1
|
Stainbrook S, Aubuchon L, Chen A, Johnson E, Si A, Walton L, Ahrendt AJ, Strenkert D, Jez J. C4 grasses employ distinct strategies to acclimate rubisco activase to heat stress. Biosci Rep 2024; 44:BSR20240353. [PMID: 39361893 PMCID: PMC11499382 DOI: 10.1042/bsr20240353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024] Open
Abstract
Rising temperatures due to the current climate crisis will soon have devastating impacts on crop performance and resilience. In particular, CO2 assimilation is dramatically limited at high temperatures. CO2 assimilation is accomplished by rubisco, which is inhibited by the binding of inhibitory sugar phosphates to its active site. Plants therefore utilize the essential chaperone rubisco activase (RCA) to remove these inhibitors and enable continued CO2 fixation. However, RCA does not function at moderately high temperatures (42°C), resulting in impaired rubisco activity and reduced CO2 assimilation. We set out to understand temperature-dependent RCA regulation in four different C4 plants, with a focus on the crop plants maize (two cultivars) and sorghum, as well as the model grass Setaria viridis (setaria) using gas exchange measurements, which confirm that CO2 assimilation is limited by carboxylation in these organisms at high temperatures (42°C). All three species express distinct complements of RCA isoforms and each species alters the isoform and proteoform abundances in response to heat; however, the changes are species-specific. We also examine whether the heat-mediated inactivation of RCA is due to biochemical regulation rather than simple thermal denaturation. We reveal that biochemical regulation affects RCA function differently in different C4 species, and differences are apparent even between different cultivars of the same species. Our results suggest that each grass evolved different strategies to maintain RCA function during stress and we conclude that a successful engineering approach aimed at improving carbon capture in C4 grasses will need to accommodate these individual regulatory mechanisms.
Collapse
Affiliation(s)
- Sarah C. Stainbrook
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | | | - Amanda Chen
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Emily Johnson
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Audrey Si
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | - Laila Walton
- Illinois Mathematics and Science Academy, Aurora, IL, USA
| | | | - Daniela Strenkert
- Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
| | - Joseph M. Jez
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| |
Collapse
|
2
|
Ouyang W, Wientjes E, van der Putten PEL, Caracciolo L, Zhao R, Agho C, Chiurazzi MJ, Bongers M, Struik PC, van Amerongen H, Yin X. Roles for leakiness and O 2 evolution in explaining lower-than-theoretical quantum yields of photosynthesis in the PEP-CK subtype of C 4 plants. THE NEW PHYTOLOGIST 2024; 242:431-443. [PMID: 38406986 DOI: 10.1111/nph.19614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Theoretically, the PEP-CK C4 subtype has a higher quantum yield of CO2 assimilation (Φ CO 2 ) than NADP-ME or NAD-ME subtypes because ATP required for operating the CO2-concentrating mechanism is believed to mostly come from the mitochondrial electron transport chain (mETC). However, reportedΦ CO 2 is not higher in PEP-CK than in the other subtypes. We hypothesise, more photorespiration, associated with higher leakiness and O2 evolution in bundle-sheath (BS) cells, cancels out energetic advantages in PEP-CK species. Nine species (two to four species per subtype) were evaluated by gas exchange, chlorophyll fluorescence, and two-photon microscopy to estimate the BS conductance (gbs) and leakiness using a biochemical model. Average gbs estimates were 2.9, 4.8, and 5.0 mmol m-2 s-1 bar-1, and leakiness values were 0.129, 0.179, and 0.180, in NADP-ME, NAD-ME, and PEP-CK species, respectively. The BS CO2 level was somewhat higher, O2 level was marginally lower, and thus, photorespiratory loss was slightly lower, in NADP-ME than in NAD-ME and PEP-CK species. Differences in these parameters existed among species within a subtype, and gbs was co-determined by biochemical decarboxylating sites and anatomical characteristics. Our hypothesis and results partially explain variations in observedΦ CO 2 , but suggest that PEP-CK species probably use less ATP from mETC than classically defined PEP-CK mechanisms.
Collapse
Affiliation(s)
- Wenjing Ouyang
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Emilie Wientjes
- Laboratory of Biophysics, Wageningen University & Research, PO Box 8128, 6700 ET, Wageningen, the Netherlands
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Ludovico Caracciolo
- Laboratory of Biophysics, Wageningen University & Research, PO Box 8128, 6700 ET, Wageningen, the Netherlands
| | - Ruixuan Zhao
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
- School of Agriculture, Yunnan University, Kunming, 650504, Yunnan, China
| | - Collins Agho
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Maurizio Junior Chiurazzi
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Marius Bongers
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| | - Herbert van Amerongen
- Laboratory of Biophysics, Wageningen University & Research, PO Box 8128, 6700 ET, Wageningen, the Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, PO Box 430, 6700 AK, Wageningen, the Netherlands
| |
Collapse
|
3
|
Ubierna N, Holloway-Phillips MM, Wingate L, Ogée J, Busch FA, Farquhar GD. Using Carbon Stable Isotopes to Study C 3 and C 4 Photosynthesis: Models and Calculations. Methods Mol Biol 2024; 2790:163-211. [PMID: 38649572 DOI: 10.1007/978-1-0716-3790-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.
Collapse
Affiliation(s)
- Nerea Ubierna
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Meisha-Marika Holloway-Phillips
- Research Unit of Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Lisa Wingate
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Jérôme Ogée
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
4
|
Bellasio C, Stuart-Williams H, Farquhar GD, Flexas J. C 4 maize and sorghum are more sensitive to rapid dehydration than C 3 wheat and sunflower. THE NEW PHYTOLOGIST 2023; 240:2239-2252. [PMID: 37814525 DOI: 10.1111/nph.19299] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/03/2023] [Indexed: 10/11/2023]
Abstract
The high productive potential, heat resilience, and greater water use efficiency of C4 over C3 plants attract considerable interest in the face of global warming and increasing population, but C4 plants are often sensitive to dehydration, questioning the feasibility of their wider adoption. To resolve the primary effect of dehydration from slower from secondary leaf responses originating within leaves to combat stress, we conducted an innovative dehydration experiment. Four crops grown in hydroponics were forced to a rapid yet controlled decrease in leaf water potential by progressively raising roots of out of the solution while measuring leaf gas exchange. We show that, under rapid dehydration, assimilation decreased more steeply in C4 maize and sorghum than in C3 wheat and sunflower. This reduction was due to a rise of nonstomatal limitation at triple the rate in maize and sorghum than in wheat and sunflower. Rapid reductions in assimilation were previously measured in numerous C4 species across both laboratory and natural conditions. Hence, we deduce that high sensitivity to rapid dehydration might stem from the disturbance of an intrinsic aspect of C4 bicellular photosynthesis. We posit that an obstruction to metabolite transport between mesophyll and bundle sheath cells could be the cause.
Collapse
Affiliation(s)
- Chandra Bellasio
- Laboratory of Theoretical and Applied Crop Ecophysiology, School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Illes Balears, Palma, 07122, Spain
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | | | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| | - Jaume Flexas
- Biology of Plants Under Mediterranean Conditions, Department of Biology, University of the Balearic Islands, Illes Balears, Palma, 07122, Spain
| |
Collapse
|
5
|
Arslan AM, Wang X, Liu BY, Xu YN, Li L, Gong XY. Photosynthetic resource-use efficiency trade-offs triggered by vapour pressure deficit and nitrogen supply in a C 4 species. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 197:107666. [PMID: 37001304 DOI: 10.1016/j.plaphy.2023.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/19/2023] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
Trade-offs in resource-use efficiency (including water-, nitrogen-, and light-use efficiency, i.e., WUE, NUE, and LUE) are an important acclimation strategy of plants to environmental stresses. C4 photosynthesis, featured by a CO2 concentrating mechanism, is believed to be more efficient in using resources compared to C3 photosynthesis. However, response of photosynthetic resource-use efficiency trade-offs in C4 plants to vapour pressure deficit (VPD) and N supply has rarely been studied. Here, we studied the photosynthetic acclimation of Cleistogenes squarrosa, a perennial C4 grass, to controlled growth conditions with high or low VPD and N supply. High VPD increased WUE by 12% and decreased NUE by 16%, the ratio of net photosynthetic rate (A) to electron transport rate (J) (A/J) by 7% and the apparent quantum yield by 6%. High N supply tended to reduce NUE and increased maximum phosphoenol pyruvate carboxylation rate by 71% and slightly increased WUE. Stomatal conductance showed acclimation to VPD according to the Ball-Berry model, while a balanced cost of carboxylation and transpiration capacity was found across VPD and N treatments based on the least-cost model. WUE correlated negatively with NUE and LUE indicating that there was a trade-off between them, which is likely associated with acclimations in stomatal conductance and CO2 concentrating mechanisms.
Collapse
Affiliation(s)
- Ashraf Muhammad Arslan
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xuming Wang
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| | - Bo Ya Liu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Yi Ning Xu
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Lei Li
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China
| | - Xiao Ying Gong
- Key Laboratory for Subtropical Mountain Ecology (Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou, 350007, China; Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China; Fujian Provincial Key Laboratory for Plant Eco-physiology, Fuzhou, 350007, China.
| |
Collapse
|
6
|
Zhou H, Akçay E, Helliker B. Optimal coordination and reorganization of photosynthetic properties in C 4 grasses. PLANT, CELL & ENVIRONMENT 2023; 46:796-811. [PMID: 36478594 DOI: 10.1111/pce.14506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Each of >20 independent evolutions of C4 photosynthesis in grasses required reorganization of the Calvin-Benson-cycle (CB-cycle) within the leaf, along with coordination of C4 -cycle enzymes with the CB-cycle to maximize CO2 assimilation. Considering the vast amount of time over which C4 evolved, we hypothesized (i) trait divergences exist within and across lineages with both C4 and closely related C3 grasses, (ii) trends in traits after C4 evolution yield the optimization of C4 through time, and (iii) the presence/absence of trends in coordination between the CB-cycle and C4 -cycle provides information on the strength of selection. To address these hypotheses, we used a combination of optimality modelling, physiological measurements and phylogenetic-comparative-analysis. Photosynthesis was optimized after the evolution of C4 causing diversification in maximal assimilation, electron transport, Rubisco carboxylation, phosphoenolpyruvate carboxylase and chlorophyll within C4 lineages. Both theory and measurements indicated a higher light-reaction to CB-cycle ratio (Jatpmax /Vcmax ) in C4 than C3 . There were no evolutionary trends with photosynthetic coordination between the CB-cycle, light reactions and the C4 -cycle, suggesting strong initial selection for coordination. The coordination of CB-C4 -cycles (Vpmax /Vcmax ) was optimal for CO2 of 200 ppm, not to current conditions. Our model indicated that a higher than optimal Vpmax /Vcmax affects assimilation minimally, thus lessening recent selection to decrease Vpmax /Vcmax .
