1
|
Yuan X, Du Y, Feng Z, Gun S, Qu L, Agathokleous E. Differential responses and mechanisms of monoterpene emissions from broad-leaved and coniferous species under elevated ozone scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175291. [PMID: 39117227 DOI: 10.1016/j.scitotenv.2024.175291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Although ozone (O3) pollution affects plant growth and monoterpene (MT) emissions, the responses of MT emission rates to elevated O3 and the related mechanisms are not entirely understood. To gain an insight into these effects and mechanisms, we evaluated physiological (leaf MT synthesis ability, including precursor availability and enzyme kinetics) and physicochemical limiting factors (e.g. leaf thickness of the lower and upper epidermis, palisade and spongy tissue, and size of resin ducts and stomatal aperture) affecting MT emissions simultaneously from two broad-leaved and two coniferous species after one growing season of field experiment. The effects of elevated O3 on MT emissions and the related mechanisms differed between plant functional types. Specifically, long-term moderate O3 exposure significantly reduced MT emissions in broad-leaved species, primarily attributed to a systematic decrease in MT synthesis ability, including reductions in all MT precursors, geranyl diphosphate content, and MT synthase protein levels. In contrast, the same O3 exposure significantly enhanced MT emissions in coniferous species. However, the change in MT emissions in coniferous species was not due to modifications in leaf MT synthesis ability but rather because of alterations in leaf anatomical structure characteristics, particularly the size of resin ducts and stomatal aperture. These findings provide an important understanding of the mechanisms driving MT emissions from different tree functional groups and can enlighten the estimation of MT emissions in the context of O3 pollution scenarios as well as the development of MT emission algorithms.
Collapse
Affiliation(s)
- Xiangyang Yuan
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Yingdong Du
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| | - Zhaozhong Feng
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China.
| | - Siyu Gun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, No. 18, Shuangqing Road, Beijing 100085, China
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China
| |
Collapse
|
2
|
Li S, Feng Z, Yuan X, Wang M, Agathokleous E. Elevated ozone inhibits isoprene emission of a diploid and a triploid genotype of Populus tomentosa by different mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6449-6462. [PMID: 35767843 DOI: 10.1093/jxb/erac288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Ozone (O3) pollution affects plant growth and isoprene (ISO) emission. However, the response mechanism of isoprene emission rate (ISOrate) to elevated O3 (EO3) remains poorly understood. ISOrate was investigated in two genotypes (diploid and triploid) of Chinese white poplar (Populus tomentosa Carr.) exposed to EO3 in an open top chamber system. The triploid genotype had higher photosynthetic rate (A) and stomatal conductance (gs) than the diploid one. EO3 significantly decreased A, gs, and ISOrate of middle and lower leaves in both genotypes. In the diploid genotype, the reduction of ISOrate was caused by a systematic decrease related to ISO synthesis capacity, as indicated by decreased contents of the isoprene precursor dimethylallyl diphosphate and decreased isoprene synthase protein and activity. On the other hand, the negative effect of O3 on ISOrate of the triploid genotype did not result from inhibited ISO synthesis capacity, but from increased ISO oxidative loss within the leaf. Our findings will be useful for breeding poplar genotypes with high yield and lower ISOrate, depending on local atmospheric volatile organic compound/NOx ratio, to cope with both the rising O3 concentrations and increasing biomass demand. They can also inform the incorporation of O3 effects into process-based models of isoprene emission.
Collapse
Affiliation(s)
- Shuangjiang Li
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, China
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Haidian District, Beijing, China
| | - Miaomiao Wang
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, China
| |
Collapse
|
3
|
Li S, Yuan X, Feng Z, Du Y, Agathokleous E, Paoletti E. Whole-plant compensatory responses of isoprene emission from hybrid poplar seedlings exposed to elevated ozone. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150949. [PMID: 34655631 DOI: 10.1016/j.scitotenv.2021.150949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
It is still unclear whether the responses of isoprene (ISO) emission to elevated O3 vary with biological organization level (i.e. leaf and whole-plant). To study such responses and the possible reasons explaining their variation, we investigated the effect of O3 (CF: charcoal-filtered ambient air; E-O3: non-filtered ambient air enriched with O3) on ISO emission rate (ISOrate), net photosynthetic rate (Pn), leaf nitrogen and carbon contents, and leaf growth traits in poplar seedlings (Populus deltoides cv. 55/56 × P. deltoides cv. Imperial) during one growing season. Opposite effects of E-O3 on Pn were found between upper leaves (positive effect) and lower leaves (negative effect). Compared to CF, E-O3 significantly decreased leaf mass per area, number of leaves, and leaf biomass, but increased leaf nitrogen content and individual leaf size. In the framework of such compensatory responses, poplar seedlings further increased ISOrate in upper leaves and decreased ISOrate in lower leaves, thus preventing significant decrease in the overall whole-plant ISOrate by E-O3. The measured whole-plant ISOrate also showed that the simplistic estimation approaches based on the linear regression between chlorophyll content indicated by soil plant analysis development meter (SPAD value) and leaf-level ISOrate could not accurately reflect the true response of whole plant to elevated O3. For more accurate predictions, the potential ISO compensatory response to increasing O3 concentration should be incorporated into the climate biogeochemical models related to ISO emission.
Collapse
Affiliation(s)
- Shuangjiang Li
- School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Beijing 100085, China.
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China.
| | - Yingdong Du
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems, National Council of Research, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
4
|
Yuan X, Feng Z, Hu C, Zhang K, Qu L, Paoletti E. Effects of elevated ozone on the emission of volatile isoprenoids from flowers and leaves of rose (Rosa sp.) varieties. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118141. [PMID: 34517180 DOI: 10.1016/j.envpol.2021.118141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/13/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Tropospheric ozone (O3) affects isoprenoid emissions, and floral emissions in particular, which may result in potential impacts on the interactions of plants with other organisms. The effects of ozone (O3) on isoprenoid emissions have been investigated for many years, while knowledge on O3 effects on floral emissions is still scarce and the relevant mechanism has not been clarified so far. We investigated the effects of O3 on floral and foliar isoprenoid emissions (mainly isoprene, monoterpenes and sesquiterpenes) and their synthase substrates from three rose varieties (CH, Rosa chinensis Jacq. var. chinensis; SA, R. hybrida 'Saiun'; MO, R. hybrida 'Monica Bellucci') at different exposure durations. Results indicated that the O3-induced stimulation after short-term exposure (35 days after the beginning of O3 exposure) was significant only for sesquiterpene emissions from flowers, while long-term O3 exposure (90 days after the beginning of O3 exposure) significantly decreased both foliar and floral monoterpene and sesquiterpene emissions. In addition, the observed decline of emissions under long-term O3 exposure resulted from the limitation of synthase substrates, and the responses of emissions and substrates varied among varieties, with the greatest variation in the O3-sensitive variety. These findings provide important insights on plant isoprenoid emissions and species selection for landscaping, especially in areas with high O3 concentration.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
| | - Zhaozhong Feng
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Chunfang Hu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Kun Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Department of Environmental Science and Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Laiye Qu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China; Institute of Research on Terrestrial Ecosystems, National Research Council, via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
6
|
Hoshika Y, Brilli F, Baraldi R, Fares S, Carrari E, Zhang L, Badea O, Paoletti E. Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115679. [PMID: 33254661 DOI: 10.1016/j.envpol.2020.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Rita Baraldi
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via P. Gobetti 101, I-40129, Bologna, Italy
| | - Silvano Fares
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via dei Taurini 19, 00100, Rome, Italy
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China
| | - Ovidiu Badea
- INCDS, 13 Septembrie, Sector 5, 050711, Bucharest, Romania
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
7
|
Wang Y, Zhao Y, Zhang L, Zhang J, Liu Y. Modified regional biogenic VOC emissions with actual ozone stress and integrated land cover information: A case study in Yangtze River Delta, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138703. [PMID: 32334230 DOI: 10.1016/j.scitotenv.2020.138703] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
The biogenic volatile organic compounds (BVOCs) emissions are influenced by ambient ozone (O3) concentrations and vegetation cover. In most studies, however, the interaction between O3 and plants has not been considered and there are uncertainties in land cover input and emission factors (EFs) in BVOCs emission estimation, particularly at the regional scale. In this study, an O3 exposure-isoprene (ISOP) response function was developed using meta-analysis, and the EFs of ISOP and land cover inputs were updated by integrating local measurement and investigation data in the Yangtze River Delta (YRD) region. Five different cases were developed to explore the impacts of O3 and input variables on the BVOCs emissions using the Model of Emissions of Gases and Aerosols from Nature (MEGAN). The impacts of those variables on O3 simulation were further examined with air quality modeling. We found that the ISOP emissions were restrained in the city cluster along the Yangtze River during the growing season due to their negative feedback to O3 exposure for deciduous broadleaf forests. The estimation of BVOCs emissions strongly depended on EFs, and the global EFs underestimated the ISOP emissions in July by 37%, mostly in southern YRD. Different land cover datasets with various fractions and spatial distributions of plant function types resulted in a variation of 200-400 Gg in ISOP emissions in July across YRD. Air quality modeling indicated that BVOCs contributed 10%, 12%, and 11% to the 1-h mean, the maximum daily 1-h average, and the maximum daily 8-h average O3 concentrations, respectively, for July across the YRD region. Due to the NOx restriction, the spatial distribution of BVOCs emissions was inconsistent with that of their contribution to O3 formation. The O3 simulation was more sensitive to the changed BVOCs emissions in the area with relatively large contribution of BVOCs to O3 formation.
