1
|
Zhou J, Zhang B, Zhou X, Zhang F, Shu Q, Wu Y, Chang HM, Hu L, Cai RL, Yu Q. Electroacupuncture pretreatment mediates sympathetic nerves to alleviate myocardial ischemia-reperfusion injury via CRH neurons in the paraventricular nucleus of the hypothalamus. Chin Med 2024; 19:43. [PMID: 38448912 PMCID: PMC10916233 DOI: 10.1186/s13020-024-00916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Myocardial ischemia-reperfusion can further exacerbate myocardial injury and increase the risk of death. Our previous research found that the paraventricular nucleus (PVN) of the hypothalamus plays a crucial role in the improvement of myocardial ischemia-reperfusion injury (MIRI) by electroacupuncture (EA) pretreatment, but its mechanism of action is still unclear. CRH neurons exhibit periodic concentrated expression in PVN, but further research is needed to determine whether they are involved in the improvement of MIRI by EA pretreatment. Meanwhile, numerous studies have shown that changes in sympathetic nervous system innervation and activity are associated with many heart diseases. This study aims to investigate whether EA pretreatment improves MIRI through sympathetic nervous system mediated by PVNCRH neurons. METHODS Integrated use of fiber-optic recording, chemical genetics and other methods to detect relevant indicators: ECG signals were acquired through Powerlab standard II leads, and LabChart 8 calculated heart rate, ST-segment offset, and heart rate variability (HRV); Left ventricular ejection fraction (LVEF), left ventricular short-axis shortening (LVFS), left ventricular end-systolic internal diameter (LVIDs) and interventricular septal thickness (IVSs) were measured by echocardiography; Myocardial infarct area (IA) and area at risk (AAR) were calculated by Evans-TTC staining. Pathological changes in cardiomyocytes were observed by HE staining; Changes in PVNCRH neuronal activity were recorded by fiber-optic photometry; Sympathetic nerve discharges were recorded for in vivo electrophysiology; NE and TH protein expression was assayed by Western blot. RESULTS Our data indicated that EA pretreatment can effectively alleviate MIRI. Meanwhile, we found that in the MIRI model, the number and activity of CRH neurons co labeled with c-Fos in the PVN area of the rat brain increased, and the frequency of sympathetic nerve discharge increased. EA pretreatment could reverse this change. In addition, the results of chemical genetics indicated that inhibiting PVNCRH neurons has a similar protective effect on MIRI as EA pretreatment, and the activation of PVNCRH neurons can counteract this protective effect. CONCLUSION EA pretreatment can inhibit PVNCRH neurons and improve MIRI by inhibiting sympathetic nerve, which offers fresh perspectives on the application of acupuncture in the management of cardiovascular disease.
Collapse
Affiliation(s)
- Jie Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Bin Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiang Zhou
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Fan Zhang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Qi Shu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yan Wu
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Hui-Min Chang
- College of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Ling Hu
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei, 230038, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230038, China
| | - Rong-Lin Cai
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Insitute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, 230601, China.
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei, 230038, China.
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei, 230038, China.
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, 230038, China.
| | - Qing Yu
- Institute of Acupuncture and Meridian Research, Anhui Academy of Chinese Medicine, Hefei, 230038, China.
- Anhui Province Key Laboratory of Meridian Viscera Correlationship, Hefei, 230038, China.
| |
Collapse
|
2
|
Treviño-Alvarez AM, Cabeza de Baca T, Stinson EJ, Gluck ME, Chang DC, Piaggi P, Krakoff J. Greater anhedonia scores in healthy individuals are associated with less decline in 24-hour energy expenditure with fasting: Evidence for a link between behavioral traits and spendthrift phenotype. Physiol Behav 2023; 269:114281. [PMID: 37356515 PMCID: PMC10528212 DOI: 10.1016/j.physbeh.2023.114281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/02/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Obesity rates are increasing and affecting mental health. It is important to understand how behavioral traits such as anhedonia are associated with physiologic traits that may predict weight-change in clinical and non-clinical populations. We studied whether 24-hour energy expenditure (24hEE) changes with fasting and overfeeding are associated with anhedonia in a healthy cohort. We performed behavioral assessments (physical anhedonia scale (PAS) and inventory for depressive symptoms (IDS)) followed by measures of 24hEE and urinary catecholamines in a whole-room indirect calorimeter (respiratory chamber) during energy balance, and then randomly during fasting and 2 different overfeeding diets. Participants (n=98) were medically healthy, between 18 and 55 years of age, with normal glucose regulation and weight-stable 6 months before admission. Women were premenopausal and not pregnant. Higher PAS was significantly associated with lesser decrease in 24hEE with fasting and higher urinary catecholamine excretion rates - consistent with spendthrift metabolism. As IDS increased, the association between anhedonia and the change in 24hEE from energy balance to fasting decreased (B-values were lower for change in EE). Here, higher PAS scores may reflect the ability to respond with appropriate homeostatic reactions which balance energy needs. IDS scores blunting this response may explain how anhedonia and depression can lead to weight gain.
