1
|
Ma YQ, Li Q, Cheng H, Hou XF, Tan XM, Meng Q, Huang X, Chang W, Yang L, Xu ZQ. Alternative splicing variants of IiSEP3 in Isatis indigotica are involved in floral transition and flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109153. [PMID: 39342659 DOI: 10.1016/j.plaphy.2024.109153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
The SEPALLATA3 genes regulate several aspects of plant development. This study identified four distinct splicing isoforms of the SEPALLATA3 gene in Isatis indigotica (I. indigotica). IiSEP3-1 and IiSEP3-2 have eight exons and were named as IiSEP3-2/1. However, IiSEP3-3 and IiSEP3-4 with the missing sixth exon were labeled IiSEP3ΔK3. Furthermore, the IiSEP3-1 and IiSEP3-4 amino acids sequences lack the V90. IiSEP3 splicing variants were primarily expressed in floral organs, with petals showing the highest expression. Ectopic expression of IiSEP3-2 or IiSEP3-3 may cause early flowering and reduce the number of sepals, petals, and stamens. The ectopic expression of IiSEP3-2 resulted in cauline leaves and sepals converting to carpelloid structures. In contrast, the four floral whorls prematurely wilted, and the entire flower displayed an abortive state when IiSEP3-3 was expressed ectopically. Silencing the IiSEP3 gene of I. indigotica employing VIGS (tobacco rattle virus-mediated virus-induced gene silencing) technology using the TRV-IiSEP3-2/1 vector delayed flowering time and reduced the number of petals and stamens. Plants silenced with TRV-IiSEP3ΔK3 also exhibited similar phenotypes, including fewer sepals. The transcriptome analysis of silenced plants (TRV-IiSEP3-2/1 treatment group) indicated significant alterations in 1861 genes, with 1035 upregulated and 826 downregulated. TRV-IiSEP3ΔK3 treatment altered the expression of 2063 genes in plants, with 1289 genes upregulated and 774 genes transcription inhibited. Y2H and BIFC experiments revealed that IiSEP3-2 and IiSEP3-3 had distinct interacting proteins. Thus, we can conclude that IiSEP3-2 and IiSEP3-3 interact with different proteins, affecting floral transition and organ development in I. indigotica.
Collapse
Affiliation(s)
- Yan-Qin Ma
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, People's Republic of China; Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Qi Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Hao Cheng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xiao-Fang Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xiao-Min Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Qi Meng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Xuan Huang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069
| | - Wei Chang
- Sichuan Institute of Edible Fungi, Chengdu, People's Republic of China, 610066
| | - Liang Yang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Horticultural Crops Biology and Germplasm Enhancement in Southwest Regions Key Laboratory of Ministry of Agriculture Rural Affairs, Vegetable Germplasm Innovation and Variety Improvement Key Laboratory of Sichuan Province, Chengdu, 610066, People's Republic of China.
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education) Provincial Key Laboratory of Biotechnology College of Life Sciences Northwest University, Xi'an, People's Republic of China, 710069.
| |
Collapse
|
2
|
Wiese AJ, Torutaeva E, Honys D. The transcription factors and pathways underpinning male reproductive development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2024; 15:1354418. [PMID: 38390292 PMCID: PMC10882072 DOI: 10.3389/fpls.2024.1354418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/15/2024] [Indexed: 02/24/2024]
Abstract
As Arabidopsis flowers mature, specialized cells within the anthers undergo meiosis, leading to the production of haploid microspores that differentiate into mature pollen grains, each containing two sperm cells for double fertilization. During pollination, the pollen grains are dispersed from the anthers to the stigma for subsequent fertilization. Transcriptomic studies have identified a large number of genes expressed over the course of male reproductive development and subsequent functional characterization of some have revealed their involvement in floral meristem establishment, floral organ growth, sporogenesis, meiosis, microsporogenesis, and pollen maturation. These genes encode a plethora of proteins, ranging from transcriptional regulators to enzymes. This review will focus on the regulatory networks that control male reproductive development, starting from flower development and ending with anther dehiscence, with a focus on transcription factors and some of their notable target genes.