Collapse
Affiliation(s)
- Yutong Wang
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Yu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Jiangsu 210044, China.
| | - Lei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse and School of the Environment, Nanjing University, 163 Xianlin Ave., Nanjing, Jiangsu 210023, China
| | - Jie Zhang
- Jiangsu Provincial Academy of Environmental Science, 176 North Jiangdong Rd., Nanjing, Jiangsu 210036, China
| | - Yang Liu
- Department of Environmental Health, Emory University, Rollins School of Public Health, Atlanta, GA 30322, United States
| |
Collapse
|
8
|
Benevenuto RF, Seldal T, Moe SR, Rodriguez-Saona C, Hegland SJ. Neighborhood Effects of Herbivore-Induced Plant Resistance Vary Along an Elevational Gradient. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
9
|
Soltani N, Best T, Grace D, Nelms C, Shumaker K, Romero-Severson J, Moses D, Schuster S, Staton M, Carlson J, Gwinn K. Transcriptome profiles of Quercus rubra responding to increased O 3 stress. BMC Genomics 2020; 21:160. [PMID: 32059640 PMCID: PMC7023784 DOI: 10.1186/s12864-020-6549-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 01/31/2020] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Climate plays an essential role in forest health, and climate change may increase forest productivity losses due to abiotic and biotic stress. Increased temperature leads to the increased formation of ozone (O3). Ozone is formed by the interaction of sunlight, molecular oxygen and by the reactions of chemicals commonly found in industrial and automobile emissions such as nitrogen oxides and volatile organic compounds. Although it is well known that productivity of Northern red oak (Quercus rubra) (NRO), an ecologically and economically important species in the forests of eastern North America, is reduced by exposure to O3, limited information is available on its responses to exogenous stimuli at the level of gene expression. RESULTS RNA sequencing yielded more than 323 million high-quality raw sequence reads. De novo assembly generated 52,662 unigenes, of which more than 42,000 sequences could be annotated through homology-based searches. A total of 4140 differential expressed genes (DEGs) were detected in response to O3 stress, as compared to their respective controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of the O3-response DEGs revealed perturbation of several biological pathways including energy, lipid, amino acid, carbohydrate and terpenoid metabolism as well as plant-pathogen interaction. CONCLUSION This study provides the first reference transcriptome for NRO and initial insights into the genomic responses of NRO to O3. Gene expression profiling reveals altered primary and secondary metabolism of NRO seedlings, including known defense responses such as terpenoid biosynthesis.
Collapse
Affiliation(s)
- Nourolah Soltani
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Teo Best
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dantria Grace
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Christen Nelms
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | - Ketia Shumaker
- Department of Biological & Environmental Sciences, University of West Alabama, Livingston, AL, 35470, USA
| | | | - Daniela Moses
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Stephan Schuster
- Singapore Centre for Environmental Life Sciences Engineering (SCELSE) Nanyang Technological University, Nanyang Avenue, 637551, Singapore
| | - Margaret Staton
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| | - John Carlson
- The Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kimberly Gwinn
- The Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
10
|
Saunier A, Blande JD. The effect of elevated ozone on floral chemistry of Brassicaceae species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113257. [PMID: 31546077 DOI: 10.1016/j.envpol.2019.113257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 05/03/2023]
Abstract
Tropospheric ozone is a major atmospheric pollutant; it is phytotoxic and has a strong effect on phytochemicals, which are constitutively present in plant tissues, but also produced de novo in response to stress. It has been shown that ozone exposure can modify volatile phytochemical emissions from leaves, which could disturb interactions between plants and other organisms. However, there is a lack of knowledge on the effects of ozone on floral chemistry. The aim of this study was to determine the effects of two elevated ozone exposure scenarios (80 and 120 ppb during daylight hours for 5 consecutive days) on the floral volatile emissions and floral chemical (molecular size range C6-C20) content of four Brassicaceae species: Sinapis alba, Sinapis arvensis, Brassica napus and Brassica nigra. The results showed that the emissions of individual compounds and their relative contributions to volatile blends are both affected by ozone exposure. In addition, for all four species studied, three diterpenes (neophytadiene, cis-phytol and trans-phytol) were present in significantly lower amounts and a fourth diterpene (hexahydrofarnesyl acetone) in significantly greater amounts in ozone-exposed plants. Consistent effects of ozone exposure on volatile emissions and terpene content were observed for each of the four species studied with no significant effect of exposure level. It appeared that B. napus is the most ozone-sensitive species, whereas B. nigra is the most ozone-tolerant. Since earlier studies have indicated that ratios of phytochemicals can have substantial effects on the efficacy of chemical use by pollinators, these changes may have ecological and biological relevance that should be the focus of further elucidation.
Collapse
Affiliation(s)
- Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
11
|
Xu S, He X, Burkey K, Chen W, Li P, Li Y, Li B, Wang Y. Ethylenediurea (EDU) pretreatment alleviated the adverse effects of elevated O 3 on Populus alba "Berolinensis" in an urban area. J Environ Sci (China) 2019; 84:42-50. [PMID: 31284915 DOI: 10.1016/j.jes.2019.04.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 05/03/2023]
Abstract
Ethylenediurea (EDU) has been used as a chemical protectant against ozone (O3). However, its protective effect and physiological mechanisms are still uncertain. The present study aimed to investigate the changes of foliar visible injury, physiological characteristics and emission rates of volatile organic compounds (VOCs) in one-year-old Populus alba "Berolinensis" saplings pretreated with EDU and exposed to elevated O3 (EO, 120 μg/m3). The results showed that foliar visible injury symptoms under EO were significantly alleviated in plants with EDU application (p < 0.05). Under EO, net photosynthetic rate, the maximum photochemical efficiency of PSII and the photochemical efficiency of PSII of plants pretreated with 300 and 600 mg/L EDU were similar to unexposed controls and significantly higher compared to EO-stressed plants without EDU pretreatment, respectively. Malondialdehyde content was highest in EO without EDU and decreased significantly by 14.9% and 21.3% with 300 and 600 mg/L EDU pretreatment, respectively. EDU pretreatment alone increased superoxide dismutase activity by 10-fold in unexposed plants with further increases of 88.4% and 37.5% in EO plants pretreated with 300 and 600 mg/L EDU pretreatment, respectively (p < 0.05). Abscisic acid content declined under EO relative to unexposed controls with the effect partially reversed by EDU pretreatments. Similarly, VOCs emission rate declined under EO relative to unexposed plants with a recovery of emission rate observed with 300 and 600 mg/L EDU pretreatment. These findings provided significant evidence that EDU exerted a beneficial effect and protection on the tested plants against O3 stress.