Collapse
Affiliation(s)
- Andrés M Treviño-Alvarez
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA.
| | - Tomás Cabeza de Baca
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Emma J Stinson
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Marci E Gluck
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Douglas C Chang
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Paolo Piaggi
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| | - Jonathan Krakoff
- Department of Health and Human Services, Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Phoenix, AZ 85016, USA
| |
Collapse
|
3
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
4
|
Cayupe B, Troncoso B, Morgan C, Sáez-Briones P, Sotomayor-Zárate R, Constandil L, Hernández A, Morselli E, Barra R. The Role of the Paraventricular-Coerulear Network on the Programming of Hypertension by Prenatal Undernutrition. Int J Mol Sci 2022; 23:ijms231911965. [PMID: 36233268 PMCID: PMC9569920 DOI: 10.3390/ijms231911965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial etiological component in fetal programming is early nutrition. Indeed, early undernutrition may cause a chronic increase in blood pressure and cardiovascular diseases, including stroke and heart failure. In this regard, current evidence has sustained several pathological mechanisms involving changes in central and peripheral targets. In the present review, we summarize the neuroendocrine and neuroplastic modifications that underlie maladaptive mechanisms related to chronic hypertension programming after early undernutrition. First, we analyzed the role of glucocorticoids on the mechanism of long-term programming of hypertension. Secondly, we discussed the pathological plastic changes at the paraventricular nucleus of the hypothalamus that contribute to the development of chronic hypertension in animal models of prenatal undernutrition, dissecting the neural network that reciprocally communicates this nucleus with the locus coeruleus. Finally, we propose an integrated and updated view of the main neuroendocrine and central circuital alterations that support the occurrence of chronic increases of blood pressure in prenatally undernourished animals.
Collapse
Affiliation(s)
- Bernardita Cayupe
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
| | - Blanca Troncoso
- Escuela de Enfermería, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Carlos Morgan
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Patricio Sáez-Briones
- Laboratorio de Neurofarmacología y Comportamiento, Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Ramón Sotomayor-Zárate
- Laboratorio de Neuroquímica y Neurofarmacología, Centro de Neurobiología y Fisiopatología Integrativa, Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Luis Constandil
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Alejandro Hernández
- Laboratorio de Neurobiología, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Eugenia Morselli
- Department of Basic Sciences, Faculty of Medicine and Sciences, Universidad San Sebastián, Santiago 7510157, Chile
| | - Rafael Barra
- Centro de Investigación Biomédica y Aplicada (CIBAP), Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170020, Chile
- Correspondence: ; Tel.: +56-983831083
| |
Collapse
|
5
|
Hypertension in Prenatally Undernourished Young-Adult Rats Is Maintained by Tonic Reciprocal Paraventricular-Coerulear Excitatory Interactions. Molecules 2021; 26:molecules26123568. [PMID: 34207980 PMCID: PMC8230629 DOI: 10.3390/molecules26123568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 11/17/2022] Open
Abstract
Prenatally malnourished rats develop hypertension in adulthood, in part through increased α1-adrenoceptor-mediated outflow from the paraventricular nucleus (PVN) to the sympathetic system. We studied whether both α1-adrenoceptor-mediated noradrenergic excitatory pathways from the locus coeruleus (LC) to the PVN and their reciprocal excitatory CRFergic connections contribute to prenatal undernutrition-induced hypertension. For that purpose, we microinjected either α1-adrenoceptor or CRH receptor agonists and/or antagonists in the PVN or the LC, respectively. We also determined the α1-adrenoceptor density in whole hypothalamus and the expression levels of α1A-adrenoceptor mRNA in the PVN. The results showed that: (i) agonists microinjection increased systolic blood pressure and heart rate in normotensive eutrophic rats, but not in prenatally malnourished subjects; (ii) antagonists microinjection reduced hypertension and tachycardia in undernourished rats, but not in eutrophic controls; (iii) in undernourished animals, antagonist administration to one nuclei allowed the agonists recover full efficacy in the complementary nucleus, inducing hypertension and tachycardia; (iv) early undernutrition did not modify the number of α1-adrenoceptor binding sites in hypothalamus, but reduced the number of cells expressing α1A-adrenoceptor mRNA in the PVN. These results support the hypothesis that systolic pressure and heart rate are increased by tonic reciprocal paraventricular-coerulear excitatory interactions in prenatally undernourished young-adult rats.
