1
|
Cabeza RA, Pérez-Díaz R, Amigo R, Salinas-Roco S, Morales-González A, del Pozo A. Biomass and nitrogen fixation dataset of Pisum sativum L. and Vicia faba L. cultivated under elevated CO 2 and nitrogen addition. Data Brief 2024; 55:110644. [PMID: 39100783 PMCID: PMC11296236 DOI: 10.1016/j.dib.2024.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024] Open
Abstract
It is expected that CO2 concentration will increase in the air, thereby stimulating the photosynthesis process and, hence, plant biomass production. In the case of legumes, increased biomass due to higher CO2 concentration can stimulate atmospheric nitrogen (N2) fixation in the nodules. However, N2 fixation is inhibited by external N supply. Thus, biomass production and N2 fixation were analysed in two legumes (Pisum sativum L. and Vicia faba L.) grown at two levels of CO2 and three N levels. P. sativum reduces fixation with high soil N (facultative), while V. faba maintains high fixation regardless of soil N levels (obligate). The N2 fixation and plant and nodule biomass of the two species were evaluated in a pot experiment under controlled conditions using growth chambers with artificial CO2 supply and N addition. The proportion of N derived from the air (%Ndfa) present in the plants' biomass was calculated from the natural abundance of 15N and the N concentration of plant tissues using nonlegumes reference plants. Additionally, N content data are presented for both species growing at two levels of air CO2. The data may be useful for plant physiologists, especially those working on biological N2 fixation with non-model legumes at elevated CO2.
Collapse
Affiliation(s)
- Ricardo A. Cabeza
- Laboratory of Plant Nutrition, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | | | - Ramón Amigo
- Centro de Estudios en Alimentos Procesados (CEAP), Talca 3460000, Chile
| | - Sebastian Salinas-Roco
- Laboratory of Plant Nutrition, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Amanda Morales-González
- Laboratory of Plant Nutrition, Department of Crop Sciences, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| | - Alejandro del Pozo
- Plant Phenomics Center, Faculty of Agricultural Sciences, University of Talca, Talca, Chile
| |
Collapse
|
2
|
Brooks MD, Szeto RC. Biological nitrogen fixation maintains carbon/nitrogen balance and photosynthesis at elevated CO 2. PLANT, CELL & ENVIRONMENT 2024; 47:2178-2191. [PMID: 38481026 DOI: 10.1111/pce.14873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/17/2024] [Accepted: 02/22/2024] [Indexed: 04/30/2024]
Abstract
Understanding crop responses to elevated CO2 is necessary to meet increasing agricultural demands. Crops may not achieve maximum potential yields at high CO2 due to photosynthetic downregulation, often associated with nitrogen limitation. Legumes have been proposed to have an advantage at elevated CO2 due to their ability to exchange carbon for nitrogen. Here, the effects of biological nitrogen fixation (BNF) on the physiological and gene expression responses to elevated CO2 were examined at multiple nitrogen levels by comparing alfalfa mutants incapable of nitrogen fixation to wild-type. Elemental analysis revealed a role for BNF in maintaining shoot carbon/nitrogen (C/N) balance under all nitrogen treatments at elevated CO2, whereas the effect of BNF on biomass was only observed at elevated CO2 and the lowest nitrogen dose. Lower photosynthetic rates at were associated with the imbalance in shoot C/N. Genome-wide transcriptional responses were used to identify carbon and nitrogen metabolism genes underlying the traits. Transcription factors important to C/N signalling were identified from inferred regulatory networks. This work supports the hypothesis that maintenance of C/N homoeostasis at elevated CO2 can be achieved in plants capable of BNF and revealed important regulators in the underlying networks including an alfalfa (Golden2-like) GLK ortholog.
Collapse
Affiliation(s)
- Matthew D Brooks
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, Illinois, USA
| | - Ronnia C Szeto
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
3
|
Bellido E, de la Haba P, Agüera E. Responses in Nodulated Bean ( Phaseolus vulgaris L.) Plants Grown at Elevated Atmospheric CO 2. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091828. [PMID: 37176886 PMCID: PMC10180886 DOI: 10.3390/plants12091828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023]
Abstract
The increase in the concentration of CO2 in the atmosphere is currently causing metabolomic and physiological changes in living beings and especially in plants. Future climate change may affect crop productivity by limiting the uptake of soil resources such as nitrogen (N) and water. The contribution of legume-rhizobia symbioses to N2 fixation increases the available biological N reserve. Elevated CO2 (eCO2) has been shown to enhance the amount of fixed N2 primarily by increasing biomass. Greater leaf biomass under eCO2 levels increases N demand, which can stimulate and increase N2 fixation. For this reason, bean plants (Phaseolus vulgaris L.) were used in this work to investigate how, in a CO2-enriched atmosphere, inoculation with rhizobia (Rhizobium leguminosarum) affects different growth parameters and metabolites of carbon and nitrogen metabolism, as well as enzymatic activities of nitrogen metabolism and the oxidative state of the plant, with a view to future scenarios, where the concentration of CO2 in the atmosphere will increase. The results showed that bean symbiosis with R. leguminosarum improved N2 fixation, while also decreasing the plant's oxidative stress, and provided the plant with a greater defense system against eCO2 conditions. In conclusion, the nodulation with rhizobia potentially replaced the chemical fertilization of bean plants (P. vulgaris L.), resulting in more environmentally friendly agricultural practices. However, further optimization of symbiotic activities is needed to improve the efficiency and to also develop strategies to improve the response of legume yields to eCO2, particularly due to the climate change scenario in which there is predicted to be a large increase in the atmospheric CO2 concentration.
Collapse
Affiliation(s)
- Enrique Bellido
- Department of Botany, Ecology and Plant Physiology, Faculty of Science, University of Córdoba, 14071 Córdoba, Spain
| | - Purificación de la Haba
- Department of Botany, Ecology and Plant Physiology, Faculty of Science, University of Córdoba, 14071 Córdoba, Spain
| | - Eloísa Agüera
- Department of Botany, Ecology and Plant Physiology, Faculty of Science, University of Córdoba, 14071 Córdoba, Spain
| |
Collapse
|
4
|
Lepetit M, Brouquisse R. Control of the rhizobium-legume symbiosis by the plant nitrogen demand is tightly integrated at the whole plant level and requires inter-organ systemic signaling. FRONTIERS IN PLANT SCIENCE 2023; 14:1114840. [PMID: 36968361 PMCID: PMC10033964 DOI: 10.3389/fpls.2023.1114840] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Symbiotic nodules formed on legume roots with rhizobia fix atmospheric N2. Bacteria reduce N2 to NH4 + that is assimilated into amino acids by the plant. In return, the plant provides photosynthates to fuel the symbiotic nitrogen fixation. Symbiosis is tightly adjusted to the whole plant nutritional demand and to the plant photosynthetic capacities, but regulatory circuits behind this control remain poorly understood. The use of split-root systems combined with biochemical, physiological, metabolomic, transcriptomic, and genetic approaches revealed that multiple pathways are acting in parallel. Systemic signaling mechanisms of the plant N demand are required for the control of nodule organogenesis, mature nodule functioning, and nodule senescence. N-satiety/N-deficit systemic signaling correlates with rapid variations of the nodules' sugar levels, tuning symbiosis by C resources allocation. These mechanisms are responsible for the adjustment of plant symbiotic capacities to the mineral N resources. On the one hand, if mineral N can satisfy the plant N demand, nodule formation is inhibited, and nodule senescence is activated. On the other hand, local conditions (abiotic stresses) may impair symbiotic activity resulting in plant N limitation. In these conditions, systemic signaling may compensate the N deficit by stimulating symbiotic root N foraging. In the past decade, several molecular components of the systemic signaling pathways controlling nodule formation have been identified, but a major challenge remains, that is, to understand their specificity as compared to the mechanisms of non-symbiotic plants that control root development and how they contribute to the whole plant phenotypes. Less is known about the control of mature nodule development and functioning by N and C nutritional status of the plant, but a hypothetical model involving the sucrose allocation to the nodule as a systemic signaling process, the oxidative pentose phosphate pathway, and the redox status as potential effectors of this signaling is emerging. This work highlights the importance of organism integration in plant biology.
Collapse
|
5
|
Liu W, Liu L, Yan R, Gao J, Wu S, Liu Y. A comprehensive meta-analysis of the impacts of intensified drought and elevated CO 2 on forage growth. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 327:116885. [PMID: 36455442 DOI: 10.1016/j.jenvman.2022.116885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/17/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Forage crops are used worldwide as key feed sources for dairy systems. However, their productivity and quality are limited due to intensified drought events, elevated carbon dioxide (CO2), and their interaction with climate change, with consequences for the security of animal husbandry and the agricultural economy. Although studies have quantified the impacts of such stresses on forage growth, these impacts have been less systematically investigated in a global context due to differences among various forage groups, regional microclimates, and environmental factors. Herein we employed nine forage growth-related variables involving three perspectives, i.e., photosynthetic parameters, production, and quality, from research articles published between 1990 and 2021 via a meta-analysis. A linear mixed-effect model was then used to explore the quantitative relationship between these factors in a restricted dataset. Decreasing trends in all four photosynthetic parameters were detected across different eco-geographical regions with increasing drought stress. The maximum decrease in DMY occurred in the Mediterranean, with 52.8% under drought conditions. Globally, eCO2 significantly increased photosynthetic rate (Pn) and instantaneous water use efficiency (WUEi) by 40.8% and 62.1%, respectively, which also had positive effects on forage dry matter yield (DMY) (+25.1%), especially for forage in Northern Europe. However, this stress would significantly decrease forage quality by decreasing crude protein (CP) (-19.7%) and nitrogen content (N content) (-13.5%). These negative impacts would be aggravated under the co-occurrence of drought and eCO2, including a significant increase in WUEi (+111.1%) and a decrease in DMY (-12.3%). Gramineae showed a more sensitive response to drought stress in photosynthetic parameters and DMY than Leguminosae, but the latter exhibited a better response in photosynthetic parameters and production under eCO2. Our analysis provides a consensus concerning how the growth parameters of forage have changed under environmental stresses.
Collapse
Affiliation(s)
- Wanlu Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Lulu Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Rui Yan
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jiangbo Gao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China.
| | - Shaohong Wu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Yanhua Liu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Science, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Sanyal S, Chakrabarti B, Prasanna R, Bhatia A, Kumar SN, Purakayastha TJ, Joshi R, Sharma A. Influence of cyanobacterial inoculants, elevated carbon dioxide, and temperature on plant and soil nitrogen in soybean. J Basic Microbiol 2022; 62:1216-1228. [PMID: 35522779 DOI: 10.1002/jobm.202200046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/31/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
Climate change affects nitrogen dynamics in crops and diazotrophic microorganisms with carbon dioxide (CO2 ) sequestering potential such as cyanobacteria can be promising options. The interactions of three cyanobacterial formulations (Anabaena laxa, Calothrix elenkinii and Anabaena torulosa-Bradyrhizobium japonicum biofilm) on plant and soil nitrogen in soybean, were investigated under elevated CO2 and temperature conditions. Soybean plants were grown inside Open Top Chambers under ambient and elevated (550 ± 25 ppm) CO2 concentrations and elevated temperature (+2.5-2.8°C). Interactive effect of elevated CO2 and cyanobacterial inoculation through A. laxa and Anabaena torulosa-B. japonicum biofilm led to improved growth, yield, nodulation, nitrogen fixation, and seed N in soybean crop. Nitrogenase activity in nodules increased in A. laxa and biofilm treatments, with an increase of 55% and 72%, respectively, over no cyanobacterial inoculation treatment. Although high temperature alone reduced soil microbial biomass carbon, dehydrogenase activity, and soil available N, the combined effect of CO2 and temperature were stimulatory; cyanobacterial inoculation further led to an increase under all the conditions. The highest seed N uptake (758 mg plant-1 ) was recorded with cyanobacterial biofilm inoculation under elevated CO2 with control temperature conditions. The positive interactions of elevated CO2 and cyanobacterial inoculation, particularly through A. laxa and A. torulosa-B. japonicum biofilm inoculation highlights their potential in counteracting the negative impact of changing climate along with enhancing plant and soil N in soybean.