Collapse
Affiliation(s)
- Sheng Xu
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xingyuan He
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
| | - Kent Burkey
- Plant Science Research Unit, USDA-ARS, Raleigh, NC 27616, USA
| | - Wei Chen
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Pin Li
- Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yan Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Bo Li
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Yijing Wang
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| |
Collapse
|
12
|
Lantz AT, Allman J, Weraduwage SM, Sharkey TD. Isoprene: New insights into the control of emission and mediation of stress tolerance by gene expression. PLANT, CELL & ENVIRONMENT 2019; 42:2808-2826. [PMID: 31350912 PMCID: PMC6788959 DOI: 10.1111/pce.13629] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/19/2019] [Accepted: 07/21/2019] [Indexed: 05/10/2023]
Abstract
Isoprene is a volatile compound produced in large amounts by some, but not all, plants by the enzyme isoprene synthase. Plants emit vast quantities of isoprene, with a net global output of 600 Tg per year, and typical emission rates from individual plants around 2% of net carbon assimilation. There is significant debate about whether global climate change resulting from increasing CO2 in the atmosphere will increase or decrease global isoprene emission in the future. We show evidence supporting predictions of increased isoprene emission in the future, but the effects could vary depending on the environment under consideration. For many years, isoprene was believed to have immediate, physical effects on plants such as changing membrane properties or quenching reactive oxygen species. Although observations sometimes supported these hypotheses, the effects were not always observed, and the reasons for the variability were not apparent. Although there may be some physical effects, recent studies show that isoprene has significant effects on gene expression, the proteome, and the metabolome of both emitting and nonemitting species. Consistent results are seen across species and specific treatment protocols. This review summarizes recent findings on the role and control of isoprene emission from plants.
Collapse
Affiliation(s)
- Alexandra T. Lantz
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Joshua Allman
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Sarathi M. Weraduwage
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
| | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Department of Biochemistry and Molecular Biology, East Lansing, MI, United States
- Great Lakes Bioenergy Research Center, Madison, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
13
|
Ozone and Wounding Stresses Differently Alter the Temporal Variation in Formylated Phloroglucinols in Eucalyptus globulus Leaves. Metabolites 2019; 9:metabo9030046. [PMID: 30845742 PMCID: PMC6468632 DOI: 10.3390/metabo9030046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/28/2019] [Accepted: 02/28/2019] [Indexed: 11/17/2022] Open
Abstract
Formylated phloroglucinol compounds (FPCs) are a class of plant specialized metabolite present in the Myrtaceae family, especially in the genus Eucalyptus. FPCs are widely investigated due to their herbivore deterrence properties and various bioactivities of pharmaceutical relevance. Despite the increasing number of studies elucidating new FPCs structures and bioactivity, little is known about the role of those compounds in planta, and the effects of environmental stresses on FPC concentration. Ozone (O3) and wounding are key stress factors regularly confronted by plants. In this study, we investigated how O3, wounding, and their combination affected individual and total FPC foliar concentration of the economically important species Eucalyptus globulus. Six individual FPCs, including five macrocarpals and one sideroxylonal, showed different response patterns to the single and combined stresses. Total macrocarpals only increased under single O3 treatment, whereas total sideroxylonals only increased in response to wounding treatment, suggesting different physiological roles played by the two groups of FPCs predominantly existing in E. globulus foliage. Total FPCs increased significantly under individual wounding and O3 treatments but not under the combined treatment. A principal component analysis indicated that all different treatments had unique FPC fingerprints. Total phenolic contents increased in all O3 and wounding treatments, and a marginally positive correlation was found between total FPCs and total phenolic contents. We suggest that, depending on the concentration and composition, FPCs play multiple physiological roles in planta, including serving as antioxidants to scavenge the reactive oxygen species brought about by O3 and wounding stresses.
Collapse
|
14
|
Río Segade S, Vilanova M, Pollon M, Giacosa S, Torchio F, Rolle L. Grape VOCs Response to Postharvest Short-Term Ozone Treatments. FRONTIERS IN PLANT SCIENCE 2018; 9:1826. [PMID: 30619399 PMCID: PMC6297214 DOI: 10.3389/fpls.2018.01826] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Ozone has been recently recognized as an efficient sanitizing agent in wine industry because of its powerful oxidizing properties. Furthermore, postharvest treatments of grapes with ozone can stimulate defense responses by synthetizing secondary metabolites against oxidative stress. In this study, the effect of postharvest short-term ozone treatments was assessed for the first time on free and glycosylated volatile organic compounds (VOCs) of winegrapes. Two different ozone concentrations (30 and 60 μL/L) and exposure times (24 and 48 h) were investigated just after treatment (fresh grapes) and after partial dehydration up to 20% weight loss (withered grapes). The study was carried out on Moscato bianco winegrapes (Vitis vinifera L.) due to the importance of terpenes in white aromatic cultivars to produce high quality wines. The results obtained showed that short-term ozone treatment caused a significant decrease in total contents of free VOCs in fresh grapes, mainly due to terpenes. Among them, linalool, geraniol, and nerol are the major aromatic markers of Moscato bianco grapes. Ozone entailed a significant decrease of free linalool contents in fresh grapes, the less stressful ozone treatment showing the smaller linalool degradation. However, the stronger and longer ozone treatment induced the synthesis of this compound probably in response to higher abiotic stress. Instead, significant changes were not observed in geraniol and nerol contents in fresh grapes. This last ozone treatment also reduced the loss of free linalool by water loss in withered grapes even though total VOCs and terpenes remained relatively stable. Furthermore, ozone seems to promote the synthesis of free (+)-4-carene and 4-terpineol in withered grapes under certain treatment conditions. Regarding glycosylated compounds, total VOCs and terpenes were less sensitive to ozone. Our findings highlight that ozone can be used as sanitizing agent in aromatic grape varieties prior to winemaking without affecting sharply the aromatic profile of fresh grapes and even improving it in withered grapes.
Collapse
Affiliation(s)
- Susana Río Segade
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Turin, Italy
| | - Mar Vilanova
- Misión Biológica de Galicia – Consejo Superior de Investigaciones Científicas, Pontevedra, Spain
| | - Matteo Pollon
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Turin, Italy
| | - Simone Giacosa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Turin, Italy
| | - Fabrizio Torchio
- Dipartimento di Scienze e Tecnologie Alimentari per una filiera agro-alimentare Sostenibile, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luca Rolle
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Turin, Italy
| |
Collapse
|
15
|
Acton WJF, Jud W, Ghirardo A, Wohlfahrt G, Hewitt CN, Taylor JE, Hansel A. The effect of ozone fumigation on the biogenic volatile organic compounds (BVOCs) emitted from Brassica napus above- and below-ground. PLoS One 2018; 13:e0208825. [PMID: 30532234 PMCID: PMC6287848 DOI: 10.1371/journal.pone.0208825] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/23/2018] [Indexed: 11/18/2022] Open
Abstract
The emissions of BVOCs from oilseed rape (Brassica napus), both when the plant is exposed to clean air and when it is fumigated with ozone at environmentally-relevant mixing ratios (ca. 135 ppbv), were measured under controlled laboratory conditions. Emissions of BVOCs were recorded from combined leaf and root chambers using a recently developed Selective Reagent Ionisation-Time of Flight-Mass Spectrometer (SRI-ToF-MS) enabling BVOC detection with high time and mass resolution, together with the ability to identify certain molecular functionality. Emissions of BVOCs from below-ground were found to be dominated by sulfur compounds including methanethiol, dimethyl disulfide and dimethyl sulfide, and these emissions did not change following fumigation of the plant with ozone. Emissions from above-ground plant organs exposed to clean air were dominated by methanol, monoterpenes, 4-oxopentanal and methanethiol. Ozone fumigation of the plants caused a rapid decrease in monoterpene and sesquiterpene concentrations in the leaf chamber and increased concentrations of ca. 20 oxygenated species, almost doubling the total carbon lost by the plant leaves as volatiles. The drop in sesquiterpenes concentrations was attributed to ozonolysis occurring to a major extent on the leaf surface. The drop in monoterpene concentrations was attributed to gas phase reactions with OH radicals deriving from ozonolysis reactions. As plant-emitted terpenoids have been shown to play a role in plant-plant and plant-insect signalling, the rapid loss of these species in the air surrounding the plants during photochemical pollution episodes may have a significant impact on plant-plant and plant-insect communications.