Collapse
|
6
|
Savransky A, Chiappelli J, Du X, Carino K, Kvarta M, Bruce H, Kochunov P, Goldwaser E, Tan Y, Hare S, Hong LE. Association of working memory and elevated overnight urinary norepinephrine in patients with schizophrenia. J Psychiatr Res 2021; 137:89-95. [PMID: 33662656 DOI: 10.1016/j.jpsychires.2021.02.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Norepinephrine has both central and peripheral origins and is known to influence cognitive processes in attention, learning, and working memory, but the research regarding the impact of norepinephrine on cognition in schizophrenia remains sparse, and mainly focuses on centrally regulated noradrenergic effects. This study examined the relationship between cumulative overnight norepinephrine levels in the urine and working memory in patients with schizophrenia and healthy controls. METHODS Urinary catecholamines were collected overnight in patients with schizophrenia (n = 75) and healthy controls (n = 33). Working memory was assessed using the digit sequencing task. RESULTS Patients showed significantly higher average levels of overnight norepinephrine (t(103.10) = -3.16, p = 0.002) and reduced working memory performance (t(90) = 3.87, p = 0.001) compared with healthy individuals. There was a significant negative correlation between norepinephrine and working memory in patients (r = -0.38, p = 0.005), but not in controls (r = 0.08, p = 0.67). After controlling for age, sex, antipsychotic medications, and serotonin-norepinephrine reuptake inhibitor-based antidepressants, the correlation remained significant (r = -0.41, p = 0.004). CONCLUSIONS High peripheral overnight levels of urinary norepinephrine are associated with lower working memory performance in patients with schizophrenia. These results parallel previous studies suggesting that high levels of central norepinephrine may result in working memory impairments. As norepinephrine rapidly breaks down and usually does not pass through the blood-brain barrier, the potential effect of peripheral cumulative norepinephrine on working memory is intriguing, and needs to be further investigated.
Collapse
Affiliation(s)
- Anya Savransky
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joshua Chiappelli
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Xiaoming Du
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen Carino
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mark Kvarta
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Heather Bruce
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Peter Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric Goldwaser
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yunlong Tan
- Beijing Huilongguan Hospital, Peking University Huilongguan Clinical Medical School, Beijing, PR China
| | - Stephanie Hare
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Yamaguchi N, Mimura K, Okada S. Prostaglandin E2 receptor EP3 subtype in the paraventricular hypothalamic nucleus mediates corticotropin-releasing factor-induced elevation of plasma noradrenaline levels in rats. Eur J Pharmacol 2019; 863:172693. [DOI: 10.1016/j.ejphar.2019.172693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023]
|
8
|
GABA B receptors in the hypothalamic paraventricular nucleus mediate β-adrenoceptor-induced elevations of plasma noradrenaline in rats. Eur J Pharmacol 2019; 848:88-95. [PMID: 30685430 DOI: 10.1016/j.ejphar.2019.01.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 01/15/2019] [Accepted: 01/18/2019] [Indexed: 11/21/2022]
Abstract
In the brain, various neurotransmitters such as noradrenaline and GABA regulate peripheral sympathetic functions. Previously, it has been reported that both β-adrenoceptor activation and GABAB receptor activation in the brain are involved in the elevation of plasma noradrenaline levels. However, it is unknown whether these pathways interact with each other. In the present study, we examined the relationship between the central actions of β-adrenoceptor activation and GABAB receptor activation with regard to plasma noradrenaline responses using urethane-anesthetized rats. Intracerebroventricular pretreatment with the GABAA receptor antagonist bicuculline did not affect the β-adrenoceptor agonist isoproterenol-induced elevation of plasma noradrenaline levels. In contrast, pretreatment with the GABAB receptor antagonist CGP 35348 suppressed the isoproterenol-induced elevation of noradrenaline levels. Intracerebroventricular pretreatment with the β-adrenoceptor antagonist propranolol did not alter the GABAB receptor agonist baclofen-induced elevation of plasma noradrenaline levels. We next examined the central effects of β-adrenoceptor activation on GABA release in the paraventricular hypothalamic nucleus (PVN), the major integrative center for sympathetic regulation in the brain. Intracerebroventricular administration of isoproterenol increased GABA content in PVN dialysates. In addition, baclofen microinjected unilaterally into the PVN resulted in elevated plasma levels of noradrenaline, but not adrenaline. Finally, unilateral blockade of GABAB receptors in the PVN suppressed the isoproterenol-induced elevation of plasma noradrenaline level. Our results suggest that activation of β-adrenoceptors in the brain, likely in the PVN, induces GABA release in the PVN, which in turn activates GABAB receptors in the PVN, leading to elevated plasma noradrenaline.
Collapse
|
9
|
Kruse SW, Dayton KG, Purnell BS, Rosner JI, Buchanan GF. Effect of monoamine reuptake inhibition and α 1 blockade on respiratory arrest and death following electroshock-induced seizures in mice. Epilepsia 2019; 60:495-507. [PMID: 30723893 PMCID: PMC6467066 DOI: 10.1111/epi.14652] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in patients with refractory epilepsy. Although the mechanisms for SUDEP are incompletely understood, seizure-induced respiratory arrest (S-IRA) has been strongly and consistently implicated. A body of evidence indicates that serotonin (5-HT), a modulator of breathing, plays a critical role in SUDEP. Because the 5-HT and norepinephrine (NE) systems interact in many biologic processes and NE is known to modulate breathing and seizures, we hypothesized that NE may play a role in S-IRA and SUDEP. METHODS We examined the effects of pharmacologic manipulation of 5-HT and NE on S-IRA and death following maximal electroshock (MES)-induced seizures in adult wild-type (WT) mice, genetically 5-HT neuron-deficient (Lmx1bf/f/p ) mice, and chemically NE neuron-deficient mice. Mice were treated with pharmacologic agents targeting the serotonergic and noradrenergic systems and subjected to seizure induction via MES while breathing was measured via whole-body plethysmography. RESULTS S-IRA and death was reduced in WT mice with NE reuptake inhibitors (NRIs), reboxetine and atomoxetine, selective serotonin reuptake inhibitors (SSRIs), fluoxetine and citalopram, and the dual 5-HT/NE reuptake inhibitor (SNRI), duloxetine. S-IRA and death was also reduced in Lmx1bf/f/p mice with reboxetine and fluoxetine. The protective effects of the reuptake inhibitors were prevented by the α1 antagonist, prazosin. Citalopram did not reduce S-IRA and death in NE neuron-deficient mice. SIGNIFICANCE These data suggest that 5-HT and NE critically interact in the modulation of breathing following a seizure and potentially inform preventive strategies for SUDEP.