Collapse
Affiliation(s)
- Shravani Sanyal
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bidisha Chakrabarti
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Radha Prasanna
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Arti Bhatia
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Soora N Kumar
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tapan J Purakayastha
- Division of Soil Science & Agricultural Chemistry, ICAR-Indian Agricultural Research Insftitute, New Delhi, India
| | - Ritika Joshi
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Abhilasha Sharma
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Mathesius U. Are legumes different? Origins and consequences of evolving nitrogen fixing symbioses. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153765. [PMID: 35952452 DOI: 10.1016/j.jplph.2022.153765] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
Nitrogen fixing symbioses between plants and bacteria are ancient and, while not numerous, are formed in diverse lineages of plants ranging from microalgae to angiosperms. One symbiosis stands out as the most widespread one is that between legumes and rhizobia, leading to the formation of nitrogen-fixing nodules. The legume family is one of the largest and most diverse group of plants and legumes have been used by humans since the beginning of agriculture, both as high nitrogen food, as well as pastures and rotation crops. One open question is whether their ability to form a nitrogen-fixing symbiosis has contributed to legumes' success, and whether legumes have any unique characteristics that have made them more diverse and widespread than other groups of plants. This review examines the evolutionary journey that has led to the diversification of legumes, in particular its nitrogen-fixing symbiosis, and asks four questions to investigate which legume traits might have contributed to their success: 1. In what ways do legumes differ from other plant groups that have evolved nitrogen-fixing symbioses? In order to answer this question, the characteristics of the symbioses, and efficiencies of nitrogen fixation are compared between different groups of nitrogen fixing plants. 2. Could certain unique features of legumes be a reason for their success? This section examines the manifestations and possible benefits of a nitrogen-rich 'lifestyle' in legumes. 3. If nitrogen fixation was a reason for such a success, why have some species lost the symbiosis? Formation of symbioses has trade-offs, and while these are less well known for non-legumes, there are known energetic and ecological reasons for loss of symbiotic potential in legumes. 4. What can we learn from the unique traits of legumes for future crop improvements? While exploiting some of the physiological properties of legumes could be used to improve legume breeding, our increasing molecular understanding of the essential regulators of root nodule symbioses raise hope of creating new nitrogen fixing symbioses in other crop species.
Collapse
Affiliation(s)
- Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, The Australian National University, 134 Linnaeus Way, Canberra, ACT, 2601, Australia.
| |
Collapse
|
8
|
The direct and interactive effects of elevated CO2 and additional nitrate on relative costs and benefits of legume-rhizobia symbiosis. Symbiosis 2021. [DOI: 10.1007/s13199-021-00784-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractRising concentrations of carbon dioxide (CO2) is likely to have important effects on growth and development of plants and on their relationship with symbiotic microbes. A rise in CO2 could increase demand by plant hosts for nutrient resources, which may increase host investments in beneficial symbionts. In the legume-rhizobia mutualism, while elevated CO2 is often associated with increased nodule growth and investment in N2-fixing rhizobia, it is yet unclear if this response depends on the mutualistic quality of the rhizobia. To test if host carbon allocation towards more-beneficial nodules are similar to less-beneficial (but still effective) nodules when plant N demand changes, we manipulated plant C and N status with elevated CO2 and additional nitrate. We used two isogenic Rhizobium etli strains that differ in their ability to synthesize an energy reserve compound, poly-beta-hydroxybutyrate (PHB), as well as their efficiencies for nitrogen fixation and nodulation rates, resulting in two Phaseolus vulgaris host groups with either large number of small nodules or small number of large nodules. The addition of nitrate negatively affected carbon allocation towards nodules, and elevated CO2 reversed this effect, as expected. However, this alleviation of nodule inhibition was greater on plants that started with greater numbers of smaller nodules. If smaller nodules indicate less-efficient or low-fixing rhizobia, this study suggests that increased demand for nitrogen in the face of elevated CO2 has the potential to disproportionately favor less-beneficial strains and increase variation of nitrogen fixation quality among rhizobia.
Collapse
|
9
|
Paredes GF, Viehboeck T, Lee R, Palatinszky M, Mausz MA, Reipert S, Schintlmeister A, Maier A, Volland JM, Hirschfeld C, Wagner M, Berry D, Markert S, Bulgheresi S, König L. Anaerobic Sulfur Oxidation Underlies Adaptation of a Chemosynthetic Symbiont to Oxic-Anoxic Interfaces. mSystems 2021; 6:e0118620. [PMID: 34058098 PMCID: PMC8269255 DOI: 10.1128/msystems.01186-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/20/2021] [Indexed: 11/23/2022] Open
Abstract
Chemosynthetic symbioses occur worldwide in marine habitats, but comprehensive physiological studies of chemoautotrophic bacteria thriving on animals are scarce. Stilbonematinae are coated by thiotrophic Gammaproteobacteria. As these nematodes migrate through the redox zone, their ectosymbionts experience varying oxygen concentrations. However, nothing is known about how these variations affect their physiology. Here, by applying omics, Raman microspectroscopy, and stable isotope labeling, we investigated the effect of oxygen on "Candidatus Thiosymbion oneisti." Unexpectedly, sulfur oxidation genes were upregulated in anoxic relative to oxic conditions, but carbon fixation genes and incorporation of 13C-labeled bicarbonate were not. Instead, several genes involved in carbon fixation were upregulated under oxic conditions, together with genes involved in organic carbon assimilation, polyhydroxyalkanoate (PHA) biosynthesis, nitrogen fixation, and urea utilization. Furthermore, in the presence of oxygen, stress-related genes were upregulated together with vitamin biosynthesis genes likely necessary to withstand oxidative stress, and the symbiont appeared to proliferate less. Based on its physiological response to oxygen, we propose that "Ca. T. oneisti" may exploit anaerobic sulfur oxidation coupled to denitrification to proliferate in anoxic sand. However, the ectosymbiont would still profit from the oxygen available in superficial sand, as the energy-efficient aerobic respiration would facilitate carbon and nitrogen assimilation. IMPORTANCE Chemoautotrophic endosymbionts are famous for exploiting sulfur oxidization to feed marine organisms with fixed carbon. However, the physiology of thiotrophic bacteria thriving on the surface of animals (ectosymbionts) is less understood. One longstanding hypothesis posits that attachment to animals that migrate between reduced and oxic environments would boost sulfur oxidation, as the ectosymbionts would alternatively access sulfide and oxygen, the most favorable electron acceptor. Here, we investigated the effect of oxygen on the physiology of "Candidatus Thiosymbion oneisti," a gammaproteobacterium which lives attached to marine nematodes inhabiting shallow-water sand. Surprisingly, sulfur oxidation genes were upregulated under anoxic relative to oxic conditions. Furthermore, under anoxia, the ectosymbiont appeared to be less stressed and to proliferate more. We propose that animal-mediated access to oxygen, rather than enhancing sulfur oxidation, would facilitate assimilation of carbon and nitrogen by the ectosymbiont.
Collapse
Affiliation(s)
- Gabriela F. Paredes
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Tobias Viehboeck
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Raymond Lee
- Washington State University, School of Biological Sciences, Pullman, Washington, USA
| | - Marton Palatinszky
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
| | - Michaela A. Mausz
- University of Warwick, School of Life Sciences, Coventry, United Kingdom
| | - Siegfried Reipert
- University of Vienna, Core Facility Cell Imaging and Ultrastructure Research, Vienna, Austria
| | - Arno Schintlmeister
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- University of Vienna, Center for Microbiology and Environmental Systems Science, Large-Instrument Facility for Environmental and Isotope Mass Spectrometry, Vienna, Austria
| | - Andreas Maier
- University of Vienna, Faculty of Geosciences, Geography, and Astronomy, Department of Geography and Regional Research, Geoecology, Vienna, Austria
| | - Jean-Marie Volland
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Claudia Hirschfeld
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Michael Wagner
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Aalborg University, Department of Chemistry and Bioscience, Aalborg, Denmark
| | - David Berry
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
| | - Stephanie Markert
- University of Greifswald, Institute of Pharmacy, Department of Pharmaceutical Biotechnology, Greifswald, Germany
| | - Silvia Bulgheresi
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| | - Lena König
- University of Vienna, Department of Functional and Evolutionary Ecology, Environmental Cell Biology Group, Vienna, Austria
| |
Collapse
|
10
|
Soba D, Aranjuelo I, Gakière B, Gilard F, Pérez-López U, Mena-Petite A, Muñoz-Rueda A, Lacuesta M, Sanz-Saez A. Soybean Inoculated With One Bradyrhizobium Strain Isolated at Elevated [CO 2] Show an Impaired C and N Metabolism When Grown at Ambient [CO 2]. FRONTIERS IN PLANT SCIENCE 2021; 12:656961. [PMID: 34093614 PMCID: PMC8173217 DOI: 10.3389/fpls.2021.656961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 05/27/2023]
Abstract
Soybean (Glycine max L.) future response to elevated [CO2] has been shown to differ when inoculated with B. japonicum strains isolated at ambient or elevated [CO2]. Plants, inoculated with three Bradyrhizobium strains isolated at different [CO2], were grown in chambers at current and elevated [CO2] (400 vs. 700 ppm). Together with nodule and leaf metabolomic profile, characterization of nodule N-fixation and exchange between organs were tested through 15N2-labeling analysis. Soybeans inoculated with SFJ14-36 strain (isolated at elevated [CO2]) showed a strong metabolic imbalance, at nodule and leaf levels when grown at ambient [CO2], probably due to an insufficient supply of N by nodules, as shown by 15N2-labeling. In nodules, due to shortage of photoassimilate, C may be diverted to aspartic acid instead of malate in order to improve the efficiency of the C source sustaining N2-fixation. In leaves, photorespiration and respiration were boosted at ambient [CO2] in plants inoculated with this strain. Additionally, free phytol, antioxidants, and fatty acid content could be indicate induced senescence due to oxidative stress and lack of nitrogen. Therefore, plants inoculated with Bradyrhizobium strain isolated at elevated [CO2] may have lost their capacity to form effective symbiosis at ambient [CO2] and that was translated at whole plant level through metabolic impairment.