Collapse
Affiliation(s)
- W. J. F. Acton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - W. Jud
- Institute of Ion and Applied Physics, University of Innsbruck, Innsbruck, Austria
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| | - A. Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation (EUS), Neuherberg, Germany
| | - G. Wohlfahrt
- Institute of Ecology, University of Innsbruck, Innsbruck, Austria
| | - C. N. Hewitt
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - J. E. Taylor
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
| | - A. Hansel
- Institute of Ion and Applied Physics, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Kanagendran A, Pazouki L, Bichele R, Külheim C, Niinemets Ü. Temporal regulation of terpene synthase gene expression in Eucalyptus globulus leaves upon ozone and wounding stresses: relationships with stomatal ozone uptake and emission responses. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 155:552-565. [PMID: 30686846 PMCID: PMC6345374 DOI: 10.1016/j.envexpbot.2018.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Ozone and wounding are key abiotic factors but, their interactive effects on temporal changes in terpene synthase gene expression and emission responses are poorly understood. Here, we applied combined acute ozone and wounding stresses to the constitutive isoprenoid-emitter Eucalyptus globulus and studied how isoprene, 1,8-cineole, and isoledene synthase genes were regulated, and how the gene expression was associated with temporal changes in photosynthetic characteristics, product emission rates, and stomatal ozone uptake through recovery phase. Photosynthetic characteristics and emission rate of isoprene, 1,8-cineole, and isoledene were synergistically altered, while three TPS gene expressions were antagonistically altered by combined stress applications. A time-delay analysis indicated that the best correspondences between gene expression and product emission rates were observed for 0 h time-shift for wounding and 0-2 h time-shifts for separate ozone, and combined ozone and wounding treatments. The best correspondence between ozone uptake and gene expression was observed for 0-4 h time-shifts for separate ozone and combined ozone and wounding treatments. Overall, this study demonstrated that expression profiles of isoprene, the monoterpene 1,8-cineole, and the sesquiterpene isoledene synthase genes differentially influenced their corresponding product emissions for separate and combined ozone and wounding treatments through recovery.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Corresponding author: Arooran Kanagendran, . Tel: +372 584 984 74
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | - Rudolf Bichele
- Molecular Pathology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Carsten Külheim
- School of Forest Resources and Environmental Science; Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931 USA
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
17
|
Kanagendran A, Pazouki L, Niinemets Ü. Differential regulation of volatile emission from Eucalyptus globulus leaves upon single and combined ozone and wounding treatments through recovery and relationships with ozone uptake. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2018; 145:21-38. [PMID: 29970942 PMCID: PMC6020072 DOI: 10.1016/j.envexpbot.2017.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Both ozone and wounding constitute two key abiotic stress factors, but their interactive effects on plant constitutive and stress-elicited volatile (VOC) emissions are poorly understood. Furthermore, the information on time-dependent modifications in VOC release during recovery from a combined stress is very limited. We studied the modifications in photosynthetic characteristics and constitutive and stress-induced volatile emissions in response to single and combined applications of acute ozone (4, 5, and 6 ppm) and wounding treatments through recovery (0.5-75 h) in a constitutive isoprene and mono- and sesquiterpene emitter Eucalyptus globulus. Overall, the photosynthetic characteristics were surprisingly resistant to all ozone and wounding treatments. Constitutive isoprene emissions were strongly upregulated by ozone and combined ozone and wounding treatments and remained high through recovery phase, but wounding applied alone reduced isoprene emission. All stress treatments enhanced emissions of lipoxygenase pathway volatiles (LOX), mono- and sesquiterpenes, saturated aldehydes (C7-C10), benzenoids, and geranylgeranyl diphosphate (GGDP) pathway volatiles. Once elicited, GGDP volatile, saturated aldehyde and benzenoid emissions remained high through the recovery period. In contrast, LOX emissions, and total mono- and sesquiterpene emissions decreased through recovery period. However, secondary rises in total sesquiterpene emissions at 75 h and in total monoterpenes at 25-50 h were observed. Overall, acute ozone and wounding treatments synergistically altered gas exchange characteristics and stress volatile emissions. Through the treatments and recovery period, stomatal ozone uptake rate and volatile emission rates were poorly correlated, reflecting possible ozone-scavenging effect of volatiles and thus, reduction of effective ozone dose and elicitation of induced defense by the acute ozone concentrations applied. These results underscore the important role of interactive stresses on both constitutive and induced volatile emission responses.
Collapse
Affiliation(s)
- Arooran Kanagendran
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Leila Pazouki
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
18
|
Tiiva P, Tang J, Michelsen A, Rinnan R. Monoterpene emissions in response to long-term night-time warming, elevated CO 2 and extended summer drought in a temperate heath ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1056-1067. [PMID: 27989477 DOI: 10.1016/j.scitotenv.2016.12.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 05/24/2023]
Abstract
Monoterpenes emitted from plants have an important role in atmospheric chemistry through changing atmospheric oxidative capacity, forming new particles and secondary organic aerosols. The emission rates and patterns can be affected by changing climate. In this study, emission responses to six years of climatic manipulations (elevated CO2, extended summer drought and night-time warming) were investigated in a temperate semi-natural heath ecosystem. Samples for monoterpene analysis were collected in seven campaigns during an entire growing season (April-November, 2011). The results showed that the temperate heath ecosystem was a considerable source of monoterpenes to the atmosphere, with the emission averaged over the 8month measurement period of 21.7±6.8μgm-2groundareah-1 for the untreated heath. Altogether, 16 monoterpenes were detected, of which the most abundant were α-pinene, δ-3-carene and limonene. The emissions of these three compounds were positively correlated with light, chamber temperature and litter abundance, but negatively correlated with soil temperature. Elevated CO2 tended to decrease the average monoterpene emissions by 40% over the whole growing season, and significantly reduced emissions in August. Extended summer drought significantly decreased the emission right after the drought treatment period, but also in the late growing season. Night-time warming significantly increased the total emissions (mainly α-pinene) in April, and tended to mitigate the decrease caused by drought. The inhibition effects of elevated CO2 on emissions were diminished when the treatment was combined with drought or warming. The emission responses to different treatments were not explained by vegetation changes, and the monoterpene emission profile was only moderately related to plant species coverage. The emission responses to these long-term climate manipulations varied over the growing season (with strong correlation with litter abundance) and the observed antagonistic effects in the combined treatments underlie the importance of long-term studies with multiple factors acting in concert.
Collapse
Affiliation(s)
- Päivi Tiiva
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, PO Box 1627, FI-70211 Kuopio, Finland.
| | - Jing Tang
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øester Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | - Anders Michelsen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øester Voldgade 10, DK-1350 Copenhagen K, Denmark.
