1
|
Yang W, Cao J, Wu Y, Kong F, Li L. Review on plant terpenoid emissions worldwide and in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147454. [PMID: 34000546 DOI: 10.1016/j.scitotenv.2021.147454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 05/21/2023]
Abstract
Biogenic volatile organic compounds (BVOCs), particularly terpenoids, can significantly drive the formation of ozone (O3) and secondary organic aerosols (SOA) in the atmosphere, as well as directly or indirectly affect global climate change. Understanding their emission mechanisms and the current progress in emission measurements and estimations are essential for the accurate determination of emission characteristics, as well as for evaluating their roles in atmospheric chemistry and climate change. This review summarizes the mechanisms of terpenoid synthesis and release, biotic and abiotic factors affecting their emissions, development of emission observation techniques, and emission estimations from hundreds of published papers. We provide a review of the main observations and estimations in China, which contributes a significant proportion to the total global BVOC emissions. The review suggests the need for further research on the comprehensive effects of environmental factors on terpenoid emissions, especially soil moisture and nitrogen content, which should be quantified in emission models to improve the accuracy of estimation. In China, it is necessary to conduct more accurate measurements for local plants in different regions using the dynamic enclosure technique to establish an accurate local emission rate database for dominant tree species. This will help improve the accuracy of both national and global emission inventories. This review provides a comprehensive understanding of terpenoid emissions as well as prospects for detailed research to accurately describe terpenoid emission characteristics worldwide and in China.
Collapse
Affiliation(s)
- Weizhen Yang
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Jing Cao
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China
| | - Yan Wu
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fanlong Kong
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| | - Lingyu Li
- College of Environmental Sciences and Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
2
|
Niinemets Ü, Rasulov B, Talts E. CO 2 -responsiveness of leaf isoprene emission: Why do species differ? PLANT, CELL & ENVIRONMENT 2021; 44:3049-3063. [PMID: 34155641 DOI: 10.1111/pce.14131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 06/13/2023]
Abstract
Leaf isoprene emission rate, I, decreases with increasing atmospheric CO2 concentration with major implications for global change. There is a significant interspecific variability in [CO2 ]-responsiveness of I, but the extent of this variation is unknown and its reasons are not understood. We hypothesized that the magnitude of emission reduction reflects the size and changeability of precursor pools responsible for isoprene emission (dimethylallyl diphosphate, DMADP and 2-methyl-erythritol 2,4-cyclodiphosphate, MEcDP). Changes in I and intermediate pool sizes upon increase of [CO2 ] from 400 to 1500 μmol/mol were studied in nine woody species spanning boreal to tropical ecosystems. I varied 10-fold, total substrate pool size 37-fold and the ratio of DMADP/MEcDP pool sizes 57-fold. At higher [CO2 ], I was reduced on average by 65%, but [CO2 ]-responsiveness varied an order of magnitude across species. The increase in [CO2 ] resulted in concomitant reductions in both substrate pools. The variation in [CO2 ]-responsiveness across species scaled with the reduction in pool sizes, the substrate pool size supported and the share of DMADP in total substrate pool. This study highlights a major interspecific variation in [CO2 ]-responsiveness of isoprene emission and conclusively links this variation to interspecific variability in [CO2 ] effects on substrate availability and intermediate pool size.
Collapse
Affiliation(s)
- Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Bahtijor Rasulov
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Eero Talts
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
3
|
Li C, Pei J, Yan X, Cui X, Tsuruta M, Liu Y, Lian C. A poplar B-box protein PtrBBX23 modulates the accumulation of anthocyanins and proanthocyanidins in response to high light. PLANT, CELL & ENVIRONMENT 2021; 44:3015-3033. [PMID: 34114251 DOI: 10.1111/pce.14127] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 05/14/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Flavonoids, which modulate plant resistance to various stresses, can be induced by high light. B-box (BBX) transcription factors (TFs) play crucial roles in the transcriptional regulation of flavonoids biosynthesis, but limited information is available on the association of BBX proteins with high light. We present a detailed overview of 45 Populus trichocarpa BBX TFs. Phylogenetic relationships, gene structure, tissue-specific expression patterns and expression profiles were determined under 10 stress or phytohormone treatments to screen candidate BBX proteins associated with the flavonoid pathway. Sixteen candidate genes were identified, of which five were expressed predominantly in young leaves and roots, and BBX23 showed the most distinct response to high light. Overexpression of BBX23 in poplar activated expression of MYB TFs and structural genes in the flavonoid pathway, thereby promoting the accumulation of proanthocyanidins and anthocyanins. CRISPR/Cas9-generated knockout of BBX23 resulted in the opposite trend. Furthermore, the phenotype induced by BBX23 overexpression was enhanced under exposure to high light. BBX23 was capable of binding directly to the promoters of proanthocyanidin- and anthocyanin-specific genes, and its interaction with HY5 enhanced activation activity. We identified novel regulators of flavonoid biosynthesis in poplar, thereby enhancing our general understanding of the transcriptional regulatory mechanisms involved.
Collapse
Affiliation(s)
- Chaofeng Li
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Jinli Pei
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Yan
- Plant Biotechnology Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Cui
- College of Grassland Science and Technology, China Agricultural University, Beijing, China
| | - Momi Tsuruta
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ying Liu
- International Joint Laboratory of Forest Symbiology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chunlan Lian
- Laboratory of Forest Symbiology, Asian Research Center for Bioresource and Environmental Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
4
|
Hoshika Y, Brilli F, Baraldi R, Fares S, Carrari E, Zhang L, Badea O, Paoletti E. Ozone impairs the response of isoprene emission to foliar nitrogen and phosphorus in poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 267:115679. [PMID: 33254661 DOI: 10.1016/j.envpol.2020.115679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Tropospheric ozone (O3) impairs physiological processes of plants while nitrogen (N) deposition may cause imbalances in soil N and other nutrients such as phosphorus (P) suggesting an increase of P demand for plants. However, the combined effect of O3, soil N and P on isoprene emission from leaves has never been tested. We therefore examined isoprene emission in leaves of Oxford poplar clone exposed to O3 (ambient, AA [35.0 nmol mol-1 as daily mean]; 1.5 × AA; 2.0 × AA), soil N (0 and 80 kg N ha-1) and soil P (0, 40 and 80 kg P ha-1) in July and September in a Free-Air Controlled Exposure (FACE) facility. We also investigated the response of isoprene emission to foliar N, P and abscisic acid (ABA) contents in September because the 2-C-methylerythritol-5-phosphate (MEP) pathway of isoprenoid biosynthesis produces ABA. We found that O3 increased isoprene emission in July, which was associated to increased dark respiration, suggesting an activation of metabolism against O3 stress as an initial response. However, O3 decreased isoprene emission in September which was associated to reduced net photosynthesis. In September, isoprene emission was positively correlated with leaf N content and negatively correlated with leaf P content in AA. However, no response of isoprene emission to foliar N and P was found in elevated O3, suggesting that the isoprene responses to foliar N and P depended on the O3 exposure levels. Isoprene emission rate in 1.5 × AA and 2.0 × AA increased with increasing leaf ABA content, indicating accelerated senescence of injured leaves to favor new leaf growth when high O3 and nutritional availability in the soil were combined. Even though foliar N and P usually act as a proxy for isoprene emission rate, the impact of recent abiotic factors such as O3 should be always considered for modeling isoprene emission under climate change.
Collapse
Affiliation(s)
- Yasutomo Hoshika
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy.
| | - Federico Brilli
- Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Rita Baraldi
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via P. Gobetti 101, I-40129, Bologna, Italy
| | - Silvano Fares
- Institute of Bioeconomy (IBE), National Research Council (CNR), Via dei Taurini 19, 00100, Rome, Italy
| | - Elisa Carrari
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Changjiang Road 600, 150030, Harbin, China
| | - Ovidiu Badea
- INCDS, 13 Septembrie, Sector 5, 050711, Bucharest, Romania
| | - Elena Paoletti
- Institute of Research on Terrestrial Ecosystems (IRET), National Research Council (CNR), Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
Rodrigues TB, Baker CR, Walker AP, McDowell N, Rogers A, Higuchi N, Chambers JQ, Jardine KJ. Stimulation of isoprene emissions and electron transport rates as key mechanisms of thermal tolerance in the tropical species Vismia guianensis. GLOBAL CHANGE BIOLOGY 2020; 26:5928-5941. [PMID: 32525272 DOI: 10.1111/gcb.15213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/14/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests absorb large amounts of atmospheric CO2 through photosynthesis, but high surface temperatures suppress this absorption while promoting isoprene emissions. While mechanistic isoprene emission models predict a tight coupling to photosynthetic electron transport (ETR) as a function of temperature, direct field observations of this phenomenon are lacking in the tropics and are necessary to assess the impact of a warming climate on global isoprene emissions. Here we demonstrate that in the early successional species Vismia guianensis in the central Amazon, ETR rates increased with temperature in concert with isoprene emissions, even as stomatal conductance (gs ) and net photosynthetic carbon fixation (Pn ) declined. We observed the highest temperatures of continually increasing isoprene emissions yet reported (50°C). While Pn showed an optimum value of 32.6 ± 0.4°C, isoprene emissions, ETR, and the oxidation state of PSII reaction centers (qL ) increased with leaf temperature with strong linear correlations for ETR (ƿ = 0.98) and qL (ƿ = 0.99) with leaf isoprene emissions. In contrast, other photoprotective mechanisms, such as non-photochemical quenching, were not activated at elevated temperatures. Inhibition of isoprenoid biosynthesis repressed Pn at high temperatures through a mechanism that was independent of stomatal closure. While extreme warming will decrease gs and Pn in tropical species, our observations support a thermal tolerance mechanism where the maintenance of high photosynthetic capacity under extreme warming is assisted by the simultaneous stimulation of ETR and metabolic pathways that consume the direct products of ETR including photorespiration and the biosynthesis of thermoprotective isoprenoids. Our results confirm that models which link isoprene emissions to the rate of ETR hold true in tropical species and provide necessary "ground-truthing" for simulations of the large predicted increases in tropical isoprene emissions with climate warming.