Collapse
Affiliation(s)
- David Soba
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Iker Aranjuelo
- Instituto de Agrobiotecnología (IdAB), Consejo Superior de Investigaciones Científicas (CSIC)-Gobierno de Navarra, Pamplona, Spain
| | - Bertrand Gakière
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Françoise Gilard
- Plateforme Métabolisme-Métabolome, Institut de Biologie des Plantes, Université Paris-Sud, Orsay, France
| | - Usue Pérez-López
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Amaia Mena-Petite
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alberto Muñoz-Rueda
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maite Lacuesta
- Department of Plant Biology and Ecology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Alvaro Sanz-Saez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
11
|
Chen H, Markham J. The Interactive Effect of Elevated CO 2 and Herbivores on the Nitrogen-Fixing Plant Alnus incana ssp. rugosa. PLANTS (BASEL, SWITZERLAND) 2021; 10:440. [PMID: 33652618 PMCID: PMC7996819 DOI: 10.3390/plants10030440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 11/23/2022]
Abstract
Many studies have found that future predicted CO2 levels can increase plant mass but dilute N content in leaves, impacting antiherbivore compounds. Nitrogen-fixing plants may balance their leaf C:N ratio under elevated CO2, counteracting this dilution effect. However, we know little of how plants respond to herbivores at the higher CO2 levels that occurred when nitrogen-fixing plants first evolved. We grew Alnus incana ssp. rugosa was grown at 400, 800, or 1600 ppm CO2 in soil collected from the field, inoculated with Frankia and exposed to herbivores (Orgyia leucostigma). Elevated CO2 increased nodulated plant biomass and stimulated the nitrogen fixation rate in the early growth stage. However, nitrogen-fixing plants were not able to balance their C:N ratio under elevated CO2 after growing for 19 weeks. When plants were grown at 400 and 1600 ppm CO2, herbivores preferred to feed on leaves of nodulated plants. At 800 ppm CO2, nodulated plants accumulated more total phenolic compounds in response to herbivore damage than plants in the non-Frankia and non-herbivore treatments. Our results suggest that plant leaf defence, not leaf nutritional content, is the dominant driver of herbivory and nitrogen-fixing plants have limited ability to balance C:N ratios at elevated CO2 in natural soil.
Collapse
Affiliation(s)
- Haoran Chen
- Department of Biological Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
12
|
Moreno-Delafuente A, Morales I, Garzo E, Fereres A, Viñuela E, Medina P. Changes in melon plant phytochemistry impair Aphis gossypii growth and weight under elevated CO 2. Sci Rep 2021; 11:2186. [PMID: 33500456 PMCID: PMC7838277 DOI: 10.1038/s41598-021-81167-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022] Open
Abstract
Elevated CO2 (eCO2) modifies plant primary and secondary metabolism that subsequently impacts herbivore insect performance due to changes in its nutritional requirements. This laboratory study evaluated interactions between Aphis gossypii Glover (Hemiptera: Aphididae) and melon (Cucumis melo L., Cucurbitaceae), previously acclimated two or six weeks to different CO2 levels, eCO2 (700 ppm) or ambient CO2 (400 ppm). Under eCO2, melon plants decreased nitrogen foliar concentration and increased carbon to nitrogen ratio, independently of acclimation period, significantly reducing the content of some amino acids (alanine, asparagine, glycine, isoleucine, lysine, serine, threonine, and valine) and increasing the carbohydrate (sucrose) content in melon leaves. The dilution in some essential amino acids for aphid nutrition could have aggravated the reduction in A. gossypii population growth reared on melon previously acclimated two weeks to eCO2, as well as the loss of aphid body mass from two successive generations of A. gossypii reared under eCO2 on plants previously acclimated two or six weeks to eCO2. The response to eCO2 of phloem feeders, such as aphids, is actually variable, but this study highlights a negative response of A. gossypii to this climate change driver. Potential implications on control of this pest in a global change scenario are discussed.
Collapse
Affiliation(s)
- Ana Moreno-Delafuente
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Ignacio Morales
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
| | - Elisa Garzo
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Alberto Fereres
- Insectos Vectores de Patógenos de Plantas, Departamento de Protección Vegetal, Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Elisa Viñuela
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain
| | - Pilar Medina
- Unidad de Protección de Cultivos, Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040, Madrid, Spain.
- Associate Unit IVAS (CSIC-UPM), Control of Insect Vectors of Viruses in Horticultural Sustainable Systems, Madrid, Spain.
| |
Collapse
|
13
|
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? GLOBAL CHANGE BIOLOGY 2021; 27:27-49. [PMID: 33135850 DOI: 10.1111/gcb.15375] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2 ] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2 ], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2 ]. A strong correlation of yield response under elevated [CO2 ] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2 ] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2 ].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen P Long
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
14
|
Vaidya P, Stinchcombe JR. The Potential for Genotype-by-Environment Interactions to Maintain Genetic Variation in a Model Legume-Rhizobia Mutualism. PLANT COMMUNICATIONS 2020; 1:100114. [PMID: 33367267 PMCID: PMC7747969 DOI: 10.1016/j.xplc.2020.100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/10/2020] [Accepted: 10/08/2020] [Indexed: 05/10/2023]
Abstract
The maintenance of genetic variation in mutualism-related traits is key for understanding mutualism evolution, yet the mechanisms maintaining variation remain unclear. We asked whether genotype-by-environment (G×E) interaction is a potential mechanism maintaining variation in the model legume-rhizobia system, Medicago truncatula-Ensifer meliloti. We planted 50 legume genotypes in a greenhouse under ambient light and shade to reflect reduced carbon availability for plants. We found an expected reduction under shaded conditions for plant performance traits, such as leaf number, aboveground and belowground biomass, and a mutualism-related trait, nodule number. We also found G×E for nodule number, with ∼83% of this interaction due to shifts in genotype fitness rank order across light environments, coupled with strong positive directional selection on nodule number regardless of light environment. Our results suggest that G×E can maintain genetic variation in a mutualism-related trait that is under consistent positive directional selection across light environments.
Collapse
Affiliation(s)
- Priya Vaidya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Corresponding author
| | - John R. Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S3B2, Canada
- Koffler Scientific Reserve at Joker's Hill, University of Toronto, Toronto, ON M5S3B2, Canada
| |
Collapse
|
15
|
Singer SD, Chatterton S, Soolanayakanahally RY, Subedi U, Chen G, Acharya SN. Potential effects of a high CO 2 future on leguminous species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:67-94. [PMID: 37283729 PMCID: PMC10168062 DOI: 10.1002/pei3.10009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/08/2023]
Abstract
Legumes provide an important source of food and feed due to their high protein levels and many health benefits, and also impart environmental and agronomic advantages as a consequence of their ability to fix nitrogen through their symbiotic relationship with rhizobia. As a result of our growing population, the demand for products derived from legumes will likely expand considerably in coming years. Since there is little scope for increasing production area, improving the productivity of such crops in the face of climate change will be essential. While a growing number of studies have assessed the effects of climate change on legume yield, there is a paucity of information regarding the direct impact of elevated CO2 concentration (e[CO2]) itself, which is a main driver of climate change and has a substantial physiological effect on plants. In this review, we discuss current knowledge regarding the influence of e[CO2] on the photosynthetic process, as well as biomass production, seed yield, quality, and stress tolerance in legumes, and examine how these responses differ from those observed in non-nodulating plants. Although these relationships are proving to be extremely complex, mounting evidence suggests that under limiting conditions, overall declines in many of these parameters could ensue. While further research will be required to unravel precise mechanisms underlying e[CO2] responses of legumes, it is clear that integrating such knowledge into legume breeding programs will be indispensable for achieving yield gains by harnessing the potential positive effects, and minimizing the detrimental impacts, of CO2 in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| | - Syama Chatterton
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| | | | - Udaya Subedi
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Surya N. Acharya
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| |
Collapse
|
16
|
Lambert I, Pervent M, Le Queré A, Clément G, Tauzin M, Severac D, Benezech C, Tillard P, Martin-Magniette ML, Colella S, Lepetit M. Responses of mature symbiotic nodules to the whole-plant systemic nitrogen signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5039-5052. [PMID: 32386062 PMCID: PMC7410188 DOI: 10.1093/jxb/eraa221] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/30/2020] [Indexed: 05/26/2023]
Abstract
In symbiotic root nodules of legumes, terminally differentiated rhizobia fix atmospheric N2 producing an NH4+ influx that is assimilated by the plant. The plant, in return, provides photosynthates that fuel the symbiotic nitrogen acquisition. Mechanisms responsible for the adjustment of the symbiotic capacity to the plant N demand remain poorly understood. We have investigated the role of systemic signaling of whole-plant N demand on the mature N2-fixing nodules of the model symbiotic association Medicago truncatula/Sinorhizobium using split-root systems. The whole-plant N-satiety signaling rapidly triggers reductions of both N2 fixation and allocation of sugars to the nodule. These responses are associated with the induction of nodule senescence and the activation of plant defenses against microbes, as well as variations in sugars transport and nodule metabolism. The whole-plant N-deficit responses mirror these changes: a rapid increase of sucrose allocation in response to N-deficit is associated with a stimulation of nodule functioning and development resulting in nodule expansion in the long term. Physiological, transcriptomic, and metabolomic data together provide evidence for strong integration of symbiotic nodules into whole-plant nitrogen demand by systemic signaling and suggest roles for sugar allocation and hormones in the signaling mechanisms.
Collapse
Affiliation(s)
- Ilana Lambert
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marjorie Pervent
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Antoine Le Queré
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Gilles Clément
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, France
| | - Marc Tauzin
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Dany Severac
- MGX, CNRS, INSERM, Univ. Montpellier, Montpellier, France
| | - Claire Benezech
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Pascal Tillard
- Biologie et Physiologie Moléculaire des Plantes, INRAE, CNRS, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ. Evry, CNRS, INRAE, Orsay, France
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, Paris, France
| | - Stefano Colella
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| | - Marc Lepetit
- Laboratoire de Symbioses Tropicales et Méditerranéennes, INRAE, IRD, CIRAD, SupAgro, Univ. Montpellier, Montpellier, France
| |
Collapse
|
17
|
Parvin S, Uddin S, Tausz-Posch S, Armstrong R, Tausz M. Carbon sink strength of nodules but not other organs modulates photosynthesis of faba bean (Vicia faba) grown under elevated [CO 2 ] and different water supply. THE NEW PHYTOLOGIST 2020; 227:132-145. [PMID: 32129887 DOI: 10.1111/nph.16520] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Photosynthetic stimulation by elevated [CO2 ] (e[CO2 ]) may be limited by the capacity of sink organs to use photosynthates. In many legumes, N2 -fixing symbionts in root nodules provide an additional sink, so that legumes may be better able to profit from e[CO2 ]. However, drought not only constrains photosynthesis but also the size and activity of sinks, and little is known about the interaction of e[CO2 ] and drought on carbon sink strength of nodules and other organs. To compare carbon sink strength, faba bean was grown under ambient (400 ppm) or elevated (700 ppm) atmospheric [CO2 ] and subjected to well-watered or drought treatments, and then exposed to 13 C pulse-labelling using custom-built chambers to track the fate of new photosynthates. Drought decreased 13 C uptake and nodule sink strength, and this effect was even greater under e[CO2 ], and was associated with an accumulation of amino acids in nodules. This resulted in decreased N2 fixation, and increased accumulation of new photosynthates (13 C/sugars) in leaves, which in turn can feed back on photosynthesis. Our study suggests that nodule C sink activity is key to avoid sink limitation in legumes under e[CO2 ], and legumes may only be able to achieve greater C gain if nodule activity is maintained.
Collapse
Affiliation(s)
- Shahnaj Parvin
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, 2480, Australia
- Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
- The University of Melbourne, Creswick, VIC, 3363, Australia
| | - Shihab Uddin
- The University of Melbourne, Creswick, VIC, 3363, Australia
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, 2650, Australia
| | - Sabine Tausz-Posch
- Department of Agriculture, Science and the Environment, School of Health, Medical and Applied Science, CQUniversity Australia, Rockhampton, QLD, Australia
| | - Roger Armstrong
- Agriculture Victoria Research, 110 Natimuk Road, Horsham, VIC, 3400, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Michael Tausz
- Department of Agriculture, Science and the Environment, School of Health, Medical and Applied Science, CQUniversity Australia, Rockhampton, QLD, Australia
| |
Collapse
|
18
|
Oldroyd GED, Leyser O. A plant's diet, surviving in a variable nutrient environment. Science 2020; 368:368/6486/eaba0196. [PMID: 32241923 DOI: 10.1126/science.aba0196] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/14/2020] [Indexed: 12/19/2022]
Abstract
As primary producers, plants rely on a large aboveground surface area to collect carbon dioxide and sunlight and a large underground surface area to collect the water and mineral nutrients needed to support their growth and development. Accessibility of the essential nutrients nitrogen (N) and phosphorus (P) in the soil is affected by many factors that create a variable spatiotemporal landscape of their availability both at the local and global scale. Plants optimize uptake of the N and P available through modifications to their growth and development and engagement with microorganisms that facilitate their capture. The sensing of these nutrients, as well as the perception of overall nutrient status, shapes the plant's response to its nutrient environment, coordinating its development with microbial engagement to optimize N and P capture and regulate overall plant growth.