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Øester Voldgade 10, DK-1350 Copenhagen K, Denmark.
| |
Collapse
|
19
|
Kim SK, Han GH, Seong W, Kim H, Kim SW, Lee DH, Lee SG. CRISPR interference-guided balancing of a biosynthetic mevalonate pathway increases terpenoid production. Metab Eng 2016; 38:228-240. [DOI: 10.1016/j.ymben.2016.08.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/10/2016] [Accepted: 08/24/2016] [Indexed: 11/26/2022]
|
20
|
Yuan X, Calatayud V, Gao F, Fares S, Paoletti E, Tian Y, Feng Z. Interaction of drought and ozone exposure on isoprene emission from extensively cultivated poplar. PLANT, CELL & ENVIRONMENT 2016; 39:2276-87. [PMID: 27411672 DOI: 10.1111/pce.12798] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/26/2016] [Accepted: 07/05/2016] [Indexed: 05/24/2023]
Abstract
The combined effects of ozone (O3 ) and drought on isoprene emission were studied for the first time. Young hybrid poplars (clone 546, Populus deltoides cv. 55/56 x P. deltoides cv. Imperial) were exposed to O3 (charcoal-filtered air, CF, and non-filtered air +40 ppb, E-O3 ) and soil water stress (well-watered, WW, and mild drought, MD, one-third irrigation) for 96 days. Consistent with light-saturated photosynthesis (Asat ), intercellular CO2 concentration (Ci ) and chlorophyll content, isoprene emission depended on drought, O3 , leaf position and sampling time. Drought stimulated emission (+38.4%), and O3 decreased it (-40.4%). Ozone increased the carbon cost per unit of isoprene emission. Ozone and drought effects were stronger in middle leaves (13th-15th from the apex) than in upper leaves (6th-8th). Only Asat showed a significant interaction between O3 and drought. When the responses were up-scaled to the entire-plant level, however, drought effects on total leaf area translated into around twice higher emission from WW plants in clean air than in E-O3 . Our results suggest that direct effects on plant emission rates and changes in total leaf area may affect isoprene emission from intensively cultivated hybrid poplar under combined MD and O3 exposure, with important feedbacks for air quality.
Collapse
Affiliation(s)
- Xiangyang Yuan
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Vicent Calatayud
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- Fundación CEAM, c/Charles R. Darwin 14, Parque Tecnológico, Paterna, 46980, Valencia, Spain
| | - Feng Gao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Silvano Fares
- Research Centre for Soil-Plant System, Council for Agricultural Research and Economics, Rome, Italy
| | - Elena Paoletti
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China
- National Research Council, Via Madonna del Piano 10, 50019, Sesto, Fiorentino, Italy
| | - Yuan Tian
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing, 100048, China
| | - Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Road 18, Haidian District, Beijing, 100085, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
| |
Collapse
|
21
|
Zenone T, Hendriks C, Brilli F, Fransen E, Gioli B, Portillo-Estrada M, Schaap M, Ceulemans R. Interaction between isoprene and ozone fluxes in a poplar plantation and its impact on air quality at the European level. Sci Rep 2016; 6:32676. [PMID: 27615148 PMCID: PMC5018846 DOI: 10.1038/srep32676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 08/10/2016] [Indexed: 11/09/2022] Open
Abstract
The emission of isoprene and other biogenic volatile organic compounds from vegetation plays an important role in tropospheric ozone (O3) formation. The potentially large expansion of isoprene emitting species (e.g., poplars) for bioenergy production might, therefore, impact tropospheric O3 formation. Using the eddy covariance technique we have simultaneously measured fluxes isoprene, O3 and of CO2 from a poplar (Populus) plantation grown for bioenergy production. We used the chemistry transport model LOTOS-EUROS to scale-up the isoprene emissions associated with the existing poplar plantations in Europe, and we assessed the impact of isoprene fluxes on ground level O3 concentrations. Our findings suggest that isoprene emissions from existing poplar-for-bioenergy plantations do not significantly affect the ground level of O3 concentration. Indeed the overall land in Europe covered with poplar plantations has not significantly changed over the last two decades despite policy incentives to produce bioenergy crops. The current surface area of isoprene emitting poplars-for-bioenergy remains too limited to significantly enhance O3 concentrations and thus to be considered a potential threat for air quality and human health.
Collapse
Affiliation(s)
- Terenzio Zenone
- Department of Biology, Centre of Excellence on Plant and Vegetation Ecology (PLECO), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Carlijn Hendriks
- TNO, Department of Climate, Air and Sustainability, P.O. Box 80015, 3508 TA, Utrecht, the Netherlands
| | - Federico Brilli
- National Research Council, Institute of Agro-Environmental and Forest Biology (IBAF-CNR), Via Salaria Km 29,300 - 00016 Monterotondo Scalo, Roma, Italy.,National Research Council, Institute for Sustainable Plant Protection (IPSP-CNR), Via Madonna del piano 10, 50017, Sesto Fiorentino, Italy
| | - Erik Fransen
- StatUa Centre for Statistics, University of Antwerp, Prinsstraat 13, B-2000 Antwerp, Belgium
| | - Beniamio Gioli
- National Research Council, Institute of Biometeorology (IBIMET-CNR), Via G. Caproni 8, 50145, Firenze, Italy
| | - Miguel Portillo-Estrada
- Department of Biology, Centre of Excellence on Plant and Vegetation Ecology (PLECO), University of Antwerp, B-2610 Wilrijk, Belgium
| | - Martijn Schaap
- TNO, Department of Climate, Air and Sustainability, P.O. Box 80015, 3508 TA, Utrecht, the Netherlands
| | - Reinhart Ceulemans
- Department of Biology, Centre of Excellence on Plant and Vegetation Ecology (PLECO), University of Antwerp, B-2610 Wilrijk, Belgium
| |
Collapse
|
22
|
Affiliation(s)
- Colette L Heald
- †Departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dominick V Spracklen
- ‡School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
23
|
Niinemets Ü, Sun Z. How light, temperature, and measurement and growth [CO2] interactively control isoprene emission in hybrid aspen. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:841-51. [PMID: 25399006 PMCID: PMC4321546 DOI: 10.1093/jxb/eru443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant isoprene emissions have been modelled assuming independent controls by light, temperature and atmospheric [CO2]. However, the isoprene emission rate is ultimately controlled by the pool size of its immediate substrate, dimethylallyl diphosphate (DMADP), and isoprene synthase activity, implying that the environmental controls might interact. In addition, acclimation to growth [CO2] can shift the share of the control by DMADP pool size and isoprene synthase activity, and thereby alter the environmental sensitivity. Environmental controls of isoprene emission were studied in hybrid aspen (Populus tremula × Populus tremuloides) saplings acclimated either to ambient [CO2] of 380 μmol mol(-1) or elevated [CO2] of 780 μmol mol(-1). The data demonstrated strong interactive effects of environmental drivers and growth [CO2] on isoprene emissions. Light enhancement of isoprene emission was the greatest at intermediate temperatures and was greater in elevated-[CO2]-grown plants, indicating greater enhancement of the DMADP supply. The optimum temperature for isoprene emission was higher at lower light, suggesting activation of alternative DMADP sinks at higher light. In addition, [CO2] inhibition of isoprene emission was lost at a higher temperature with particularly strong effects in elevated-[CO2]-grown plants. Nevertheless, DMADP pool size was still predicted to more strongly control isoprene emission at higher temperatures in elevated-[CO2]-grown plants. We argue that interactive environmental controls and acclimation to growth [CO2] should be incorporated in future isoprene emission models at the level of DMADP pool size.
Collapse
Affiliation(s)
- Ülo Niinemets
- Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Zhihong Sun
- Estonian University of Life Sciences, Kreutzwaldi 1, 51014 Tartu, Estonia
| |
Collapse
|
24
|
Sharkey TD, Monson RK. The future of isoprene emission from leaves, canopies and landscapes. PLANT, CELL & ENVIRONMENT 2014; 37:1727-40. [PMID: 24471530 DOI: 10.1111/pce.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/20/2014] [Accepted: 01/21/2014] [Indexed: 05/09/2023]
Abstract
Isoprene emission from plants plays a dominant role in atmospheric chemistry. Predicting how isoprene emission may change in the future will help predict changes in atmospheric oxidant, greenhouse gas and secondary organic aerosol concentrations in the future atmosphere. At the leaf-scale, an increase in isoprene emission with increasing temperature is offset by a reduction in isoprene emission rate caused by increased CO₂. At the canopy scale, increased leaf area index in elevated CO₂ can offset the reduction in leaf-scale isoprene emission caused by elevated CO₂. At the landscape scale, a reduction in forest coverage may decrease, while forest fertilization and community composition dynamics are likely to cause an increase in the global isoprene emission rate. Here we review the potential for changes in the isoprene emission rate at all of these scales. When considered together, it is likely that these interacting effects will result in an increase in the emission of the most abundant plant volatile, isoprene, from the biosphere to the atmosphere in the future.