Collapse
Affiliation(s)
- Tayana B Rodrigues
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Christopher R Baker
- Howard Hughes Medical Institute, Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Anthony P Walker
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Nate McDowell
- Earth System Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Alistair Rogers
- Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Niro Higuchi
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
| | - Jeffrey Q Chambers
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kolby J Jardine
- Forest Management Laboratory, National Institute of Amazonian Research, Manaus, Brazil
- Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
6
|
Chen J, Tang J, Yu X. Environmental and physiological controls on diurnal and seasonal patterns of biogenic volatile organic compound emissions from five dominant woody species under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113955. [PMID: 32023800 DOI: 10.1016/j.envpol.2020.113955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 05/24/2023]
Abstract
Biogenic volatile organic compounds (BVOCs) play essential roles in tropospheric chemistry, on both regional and global scales. The emissions of large quantities of species-specific BVOC depend not only on environmental (temperature, T; photosynthetically active radiation, PAR), but also physiological parameters (i.e. net photosynthetic rate, Pn; transpiration rate, Tr; stomatal conductance, gs and intercellular CO2 concentration, Ci). Here, isoprene, monoterpene and sesquiterpene emissions were determined from five dominant mature woody tree species in northern China, which are two evergreen conifers (Pinus tabuliformis and Platycladus orientalis) and three broad-leaved deciduous trees (Quercus variabilis, Populus tomentosa and Robinia pseudoacacia). A dynamic enclosure technique combined with GC-MS was used to sample BVOCs and analyse their fractional composition at daily and annual scales. The diurnal data showed that both isoprene and monoterpene emissions increased with increasing temperature, and reached their maximum emission rates in the peak of growing season for both coniferous and broad-leaved species. The emissions of individual compound within the monoterpenes and sesquiterpenes were statistically correlated with each other for all species. Furthermore, some oxygenated monoterpene emissions were highly correlated to sesquiterpenes in all tree species. Linking BVOC emissions to environmental and leaf physiological parameters exhibited that monoterpene emissions were linearly and positively correlated to the variation of T, PAR, Pn and Tr, while their relationship to gs and Ci is more complex. Collectively, these findings provided important information for improving current model estimations in terms of the linkage between BVOC emissions and plant physiological traits. The data presented in this study can be used to update emission capacity used in models, as this is the first time of reporting BVOC emissions from five dominant species in this region. The whole-year measurement of leaf-level BVOCs can also advance our understanding of seasonal variation in BVOC emissions.
Collapse
Affiliation(s)
- Jungang Chen
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China; Institute of Ecology, College of Urban and Environmental Sciences, Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Jing Tang
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, SE22362, Sweden; Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen, DK2100, Denmark; Center for Permafrost (CENPERM), University of Copenhagen, Copenhagen, DK1350, Denmark
| | - Xinxiao Yu
- Beijing Laboratory of Urban and Rural Ecological Environment, College of Soil and Water Conservation, Beijing Forestry University, 100083, Beijing, China.
| |
Collapse
|
7
|
Werner C, Fasbender L, Romek KM, Yáñez-Serrano AM, Kreuzwieser J. Heat Waves Change Plant Carbon Allocation Among Primary and Secondary Metabolism Altering CO 2 Assimilation, Respiration, and VOC Emissions. FRONTIERS IN PLANT SCIENCE 2020; 11:1242. [PMID: 32922421 PMCID: PMC7456945 DOI: 10.3389/fpls.2020.01242] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 07/29/2020] [Indexed: 05/17/2023]
Abstract
Processes controlling plant carbon allocation among primary and secondary metabolism, i.e., carbon assimilation, respiration, and VOC synthesis are still poorly constrained, particularly regarding their response to stress. To investigate these processes, we simulated a 10-day 38°C heat wave, analysing real-time carbon allocation into primary and secondary metabolism in the Mediterranean shrub Halimium halimifolium L. We traced position-specific 13C-labeled pyruvate into daytime VOC and CO2 emissions and during light-dark transition. Net CO2 assimilation strongly declined under heat, due to three-fold higher respiration rates. Interestingly, day respiration also increased two-fold. Decarboxylation of the C1-atom of pyruvate was the main process driving daytime CO2 release, whereas the C2-moiety was not decarboxylated in the TCA cycle. Heat induced high emissions of methanol, methyl acetate, acetaldehyde as well as mono- and sesquiterpenes, particularly during the first two days. After 10-days of heat a substantial proportion of 13C-labeled pyruvate was allocated into de novo synthesis of VOCs. Thus, during extreme heat waves high respiratory losses and reduced assimilation can shift plants into a negative carbon balance. Still, plants enhanced their investment into de novo VOC synthesis despite associated metabolic CO2 losses. We conclude that heat stress re-directed the proportional flux of key metabolites into pathways of VOC biosynthesis most likely at the expense of reactions of plant primary metabolism, which might highlight their importance for stress protection.
Collapse
Affiliation(s)
- Christiane Werner
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- *Correspondence: Christiane Werner,
| | - Lukas Fasbender
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
| | | | - Ana Maria Yáñez-Serrano
- Ecosystem Physiology, University of Freiburg, Freiburg, Germany
- Center of Ecological Research and Forest Applications (CREAF), Universitat Autònoma de Barcelona, Barcelona, Spain
- Global Ecology Unit CREAF-CSIC-UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | |
Collapse
|
8
|
Saunier A, Blande JD. The effect of elevated ozone on floral chemistry of Brassicaceae species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113257. [PMID: 31546077 DOI: 10.1016/j.envpol.2019.113257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 05/03/2023]
Abstract
Tropospheric ozone is a major atmospheric pollutant; it is phytotoxic and has a strong effect on phytochemicals, which are constitutively present in plant tissues, but also produced de novo in response to stress. It has been shown that ozone exposure can modify volatile phytochemical emissions from leaves, which could disturb interactions between plants and other organisms. However, there is a lack of knowledge on the effects of ozone on floral chemistry. The aim of this study was to determine the effects of two elevated ozone exposure scenarios (80 and 120 ppb during daylight hours for 5 consecutive days) on the floral volatile emissions and floral chemical (molecular size range C6-C20) content of four Brassicaceae species: Sinapis alba, Sinapis arvensis, Brassica napus and Brassica nigra. The results showed that the emissions of individual compounds and their relative contributions to volatile blends are both affected by ozone exposure. In addition, for all four species studied, three diterpenes (neophytadiene, cis-phytol and trans-phytol) were present in significantly lower amounts and a fourth diterpene (hexahydrofarnesyl acetone) in significantly greater amounts in ozone-exposed plants. Consistent effects of ozone exposure on volatile emissions and terpene content were observed for each of the four species studied with no significant effect of exposure level. It appeared that B. napus is the most ozone-sensitive species, whereas B. nigra is the most ozone-tolerant. Since earlier studies have indicated that ratios of phytochemicals can have substantial effects on the efficacy of chemical use by pollinators, these changes may have ecological and biological relevance that should be the focus of further elucidation.
Collapse
Affiliation(s)
- Amélie Saunier
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, P.O. Box 1627, 70211, Kuopio, Finland.
| |
Collapse
|
9
|
Cocozza C, Brilli F, Miozzi L, Pignattelli S, Rotunno S, Brunetti C, Giordano C, Pollastri S, Centritto M, Accotto GP, Tognetti R, Loreto F. Impact of high or low levels of phosphorus and high sodium in soils on productivity and stress tolerance of Arundo donax plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 289:110260. [PMID: 31623790 DOI: 10.1016/j.plantsci.2019.110260] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/06/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
The potential of Arundo donax to grow in degraded soils, characterized by excess of salinity (Na+), and phosphorus deficiency (-P) or excess (+P) also coupled with salinity (+NaP), was investigated by combining in vivo plant phenotyping, quantification of metabolites and ultrastructural imaging of leaves with a transcriptome-wide screening. Photosynthesis and growth were impaired by + Na, -P and + NaP. While + Na caused stomatal closure, enhanced biosynthesis of carotenoids, sucrose and isoprene and impaired anatomy of cell walls, +P negatively affected starch production and isoprene emission, and damaged chloroplasts. Finally, +NaP largely inhibited photosynthesis due to stomatal limitations, increased sugar content, induced/repressed a number of genes 10 time higher with respect to + P and + Na, and caused appearance of numerous and large plastoglobules and starch granules in chloroplasts. Our results show that A. donax is sensitive to unbalances of soil ion content, despite activation of defensive mechanisms that enhance plant resilience, growth and biomass production of A. donax under these conditions.
Collapse
Affiliation(s)
- Claudia Cocozza
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy; Department of Agriculture, Food, Environment and Forestry, Via San Bonaventura 13, 50145 Florence, Italy.
| | - Federico Brilli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Laura Miozzi
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Sara Pignattelli
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Silvia Rotunno
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy; Department of Biosciences and Territory, University of Molise, contrada Fonte Lappone, 86090 Pesche, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Cristiana Giordano
- National Research Council of Italy, Institute for BioEconomy (IBE), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Susanna Pollastri
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Gian Paolo Accotto
- National Research Council of Italy, Institute for the Sustainable Plant Protection (CNR - IPSP), Strada delle Cacce 73, 10135 Torino, Italy
| | - Roberto Tognetti
- Department of Agriculture, Environment and Food Sciences, University of Molise, Via Francesco De Sanctis, 86100 Campobasso, Italy; The EFI Project Centre on Mountain Forests (MOUNTFOR), Edmund Mach Foundation, 38010 San Michele all'Adige, Italy
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology, Agriculture, and Food Sciences, Piazzale Aldo Moro 7, Roma, Italy; Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Napoli, Italy
| |
Collapse
|
10
|
Kainer D, Padovan A, Degenhardt J, Krause S, Mondal P, Foley WJ, Külheim C. High marker density GWAS provides novel insights into the genomic architecture of terpene oil yield in Eucalyptus. THE NEW PHYTOLOGIST 2019; 223:1489-1504. [PMID: 31066055 DOI: 10.1111/nph.15887] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/26/2019] [Indexed: 05/09/2023]
Abstract
Terpenoid-based essential oils are economically important commodities, yet beyond their biosynthetic pathways, little is known about the genetic architecture of terpene oil yield from plants. Transport, storage, evaporative loss, transcriptional regulation and precursor competition may be important contributors to this complex trait. Here, we associate 2.39 million single nucleotide polymorphisms derived from shallow whole-genome sequencing of 468 Eucalyptus polybractea individuals with 12 traits related to the overall terpene yield, eight direct measures of terpene concentration and four biomass-related traits. Our results show that in addition to terpene biosynthesis, development of secretory cavities, where terpenes are both synthesized and stored, and transport of terpenes were important components of terpene yield. For sesquiterpene concentrations, the availability of precursors in the cytosol was important. Candidate terpene synthase genes for the production of 1,8-cineole and α-pinene, and β-pinene (which comprised > 80% of the total terpenes) were functionally characterized as a 1,8-cineole synthase and a β/α-pinene synthase. Our results provide novel insights into the genomic architecture of terpene yield and we provide candidate genes for breeding or engineering of crops for biofuels or the production of industrially valuable terpenes.