Collapse
Affiliation(s)
- Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK. .,Crop Science Centre, University of Cambridge, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | - Ottoline Leyser
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK
| |
Collapse
|
19
|
Zheng G, Chen J, Li W. Impacts of CO 2 elevation on the physiology and seed quality of soybean. PLANT DIVERSITY 2020; 42:44-51. [PMID: 32140636 PMCID: PMC7046503 DOI: 10.1016/j.pld.2019.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 05/14/2023]
Abstract
Understanding the responses of crops to elevated atmospheric carbon dioxide concentrations (E[CO2]) is very important in terms of global food supplies. The present study investigates the effects of CO2 enrichment (to 800 μmol mol-1) on the physiology of soybean plants and the nutritional value of their seeds under growth chamber conditions. The photosynthesis of soybean was significantly promoted by E[CO2] at all growth stages, but leaf area and specific leaf weight were not affected. The levels of mineral elements in the leaves decreased under E[CO2]. The soil properties after soybean cultivation under E[CO2] were not affected, except for a decrease in available potassium. Moreover, the levels of soluble sugars in the seeds were not affected by E[CO2], but the levels of natural antioxidants decreased. In addition, the level of oleic acid decreased under E[CO2]. However, levels of fatty acid peroxidation and saturation were maintained. In conclusion, E[CO2] appears to have positive effects on the growth of cultivated soybean plants, but its influence on the nutritional values of soybean seeds is complex.
Collapse
Affiliation(s)
- Guowei Zheng
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Jia Chen
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, People's Republic of China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, People's Republic of China
- Corresponding author.
| |
Collapse
|
20
|
Yan HY, Guo HG, Sun YC, Ge F. Plant phenolics mediated bottom-up effects of elevated CO 2 on Acyrthosiphon pisum and its parasitoid Aphidius avenae. INSECT SCIENCE 2020; 27:170-184. [PMID: 29938899 DOI: 10.1111/1744-7917.12627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Elevated concentrations of atmospheric CO2 can alter plant secondary metabolites, which play important roles in the interactions among plants, herbivorous insects and natural enemies. However, few studies have examined the cascading effects of host plant secondary metabolites on tri-trophic interactions under elevated CO2 (eCO2 ). In this study, we determined the effects of eCO2 on the growth and foliar phenolics of Medicago truncatula and the cascading effects on two color genotypes of Acyrthosiphon pisum (pink vs. green) and their parasitoid Aphidius avenae in the field open-top chambers. Our results showed that eCO2 increased photosynthetic rate, nodule number, yield and the total phenolic content of M. truncatula. eCO2 had contrasting effects on two genotypes of A. pisum; the green genotype demonstrated increased population abundance, fecundity, growth and feeding efficiency, while the pink genotype showed decreased fitness and these were closely associated with the foliar genstein content. Furthermore, eCO2 decreased the parasitic rate of A. avenae independent of aphid genotypes. eCO2 prolonged the emergence time and reduced the emergence rate and percentage of females when associated with the green genotype, but little difference, except for increased percentage of females, was observed in A. avenae under eCO2 when associated with the pink genotype, indicating that parasitoids can perceive and discriminate the qualities of aphid hosts. We concluded that eCO2 altered plant phenolics and thus the performance of aphids and parasitoids. Our results indicate that plant phenolics vary by different abiotic and biotic stimuli and could potentially deliver the cascading effects of eCO2 to the higher trophic levels. Our results also suggest that the green genotype is expected to perform better in future eCO2 because of decreased plant resistance after its infestation and decreased parasitic rate.
Collapse
Affiliation(s)
- Hong-Yu Yan
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong-Gang Guo
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Cheng Sun
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Parvin S, Uddin S, Bourgault M, Delahunty A, Nuttall J, Brand J, O'Leary G, Fitzgerald GJ, Armstrong R, Tausz M. Effect of heat wave on N 2 fixation and N remobilisation of lentil (Lens culinaris MEDIK) grown under free air CO 2 enrichment in a mediterranean-type environment. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:123-132. [PMID: 31532043 DOI: 10.1111/plb.13047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/06/2019] [Indexed: 05/14/2023]
Abstract
The stimulatory effect of elevated [CO2 ] (e[CO2 ]) on crop production in future climates is likely to be cancelled out by predicted increases in average temperatures. This effect may become stronger through more frequent and severe heat waves, which are predicted to increase in most climate change scenarios. Whilst the growth and yield response of some legumes grown under the interactive effect of e[CO2 ] and heat waves has been studied, little is known about how N2 fixation and overall N metabolism is affected by this combination. To address these knowledge gaps, two lentil genotypes were grown under ambient [CO2 ] (a[CO2 ], ~400 µmol·mol-1 ) and e[CO2 ] (~550 µmol·mol-1 ) in the Australian Grains Free Air CO2 Enrichment facility and exposed to a simulated heat wave (3-day periods of high temperatures ~40 °C) at flat pod stage. Nodulation and concentrations of water-soluble carbohydrates (WSC), total free amino acids, N and N2 fixation were assessed following the imposition of the heat wave until crop maturity. Elevated [CO2 ] stimulated N2 fixation so that total N2 fixation in e[CO2 ]-grown plants was always higher than in a[CO2 ], non-stressed control plants. Heat wave triggered a significant decrease in active nodules and WSC concentrations, but e[CO2 ] had the opposite effect. Leaf N remobilization and grain N improved under interaction of e[CO2 ] and heat wave. These results suggested that larger WSC pools and nodulation under e[CO2 ] can support post-heat wave recovery of N2 fixation. Elevated [CO2 ]-induced accelerated leaf N remobilisation might contribute to restore grain N concentration following a heat wave.
Collapse
Affiliation(s)
- S Parvin
- Southern Cross Plant Science, Southern Cross University, Lismore, NSW, Australia
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Vic., Australia
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - S Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Vic., Australia
| | - M Bourgault
- Northern Agricultural Research Centre, Montana State University, Havre, MT, USA
| | - A Delahunty
- Agriculture Victoria Research, Horsham, Vic., Australia
| | - J Nuttall
- Agriculture Victoria Research, Horsham, Vic., Australia
| | - J Brand
- Agriculture Victoria Research, Horsham, Vic., Australia
| | - G O'Leary
- Agriculture Victoria Research, Horsham, Vic., Australia
| | - G J Fitzgerald
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Vic., Australia
- Agriculture Victoria Research, Horsham, Vic., Australia
| | - R Armstrong
- Agriculture Victoria Research, Horsham, Vic., Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Vic., Australia
| | - M Tausz
- Department of Agriculture, Science and the Environment, School of Health, Medical and Applied Science, CQUniversity Australia, Rockhampton, Qld, Australia
| |
Collapse
|
22
|
Li Y, Yu Z, Yang S, Wang G, Liu X, Wang C, Xie Z, Jin J. Impact of elevated CO 2 on C:N:P ratio among soybean cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133784. [PMID: 31756809 DOI: 10.1016/j.scitotenv.2019.133784] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Elevated atmospheric CO2 concentration (eCO2) exerts significant influence on nutrient requirement in plant. The investigation of C:N:P ratios in major cropping soils is important for managing nutrient balance and maximizing their use efficiency in future farming systems. This study aimed to examine the effect of eCO2 on the C:N:P ratios in different plant parts among soybean cultivars. Twenty-four soybean cultivars were planted in open top chambers at two CO2 concentrations (390 and 550 ppm) and sampled at the initial pod filling stage (R5) and the full maturity stage (R8). The C, N and P concentrations in root, stem, leaf and seed were determined. Elevated CO2 decreased the N concentrations in stem (-5.1%) and leaf (-3.2%) at R5, and in root (-24%), stem (-25%) and seed (-6.2%) at R8, resulting in a significant decrease of C:N ratio in the corresponding parts. The P concentration was significantly increased in root (6.0%), stem (7.9%) and leaf (16%) at R5, and in root (2.6%), stem (29%) and seed (16%) at R8 across 24 cultivars, leading to a decrease in the C:P ratio. Elevated CO2 significantly decreased the N:P ratio in root (-4.5%), stem (-12%) and leaf (-17%) at R5, and in root (-26%), stem (-57%) and seed (-22%) at R8. Furthermore, the response of C:N:P ratios to eCO2 varied greatly among soybean cultivars leading to significant CO2 × cultivar interactions. Nitrogen, but not P was the limiting factor for the soybean plants grown in Mollisols under eCO2. The considerable variation in the C:N:P ratios among cultivars in response to eCO2 indicates a potential improvement in soybean adaptability to climate change via selection new cultivars. Cultivars SN22 and ZH4 that did not considerably altered the C:N and C:P ratios in response to eCO2 are likely the optimal genomes in soybean breeding programs for eCO2 adaption.
Collapse
Affiliation(s)
- Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Songchao Yang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Chunyu Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Zhihuang Xie
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
23
|
Kępczyńska E, Karczyński P. Medicago truncatula root developmental changes by growth-promoting microbes isolated from Fabaceae, growing on organic farms, involve cell cycle changes and WOX5 gene expression. PLANTA 2019; 251:25. [PMID: 31784832 DOI: 10.1007/s00425-019-03300-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Both root nodules and the rhizosphere of Fabaceae plants grown on organic farms are a rich source of bacteria, mainly from the families Enterobacteriaceae and Pseudomonadaceae. The enhanced root system growth in M. truncatula after inoculation with selected bacteria includes an increase of nuclei in the cell cycle S phase and a reduction in phase G2 as well as an enhanced expression of the WOX5 gene. Synthetic fertilizers and pesticides are commonly used to improve plant quality and health. However, it is necessary to look for other efficient and also environmentally safe methods. One such method involves the use of bacteria known as plant growth-promoting bacteria (PGPB). Seventy-two bacterial isolates from the rhizospheric soil and root nodule samples of legumes, including bean, alfalfa, lupine and barrel medic, grown on an organic farm in Western Pomerania (Poland) were screened for their growth-promoting capacities and 38 selected isolates were identified based on 16S rRNA gene sequencing. The analysis showed the isolates to represent 17 strains assigned to 6 families: Enterobacteriaceae, Pseudomonadaceae, Xanthomonadaceae, Rhizobiaceae, Bacillaceae and Alcaligenaceae. Pot experiments showed that 13 strains, capable of producing indole compounds from tryptophan in vitro, could significantly enhance the root and shoot weight of 10-week-old Medicago truncatula seedlings. Compared to non-inoculated seedlings, the root system of inoculated ones was more branched; in addition, the root length, surface area and, especially, the root volume were higher. The 24-h root inoculation with the three selected strains increased the nuclei population in the G1 and S phases, decreased it in the G2 phase and enhanced the WUSCHEL-related Homeobox5 (WOX5) gene expression in root tips and lateral zones. The "arrest" of nuclei in the S phase and the enhancement of the WOX5 gene expression were observed to gradually disappear once the bacterial suspension was rinsed off the seedling roots and the roots were transferred to water for further growth. This study shows that the nodules and rhizosphere of legumes grown on organic farms are a rich source of different PGPB species and provides new data on the ability of these bacteria to interfere with cell cycle and gene expression during the root development.