Collapse
Affiliation(s)
- Stephen W. Kruse
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Kyle G. Dayton
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Benton S. Purnell
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
| | - Jared I. Rosner
- Secondary Student Training Program, University of Iowa, Iowa City, IA 52242
| | - Gordon F. Buchanan
- Department of Neurology, University of Iowa, Iowa City, IA 52242
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA 52242
- Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
Mendonça MM, Santana JS, da Cruz KR, Ianzer D, Ghedini PC, Nalivaiko E, Fontes MAP, Ferreira RN, Pedrino GR, Colugnati DB, Xavier CH. Involvement of GABAergic and Adrenergic Neurotransmissions on Paraventricular Nucleus of Hypothalamus in the Control of Cardiac Function. Front Physiol 2018; 9:670. [PMID: 29915544 PMCID: PMC5994789 DOI: 10.3389/fphys.2018.00670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/14/2018] [Indexed: 11/13/2022] Open
Abstract
Sympathetic premotor neurons of the paraventricular hypothalamus (PVN) play a role in hemodynamics adjustments during changes in body fluid homeostasis. However, PVN contribution to the tonic control of cardiac function remains to be systematically studied. In this study, we assessed whether GABAergic and adrenergic synapses, known for being active in the PVN, are involved in the control of cardiac function. Adult male Wistar rats (250–350 g; n = 27) were anesthetized with urethane (1.2–1.4 g/kg i.p.) and underwent catheterization of femoral artery to record blood pressure and heart rate. The femoral vein was used to inject the vasoactive agents phenylephrine (10 μg/kg) and sodium nitroprusside (10 μg/kg) and to supplement anesthesia. The cardiac left ventricle was catheterized to record left ventricular pressure and its derivative. Craniotomy allowed for injections (100 nL) into the PVN of: muscimol (20 mM), bicuculline methiodide (0.4 mM), propranolol (10 mM), isoproterenol (100 μM), phentolamine (13 mM), phenylephrine (30 nM). We found that: (i) inhibition of PVN by muscimol, reduced arterial pressure, cardiac chronotropy and inotropy; (ii) disinhibition of PVN neurons by bicuculline evoked positive chronotropy and inotropy, and increase blood pressure; (iii) PVN alpha adrenergic receptors control cardiac chronotropy and inotropy; (iv) beta adrenergic receptors of the PVN do not influence cardiac function; (v) afterload does not contribute to the PVN-evoked inotropy. Our results indicate that the modulation of the activity of PVN neurons exerted by GABAergic and adrenergic mechanisms contribute to the control of cardiac function.
Collapse
Affiliation(s)
- Michelle M Mendonça
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Joice S Santana
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Kellen R da Cruz
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Danielle Ianzer
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Paulo C Ghedini
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Eugene Nalivaiko
- Neurocardiology Laboratory, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, Australia
| | - Marco A P Fontes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Reginaldo N Ferreira
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Gustavo R Pedrino
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Diego B Colugnati
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Carlos H Xavier
- Department of Physiological Sciences, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
11
|
Liang B, Zhao YN, Wang X, Yu XJ, Li Y, Yang HY, Su Q, Kang YM, Yang ZM. Angiotensin-(1-7) attenuates hypertension and cardiac hypertrophy via modulation of nitric oxide and neurotransmitter levels in the paraventricular nucleus in salt-sensitive hypertensive rats. RSC Adv 2018; 8:8779-8786. [PMID: 35547241 PMCID: PMC9087825 DOI: 10.1039/c7ra09136b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 02/15/2018] [Indexed: 01/15/2023] Open
Abstract
Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II. We aimed to determine whether brain Ang-(1-7) regulates nitric oxide (NO) and neurotransmitter levels in the hypothalamic paraventricular nucleus (PVN), and influences sympathetic activity, blood pressure and cardiac hypertrophy in salt-sensitive hypertension. Dahl salt-sensitive rats receiving a high-salt (HS, 8% NaCl) or a normal-salt (NS, 0.3% NaCl) diet were treated with an intracerebroventricular (ICV) infusion of Ang-(1-7) for 6 weeks. Seven rats were measured in each group. In comparison with NS rats, HS rats exhibited significantly increased mean arterial pressure, plasma norepinephrine (NE) and cardiac hypertrophy. In addition, HS rats (compared to NS rats) had increased glutamate, NE and tyrosine hydroxylase (TH) expression, and reduced NO levels as well as reduced expression of γ-aminobutyric acid (GABA) and the 67 kDa isoform of glutamate decarboxylase (GAD67) in the PVN. Treatment with ICV infusion of Ang-(1-7) reversed these changes in the salt-sensitive hypertensive rats. The results suggest that the beneficial effects of brain Ang-(1-7) on salt-sensitive hypertension and cardiac hypertrophy are partly due to an elevation in the NO level and restoration of neurotransmitter balance in the PVN. Angiotensin-(1-7) [Ang-(1-7)] is a multifunctional bioactive angiotensin peptide which exerts a cardiovascular protective function mainly by opposing the effects of angiotensin II.![]()
Collapse
Affiliation(s)
- Bin Liang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Ya-Nan Zhao
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Department of Respiratory
| | - Xin Wang
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
- Taiyuan 030001
- China
| | - Xiao-Jing Yu