Collapse
Affiliation(s)
- Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
25
|
Sun Z, Hüve K, Vislap V, Niinemets Ü. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5509-23. [PMID: 24153419 PMCID: PMC3871810 DOI: 10.1093/jxb/ert318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.
Collapse
Affiliation(s)
- Zhihong Sun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Vislap
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| |
Collapse
|
26
|
Sun Y, Guo H, Zhu-Salzman K, Ge F. Elevated CO2 increases the abundance of the peach aphid on Arabidopsis by reducing jasmonic acid defenses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 210:128-40. [PMID: 23849120 DOI: 10.1016/j.plantsci.2013.05.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 05/19/2013] [Accepted: 05/22/2013] [Indexed: 05/27/2023]
Abstract
Rising atmospheric CO2 concentrations can affect the induced defense of plants against herbivory by chewing insects, but little is known about whether elevated CO2 can change the inducible defense of plants against herbivory by aphids, which are phloem-sucking rather than tissue-chewing insects. Interactions between the green peach aphid Myzus persicae and four isogenic Arabidopsis thaliana genotypes including wild type and three induced defense pathway deficient mutants were examined under ambient and elevated CO2. Our data showed that elevated CO2 increased the population abundance of peach aphid when reared on wild type and SA-deficient mutant plants. Regardless of aphid infestation, elevated CO2 decreased the jasmonic acid (JA) but increased the salicylic acid (SA) level in wild-type plants. In addition, elevated CO2 increased SA level in SA-deficient mutant while did not change the JA level in JA-deficient mutant. Pathway enrichment analysis based on high-throughput transcriptome sequencing suggested that CO2 level, aphid infestation, and their interactions (respectively) altered plant defense pathways. Furthermore, qPCR results showed that elevated CO2 up-regulated the expression of SA-dependent defense genes but down-regulated the expression of JA/ethylene-dependent defense genes in wild-type plants infested by aphids. The current study indicated that elevated CO2 tended to enhance the ineffective defense-SA signaling pathway and to reduce the effective defense-JA signaling pathway against aphids, which resulted in increased aphid numbers.
Collapse
Affiliation(s)
- Yucheng Sun
- State Key Laboratory of Integrated Management of Pest and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
27
|
Vickers CE, Possell M, Laothawornkitkul J, Ryan AC, Hewitt CN, Mullineaux PM. Isoprene synthesis in plants: lessons from a transgenic tobacco model. PLANT, CELL & ENVIRONMENT 2011; 34:1043-1053. [PMID: 21388420 DOI: 10.1111/j.1365-3040.2011.02303.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Isoprene is a highly reactive gas, and is emitted in such large quantities from the biosphere that it substantially affects the oxidizing potential of the atmosphere. Relatively little is known about the control of isoprene emission at the molecular level. Using transgenic tobacco lines harbouring a poplar isoprene synthase gene, we examined control of isoprene emission. Isoprene synthase required chloroplastic localization for catalytic activity, and isoprene was produced via the methyl erythritol (MEP) pathway from recently assimilated carbon. Emission patterns in transgenic tobacco plants were remarkably similar to naturally emitting plants under a wide variety of conditions. Emissions correlated with photosynthetic rates in developing and mature leaves, and with the amount of isoprene synthase protein in mature leaves. Isoprene synthase protein levels did not change under short-term increase in heat/light, despite an increase in emissions under these conditions. A robust circadian pattern could be observed in emissions from long-day plants. The data support the idea that substrate supply and changes in enzyme kinetics (rather than changes in isoprene synthase levels or post-translational regulation of activity) are the primary controls on isoprene emission in mature transgenic tobacco leaves.
Collapse
Affiliation(s)
- Claudia E Vickers
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Malcolm Possell
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Jullada Laothawornkitkul
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Annette C Ryan
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - C Nicholas Hewitt
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| | - Philip M Mullineaux
- Department of Biological Sciences, Essex University, Colchester, Essex C04 3SQLancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, England, UK
| |
Collapse
|
28
|
Blande JD, Holopainen JK, Li T. Air pollution impedes plant-to-plant communication by volatiles. Ecol Lett 2010; 13:1172-81. [DOI: 10.1111/j.1461-0248.2010.01510.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
29
|
Darbah JNT, Sharkey TD, Calfapietra C, Karnosky DF. Differential response of aspen and birch trees to heat stress under elevated carbon dioxide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1008-1014. [PMID: 19914751 DOI: 10.1016/j.envpol.2009.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 10/08/2009] [Accepted: 10/15/2009] [Indexed: 05/28/2023]
Abstract
The effect of high temperature on photosynthesis of isoprene-emitting (aspen) and non-isoprene-emitting (birch) trees were measured under elevated CO(2) and ambient conditions. Aspen trees tolerated heat better than birch trees and elevated CO(2) protected photosynthesis of both species against moderate heat stress. Elevated CO(2) increased carboxylation capacity, photosynthetic electron transport capacity, and triose phosphate use in both birch and aspen trees. High temperature (36-39 degrees C) decreased all of these parameters in birch regardless of CO(2) treatment, but only photosynthetic electron transport and triose phosphate use at ambient CO(2) were reduced in aspen. Among the two aspen clones tested, 271 showed higher thermotolerance than 42E possibly because of the higher isoprene-emission, especially under elevated CO(2). Our results indicate that isoprene-emitting trees may have a competitive advantage over non-isoprene emitting ones as temperatures rise, indicating that biological diversity may be affected in some ecosystems because of heat tolerance mechanisms.
Collapse
|
30
|
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. TRENDS IN PLANT SCIENCE 2010; 15:154-66. [PMID: 20133178 DOI: 10.1016/j.tplants.2009.12.006] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione delle Piante (IPP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
31
|
Schnitzler JP, Louis S, Behnke K, Loivamäki M. Poplar volatiles - biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:302-16. [PMID: 20398237 DOI: 10.1111/j.1438-8677.2009.00284.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants interact with their environment through a wide variety of biogenic volatile organic compounds (BVOCs), with isoprenoids ( identical with terpenes), i.e. isoprene, mono- and sesquiterpenes, playing an important role. Isoprene, a hemiterpene, is the simplest isoprenoid compound mainly emitted by tree species like poplars, oaks and willows. Woody plants alone comprise 75% of the global isoprene emitted to the atmosphere. Due to its significant influence on atmospheric chemistry, research has been focused on this C5 compound, with poplar being the most prominent model system. Recent studies indicate that isoprene can enhance thermotolerance or quench oxidative stress, while also interfering with the attraction of herbivores and parasitoids to plants. In this paper, we report on biosynthesis, regulation and function of isoprene and other stress-induced volatile isoprenoids in poplar, and discuss the future scientific challenges in this genus with respect to the importance of plant volatiles in high-density poplar biomass plantations.
Collapse
Affiliation(s)
- J-P Schnitzler
- Karlsruhe Institut for Technologie (KIT), Institut für Meteorologie und Klimaforschung (IMK-IFU), Garmisch-Partenkirchen, Germany.
| | | | | | | |
Collapse
|
32
|
Peñuelas J, Staudt M. BVOCs and global change. TRENDS IN PLANT SCIENCE 2010; 15:133-44. [PMID: 20097116 DOI: 10.1016/j.tplants.2009.12.005] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/13/2009] [Accepted: 12/16/2009] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) produced by plants are involved in plant growth, reproduction and defense. They are emitted from vegetation into the atmosphere and have significant effects on other organisms and on atmospheric chemistry and physics. Here, we review current knowledge on the alteration of BVOC emission rates due to climate and global changes: warming, drought, land use changes, high atmospheric CO(2) concentrations, ozone and enhanced UV radiation. These alterations are very variable depending on the doses, timing, BVOC and species, but in overall terms are likely to increase BVOC emissions. These changed emissions can lead to unforeseeable consequences for the biosphere structure and functioning, and can disturb biosphere feedback on atmospheric chemistry and climate with a direction and intensity that warrants in-depth investigation.
