1
|
C Sekhar V, Gulia KK, Deepti A, Chakrapani PSB, Baby S, Viswanathan G. Protection by Nano-Encapsulated Bacoside A and Bacopaside I in Seizure Alleviation and Improvement in Sleep- In Vitro and In Vivo Evidences. Mol Neurobiol 2024; 61:3296-3313. [PMID: 37987958 DOI: 10.1007/s12035-023-03741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023]
Abstract
Therapeutic options to contain seizures, a transitional stage of many neuropathologies, are limited due to the blood-brain barrier (BBB). Herbal nanoparticle formulations can be employed to enhance seizure prognosis. Bacoside A (BM3) and bacopaside I (BM4) were isolated from Bacopa monnieri and synthesized as nanoparticles (BM3NP and BM4NP, respectively) for an effective delivery system to alleviate seizures and associated conditions. After physicochemical characterization, cell viability was assessed on mouse neuronal stem cells (mNSC) and neuroblastoma cells (N2a). Thereafter, anti-seizure effects, mitochondrial membrane potential (MMP), apoptosis, immunostaining and epileptic marker mRNA expression were determined in vitro. The seizure-induced changes in the cortical electroencephalogram (EEG), electromyography (EMG), Non-Rapid Eye Movement (NREM) and Rapid Eye Movement (REM) sleep were monitored in vivo in a kainic acid (KA)-induced rat seizure model. The sizes of BM3NPs and BM4NPs were 165.5 nm and 689.6 nm, respectively. They were biocompatible and also aided in neuroplasticity in mNSC. BM3NPs and BM4NPs depicted more than 50% cell viability in N2a cells, with IC50 values of 1609 and 2962 µg/mL, respectively. Similarly, these nanoparticles reduced the cytotoxicity of N2a cells upon KA treatment. Nanoparticles decreased the expression of epileptic markers like fractalkine, HMGB1, FOXO3a and pro-inflammatory cytokines (P < 0.05). They protected neurons from apoptosis and restored MMP. After administration of BM3NPs and BM4NPs, KA-treated rats attained a significant reduction in the epileptic spikes, sleep latency and an increase in NREM sleep duration. Results indicate the potential of BM3NPs and BM4NPs in neutralizing the KA-induced excitotoxic seizures in neurons.
Collapse
Affiliation(s)
- Vini C Sekhar
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
- University of Kerala, Thiruvananthapuram, 695034, Kerala, India
| | - Kamalesh K Gulia
- Division of Sleep Research, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, 695011, India
| | - Ayswaria Deepti
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - P S Baby Chakrapani
- Centre for Neuroscience, Department of Biotechnology, Cochin University of Science and Technology, Cochin, 682022, Kerala, India
| | - Sabulal Baby
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India
| | - Gayathri Viswanathan
- Phytochemistry and Phytopharmacology Division, KSCSTE-Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Pacha-Palode, Thiruvananthapuram, 695562, Kerala, India.
| |
Collapse
|
2
|
Ditmer M, Gabryelska A, Turkiewicz S, Sochal M. Investigating the Role of BDNF in Insomnia: Current Insights. Nat Sci Sleep 2023; 15:1045-1060. [PMID: 38090631 PMCID: PMC10712264 DOI: 10.2147/nss.s401271] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2025] Open
Abstract
Insomnia is a common disorder defined as frequent and persistent difficulty initiating, maintaining, or going back to sleep. A hallmark symptom of this condition is a sense of nonrestorative sleep. It is frequently associated with other psychiatric disorders, such as depression, as well as somatic ones, including immunomediated diseases. BDNF is a neurotrophin primarily responsible for synaptic plasticity and proper functioning of neurons. Due to its role in the central nervous system, it might be connected to insomnia of multiple levels, from predisposing traits (neuroticism, genetic/epigenetic factors, etc.) through its influence on different modes of neurotransmission (histaminergic and GABAergic in particular), maintenance of circadian rhythm, and sleep architecture, and changes occurring in the course of mood disturbances, substance abuse, or dementia. Extensive and interdisciplinary evaluation of the role of BDNF could aid in charting new areas for research and further elucidate the molecular background of sleep disorder. In this review, we summarize knowledge on the role of BDNF in insomnia with a focus on currently relevant studies and discuss their implications for future projects.
Collapse
Affiliation(s)
- Marta Ditmer
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Szymon Turkiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Lodz, 92-215, Poland
| |
Collapse
|
3
|
Li Y, Zhou X, Cheng C, Ding G, Zhao P, Tan K, Chen L, Perrimon N, Veenstra JA, Zhang L, Song W. Gut AstA mediates sleep deprivation-induced energy wasting in Drosophila. Cell Discov 2023; 9:49. [PMID: 37221172 DOI: 10.1038/s41421-023-00541-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 05/25/2023] Open
Abstract
Severe sleep deprivation (SD) has been highly associated with systemic energy wasting, such as lipid loss and glycogen depletion. Despite immune dysregulation and neurotoxicity observed in SD animals, whether and how the gut-secreted hormones participate in SD-induced disruption of energy homeostasis remains largely unknown. Using Drosophila as a conserved model organism, we characterize that production of intestinal Allatostatin A (AstA), a major gut-peptide hormone, is robustly increased in adult flies bearing severe SD. Interestingly, the removal of AstA production in the gut using specific drivers significantly improves lipid loss and glycogen depletion in SD flies without affecting sleep homeostasis. We reveal the molecular mechanisms whereby gut AstA promotes the release of an adipokinetic hormone (Akh), an insulin counter-regulatory hormone functionally equivalent to mammalian glucagon, to mobilize systemic energy reserves by remotely targeting its receptor AstA-R2 in Akh-producing cells. Similar regulation of glucagon secretion and energy wasting by AstA/galanin is also observed in SD mice. Further, integrating single-cell RNA sequencing and genetic validation, we uncover that severe SD results in ROS accumulation in the gut to augment AstA production via TrpA1. Altogether, our results demonstrate the essential roles of the gut-peptide hormone AstA in mediating SD-associated energy wasting.
Collapse
Affiliation(s)
- Yingge Li
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Xiaoya Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chen Cheng
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Guangming Ding
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Peng Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kai Tan
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China
| | - Lixia Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Norbert Perrimon
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| | - Jan A Veenstra
- INCIA, UMR 5287 CNRS, University of Bordeaux, Talence, France
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Song
- Department of Hepatobiliary and Pancreatic Surgery, Medical Research Institute, Frontier Science Center of Immunology and Metabolism, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, Hubei, China.