Collapse
Affiliation(s)
- Ewa Kępczyńska
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-413, Szczecin, Poland.
| | - Piotr Karczyński
- Department of Plant Biotechnology, Faculty of Biology, University of Szczecin, Wąska 13, 71-413, Szczecin, Poland
| |
Collapse
|
24
|
Defez R, Andreozzi A, Romano S, Pocsfalvi G, Fiume I, Esposito R, Angelini C, Bianco C. Bacterial IAA-Delivery into Medicago Root Nodules Triggers a Balanced Stimulation of C and N Metabolism Leading to a Biomass Increase. Microorganisms 2019; 7:microorganisms7100403. [PMID: 31569530 PMCID: PMC6843515 DOI: 10.3390/microorganisms7100403] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/17/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Indole-3-acetic acid (IAA) is the main auxin acting as a phytohormone in many plant developmental processes. The ability to synthesize IAA is widely associated with plant growth-promoting rhizobacteria (PGPR). Several studies have been published on the potential application of PGPR to improve plant growth through the enhancement of their main metabolic processes. In this study, the IAA-overproducing Ensifer meliloti strain RD64 and its parental strain 1021 were used to inoculate Medicago sativa plants. After verifying that the endogenous biosynthesis of IAA did not lead to genomic changes during the initial phases of the symbiotic process, we analyzed whether the overproduction of bacterial IAA inside root nodules influenced, in a coordinated manner, the activity of the nitrogen-fixing apparatus and the photosynthetic function, which are the two processes playing a key role in legume plant growth and productivity. Higher nitrogen-fixing activity and a greater amount of total nitrogen (N), carbon (C), Rubisco, nitrogen-rich amino acids, soluble sugars, and organic acids were measured for RD64-nodulated plants compared to the plants nodulated by the wild-type strain 1021. Furthermore, the RD64-nodulated plants showed a biomass increase over time, with the highest increment (more than 60%) being reached at six weeks after infection. Our findings show that the RD64-nodulated plants need more substrate derived from photosynthesis to generate the ATP required for their increased nitrogenase activity. This high carbohydrate demand further stimulates the photosynthetic function with the production of molecules that can be used to promote plant growth. We thus speculate that the use of PGPR able to stimulate both C and N metabolism with a balanced C/N ratio represents an efficient strategy to obtain substantial gains in plant productivity.
Collapse
Affiliation(s)
- Roberto Defez
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Anna Andreozzi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Silvia Romano
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Immacolata Fiume
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| | - Roberta Esposito
- Institute of Genetics and Biophysics "A.B.T.", CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Claudia Angelini
- Institute for Applied Mathematics "Mauro Picone" IAC, CNR, via P. Castellino 111, 80131 Naples, Italy.
| | - Carmen Bianco
- Institute of Biosciences and BioResources, via P. Castellino 111, 80131 Naples, Italy.
| |
Collapse
|
25
|
Porter JR, Challinor AJ, Henriksen CB, Howden SM, Martre P, Smith P. Invited review: Intergovernmental Panel on Climate Change, agriculture, and food-A case of shifting cultivation and history. GLOBAL CHANGE BIOLOGY 2019; 25:2518-2529. [PMID: 31095820 DOI: 10.1111/gcb.14700] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/01/2019] [Indexed: 05/23/2023]
Abstract
Since 1990, the Intergovernmental Panel on Climate Change (IPCC) has produced five Assessment Reports (ARs), in which agriculture as the production of food for humans via crops and livestock have featured in one form or another. A constructed database of the ca. 2,100 cited experiments and simulations in the five ARs was analyzed with respect to impacts on yields via crop type, region, and whether adaptation was included. Quantitative data on impacts and adaptation in livestock farming have been extremely scarce in the ARs. The main conclusions from impact and adaptation are that crop yields will decline, but that responses have large statistical variation. Mitigation assessments in the ARs have used both bottom-up and top-down methods but need better to link emissions and their mitigation with food production and security. Relevant policy options have become broader in later ARs and included more of the social and nonproduction aspects of food security. Our overall conclusion is that agriculture and food security, which are two of the most central, critical, and imminent issues in climate change, have been dealt with an unfocussed and inconsistent manner between the IPCC five ARs. This is partly a result of not only agriculture spanning two IPCC working groups but also the very strong focus on projections from computer crop simulation modeling. For the future, we suggest a need to examine interactions between themes such as crop resource use efficiencies and to include all production and nonproduction aspects of food security in future roles for integrated assessment models.
Collapse
Affiliation(s)
- John R Porter
- CIHEAM-IAMM - SupAgro - MUSE University of Montpellier, Montpellier, France
- Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | - Andrew J Challinor
- School of Earth and Environment, Institute for Climate and Atmospheric Science (ICAS), University of Leeds, Leeds, UK
| | | | - Stuart Mark Howden
- Climate Change Institute, Australian National University, Canberra, ACT, Australia
| | - Pierre Martre
- LEPSE, INRA, Montpellier SupAgro, Université Montpellier, Montpellier, France
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
26
|
Wei X, Reich PB, Hobbie SE. Legumes regulate grassland soil N cycling and its response to variation in species diversity and N supply but not CO 2. GLOBAL CHANGE BIOLOGY 2019; 25:2396-2409. [PMID: 30932274 DOI: 10.1111/gcb.14636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/07/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Legumes are an important component of plant diversity that modulate nitrogen (N) cycling in many terrestrial ecosystems. Limited knowledge of legume effects on soil N cycling and its response to global change factors and plant diversity hinders a general understanding of whether and how legumes broadly regulate the response of soil N availability to those factors. In a 17-year study of perennial grassland species grown under ambient and elevated (+180 ppm) CO2 and ambient and enriched (+4 g N m-2 year-1 ) N environments, we compared pure legume plots with plots dominated by or including other herbaceous functional groups (and containing one or four species) to assess the effect of legumes on N cycling (net N mineralization rate and inorganic N pools). We also examined the effects of numbers of legume species (from zero to four) in four-species mixed plots on soil N cycling. We hypothesized that legumes would increase N mineralization rates most in those treatments with the greatest diversity and the greatest relative limitation by and competition for N. Results partially supported these hypotheses. Plots with greater dominance by legumes had greater soil nitrate concentrations and mineralization rates. Higher species richness significantly increased the impact of legumes on soil N metrics, with 349% and 505% higher mineralization rates and nitrate concentrations in four-species plots containing legumes compared to legume-free four-species plots, in contrast to 185% and 129% greater values, respectively, in pure legume than nonlegume monoculture plots. N-fertilized plots had greater legume effects on soil nitrate, but lower legume effects on net N mineralization. In contrast, neither elevated CO2 nor its interaction with legumes affected net N mineralization. These results indicate that legumes markedly influence the response of soil N cycling to some, but not all, global change drivers.
Collapse
Affiliation(s)
- Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, China
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith South DC, NSW, Australia
| | - Sarah E Hobbie
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, Minnesota
| |
Collapse
|
27
|
Chakrabarti B, Singh SD, Bhatia A, Kumar V, Harit RC. Yield and Nitrogen Uptake in Wheat and Chickpea Grown Under Elevated Carbon Dioxide Level. NATIONAL ACADEMY SCIENCE LETTERS 2019. [DOI: 10.1007/s40009-019-00816-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
28
|
Sreeharsha RV, Mudalkar S, Sengupta D, Unnikrishnan DK, Reddy AR. Mitigation of drought-induced oxidative damage by enhanced carbon assimilation and an efficient antioxidative metabolism under high CO 2 environment in pigeonpea (Cajanus cajan L.). PHOTOSYNTHESIS RESEARCH 2019; 139:425-439. [PMID: 30244353 DOI: 10.1007/s11120-018-0586-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In the current study, pigeonpea (Cajanus cajan L.), a promising legume food crop was assessed for its photosynthetic physiology, antioxidative system as well as C and N metabolism under elevated CO2 and combined drought stress (DS). Pigeonpea was grown in open top chambers under elevated CO2 (600 µmol mol-1) and ambient CO2 (390 ± 20 µmol mol-1) concentrations, later subjected to DS by complete water withholding. The DS plants were re-watered and recovered (R) to gain normal physiological growth and assessed the recoverable capacity in both elevated and ambient CO2 concentrations. The elevated CO2 grown pigeonpea showed greater gas exchange physiology, nodule mass and total dry biomass over ambient CO2 grown plants under well-watered (WW) and DS conditions albeit a decrease in leaf relative water content (LRWC). Glucose, fructose and sucrose levels were measured to understand the role of hexose to sucrose ratios (H:S) in mediating the drought responses. Free amino acid levels as indicative of N assimilation provided insights into C and N balance under DS and CO2 interactions. The enzymatic and non-enzymatic antioxidants showed significant upregulation in elevated CO2 grown plants under DS thereby protecting the plant from oxidative damage caused by the reactive oxygen species. Our results clearly demonstrated the protective role of elevated CO2 under DS at lower LRWC and gained comparative advantage of mitigating the DS-induced damage over ambient CO2 grown pigeonpea.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Shalini Mudalkar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Debashree Sengupta
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Divya K Unnikrishnan
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046, India.
- Yogi Vemana University, Kadapa, Andhra Pradesh, 516003, India.
| |
Collapse
|
29
|
Parvin S, Uddin S, Bourgault M, Roessner U, Tausz-Posch S, Armstrong R, O'Leary G, Fitzgerald G, Tausz M. Water availability moderates N 2 fixation benefit from elevated [CO 2 ]: A 2-year free-air CO 2 enrichment study on lentil (Lens culinaris MEDIK.) in a water limited agroecosystem. PLANT, CELL & ENVIRONMENT 2018; 41:2418-2434. [PMID: 29859018 DOI: 10.1111/pce.13360] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 05/17/2018] [Accepted: 05/23/2018] [Indexed: 05/09/2023]
Abstract
Increased biomass and yield of plants grown under elevated [CO2 ] often corresponds to decreased grain N concentration ([N]), diminishing nutritional quality of crops. Legumes through their symbiotic N2 fixation may be better able to maintain biomass [N] and grain [N] under elevated [CO2 ], provided N2 fixation is stimulated by elevated [CO2 ] in line with growth and yield. In Mediterranean-type agroecosystems, N2 fixation may be impaired by drought, and it is unclear whether elevated [CO2 ] stimulation of N2 fixation can overcome this impact in dry years. To address this question, we grew lentil under two [CO2 ] (ambient ~400 ppm and elevated ~550 ppm) levels in a free-air CO2 enrichment facility over two growing seasons sharply contrasting in rainfall. Elevated [CO2 ] stimulated N2 fixation through greater nodule number (+27%), mass (+18%), and specific fixation activity (+17%), and this stimulation was greater in the high than in the low rainfall/dry season. Elevated [CO2 ] depressed grain [N] (-4%) in the dry season. In contrast, grain [N] increased (+3%) in the high rainfall season under elevated [CO2 ], as a consequence of greater post-flowering N2 fixation. Our results suggest that the benefit for N2 fixation from elevated [CO2 ] is high as long as there is enough soil water to continue N2 fixation during grain filling.