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Ying Li
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Hui-Yu Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| | - Qing Su
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology
- Xi'an Jiaotong University School of Basic Medical Sciences
- Xi'an Jiaotong University Health Science Center
- Xi'an 710061
- China
| | - Zhi-Ming Yang
- Department of Cardiology
- The Second Hospital of Shanxi Medical University
- Taiyuan 030001
- China
- Key Laboratory of Cardiovascular Medicine and Clinical Pharmacology of Shanxi Province
| |
Collapse
|
12
|
Yu Y, Wei SG, Weiss RM, Felder RB. TNF-α receptor 1 knockdown in the subfornical organ ameliorates sympathetic excitation and cardiac hemodynamics in heart failure rats. Am J Physiol Heart Circ Physiol 2017; 313:H744-H756. [PMID: 28710070 DOI: 10.1152/ajpheart.00280.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 07/08/2017] [Indexed: 02/07/2023]
Abstract
In systolic heart failure (HF), circulating proinflammatory cytokines upregulate inflammation and renin-angiotensin system (RAS) activity in cardiovascular regions of the brain, contributing to sympathetic excitation and cardiac dysfunction. Important among these is the subfornical organ (SFO), a forebrain circumventricular organ that lacks an effective blood-brain barrier and senses circulating humors. We hypothesized that the tumor necrosis factor-α (TNF-α) receptor 1 (TNFR1) in the SFO contributes to sympathetic excitation and cardiac dysfunction in HF rats. Rats received SFO microinjections of a TNFR1 shRNA or a scrambled shRNA lentiviral vector carrying green fluorescent protein, or vehicle. One week later, some rats were euthanized to confirm the accuracy of the SFO microinjections and the transfection potential of the lentiviral vector. Other rats underwent coronary artery ligation (CL) to induce HF or a sham operation. Four weeks after CL, vehicle- and scrambled shRNA-treated HF rats had significant increases in TNFR1 mRNA and protein, NF-κB activity, and mRNA for inflammatory mediators, RAS components and c-Fos protein in the SFO and downstream in the hypothalamic paraventricular nucleus, along with increased plasma norepinephrine levels and impaired cardiac function, compared with vehicle-treated sham-operated rats. In HF rats treated with TNFR1 shRNA, TNFR1 was reduced in the SFO but not paraventricular nucleus, and the central and peripheral manifestations of HF were ameliorated. In sham-operated rats treated with TNFR1 shRNA, TNFR1 expression was also reduced in the SFO but there were no other effects. These results suggest a key role for TNFR1 in the SFO in the pathophysiology of systolic HF.NEW & NOTEWORTHY Activation of TNF-α receptor 1 in the subfornical organ (SFO) contributes to sympathetic excitation in heart failure rats by increasing inflammation and renin-angiotensin system activity in the SFO and downstream in the hypothalamic paraventricular nucleus. Cytokine receptors in the SFO may be a target for central intervention in cardiovascular conditions characterized by peripheral inflammation.
Collapse
Affiliation(s)
- Yang Yu
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Shun-Guang Wei
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert M Weiss
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and
| | - Robert B Felder
- Department of Internal Medicine, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa; and .,Research Service, Veterans Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
13
|
Okada S, Yamaguchi N. Possible role of adrenoceptors in the hypothalamic paraventricular nucleus in corticotropin-releasing factor-induced sympatho-adrenomedullary outflow in rats. Auton Neurosci 2017; 203:74-80. [PMID: 28202248 DOI: 10.1016/j.autneu.2017.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/30/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023]
Abstract
AIMS A functional interaction between the corticotropin-releasing factor (CRF) system and noradrenergic neurons in the brain has been suggested. In the present study, we investigated the interrelationship between the central CRF-induced elevation of plasma catecholamines and adrenoceptor activation in the paraventricular nucleus of the hypothalamus (PVN) using urethane-anesthetized rats. MAIN METHODS In rats under urethane anesthesia, a femoral venous line was inserted for infusion of saline, and a femoral arterial line was inserted for collecting blood samples. Next, animals were placed in a stereotaxic apparatus for the application of test agents. Catecholamines in the plasma were extracted by alumina absorption and were assayed with high-performance liquid chromatography with electrochemical detection. Quantification of noradrenaline in rat PVN microdialysates was performed with high-performance liquid chromatography with electrochemical detection. KEY FINDINGS We showed that centrally administered CRF elevated noradrenaline release in the PVN. Furthermore, we demonstrated that microinjection of phenylephrine into the PVN induced elevation of plasma levels of adrenaline, but not of noradrenaline, whereas microinjection of isoproterenol into the PVN induced elevation of plasma levels of noradrenaline, but not of adrenaline. Bilateral blockade of adrenoceptors in the PVN revealed that phentolamine significantly suppressed the CRF-induced elevation of plasma adrenaline level, while propranolol significantly CRF-induced elevation of plasma noradrenaline level. SIGNIFICANCE Our results suggest that centrally administered CRF-induced elevation of plasma levels of adrenaline and noradrenaline can be mediated via activation of α-adrenoceptors and β-adrenoceptors, respectively, in the rat PVN.