Collapse
Affiliation(s)
- Haoran Zhou
- School of Earth System Science, Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- School of the Environment, Yale University, New Haven, Connecticut, USA
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brent Helliker
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
7
|
An D, Zhao B, Liu Y, Xu Z, Kong R, Yan C, Su J. Simulation of Photosynthetic Quantum Efficiency and Energy Distribution Analysis Reveals Differential Drought Response Strategies in Two (Drought-Resistant and -Susceptible) Sugarcane Cultivars. PLANTS (BASEL, SWITZERLAND) 2023; 12:1042. [PMID: 36903903 PMCID: PMC10005361 DOI: 10.3390/plants12051042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/17/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Selections of drought-tolerant cultivars and drought-stress diagnosis are important for sugarcane production under seasonal drought, which becomes a crucial factor causing sugarcane yield reduction. The main objective of this study was to investigate the differential drought-response strategies of drought-resistant ('ROC22') and -susceptible ('ROC16') sugarcane cultivars via photosynthetic quantum efficiency (Φ) simulation and analyze photosystem energy distribution. Five experiments were conducted to measure chlorophyll fluorescence parameters under different photothermal and natural drought conditions. The response model of Φ to photosynthetically active radiation (PAR), temperature (T), and the relative water content of the substrate (rSWC) was established for both cultivars. The results showed that the decreasing rate of Φ was higher at lower temperatures than at higher temperatures, with increasing PAR under well-watered conditions. The drought-stress indexes (εD) of both cultivars increased after rSWC decreased to the critical values of 40% and 29% for 'ROC22' and 'ROC16', respectively, indicating that the photosystem of 'ROC22' reacted more quickly than that of 'ROC16' to water deficit. An earlier response and higher capability of nonphotochemical quenching (NPQ) accompanied the slower and slighter increments of the yield for other energy losses (ΦNO) for 'ROC22' (at day5, with a rSWC of 40%) compared with 'ROC16' (at day3, with a rSWC of 56%), indicating that a rapid decrease in water consumption and an increase in energy dissipation involved in delaying the photosystem injury could contribute to drought tolerance for sugarcane. In addition, the rSWC of 'ROC16' was lower than that of 'ROC22' throughout the drought treatment, suggesting that high water consumption might be adverse to drought tolerance of sugarcane. This model could be applied for drought-tolerance assessment or drought-stress diagnosis for sugarcane cultivars.
Collapse
Affiliation(s)
- Dongsheng An
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Baoshan Zhao
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Yang Liu
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
- Jiaxing Vocational and Technical College, Jiaxing 314036, China
| | - Zhijun Xu
- Zhanjing Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524013, China
| | - Ran Kong
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| | - Chengming Yan
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| | - Junbo Su
- South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang Experimental and Observation Station for National Long-Term Agricultural Green Development, Zhanjiang 524091, China
| |
Collapse
|
8
|
Johnson JE, Field CB, Berry JA. The limiting factors and regulatory processes that control the environmental responses of C 3, C 3-C 4 intermediate, and C 4 photosynthesis. Oecologia 2021; 197:841-866. [PMID: 34714387 PMCID: PMC8591018 DOI: 10.1007/s00442-021-05062-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2021] [Indexed: 11/28/2022]
Abstract
Here, we describe a model of C3, C3-C4 intermediate, and C4 photosynthesis that is designed to facilitate quantitative analysis of physiological measurements. The model relates the factors limiting electron transport and carbon metabolism, the regulatory processes that coordinate these metabolic domains, and the responses to light, carbon dioxide, and temperature. It has three unique features. First, mechanistic expressions describe how the cytochrome b6f complex controls electron transport in mesophyll and bundle sheath chloroplasts. Second, the coupling between the mesophyll and bundle sheath expressions represents how feedback regulation of Cyt b6f coordinates electron transport and carbon metabolism. Third, the temperature sensitivity of Cyt b6f is differentiated from that of the coupling between NADPH, Fd, and ATP production. Using this model, we present simulations demonstrating that the light dependence of the carbon dioxide compensation point in C3-C4 leaves can be explained by co-occurrence of light saturation in the mesophyll and light limitation in the bundle sheath. We also present inversions demonstrating that population-level variation in the carbon dioxide compensation point in a Type I C3-C4 plant, Flaveria chloraefolia, can be explained by variable allocation of photosynthetic capacity to the bundle sheath. These results suggest that Type I C3-C4 intermediate plants adjust pigment and protein distributions to optimize the glycine shuttle under different light and temperature regimes, and that the malate and aspartate shuttles may have originally functioned to smooth out the energy supply and demand associated with the glycine shuttle. This model has a wide range of potential applications to physiological, ecological, and evolutionary questions.
Collapse
Affiliation(s)
- Jennifer E Johnson
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA.
| | - Christopher B Field
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
- Stanford Woods Institute for the Environment, Stanford University, 473 Via Ortega, Stanford, CA, 94305, USA
| | - Joseph A Berry
- Department of Global Ecology, Carnegie Institution for Science, 260 Panama Street, Stanford, CA, 94305, USA
| |
Collapse
|
9
|
Ribeiro RV, Ottosen CO, Rosenqvist E, Medanha T, Abdelhakim L, Machado EC, Struik PC. Elevated CO 2 concentration increases photosynthetic sensitivity to nitrogen supply of sorghum in a genotype-dependent manner. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:202-210. [PMID: 34649023 DOI: 10.1016/j.plaphy.2021.10.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
We hypothesized that elevated [CO2] only increases sorghum photosynthesis under low nitrogen availability and evaluated whether cultivars BRS373 (grain), BRS511 (saccharine) and BRS655 (forage) differ in their sensitivity to nitrogen and [CO2]. Plants were grown in growth chambers where air [CO2] was 400 (a[CO2]) or 800 (e[CO2]) μmol CO2 mol-1 and supplied with nutrient solution containing 211 (HN) or 48 (LN) ppm N for 45 days. Photosynthetic traits were measured in fully expanded leaves as well as leaf nitrogen and biomass accumulation. e[CO2] increased the sensitivity of photosynthesis to LN, with all sorghum cultivars having lower maximum Rubisco carboxylation rate, effective quantum efficiency of PSII and stomatal conductance at LN than at HN. As compared to HN, LN caused lower photosynthesis of BRS373 at a[CO2] and lower maximum PEPC carboxylation rate at e[CO2]. Actually, the metabolic limitation of photosynthesis by LN (Lm) was high in BRS373 at a[CO2] and slightly reduced at e[CO2]. On the other hand, Lm was increased in BRS511 and BRS655 at e[CO2]. Based on photosynthesis, the grain cultivar BRS373 was the most sensitive to LN. Although the number of leaves and of tillers and the leaf area were lower at LN than at HN for BRS373 and BRS655 after 45 days of growth, shoot biomass was not significantly affected. We found significant variation in photosynthetic responses to LN and e[CO2] among sorghum cultivars, likely associated with different patterns of nitrogen and carbon partitioning. Such findings must be considered when predicting crop performance in a changing environment.
Collapse
Affiliation(s)
- Rafael V Ribeiro
- Laboratory of Crop Physiology, Department of Plant Biology, University of Campinas (UNICAMP), Campinas SP, Brazil.