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Zhan Y, Zhao Y, Qu Y, Yue H, Shi Y, Chen Y, Liu X, Liu R, Lyu T, Jing A, Meng Y, Huang J, Jiang Y. Longitudinal association of maternal dietary patterns with antenatal depression: Evidence from the Chinese Pregnant Women Cohort Study. J Affect Disord 2022; 308:587-595. [PMID: 35427717 DOI: 10.1016/j.jad.2022.04.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 03/25/2022] [Accepted: 04/09/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Limited evidence to show the longitudinal associations between maternal dietary patterns and antenatal depression (AD) from cohort studies across the entire gestation period. METHODS Data came from the Chinese Pregnant Women Cohort Study. The qualitative food frequency questionnaire (Q-FFQ) and Edinburgh Postnatal Depression Scale (EPDS) were used to collect diet and depression data. Dietary patterns were derived by using factor analysis. Generalized estimating equation models were used to analyze the association between diet and AD. RESULTS A total of 4139 participants finishing 3-wave of follow-up were finally included. Four constant diets were identified, namely plant-based, animal-protein, vitamin-rich and oily-fatty patterns. The prevalence of depression was 23.89%, 21.12% and 22.42% for the first, second and third trimesters. There were reverse associations of plant-based pattern (OR:0.85, 95%CI:0.75-0.97), animal-protein pattern (OR:0.85, 95%CI:0.74-0.99) and vitamin-rich pattern (OR:0.58, 95%CI:0.50-0.67) with AD, while a positive association between oily-fatty pattern and AD (OR:1.47, 95%CI:1.29-1.68). Except for the plant-based pattern, other patterns had linear trend relationships with AD (Ptrend < 0.05). Moreover, a 1-SD increase in vitamin-rich pattern scores was associated with a 20% lower AD risk (OR:0.80, 95%CI:0.76-0.84), while a 1-SD increase in oily-fatty pattern scores was associated with a 19% higher risk (OR:1.19, 95%CI:1.13-1.24). Interactions between dietary patterns and lifestyle habits were observed. LIMITATIONS The self-reported Q-FFQ and EPDS may cause recall bias. CONCLUSIONS There are longitudinal associations between maternal dietary patterns and antenatal depression. Our findings are expected to provide evidence for a dietary therapy strategy to improve or prevent depression during pregnancy.
Collapse
Affiliation(s)
- Yongle Zhan
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yafen Zhao
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China
| | - Yimin Qu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hexin Yue
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yingjie Shi
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunli Chen
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuan Liu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyi Liu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tianchen Lyu
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ao Jing
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yaohan Meng
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfang Huang
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, China.
| | - Yu Jiang
- Department of Epidemiology and Biostatistics, School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
5
|
Abstract
Sleep maintains the function of the entire body through homeostasis. Chronic sleep deprivation (CSD) is a prime health concern in the modern world. Previous reports have shown that CSD has profound negative effects on brain vasculature at both the cellular and molecular levels, and that this is a major cause of cognitive dysfunction and early vascular ageing. However, correlations among sleep deprivation (SD), brain vascular changes and ageing have barely been looked into. This review attempts to correlate the alterations in the levels of major neurotransmitters (acetylcholine, adrenaline, GABA and glutamate) and signalling molecules (Sirt1, PGC1α, FOXO, P66shc, PARP1) in SD and changes in brain vasculature, cognitive dysfunction and early ageing. It also aims to connect SD-induced loss in the number of dendritic spines and their effects on alterations in synaptic plasticity, cognitive disabilities and early vascular ageing based on data available in scientific literature. To the best of our knowledge, this is the first article providing a pathophysiological basis to link SD to brain vascular ageing.
Collapse
|
6
|
Untargeted metabolomics analysis of rat hippocampus subjected to sleep fragmentation. Brain Res Bull 2019; 153:74-83. [PMID: 31419538 DOI: 10.1016/j.brainresbull.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 07/25/2019] [Accepted: 08/10/2019] [Indexed: 01/08/2023]
Abstract
Sleep fragmentation (SF) commonly occurs in several pathologic conditions and is especially associated with impairments of hippocampus-dependent neurocognitive functions. Although the effects of SF on hippocampus in terms of protein or gene levels were examined in several studies, the impact of SF at the metabolite level has not been investigated. Thus, in this study, the differentially expressed large-scale metabolite profiles of hippocampus in a rat model of SF were investigated using untargeted metabolomics approaches. Forty-eight rats were divided into the following 4 groups: 4-day SF group, 4-day exercise control (EC) group, 15-day SF group, and 15-day EC group (n = 12, each). SF was accomplished by forced exercise using a walking wheel system with 30-s on/90-s off cycles, and EC condition was set at 10-min on/30-min off. The metabolite profiles of rat hippocampi in the SF and EC groups were analyzed using liquid chromatography/mass spectrometry. Multivariate analysis revealed distinctive metabolic profiles and marker signals between the SF and corresponding EC groups. Metabolic changes were significant only in the 15-day SF group. In the 15-day SF group, L-tryptophan, myristoylcarnitine, and palmitoylcarnitine were significantly increased, while adenosine monophosphate, hypoxanthine, L-glutamate, L-aspartate, L-methionine, and glycerophosphocholine were decreased compared to the EC group. The alanine, aspartate, and glutamate metabolism pathway was observed as the common key pathway in the 15-day SF groups. The results from this untargeted metabolomics study provide a perspective on metabolic impact of SF on the hippocampus.
Collapse
|
7
|
Yoon SJ, Long NP, Jung KH, Kim HM, Hong YJ, Fang Z, Kim SJ, Kim TJ, Anh NH, Hong SS, Kwon SW. Systemic and Local Metabolic Alterations in Sleep-Deprivation-Induced Stress: A Multiplatform Mass-Spectrometry-Based Lipidomics and Metabolomics Approach. J Proteome Res 2019; 18:3295-3304. [PMID: 31313932 DOI: 10.1021/acs.jproteome.9b00234] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sleep deprivation (SD) is known to be associated with metabolic disorders and chronic diseases. Complex metabolic alterations induced by SD at omics scale and the associated biomarker candidates have been proposed. However, in vivo systemic and local metabolic shift patterns of the metabolome and lipidome in acute and chronic partial SD models remain to be elucidated. In the present study, the serum, hypothalamus, and hippocampus CA1 of sleep-deprived rats (SD rats) from acute and chronic sleep restriction models were analyzed using three different omics platforms for the discovery and mechanistic assessment of systemic and local SD-induced dysregulated metabolites. We found a similar pattern of systemic metabolome alterations between two models, for which the area under the curve (AUC) of receiver operating characteristic curves was AUC = 0.847 and 0.930 with the pseudotargeted and untargeted metabolomics approach, respectively. However, SD-induced systemic lipidome alterations were significantly different and appeared to be model-dependent (AUC = 0.374). Comprehensive pathway analysis of the altered lipidome and metabolome in the hypothalamus indicated the abnormal behavior of eight metabolic and lipid metabolic pathways. The metabolic alterations of the hippocampus CA1 was subtle in two SD models. Collectively, these results extend our understanding of the quality of sleep and suggest metabolic targets in developing diagnostic biomarkers for better SD control.