Collapse
Affiliation(s)
- David Kainer
- Center for BioEnergy Innovation, Bioscience Division, Oak Ridge National Laboratories, Oak Ridge, TN, 37831, USA
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Amanda Padovan
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- CSIRO, Clunies Ross Street, Canberra, ACT, 2601, Australia
| | - Joerg Degenhardt
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Sandra Krause
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - Prodyut Mondal
- Institut für Pharmazie, Martin-Luther Universität Halle-Wittenberg, Halle (Saale), 06120, Germany
| | - William J Foley
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
| | - Carsten Külheim
- Research School of Biology, The Australian National University, Acton, Canberra, ACT, 2601, Australia
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, USA
| |
Collapse
|
11
|
Chen J, Bi H, Yu X, Fu Y, Liao W. Influence of physiological and environmental factors on the diurnal variation in emissions of biogenic volatile compounds from Pinus tabuliformis. J Environ Sci (China) 2019; 81:102-118. [PMID: 30975314 DOI: 10.1016/j.jes.2019.01.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
Biological volatile organic compounds (BVOCs) have a large influence on atmospheric environmental quality, climate change and the carbon cycle. This study assesses the composition and diurnal variation in emission rates of BVOCs from Pinus tabuliformis, using an enclosure technique. Environmental parameters (temperature and light intensity) and physiological parameters (net photosynthetic rate, Pn; stomatal conductance, gs; intercellular CO2 concentration, Ci; and transpiration rate, Tr) that may affect emission behavior were continuously monitored. The 10 most abundant compound groups emitted by P. tabuliformis were classified by gas chromatography-mass spectrometry. The dominant monoterpenoid compounds emitted were α-pinene, β-myrcene, α-farnesene and limonene. The diurnal emission rate of BVOCs changed with temperature and light intensity, with dynamic analysis of BVOCs emissions revealing that their emission rates were more affected by temperature than light. The variation in monoterpene emission rates was consistent with estimates of Pn, gs and Tr. Basal emission rates (at 30 °C,) of the main BVOCs ranged from 0.006 to 0.273 μg -1/(hr g), while the basal ER standardization coefficients ranged from 0.049 to 0.144 °C-1. Overall, these results provide a detailed reference for the effective selection and configuration of tree species to effectively prevent and control atmospheric pollution.
Collapse
Affiliation(s)
- Jungang Chen
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing 100871, China
| | - Huaxing Bi
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Ji County Station, Chinese National Ecosystem Research Network (CNERN), Beijing 100083, China; Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Beijing Engineering Research Center of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Ecological Engineering, Ministry of Education, Beijing Forestry University, Beijing 100083, China; Beijing Collaborative Innovation Center for Eco-Environmental Improvement With Forestry and Fruit Trees, 102206 Beijing, China.
| | - Xinxiao Yu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Yanlin Fu
- College of Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China
| | - Wenchao Liao
- Beijing Water Consulting Co., LTD, 100048 Beijing, China
| |
Collapse
|
12
|
de Souza VF, Niinemets Ü, Rasulov B, Vickers CE, Duvoisin Júnior S, Araújo WL, Gonçalves JFDC. Alternative Carbon Sources for Isoprene Emission. TRENDS IN PLANT SCIENCE 2018; 23:1081-1101. [PMID: 30472998 PMCID: PMC6354897 DOI: 10.1016/j.tplants.2018.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 09/03/2018] [Accepted: 09/25/2018] [Indexed: 05/07/2023]
Abstract
Isoprene and other plastidial isoprenoids are produced primarily from recently assimilated photosynthates via the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. However, when environmental conditions limit photosynthesis, a fraction of carbon for MEP pathway can come from extrachloroplastic sources. The flow of extrachloroplastic carbon depends on the species and on leaf developmental and environmental conditions. The exchange of common phosphorylated intermediates between the MEP pathway and other metabolic pathways can occur via plastidic phosphate translocators. C1 and C2 carbon intermediates can contribute to chloroplastic metabolism, including photosynthesis and isoprenoid synthesis. Integration of these metabolic processes provide an example of metabolic flexibility, and results in the synthesis of primary metabolites for plant growth and secondary metabolites for plant defense, allowing effective use of environmental resources under multiple stresses.
Collapse
Affiliation(s)
- Vinícius Fernandes de Souza
- Laboratory of Plant Physiology and Biochemistry, National Institute for Amazonian Research (INPA), Manaus, AM 69011-970, Brazil; University of Amazonas State, Manaus, AM 69050-010, Brazil
| | - Ülo Niinemets
- Department of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu 51006, Estonia; Estonian Academy of Sciences, 10130 Tallinn, Estonia
| | - Bahtijor Rasulov
- Department of Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu 51006, Estonia; Institute of Technology, University of Tartu, Tartu, Estonia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, QLD 4072, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO) Synthetic Biology Future Science Platform, EcoSciences Precinct, Brisbane, QLD 4001, Australia
| | | | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | | |
Collapse
|
13
|
Fernández-Martínez M, Llusià J, Filella I, Niinemets Ü, Arneth A, Wright IJ, Loreto F, Peñuelas J. Nutrient-rich plants emit a less intense blend of volatile isoprenoids. THE NEW PHYTOLOGIST 2018; 220:773-784. [PMID: 29120052 PMCID: PMC6345376 DOI: 10.1111/nph.14889] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/16/2017] [Indexed: 05/04/2023]
Abstract
The emission of isoprenoids (e.g. isoprene and monoterpenes) by plants plays an important defensive role against biotic and abiotic stresses. Little is known, however, about the functional traits linked to species-specific variability in the types and rates of isoprenoids emitted and about possible co-evolution of functional traits with isoprenoid emission type (isoprene emitter, monoterpene emitter or both). We combined data for isoprene and monoterpene emission rates per unit dry mass with key functional traits (foliar nitrogen (N) and phosphorus (P) concentrations, and leaf mass per area) and climate for 113 plant species, covering the boreal, wet temperate, Mediterranean and tropical biomes. Foliar N was positively correlated with isoprene emission, and foliar P was negatively correlated with both isoprene and monoterpene emission rate. Nonemitting plants generally had the highest nutrient concentrations, and those storing monoterpenes had the lowest concentrations. Our phylogenetic analyses found that the type of isoprenoid emission followed an adaptive, rather than a random model of evolution. Evolution of isoprenoids may be linked to nutrient availability. Foliar N and P are good predictors of the type of isoprenoid emission and the rate at which monoterpenes, and to a lesser extent isoprene, are emitted.
Collapse
Affiliation(s)
- Marcos Fernández-Martínez
- Centre of Excellence PLECO (Plant and Vegetation Ecology),
Department of Biology, University of Antwerp, 2610 Wilrijk, Belgium
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Joan Llusià
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Iolanda Filella
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| | - Ülo Niinemets
- Estonian University of Life Sciences, Institute of Agricultural and
Environmental Sciences, 1 Kreutzwaldi, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| | - Almut Arneth
- Karlsruhe Institute of Technology, Atmospheric Environmental
Research, Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ian J. Wright
- Department of Biological Sciences, Macquarie University, NSW 2109,
Australia
| | - Francesco Loreto
- National Research Council of Italy, Department of Biology,
Agriculture and Food Sciences (CNR-DISBA), Piazzale Aldo Moro 7, Rome, Italy
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CEAB-CSIC-UAB, Bellaterra, 08193
Barcelona, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08193 Barcelona, Catalonia,
Spain
| |
Collapse
|
14
|
Yu W, Wang Y, Wang Y, Li B, Liu Y, Liu X. Application of a coupled model of photosynthesis and stomatal conductance for estimating plant physiological response to pollution by fine particulate matter (PM 2.5). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:19826-19835. [PMID: 29737482 DOI: 10.1007/s11356-018-2128-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 05/23/2023]
Abstract
Fine particulate matter (PM2.5) is a current environmental issue that has an impact on the global ecology. Vegetation is a known sink for PM2.5 deposition but the effects of these particles on plant growth, and specifically on plant photosynthesis by changing their leaf water potential, are still not well understood. This study aimed to determine and characterize possible relationships between PM2.5 and plant photosynthesis under different PM2.5 concentrations. Both indoor and outdoor measurements were carried out to evaluate the variation dynamics of net photosynthetic rate and stomatal conductance of four plant species with different leaf characteristics under different PM2.5 levels. A calibrated coupled model of photosynthesis and stomatal conductance was developed to estimate the relationship between plant photosynthesis and PM2.5 reliably. Net photosynthetic rate and stomatal conductance declined over time at elevated PM2.5, with large variations with PM2.5 concentrations. Using a calibrated model of photosynthesis coupled to stomatal conductance, we show that PM2.5 can influence plant photosynthesis that primarily occurs through the stomata on leaves. Although the effect of particles on plant photosynthesis was not as high as that of photosynthetically active radiation, temperature, and CO2 concentration around the leaf, the effect from PM2.5 can be significant, in particular, in highly polluted atmospheres.
Collapse
Affiliation(s)
- Weiqing Yu
- Planning and Consultancy Institute, China Aviation Planning and Design Institute (Group) Co., Ltd, 12 Deshengmenwai St, Beijing, China
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, 35 Qinghua East Rd, Beijing, China
| | - Yujie Wang
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, 35 Qinghua East Rd, Beijing, China.
- School of Soil and Water Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing, China.
| | - Yunqi Wang
- Key Laboratory of Soil and Water Conservation and Desertification Combating, Ministry of Education, Beijing Forestry University, 35 Qinghua East Rd, Beijing, China
- School of Soil and Water Conservation, Beijing Forestry University, 35 Qinghua East Rd, Beijing, China
| | - Bai Li
- Department of Sedimentation, China Institute of Water Resources and Hydropower Research, 20 Chegongzhuang West Rd, Beijing, China
- Research Center on Soil and Water Conservation of the Ministry of Water Resource, 20 Chegongzhuang West Rd, Beijing, China
| | - Yanju Liu
- Planning and Consultancy Institute, China Aviation Planning and Design Institute (Group) Co., Ltd, 12 Deshengmenwai St, Beijing, China
| | - Xuan Liu
- Obermeyer Engineering Consulting (Beijing) Co., Ltd, C2 Dongsanhuan North Rd, Beijing, China
| |
Collapse
|
15
|
Marino G, Brunetti C, Tattini M, Romano A, Biasioli F, Tognetti R, Loreto F, Ferrini F, Centritto M. Dissecting the role of isoprene and stress-related hormones (ABA and ethylene) in Populus nigra exposed to unequal root zone water stress. TREE PHYSIOLOGY 2017; 37:1637-1647. [PMID: 28981861 DOI: 10.1093/treephys/tpx083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/06/2017] [Indexed: 05/24/2023]
Abstract
Isoprene is synthesized through the 2-C-methylerythritol-5-phosphate (MEP) pathway that also produces abscisic acid (ABA). Increases in foliar free ABA concentration during drought induce stomatal closure and may also alter ethylene biosynthesis. We hypothesized a role of isoprene biosynthesis in protecting plants challenged by increasing water deficit, by influencing ABA production and ethylene evolution. We performed a split-root experiment on Populus nigra L. subjected to three water treatments: well-watered (WW) plants with both root sectors kept at pot capacity, plants with both root compartments allowed to dry for 5 days (DD) and plants with one-half of the roots irrigated to pot capacity, while the other half did not receive water (WD). WD and WW plants were similar in photosynthesis, water relations, foliar ABA concentration and isoprene emission, whereas these parameters were significantly affected in DD plants: leaf isoprene emission increased despite the fact that photosynthesis declined by 85% and the ABA-glucoside/free ABA ratio decreased significantly. Enhanced isoprene biosynthesis in water-stressed poplars may have contributed to sustaining leaf ABA biosynthesis by keeping the MEP pathway active. However, this enhancement in ABA was accompanied by no change in ethylene biosynthesis, likely confirming the antagonistic role between ABA and ethylene. These results may indicate a potential cross-talk among isoprene, ABA and ethylene under drought.