Collapse
Affiliation(s)
- Shoshiro Okada
- Department of Pharmacology, Graduate School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan.
| | - Naoko Yamaguchi
- Department of Pharmacology, Graduate School of Medicine, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, Aichi 480-1195, Japan
| |
Collapse
|
14
|
Erdos B, Clifton RR, Liu M, Li H, McCowan ML, Sumners C, Scheuer DA. Novel mechanism within the paraventricular nucleus reduces both blood pressure and hypothalamic pituitary-adrenal axis responses to acute stress. Am J Physiol Heart Circ Physiol 2015; 309:H634-45. [PMID: 26071542 DOI: 10.1152/ajpheart.00207.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/05/2015] [Indexed: 02/07/2023]
Abstract
Macrophage migration inhibitory factor (MIF) counteracts pressor effects of angiotensin II (ANG II) in the paraventricular nucleus of the hypothalamus (PVN) in normotensive rats, but this mechanism is absent in spontaneously hypertensive rats (SHRs) due to a lack of MIF in PVN neurons. Since endogenous ANG II in the PVN modulates stress reactivity, we tested the hypothesis that replacement of MIF in PVN neurons would reduce baseline blood pressure and inhibit stress-induced increases in blood pressure and plasma corticosterone in adult male SHRs. Radiotelemetry transmitters were implanted to measure blood pressure, and then an adeno-associated viral vector expressing either enhanced green fluorescent protein (GFP) or MIF was injected bilaterally into the PVN. Cardiovascular responses to a 15-min water stress (1-cm deep, 25°C) and a 60-min restraint stress were evaluated 3-4 wk later. MIF treatment in the PVN attenuated average restraint-induced increases in blood pressure (37.4 ± 2.0 and 27.6 ± 3.5 mmHg in GFP and MIF groups, respectively, P < 0.05) and corticosterone (42 ± 2 and 36 ± 3 μg/dl in GFP and MIF groups, respectively, P < 0.05). MIF treatment in the PVN also reduced stress-induced elevations in the number of c-Fos-positive cells in the rostral ventrolateral medulla (71 ± 5 in GFP and 47 ± 5 in MIF SHRs, P < 0.01) and corticotropin-releasing factor mRNA expression in the PVN. However, MIF had no significant effects on the cardiovascular responses to water stress in SHRs or to either stress in Sprague-Dawley rats. Therefore, viral vector-mediated restoration of MIF in PVN neurons of SHRs attenuates blood pressure and hypothalamic pituitary adrenal axis responses to stress.
Collapse
Affiliation(s)
- Benedek Erdos
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Rebekah R Clifton
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Meng Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Hongwei Li
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Michael L McCowan
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| | - Deborah A Scheuer
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida
| |
Collapse
|
15
|
Daubert DL, McCowan M, Erdos B, Scheuer DA. Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. J Physiol 2012; 590:4881-95. [PMID: 22753543 DOI: 10.1113/jphysiol.2012.232314] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Catecholaminergic neurons within the central nervous system are an integral part of stress-related neurocircuitry, and the nucleus of the solitary tract (NTS) plays a critical role in cardiovascular regulation. We tested the hypothesis that NTS catecholaminergic neurons attenuate psychological stress-induced increases in blood pressure and promote neuroendocrine activation in response to psychological stress.Anti-dopamine-β-hydroxylase antibody conjugated to the neurotoxin saporin (DSAP) or saline vehicle was microinjected into the NTS to lesion catecholaminergic neurons in male Sprague-Dawley rats, and 17 days later the rats were subjected to 60 min of restraint stress for five consecutive days. DSAP treatment significantly enhanced the integrated increase in mean arterial pressure during restraint on the first (800 ± 128 and 1115 ± 116 mmHg (min) for saline- and DSAP-treated rats) and fifth days (655 ± 116 and 1035 ± 113 mmHg (min) for saline- and DSAP-treated rats; P<0.01 for overall effect of DSAP treatment) of restraint. In contrast, after 60 min of restraint plasma corticosterone concentration was significantly lower in DSAP-treated compared with saline-treated rats (25.9 ± 7 compared with 46.8 ± 7 μg dl(-1) for DSAP- and saline-treated rats; P <0.05). DSAP treatment also significantly reduced baseline plasma adrenaline concentration (403 ± 69 compared with 73 ± 29 pg ml(-1) for saline- and DSAP-treated rats), but did not alter the magnitude of the adrenaline response to restraint. The data suggest that NTS catecholaminergic neurons normally inhibit the arterial pressure response, but help maintain the corticosterone response to restraint stress.