Collapse
Affiliation(s)
- Josep Peñuelas
- Global Ecology Unit CSIC-CEAB-CREAF, CREAF (Centre de Recerca Ecologica i Aplicacions Forestals), Universitat Autonoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| | | |
Collapse
|
33
|
Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone. TREE PHYSIOLOGY 2009; 29:1367-80. [PMID: 19773339 DOI: 10.1093/treephys/tpp070] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Increasing concentrations of atmospheric carbon dioxide (CO2) and tropospheric ozone (O3) have the potential to affect tree physiology and structure, and hence forest feedbacks on climate. Here, we investigated how elevated concentrations of CO2 (+45%) and O3 (+35%), alone and in combination, affected conductance for mass transfer at the leaf and canopy levels in pure aspen (Populus tremuloides Michx.) and in mixed aspen and birch (Betula papyrifera Marsh.) forests in the free-air CO2-O3 enrichment experiment near Rhinelander, Wisconsin (Aspen FACE). The study was conducted during two growing seasons, when steady-state leaf area index (L) had been reached after > 6 years of exposure to CO2- and O3-enrichment treatments. Canopy conductance (g(c)) was estimated from stand sap flux, while leaf-level conductance of sun leaves in the upper canopy was derived by three different and independent methods: sap flux and L in combination with vertical canopy modelling, leaf 13C discrimination methodology in combination with photosynthesis modelling and leaf-level gas exchange. Regardless of the method used, the mean values of leaf-level conductance were higher in trees growing under elevated CO2 and/or O3 than in trees growing in control plots, causing a CO2 x O3 interaction that was statistically significant (P < or = 0.10) for sap flux- and (for birch) 13C-derived leaf conductance. Canopy conductance was significantly increased by elevated CO2 but not significantly affected by elevated O3. Investigation of a short-term gap in CO2 enrichment demonstrated a +10% effect of transient exposure of elevated CO2-grown trees to ambient CO2 on g(c). All treatment effects were similar in pure aspen and mixed aspen-birch communities. These results demonstrate that short-term primary stomatal closure responses to elevated CO2 and O3 were completely offset by long-term cumulative effects of these trace gases on tree and stand structure in determining canopy- and leaf-level conductance in pure aspen and mixed aspen-birch forests. Our results, together with the findings from other long-term FACE experiments with trees, suggest that model assumptions of large reductions in stomatal conductance under rising atmospheric CO2 are very uncertain for forests.
Collapse
Affiliation(s)
- Johan Uddling
- School of Natural Resources and Environment, University of Michigan, 440 Church Street, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
34
|
Smelling global climate change: mitigation of function for plant volatile organic compounds. Trends Ecol Evol 2009; 24:323-31. [DOI: 10.1016/j.tree.2009.01.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 01/02/2009] [Accepted: 01/05/2009] [Indexed: 11/18/2022]
|
35
|
Cseke LJ, Tsai CJ, Rogers A, Nelsen MP, White HL, Karnosky DF, Podila GK. Transcriptomic comparison in the leaves of two aspen genotypes having similar carbon assimilation rates but different partitioning patterns under elevated [CO2]. THE NEW PHYTOLOGIST 2009; 182:891-911. [PMID: 19383098 DOI: 10.1111/j.1469-8137.2009.02812.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
This study compared the leaf transcription profiles, physiological characteristics and primary metabolites of two Populus tremuloides genotypes (clones 216 and 271) known to differ in their responses to long-term elevated [CO2] (e[CO2]) at the Aspen free-air CO2 enrichment site near Rhinelander, WI, USA. The physiological responses of these clones were similar in terms of photosynthesis, stomatal conductance and leaf area index under e[CO2], yet very different in terms of growth enhancement (0-10% in clone 216; 40-50% in clone 271). Although few genes responded to long-term exposure to e[CO2], the transcriptional activity of leaf e[CO2]-responsive genes was distinctly different between the clones, differentially impacting multiple pathways during both early and late growing seasons. An analysis of transcript abundance and carbon/nitrogen biochemistry suggested that the CO2-responsive clone (271) partitions carbon into pathways associated with active defense/response to stress, carbohydrate/starch biosynthesis and subsequent growth. The CO2-unresponsive clone (216) partitions carbon into pathways associated with passive defense (e.g. lignin, phenylpropanoid) and cell wall thickening. This study indicates that there is significant variation in expression patterns between different tree genotypes in response to long-term exposure to e[CO2]. Consequently, future efforts to improve productivity or other advantageous traits for carbon sequestration should include an examination of genetic variability in CO2 responsiveness.
Collapse
Affiliation(s)
- Leland J Cseke
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - Chung-Jui Tsai
- School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA
| | - Alistair Rogers
- Environmental Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA
- Department of Crop Sciences, University of Illinois at Urbana Champaign, IL 61801, USA
| | - Matthew P Nelsen
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Holly L White
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| | - David F Karnosky
- School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI 49931, USA
| | - Gopi K Podila
- Department of Biological Sciences, University of Alabama, Huntsville, AL 35899, USA
| |
Collapse
|
36
|
Calfapietra C, Fares S, Loreto F. Volatile organic compounds from Italian vegetation and their interaction with ozone. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:1478-86. [PMID: 19019511 DOI: 10.1016/j.envpol.2008.09.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 05/03/2023]
Abstract
Volatile Organic Compounds (VOCs) emitted from vegetation (particularly isoprenoids) represent an important source of atmospheric hydrocarbons almost double the anthropogenic source. When biogenic VOC mix with NO(x) in the presence of UV radiation, ozone (O(3)) is formed. In Italy, optimal conditions for O(3) formation in terms of VOC/NO(x) ratios and abundance of UV radiation occur for long periods of the year. Moreover, Italian vegetation includes several species that are strong and evergreen isoprenoid emitters, and high temperatures for part of the year further stimulate these temperature-dependent emissions. We review emission of isoprenoids from Italian vegetation, current knowledge on the impact of rising O(3) levels on isoprenoid emission, and evidence showing that isoprenoids can increase both the O(3) flux to the plant and protection against oxidative stress because of their antioxidant functions. This trait not only influences plant tolerance to O(3) but also may substantially alter the flux of O(3) between atmosphere and biosphere.
Collapse
Affiliation(s)
- Carlo Calfapietra
- CNR-Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300, 00015 Monterotondo Scalo (Roma), Italy.
| | | | | |
Collapse
|
37
|
Li D, Chen Y, Shi Y, He X, Chen X. Impact of elevated CO2 and O3 concentrations on biogenic volatile organic compounds emissions from Ginkgo biloba. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 82:473-477. [PMID: 18974914 DOI: 10.1007/s00128-008-9590-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2007] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
In natural environment with ambient air, ginkgo trees emitted volatile organic compounds 0.18 microg g(-1) h(-1) in July, and 0.92 microg g(-1) h(-1) in September. Isoprene and limonene were the most abundant detected compounds. In September, alpha-pinene accounted for 22.5% of the total. Elevated CO(2) concentration in OTCs increased isoprene emission significantly in July (p<0.05) and September (p<0.05), while the total monoterpenes emission was enhanced in July and decreased in September by elevated CO(2). Exposed to elevated O(3) increased the isoprene and monoterpenes emissions in July and September, and the total volatile organic compounds emission rates were 0.48 microg g(-1) h(-1) (in July) and 2.24 microg g(-1) h(-1) (in September), respectively. The combination of elevated CO(2) and O(3) did not have any effect on biogenic volatile organic compounds emissions, except increases of isoprene and Delta3-carene in September.