Collapse
Affiliation(s)
- Giovanni Marino
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Cecilia Brunetti
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| | - Andrea Romano
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Franco Biasioli
- Dipartimento Qualità Alimentare e Nutrizione, Centro Ricerca e Innovazione, Fondazione Edmund Mach, Via E. Mach 1, 38010 S. Michele all'Adige (TN), Italy
| | - Roberto Tognetti
- Dipartimento di Bioscienze e Territorio, Università degli Studi del Molise, Contrada Fonte Lappone, 86090 Pesche (IS), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro 7, 00185 Roma, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università degli Studi di Firenze Viale delle Idee 30, 50019 Sesto Fiorentino (FI), Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy
| |
Collapse
|
16
|
Stutz SS, Anderson J, Zulick R, Hanson DT. Inside out: efflux of carbon dioxide from leaves represents more than leaf metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2849-2857. [PMID: 28575237 PMCID: PMC5853528 DOI: 10.1093/jxb/erx155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 04/07/2017] [Indexed: 05/18/2023]
Abstract
High concentrations of inorganic carbon in the xylem, produced from root, stem, and branch respiration, travel via the transpiration stream and eventually exit the plant through distant tissues as CO2. Unlike previous studies that focused on the efflux of CO2 from roots and woody tissues, we focus on efflux from leaves and the potential effect on leaf respiration measurements. We labeled transported inorganic carbon, spanning reported xylem concentrations, with 13C and then manipulated transpiration rates in the dark in order to vary the rates of inorganic carbon supply to cut leaves from Brassica napus and Populus deltoides. We used tunable diode laser absorbance spectroscopy to directly measure the rate of gross 13CO2 efflux, derived from inorganic carbon supplied from outside of the leaf, relative to gross 12CO2 efflux generated from leaf cells. These experiemnts showed that 13CO2 efflux was dependent upon the rate of inorganic carbon supply to the leaf and the rate of transpiration. Our data show that the gross leaf efflux of xylem-transported CO2 is likely small in the dark when rates of transpiration are low. However, gross leaf efflux of xylem-transported CO2 could approach half the rate of leaf respiration in the light when transpiration rates and branch inorganic carbon concentrations are high, irrespective of the grossly different petiole morphologies in our experiment.
Collapse
Affiliation(s)
- Samantha S Stutz
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Jeremiah Anderson
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - Rachael Zulick
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| | - David T Hanson
- Department of Biology, University of New Mexico, MSC03-2020, 1 University of New Mexico, Albuquerque, NM, USA
| |
Collapse
|
17
|
Portillo-Estrada M, Kazantsev T, Niinemets Ü. Fading of wound-induced volatile release during Populus tremula leaf expansion. JOURNAL OF PLANT RESEARCH 2017; 130:157-165. [PMID: 27885502 PMCID: PMC5788259 DOI: 10.1007/s10265-016-0880-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 10/25/2016] [Indexed: 05/04/2023]
Abstract
The release of stress-driven volatiles throughout leaf development has been little studied. Therefore, we subjected poplar leaves during their developmental stage (from 2 days to 2 weeks old) to wounding by a single punch hole, and measured online the wound-induced volatile organic compound emissions. Our study shows that the emission of certain volatile compounds fades with increasing leaf age. Among these compounds we found lipoxygenase products (LOX products), acetaldehyde, methyl benzoate, methyl salicylate, and mono- and sesquiterpenes. In parallel, we studied the fading of constitutive emissions of methanol during leaf maturation, as well as the rise in isoprene constitutive emission during leaf maturation and its relationship to leaf photosynthetic capacity. We found highly significant relationships between leaf chlorophyll content, photosynthetic capacity, and leaf size during leaf ageing. As the level of constitutive defences increases with increasing leaf age, the strength of the volatile signal is expected to be gradually reduced. The higher elicitation of volatile organic compound emissions (especially LOX products) in younger leaves could be an evolutionary defence against herbivory, given that younger leaves are usually more subjected to infestation and herbivory.
Collapse
Affiliation(s)
- Miguel Portillo-Estrada
- Centre of Excellence PLECO, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium.
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia.
| | - Taras Kazantsev
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
| | - Ülo Niinemets
- Department of Plant Physiology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51014, Tartu, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130, Tallinn, Estonia
| |
Collapse
|
18
|
Li ZX, Yang WJ, Ahammed GJ, Shen C, Yan P, Li X, Han WY. Developmental changes in carbon and nitrogen metabolism affect tea quality in different leaf position. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:327-335. [PMID: 27380366 DOI: 10.1016/j.plaphy.2016.06.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 06/06/2023]
Abstract
Leaf position represents a specific developmental stage that influences both photosynthesis and respiration. However, the precise relationships between photosynthesis and respiration in different leaf position that affect tea quality are largely unknown. Here, we show that the effective quantum yield of photosystem II [ΦPSⅡ] as well as total chlorophyll concentration (TChl) of tea leaves increased gradually with leaf maturity. Moreover, respiration rate (RR) together with total nitrogen concentration (TN) decreased persistently, but total carbon remained unchanged during leaf maturation. Analyses of major N-based organic compounds revealed that decrease in TN was attributed to a significant decrease in the concentration of caffeine and amino acids (AA) in mature leaves. Furthermore, soluble sugar (SS) decreased, but starch concentration increased with leaf maturity, indicating that source-sink relationship was altered during tea leaf development. Detailed correlation analysis showed that ΦPSⅡ was negatively correlated with RR, SS, starch, tea polyphenol (TP), total catechins and TN, but positively correlated with TChl; while RR was positively correlated with TN, SS, TP and caffeine, but negatively correlated with TChl and starch concentrations. Our results suggest that biosynthesis of chlorophyll, catechins and polyphenols is closely associated with photosynthesis and respiration in different leaf position that greatly influences the relationship between primary and secondary metabolism in tea plants.
Collapse
Affiliation(s)
- Zhi-Xin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Wei-Jun Yang
- School of Biotechnology and Food Science, Anyang Institute of Technology, Anyang, 455000, PR China
| | - Golam Jalal Ahammed
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China; Key Laboratory of Horticultural Plants Growth, Development and Quality Improvement, Agricultural Ministry of China, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, PR China
| | - Chen Shen
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, PR China
| | - Peng Yan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China
| | - Xin Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China.
| | - Wen-Yan Han
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, 9 Meiling Road, Hangzhou, 310008, PR China.
| |
Collapse
|
19
|
Terry LI, Roemer RB, Booth DT, Moore CJ, Walter GH. Thermogenic respiratory processes drive the exponential increase of volatile organic compound emissions in Macrozamia cycad cones. PLANT, CELL & ENVIRONMENT 2016; 39:1588-1600. [PMID: 26924274 DOI: 10.1111/pce.12730] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/12/2016] [Accepted: 02/14/2016] [Indexed: 06/05/2023]
Abstract
An important outcome of plant thermogenesis is increased emissions of volatiles that mediate pollinator behaviour. We investigated whether the large increase in emissions, mainly the monoterpene ß-myrcene (>90%), during daily thermogenic events of Macrozamia macleayi and lucida cycad cones are due solely to the influence of high cone temperatures or are, instead, a result of increased respiratory rates during thermogenesis. We concurrently measured temperature, oxygen consumption and ß-myrcene emission profiles during thermogenesis of pollen cones under typical environmental temperatures and during experimental manipulations of cone temperatures and aerobic conditions, all in the dark. The exponential rise in ß-myrcene emissions never occurred without a prior, large increase in respiration, whereas an increase in cone temperature alone did not increase emissions. When respiration during thermogenesis was interrupted by anoxic conditions, ß-myrcene emissions decreased. The increased emission rates are not a result of increased cone temperature per se (through increased enzyme activity or volatilization of stored volatiles) but are dependent on biosynthetic pathways associated with increased respiration during thermogenesis that provide the carbon, energy (ATP) and reducing compounds (NADPH) required for ß-myrcene production through the methylerythritol phosphate (MEP) pathway. These findings establish the significant contribution of respiration to volatile production during thermogenesis.
Collapse
Affiliation(s)
- L Irene Terry
- Department of Biology, University of Utah, 257 S. 1400 E., Salt Lake City, UT, 84112, USA
| | - Robert B Roemer
- Department of Mechanical Engineering, University of Utah, 50 S. Central Campus Dr., 2202 Merrill Engineering Bldg, Salt Lake City, UT, 84112, USA
| | - David T Booth
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Chris J Moore
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
20
|
Xu Z, Jiang Y, Zhou G. Response and adaptation of photosynthesis, respiration, and antioxidant systems to elevated CO2 with environmental stress in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:701. [PMID: 26442017 PMCID: PMC4564695 DOI: 10.3389/fpls.2015.00701] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 08/21/2015] [Indexed: 05/19/2023]
Abstract
It is well known that plant photosynthesis and respiration are two fundamental and crucial physiological processes, while the critical role of the antioxidant system in response to abiotic factors is still a focus point for investigating physiological stress. Although one key metabolic process and its response to climatic change have already been reported and reviewed, an integrative review, including several biological processes at multiple scales, has not been well reported. The current review will present a synthesis focusing on the underlying mechanisms in the responses to elevated CO2 at multiple scales, including molecular, cellular, biochemical, physiological, and individual aspects, particularly, for these biological processes under elevated CO2 with other key abiotic stresses, such as heat, drought, and ozone pollution, as well as nitrogen limitation. The present comprehensive review may add timely and substantial information about the topic in recent studies, while it presents what has been well established in previous reviews. First, an outline of the critical biological processes, and an overview of their roles in environmental regulation, is presented. Second, the research advances with regard to the individual subtopics are reviewed, including the response and adaptation of the photosynthetic capacity, respiration, and antioxidant system to CO2 enrichment alone, and its combination with other climatic change factors. Finally, the potential applications for plant responses at various levels to climate change are discussed. The above issue is currently of crucial concern worldwide, and this review may help in a better understanding of how plants deal with elevated CO2 using other mainstream abiotic factors, including molecular, cellular, biochemical, physiological, and whole individual processes, and the better management of the ecological environment, climate change, and sustainable development.