Collapse
Affiliation(s)
- Daisy L Daubert
- Ferris State University, Department of Biological Sciences, Big Rapids, MI 49307, USA
| | | | | | | |
Collapse
|
16
|
Balasubramanian P, Sirivelu MP, Weiss KA, Wagner JG, Harkema JR, Morishita M, Mohankumar PS, Mohankumar SMJ. Differential effects of inhalation exposure to PM2.5 on hypothalamic monoamines and corticotrophin releasing hormone in lean and obese rats. Neurotoxicology 2012; 36:106-11. [PMID: 22426024 DOI: 10.1016/j.neuro.2012.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 02/21/2012] [Accepted: 02/27/2012] [Indexed: 12/21/2022]
Abstract
Acute exposure to airborne pollutants, especially particulate matter (PM2.5) is known to increase hospital admissions for cardiovascular conditions, increase cardiovascular related mortality and predispose the elderly and obese individuals to cardiovascular conditions. The mechanisms by which PM2.5 exposure affects the cardiovascular system is not clear. Since the autonomic system plays an important role in cardiovascular regulation, we hypothesized that PM2.5 exposure most likely activates the paraventricular nucleus (PVN) of the hypothalamus to cause an increase in sympathetic nervous system and/or stress axis activity. We also hypothesized that these changes may be sustained in obese rats predisposing them to higher cardiovascular risk. To test this, adult male Brown Norway (BN) rats were subjected to one day or three days of inhalation exposures to filtered air (FA) or concentrated air particulate (CAP) derived from ambient PM2.5. Corpulent JCR-LA rats were exposed to FA or CAP for four days. Animals were sacrificed 24h after the last inhalation exposure. Their brains were removed, frozen and sectioned. The PVN and median eminence (ME) were microdissected. PVN was analyzed for norepinephrine (NE), dopamine (DA) and 5-hydroxy-indole acetic acid (5-HIAA) levels using HPLC-EC. ME was analyzed for corticotrophin releasing hormone (CRH) levels by ELISA. One day exposure to CAP increased NE levels in the PVN and CRH levels in the ME of BN rats. Repeated exposures to CAP did not affect NE levels in the PVN of BN rats, but increased NE levels in JCR/LA rats. A similar pattern was observed with 5-HIAA levels. DA levels on the other hand, were unaffected in both BN and JCR/LA strains. These data suggest that repeated exposures to PM2.5 continue to stimulate the PVN in obese animals but not lean rats.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Michigan State University, E. Lansing, MI 48824, United States
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Scotti MAL, Lee G, Gammie SC. Maternal defense is modulated by beta adrenergic receptors in lateral septum in mice. Behav Neurosci 2011; 125:434-45. [PMID: 21480688 DOI: 10.1037/a0023184] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Maternal defense (offspring protection) is a critical and highly conserved component of maternal care in mammalian systems that involves dramatic shifts in a female's behavioral response to social cues. Numerous changes occur in neuronal signaling and connectivity in the postpartum female, including decreases in norepinephrine (NE) signaling in subregions of the CNS. In this study using a strain of mice selected for maternal defense, we examined whether possible changes in NE signaling in the lateral septum (LS) could facilitate expression of maternal aggression. In separate studies that utilized a repeated measures design, mice were tested for maternal defense following intra-LS injections of either the β-adrenergic receptor agonist isoproterenol (10 μg or 30 μg) or vehicle (Experiment 1), the β-adrenergic receptor antagonist propranolol (2 μg) or vehicle (Experiment 2), or the β1-receptor antagonist, atenolol (Experiment 3). Mice were also evaluated for light-dark performance and pup retrieval. Thirty micrograms of the agonist isoproterenol significantly decreased number of attacks and time aggressive relative to vehicle without affecting pup retrieval or light-dark box performance. In contrast, the antagonist propranolol significantly increased maternal aggression (lowered latency to attack and increased total attack time) without altering light-dark box test. The β1-specific antagonist, atenolol, significantly decreased latency to attack (1 μg vs. vehicle) without altering other measures. Although the findings were identified in a unique strain of mice, the results of these studies support the hypothesis that changes in NE signaling in LS during the postpartum period contribute to the expression of offspring protection.