| | - Carl-Otto Ottosen
- Department of Food Science - Plant, Food and Climate, Aarhus University, Aarhus, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences - Section of Crop Sciences, Copenhagen University, Copenhagen, Denmark
| | - Thayna Medanha
- Department of Food Science - Plant, Food and Climate, Aarhus University, Aarhus, Denmark
| | - Lamis Abdelhakim
- Department of Food Science - Plant, Food and Climate, Aarhus University, Aarhus, Denmark
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center of Ecophysiology and Biophysics, Agronomic Institute (IAC), Campinas SP, Brazil
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
10
|
von Caemmerer S. Updating the steady-state model of C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6003-6017. [PMID: 34173821 PMCID: PMC8411607 DOI: 10.1093/jxb/erab266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 05/22/2023]
Abstract
C4 plants play a key role in world agriculture. For example, C4 crops such as maize and sorghum are major contributors to food production in both developed and developing countries, and the C4 grasses sugarcane, miscanthus, and switchgrass are major plant sources of bioenergy. In the challenge to manipulate and enhance C4 photosynthesis, steady-state models of leaf photosynthesis provide an important tool for gas exchange analysis and thought experiments that can explore photosynthetic pathway changes. Here a previous C4 photosynthetic model developed by von Caemmerer and Furbank has been updated with new kinetic parameterization and temperature dependencies added. The parameterization was derived from experiments on the C4 monocot, Setaria viridis, which for the first time provides a cohesive parameterization. Mesophyll conductance and its temperature dependence have also been included, as this is an important step in the quantitative correlation between the initial slope of the CO2 response curve of CO2 assimilation and in vitro phosphoenolpyruvate carboxylase activity. Furthermore, the equations for chloroplast electron transport have been updated to include cyclic electron transport flow, and equations have been added to calculate the electron transport rate from measured CO2 assimilation rates.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Division of Plant Sciences, Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
- Correspondence:
| |
Collapse
|
11
|
Tofanello VR, Andrade LM, Flores-Borges DNA, Kiyota E, Mayer JLS, Creste S, Machado EC, Yin X, Struik PC, Ribeiro RV. Role of bundle sheath conductance in sustaining photosynthesis competence in sugarcane plants under nitrogen deficiency. PHOTOSYNTHESIS RESEARCH 2021; 149:275-287. [PMID: 34091828 DOI: 10.1007/s11120-021-00848-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The role of bundle sheath conductance (gbs) in sustaining sugarcane photosynthesis under nitrogen deficiency was investigated. Sugarcane was grown under different levels of nitrogen supply and gbs was estimated using simultaneous measurements of leaf gas exchange and chlorophyll fluorescence at 21% or 2% [O2] and varying air [CO2] and light intensity. Maximum rates of PEPC carboxylation, Rubisco carboxylation, and ATP production increased with an increase in leaf nitrogen concentration (LNC) from 1 to 3 g m-2. Low nitrogen supply reduced Rubisco and PEPC abundancies, the quantum efficiency of CO2 assimilation and gbs. Because of reduced gbs, low photosynthetic rates were not associated with increased leakiness under nitrogen deficiency. In fact, low nitrogen supply increased bundle sheath cell wall thickness, probably accounting for low gbs and increased estimates of [CO2] at Rubisco sites. Effects of nitrogen on expression of ShPIP2;1 and ShPIP1;2 aquaporins did not explain changes in gbs. Our data revealed that reduced Rubisco carboxylation was the main factor causing low sugarcane photosynthesis at low nitrogen supply, in contrast to the previous report on the importance of an impaired CO2 concentration mechanism under N deficiency. Our findings suggest higher investment of nitrogen into Rubisco protein would favour photosynthesis and plant performance under low nitrogen availability.
Collapse
Affiliation(s)
- Vanessa R Tofanello
- Laboratory of Crop Physiology (LCroP), Dept. Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Larissa M Andrade
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, SP, Brazil
| | - Denisele N A Flores-Borges
- Laboratory of Crop Physiology (LCroP), Dept. Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Eduardo Kiyota
- Laboratory of Crop Physiology (LCroP), Dept. Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana L S Mayer
- Laboratory of Crop Physiology (LCroP), Dept. Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Silvana Creste
- Centro de Cana, Instituto Agronômico (IAC), Ribeirão Preto, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Center for Research and Development in Ecophysiology and Biophysics, IAC, Campinas, SP, Brazil
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Dept. Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Dept. Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands
| | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Dept. Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Yin X, Busch FA, Struik PC, Sharkey TD. Evolution of a biochemical model of steady-state photosynthesis. PLANT, CELL & ENVIRONMENT 2021; 44:2811-2837. [PMID: 33872407 PMCID: PMC8453732 DOI: 10.1111/pce.14070] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 05/29/2023]
Abstract
On the occasion of the 40th anniversary of the publication of the landmark model by Farquhar, von Caemmerer & Berry on steady-state C3 photosynthesis (known as the "FvCB model"), we review three major further developments of the model. These include: (1) limitation by triose phosphate utilization, (2) alternative electron transport pathways, and (3) photorespiration-associated nitrogen and C1 metabolisms. We discussed the relation of the third extension with the two other extensions, and some equivalent extensions to model C4 photosynthesis. In addition, the FvCB model has been coupled with CO2 -diffusion models. We review how these extensions and integration have broadened the use of the FvCB model in understanding photosynthesis, especially with regard to bioenergetic stoichiometries associated with photosynthetic quantum yields. Based on the new insights, we present caveats in applying the FvCB model. Further research needs are highlighted.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Florian A. Busch
- School of Biosciences and Birmingham Institute of Forest ResearchUniversity of BirminghamBirminghamUK
| | - Paul C. Struik
- Centre for Crop Systems AnalysisWageningen University & ResearchWageningenThe Netherlands
| | - Thomas D. Sharkey
- MSU‐DOE Plant Research Laboratory, Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
13
|
Lawrence EH, Springer CJ, Helliker BR, Scott Poethig R. MicroRNA156-mediated changes in leaf composition lead to altered photosynthetic traits during vegetative phase change. THE NEW PHYTOLOGIST 2021; 231:1008-1022. [PMID: 33064860 PMCID: PMC8299463 DOI: 10.1111/nph.17007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 05/09/2023]
Abstract
Plant morphology and physiology change with growth and development. Some of these changes are due to change in plant size and some are the result of genetically programmed developmental transitions. In this study we investigate the role of the developmental transition, vegetative phase change (VPC), on morphological and photosynthetic changes. We used overexpression of microRNA156, the master regulator of VPC, to modulate the timing of VPC in Populus tremula × alba, Zea mays, and Arabidopsis thaliana to determine its role in trait variation independent of changes in size and overall age. Here, we find that juvenile and adult leaves in all three species photosynthesize at different rates and that these differences are due to phase-dependent changes in specific leaf area (SLA) and leaf N but not photosynthetic biochemistry. Further, we found juvenile leaves with high SLA were associated with better photosynthetic performance at low light levels. This study establishes a role for VPC in leaf composition and photosynthetic performance across diverse species and environments. Variation in leaf traits due to VPC are likely to provide distinct benefits under specific environments; as a result, selection on the timing of this transition could be a mechanism for environmental adaptation.
Collapse
Affiliation(s)
- Erica H. Lawrence
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - Clint J. Springer
- Department of Biology, Saint Joseph’s University, 5600 City Avenue, Philadelphia, PA 19131, USA
| | - Brent R. Helliker
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| | - R. Scott Poethig
- Department of Biology, University of Pennsylvania, 433 South University Avenue, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Habermann E, Dias de Oliveira EA, Delvecchio G, Belisário R, Barreto RF, Viciedo DO, Rossingnoli NO, de Pinho Costa KA, de Mello Prado R, Gonzalez-Meler M, Martinez CA. How does leaf physiological acclimation impact forage production and quality of a warmed managed pasture of Stylosanthes capitata under different conditions of soil water availability? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143505. [PMID: 33223164 DOI: 10.1016/j.scitotenv.2020.143505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/15/2020] [Accepted: 10/29/2020] [Indexed: 05/25/2023]
Abstract
Tropical pastures play a significant role in the global carbon cycle and are crucial for world livestock production. Despite its importance, there is a paucity of field studies that clarify how tropical pasture species will be affected by environmental changes predicted for tropical regions. Using a temperature-free air-controlled enhancement (T-FACE) system, we increased canopy temperature (+2 °C over ambient) and evaluated the effects of warming under two soil moisture conditions in a factorial design over the physiology, forage production, and forage quality of a tropical forage legume, Stylosanthes capitata. Under well-watered conditions, warming increased the PSII efficiency, net photosynthesis, and aboveground biomass accumulation, but reduced forage quality and digestibility by decreasing crude protein content and increasing lignin content. Non-irrigated conditions under ambient temperature reduced leaf water status presumably promoting the reduction in net photosynthesis, forage production, and forage quality and digestibility. Under the combination of canopy warming and non-irrigated conditions, warming mitigated the effects of reduced soil moisture on leaf photosynthesis and biomass production, but a significant interaction reduced forage quality and digestibility more than under isolated treatments of warming or non-irrigated conditions. We found a potential physiological acclimation of the tropical forage species to moderate warming when grown under rainfed or well-watered conditions. However, this acclimation was achieved due to a trade-off that reduced forage nutritional value and digestibility that may impact future animal feeding, livestock production, and would contribute to methane emissions.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Eduardo A Dias de Oliveira
- Ecology and Evolution, Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | - Gustavo Delvecchio
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Belisário
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Ferreira Barreto
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | - Dilier Olivera Viciedo
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | | | | | - Renato de Mello Prado
- Department of Soils and Fertilizers, School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo State University, São Paulo, Brazil
| | - Miquel Gonzalez-Meler
- Ecology and Evolution, Department of Biological Sciences, University of Illinois, Chicago, IL, United States
| | | |
Collapse
|
15
|
Mu X, Chen Y. The physiological response of photosynthesis to nitrogen deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:76-82. [PMID: 33296848 DOI: 10.1016/j.plaphy.2020.11.019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/15/2020] [Indexed: 05/19/2023]
Abstract
Nitrogen (N), as a macro-element, plays a vital role in plant growth and development. N deficiency affects plant productivity by decreasing photosynthesis, leaf area and longevity of green leaf. To date, many studies have reported that the relationship between photosynthesis and N supply. Here, we summarized the physiological response of photosynthesis to N deficiency in leaf structure and N allocation within the leaf. In serious N stress, photosynthetic rate decreases for almost all plants. The reasons as follows:(1) reducing stomatal conductance of mesophyll cell (gs) and bundle sheath cells (gbs) which influences intercellular CO2 concentration; (2) reducing the content of bioenergetics and light-harvesting protein which inhibits electron transport rate and increase the light energy dissipated as heat; (3) reducing the content and/or activity of photosynthetic enzymes which reduces carboxylation rate. During reproductive stage, N stress induces plant senescence and N components degradation, especially photosynthetic enzymes and thylakoid N, and thus reduces photosynthesis. To keep high grain yield in low N deficiency, we should choose the genotype with higher N allocation within bioenergetics and lower degradation of photosynthetic enzymes. This review provides a generalized N allocation in response to N stress and gives a new prospect for breeding N-efficient genotypes.