Collapse
Affiliation(s)
- Shahnaj Parvin
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shihab Uddin
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Maryse Bourgault
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Northern Agricultural Research Centre, Montana State University, Havre, Montana, USA
| | - Ute Roessner
- School of Biosciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabine Tausz-Posch
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Roger Armstrong
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
- Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, Victoria, Australia
| | - Garry O'Leary
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
| | - Glenn Fitzgerald
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Department of Economic Development, Jobs, Transport and Resources, Horsham, Victoria, Australia
| | - Michael Tausz
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
30
|
Shekede MD, Murwira A, Masocha M, Gwitira I. Spatial distribution of Vachellia karroo in Zimbabwean savannas (southern Africa) under a changing climate. Ecol Res 2018. [DOI: 10.1007/s11284-018-1636-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Li Z, Parajulee MN, Chen F. Influence of elevated CO 2 on development and food utilization of armyworm Mythimna separata fed on transgenic Bt maize infected by nitrogen-fixing bacteria. PeerJ 2018; 6:e5138. [PMID: 30002971 PMCID: PMC6035865 DOI: 10.7717/peerj.5138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/09/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bt crops will face a new ecological risk of reduced effectiveness against target-insect pests owing to the general decrease in exogenous-toxin content in Bt crops grown under elevated carbon dioxide (CO2). The method chosen to deal with this issue may affect the sustainability of transgenic crops as an effective pest management tool, especially under future atmospheric CO2 level raising. METHODS In this study, rhizobacterias, as being one potential biological regulator to enhance nitrogen utilization efficiency of crops, was selected and the effects of Bt maize (Line IE09S034 with Cry1Ie vs. its parental line of non-Bt maize Xianyu 335) infected by Azospirillum brasilense (AB) and Azotobacter chroococcum (AC) on the development and food utilization of the target Mythimna separate under ambient and double-ambient CO2 in open-top chambers from 2016 to 2017. RESULTS The results indicated that rhizobacteria infection significantly increased the larval life-span, pupal duration, relative consumption rate and approximate digestibility of M. separata, and significantly decreased the pupation rate, pupal weight, adult longevity, fecundity, relative growth rate, efficiency of conversion of digested food and efficiency of conversion of ingested food of M. separata fed on Bt maize, while here were opposite trends in development and food utilization of M. separata fed on non-Bt maize infected with AB and AC compared with the control buffer in 2016 and 2017 regardless of CO2 level. DISCUSSION Simultaneously, elevated CO2 and Bt maize both had negative influence on the development and food utilization of M. separata. Presumably, CO2 concentration arising in future significantly can increase their intake of food and harm to maize crop; however, Bt maize infected with rhizobacterias can reduce the field hazards from M. separata and the application of rhizobacteria infection can enhance the resistance of Bt maize against target lepidoptera pests especially under elevated CO2.
Collapse
Affiliation(s)
- Zhuo Li
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| | - Megha N. Parajulee
- AgriLife Research and Extension Center, Texas A&M University, Lubbock, TX, USA
| | - Fajun Chen
- Department of Entomology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
32
|
Zinta G, AbdElgawad H, Peshev D, Weedon JT, Van den Ende W, Nijs I, Janssens IA, Beemster GTS, Asard H. Dynamics of metabolic responses to periods of combined heat and drought in Arabidopsis thaliana under ambient and elevated atmospheric CO2. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2159-2170. [PMID: 29462345 PMCID: PMC6019062 DOI: 10.1093/jxb/ery055] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/06/2018] [Indexed: 05/24/2023]
Abstract
As a consequence of global change processes, plants will increasingly be challenged by extreme climatic events, against a background of elevated atmospheric CO2. We analysed responses of Arabidopsis thaliana to periods of a combination of elevated heat and water deficit at ambient and elevated CO2 in order to gain mechanistic insights regarding changes in primary metabolism. Metabolic changes induced by extremes of climate are dynamic and specific to different classes of molecules. Concentrations of soluble sugars and amino acids increased transiently after short (4-d) exposure to heat and drought, and readjusted to control levels under prolonged (8-d) stress. In contrast, fatty acids showed persistent changes during the stress period. Elevated CO2 reduced the impact of stress on sugar and amino acid metabolism, but not on fatty acids. Integrating metabolite data with transcriptome results revealed that some of the metabolic changes were regulated at the transcriptional level. Multivariate analyses grouped metabolites on the basis of stress exposure time, indicating specificity in metabolic responses to short and prolonged stress. Taken together, the results indicate that dynamic metabolic reprograming plays an important role in plant acclimation to climatic extremes. The extent of such metabolic adjustments is less under high CO2, further pointing towards the role of high CO2 in stress mitigation.
Collapse
Affiliation(s)
- Gaurav Zinta
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| | - Hamada AbdElgawad
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
- Department of Botany, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Darin Peshev
- Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - James T Weedon
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, Institute of Botany and Microbiology, KU Leuven, Leuven-Heverlee, Belgium
| | - Ivan Nijs
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Ivan A Janssens
- Centre of excellence PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Universiteitsplein, Antwerp, Wilrijk, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| | - Han Asard
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Groenenborgerlaan, Antwerp, Belgium
| |
Collapse
|
33
|
Li Y, Yu Z, Liu X, Mathesius U, Wang G, Tang C, Wu J, Liu J, Zhang S, Jin J. Elevated CO 2 Increases Nitrogen Fixation at the Reproductive Phase Contributing to Various Yield Responses of Soybean Cultivars. FRONTIERS IN PLANT SCIENCE 2017; 8:1546. [PMID: 28959266 PMCID: PMC5603704 DOI: 10.3389/fpls.2017.01546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 08/23/2017] [Indexed: 05/24/2023]
Abstract
Nitrogen deficiency limits crop performance under elevated CO2 (eCO2), depending on the ability of plant N uptake. However, the dynamics and redistribution of N2 fixation, and fertilizer and soil N use in legumes under eCO2 have been little studied. Such an investigation is essential to improve the adaptability of legumes to climate change. We took advantage of genotype-specific responses of soybean to increased CO2 to test which N-uptake phenotypes are most strongly related to enhanced yield. Eight soybean cultivars were grown in open-top chambers with either 390 ppm (aCO2) or 550 ppm CO2 (eCO2). The plants were supplied with 100 mg N kg-1 soil as 15N-labeled calcium nitrate, and harvested at the initial seed-filling (R5) and full-mature (R8) stages. Increased yield in response to eCO2 correlated highly (r = 0.95) with an increase in symbiotically fixed N during the R5 to R8 stage. In contrast, eCO2 only led to small increases in the uptake of fertilizer-derived and soil-derived N during R5 to R8, and these increases did not correlate with enhanced yield. Elevated CO2 also decreased the proportion of seed N redistributed from shoot to seeds, and this decrease strongly correlated with increased yield. Moreover, the total N uptake was associated with increases in fixed-N per nodule in response to eCO2, but not with changes in nodule biomass, nodule density, or root length.
Collapse
Affiliation(s)
- Yansheng Li
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Zhenhua Yu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Xiaobing Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National UniversityCanberra, ACT, Australia
| | - Guanghua Wang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| | - Junjiang Wu
- Key Laboratory of Soybean Cultivation of Ministry of Agriculture, Soybean Research Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Judong Liu
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Shaoqing Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
| | - Jian Jin
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of SciencesHarbin, China
- Centre for AgriBioscience, La Trobe UniversityBundoora, VIC, Australia
| |
Collapse
|
34
|
Sanz-Sáez Á, Koester RP, Rosenthal DM, Montes CM, Ort DR, Ainsworth EA. Leaf and canopy scale drivers of genotypic variation in soybean response to elevated carbon dioxide concentration. GLOBAL CHANGE BIOLOGY 2017; 23:3908-3920. [PMID: 28267246 DOI: 10.1111/gcb.13678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/15/2017] [Accepted: 02/23/2017] [Indexed: 05/22/2023]
Abstract
The atmospheric [CO2 ] in which crops grow today is greater than at any point in their domestication history and represents an opportunity for positive effects on seed yield that can counteract the negative effects of greater heat and drought this century. In order to maximize yields under future atmospheric [CO2 ], we need to identify and study crop cultivars that respond most favorably to elevated [CO2 ] and understand the mechanisms contributing to their responsiveness. Soybean (Glycine max Merr.) is a widely grown oilseed crop and shows genetic variation in response to elevated [CO2 ]. However, few studies have studied the physiological basis for this variation. Here, we examined canopy light interception, photosynthesis, respiration and radiation use efficiency along with yield and yield parameters in two cultivars of soybean (Loda and HS93-4118) previously reported to have similar seed yield at ambient [CO2 ], but contrasting responses to elevated [CO2 ]. Seed yield increased by 26% at elevated [CO2 ] (600 μmol/mol) in the responsive cultivar Loda, but only by 11% in HS93-4118. Canopy light interception and leaf area index were greater in HS93-4118 in ambient [CO2 ], but increased more in response to elevated [CO2 ] in Loda. Radiation use efficiency and harvest index were also greater in Loda than HS93-4118 at both ambient and elevated [CO2 ]. Daily C assimilation was greater at elevated [CO2 ] in both cultivars, while stomatal conductance was lower. Electron transport capacity was also greater in Loda than HS93-4118, but there was no difference in the response of photosynthetic traits to elevated [CO2 ] in the two cultivars. Overall, this greater understanding of leaf- and canopy-level photosynthetic traits provides a strong conceptual basis for modeling genotypic variation in response to elevated [CO2 ].
Collapse
Affiliation(s)
- Álvaro Sanz-Sáez
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Robert P Koester
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - David M Rosenthal
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Christopher M Montes
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Donald R Ort
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, USA
| |
Collapse
|
35
|
Kumar R, Bohra A, Pandey AK, Pandey MK, Kumar A. Metabolomics for Plant Improvement: Status and Prospects. FRONTIERS IN PLANT SCIENCE 2017; 8:1302. [PMID: 28824660 PMCID: PMC5545584 DOI: 10.3389/fpls.2017.01302] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/11/2017] [Indexed: 05/12/2023]
Abstract
Post-genomics era has witnessed the development of cutting-edge technologies that have offered cost-efficient and high-throughput ways for molecular characterization of the function of a cell or organism. Large-scale metabolite profiling assays have allowed researchers to access the global data sets of metabolites and the corresponding metabolic pathways in an unprecedented way. Recent efforts in metabolomics have been directed to improve the quality along with a major focus on yield related traits. Importantly, an integration of metabolomics with other approaches such as quantitative genetics, transcriptomics and genetic modification has established its immense relevance to plant improvement. An effective combination of these modern approaches guides researchers to pinpoint the functional gene(s) and the characterization of massive metabolites, in order to prioritize the candidate genes for downstream analyses and ultimately, offering trait specific markers to improve commercially important traits. This in turn will improve the ability of a plant breeder by allowing him to make more informed decisions. Given this, the present review captures the significant leads gained in the past decade in the field of plant metabolomics accompanied by a brief discussion on the current contribution and the future scope of metabolomics to accelerate plant improvement.