Collapse
Affiliation(s)
- Sang Jun Yoon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Phuoc Long
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Kyung-Hee Jung
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Hyung Min Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Yu Jin Hong
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Zhenghuan Fang
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sun Jo Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Tae Joon Kim
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Nguyen Hoang Anh
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| | - Soon-Sun Hong
- Department of Biomedical Sciences, College of Medicine , Inha University , Incheon 22212 , Republic of Korea
| | - Sung Won Kwon
- College of Pharmacy , Seoul National University , Seoul 08826 , Republic of Korea
| |
Collapse
|
8
|
Lee D, Woo C, Kwon J, Chae YJ, Ham SJ, Suh J, Kim S, Kim JK, Kim KW, Woo D, Lee D. Cerebral mapping of glutamate using chemical exchange saturation transfer imaging in a rat model of stress‐induced sleep disturbance at 7.0T. J Magn Reson Imaging 2019; 50:1866-1872. [DOI: 10.1002/jmri.26769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 01/28/2023] Open
Affiliation(s)
- Dong‐Hoon Lee
- Faculty of Health Sciences and Brain & Mind CentreUniversity of Sydney Sydney Australia
| | - Chul‐Woong Woo
- Convergence Medicine Research CenterAsan Institute for Life Sciences Asan Medical Center, Seoul Republic of Korea
| | - Jae‐Im Kwon
- Convergence Medicine Research CenterAsan Institute for Life Sciences Asan Medical Center, Seoul Republic of Korea
| | - Yeon Ji Chae
- Department of Convergence MedicineAsan Medical orcidCenter, University of Ulsan College of Medicine Seoul Republic of Korea
| | - Su Jung Ham
- Center for Bioimaging of New Drug DevelopmentAsan Institute for Life Sciences, Asan Medical Center Seoul Republic of Korea
| | - Ji‐Yeon Suh
- Research Institute of RadiologyAsan Medical Center, University of Ulsan College of Medicine Seoul South Korea
| | - Sang‐Tae Kim
- Convergence Medicine Research CenterAsan Institute for Life Sciences Asan Medical Center, Seoul Republic of Korea
| | - Jeong Kon Kim
- Department of RadiologyAsan Medical Center, University of Ulsan College of Medicine Seoul Republic of Korea
| | - Kyung Won Kim
- Department of RadiologyAsan Medical Center, University of Ulsan College of Medicine Seoul Republic of Korea
| | - Dong‐Cheol Woo
- Convergence Medicine Research CenterAsan Institute for Life Sciences Asan Medical Center, Seoul Republic of Korea
- Department of Convergence MedicineAsan Medical orcidCenter, University of Ulsan College of Medicine Seoul Republic of Korea
| | - Do‐Wan Lee
- Convergence Medicine Research CenterAsan Institute for Life Sciences Asan Medical Center, Seoul Republic of Korea
- Center for Bioimaging of New Drug DevelopmentAsan Institute for Life Sciences, Asan Medical Center Seoul Republic of Korea
| |
Collapse
|
9
|
Bernaras E, Jaureguizar J, Garaigordobil M. Child and Adolescent Depression: A Review of Theories, Evaluation Instruments, Prevention Programs, and Treatments. Front Psychol 2019; 10:543. [PMID: 30949092 PMCID: PMC6435492 DOI: 10.3389/fpsyg.2019.00543] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 02/25/2019] [Indexed: 02/05/2023] Open
Abstract
Depression is the principal cause of illness and disability in the world. Studies charting the prevalence of depression among children and adolescents report high percentages of youngsters in both groups with depressive symptoms. This review analyzes the construct and explanatory theories of depression and offers a succinct overview of the main evaluation instruments used to measure this disorder in children and adolescents, as well as the prevention programs developed for the school environment and the different types of clinical treatment provided. The analysis reveals that in mental classifications, the child depression construct is no different from the adult one, and that multiple explanatory theories must be taken into account in order to arrive at a full understanding of depression. Consequently, both treatment and prevention should also be multifactorial in nature. Although universal programs may be more appropriate due to their broad scope of application, the results are inconclusive and fail to demonstrate any solid long-term efficacy. In conclusion, we can state that: (1) There are biological factors (such as tryptophan-a building block for serotonin-depletion, for example) which strongly influence the appearance of depressive disorders; (2) Currently, negative interpersonal relations and relations with one's environment, coupled with social-cultural changes, may explain the increase observed in the prevalence of depression; (3) Many instruments can be used to evaluate depression, but it is necessary to continue to adapt tests for diagnosing the condition at an early age; (4) Prevention programs should be developed for and implemented at an early age; and (5) The majority of treatments are becoming increasingly rigorous and effective. Given that initial manifestations of depression may occur from a very early age, further and more in-depth research is required into the biological, psychological and social factors that, in an interrelated manner, may explain the appearance, development, and treatment of depression.