Collapse
Affiliation(s)
- Xiaohuan Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, PR China.
| | - Yanling Chen
- College of Resources and Environment, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China.
| |
Collapse
|
16
|
Yin X, Niu Y, van der Putten PEL, Struik PC. The Kok effect revisited. THE NEW PHYTOLOGIST 2020; 227:1764-1775. [PMID: 32369617 PMCID: PMC7497127 DOI: 10.1111/nph.16638] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/24/2020] [Indexed: 05/18/2023]
Abstract
The Kok effect refers to the abrupt decrease around the light compensation point in the slope of net photosynthetic rate vs irradiance. Arguably, this switch arises from light inhibition of respiration, allowing the Kok method to estimate day respiration (Rd ). Recent analysis suggests that increasing proportions of photorespiration (quantified as Γ*/Cc , the ratio of CO2 compensation point Γ* to chloroplast CO2 concentration, Cc ) with irradiance explain much of the Kok effect. Also, the Kok method has been modified to account for the decrease in PSII photochemical efficiency (Φ2 ) with irradiance. Using a model that illustrates how varying Rd , Γ*/Cc , Φ2 and proportions of alternative electron transport could engender the Kok effect, we quantified the contribution of these parameters to the Kok effect measured in sunflower across various O2 and CO2 concentrations and various temperatures. Overall, the decreasing Φ2 with irradiance explained c. 12%, and the varying Γ*/Cc explained c. 25%, of the Kok effect. Maximum real light inhibition of Rd was much lower than the inhibition derived from the Kok method, but still increased with photorespiration. Photorespiration had a dual contribution to the Kok effect, one via the varying Γ*/Cc and the other via its participation in light inhibition of Rd .
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Yuxi Niu
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Peter E. L. van der Putten
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| | - Paul C. Struik
- Centre for Crop Systems AnalysisDepartment of Plant SciencesWageningen University & ResearchPO Box 430Wageningen6700 AKthe Netherlands
| |
Collapse
|
17
|
Winkler DE, Belnap J, Duniway MC, Hoover D, Reed SC, Yokum H, Gill R. Seasonal and individual event-responsiveness are key determinants of carbon exchange across plant functional types. Oecologia 2020; 193:811-825. [PMID: 32728948 DOI: 10.1007/s00442-020-04718-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
Differentiation in physiological activity is a critical component of resource partitioning in resource-limited environments. For example, it is crucial to understand how plant physiological performance varies through time for different functional groups to forecast how terrestrial ecosystems will respond to change. Here, we tracked the seasonal progress of 13 plant species representing C3 shrub, perennial C3 and C4 grass, and annual forb functional groups of the Colorado Plateau, USA. We tested for differences in carbon assimilation strategies and how photosynthetic rates related to recent, seasonal, and annual precipitation and temperature variables. Despite seasonal shifts in species presence and activity, we found small differences in seasonally weighted annual photosynthetic rates among groups. However, differences in the timing of maximum assimilation (Anet) were strongly functional group-dependent. C3 shrubs employed a relatively consistent, low carbon capture strategy and maintained activity year-round but switched to a rapid growth strategy in response to recent climate conditions. In contrast, grasses maintained higher carbon capture during spring months when all perennials had maximum photosynthetic rates, but grasses were dormant during months when shrubs remained active. Perennial grass Anet rates were explained in part by precipitation accumulated during the preceding year and average maximum temperatures during the past 48 h, a result opposite to shrubs. These results lend insight into diverse physiological strategies and their connections to climate, and also point to the potential for shrubs to increase in abundance in response to increased climatic variability in drylands, given shrubs' ability to respond rapidly to changing conditions.
Collapse
Affiliation(s)
- Daniel E Winkler
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, 84532, USA.
| | - Jayne Belnap
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, 84532, USA
| | - Michael C Duniway
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, 84532, USA
| | - David Hoover
- Rangeland Resources and Systems Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Fort Collins, 80526, USA
| | - Sasha C Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, UT, 84532, USA
| | - Hannah Yokum
- Department of Biology, Brigham Young University, Provo, UT, 84604, USA
| | - Richard Gill
- Department of Biology, Brigham Young University, Provo, UT, 84604, USA
| |
Collapse
|
18
|
Zhu L, Cernusak LA, Song X. Dynamic responses of gas exchange and photochemistry to heat interference during drought in wheat and sorghum. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:611-627. [PMID: 32393434 DOI: 10.1071/fp19242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/14/2020] [Indexed: 06/11/2023]
Abstract
Drought and heat stress significantly affect crop growth and productivity worldwide. It is unknown how heat interference during drought affects physiological processes dynamically in crops. Here we focussed on gas exchange and photochemistry in wheat and sorghum in response to simulated heat interference via +15°C of temperature during ~2 week drought and re-watering. Results showed that drought decreased net photosynthesis (Anet), stomatal conductance (gs), maximum velocity of ribulose-1, 5-bisphosphate carboxylase/oxygenase carboxylation (Vcmax) and electron transport rate (J) in both wheat and sorghum. Heat interference did not further reduce Anet or gs. Drought increased non-photochemical quenching (Φnpq), whereas heat interference decreased Φnpq. The δ13C of leaf, stem and roots was higher in drought-treated wheat but lower in drought-treated sorghum. The results suggest that (1) even under drought conditions wheat and sorghum increased or maintained gs for transpirational cooling to alleviate negative effects by heat interference; (2) non-photochemical quenching responded differently to drought and heat stress; (3) wheat and sorghum responded in opposing patterns in δ13C. These findings point to the importance of stomatal regulation under heat crossed with drought stress and could provide useful information on development of better strategies to secure crop production for future climate change.
Collapse
Affiliation(s)
- Lingling Zhu
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lucas A Cernusak
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Xin Song
- Shenzhen Key Laboratory of Marine Biological Resources and Ecological Environment, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China; and Corresponding author.
| |
Collapse
|
19
|
Dolker T, Agrawal M. Negative impacts of elevated ozone on dominant species of semi-natural grassland vegetation in Indo-Gangetic plain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109404. [PMID: 31310902 DOI: 10.1016/j.ecoenv.2019.109404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/14/2019] [Accepted: 06/29/2019] [Indexed: 06/10/2023]
Abstract
Increasing tropospheric ozone (O3) concentrations in most regions of the world have led to significant phytotoxicity to all types of vegetation. Indo-Gangetic Plains of India is one of the hot spot areas with high O3 concentrations throughout the year although O3 phytotoxicity on grassland species in this region is not explored. Therefore the present study was conducted to assess the responses of a dominant species, Ischaemum rugosum Salisb, a C4 grass and a co-dominant species Malvastrum coromandelianum (L.) Garcke, a C3 forb under future elevated O3 (non filtered ambient + 20 nl l-1; NFA+) concentration compared to non filtered ambient (NFA; 48.7 nl l-1, 8 h mean) for 9 weeks from 15th May to 15th July 2016 in mix-culture using open-top chambers (OTCs). Plants were assessed for physiological, biochemical and growth parameters including biomass accumulation during vegetative and reproductive stages to assess the O3 induced responses. Under NFA+, higher reductions were observed in physiological parameters, growth and total biomass accumulation in M. coromandelianum compared to I. rugosum while both the species suffered membrane damage. Enhancement in contents of ascorbic acid and tannin in I. rugosum while proline and total phenolics in M. coromandelianum led to more protection of former species compared to later from oxidative damage. No significant change in stomatal conductance in I. rugosum while significant increase in M. coromandelianum might have led to more accumulation of O3 inside the plant, thus more negatively affecting the performance of later species. The present study concludes that M. coromandelianum (C3 photosynthetic pathway) will be relatively more negatively affected compared to I. rugosum (C4 photosynthetic pathway) under future O3 concentrations.
Collapse
Affiliation(s)
- Tsetan Dolker
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| | - Madhoolika Agrawal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
20
|
Zhou H, Akçay E, Helliker BR. Estimating C 4 photosynthesis parameters by fitting intensive A/C i curves. PHOTOSYNTHESIS RESEARCH 2019; 141:181-194. [PMID: 30758752 DOI: 10.1007/s11120-019-00619-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Measurements of photosynthetic assimilation rate as a function of intercellular CO2 (A/Ci curves) are widely used to estimate photosynthetic parameters for C3 species, yet few parameters have been reported for C4 plants, because of a lack of estimation methods. Here, we extend the framework of widely used estimation methods for C3 plants to build estimation tools by exclusively fitting intensive A/Ci curves (6-8 more sampling points) for C4 using three versions of photosynthesis models with different assumptions about carbonic anhydrase processes and ATP distribution. We use simulation analysis, out of sample tests, existing in vitro measurements and chlorophyll-fluorescence measurements to validate the new estimation methods. Of the five/six photosynthetic parameters obtained, sensitivity analyses show that maximal-Rubisco-carboxylation-rate, electron-transport-rate, maximal-PEP-carboxylation-rate, and carbonic-anhydrase were robust to variation in the input parameters, while day respiration and mesophyll conductance varied. Our method provides a way to estimate carbonic anhydrase activity, a new parameter, from A/Ci curves, yet also shows that models that do not explicitly consider carbonic anhydrase yield approximate results. The two photosynthesis models, differing in whether ATP could freely transport between RuBP and PEP regeneration processes yielded consistent results under high light, but they may diverge under low light intensities. Modeling results show selection for Rubisco of low specificity and high catalytic rate, low leakage of bundle sheath, and high PEPC affinity, which may further increase C4 efficiency.
Collapse
Affiliation(s)
- Haoran Zhou
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA.
| | - Erol Akçay
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| | - Brent R Helliker
- Department of Biology, University of Pennsylvania, 433 S University Ave., 314 Leidy Labs, Philadelphia, PA, 19104, USA
| |
Collapse
|
21
|
Cano FJ, Sharwood RE, Cousins AB, Ghannoum O. The role of leaf width and conductances to CO 2 in determining water use efficiency in C 4 grasses. THE NEW PHYTOLOGIST 2019; 223:1280-1295. [PMID: 31087798 DOI: 10.1111/nph.15920] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/28/2019] [Indexed: 05/26/2023]
Abstract
C4 plants achieve higher photosynthesis (An ) and intrinsic water use efficiency (iWUE) than C3 plants, but processes underpinning the variability in An and iWUE across the three C4 subtypes remain unclear, partly because we lack an integrated framework for quantifying the contribution of diffusional and biochemical limitations to C4 photosynthesis. We exploited the natural diversity among C4 grasses to develop an original mathematical approach for estimating eight key processes of C4 photosynthesis and their relative limitations to An . We also developed a new formulation to estimate mesophyll conductance (gm ) based on actual hydration rates of CO2 by carbonic anhydrases. We found a positive relationship between gm and iWUE and an inverse correlation with gsw among C4 grasses. We also revealed subtype-specific regulatory processes of iWUE that may be related to known anatomical traits characterising each C4 subtype. Leaf width was an important determinant of iWUE and showed significant correlations with key limitations of An , especially among NADP-ME species. In conclusion, incorporating leaf width in breeding trials may unlock new opportunities for C4 crops because the revealed negative relationship between leaf width and iWUE may translate into higher crop and canopy WUE.