Collapse
Affiliation(s)
- Zhenzhu Xu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Yanling Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
| | - Guangsheng Zhou
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Chinese Academy of Meteorological SciencesBeijing, China
| |
Collapse
|
21
|
Rinnan R, Steinke M, McGenity T, Loreto F. Plant volatiles in extreme terrestrial and marine environments. PLANT, CELL & ENVIRONMENT 2014; 37:1776-89. [PMID: 24601952 DOI: 10.1111/pce.12320] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 02/26/2014] [Indexed: 05/15/2023]
Abstract
This review summarizes the current understanding on plant and algal volatile organic compound (VOC) production and emission in extreme environments, where temperature, water availability, salinity or other environmental factors pose stress on vegetation. Here, the extreme environments include terrestrial systems, such as arctic tundra, deserts, CO₂ springs and wetlands, and marine systems such as sea ice, tidal rock pools and hypersaline environments, with mangroves and salt marshes at the land-sea interface. The emission potentials at fixed temperature and light level or actual emission rates for phototrophs in extreme environments are frequently higher than for organisms from less stressful environments. For example, plants from the arctic tundra appear to have higher emission potentials for isoprenoids than temperate species, and hypersaline marine habitats contribute to global dimethyl sulphide (DMS) emissions in significant amounts. DMS emissions are more widespread than previously considered, for example, in salt marshes and some desert plants. The reason for widespread VOC, especially isoprenoid, emissions from different extreme environments deserves further attention, as these compounds may have important roles in stress resistance and adaptation to extremes. Climate warming is likely to significantly increase VOC emissions from extreme environments both by direct effects on VOC production and volatility, and indirectly by altering the composition of the vegetation.
Collapse
Affiliation(s)
- Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Copenhagen Ø, DK-2100, Denmark; Centre for Permafrost (CENPERM), University of Copenhagen, Copenhagen K, DK-1350, Denmark
| | | | | | | |
Collapse
|
22
|
Potosnak MJ, Lestourgeon L, Nunez O. Increasing leaf temperature reduces the suppression of isoprene emission by elevated CO₂ concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 481:352-9. [PMID: 24614154 DOI: 10.1016/j.scitotenv.2014.02.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/09/2013] [Accepted: 02/15/2014] [Indexed: 05/24/2023]
Abstract
Including algorithms to account for the suppression of isoprene emission by elevated CO2 concentration affects estimates of global isoprene emission for future climate change scenarios. In this study, leaf-level measurements of isoprene emission were made to determine the short-term interactive effect of leaf temperature and CO2 concentration. For both greenhouse plants and plants grown under field conditions, the suppression of isoprene emission was reduced by increasing leaf temperature. For each of the four different tree species investigated, aspen (Populus tremuloides Michx.), cottonwood (Populus deltoides W. Bartram ex Marshall), red oak (Quercus rubra L.), and tundra dwarf willow (Salix pulchra Cham.), the suppression of isoprene by elevated CO2 was eliminated at increased temperature, and the maximum temperature where suppression was observed ranged from 25 to 35°C. Hypotheses proposed to explain the short-term suppression of isoprene emission by increased CO2 concentration were tested against this observation. Hypotheses related to cofactors in the methylerythritol phosphate (MEP) pathway were consistent with reduced suppression at elevated leaf temperature. Also, reduced solubility of CO2 with increased temperature can explain the reduced suppression for the phosphoenolpyruvate (PEP) carboxylase competition hypothesis. Some global models of isoprene emission include the short-term suppression effect, and should be modified to include the observed interaction. If these results are consistent at longer timescales, there are implications for predicting future global isoprene emission budgets and the reduced suppression at increased temperature could explain some of the variable responses observed in long-term CO2 exposure experiments.
Collapse
Affiliation(s)
- Mark J Potosnak
- Department of Environmental Science and Studies, DePaul University, Chicago, IL 60614, USA.
| | - Lauren Lestourgeon
- Department of Environmental Science and Studies, DePaul University, Chicago, IL 60614, USA
| | - Othon Nunez
- Department of Environmental Science and Studies, DePaul University, Chicago, IL 60614, USA
| |
Collapse
|
23
|
Markelz RJC, Lai LX, Vosseler LN, Leakey ADB. Transcriptional reprogramming and stimulation of leaf respiration by elevated CO2 concentration is diminished, but not eliminated, under limiting nitrogen supply. PLANT, CELL & ENVIRONMENT 2014; 37:886-898. [PMID: 24112047 DOI: 10.1111/pce.12205] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/23/2013] [Accepted: 08/24/2013] [Indexed: 06/02/2023]
Abstract
Plant respiration responses to elevated CO2 concentration ( [CO2 ] ) have been studied for three decades without consensus about the mechanism of response. Positive effects of elevated [CO2 ] on leaf respiration have been attributed to greater substrate supply resulting from stimulated photosynthesis. Negative effects of elevated [CO2 ] on leaf respiration have been attributed to reduced demand for energy for protein turnover assumed to result from lower leaf N content. Arabidopsis thaliana was grown in ambient (370 ppm) and elevated (750 ppm) [CO2 ] with limiting and ample N availabilities. The stimulation of leaf dark respiration was attenuated in limiting N (+12%) compared with ample N supply (+30%). This response was associated with smaller stimulation of photosynthetic CO2 uptake, but not interactive effects of elevated CO2 and N supply on leaf protein, amino acids or specific leaf area. Elevated [CO2 ] also resulted in greater abundance of transcripts for many components of the respiratory pathway. A greater transcriptional response to elevated [CO2 ] was observed in ample N supply at midday versus midnight, consistent with reports that protein synthesis is greatest during the day. Greater foliar expression of respiratory genes under elevated [CO2 ] has now been observed in diverse herbaceous species, suggesting a widely conserved response.
Collapse
Affiliation(s)
- R J Cody Markelz
- Department of Plant Biology and Institute for Genomic Biology, University of Illinois Urbana-Champaign, 1402 Institute for Genomic Biology
| | | | | | | |
Collapse
|
24
|
Sun Z, Hüve K, Vislap V, Niinemets Ü. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5509-23. [PMID: 24153419 PMCID: PMC3871810 DOI: 10.1093/jxb/ert318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.
Collapse
Affiliation(s)
- Zhihong Sun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Vislap
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| |
Collapse
|
25
|
Peñuelas J, Marino G, LLusia J, Morfopoulos C, Farré-Armengol G, Filella I. Photochemical reflectance index as an indirect estimator of foliar isoprenoid emissions at the ecosystem level. Nat Commun 2013; 4:2604. [DOI: 10.1038/ncomms3604] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Accepted: 09/12/2013] [Indexed: 11/09/2022] Open
|
26
|
Sun Z, Niinemets Ü, Hüve K, Rasulov B, Noe SM. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides). THE NEW PHYTOLOGIST 2013; 198:788-800. [PMID: 23442171 DOI: 10.1111/nph.12200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 01/27/2013] [Indexed: 06/01/2023]
Abstract
Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production.
Collapse
Affiliation(s)
- Zhihong Sun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Katja Hüve
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| | - Bahtijor Rasulov
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, Tartu, 510101, Estonia
| | - Steffen M Noe
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu, 51014, Estonia
| |
Collapse
|
27
|
Harrison SP, Morfopoulos C, Dani KGS, Prentice IC, Arneth A, Atwell BJ, Barkley MP, Leishman MR, Loreto F, Medlyn BE, Niinemets Ü, Possell M, Peñuelas J, Wright IJ. Volatile isoprenoid emissions from plastid to planet. THE NEW PHYTOLOGIST 2013; 197:49-57. [PMID: 23145556 DOI: 10.1111/nph.12021] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/22/2012] [Indexed: 05/22/2023]
Abstract
Approximately 1-2% of net primary production by land plants is re-emitted to the atmosphere as isoprene and monoterpenes. These emissions play major roles in atmospheric chemistry and air pollution-climate interactions. Phenomenological models have been developed to predict their emission rates, but limited understanding of the function and regulation of these emissions has led to large uncertainties in model projections of air quality and greenhouse gas concentrations. We synthesize recent advances in diverse fields, from cell physiology to atmospheric remote sensing, and use this information to propose a simple conceptual model of volatile isoprenoid emission based on regulation of metabolism in the chloroplast. This may provide a robust foundation for scaling up emissions from the cellular to the global scale.
Collapse
Affiliation(s)
- Sandy P Harrison
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eller ASD, de Gouw J, Graus M, Monson RK. Variation among different genotypes of hybrid poplar with regard to leaf volatile organic compound emissions. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2012; 22:1865-75. [PMID: 23210305 DOI: 10.1890/11-2273.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plantations of hybrid poplar are used in temperate regions to produce woody biomass for forestry-related industries and are likely to become more prevalent if they are used as a source of cellulose for second-generation biofuels. Species in the genus Populus are known to emit great quantities of the volatile organic compounds (VOCs) isoprene and methanol, and lesser quantities of terpene VOCs, giving poplar plantations the potential to significantly influence regional atmospheric chemistry. The goals of this study were to quantify the differences in isoprene, methanol, and monoterpene emissions from 30 hybrid poplar genotypes, determine how well VOC emissions could be explained by growth, photosynthesis, and stomatal conductance, determine whether the parental crosses that created a genotype could be used to predict its emissions, and determine whether VOC emissions from different genotypes exhibit different responses to elevated CO2. We found that 40-50% of the variation in isoprene emissions across genotypes could be explained by a combination of instantaneous photosynthesis rate and seasonal aboveground growth and 30-35% of methanol emissions could be explained by stomatal conductance. We observed a threefold range in isoprene emissions across all 30 genotypes. Both genotype and parental cross were significant predictors of isoprene and monoterpene emissions. Genotypes from P. tricocarpa X P. deltoides (T x D) crosses generally had higher isoprene emissions and lower monoterpene emissions than those from P. deltoides x P. nigra (D x N) crosses. While isoprene and monoterpene emissions generally decreased under elevated CO2 and methanol emissions generally increased, the responses varied among genotypes. Our findings suggest that genotypes with greater productivity tend to have higher isoprene emissions. Additionally, the genotypes with the lowest isoprene emissions under current CO2 are not necessarily the ones with the lowest emissions under elevated CO2.
