway, NJ, USA.
| |
Collapse
|
50
|
The Impact of Ethologically Relevant Stressors on Adult Mammalian Neurogenesis. Brain Sci 2019; 9:brainsci9070158. [PMID: 31277460 PMCID: PMC6680763 DOI: 10.3390/brainsci9070158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/18/2022] Open
Abstract
Adult neurogenesis—the formation and functional integration of adult-generated neurons—remains a hot neuroscience topic. Decades of research have identified numerous endogenous (such as neurotransmitters and hormones) and exogenous (such as environmental enrichment and exercise) factors that regulate the various neurogenic stages. Stress, an exogenous factor, has received a lot of attention. Despite the large number of reviews discussing the impact of stress on adult neurogenesis, no systematic review on ethologically relevant stressors exists to date. The current review details the effects of conspecifically-induced psychosocial stress (specifically looking at the lack or disruption of social interactions and confrontation) as well as non-conspecifically-induced stress on mammalian adult neurogenesis. The underlying mechanisms, as well as the possible functional role of the altered neurogenesis level, are also discussed. The reviewed data suggest that ethologically relevant stressors reduce adult neurogenesis.
Collapse
|