Collapse
Affiliation(s)
- Francisco Javier Cano
- ARC Centre of Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2753, Australia
| | - Robert E Sharwood
- ARC Centre of Translational Photosynthesis and Australian National University, Research School of Biology, Acton, ACT, 2601, Australia
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Oula Ghannoum
- ARC Centre of Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, 2753, Australia
| |
Collapse
|
22
|
Miner GL, Bauerle WL. Seasonal responses of photosynthetic parameters in maize and sunflower and their relationship with leaf functional traits. PLANT, CELL & ENVIRONMENT 2019; 42:1561-1574. [PMID: 30604429 DOI: 10.1111/pce.13511] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 12/20/2018] [Indexed: 05/08/2023]
Abstract
Estimates of seasonal variation in photosynthetic capacity (Pc ) are critical for modeling the time course of carbon fluxes. Given the time-intensive nature of calculating Pc parameters via gas exchange, it is appealing to calculate parameter variation via changes in chlorophyll (Chl) and nitrogen (N) content by assuming that Pc scales with these variables. Although seasonal changes in Pc and the relationships between N and Pc have been evaluated in forest canopies, there is limited data on seasonal parameter values in crops, nor is it clear if seasonal changes in Pc can be estimated from leaf traits under the high N fertility of managed systems. We characterized the seasonal variability of the maximum rates of carboxylation (Vcmax ) and electron transport (Jmax ) under well-fertilized conditions for maize (Zea mays L.) and sunflower (Helianthus annuus L.) and coupled these data with measurements of Chl, N, and leaf mass per unit area (LMA). The seasonal Chl-N relationship was significant in maize, but not in sunflower. Area-based N-Vcmax relationships were not significant for either crop. Mass-based N-Vcmax relationships were weak in sunflower, but highly significant in maize. Our results suggest that Pc can be seasonally adjusted in maize with reliable estimates of changes in LMA.
Collapse
Affiliation(s)
- Grace L Miner
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - William L Bauerle
- Department of Horticulture and Landscape Architecture, Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
23
|
Habermann E, Dias de Oliveira EA, Contin DR, Delvecchio G, Viciedo DO, de Moraes MA, de Mello Prado R, de Pinho Costa KA, Braga MR, Martinez CA. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. PHYSIOLOGIA PLANTARUM 2019; 165:383-402. [PMID: 30525220 DOI: 10.1111/ppl.12891] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 05/24/2023]
Abstract
Global warming is predicted to cause more intense extreme events such as heat waves, flooding and severe droughts, producing significant effects on agriculture. In tropics, climate change will severely impact livestock production affecting water availability, forage quality and food for cattle. We investigated the isolated and combined effects of soil water deficit (wS) and + 2°C increase in canopy temperature (eT) on leaf gas exchange, chlorophyll fluorescence, carbohydrate content, forage quality and in vitro dry matter digestibility (IVDMD) of a field-grown C4 tropical forage grass Panicum maximum Jacq. using a temperature-free air-controlled enhancement (T-FACE) system. The wS and eT treatments showed no effects on photosystem II photochemistry. However, wS under ambient temperature decreased net photosynthesis rate (A), stomatal conductance (gs ) and maximum rate of carboxylation of Rubisco (Vcmax ), leading to a reduced starch content in leaves. A 16% reduction in leaf dry mass (LDM) and reduction in forage quality by increasing fibers, reducing crude protein (CP) and decreasing the IVDMD was also observed by effect of wS. Warming under adequate soil moisture (eT) significantly increased LDM by 25% but reduced the forage quality, increasing the lignin content and reducing starch, CP and digestibility. The combined wSeT treatment reduced A, gs , Vcmax and the forage quality. When compared to control, the lignin content in leaves increased by 43, 28 and 17% in wS, eT and wSeT, respectively, causing a significant reduction in IVDMD. We concluded that despite physiological mechanisms to acclimate to warming, both warming and water deficit will impair the quality and digestibility of C4 tropical pastures.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Daniele Ribeiro Contin
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Delvecchio
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dilier Olivera Viciedo
- Department of Soils and Fertilizers, FCAV, São Paulo State University, São Paulo, Brazil
| | | | - Renato de Mello Prado
- Department of Soils and Fertilizers, FCAV, São Paulo State University, São Paulo, Brazil
| | | | | | | |
Collapse
|
24
|
Yin X, Struik PC. The energy budget in C 4 photosynthesis: insights from a cell-type-specific electron transport model. THE NEW PHYTOLOGIST 2018; 218:986-998. [PMID: 29520959 PMCID: PMC5947737 DOI: 10.1111/nph.15051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 05/18/2023]
Abstract
Extra ATP required in C4 photosynthesis for the CO2 -concentrating mechanism probably comes from cyclic electron transport (CET). As metabolic ATP : NADPH requirements in mesophyll (M) and bundle-sheath (BS) cells differ among C4 subtypes, the subtypes may differ in the extent to which CET operates in these cells. We present an analytical model for cell-type-specific CET and linear electron transport. Modelled NADPH and ATP production were compared with requirements. For malic-enzyme (ME) subtypes, c. 50% of electron flux is CET, occurring predominantly in BS cells for standard NADP-ME species, but in a ratio of c. 6 : 4 in BS : M cells for NAD-ME species. Some C4 acids follow a secondary decarboxylation route, which is obligatory, in the form of 'aspartate-malate', for the NADP-ME subtype, but facultative, in the form of phosphoenolpyruvate-carboxykinase (PEP-CK), for the NAD-ME subtype. The percentage for secondary decarboxylation is c. 25% and that for 3-phosphoglycerate reduction in BS cells is c. 40%; but these values vary with species. The 'pure' PEP-CK type is unrealistic because its is impossible to fulfil ATP : NADPH requirements in BS cells. The standard PEP-CK subtype requires negligible CET, and thus has the highest intrinsic quantum yields and deserves further studies in the context of improving canopy productivity.
Collapse
Affiliation(s)
- Xinyou Yin
- Department of Plant SciencesCentre for Crop Systems AnalysisWageningen University & ResearchPO Box 4306700 AKWageningenthe Netherlands
| | - Paul C. Struik
- Department of Plant SciencesCentre for Crop Systems AnalysisWageningen University & ResearchPO Box 4306700 AKWageningenthe Netherlands
| |
Collapse
|
25
|
Yin X, Struik PC. Can increased leaf photosynthesis be converted into higher crop mass production? A simulation study for rice using the crop model GECROS. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2345-2360. [PMID: 28379522 PMCID: PMC5447886 DOI: 10.1093/jxb/erx085] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Various genetic engineering routes to enhance C3 leaf photosynthesis have been proposed to improve crop productivity. However, their potential contribution to crop productivity needs to be assessed under realistic field conditions. Using 31 year weather data, we ran the crop model GECROS for rice in tropical, subtropical, and temperate environments, to evaluate the following routes: (1) improving mesophyll conductance (gm); (2) improving Rubisco specificity (Sc/o); (3) improving both gm and Sc/o; (4) introducing C4 biochemistry; (5) introducing C4 Kranz anatomy that effectively minimizes CO2 leakage; (6) engineering the complete C4 mechanism; (7) engineering cyanobacterial bicarbonate transporters; (8) engineering a more elaborate cyanobacterial CO2-concentrating mechanism (CCM) with the carboxysome in the chloroplast; and (9) a mechanism that combines the low ATP cost of the cyanobacterial CCM and the high photosynthetic capacity per unit leaf nitrogen. All routes improved crop mass production, but benefits from Routes 1, 2, and 7 were ≤10%. Benefits were higher in the presence than in the absence of drought, and under the present climate than for the climate predicted for 2050. Simulated crop mass differences resulted not only from the increased canopy photosynthesis competence but also from changes in traits such as light interception and crop senescence. The route combinations gave larger effects than the sum of the effects of the single routes, but only Route 9 could bring an advantage of ≥50% under any environmental conditions. To supercharge crop productivity, exploring a combination of routes in improving the CCM, photosynthetic capacity, and quantum efficiency is required.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
26
|
Yang H, Yu Q, Sheng WP, Li SG, Tian J. Determination of leaf carbon isotope discrimination in C4 plants under variable N and water supply. Sci Rep 2017; 7:351. [PMID: 28336951 PMCID: PMC5428480 DOI: 10.1038/s41598-017-00498-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 03/02/2017] [Indexed: 11/09/2022] Open
Abstract
Understanding the mechanisms underlying variations in carbon isotope discrimination (Δ) in C4 plants is critical for predicting the C3/C4 ratio in C3/C4 mixed grassland. The value of Δ is determined by bundle sheath leakiness (Ф) and the ratio of intercellular to ambient CO2 concentration (C i /C a ). Leaf nitrogen concentration (N leaf ) is considered a driver of Δ in C4 plants. However, little is known about how N leaf affects Ф and C i /C a , and subsequently Δ. Here leaf carbon isotope composition, N leaf , Ф, and leaf gas exchange were measured in Cleistogenes squarrosa, a dominant C4 species in the Inner Mongolia grassland. Δ remained relatively stable under variable N and water supply. Higher N supply and lower water supply increased N leaf , stimulated photosynthesis and further decreased C i /C a . High N supply increased Ф, which responded weakly to water supply. N leaf exerted similar effects on C i /C a and on Ф in the field and pot experiments. Pooling all the data, N leaf explained 73% of the variation in C i /C a . Overall, both Ф and C i /C a determined Δ; however, the contribution of Ф was stronger. N leaf influenced Δ primarily though C i /C a , rather than Ф. Ф should be considered in estimating Δ of C4 endmember.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Ecosystem Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Qiang Yu
- National Hulunber Grassland Ecosystem Observation and Research Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wen-Ping Sheng
- Key Laboratory of Ecosystem Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Sheng-Gong Li
- Key Laboratory of Ecosystem Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Tian
- Key Laboratory of Ecosystem Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
27
|
Ribeiro RV, Machado EC, Magalhães Filho JR, Lobo AKM, Martins MO, Silveira JAG, Yin X, Struik PC. Increased sink strength offsets the inhibitory effect of sucrose on sugarcane photosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2017; 208:61-69. [PMID: 27889522 DOI: 10.1016/j.jplph.2016.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/29/2016] [Accepted: 11/14/2016] [Indexed: 06/06/2023]
Abstract
Spraying sucrose inhibits photosynthesis by impairing Rubisco activity and stomatal conductance (gs), whereas increasing sink demand by partially darkening the plant stimulates sugarcane photosynthesis. We hypothesized that the stimulatory effect of darkness can offset the inhibitory effect of exogenous sucrose on photosynthesis. Source-sink relationship was perturbed in two sugarcane cultivars by imposing partial darkness, spraying a sucrose solution (50mM) and their combination. Five days after the onset of the treatments, the maximum Rubisco carboxylation rate (Vcmax) and the initial slope of A-Ci curve (k) were estimated by measuring leaf gas exchange and chlorophyll fluorescence. Photosynthesis was inhibited by sucrose spraying in both genotypes, through decreases in Vcmax, k, gs and ATP production driven by electron transport (Jatp). Photosynthesis of plants subjected to the combination of partial darkness and sucrose spraying was similar to photosynthesis of reference plants for both genotypes. Significant increases in Vcmax, gs and Jatp and marginal increases in k were noticed when combining partial darkness and sucrose spraying compared with sucrose spraying alone. Our data also revealed that increases in sink strength due to partial darkness offset the inhibition of sugarcane photosynthesis caused by sucrose spraying, enhancing the knowledge on endogenous regulation of sugarcane photosynthesis through the source-sink relationship.