Collapse
Affiliation(s)
- Elena Bernaras
- Developmental and Educational Department, University of the Basque Country, Donostia/San Sebastián, Spain
| | - Joana Jaureguizar
- Developmental and Educational Psychology Department, University of the Basque Country, Lejona, Spain
| | - Maite Garaigordobil
- Personality, Evaluation and Psychological Treatments Department, University of the Basque Country, Donostia/San Sebastián, Spain
| |
Collapse
|
10
|
Wirz-Justice A, Benedetti F. Perspectives in affective disorders: Clocks and sleep. Eur J Neurosci 2019; 51:346-365. [PMID: 30702783 DOI: 10.1111/ejn.14362] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 12/30/2018] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Mood disorders are often characterised by alterations in circadian rhythms, sleep disturbances and seasonal exacerbation. Conversely, chronobiological treatments utilise zeitgebers for circadian rhythms such as light to improve mood and stabilise sleep, and manipulations of sleep timing and duration as rapid antidepressant modalities. Although sleep deprivation ("wake therapy") can act within hours, and its mood-elevating effects be maintained by regular morning light administration/medication/earlier sleep, it has not entered the regular guidelines for treating affective disorders as a first-line treatment. The hindrances to using chronotherapeutics may lie in their lack of patentability, few sponsors to carry out large multi-centre trials, non-reimbursement by medical insurance and their perceived difficulty or exotic "alternative" nature. Future use can be promoted by new technology (single-sample phase measurements, phone apps, movement and sleep trackers) that provides ambulatory documentation over long periods and feedback to therapist and patient. Light combinations with cognitive behavioural therapy and sleep hygiene practice may speed up and also maintain response. The urgent need for new antidepressants should hopefully lead to reconsideration and implementation of these non-pharmacological methods, as well as further clinical trials. We review the putative neurochemical mechanisms underlying the antidepressant effect of sleep deprivation and light therapy, and current knowledge linking clocks and sleep with affective disorders: neurotransmitter switching, stress and cortico-limbic reactivity, clock genes, cortical neuroplasticity, connectomics and neuroinflammation. Despite the complexity of multi-system mechanisms, more insight will lead to fine tuning and better application of circadian and sleep-related treatments of depression.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Transfaculty Research Platform Molecular and Cognitive Neurosciences, Psychiatric Hospital of the University of Basel, Basel, Switzerland
| | - Francesco Benedetti
- University Vita-Salute San Raffaele, Milano, Italy.,Psychiatry & Clinical Psychobiology, Division of Neuroscience, San Raffaele Scientific Institute, Milano, Italy
| |
Collapse
|
11
|
Yang SQ, Jiang L, Lan F, Wei HJ, Xie M, Zou W, Zhang P, Wang CY, Xie YR, Tang XQ. Inhibited Endogenous H 2S Generation and Excessive Autophagy in Hippocampus Contribute to Sleep Deprivation-Induced Cognitive Impairment. Front Psychol 2019; 10:53. [PMID: 30733697 PMCID: PMC6353847 DOI: 10.3389/fpsyg.2019.00053] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 01/09/2019] [Indexed: 12/21/2022] Open
Abstract
Background and Aim: Sleep deprivation (SD) causes deficit of cognition, but the mechanisms remain to be fully established. Hydrogen sulfide (H2S) plays an important role in the formation of cognition, while excessive and prolonged autophagy in hippocampus triggers cognitive disorder. In this work, we proposed that disturbances in hippocampal endogenous H2S generation and autophagy might be involved in SD-induced cognitive impairment. Methods: After treatment of adult male wistar rats with 72-h SD, the Y-maze test, object location test (OLT), novel object recognition test (NORT) and the Morris water maze (MWM) test were performed to determine the cognitive function. The autophagosome formation was observed with electron microscope. Generation of endogenous H2S in the hippocampus of rats was detected using unisense H2S microsensor method. The expressions of cystathionine-β-synthase (CBS), 3-mercaptopyruvate sulfurtransferase (3-MST), beclin-1, light chain LC3 II/LC3 I, and p62 in the hippocampus were assessed by western blotting. Results: The Y-maze, OLT, NORT, and MWM test demonstrated that SD-exposed rats exhibited cognitive dysfunction. SD triggered the elevation of hippocampal autophagy as evidenced by enhancement of autophagosome, up-regulations of beclin-1 and LC3 II/LC3 I, and down-regulation of p62. Meanwhile, the generation of endogenous H2S and the expressions of CBS and 3-MST (H2S producing enzyme) in the hippocampus of SD-treated rats were reduced. Conclusion: These results suggested that inhibition of endogenous H2S generation and excessiveness of autophagy in hippocampus are involved in SD-induced cognitive impairment.
Collapse
Affiliation(s)
- San-Qiao Yang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Li Jiang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Fang Lan
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| | - Hai-Jun Wei
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Ming Xie
- Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Zou
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Ping Zhang
- Department of Neurology, Affiliated Nanhua Hospital, University of South China, Hengyang, China
| | - Chun-Yan Wang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China
| | - Yu-Rong Xie
- College of Chemistry and Chemical Engineering, University of South China, Hengyang, China
| | - Xiao-Qing Tang
- Institute of Neuroscience, Hengyang Medical College, University of South China, Hengyang, China.,Department of Neurology, First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
12
|
Mohlenhoff BS, O'Donovan A, Weiner MW, Neylan TC. Dementia Risk in Posttraumatic Stress Disorder: the Relevance of Sleep-Related Abnormalities in Brain Structure, Amyloid, and Inflammation. Curr Psychiatry Rep 2017; 19:89. [PMID: 29035423 PMCID: PMC5797832 DOI: 10.1007/s11920-017-0835-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Posttraumatic stress disorder (PTSD) is associated with increased risk for dementia, yet mechanisms are poorly understood. RECENT FINDINGS Recent literature suggests several potential mechanisms by which sleep impairments might contribute to the increased risk of dementia observed in PTSD. First, molecular, animal, and imaging studies indicate that sleep problems lead to cellular damage in brain structures crucial to learning and memory. Second, recent studies have shown that lack of sleep might precipitate the accumulation of harmful amyloid proteins. Finally, sleep and PTSD are associated with elevated inflammation, which, in turn, is associated with dementia, possibly via cytokine-mediated neural toxicity and reduced neurogenesis. A better understanding of these mechanisms may yield novel treatment approaches to reduce neurodegeneration in PTSD. The authors emphasize the importance of including sleep data in studies of PTSD and cognition and identify next steps.
Collapse
Affiliation(s)
- Brian S Mohlenhoff
- Departments of Psychiatry, University of California, San Francisco, CA, USA.
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA.
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA.
| | - Aoife O'Donovan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Mental Health Service, Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Michael W Weiner
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
- Departments of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Thomas C Neylan
- Departments of Psychiatry, University of California, San Francisco, CA, USA
- Center for Imaging of Neurodegenerative Disease, Veterans Administration Medical Center, 4150 Clement Street (116P), San Francisco, CA, 94121, USA
| |
Collapse
|
13
|
Kincheski GC, Valentim IS, Clarke JR, Cozachenco D, Castelo-Branco MTL, Ramos-Lobo AM, Rumjanek VMBD, Donato J, De Felice FG, Ferreira ST. Chronic sleep restriction promotes brain inflammation and synapse loss, and potentiates memory impairment induced by amyloid-β oligomers in mice. Brain Behav Immun 2017; 64:140-151. [PMID: 28412140 DOI: 10.1016/j.bbi.2017.04.007] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
It is increasingly recognized that sleep disturbances and Alzheimer's disease (AD) share a bidirectional relationship. AD patients exhibit sleep problems and alterations in the regulation of circadian rhythms; conversely, poor quality of sleep increases the risk of development of AD. The aim of the current study was to determine whether chronic sleep restriction potentiates the brain impact of amyloid-β oligomers (AβOs), toxins that build up in AD brains and are thought to underlie synapse damage and memory impairment. We further investigated whether alterations in levels of pro-inflammatory mediators could play a role in memory impairment in sleep-restricted mice. We found that a single intracerebroventricular (i.c.v.) infusion of AβOs disturbed sleep pattern in mice. Conversely, chronically sleep-restricted mice exhibited higher brain expression of pro-inflammatory mediators, reductions in levels of pre- and post-synaptic marker proteins, and exhibited increased susceptibility to the impact of i.c.v. infusion of a sub-toxic dose of AβOs (1pmol) on performance in the novel object recognition memory task. Sleep-restricted mice further exhibited an increase in brain TNF-α levels in response to AβOs. Interestingly, memory impairment in sleep-restricted AβO-infused mice was prevented by treatment with the TNF-α neutralizing monoclonal antibody, infliximab. Results substantiate the notion of a dual relationship between sleep and AD, whereby AβOs disrupt sleep/wake patterns and chronic sleep restriction increases brain vulnerability to AβOs, and point to a key role of brain inflammation in increased susceptibility to AβOs in sleep-restricted mice.