Collapse
Affiliation(s)
- Allyson S D Eller
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Ramaley N122 UCB 334, Boulder, Colorado 80309, USA.
| | | | | | | |
Collapse
|
29
|
Monson RK, Grote R, Niinemets Ü, Schnitzler JP. Modeling the isoprene emission rate from leaves. THE NEW PHYTOLOGIST 2012; 195:541-559. [PMID: 22738087 DOI: 10.1111/j.1469-8137.2012.04204.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The leaves of many plants emit isoprene (2-methyl-1,3-butadiene) to the atmosphere, a process which has important ramifications for global and regional atmospheric chemistry. Quantitation of leaf isoprene emission and its response to environmental variation are described by empirically derived equations that replicate observed patterns, but have been linked only in some cases to known biochemical and physiological processes. Furthermore, models have been proposed from several independent laboratories, providing multiple approaches for prediction of emissions, but with little detail provided as to how contrasting models are related. In this review we provide an analysis as to how the most commonly used models have been validated, or not, on the basis of known biochemical and physiological processes. We also discuss the multiple approaches that have been used for modeling isoprene emission rate with an emphasis on identifying commonalities and contrasts among models, we correct some mathematical errors that have been propagated through the models, and we note previously unrecognized covariances within processes of the models. We come to the conclusion that the state of isoprene emission modeling remains highly empirical. Where possible, we identify gaps in our knowledge that have prevented us from achieving a greater mechanistic foundation for the models, and we discuss the insight and data that must be gained to fill those gaps.
Collapse
Affiliation(s)
- Russell K Monson
- School of Natural Resources and the Environment and Laboratory for Tree Ring Research, University of Arizona, Tucson, Arizona 85721, USA
| | - Rüdiger Grote
- Karlsruhe Institute of Technology (KIT), Institute for Meteorology and Climate Research, Kreuzeckbahnstrasse 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jörg-Peter Schnitzler
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| |
Collapse
|
30
|
Dizengremel P, Vaultier MN, Le Thiec D, Cabané M, Bagard M, Gérant D, Gérard J, Dghim AA, Richet N, Afif D, Pireaux JC, Hasenfratz-Sauder MP, Jolivet Y. Phosphoenolpyruvate is at the crossroads of leaf metabolic responses to ozone stress. THE NEW PHYTOLOGIST 2012; 195:512-517. [PMID: 22686461 DOI: 10.1111/j.1469-8137.2012.04211.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Pierre Dizengremel
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
- (*Author for correspondence: tel +33 3 83 68 42 41; )
| | - Marie-Noëlle Vaultier
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Didier Le Thiec
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Mireille Cabané
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Matthieu Bagard
- Université Paris Est Créteil, Bioemco, UMR 7618, 94010 Créteil Cedex, France
| | - Dominique Gérant
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Joëlle Gérard
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Ata Allah Dghim
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Nicolas Richet
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Dany Afif
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Jean-Claude Pireaux
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Marie-Paule Hasenfratz-Sauder
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| | - Yves Jolivet
- Université de Lorraine, Ecologie et Ecophysiologie Forestières, UMR 1137, 54506 Vandoeuvre-lès-Nancy Cedex, France
- INRA, Ecologie et Ecophysiologie Forestières, UMR 1137, 54280 Champenoux, France
| |
Collapse
|
31
|
Medori M, Michelini L, Nogues I, Loreto F, Calfapietra C. The impact of root temperature on photosynthesis and isoprene emission in three different plant species. ScientificWorldJournal 2012; 2012:525827. [PMID: 22701360 PMCID: PMC3373142 DOI: 10.1100/2012/525827] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 04/01/2012] [Indexed: 11/22/2022] Open
Abstract
Most of the perennial plant species, particularly trees, emit volatile organic compounds (BVOCs) such as isoprene and monoterpenes, which in several cases have been demonstrated to protect against thermal shock and more generally against oxidative stress. In this paper, we show the response of three strong isoprene emitter species, namely, Phragmites australis, Populus x euramericana, and Salix phylicifolia exposed to artificial or natural warming of the root system in different conditions. This aspect has not been investigated so far while it is well known that warming the air around a plant stimulates considerably isoprene emission, as also shown in this paper. In the green house experiments where the warming corresponded with high stress conditions, as confirmed by higher activities of the main antioxidant enzymes, we found that isoprene uncoupled from photosynthesis at a certain stage of the warming treatment and that even when photosynthesis approached to zero isoprene emission was still ongoing. In the field experiment, in a typical cold-limited environment, warming did not affect isoprene emission whereas it increased significantly CO2 assimilation. Our findings suggest that the increase of isoprene could be a good marker of heat stress, whereas the decrease of isoprene a good marker of accelerated foliar senescence, two hypotheses that should be better investigated in the future.
Collapse
Affiliation(s)
- Mauro Medori
- Institute of Agro-Environmental & Forest Biology-IBAF, National Research Council-CNR, Via Salaria km 29,300, 00015 Monterotondo Scalo, Rome, Italy
| | | | | | | | | |
Collapse
|
32
|
Trowbridge AM, Asensio D, Eller ASD, Way DA, Wilkinson MJ, Schnitzler JP, Jackson RB, Monson RK. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations. PLoS One 2012; 7:e32387. [PMID: 22384238 PMCID: PMC3285681 DOI: 10.1371/journal.pone.0032387] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 01/29/2012] [Indexed: 11/17/2022] Open
Abstract
Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13)CO(2)-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS) to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens) trees grown and measured at different atmospheric CO(2) concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2) concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+), which represents, in part, substrate derived from pyruvate, and M69(+), which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13)C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP). Trees grown under sub-ambient CO(2) (190 ppmv) had rates of isoprene emission and rates of labeling of M41(+) and M69(+) that were nearly twice those observed in trees grown under elevated CO(2) (590 ppmv). However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2) availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2).
Collapse
Affiliation(s)
- Amy M Trowbridge
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bracho-Nunez A, Welter S, Staudt M, Kesselmeier J. Plant-specific volatile organic compound emission rates from young and mature leaves of Mediterranean vegetation. ACTA ACUST UNITED AC 2011. [DOI: 10.1029/2010jd015521] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
34
|
Guidolotti G, Calfapietra C, Loreto F. The relationship between isoprene emission, CO(2) assimilation and water use efficiency across a range of poplar genotypes. PHYSIOLOGIA PLANTARUM 2011; 142:297-304. [PMID: 21361963 DOI: 10.1111/j.1399-3054.2011.01463.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Poplars (Populus sp.) are among the strongest isoprene (Iso)-emitting plants. Ten poplar genotypes belonging to four different species were grown under the same environmental conditions in a common garden experiment, to study the influence of the genetic variability on Iso emission and on the relationship between Iso and photosynthesis. Photosynthesis ranged from 13 to 20 µmol CO(2) m(-2) s(-1) , whereas Iso emission ranged from 18.2 to 45.2 nmol m(-2) s(-1) . There was no clear association between Iso emission and photosynthesis. In most genotypes, photosynthetic capacity developed earlier than Iso emission capacity. The emission of Iso was inversely correlated with the intercellular CO(2) concentration (C(i) ) and positively correlated with instantaneous water use efficiency. It is speculated that, by regulating C(i) , stomatal opening also indirectly controls Iso emission in poplars. A positive linear correlation between the fraction of recently assimilated carbon emitted as Iso and Iso emission rate was found. The slope of this relationship indicated that each nanomole of Iso emitted requires a fixed fraction of photosynthetic carbon regardless of the intra- and interspecific variability in the Populus genus, and of leaf ontogeny. A comparison with data from recent studies showed that the slope of this relationship increases in drought-stressed leaves. However, this might be explained by an increasing contribution of carbon sources for Iso biosynthesis from stored photosynthates. If this is true, then the amount of carbon directly shunted from photosynthesis into Iso is constant in all poplars and is not influenced by abiotic stresses.
Collapse
Affiliation(s)
- Gabriele Guidolotti
- Institute of Agro-Environmental & Forest Biology (IBAF), National Research Council (CNR), Monterotondo Scalo (Roma), Italy
| | | | | |
Collapse
|
35
|
Velikova V, Tsonev T, Loreto F, Centritto M. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:1058-66. [PMID: 21126813 DOI: 10.1016/j.envpol.2010.10.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2010] [Accepted: 10/18/2010] [Indexed: 05/08/2023]
Abstract
Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni30 and Ni200). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO2] than in control leaves. However chloroplastic [CO2] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia, Bulgaria.
| | | | | | | |
Collapse
|
36
|
Enhanced isoprene-related tolerance of heat- and light-stressed photosynthesis at low, but not high, CO2 concentrations. Oecologia 2011; 166:273-82. [DOI: 10.1007/s00442-011-1947-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 02/17/2011] [Indexed: 11/26/2022]
|
37
|
Behnke K, Kaiser A, Zimmer I, Brüggemann N, Janz D, Polle A, Hampp R, Hänsch R, Popko J, Schmitt-Kopplin P, Ehlting B, Rennenberg H, Barta C, Loreto F, Schnitzler JP. RNAi-mediated suppression of isoprene emission in poplar transiently impacts phenolic metabolism under high temperature and high light intensities: a transcriptomic and metabolomic analysis. PLANT MOLECULAR BIOLOGY 2010; 74:61-75. [PMID: 20526857 PMCID: PMC3128716 DOI: 10.1007/s11103-010-9654-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Accepted: 05/21/2010] [Indexed: 05/04/2023]
Abstract
In plants, isoprene plays a dual role: (a) as thermo-protective agent proposed to prevent degradation of enzymes/membrane structures involved in photosynthesis, and (b) as reactive molecule reducing abiotic oxidative stress. The present work addresses the question whether suppression of isoprene emission interferes with genome wide transcription rates and metabolite fluxes in grey poplar (Populus x canescens) throughout the growing season. Gene expression and metabolite profiles of isoprene emitting wild type plants and RNAi-mediated non-isoprene emitting poplars were compared by using poplar Affymetrix microarrays and non-targeted FT-ICR-MS (Fourier transform ion cyclotron resonance mass spectrometry). We observed a transcriptional down-regulation of genes encoding enzymes of phenylpropanoid regulatory and biosynthetic pathways, as well as distinct metabolic down-regulation of condensed tannins and anthocyanins, in non-isoprene emitting genotypes during July, when high temperature and light intensities possibly caused transient drought stress, as indicated by stomatal closure. Under these conditions leaves of non-isoprene emitting plants accumulated hydrogen peroxide (H(2)O(2)), a signaling molecule in stress response and negative regulator of anthocyanin biosynthesis. The absence of isoprene emission under high temperature and light stress resulted transiently in a new chemo(pheno)type with suppressed production of phenolic compounds. This may compromise inducible defenses and may render non-isoprene emitting poplars more susceptible to environmental stress.