Collapse
Affiliation(s)
- Rakesh Kumar
- Department of Plant Sciences, University of Hyderabad (UoH)Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Abhishek Bohra
- Crop Improvement Division, Indian Institute of Pulses Research (IIPR)Kanpur, India
| | - Arun K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Manish K. Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Hyderabad, India
| | - Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU)Amarkantak, India
| |
Collapse
|
36
|
Srinivasan V, Kumar P, Long SP. Decreasing, not increasing, leaf area will raise crop yields under global atmospheric change. GLOBAL CHANGE BIOLOGY 2017; 23:1626-1635. [PMID: 27860122 PMCID: PMC5347850 DOI: 10.1111/gcb.13526] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/17/2016] [Indexed: 05/18/2023]
Abstract
Without new innovations, present rates of increase in yields of food crops globally are inadequate to meet the projected rising food demand for 2050 and beyond. A prevailing response of crops to rising [CO2 ] is an increase in leaf area. This is especially marked in soybean, the world's fourth largest food crop in terms of seed production, and the most important vegetable protein source. Is this increase in leaf area beneficial, with respect to increasing yield, or is it detrimental? It is shown from theory and experiment using open-air whole-season elevation of atmospheric [CO2 ] that it is detrimental not only under future conditions of elevated [CO2 ] but also under today's [CO2 ]. A mechanistic biophysical and biochemical model of canopy carbon exchange and microclimate (MLCan) was parameterized for a modern US Midwest soybean cultivar. Model simulations showed that soybean crops grown under current and elevated (550 [ppm]) [CO2 ] overinvest in leaves, and this is predicted to decrease productivity and seed yield 8% and 10%, respectively. This prediction was tested in replicated field trials in which a proportion of emerging leaves was removed prior to expansion, so lowering investment in leaves. The experiment was conducted under open-air conditions for current and future elevated [CO2 ] within the Soybean Free Air Concentration Enrichment facility (SoyFACE) in central Illinois. This treatment resulted in a statistically significant 8% yield increase. This is the first direct proof that a modern crop cultivar produces more leaf than is optimal for yield under today's and future [CO2 ] and that reducing leaf area would give higher yields. Breeding or bioengineering for lower leaf area could, therefore, contribute very significantly to meeting future demand for staple food crops given that an 8% yield increase across the USA alone would amount to 6.5 million metric tons annually.
Collapse
Affiliation(s)
- Venkatraman Srinivasan
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
| | - Praveen Kumar
- Department of Civil and Environmental EngineeringUniversity of Illinois Urbana ChampaignUrbanaILUSA
- Department of Atmospheric SciencesUniversity of Illinois Urbana ChampaignUrbanaILUSA
| | - Stephen P. Long
- The Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana ChampaignUrbanaILUSA
- Department of Crop SciencesUniversity of Illinois Urbana ChampaignUrbanaILUSA
- Department of Plant BiologyUniversity of Illinois Urbana ChampaignUrbanaILUSA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
37
|
Burnett AC, Rogers A, Rees M, Osborne CP. Carbon source-sink limitations differ between two species with contrasting growth strategies. PLANT, CELL & ENVIRONMENT 2016; 39:2460-2472. [PMID: 0 DOI: 10.1111/pce.12801] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/02/2016] [Accepted: 07/11/2016] [Indexed: 05/08/2023]
Affiliation(s)
- Angela C. Burnett
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Alistair Rogers
- Environmental and Climate Sciences Department; Brookhaven National Laboratory; Upton NY 11973 USA
| | - Mark Rees
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| | - Colin P. Osborne
- Department of Animal and Plant Sciences; University of Sheffield; Sheffield S10 2TN UK
| |
Collapse
|
38
|
Coskun D, Britto DT, Kronzucker HJ. Nutrient constraints on terrestrial carbon fixation: The role of nitrogen. JOURNAL OF PLANT PHYSIOLOGY 2016; 203:95-109. [PMID: 27318532 DOI: 10.1016/j.jplph.2016.05.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/26/2016] [Accepted: 05/30/2016] [Indexed: 06/06/2023]
Abstract
Carbon dioxide (CO2) concentrations in the earth's atmosphere are projected to rise from current levels near 400ppm to over 700ppm by the end of the 21st century. Projections over this time frame must take into account the increases in total net primary production (NPP) expected from terrestrial plants, which result from elevated CO2 (eCO2) and have the potential to mitigate the impact of anthropogenic CO2 emissions. However, a growing body of evidence indicates that limitations in soil nutrients, particularly nitrogen (N), the soil nutrient most limiting to plant growth, may greatly constrain future carbon fixation. Here, we review recent studies about the relationships between soil N supply, plant N nutrition, and carbon fixation in higher plants under eCO2, highlighting key discoveries made in the field, particularly from free-air CO2 enrichment (FACE) technology, and relate these findings to physiological and ecological mechanisms.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Canada
| | - Dev T Britto
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Canada
| | - Herbert J Kronzucker
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, Canada.
| |
Collapse
|
39
|
Currano ED, Laker R, Flynn AG, Fogt KK, Stradtman H, Wing SL. Consequences of elevated temperature and pCO2 on insect folivory at the ecosystem level: perspectives from the fossil record. Ecol Evol 2016; 6:4318-31. [PMID: 27386078 PMCID: PMC4891205 DOI: 10.1002/ece3.2203] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 11/09/2022] Open
Abstract
Paleoecological studies document the net effects of atmospheric and climate change in a natural laboratory over timescales not accessible to laboratory or ecological studies. Insect feeding damage is visible on well‐preserved fossil leaves, and changes in leaf damage through time can be compared to environmental changes. We measured percent leaf area damaged on four fossil leaf assemblages from the Bighorn Basin, Wyoming, that range in age from 56.1 to 52.65 million years (Ma). We also include similar published data from three US sites 49.4 to ~45 Ma in our analyses. Regional climate was subtropical or warmer throughout this period, and the second oldest assemblage (56 Ma) was deposited during the Paleocene–Eocene Thermal Maximum (PETM), a geologically abrupt global warming event caused by massive release of carbon into the atmosphere. Total and leaf‐chewing damage are highest during the PETM, whether considering percent area damaged on the bulk flora, the average of individual host plants, or a single plant host that occurs at multiple sites. Another fossil assemblage in our study, the 52.65 Ma Fifteenmile Creek paleoflora, also lived during a period of globally high temperature and pCO2, but does not have elevated herbivory. Comparison of these two sites, as well as regression analyses conducted on the entire dataset, demonstrates that, over long timescales, temperature and pCO2 are uncorrelated with total insect consumption at the ecosystem level. Rather, the most important factor affecting herbivory is the relative abundance of plants with nitrogen‐fixing symbionts. Legumes dominate the PETM site; their prevalence would have decreased nitrogen limitation across the ecosystem, buffering generalist herbivore populations against decreased leaf nutritional quality that commonly occurs at high pCO2. We hypothesize that nitrogen concentration regulates the opposing effects of elevated temperature and CO2 on insect abundance and thereby total insect consumption, which has important implications for agricultural practices in today's world of steadily increasing pCO2.
Collapse
Affiliation(s)
- Ellen D Currano
- Departments of Botany and Geology & Geophysics University of Wyoming Laramie Wyoming; Department of Geology and Environmental Earth Science Miami University Oxford Ohio
| | - Rachel Laker
- Department of Geology and Environmental Earth Science Miami University Oxford Ohio
| | - Andrew G Flynn
- Department of Geology and Environmental Earth Science Miami University Oxford Ohio; Department of Geology Baylor University Waco Texas
| | - Kari K Fogt
- Department of Geology and Environmental Earth Science Miami University Oxford Ohio
| | - Hillary Stradtman
- Department of Geology and Environmental Earth Science Miami University Oxford Ohio
| | - Scott L Wing
- Department of Paleobiology Smithsonian Institution Washington District of Columbia
| |
Collapse
|
40
|
Reich M, van den Meerakker AN, Parmar S, Hawkesford MJ, De Kok LJ. Temperature determines size and direction of effects of elevated CO2 and nitrogen form on yield quantity and quality of Chinese cabbage. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:63-75. [PMID: 26390257 DOI: 10.1111/plb.12396] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/15/2015] [Indexed: 05/26/2023]
Abstract
Rising atmospheric CO2 concentrations (e[CO2 ]) are presumed to have a significant impact on plant growth and yield and also on mineral nutrient composition, and therefore, on nutritional quality of crops and vegetables. To assess the relevance of these effects in future agroecosystems it is important to understand how e[CO2 ] interacts with other environmental factors. In the present study, we examined the interactive effects of e[CO2 ] with temperature and the form in which nitrogen is supplied (nitrate or ammonium nitrate) on growth, amino acid content and mineral nutrient composition of Chinese cabbage (Brassica pekinensis Rupr.), a crop characterised by its high nutritional value and increasing relevance for human nutrition in many developing countries. Higher temperature, ammonium nitrate and e[CO2 ] had a positive impact on net photosynthesis and growth. A stimulating effect of e[CO2 ] on growth was only observed if the temperature was high (21/18 °C, day/night), and an interaction of e[CO2 ] with N form was only observed if the temperature was ambient (15/12 °C, day/night). Mineral nutrient composition was affected in a complex manner by all three factors and their interaction. These results demonstrate how much the effect of e[CO2 ] on mineral quality of crops depends on other environmental factors. Changes in temperature, adapting N fertilisation and the oxidation state of N have the potential to counteract the mineral depletion caused by e[CO2 ].
Collapse
Affiliation(s)
- M Reich
- Laboratory of Plant Physiology, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - A N van den Meerakker
- Laboratory of Plant Physiology, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - S Parmar
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, UK
| | - M J Hawkesford
- Department of Plant Biology and Crop Science, Rothamsted Research, Harpenden, UK
| | - L J De Kok
- Laboratory of Plant Physiology, Groningen Institute of Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
41
|
Sanz-Sáez Á, Heath KD, Burke PV, Ainsworth EA. Inoculation with an enhanced N2 -fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean (Glycine max Merr.) response to elevated [CO2 ]. PLANT, CELL & ENVIRONMENT 2015; 38:2589-602. [PMID: 26012898 DOI: 10.1111/pce.12577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2015] [Accepted: 05/12/2015] [Indexed: 05/22/2023]
Abstract
This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2 ]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2 ] and 34% at ambient [CO2 ]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2 ] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater (15) N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2 ]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2 ]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2 ].
Collapse
Affiliation(s)
- Álvaro Sanz-Sáez
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Plant Biology and Ecology, Pharmacy Faculty, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Alava, 01007, Spain
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
42
|
Bishop KA, Betzelberger AM, Long SP, Ainsworth EA. Is there potential to adapt soybean (Glycine max Merr.) to future [CO₂]? An analysis of the yield response of 18 genotypes in free-air CO₂ enrichment. PLANT, CELL & ENVIRONMENT 2015; 38:1765-74. [PMID: 25211487 DOI: 10.1111/pce.12443] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 05/03/2023]
Abstract
Rising atmospheric [CO2] is a uniform, global change that increases C3 photosynthesis and could offset some of the negative effects of global climate change on crop yields. Genetic variation in yield responsiveness to rising [CO2] would provide an opportunity to breed more responsive crop genotypes. A multi-year study of 18 soybean (Glycine max Merr.) genotypes was carried out to identify variation in responsiveness to season-long elevated [CO2] (550 ppm) under fully open-air replicated field conditions. On average across 18 genotypes, elevated [CO2] stimulated total above-ground biomass by 22%, but seed yield by only 9%, in part because most genotypes showed a reduction in partitioning of energy to seeds. Over four years of study, there was consistency from year to year in the genotypes that were most and least responsive to elevated [CO2], suggesting heritability of CO2 response. Further analysis of six genotypes did not reveal a photosynthetic basis for the variation in yield response. Although partitioning to seed was decreased, cultivars with the highest partitioning coefficient in current [CO2 ] also had the highest partitioning coefficient in elevated [CO2]. The results show the existence of genetic variation in soybean response to elevated [CO2], which is needed to breed soybean to the future atmospheric environment.