Collapse
Affiliation(s)
- Grasielle C Kincheski
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Isabela S Valentim
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Danielle Cozachenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Angela M Ramos-Lobo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vivian M B D Rumjanek
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - José Donato
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda G De Felice
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Centre for Neuroscience Studies, Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Hurtado-Alvarado G, Domínguez-Salazar E, Velázquez-Moctezuma J, Gómez-González B. A2A Adenosine Receptor Antagonism Reverts the Blood-Brain Barrier Dysfunction Induced by Sleep Restriction. PLoS One 2016; 11:e0167236. [PMID: 27893847 PMCID: PMC5125701 DOI: 10.1371/journal.pone.0167236] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/10/2016] [Indexed: 12/20/2022] Open
Abstract
Chronic sleep restriction induces blood-brain barrier disruption and increases pro-inflammatory mediators in rodents. Those inflammatory mediators may modulate the blood-brain barrier and constitute a link between sleep loss and blood-brain barrier physiology. We propose that adenosine action on its A2A receptor may be modulating the blood-brain barrier dynamics in sleep-restricted rats. We administrated a selective A2A adenosine receptor antagonist (SCH58261) in sleep-restricted rats at the 10th day of sleep restriction and evaluated the blood-brain barrier permeability to dextrans coupled to fluorescein (FITC-dextrans) and Evans blue. In addition, we evaluated by western blot the expression of tight junction proteins (claudin-5, occludin, ZO-1), adherens junction protein (E-cadherin), A2A adenosine receptor, adenosine-synthesizing enzyme (CD73), and neuroinflammatory markers (Iba-1 and GFAP) in the cerebral cortex, hippocampus, basal nuclei and cerebellar vermis. Sleep restriction increased blood-brain barrier permeability to FITC-dextrans and Evans blue, and the effect was reverted by the administration of SCH58261 in almost all brain regions, excluding the cerebellum. Sleep restriction increased the expression of A2A adenosine receptor only in the hippocampus and basal nuclei without changing the expression of CD73 in all brain regions. Sleep restriction reduced the expression of tight junction proteins in all brain regions, except in the cerebellum; and SCH58261 restored the levels of tight junction proteins in the cortex, hippocampus and basal nuclei. Finally, sleep restriction induced GFAP and Iba-1 overexpression that was attenuated with the administration of SCH58261. These data suggest that the action of adenosine on its A2A receptor may have a crucial role in blood-brain barrier dysfunction during sleep loss probably by direct modulation of brain endothelial cell permeability or through a mechanism that involves gliosis with subsequent inflammation and increased blood-brain barrier permeability.
Collapse
Affiliation(s)
- Gabriela Hurtado-Alvarado
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
- Postgraduate Program in Experimental Biology, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Emilio Domínguez-Salazar
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Javier Velázquez-Moctezuma
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
| | - Beatriz Gómez-González
- Area of Neurosciences, Department of Biology of Reproduction, CBS, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Mexico City, Mexico
- * E-mail: ,
| |
Collapse
|
15
|
Muzio L, Brambilla V, Calcaterra L, D’Adamo P, Martino G, Benedetti F. Increased neuroplasticity and hippocampal microglia activation in a mice model of rapid antidepressant treatment. Behav Brain Res 2016; 311:392-402. [DOI: 10.1016/j.bbr.2016.05.063] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 10/21/2022]
|
16
|
Garbarino S, Lanteri P, Durando P, Magnavita N, Sannita WG. Co-Morbidity, Mortality, Quality of Life and the Healthcare/Welfare/Social Costs of Disordered Sleep: A Rapid Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E831. [PMID: 27548196 PMCID: PMC4997517 DOI: 10.3390/ijerph13080831] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/10/2016] [Accepted: 08/11/2016] [Indexed: 12/15/2022]
Abstract
Sleep disorders are frequent (18%-23%) and constitute a major risk factor for psychiatric, cardiovascular, metabolic or hormonal co-morbidity and mortality. Low social status or income, unemployment, life events such as divorce, negative lifestyle habits, and professional requirements (e.g., shift work) are often associated with sleep problems. Sleep disorders affect the quality of life and impair both professional and non-professional activities. Excessive daytime drowsiness resulting from sleep disorders impairs efficiency and safety at work or on the road, and increases the risk of accidents. Poor sleep (either professional or voluntary) has detrimental effects comparable to those of major sleep disorders, but is often neglected. The high incidence and direct/indirect healthcare and welfare costs of sleep disorders and poor sleep currently constitute a major medical problem. Investigation, monitoring and strategies are needed in order to prevent/reduce the effects of these disorders.
Collapse
Affiliation(s)
- Sergio Garbarino
- Center of Sleep Medicine, Genoa 16132, Italy.
- Department of Neuroscience, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy.
| | - Paola Lanteri
- Child Neurology and Psychiatry Unit, Istituto Giannina Gaslini, Genoa 16148, Italy.
| | - Paolo Durando
- Department of Health Sciences, Postgraduate School in Occupational Medicine, University of Genoa and Occupational Medicine Unit, IRCCS AOU San Martino IST, Genoa 16132, Italy.
| | - Nicola Magnavita
- Department of Public Health, Università Cattolica del Sacro Cuore, Rome 00168, Italy.
| | - Walter G Sannita
- Center of Sleep Medicine, Genoa 16132, Italy.