Collapse
Affiliation(s)
- Dewen Li
- Key Laboratory of Terrestrial Ecological Process, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China
| | | | | | | | | |
Collapse
|
38
|
Ryan A, Cojocariu C, Possell M, Davies WJ, Hewitt CN. Defining hybrid poplar (Populus deltoides x Populus trichocarpa) tolerance to ozone: identifying key parameters. PLANT, CELL & ENVIRONMENT 2009; 32:31-45. [PMID: 19076530 DOI: 10.1111/j.1365-3040.2008.01897.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study examined whether two genotypes of hybrid poplar (Populus deltoides x Populus trichocarpa), previously classified as ozone tolerant and ozone sensitive, had differing physiological and biochemical responses when fumigated with 120 nL L(-1) ozone for 6 h per day for eight consecutive days. Isoprene emission rate, ozone uptake and a number of physiological and biochemical parameters were investigated before, during and after fumigation with ozone. Previous studies have shown that isoprene protects plants against oxidative stress. Therefore, it was hypothesized that these two genotypes would differ in either their basal isoprene emission rates or in the response of isoprene to fumigation by ozone. Our results showed that the basal emission rates of isoprene, physiological responses and ozone uptake rates were all similar. However, significant differences were found in visible damage, carotenoids, hydrogen peroxide (H(2)O(2)), thiobarbituric acid reactions (TBARS) and post-fumigation isoprene emission rates. It is shown that, although the classification of ozone tolerance or sensitivity had been previously clearly and carefully defined using one particular set of parameters, assessment of other key variables does not necessarily lead to the same conclusions. Thus, it may be necessary to reconsider the way in which plants are classified as ozone tolerant or sensitive.
Collapse
Affiliation(s)
- A Ryan
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | | | | | | |
Collapse
|
39
|
Matyssek R, Sandermann H, Wieser G, Booker F, Cieslik S, Musselman R, Ernst D. The challenge of making ozone risk assessment for forest trees more mechanistic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 156:567-582. [PMID: 18571819 DOI: 10.1016/j.envpol.2008.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Revised: 04/24/2008] [Accepted: 04/27/2008] [Indexed: 05/26/2023]
Abstract
Upcoming decades will experience increasing atmospheric CO2 and likely enhanced O3 exposure which represents a risk for the carbon sink strength of forests, so that the need for cause-effect related O3 risk assessment increases. Although assessment will gain in reliability on an O3 uptake basis, risk is co-determined by the effective dose, i.e. the plant's sensitivity per O3 uptake. Recent progress in research on the molecular and metabolic control of the effective O3 dose is reported along with advances in empirically assessing O3 uptake at the whole-tree and stand level. Knowledge on both O3 uptake and effective dose (measures of stress avoidance and tolerance, respectively) needs to be understood mechanistically and linked as a pre-requisite before practical use of process-based O3 risk assessment can be implemented. To this end, perspectives are derived for validating and promoting new O3 flux-based modelling tools.
Collapse
Affiliation(s)
- R Matyssek
- Ecophysiology of Plants, Technische Universität München, Ecology, Am Hochanger 13, D-85354 Freising, Weihenstephan, Germany.
| | | | | | | | | | | | | |
Collapse
|
40
|
Velikova V, Fares S, Loreto F. Isoprene and nitric oxide reduce damages in leaves exposed to oxidative stress. PLANT, CELL & ENVIRONMENT 2008; 31:1882-1894. [PMID: 18811730 DOI: 10.1111/j.1365-3040.2008.01893.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene and nitric oxide (NO) are two volatile molecules that are produced in leaves. Both compounds were suggested to have an important protective role against stresses. We tested, in two isoprene-emitting species, Populus nigra and Phragmites australis, whether: (1) NO emission outside leaves is measurable and is affected by oxidative stresses; and (2) isoprene and NO protect leaves against oxidative stresses, both singularly and in combination. The emission of NO was undetectable, and the compensation point was very low in control poplar leaves. Both emission and compensation point increased dramatically in stressed leaves. NO emission was inversely associated with stomatal conductance. More NO was emitted in leaves that were isoprene-inhibited, and more isoprene was emitted when NO was reduced by NO scavenger c-PTIO. Both isoprene and NO reduced oxidative damages. Isoprene-emitting leaves which were also fumigated with NO, or treated with NO donor, showed low damage to photosynthesis, a reduced accumulation of H(2)O(2) and a reduced membrane denaturation. We conclude that measurable amounts of NO are only produced and emitted by stressed leaves, that both isoprene and NO are effective antioxidant molecules and that an additional protection is achieved when both molecules are released.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences - Institute of Plant Physiology, Sofia, Bulgaria
| | | | | |
Collapse
|
41
|
Wiberley AE, Donohue AR, Meier ME, Westphal MM, Sharkey TD. Regulation of isoprene emission in Populus trichocarpa leaves subjected to changing growth temperature. PLANT, CELL & ENVIRONMENT 2008; 31:258-267. [PMID: 17996012 DOI: 10.1111/j.1365-3040.2007.01758.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The hydrocarbon isoprene is emitted in large quantities from numerous plant species, and has a substantial impact on atmospheric chemistry. Temperature affects isoprene emission at several levels: the temperature at which emission is measured, the temperature at which leaves develop, and the temperatures to which a mature leaf is exposed in the days prior to emission measurement. The molecular regulation of the response to the last of these factors was investigated in this study. When plants were grown at 20 degrees C and moved from 20 to 30 degrees C and back, or grown at 30 degrees C and moved from 30 to 20 degrees C and back, their isoprene emission peaked within 3 h of the move and stabilized over the following 3 d. Trees that developed at 20 degrees C and experienced 30 degrees C episodes had higher isoprene emission capacities than did leaves grown exclusively at 20 degrees C, even 2 weeks after the last 30 degrees C episode. The levels and extractable activities of isoprene synthase protein, which catalyses the synthesis of isoprene, and those of dimethylallyl diphosphate (DMADP), its substrate, alone could not explain observed variations in isoprene emission. Therefore, we conclude that control of isoprene emission in mature leaves is shared between isoprene synthase protein and DMADP supply.
Collapse
Affiliation(s)
- Amy E Wiberley
- Department of Botany, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
42
|
Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. THE NEW PHYTOLOGIST 2008; 179:55-61. [PMID: 18557875 DOI: 10.1111/j.1469-8137.2008.02493.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene is the most important nonmethane hydrocarbon emitted by plants. The role of isoprene in the plant is not entirely understood but there is evidence that it might have a protective role against different oxidative stresses originating from heat shock and/or exposure to ozone (O(3)). Thus, plants under stress conditions might benefit by constitutively high or by higher stress-induced isoprene emission rates. In this study, measurements are presented of isoprene emission from aspen (Populus tremuloides) trees grown in the field for several years under elevated CO(2) and O(3). Two aspen clones were investigated: the O(3)-tolerant 271 and the O(3)-sensitive 42E. Isoprene emission decreased significantly both under elevated CO(2) and under elevated O(3) in the O(3)-sensitive clone, but only slightly in the O(3)-tolerant clone. This study demonstrates that long-term-adapted plants are not able to respond to O(3) stress by increasing their isoprene emission rates. However, O(3)-tolerant clones have the capacity to maintain higher amounts of isoprene emission. It is suggested that tolerance to O(3) is explained by a combination of different factors; while the reduction of O(3) uptake is likely to be the most important, the capacity to maintain higher amounts of isoprene is an important factor in strengthening this character.
Collapse
Affiliation(s)
- Carlo Calfapietra
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
- University of Tuscia, Department of Forest Environment and Resources (DISAFRI), Via S.Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Giuseppe Scarascia Mugnozza
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
- University of Tuscia, Department of Forest Environment and Resources (DISAFRI), Via S.Camillo de Lellis snc, 01100 Viterbo, Italy
| | - David F Karnosky
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Francesco Loreto
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
| | - Thomas D Sharkey
- Michigan State University, 410 Biochemistry Building, East Lansing, MI 48824, USA
| |
Collapse
|