Collapse
Affiliation(s)
- Rafael V Ribeiro
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.
| | - Eduardo C Machado
- Laboratory of Plant Physiology "Coaracy M. Franco", Centre for Research and Development in Ecophysiology and Biophysics, Agronomic Institute, Campinas, SP, Brazil.
| | - José R Magalhães Filho
- Laboratory of Plant Physiology "Coaracy M. Franco", Centre for Research and Development in Ecophysiology and Biophysics, Agronomic Institute, Campinas, SP, Brazil.
| | - Ana Karla M Lobo
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Márcio O Martins
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Joaquim A G Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, CE, Brazil.
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
28
|
Gong XY, Schäufele R, Schnyder H. Bundle-sheath leakiness and intrinsic water use efficiency of a perennial C4 grass are increased at high vapour pressure deficit during growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:321-333. [PMID: 27864539 PMCID: PMC5853292 DOI: 10.1093/jxb/erw417] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/20/2016] [Indexed: 05/05/2023]
Abstract
Bundle-sheath leakiness (ϕ) is a key parameter of the CO2-concentrating mechanism of C4 photosynthesis and is related to leaf-level intrinsic water use efficiency (WUEi). This work studied short-term dynamic responses of ϕ to alterations of atmospheric CO2 concentration in Cleistogenes squarrosa, a perennial grass, grown at high (1.6 kPa) or low (0.6 kPa) vapour pressure deficit (VPD) combined with high or low N supply in controlled environment experiments. ϕ was determined by concurrent measurements of photosynthetic gas exchange and on-line carbon isotope discrimination, using a new protocol. Growth at high VPD led to an increase of ϕ by 0.13 and a concurrent increase of WUEi by 14%, with similar effects at both N levels. ϕ responded dynamically to intercellular CO2 concentration (C i), increasing with C i Across treatments, ϕ was negatively correlated to the ratio of CO2 saturated assimilation rate to carboxylation efficiency (a proxy of the relative activities of Rubisco and phosphoenolpyruvate carboxylase) indicating that the long-term environmental effect on ϕ was related to the balance between C3 and C4 cycles. Our study revealed considerable dynamic and long-term variation in ϕ of C. squarrosa, suggesting that ϕ should be determined when carbon isotope discrimination is used to assess WUEi Also, the data indicate a trade-off between WUEi and energetic efficiency in C. squarrosa.
Collapse
Affiliation(s)
- Xiao Ying Gong
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354 Freising, Germany
| | - Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354 Freising, Germany
| | - Hans Schnyder
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, 85354 Freising, Germany
| |
Collapse
|
29
|
Retta M, Yin X, van der Putten PEL, Cantre D, Berghuijs HNC, Ho QT, Verboven P, Struik PC, Nicolaï BM. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:205-214. [PMID: 27717455 DOI: 10.1016/j.plantsci.2016.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/24/2016] [Accepted: 07/23/2016] [Indexed: 06/06/2023]
Abstract
The mechanism of photosynthesis in C4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (gbs), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C4 photosynthesis to estimate gbs. The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between gbs and leaf nitrogen content (LNC) while old leaves had lower gbs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (Sb) correlated well with gbs although they were not significantly affected by LNC. As a result, the increase of gbs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on Sb was responsible for differences in gbs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO2 leakage pathway to unravel LNC and age effects further.
Collapse
Affiliation(s)
- Moges Retta
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Denis Cantre
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman N C Berghuijs
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Quang Tri Ho
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Pieter Verboven
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|
30
|
Bellasio C, Lundgren MR. Anatomical constraints to C4 evolution: light harvesting capacity in the bundle sheath. THE NEW PHYTOLOGIST 2016; 212:485-496. [PMID: 27375085 DOI: 10.1111/nph.14063] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 05/10/2016] [Indexed: 06/06/2023]
Abstract
In C4 photosynthesis CO2 assimilation and reduction are typically coordinated across mesophyll (M) and bundle sheath (BS) cells, respectively. This system consequently requires sufficient light to reach BS to generate enough ATP to allow ribulose-1,5-bisphosphate (RuBP) regeneration in BS. Leaf anatomy influences BS light penetration and therefore constrains C4 cycle functionality. Using an absorption scattering model (coded in Excel, and freely downloadable) we simulate light penetration profiles and rates of ATP production in BS across the C3 , C3 -C4 and C4 anatomical continua. We present a trade-off for light absorption between BS pigment concentration and space allocation. C3 BS anatomy limits light absorption and benefits little from high pigment concentrations. Unpigmented BS extensions increase BS light penetration. C4 and C3 -C4 anatomies have the potential to generate sufficient ATP in the BS, whereas typical C3 anatomy does not, except some C3 taxa closely related to C4 groups. Insufficient volume of BS, relative to M, will hamper a C4 cycle via insufficient BS light absorption. Thus, BS ATP production and RuBP regeneration, coupled with increased BS investments, allow greater operational plasticity. We propose that larger BS in C3 lineages may be co-opted for C3 -C4 and C4 biochemistry requirements.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
31
|
Bellasio C, Beerling DJ, Griffiths H. An Excel tool for deriving key photosynthetic parameters from combined gas exchange and chlorophyll fluorescence: theory and practice. PLANT, CELL & ENVIRONMENT 2016; 39:1180-97. [PMID: 25923517 DOI: 10.1111/pce.12560] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/10/2015] [Accepted: 02/25/2015] [Indexed: 05/23/2023]
Abstract
Combined photosynthetic gas exchange and modulated fluorometres are widely used to evaluate physiological characteristics associated with phenotypic and genotypic variation, whether in response to genetic manipulation or resource limitation in natural vegetation or crops. After describing relatively simple experimental procedures, we present the theoretical background to the derivation of photosynthetic parameters, and provide a freely available Excel-based fitting tool (EFT) that will be of use to specialists and non-specialists alike. We use data acquired in concurrent variable fluorescence-gas exchange experiments, where A/Ci and light-response curves have been measured under ambient and low oxygen. From these data, the EFT derives light respiration, initial PSII (photosystem II) photochemical yield, initial quantum yield for CO2 fixation, fraction of incident light harvested by PSII, initial quantum yield for electron transport, electron transport rate, rate of photorespiration, stomatal limitation, Rubisco (ribulose 1·5-bisphosphate carboxylase/oxygenase) rate of carboxylation and oxygenation, Rubisco specificity factor, mesophyll conductance to CO2 diffusion, light and CO2 compensation point, Rubisco apparent Michaelis-Menten constant, and Rubisco CO2 -saturated carboxylation rate. As an example, a complete analysis of gas exchange data on tobacco plants is provided. We also discuss potential measurement problems and pitfalls, and suggest how such empirical data could subsequently be used to parameterize predictive photosynthetic models.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
32
|
Bellasio C, Beerling DJ, Griffiths H. Deriving C4 photosynthetic parameters from combined gas exchange and chlorophyll fluorescence using an Excel tool: theory and practice. PLANT, CELL & ENVIRONMENT 2016; 39:1164-79. [PMID: 26286697 DOI: 10.1111/pce.12626] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/06/2015] [Indexed: 05/27/2023]
Abstract
The higher photosynthetic potential of C4 plants has led to extensive research over the past 50 years, including C4 -dominated natural biomes, crops such as maize, or for evaluating the transfer of C4 traits into C3 lineages. Photosynthetic gas exchange can be measured in air or in a 2% Oxygen mixture using readily available commercial gas exchange and modulated PSII fluorescence systems. Interpretation of these data, however, requires an understanding (or the development) of various modelling approaches, which limit the use by non-specialists. In this paper we present an accessible summary of the theory behind the analysis and derivation of C4 photosynthetic parameters, and provide a freely available Excel Fitting Tool (EFT), making rigorous C4 data analysis accessible to a broader audience. Outputs include those defining C4 photochemical and biochemical efficiency, the rate of photorespiration, bundle sheath conductance to CO2 diffusion and the in vivo biochemical constants for PEP carboxylase. The EFT compares several methodological variants proposed by different investigators, allowing users to choose the level of complexity required to interpret data. We provide a complete analysis of gas exchange data on maize (as a model C4 organism and key global crop) to illustrate the approaches, their analysis and interpretation. © 2015 John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - David J Beerling
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| |
Collapse
|
33
|
Retta M, Ho QT, Yin X, Verboven P, Berghuijs HNC, Struik PC, Nicolaï BM. A two-dimensional microscale model of gas exchange during photosynthesis in maize (Zea mays L.) leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 246:37-51. [PMID: 26993234 DOI: 10.1016/j.plantsci.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/31/2015] [Accepted: 02/03/2016] [Indexed: 06/05/2023]
Abstract
CO2 exchange in leaves of maize (Zea mays L.) was examined using a microscale model of combined gas diffusion and C4 photosynthesis kinetics at the leaf tissue level. Based on a generalized scheme of photosynthesis in NADP-malic enzyme type C4 plants, the model accounted for CO2 diffusion in a leaf tissue, CO2 hydration and assimilation in mesophyll cells, CO2 release from decarboxylation of C4 acids, CO2 fixation in bundle sheath cells and CO2 retro-diffusion from bundle sheath cells. The transport equations were solved over a realistic 2-D geometry of the Kranz anatomy obtained from light microscopy images. The predicted responses of photosynthesis rate to changes in ambient CO2 and irradiance compared well with those obtained from gas exchange measurements. A sensitivity analysis showed that the CO2 permeability of the mesophyll-bundle sheath and airspace-mesophyll interfaces strongly affected the rate of photosynthesis and bundle sheath conductance. Carbonic anhydrase influenced the rate of photosynthesis, especially at low intercellular CO2 levels. In addition, the suberin layer at the exposed surface of the bundle sheath cells was found beneficial in reducing the retro-diffusion. The model may serve as a tool to investigate CO2 diffusion further in relation to the Kranz anatomy in C4 plants.