Collapse
|
18
|
Kang YM, Zhang AQ, Zhao XF, Cardinale JP, Elks C, Cao XM, Zhang ZW, Francis J. Paraventricular nucleus corticotrophin releasing hormone contributes to sympathoexcitation via interaction with neurotransmitters in heart failure. Basic Res Cardiol 2011; 106:473-83. [PMID: 21287352 PMCID: PMC3118407 DOI: 10.1007/s00395-011-0155-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 12/20/2010] [Accepted: 01/21/2011] [Indexed: 01/22/2023]
Abstract
Recent studies indicate that systemic administration of tumor necrosis factor (TNF)-α induces increases in corticotrophin releasing hormone (CRH) and CRH type 1 receptors in the hypothalamic paraventricular nucleus (PVN). In this study, we explored the hypothesis that CRH in the PVN contributes to sympathoexcitation via interaction with neurotransmitters in heart failure (HF). Sprague-Dawley rats with HF or sham-operated controls (SHAM) were treated for 4 weeks with a continuous bilateral PVN infusion of the selective CRH-R1 antagonist NBI-27914 or vehicle. Rats with HF had higher levels of glutamate, norepinephrine (NE) and tyrosine hydroxylase (TH), and lower levels of gamma-aminobutyric acid (GABA) and the 67-kDa isoform of glutamate decarboxylase (GAD67) in the PVN when compared to SHAM rats. Plasma levels of cytokines, NE, ACTH and renal sympathetic nerve activity (RSNA) were increased in HF rats. Bilateral PVN infusions of NBI-27914 attenuated the decreases in PVN GABA and GAD67, and the increases in RSNA, ACTH and PVN glutamate, NE and TH observed in HF rats. These findings suggest that CRH in the PVN modulates neurotransmitters and contributes to sympathoexcitation in rats with ischemia-induced HF.
Collapse
Affiliation(s)
- Yu-Ming Kang
- Department of Physiology and Pathophysiology, Xi’an Jiaotong University School of Medicine, Xi’an 710061, China
| | - Ai-Qun Zhang
- Institute of Hepatobiliary Surgery, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiu-Fang Zhao
- Department of Internal Medicine, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Jeffrey P. Cardinale
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Carrie Elks
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xi-Mei Cao
- Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Zhen-Wen Zhang
- Department of Internal Medicine, General Hospital of Chinese People’s Armed Police Forces, Beijing, China
| | - Joseph Francis
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
19
|
Zhao N, Zhang W, Guo Y, Jia H, Zha Q, Liu Z, Xu S, Lu A. Effects on neuroendocrinoimmune network of Lizhong Pill in the reserpine induced rats with spleen deficiency in traditional Chinese medicine. JOURNAL OF ETHNOPHARMACOLOGY 2011; 133:454-9. [PMID: 20951788 DOI: 10.1016/j.jep.2010.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 10/07/2010] [Accepted: 10/08/2010] [Indexed: 05/30/2023]
Abstract
AIM OF THE STUDY Lizhong Pill, composed of radix Ginseng (Panax ginseng C.A. Meyer), rhizoma Zingiberis (Zingiber officinale Roscoe), rhizoma Atractylodis Macrocephalae (Atractylodes macrocephala Koidz.) and radix Glycytthizae (Glycyrrhiza uralensis Fisch.), is a classical herbal product for curing spleen deficiency in traditional Chinese medicine (TCM), and reserpine treated rats show similar signs to TCM spleen deficiency pattern. This paper is aimed to explore the regulatory effect on neuroendocrinoimmune network by Lizhong Pill in reserpine induced TCM spleen deficiency rats. MATERIALS AND METHODS 100 healthy adult male SD rats, with a mean weight of 200 g, were randomly divided into five groups in average: control group, reserpine treated group, atropine treated group, treatment groups with Lizhong Pill at high dose and low dose (equal to the dosage of crude drugs for 4 g/kg/d and 8 g/kg/d). Rats in reserpine treated group were induced by intraperitoneal injection of reserpine at 0.5 mg/kgd for 4 weeks. The levels of IL-1, IL-6 and gastrin were measured with radioimmunoassay, TNF-α and IFN-γ in serum were measured with ELISA, the level of vasoactive intestinal peptide (VIP) and substance P (SP) in small intestine were determined with radioimmunoassay, and the TNF-α and TGF-β positive cells in small intestine were detected by immunohistological staining. Data were analyzed with SAS 9.1 software package. RESULTS The rats in reserpine treated group, body weight, concentrations of IFN-γ, IL-1 and TNF-α in serum, expression of TGF-β in small intestine, VIP in small intestine decreased (P<0.05), and the level of IL-6 in serum, expression of TNF-α, SP in small intestine and gastrin were increased (P<0.05). Administration of Lizhong Pill at high dose could increase the body weights at day 21, and the weights of rats in Lizhong Pill groups were much higher compared to reserpine treated group. At high dose of Lizhong Pill could increase the level of TNF-α in serum. Lizhong Pill at high dose and low dose could reverse the changes of IL-1, IL-6 and IFN-γ, gastrin, expression of TGF-β and TNF-α, VIP and SP in small intestine. CONCLUSIONS The rats treated with reserpine, with similar signs to TCM spleen deficiency, show neuroendocrinoimmune disorders, and the restoration of the neuroendocrinoimmune disorders might be the part of mechanism of Lizhong Pill for reinforcing TCM spleen deficiency.
Collapse
Affiliation(s)
- Ning Zhao
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | | | | | | | | | | | | | | |
Collapse
|
20
|
α1-Adrenoceptor activation is involved in the central N-methyl-d-aspartate-induced adrenomedullary outflow in rats. Eur J Pharmacol 2010; 640:55-62. [DOI: 10.1016/j.ejphar.2010.04.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 04/09/2010] [Accepted: 04/25/2010] [Indexed: 02/02/2023]
|