- Department of Neuroscience, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, Genoa 16132, Italy.
| |
Collapse
|
17
|
Chittora R, Jain A, Prasad J, Bhatnagar M. An ameliorative effect of recovery sleep on total sleep deprivation-induced neurodegeneration. BIOL RHYTHM RES 2016. [DOI: 10.1080/09291016.2015.1130116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Luojus MK, Lehto SM, Tolmunen T, Elomaa AP, Kauhanen J. Serum copper, zinc and high-sensitivity C-reactive protein in short and long sleep duration in ageing men. J Trace Elem Med Biol 2015; 32:177-82. [PMID: 26302926 DOI: 10.1016/j.jtemb.2015.07.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 07/15/2015] [Accepted: 07/16/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND Serum levels of zinc and copper have been proposed to associate with sleep duration. Mechanisms, such as inflammatory processes, have been suggested to relate this association. However, earlier studies have been conducted in small sample sizes. Human studies investigating the suggested associations while controlling for potential confounding factors are lacking. METHODS Population-based data consisted of 2570 men (aged 42-60 years) from Eastern Finland. The participants reported an estimate of their sleep duration. The serum levels of zinc (S-Zn), copper (S-Cu) and high-sensitivity C-reactive protein (hs-CRP) were measured. Analysis of covariance was used for multivariate analyses. RESULTS S-Zn levels and Zn/Cu ratio were lowest in ≤6h sleep. S-Cu levels were highest in ≥10h sleep. Elevated levels (>3.0mmol/l) of hs-CRP were observed in ≤6h and ≥10h sleep. After adjustments for age, cumulative smoking history (pack-years), alcohol consumption (g/week), Human Population Laboratory depression scale scores, physical activity (kcal/day), cardiometabolic syndrome, and cardiovascular disease history, sleep duration was significantly associated with levels of both S-Cu and hs-CRP. The association with S-Cu remained statistically significant following further adjustment for hs-CRP in the same model. CONCLUSIONS Our data suggests an association between S-Cu and sleep duration in ageing men. Elevated inflammation (measured as serum hs-CRP) does not explain this relationship. Mechanisms underlying the relationship require further investigation, as S-Cu may contribute to sleep regulation through pro-oxidative processes and copper-dependent N-methyl-d-aspartate receptor activity.
Collapse
Affiliation(s)
- Maria K Luojus
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Soili M Lehto
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, P.O. Box 100, 70029 KYS, Finland.
| | - Antti-Pekka Elomaa
- Institute of Clinical Medicine/Psychiatry, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Jussi Kauhanen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| |
Collapse
|
19
|
Vai B, Poletti S, Radaelli D, Dallaspezia S, Bulgarelli C, Locatelli C, Bollettini I, Falini A, Colombo C, Smeraldi E, Benedetti F. Successful antidepressant chronotherapeutics enhance fronto-limbic neural responses and connectivity in bipolar depression. Psychiatry Res 2015. [PMID: 26195295 DOI: 10.1016/j.pscychresns.2015.07.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The identification of antidepressant response predictors in bipolar disorder (BD) may provide new potential enhancements in treatment selection. Repeated total sleep deprivation combined with light therapy (TSD+LT) can acutely reverse depressive symptoms and has been proposed as a model antidepressant treatment. This study aims at investigating the effect of TSD+LT on effective connectivity and neural response in cortico-limbic circuitries during implicit processing of fearful and angry faces in patients with BD. fMRI and Dynamic Causal Modeling (DCM) were combined to study the effect of chronotherapeutics on neural responses in healthy controls (HC, n = 35) and BD patients either responder (RBD, n = 26) or non responder (nRBD, n = 11) to 3 consecutive TSD+LT sessions. Twenty-four DCMs exploring connectivity between anterior cingulate cortex (ACC), dorsolateral prefrontal cortex (DLPFC), Amygdala (Amy), fusiform gyrus and visual cortex were constructed. After treatment, patients significantly increased their neural responses in DLPFC, ACC and insula. nRBD showed lower baseline and endpoint neural responses than RBD. The increased activity in ACC and in medial prefrontal cortex, associated with antidepressant treatment, was positively associated with the improvement of depressive symptomatology. Only RBD patients increased intrinsic connectivity from DLPFC to ACC and reduced the modulatory effect of the task on Amy-DLPFC connection. A successful antidepressant treatment was associated with an increased functional activity and connectivity within cortico-limbic networks, suggesting the possible role of these measures in providing possible biomarkers for treatment efficacy.
Collapse
Affiliation(s)
- Benedetta Vai
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy; Department of Human Studies, Libera Università Maria Ss. Assunta, Roma, Italy.
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Daniele Radaelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Chiara Bulgarelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy
| | - Clara Locatelli
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy; PhD in Philosophy and Sciences of Mind, Università Vita-Saluta San Raffaele, Milan, Italy
| | - Andrea Falini
- Department of Neuroradiology, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Enrico Smeraldi
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele, Milan, Italy; C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), Università Vita-Salute San Raffaele, Italy
| |
Collapse
|
20
|
Lucke-Wold BP, Smith KE, Nguyen L, Turner RC, Logsdon AF, Jackson GJ, Huber JD, Rosen CL, Miller DB. Sleep disruption and the sequelae associated with traumatic brain injury. Neurosci Biobehav Rev 2015; 55:68-77. [PMID: 25956251 PMCID: PMC4721255 DOI: 10.1016/j.neubiorev.2015.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
Abstract
Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Kelly E Smith
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Ryan C Turner
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Aric F Logsdon
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Garrett J Jackson
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles L Rosen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Diane B Miller
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|
21
|
Caron AM, Stephenson R. Sleep deprivation does not affect neuronal susceptibility to mild traumatic brain injury in the rat. Nat Sci Sleep 2015; 7:63-72. [PMID: 26124685 PMCID: PMC4482367 DOI: 10.2147/nss.s82888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mild and moderate traumatic brain injuries (TBIs) (and concussion) occur frequently as a result of falls, automobile accidents, and sporting activities, and are a major cause of acute and chronic disability. Fatigue and excessive sleepiness are associated with increased risk of accidents, but it is unknown whether prior sleep debt also affects the pathophysiological outcome of concussive injury. Using the "dark neuron" (DN) as a marker of reversible neuronal damage, we tested the hypothesis that acute (48 hours) total sleep deprivation (TSD) and chronic sleep restriction (CSR; 10 days, 6-hour sleep/day) affect DN formation following mild TBI in the rat. TSD and CSR were administered using a walking wheel apparatus. Mild TBI was administered under anesthesia using a weight-drop impact model, and the acute neuronal response was observed without recovery. DNs were detected using standard bright-field microscopy with toluidine blue stain following appropriate tissue fixation. DN density was low under home cage and sleep deprivation control conditions (respective median DN densities, 0.14% and 0.22% of neurons), and this was unaffected by TSD alone (0.1%). Mild TBI caused significantly higher DN densities (0.76%), and this was unchanged by preexisting acute or chronic sleep debt (TSD, 0.23%; CSR, 0.7%). Thus, although sleep debt may be predicted to increase the incidence of concussive injury, the present data suggest that sleep debt does not exacerbate the resulting neuronal damage.