Collapse
Affiliation(s)
- Kristen A Bishop
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amy M Betzelberger
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen P Long
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
43
|
Sreeharsha RV, Sekhar KM, Reddy AR. Delayed flowering is associated with lack of photosynthetic acclimation in Pigeon pea (Cajanus cajan L.) grown under elevated CO₂. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:82-93. [PMID: 25575994 DOI: 10.1016/j.plantsci.2014.11.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/21/2014] [Accepted: 11/26/2014] [Indexed: 05/19/2023]
Abstract
In the present study, we investigated the likely consequences of future atmospheric CO2 concentrations [CO2] on growth, physiology and reproductive phenology of Pigeonpea. A short duration Pigeonpea cultivar (ICPL 15011) was grown without N fertilizer from emergence to final harvest in CO2 enriched atmosphere (open top chambers; 550μmolmol(-1)) for two seasons. CO2 enrichment improved both net photosynthetic rates (Asat) and foliar carbohydrate content by 36 and 43%, respectively, which further reflected in dry biomass after harvest, showing an increment of 29% over the control plants. Greater carboxylation rates of Rubisco (Vcmax) and photosynthetic electron transport rates (Jmax) in elevated CO2 grown plants measured during different growth periods, clearly demonstrated lack of photosynthetic acclimation. Further, chlorophyll a fluorescence measurements as indicated by Fv/Fm and ΔF/Fm' ratios justified enhanced photosystem II efficiency. Mass and number of root nodules were significantly high in elevated CO2 grown plants showing 58% increase in nodule mass ratio (NMR) which directly correlated with Pn. Growth under high CO2 showed significant ontogenic changes including delayed flowering. In conclusion, our data demonstrate that the lack of photosynthetic acclimation and increased carbohydrate-nitrogen reserves modulate the vegetative and reproductive growth patterns in Pigeonpea grown under elevated CO2.
Collapse
Affiliation(s)
- Rachapudi Venkata Sreeharsha
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Kalva Madhana Sekhar
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India
| | - Attipalli Ramachandra Reddy
- Photosynthesis and Climate Change Laboratory, Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, AP, India.
| |
Collapse
|
44
|
AbdElgawad H, Farfan-Vignolo ER, de Vos D, Asard H. Elevated CO₂ mitigates drought and temperature-induced oxidative stress differently in grasses and legumes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:1-10. [PMID: 25575986 DOI: 10.1016/j.plantsci.2014.11.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/27/2014] [Accepted: 11/04/2014] [Indexed: 05/24/2023]
Abstract
Increasing atmospheric CO2 will affect plant growth, including mitigation of stress impact. Such effects vary considerably between species-groups. Grasses (Lolium perenne, Poa pratensis) and legumes (Medicago lupulina, Lotus corniculatus) were subjected to drought, elevated temperature and elevated CO2. Drought inhibited plant growth, photosynthesis and stomatal conductance, and induced osmolytes and antioxidants in all species. In contrast, oxidative damage was more strongly induced in the legumes than in the grasses. Warming generally exacerbated drought effects, whereas elevated CO2 reduced stress impact. In the grasses, photosynthesis and chlorophyll levels were more protected by CO2 than in the legumes. Oxidative stress parameters (lipid peroxidation, H2O2 levels), on the other hand, were generally more reduced in the legumes. This is consistent with changes in molecular antioxidants, which were reduced by elevated CO2 in the grasses, but not in the legumes. Antioxidant enzymes decreased similarly in both species-groups. The ascorbate-glutathione cycle was little affected by drought and CO2. Overall, elevated CO2 reduced drought effects in grasses and legumes, and this mitigation was stronger in the legumes. This is possibly explained by stronger reduction in H2O2 generation (photorespiration and NADPH oxidase), and a higher availability of molecular antioxidants. The grass/legume-specificity was supported by principal component analysis.
Collapse
Affiliation(s)
- Hamada AbdElgawad
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Evelyn Roxana Farfan-Vignolo
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium
| | - Dirk de Vos
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium; Department of Mathematics and Computer Science, University of Antwerp, B-2020 Antwerp, Belgium
| | - Han Asard
- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, B-2020 Antwerp, Belgium.
| |
Collapse
|
45
|
Madhu M, Hatfield JL. Elevated Carbon Dioxide and Soil Moisture on Early Growth Response of Soybean. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/as.2015.62027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Chen JS, Li J, Zhang Y, Zong H, Lei NF. Clonal integration ameliorates the carbon accumulation capacity of a stoloniferous herb, Glechoma longituba, growing in heterogenous light conditions by facilitating nitrogen assimilation in the rhizosphere. ANNALS OF BOTANY 2015; 115:127-36. [PMID: 25429006 PMCID: PMC4284106 DOI: 10.1093/aob/mcu207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/29/2014] [Accepted: 09/02/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND AND AIMS Enhanced availability of photosynthates increases nitrogen (N) mineralization and nitrification in the rhizosphere via rhizodeposition from plant roots. Under heterogeneous light conditions, photosynthates supplied by exposed ramets may promote N assimilation in the rhizosphere of shaded, connected ramets. This study was conducted to test this hypothesis. METHODS Clonal fragments of the stoloniferous herb Glechoma longituba with two successive ramets were selected. Mother ramets were subjected to full sunlight and offspring ramets were subjected to 80 % shading, and the stolon between the two successive ramets was either severed or left intact. Measurements were taken of photosynthetic and growth parameters. The turnover of available soil N was determined together with the compostion of the rhizosphere microbial community. KEY RESULTS The microbial community composition in the rhizosphere of shaded offspring ramets was significantly altered by clonal integration. Positive effects of clonal integration were observed on NAGase activity, net soil N mineralization rate and net soil N nitrification rate. Increased leaf N and chlorophyll content as well as leaf N allocation to the photosynthetic machinery improved the photosynthetic capability of shaded offspring ramets when the stolon was left intact. Clonal integration improved the growth performance of shaded, connected offspring ramets and whole clonal fragments without any cost to the exposed mother ramets. CONCLUSIONS Considerable differences in microbial community composition caused by clonal integration may facilitate N assimilation in the rhizosphere of shaded offspring ramets. Increased N content in the photosynthetic machinery may allow pre-acclimation to high light conditions for shaded offspring ramets, thus promoting opportunistic light capture. In accordance with the theory of the division of labour, it is suggested that clonal integration may ameliorate the carbon assimilation capacity of clonal plants, thus improving their fitness in temporally and spatially heterogeneous habitats.
Collapse
Affiliation(s)
- Jin-Song Chen
- College of Life Science, Sichuan Normal University, Chengdu 610101, China and College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Jun Li
- College of Life Science, Sichuan Normal University, Chengdu 610101, China and College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Yun Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610101, China and College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Hao Zong
- College of Life Science, Sichuan Normal University, Chengdu 610101, China and College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| | - Ning-Fei Lei
- College of Life Science, Sichuan Normal University, Chengdu 610101, China and College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|
47
|
Wang X, Taub DR, Jablonski LM. Reproductive allocation in plants as affected by elevated carbon dioxide and other environmental changes: a synthesis using meta-analysis and graphical vector analysis. Oecologia 2014; 177:1075-87. [DOI: 10.1007/s00442-014-3191-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 12/12/2014] [Indexed: 11/28/2022]
|
48
|
Zinta G, AbdElgawad H, Domagalska MA, Vergauwen L, Knapen D, Nijs I, Janssens IA, Beemster GTS, Asard H. Physiological, biochemical, and genome-wide transcriptional analysis reveals that elevated CO2 mitigates the impact of combined heat wave and drought stress in Arabidopsis thaliana at multiple organizational levels. GLOBAL CHANGE BIOLOGY 2014; 20:3670-85. [PMID: 24802996 DOI: 10.1111/gcb.12626] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/12/2014] [Indexed: 05/19/2023]
Abstract
Climate changes increasingly threaten plant growth and productivity. Such changes are complex and involve multiple environmental factors, including rising CO2 levels and climate extreme events. As the molecular and physiological mechanisms underlying plant responses to realistic future climate extreme conditions are still poorly understood, a multiple organizational level analysis (i.e. eco-physiological, biochemical, and transcriptional) was performed, using Arabidopsis exposed to incremental heat wave and water deficit under ambient and elevated CO2 . The climate extreme resulted in biomass reduction, photosynthesis inhibition, and considerable increases in stress parameters. Photosynthesis was a major target as demonstrated at the physiological and transcriptional levels. In contrast, the climate extreme treatment induced a protective effect on oxidative membrane damage, most likely as a result of strongly increased lipophilic antioxidants and membrane-protecting enzymes. Elevated CO2 significantly mitigated the negative impact of a combined heat and drought, as apparent in biomass reduction, photosynthesis inhibition, chlorophyll fluorescence decline, H2 O2 production, and protein oxidation. Analysis of enzymatic and molecular antioxidants revealed that the stress-mitigating CO2 effect operates through up-regulation of antioxidant defense metabolism, as well as by reduced photorespiration resulting in lowered oxidative pressure. Therefore, exposure to future climate extreme episodes will negatively impact plant growth and production, but elevated CO2 is likely to mitigate this effect.
Collapse
Affiliation(s)
- Gaurav Zinta
- Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, Antwerp, Wilrijk, B-2610, Belgium; Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Aljazairi S, Arias C, Sánchez E, Lino G, Nogués S. Effects of pre-industrial, current and future [CO2] in traditional and modern wheat genotypes. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1654-1663. [PMID: 25173452 DOI: 10.1016/j.jplph.2014.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
Wheat is one of the most important cereal food crops in the world today. The productivity and quality of this crop is greatly affected by environmental conditions during grain filling. In this study, we have analyzed two genotypes of durum wheat, Blanqueta and Sula (traditional and a modern wheat respectively) in pre-industrial, current and future [CO2]. Plant growth and physiological parameters were analyzed during anthesis and grain filling in order to study the capacity of these plants to create new sinks and their role during the process of the acclimation of photosynthesis. It was observed that plants underwent photosynthetic acclimation at pre-industrial and future [CO2] (up and down-regulation respectively). However, the modern genotype averts the process of down-regulation by creating a new carbon sink (i.e. the spike). Here, we have shown the essential role that the spike plays as a new sink in order to avert the down-regulation of photosynthesis at future [CO2]. Moreover, we have demonstrated that at future [CO2] the growth response will depend on the ability of plants to develop new sinks or expand existing ones.
Collapse
Affiliation(s)
- Salvador Aljazairi
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain.
| | - Claudia Arias
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Elena Sánchez
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Gladys Lino
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| | - Salvador Nogués
- Unitat de Fisiologia Vegetal, Departament de Biologia Vegetal, Facultat de Biologia, Universitat de Barcelona, Diagonal 645, Barcelona, Spain
| |
Collapse
|
50
|
Rosenthal DM, Ruiz-Vera UM, Siebers MH, Gray SB, Bernacchi CJ, Ort DR. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of soybean (Glycine max) at elevated [CO₂] and temperatures under fully open air field conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 226:136-46. [PMID: 25113459 DOI: 10.1016/j.plantsci.2014.06.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on (1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the maximum carboxylation capacity of Rubisco (Vc,max) and the maximum potential linear electron flux through photosystem II (Jmax), (2) the associated responses of leaf structural and chemical properties related to A, as well as (3) the stomatal limitation (l) imposed on A, for soybean over two growing seasons in a conventionally managed agricultural field in Illinois, USA. Acclimation to elevated [CO2] was consistent over two growing seasons with respect to Vc,max and Jmax. However, elevated temperature significantly decreased Jmax contributing to lower photosynthetic stimulation by elevated CO2. Large seasonal differences in precipitation altered soil moisture availability modulating the complex effects of elevated temperature and CO2 on biochemical and structural properties related to A. Elevated temperature also reduced the benefit of elevated [CO2] by eliminating decreases in stomatal limitation at elevated [CO2]. These results highlight the critical importance of considering multiple environmental factors (i.e. temperature, moisture, [CO2]) when trying to predict plant productivity in the context of climate change.
Collapse
Affiliation(s)
- David M Rosenthal
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA.
| | - Ursula M Ruiz-Vera
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Matthew H Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Sharon B Gray
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Carl J Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Global Change and Photosynthesis Research Unit, USDA Agricultural Research Service, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|