Collapse
Affiliation(s)
- Katja Behnke
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Andreas Kaiser
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Ina Zimmer
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Nicolas Brüggemann
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| | - Dennis Janz
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Andrea Polle
- Forest Botany and Tree Physiology, Büsgen-Institute, Georg-August-University Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
| | - Rüdiger Hampp
- Physiological Ecology of Plants, Botanical Institute, Eberhard-Karls-University Tübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany
| | - Robert Hänsch
- Institute for Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38206 Braunschweig, Germany
| | - Jennifer Popko
- Institute for Plant Biology, Technical University of Braunschweig, Humboldtstrasse 1, 38206 Braunschweig, Germany
| | - Philippe Schmitt-Kopplin
- Institute for Ecological Chemistry, Helmholtz Center Munich, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Barbara Ehlting
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 053/054, 79110 Freiburg, Germany
- Department of Biology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P 5C2 Canada
| | - Heinz Rennenberg
- Institute for Forest Botany and Tree Physiology, Albert-Ludwigs-University Freiburg, Georges-Koehler-Allee 053/054, 79110 Freiburg, Germany
| | - Csengele Barta
- Istituto di Biologia Agroambientale e Forestale (IBAF)—Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, 00015, Monterotondo, Roma, Italy
| | - Francesco Loreto
- Istituto per la Protezione delle Piante (IPP), Consiglio Nazionale delle Ricerche (CNR), Area della Ricerca del CNR di Firenze, Via Madonna del Piano 10, 50019 Sesto Fiorentino Firenze, Italy
| | - Jörg-Peter Schnitzler
- Institute for Meteorology and Climate Research (IMK-IFU), Karlsruhe Institute of Technology (KIT), Kreuzeckbahnstr. 19, 82467 Garmisch-Partenkirchen, Germany
| |
Collapse
|
38
|
Ibrahim MA, Mäenpää M, Hassinen V, Kontunen-Soppela S, Malec L, Rousi M, Pietikäinen L, Tervahauta A, Kärenlampi S, Holopainen JK, Oksanen EJ. Elevation of night-time temperature increases terpenoid emissions from Betula pendula and Populus tremula. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1583-95. [PMID: 20181662 PMCID: PMC2852659 DOI: 10.1093/jxb/erq034] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/19/2010] [Accepted: 01/21/2010] [Indexed: 05/09/2023]
Abstract
Volatile organic compounds (VOCs) are expected to have an important role in plant adaptation to high temperatures. The impacts of increasing night-time temperature on daytime terpenoid emissions and related gene expression in silver birch (Betula pendula) and European aspen (Populus tremula) clones were studied. The plants were grown under five different night-time temperatures (6, 10, 14, 18, and 22 degrees C) while daytime temperature was kept at a constant 22 degrees C. VOC emissions were collected during the daytime and analysed by gas chromatography-mass spectrometry (GC-MS). In birch, emissions per leaf area of the C11 homoterpene 4,8-dimethy1-nona-1,3,7-triene (DMNT) and several sesquiterpenes were consistently increased with increasing night-time temperature. Total sesquiterpene (SQT) emissions showed an increase at higher temperatures. In aspen, emissions of DMNT and beta-ocimene increased from 6 degrees C to 14 degrees C, while several other monoterpenes and the SQTs (Z,E)-alpha-farnesene and (E,E)-alpha-farnesene increased up to 18 degrees C. Total monoterpene and sesquiterpene emission peaked at 18 degrees C, whereas isoprene emissions decreased at 22 degrees C. Leaf area increased across the temperature range of 6-22 degrees C by 32% in birch and by 59% in aspen. Specific leaf area (SLA) was also increased in both species. The genetic regulation of VOC emissions seems to be very complex, as indicated by several inverse relationships between emission profiles and expression of several regulatory genes (DXR, DXS, and IPP). The study indicates that increasing night temperature may strongly affect the quantity and quality of daytime VOC emissions of northern deciduous trees.
Collapse
Affiliation(s)
- Mohamed A Ibrahim
- Department of Environmental Science, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio, Finland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fares S, Oksanen E, Lännenpää M, Julkunen-Tiitto R, Loreto F. Volatile emissions and phenolic compound concentrations along a vertical profile of Populus nigra leaves exposed to realistic ozone concentrations. PHOTOSYNTHESIS RESEARCH 2010; 104:61-74. [PMID: 20407831 DOI: 10.1007/s11120-010-9549-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 04/01/2010] [Indexed: 05/29/2023]
Abstract
Plants are exposed to increasing levels of tropospheric ozone concentrations. This pollutant penetrates in leaves through stomata and quickly reacts inside leaves, thus making plants valuable ozone sinks, but at the same time triggers oxidation processes which lead to leaf injuries. To counteract these negative effects, plants produce an array of antioxidants which react with ozone and reactive molecules which ozone generates in the leaf tissues. In this study, we measured the effect of an ozone concentration which is likely to be attained in many areas of the world in the near future (80 ppb) on leaves of the vertical profile of the widespread agroforestry species Populus nigra. Changes in (1) physiological parameters (photosynthesis and stomatal conductance), (2) ozone uptake, (3) emission of volatile organic compounds (VOCs, i.e. isoprene, methanol and other oxygenated compounds), (4) concentration of antioxidant surface compounds, and (5) concentration of phenolic compounds were assessed. The aim was to assess whether the defensive pathways leading to isoprenoids and phenolics formation were induced when a moderate and chronic increment of ozone is not able to damage photosynthesis. No visual injuries and minor changes in physiology and ozone uptake were observed. The emission of isoprene and oxygenated six-carbon (C6) volatiles were inhibited by ozone, whereas methanol emission was increased, especially in developing leaves. We interpret these results as suggesting an ontogenetic shift in ozone-treated leaves, leading to a slower development and a faster senescence. Most surface and phenolic compounds showed a declining trend in concentration from the youngest to the fully expanded leaves. Ozone reduced the concentrations of chlorogenic acid derivatives at the leaf surface, whereas in total leaf extracts a metabolic shift towards few phenolics with higher antioxidant capacity was observed.
Collapse
Affiliation(s)
- Silvano Fares
- Consiglio Nazionale delle Ricerche (CNR), Istituto di Biologia Agroambientale e Forestale (IBAF), Rome, Italy.
| | | | | | | | | |
Collapse
|
40
|
Loreto F, Schnitzler JP. Abiotic stresses and induced BVOCs. TRENDS IN PLANT SCIENCE 2010; 15:154-66. [PMID: 20133178 DOI: 10.1016/j.tplants.2009.12.006] [Citation(s) in RCA: 469] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 12/18/2009] [Accepted: 12/30/2009] [Indexed: 05/21/2023]
Abstract
Plants produce a wide spectrum of biogenic volatile organic compounds (BVOCs) in various tissues above and below ground to communicate with other plants and organisms. However, BVOCs also have various functions in biotic and abiotic stresses. For example abiotic stresses enhance BVOCs emission rates and patterns, altering the communication with other organisms and the photochemical cycles. Recent new insights on biosynthesis and eco-physiological control of constitutive or induced BVOCs have led to formulation of hypotheses on their functions which are presented in this review. Specifically, oxidative and thermal stresses are relieved in the presence of volatile terpenes. Terpenes, C6 compounds, and methyl salicylate are thought to promote direct and indirect defence by modulating the signalling that biochemically activate defence pathways.
Collapse
Affiliation(s)
- Francesco Loreto
- Consiglio Nazionale delle Ricerche (CNR), Istituto per la Protezione delle Piante (IPP), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy.
| | | |
Collapse
|
41
|
Schnitzler JP, Louis S, Behnke K, Loivamäki M. Poplar volatiles - biosynthesis, regulation and (eco)physiology of isoprene and stress-induced isoprenoids. PLANT BIOLOGY (STUTTGART, GERMANY) 2010; 12:302-16. [PMID: 20398237 DOI: 10.1111/j.1438-8677.2009.00284.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants interact with their environment through a wide variety of biogenic volatile organic compounds (BVOCs), with isoprenoids ( identical with terpenes), i.e. isoprene, mono- and sesquiterpenes, playing an important role. Isoprene, a hemiterpene, is the simplest isoprenoid compound mainly emitted by tree species like poplars, oaks and willows. Woody plants alone comprise 75% of the global isoprene emitted to the atmosphere. Due to its significant influence on atmospheric chemistry, research has been focused on this C5 compound, with poplar being the most prominent model system. Recent studies indicate that isoprene can enhance thermotolerance or quench oxidative stress, while also interfering with the attraction of herbivores and parasitoids to plants. In this paper, we report on biosynthesis, regulation and function of isoprene and other stress-induced volatile isoprenoids in poplar, and discuss the future scientific challenges in this genus with respect to the importance of plant volatiles in high-density poplar biomass plantations.
Collapse
Affiliation(s)
- J-P Schnitzler
- Karlsruhe Institut for Technologie (KIT), Institut für Meteorologie und Klimaforschung (IMK-IFU), Garmisch-Partenkirchen, Germany.
| | | | | | | |
Collapse
|
42
|
Velikova V, Tsonev T, Barta C, Centritto M, Koleva D, Stefanova M, Busheva M, Loreto F. BVOC emissions, photosynthetic characteristics and changes in chloroplast ultrastructure of Platanus orientalis L. exposed to elevated CO2 and high temperature. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2009; 157:2629-2637. [PMID: 19477569 DOI: 10.1016/j.envpol.2009.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 05/27/2023]
Abstract
To investigate the interactive effects of increasing [CO(2)] and heat wave occurrence on isoprene (IE) and methanol (ME) emissions, Platanus orientalis was grown for one month in ambient (380 micromol mol(-1)) or elevated (800 micromol mol(-1)) [CO(2)] and exposed to high temperature (HT) (38 degrees C/4 h). In pre-existing leaves, IE emissions were always higher but ME emissions lower as compared to newly-emerged leaves. They were both stimulated by HT. Elevated [CO(2)] significantly reduced IE in both leaf types, whereas it increased ME in newly-emerged leaves only. In newly-emerged leaves, elevated [CO(2)] decreased photosynthesis and altered the chloroplast ultrastructure and membrane integrity. These harmful effects were amplified by HT. HT did not cause any unfavorable effects in pre-existing leaves, which were characterized by inherently higher IE rates. We conclude that: (1) these results further prove the isoprene's putative thermo-protective role of membranes; (2) HT may likely outweigh the inhibitory effects of elevated [CO(2)] on IE in the future.
Collapse
Affiliation(s)
- Violeta Velikova
- Bulgarian Academy of Sciences, Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia, Bulgaria.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Renaut J, Bohler S, Hausman JF, Hoffmann L, Sergeant K, Ahsan N, Jolivet Y, Dizengremel P. The impact of atmospheric composition on plants: a case study of ozone and poplar. MASS SPECTROMETRY REVIEWS 2009; 28:495-516. [PMID: 18985755 DOI: 10.1002/mas.20202] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Tropospheric ozone is the main atmospheric pollutant that causes damages to trees. The estimation of the threshold for ozone risk assessment depends on the evaluation of the means that this pollutant impacts the plant and, especially, the foliar organs. The available results show that, before any visible symptom appears, carbon assimilation and the underlying metabolic processes are decreased under chronic ozone exposure. By contrast, the catabolic pathways are enhanced, and contribute to the supply of sufficient reducing power necessary to feed the detoxification processes. Reactive oxygen species delivered during ozone exposure serve as toxic compounds and messengers for the signaling system. In this review, we show that the contribution of genomic tools (transcriptomics, proteomics, and metabolomics) for a better understanding of the mechanistic cellular responses to ozone largely relies on spectrometric measurements.