Collapse
Affiliation(s)
- Aimee M Caron
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Richard Stephenson
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
22
|
Chittora R, Jain A, Suhalka P, Sharma C, Jaiswal N, Bhatnagar M. Sleep deprivation: Neural regulation and consequences. Sleep Biol Rhythms 2015. [DOI: 10.1111/sbr.12110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Reena Chittora
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| | - Ayushi Jain
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| | - Pooja Suhalka
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| | - Chhavi Sharma
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| | - Neha Jaiswal
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| | - Maheep Bhatnagar
- Department of Zoology; Mohan Lal Sukhadia University; Udaipur India
| |
Collapse
|
23
|
Canali P, Sferrazza Papa G, Casali AG, Schiena G, Fecchio M, Pigorini A, Smeraldi E, Colombo C, Benedetti F. Changes of cortical excitability as markers of antidepressant response in bipolar depression: preliminary data obtained by combining transcranial magnetic stimulation (TMS) and electroencephalography (EEG). Bipolar Disord 2014; 16:809-19. [PMID: 25219396 DOI: 10.1111/bdi.12249] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 05/09/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND It is still unclear which biological changes are needed to recover from a major depressive episode. Current perspectives focus on cortical synaptic neuroplasticity. Measures of cortical responses evoked by transcranial magnetic stimulation (TMS) change with sleep homeostasic pressure in humans and approximate measures of synaptic strength in animal models. Using repeated total sleep deprivation as a model of antidepressant treatment, we aimed to correlate recovery from depression with these measures of cortical excitability. METHODS We recorded electroencephalographic responses to TMS in the prefrontal cortex of 21 depressed inpatients with bipolar disorder treated with repeated sleep deprivation combined with light therapy. We performed seven TMS/electroencephalography sessions during one week and calculated three measures of cortical excitability. RESULTS Cortical excitability progressively increased during the antidepressant treatment and as a function of time awake. Higher values differentiated responders from non-responders at baseline and during and after treatment on all measures. CONCLUSIONS Changes in measures of cortical excitability parallel and predict antidepressant response to combined sleep deprivation and light therapy. Data suggest that promoting cortical plasticity in bipolar depression could be a major effect of successful antidepressant treatments, and that patients not responding could suffer a persistent impairment in their neuroplasticity mechanisms.
Collapse
Affiliation(s)
- Paola Canali
- Department of Clinical Neurosciences, Scientific Institute Ospedale San Raffaele and University Vita-Salute San Raffaele, Milano, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Noguti J, Alvarenga TA, Marchi P, Oshima CTF, Andersen ML, Ribeiro DA. The influence of sleep restriction on expression of apoptosis regulatory proteins p53, Bcl-2 and Bax following rat tongue carcinogenesis induced by 4-nitroquinoline 1-oxide. J Oral Pathol Med 2014; 44:222-8. [PMID: 25169245 DOI: 10.1111/jop.12225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2014] [Indexed: 01/22/2023]
Abstract
PURPOSE The aim of this study was to evaluate whether sleep restriction (SR) could affect the mechanisms and pathways' essentials for cancer cells in tongue cancer induced by 4-nitroquinoline 1-oxide in Wistar rats. METHODS The animals were distributed into 4 groups of 5 animals each treated with 50 ppm 4 NQO solution through their drinking water for 4 and 12 weeks. The animals were submitted to sleep restriction for 21 days using the modified multiple platform method, which consisted of placing 5 rats in a cage (41 × 34 × 16 cm) containing 10 circular platforms (3.5 cm in diameter) with water 1 cm below the upper surface. The investigations were conducted using immunohistochemistry of p53, Bax and Bcl-2 proteins related to apoptosis and its pathways. RESULTS Although no histopathologic abnormalities were induced in the epithelium after 4 weeks of carcinogen exposure in all groups, in 12 weeks were observed pre-neoplastic lesions. Data analysis revealed statistically significant differences (P < 0.05) in 4 weeks group for p53, and for bcl-2. Following 12 weeks of 4NQO administration, we found significant differences between SR and control groups in p53, bax, and bcl-2 immunoexpression. CONCLUSION Our results reveal that sleep restriction exerted alterations in proteins associated with proliferation and apoptosis in carcinogenesis.
Collapse
Affiliation(s)
- Juliana Noguti
- Departamento de Patologia, Universidade Federal de São Paulo, UNIFESP, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
25
|
Vataev SI, Oganesyan GA, Gmiro VE, Lukomskaya NY, Magazanik LG. Effects of Ionotropic Glutamate Receptor Channel Blockers on the Organization of Sleep in Rats. ACTA ACUST UNITED AC 2014. [DOI: 10.1007/s11055-014-9920-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
More than hormones: sex differences in cardiovascular parameters after sleep loss in rats. Prog Neuropsychopharmacol Biol Psychiatry 2013; 44:34-8. [PMID: 23337035 DOI: 10.1016/j.pnpbp.2013.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/21/2012] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Although the influence of sex on sleep pattern and cardiovascular parameters is well known, knowledge regarding the effects of sleep loss on heart responses in both sexes is scarce. The present study investigated the effects of paradoxical sleep deprivation (PSD) and chronic sleep restriction (SR) on cardiovascular parameters and adrenocorticotropic hormone (ACTH) levels in male and female rats. Both groups were randomly assigned to PSD for 96 h, SR for 21 days or home-cage control. Mean arterial pressure (MAP), heart rate (HR), baroreflex sensitivity (bradycardia and tachycardia responses) and ACTH levels were evaluated. The results showed that PSD induced a significant increase in HR and ACTH levels in both sexes, although male rats presented higher levels of ACTH hormone compared to females. In addition to sex-specific responses, PSD decreased the tachycardia only in male rats. SR, induced a significant increase in MAP and decrease in bradycardia in both sexes. Male rats were more affected by sleep deprivation protocols than females for MAP, bradycardia response, and ACTH levels. The results showed that the effects of sleep loss on cardiovascular parameters are associated with the protocol of sleep deprivation and that sex can modulate these effects. We suggested this experimental model as a suitable tool for further investigations of the relationship between cardiovascular parameters and sleep.
Collapse
|
27
|
Abstract
Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.