Collapse
Affiliation(s)
- Moges Retta
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands
| | - Quang Tri Ho
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Pieter Verboven
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium
| | - Herman N C Berghuijs
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium; Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Wageningen University, P.O. Box 430, 6700 AK Wageningen, The Netherlands; BioSolar Cells, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Bart M Nicolaï
- BIOSYST-MeBioS, KU Leuven/Flanders Center of Postharvest Technology, Willem de Croylaan 42, B-3001 Leuven, Belgium.
| |
Collapse
|
34
|
Yin X, van der Putten PEL, Driever SM, Struik PC. Temperature response of bundle-sheath conductance in maize leaves. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2699-714. [PMID: 26969744 PMCID: PMC4861018 DOI: 10.1093/jxb/erw104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A small bundle-sheath conductance (g bs) is essential for the C4 CO2-concentrating mechanism to suppress photorespiration effectively. To predict the productivity of C4 crops accurately under global warming, it is necessary to examine whether and how g bs responds to temperature. We investigated the temperature response of g bs in maize by fitting a C4 photosynthesis model to combined gas exchange and chlorophyll fluorescence measurements of irradiance and CO2 response curves at 21% and 2% O2 within the range of 13.5-39 °C. The analysis was based on reported kinetic constants of C4 Rubisco and phosphoenolpyruvate carboxylase and temperature responses of C3 mesophyll conductance (g m). The estimates of g bs varied greatly with leaf temperature. The temperature response of g bs was well described by the peaked Arrhenius equation, with the optimum temperature being ~34 °C. The assumed temperature responses of g m had only a slight impact on the temperature response of g bs In contrast, using extreme values of some enzyme kinetic constants changed the shape of the response, from the peaked optimum response to the non-peaked Arrhenius pattern. Further studies are needed to confirm such an Arrhenius response pattern from independent measurement techniques and to assess whether it is common across C4 species.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Peter E L van der Putten
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Steven M Driever
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
35
|
Yin X, Struik PC. Constraints to the potential efficiency of converting solar radiation into phytoenergy in annual crops: from leaf biochemistry to canopy physiology and crop ecology. JOURNAL OF EXPERIMENTAL BOTANY 2015. [PMID: 26224881 DOI: 10.1093/jxb/erv371] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A new simple framework was proposed to quantify the efficiency of converting incoming solar radiation into phytoenergy in annual crops. It emphasizes the need to account for (i) efficiency gain when scaling up from the leaf level to the canopy level, and (ii) efficiency loss due to incomplete canopy closure during early and late phases of the crop cycle. Equations are given to estimate losses due to the constraints in various biochemical or physiological steps. For a given amount of daily radiation, a longer daytime was shown to increase energy use efficiency, because of the convex shape of the photosynthetic light response. Due to the higher cyclic electron transport, C4 leaves were found to have a lower energy loss via non-photochemical quenching, compared with C3 leaves. This contributes to the more linear light response in C4 than in C3 photosynthesis. Because of this difference in the curvature of the light response, canopy-to-leaf photosynthesis ratio, benefit from the optimum acclimation of the leaf nitrogen profile in the canopy, and productivity gain from future improvements in leaf photosynthetic parameters and canopy architecture were all shown to be higher in C3 than in C4 species. The indicative efficiency of converting incoming solar radiation into phytoenergy is ~2.2 and 3.0% in present C3 and C4 crops, respectively, when grown under well-managed conditions. An achievable efficiency via future genetic improvement was estimated to be as high as 3.6 and 4.1% for C3 and C4 crops, respectively.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| | - Paul C Struik
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, PO Box 430, 6700 AK Wageningen, The Netherlands
| |
Collapse
|
36
|
Stata M, Sage TL, Rennie TD, Khoshravesh R, Sultmanis S, Khaikin Y, Ludwig M, Sage RF. Mesophyll cells of C4 plants have fewer chloroplasts than those of closely related C3 plants. PLANT, CELL & ENVIRONMENT 2014; 37:2587-2600. [PMID: 24689501 DOI: 10.1111/pce.12331] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/03/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The evolution of C(4) photosynthesis from C(3) ancestors eliminates ribulose bisphosphate carboxylation in the mesophyll (M) cell chloroplast while activating phosphoenolpyruvate (PEP) carboxylation in the cytosol. These changes may lead to fewer chloroplasts and different chloroplast positioning within M cells. To evaluate these possibilities, we compared chloroplast number, size and position in M cells of closely related C(3), C(3) -C(4) intermediate and C(4) species from 12 lineages of C(4) evolution. All C(3) species had more chloroplasts per M cell area than their C(4) relatives in high-light growth conditions. C(3) species also had higher chloroplast coverage of the M cell periphery than C(4) species, particularly opposite intercellular air spaces. In M cells from 10 of the 12 C(4) lineages, a greater fraction of the chloroplast envelope was pulled away from the plasmalemma in the C(4) species than their C(3) relatives. C(3) -C(4) intermediate species generally exhibited similar patterns as their C(3) relatives. We interpret these results to reflect adaptive shifts that facilitate efficient C(4) function by enhancing diffusive access to the site of primary carbon fixation in the cytosol. Fewer chloroplasts in C(4) M cells would also reduce shading of the bundle sheath chloroplasts, which also generate energy required by C(4) photosynthesis.
Collapse
Affiliation(s)
- Matt Stata
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, ON, Canada, M5S 3B2
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Bellasio C, Griffiths H. Acclimation of C4 metabolism to low light in mature maize leaves could limit energetic losses during progressive shading in a crop canopy. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3725-36. [PMID: 24591058 PMCID: PMC4085954 DOI: 10.1093/jxb/eru052] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
C4 plants have a biochemical carbon-concentrating mechanism that increases CO2 concentration around Rubisco in the bundle sheath. Under low light, the activity of the carbon-concentrating mechanism generally decreases, associated with an increase in leakiness (ϕ), the ratio of CO2 retrodiffusing from the bundle sheath relative to C4 carboxylation. This increase in ϕ had been theoretically associated with a decrease in biochemical operating efficiency (expressed as ATP cost of gross assimilation, ATP/GA) under low light and, because a proportion of canopy photosynthesis is carried out by shaded leaves, potential productivity losses at field scale. Maize plants were grown under light regimes representing the cycle that leaves undergo in the canopy, whereby younger leaves initially developed under high light and were then re-acclimated to low light (600 to 100 μE·m(-2)·s(-1) photosynthetically active radiation) for 3 weeks. Following re-acclimation, leaves reduced rates of light-respiration and reached a status of lower ϕ, effectively optimizing the limited ATP resources available under low photosynthetically active radiation. Direct estimates of respiration in the light, and ATP production rate, allowed an empirical estimate of ATP production rate relative to gross assimilation to be derived. These values were compared to modelled ATP/GA which was predicted using leakiness as the sole proxy for ATP/GA, and, using a novel comprehensive biochemical model, showing that irrespective of whether leaves are acclimated to very low or high light intensity, the biochemical efficiency of the C4 cycle does not decrease at low photosynthetically active radiation.