Collapse
Affiliation(s)
- Jenny Renaut
- Centre de Recherche Public-Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), Belvaux, Luxembourg
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Vickers CE, Gershenzon J, Lerdau MT, Loreto F. A unified mechanism of action for volatile isoprenoids in plant abiotic stress. Nat Chem Biol 2009; 5:283-91. [DOI: 10.1038/nchembio.158] [Citation(s) in RCA: 505] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Priault P, Wegener F, Werner C. Pronounced differences in diurnal variation of carbon isotope composition of leaf respired CO2 among functional groups. THE NEW PHYTOLOGIST 2009; 181:400-412. [PMID: 19121035 DOI: 10.1111/j.1469-8137.2008.02665.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The first broad species survey of diurnal variation in carbon (C) isotope signatures of leaf dark-respired CO(2) (delta(13)C(res)) is presented here and functional differences and diurnal dynamics are linked to fractionation in different respiratory pathways, based on (13)C-labelling experiments. delta(13)C(res) was analysed with a rapid in-tube incubation technique in 16 species. A large diurnal increase in delta(13)C(res) (4-8 per thousand) occurred in evergreen, slow-growing and aromatic species and correlated significantly with cumulative photosynthesis, whereas no variation occurred in herbaceous, fast-growing plants or temperate trees. The diurnal increase in delta(13)C(res) declined almost proportionally to reductions in cumulative light and was reduced in growing compared with mature leaves. Pyruvate positional labelling provided direct evidence that functional groups differ in C allocation between respiratory pathways owing to different metabolic demands for growth, maintenance and secondary metabolism. Diurnal increase in C flux through pyruvate dehydrogenase (for investment in, for example, isoprene or aromatic compounds) combined with consistently low Krebs cycle activity resulted in pronounced increase in delta(13)C(res) in evergreen and aromatic species. By contrast, fast growing herbs with high respiratory demand exhibited no diurnal changes since C was fully respired. Hence, diurnal delta(13)C(res) pattern may provide information for C allocation in plants.
Collapse
Affiliation(s)
- Pierrick Priault
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| | - Frederik Wegener
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| | - Christiane Werner
- Experimental and Systems Ecology, University of Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany;Present address: Université Henri Poincaré Nancy I, Faculté des Sciences, UMR UHP/INRA 1137 'Ecologie et Ecophysiologie Forestières'- BP 239, F-54506 Vandoeuvre-lès-Nancy cedex, France
| |
Collapse
|
46
|
Leakey ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:2859-76. [PMID: 19401412 DOI: 10.1093/jxb/erp096] [Citation(s) in RCA: 604] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant responses to the projected future levels of CO(2) were first characterized in short-term experiments lasting days to weeks. However, longer term acclimation responses to elevated CO(2) were subsequently discovered to be very important in determining plant and ecosystem function. Free-Air CO(2) Enrichment (FACE) experiments are the culmination of efforts to assess the impact of elevated CO(2) on plants over multiple seasons and, in the case of crops, over their entire lifetime. FACE has been used to expose vegetation to elevated concentrations of atmospheric CO(2) under completely open-air conditions for nearly two decades. This review describes some of the lessons learned from the long-term investment in these experiments. First, elevated CO(2) stimulates photosynthetic carbon gain and net primary production over the long term despite down-regulation of Rubisco activity. Second, elevated CO(2) improves nitrogen use efficiency and, third, decreases water use at both the leaf and canopy scale. Fourth, elevated CO(2) stimulates dark respiration via a transcriptional reprogramming of metabolism. Fifth, elevated CO(2) does not directly stimulate C(4) photosynthesis, but can indirectly stimulate carbon gain in times and places of drought. Finally, the stimulation of yield by elevated CO(2) in crop species is much smaller than expected. While many of these lessons have been most clearly demonstrated in crop systems, all of the lessons have important implications for natural systems.
Collapse
Affiliation(s)
- Andrew D B Leakey
- 1406 Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | | | | | | | | |
Collapse
|
47
|
Fortunati A, Barta C, Brilli F, Centritto M, Zimmer I, Schnitzler JP, Loreto F. Isoprene emission is not temperature-dependent during and after severe drought-stress: a physiological and biochemical analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 55:687-97. [PMID: 18445130 DOI: 10.1111/j.1365-313x.2008.03538.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Black poplar (Populus nigra L.) plants grown at 25 and 35 degrees C were subjected to drought stress to assess the combined impact of two consequences of global climate change--rising temperature and drought--on isoprene biosynthesis and emission. At both temperatures, photosynthesis was inhibited by moderate drought, but isoprene emission only decreased when drought was prolonged. The mRNA transcript level, protein concentration and activity of isoprene synthase (ISPS) changed in concert with isoprene emission during drought stress. However, ISPS activity decreased before isoprene emission during drought development, indicating a tighter control of the emission at a transcriptional or post-transcriptional level under moderate drought stress, and at both temperatures. A residual isoprene emission was measured when photosynthesis was totally inhibited after 35 days of drought. This photosynthesis-independent emission of isoprene was probably dependent on a cytosolic carbon supply as all the properties of ISPS were drastically inhibited. Isoprene emission was associated with dark respiration during the entire drought stress period, and at both temperatures, indicating that the two processes are sustained by, but do not compete for, the same carbon source. Isoprene emission was directly related to phosphoenolpyruvate carboxylase activity in plants grown at 25 degrees C and inversely related in plants grown at 35 degrees C, suggesting a strong temperature control on the regulation of the pyruvate flowing from the cytosol to the plastidic isoprenoid biosynthetic pathway under drought stress and recovery. In re-watered plants, the temperature control on isoprene emission was suppressed, despite complete recovery of photosynthesis and ISPS activity similar to levels in plants subjected to mild drought stress. Our results reveal the overriding effects of drought on isoprene emission, possibly affecting protein level or substrate supply. These effects may largely offset the predicted impact of rising temperatures on the emission of isoprene in terrestrial ecosystems.
Collapse
Affiliation(s)
- Alessio Fortunati
- Istituto di Biologia Agroambientale e Forestale, Consiglio Nazionale delle Ricerche, Monterotondo, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
48
|
Calfapietra C, Scarascia Mugnozza G, Karnosky DF, Loreto F, Sharkey TD. Isoprene emission rates under elevated CO2 and O3 in two field-grown aspen clones differing in their sensitivity to O3. THE NEW PHYTOLOGIST 2008; 179:55-61. [PMID: 18557875 DOI: 10.1111/j.1469-8137.2008.02493.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Isoprene is the most important nonmethane hydrocarbon emitted by plants. The role of isoprene in the plant is not entirely understood but there is evidence that it might have a protective role against different oxidative stresses originating from heat shock and/or exposure to ozone (O(3)). Thus, plants under stress conditions might benefit by constitutively high or by higher stress-induced isoprene emission rates. In this study, measurements are presented of isoprene emission from aspen (Populus tremuloides) trees grown in the field for several years under elevated CO(2) and O(3). Two aspen clones were investigated: the O(3)-tolerant 271 and the O(3)-sensitive 42E. Isoprene emission decreased significantly both under elevated CO(2) and under elevated O(3) in the O(3)-sensitive clone, but only slightly in the O(3)-tolerant clone. This study demonstrates that long-term-adapted plants are not able to respond to O(3) stress by increasing their isoprene emission rates. However, O(3)-tolerant clones have the capacity to maintain higher amounts of isoprene emission. It is suggested that tolerance to O(3) is explained by a combination of different factors; while the reduction of O(3) uptake is likely to be the most important, the capacity to maintain higher amounts of isoprene is an important factor in strengthening this character.
Collapse
Affiliation(s)
- Carlo Calfapietra
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
- University of Tuscia, Department of Forest Environment and Resources (DISAFRI), Via S.Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Giuseppe Scarascia Mugnozza
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
- University of Tuscia, Department of Forest Environment and Resources (DISAFRI), Via S.Camillo de Lellis snc, 01100 Viterbo, Italy
| | - David F Karnosky
- School of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA
| | - Francesco Loreto
- CNR- Istituto di Biologia Agroambientale e Forestale, Via Salaria Km. 29.300 00016 Monterotondo Scalo (Roma), Italy
| | - Thomas D Sharkey
- Michigan State University, 410 Biochemistry Building, East Lansing, MI 48824, USA
| |
Collapse
|
49
|
Brilli F, Barta C, Fortunati A, Lerdau M, Loreto F, Centritto M. Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings. THE NEW PHYTOLOGIST 2007; 175:244-254. [PMID: 17587373 DOI: 10.1111/j.1469-8137.2007.02094.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
The mechanism uncoupling isoprene emission and photosynthesis under drought was investigated in Populus alba saplings. Isoprene emission, incorporation of 13C into the isoprene molecule, isoprene synthase (ISPS) activity, concentration and gene expression, and photosynthesis were measured as a function of the fraction of transpirable soil water (FTSW) and in plants recovering from drought. Photosynthesis sharply declined below FTSW30 (a FTSW of 30%) and its inhibition was not caused by metabolic factors. A decline in isoprene emission was only evident towards the FTSW endpoint. 13C incorporation into isoprene was lower when photosynthesis was constrained by drought. ISPS activity was inhibited by mild drought, while ISPS gene expression and concentration declined in concert with isoprene emission at the FTSW endpoint. Following rewatering, isoprene emission was higher than, and photosynthesis was similar to, prestress values. ISPS activity and concentration, and 13C incorporation into isoprene, also rapidly recovered to prestress values, while ISPS gene expression remained low in rewatered plants. Our experiment revealed a larger contribution of alternative carbon sources to isoprene emission only when photosynthesis was dramatically constrained by drought. Isoprene emission was likely controlled at the posttranscriptional level under severe drought.
Collapse
Affiliation(s)
- Federico Brilli
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Csengele Barta
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Alessio Fortunati
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Manuel Lerdau
- Department of Environmental Sciences, University of Virginia, Clark Hall, 291 McCormick Road, PO Box 400123, Charlottesville, VA 22904-4123, USA
| | - Francesco Loreto
- CNR - Istituto di Biologia Agroambientale e Forestale, Via Salaria km 29.300, 00016 Monterotondo Scalo (Roma), Italy
| | - Mauro Centritto
- CNR - Istituto sull'Inquinamento Atmosferico, Via Salaria km 29.300, 00016 Monterotondo Stazione, Rome, Italy
| |
Collapse
|