Collapse
|
28
|
Lopresti AL, Hood SD, Drummond PD. A review of lifestyle factors that contribute to important pathways associated with major depression: diet, sleep and exercise. J Affect Disord 2013; 148:12-27. [PMID: 23415826 DOI: 10.1016/j.jad.2013.01.014] [Citation(s) in RCA: 397] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/16/2013] [Accepted: 01/17/2013] [Indexed: 12/15/2022]
Abstract
Research on major depression has confirmed that it is caused by an array of biopsychosocial and lifestyle factors. Diet, exercise and sleep are three such influences that play a significant mediating role in the development, progression and treatment of this condition. This review summarises animal- and human-based studies on the relationship between these three lifestyle factors and major depressive disorder, and their influence on dysregulated pathways associated with depression: namely neurotransmitter processes, immuno-inflammatory pathways, hypothalamic-pituitary-adrenal (HPA) axis disturbances, oxidative stress and antioxidant defence systems, neuroprogression, and mitochondrial disturbances. Increased attention in future clinical studies on the influence of diet, sleep and exercise on major depressive disorder and investigations of their effect on physiological processes will help to expand our understanding and treatment of major depressive disorder. Mental health interventions, taking into account the bidirectional relationship between these lifestyle factors and major depression are also likely to enhance the efficacy of interventions associated with this disorder.
Collapse
Affiliation(s)
- Adrian L Lopresti
- School of Psychology, Murdoch University, Perth, Western Australia 6150, Australia.
| | | | | |
Collapse
|
29
|
Alkadhi K, Zagaar M, Alhaider I, Salim S, Aleisa A. Neurobiological consequences of sleep deprivation. Curr Neuropharmacol 2013; 11:231-49. [PMID: 24179461 PMCID: PMC3648777 DOI: 10.2174/1570159x11311030001] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 01/15/2013] [Accepted: 02/02/2013] [Indexed: 01/30/2023] Open
Abstract
Although the physiological function of sleep is not completely understood, it is well documented that it contributes significantly to the process of learning and memory. Ample evidence suggests that adequate sleep is essential for fostering connections among neuronal networks for memory consolidation in the hippocampus. Sleep deprivation studies are extremely valuable in understanding why we sleep and what are the consequences of sleep loss. Experimental sleep deprivation in animals allows us to gain insight into the mechanism of sleep at levels not possible to study in human subjects. Many useful approaches have been utilized to evaluate the effect of sleep loss on cognitive function, each with relative advantages and disadvantages. In this review we discuss sleep and the detrimental effects of sleep deprivation mostly in experimental animals. The negative effects of sleep deprivation on various aspects of brain function including learning and memory, synaptic plasticity and the state of cognition-related signaling molecules are discussed.
Collapse
Affiliation(s)
- Karim Alkadhi
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Munder Zagaar
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Ibrahim Alhaider
- College of Clinical Pharmacy, King Faisal University, Al-Hofuf, Kingdom of Saudi Arabia
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Texas, USA
| | - Abdulaziz Aleisa
- Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
30
|
de Souza L, Smaili SS, Ureshino RP, Sinigaglia-Coimbra R, Andersen ML, Lopes GS, Tufik S. Effect of chronic sleep restriction and aging on calcium signaling and apoptosis in the hippocampus of young and aged animals. Prog Neuropsychopharmacol Biol Psychiatry 2012; 39:23-30. [PMID: 22343009 DOI: 10.1016/j.pnpbp.2012.01.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 01/25/2012] [Accepted: 01/31/2012] [Indexed: 11/19/2022]
Abstract
Aging leads to progressive deterioration of physiological function and diminished responses to environmental stress. Organic and functional alterations are frequently observed in elderly subjects. Although chronic sleep loss is observed during senescence, little is known about the impact of insufficient sleep on cellular function in aging neurons. Disruption of neuronal calcium (Ca²⁺) signaling is related to impaired neuronal function and cell death. It has been hypothesized that sleep deprivation may compromise neuronal stability and induce cell death in young neurons; however, it is necessary to evaluate the impact of aging on this process. Therefore, the aim of this study was to evaluate the effects of chronic sleep restriction (CSR) on Ca²⁺ signaling and cell death in the hippocampus of young and aged animals. We found that glutamate and carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP) induced a greater elevation in cytosolic Ca²⁺ ([Ca²⁺](c)) in hippocampal slices from aged rats subjected to CSR compared to age-matched controls. Interestingly, aged-matched controls showed a reduced Ca²⁺ response to glutamate and FCCP, relative to both CSR and control young animals. Apoptotic nuclei were observed in aged rats from both treatment groups; however, the profile of apoptotic nuclei in aged CSR rats was highly variable. Bax and Bcl-2 protein expression did not change with aging in the CSR groups. Our study indicates that aging promotes changes in Ca²⁺ signaling, which may also be affected by CSR. These age-dependent changes in Ca²⁺ signaling may increase cellular vulnerability during CSR and contribute to Ca²⁺ signaling dysregulation, which may ultimately induce cell death.
Collapse
Affiliation(s)
- Luciane de Souza
- Departamento de Psicobiologia, Universidade Federal de São Paulo/UNIFESP, Rua Napoleão de Barros 925, Vila Clementino, 04024-002 São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
31
|
Killgore WDS, Schwab ZJ, Kipman M, DelDonno SR, Weber M. Voxel-based morphometric gray matter correlates of daytime sleepiness. Neurosci Lett 2012; 518:10-3. [PMID: 22542893 DOI: 10.1016/j.neulet.2012.04.029] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 03/30/2012] [Accepted: 04/10/2012] [Indexed: 01/16/2023]
Abstract
Sleep disorders such as narcolepsy, obstructive sleep apnea, and chronic insomnia have been associated with reduced gray matter volume of the ventromedial prefrontal cortex (VMPFC). Functional neuroimaging and behavioral data also implicate this region as important in sleep-related problems and the ability to resist the impairing effects of sleep loss on cognition. However, no study has linked gray matter volume within this region to normal self-reported levels of daytime sleepiness. We therefore hypothesized that reduced gray matter volume within the VMPFC would be related to greater self-reported levels of general daytime sleepiness, as assessed by the Epworth Sleepiness Scale (ESS) in a sample of 36 healthy non-clinical participants. Using voxel-based morphometry, scores of the ESS were correlated with gray matter volume, after controlling for age, gender, and whole brain volume. Daytime sleepiness correlated negatively with gray matter volume in a cluster of voxels within the left gyrus rectus and medial orbitofrontal cortex. Findings converge with prior evidence to suggest that the VMPFC and medial orbitofrontal cortex may play a particularly important role in sleep-wake related phenomena including sleep disorders and trait-like individual differences in vulnerability to the impairing effects of sleep deprivation on neurobehavioral performance, and also in normal variations in self-reported daytime sleepiness.
Collapse
Affiliation(s)
- William D S Killgore
- Social, Cognitive and Affective Neuroscience Lab, McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA.
| | | | | | | | | |
Collapse
|