Collapse
Affiliation(s)
- Chandra Bellasio
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Howard Griffiths
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
38
|
Bellasio C, Burgess SJ, Griffiths H, Hibberd JM. A high throughput gas exchange screen for determining rates of photorespiration or regulation of C4 activity. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3769-79. [PMID: 25006037 PMCID: PMC4085971 DOI: 10.1093/jxb/eru238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Large-scale research programmes seeking to characterize the C4 pathway have a requirement for a simple, high throughput screen that quantifies photorespiratory activity in C3 and C4 model systems. At present, approaches rely on model-fitting to assimilatory responses (A/C i curves, PSII quantum yield) or real-time carbon isotope discrimination, which are complicated and time-consuming. Here we present a method, and the associated theory, to determine the effectiveness of the C4 carboxylation, carbon concentration mechanism (CCM) by assessing the responsiveness of V O/V C, the ratio of RuBisCO oxygenase to carboxylase activity, upon transfer to low O2. This determination compares concurrent gas exchange and pulse-modulated chlorophyll fluorescence under ambient and low O2, using widely available equipment. Run time for the procedure can take as little as 6 minutes if plants are pre-adapted. The responsiveness of V O/V C is derived for typical C3 (tobacco, rice, wheat) and C4 (maize, Miscanthus, cleome) plants, and compared with full C3 and C4 model systems. We also undertake sensitivity analyses to determine the impact of R LIGHT (respiration in the light) and the effectiveness of the light saturating pulse used by fluorescence systems. The results show that the method can readily resolve variations in photorespiratory activity between C3 and C4 plants and could be used to rapidly screen large numbers of mutants or transformants in high throughput studies.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Howard Griffiths
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
39
|
Kromdijk J, Ubierna N, Cousins AB, Griffiths H. Bundle-sheath leakiness in C4 photosynthesis: a careful balancing act between CO2 concentration and assimilation. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3443-57. [PMID: 24755278 DOI: 10.1093/jxb/eru157] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Crop species with the C4 photosynthetic pathway are generally characterized by high productivity, especially in environmental conditions favouring photorespiration. In comparison with the ancestral C3 pathway, the biochemical and anatomical modifications of the C4 pathway allow spatial separation of primary carbon acquisition in mesophyll cells and subsequent assimilation in bundle-sheath cells. The CO2-concentrating C4 cycle has to operate in close coordination with CO2 reduction via the Calvin-Benson-Bassham (CBB) cycle in order to keep the C4 pathway energetically efficient. The gradient in CO2 concentration between bundle-sheath and mesophyll cells facilitates diffusive leakage of CO2. This rate of bundle-sheath CO2 leakage relative to the rate of phosphoenolpyruvate carboxylation (termed leakiness) has been used to probe the balance between C4 carbon acquisition and subsequent reduction as a result of environmental perturbations. When doing so, the correct choice of equations to derive leakiness from stable carbon isotope discrimination (Δ(13)C) during gas exchange is critical to avoid biased results. Leakiness responses to photon flux density, either short-term (during measurements) or long-term (during growth and development), can have important implications for C4 performance in understorey light conditions. However, recent reports show leakiness to be subject to considerable acclimation. Additionally, the recent discovery of two decarboxylating C4 cycles operating in parallel in Zea mays suggests that flexibility in the transported C4 acid and associated decarboxylase could also aid in maintaining C4/CBB balance in a changing environment. In this paper, we review improvements in methodology to estimate leakiness, synthesize reports on bundle-sheath leakiness, discuss different interpretations, and highlight areas where future research is necessary.
Collapse
Affiliation(s)
- Johannes Kromdijk
- Institute for Genomic Biology, University of Illinois, 1206W Gregory drive, Urbana, IL 61801, USA
| | - Nerea Ubierna
- Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA99164-4236, USA
| | - Howard Griffiths
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB23EA, UK
| |
Collapse
|
40
|
Bellasio C, Griffiths H. Acclimation to low light by C4 maize: implications for bundle sheath leakiness. PLANT, CELL & ENVIRONMENT 2014; 37:1046-58. [PMID: 24004447 DOI: 10.1111/pce.12194] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
C4 plants have a biochemical carbon concentrating mechanism (CCM) that increases CO2 concentration around ribulose bisphosphate carboxylase oxygenase (Rubisco) in the bundle sheath (BS). Under limiting light, the activity of the CCM generally decreases, causing an increase in leakiness, (Φ), the ratio of CO2 retrodiffusing from the BS relative to C4 carboxylation processes. Maize plants were grown under high and low light regimes (respectively HL, 600 versus LL, 100 μE m(-2) s(-1) ). Short-term acclimation of Φ was compared from isotopic discrimination (Δ), gas exchange and photochemistry. Direct measurement of respiration in the light, and ATP production rate (JATP ), allowed us use a novel approach to derive Φ, compared with the conventional fitting of measured and predicted Δ. HL grown plants responded to decreasing light intensities with the well-documented increase in Φ. Conversely, LL plants showed a constant Φ, which has not been observed previously. We explain the pattern by two contrasting acclimation strategies: HL plants maintained a high CCM activity at LL, resulting in high CO2 overcycling and increased Φ; LL plants acclimated by down-regulating the CCM, effectively optimizing scarce ATP supply. This surprising plasticity may limit the impact of Φ-dependent carbon losses in leaves becoming shaded within developing canopies.
Collapse
Affiliation(s)
- Chandra Bellasio
- Physiological Ecology Group, Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | |
Collapse
|
41
|
von Caemmerer S. Steady-state models of photosynthesis. PLANT, CELL & ENVIRONMENT 2013; 36:1617-30. [PMID: 23496792 DOI: 10.1111/pce.12098] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/07/2013] [Accepted: 03/12/2013] [Indexed: 05/19/2023]
Abstract
In the challenge to increase photosynthetic rate per leaf area mathematical models of photosynthesis can be used to help interpret gas exchange measurements made under different environmental conditions and predict underlying photosynthetic biochemistry. To do this successfully it is important to improve the modelling of temperature dependencies of CO₂ assimilation and gain better understanding of internal CO₂ diffusion limitations. Despite these shortcomings steady-state models of photosynthesis provide simple easy to use tools for thought experiments to explore photosynthetic pathway changes such as redirecting photorespiratory CO₂, inserting bicarbonate pumps into C₃ chloroplasts or inserting C₄ photosynthesis into rice. Here a number of models derived from the C₃ model by Farquhar, von Caemmerer and Berry are discussed and compared.
Collapse
Affiliation(s)
- Susanne von Caemmerer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
42
|
Pengelly JJL, Tan J, Furbank RT, von Caemmerer S. Antisense reduction of NADP-malic enzyme in Flaveria bidentis reduces flow of CO2 through the C4 cycle. PLANT PHYSIOLOGY 2012; 160:1070-80. [PMID: 22846191 PMCID: PMC3461530 DOI: 10.1104/pp.112.203240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 07/24/2012] [Indexed: 05/04/2023]
Abstract
An antisense construct targeting the C(4) isoform of NADP-malic enzyme (ME), the primary enzyme decarboxylating malate in bundle sheath cells to supply CO(2) to Rubisco, was used to transform the dicot Flaveria bidentis. Transgenic plants (α-NADP-ME) exhibited a 34% to 75% reduction in NADP-ME activity relative to the wild type with no visible growth phenotype. We characterized the effect of reducing NADP-ME on photosynthesis by measuring in vitro photosynthetic enzyme activity, gas exchange, and real-time carbon isotope discrimination (Δ). In α-NADP-ME plants with less than 40% of wild-type NADP-ME activity, CO(2) assimilation rates at high intercellular CO(2) were significantly reduced, whereas the in vitro activities of both phosphoenolpyruvate carboxylase and Rubisco were increased. Δ measured concurrently with gas exchange in these plants showed a lower Δ and thus a lower calculated leakiness of CO(2) (the ratio of CO(2) leak rate from the bundle sheath to the rate of CO(2) supply). Comparative measurements on antisense Rubisco small subunit F. bidentis plants showed the opposite effect of increased Δ and leakiness. We use these measurements to estimate the C(4) cycle rate, bundle sheath leak rate, and bundle sheath CO(2) concentration. The comparison of α-NADP-ME and antisense Rubisco small subunit demonstrates that the coordination of the C(3) and C(4) cycles that exist during environmental perturbations by light and CO(2) can be disrupted through transgenic manipulations. Furthermore, our results suggest that the efficiency of the C(4) pathway could potentially be improved through a reduction in C(4) cycle activity or increased C(3) cycle activity.
Collapse
Affiliation(s)
- Jasper J L Pengelly
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia.
| | | | | | | |
Collapse
|
43
|
Yin X, Struik PC. Mathematical review of the energy transduction stoichiometries of C(4) leaf photosynthesis under limiting light. PLANT, CELL & ENVIRONMENT 2012; 35:1299-312. [PMID: 22321164 DOI: 10.1111/j.1365-3040.2012.02490.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A generalized model for electron (e(-) ) transport limited C(4) photosynthesis of NAD-malic enzyme and NADP-malic enzyme subtypes is presented. The model is used to review the thylakoid stoichiometries in vivo under strictly limiting light conditions, using published data on photosynthetic quantum yield and on photochemical efficiencies of photosystems (PS). Model review showed that cyclic e(-) transport (CET), rather than direct O(2) photoreduction, most likely contributed significantly to the production of extra ATP required for the C(4) cycle. Estimated CET, and non-cyclic e(-) transport supporting processes like nitrogen reduction, accounted for ca. 45 and 7% of total photosystem I (PSI) e(-) fluxes, respectively. The factor for excitation partitioning to photosystem II (PSII) was ca. 0.4. Further model analysis, in terms of the balanced NADPH: ATP ratio required for metabolism, indicated that: (1) the Q-cycle is obligatory; (2) the proton: ATP ratio is 4; and (3) the efficiency of proton pumping per e(-) transferred through the cytochrome b(6) /f complex is the same for CET and non-cyclic pathways. The analysis also gave an approach to theoretically assess CO(2) leakiness from bundle-sheath cells, and projected a leakiness of 0.07-0.16. Compared with C(3) photosynthesis, the most striking C(4) stoichiometry is its high fraction of CET.
Collapse
Affiliation(s)
- Xinyou Yin
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, P. O. Box 430, 6700 AK Wageningen, The Netherlands.
| | | |
Collapse
|