Collapse
Affiliation(s)
- Anna Johanna Wiese
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Elnura Torutaeva
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - David Honys
- Laboratory of Pollen Biology, Institute for Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
3
|
Cheng H, Wang Q, Zhang Z, Cheng P, Song A, Zhou L, Wang L, Chen S, Chen F, Jiang J. The RAV transcription factor TEMPRANILLO1 involved in ethylene-mediated delay of chrysanthemum flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1652-1666. [PMID: 37696505 DOI: 10.1111/tpj.16453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023]
Abstract
TEMPRANILLO1 (TEM1) is a transcription factor belonging to related to ABI3 and VP1 family, which is also known as ethylene response DNA-binding factor 1 and functions as a repressor of flowering in Arabidopsis. Here, a putative homolog of AtTEM1 was isolated and characterized from chrysanthemum, designated as CmTEM1. Exogenous application of ethephon leads to an upregulation in the expression of CmTEM1. Knockdown of CmTEM1 promotes floral initiation, while overexpression of CmTEM1 retards floral transition. Further phenotypic observations suggested that CmTEM1 involves in the ethylene-mediated inhibition of flowering. Transcriptomic analysis established that expression of the flowering integrator CmAFL1, a member of the APETALA1/FRUITFULL subfamily, was downregulated significantly in CmTEM1-overexpressing transgenic plants compared with wild-type plants but was verified to be upregulated in amiR-CmTEM1 lines by quantitative RT-PCR. In addition, CmTEM1 is capable of binding to the promoter of the CmAFL1 gene to inhibit its transcription. Moreover, the genetic evidence supported the notion that CmTEM1 partially inhibits floral transition by targeting CmAFL1. In conclusion, these findings demonstrate that CmTEM1 acts as a regulator of ethylene-mediated delayed flowering in chrysanthemum, partly through its interaction with CmAFL1.
Collapse
Affiliation(s)
- Hua Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingguo Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zixin Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peilei Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Likai Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu, 210014, China
| |
Collapse
|
4
|
Nadi R, Juan-Vicente L, Mateo-Bonmatí E, Micol JL. The unequal functional redundancy of Arabidopsis INCURVATA11 and CUPULIFORMIS2 is not dependent on genetic background. FRONTIERS IN PLANT SCIENCE 2023; 14:1239093. [PMID: 38034561 PMCID: PMC10684699 DOI: 10.3389/fpls.2023.1239093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023]
Abstract
The paralogous genes INCURVATA11 (ICU11) and CUPULIFORMIS2 (CP2) encode components of the epigenetic machinery in Arabidopsis and belong to the 2-oxoglutarate and Fe (II)-dependent dioxygenase superfamily. We previously inferred unequal functional redundancy between ICU11 and CP2 from a study of the synergistic phenotypes of the double mutant and sesquimutant combinations of icu11 and cp2 mutations, although they represented mixed genetic backgrounds. To avoid potential confounding effects arising from different genetic backgrounds, we generated the icu11-5 and icu11-6 mutants via CRISPR/Cas genome editing in the Col-0 background and crossed them to cp2 mutants in Col-0. The resulting mutants exhibited a postembryonic-lethal phenotype reminiscent of strong embryonic flower (emf) mutants. Double mutants involving icu11-5 and mutations affecting epigenetic machinery components displayed synergistic phenotypes, whereas cp2-3 did not besides icu11-5. Our results confirmed the unequal functional redundancy between ICU11 and CP2 and demonstrated that it is not allele or genetic background specific. An increase in sucrose content in the culture medium partially rescued the post-germinative lethality of icu11 cp2 double mutants and sesquimutants, facilitating the study of their morphological phenotypes throughout their life cycle, which include floral organ homeotic transformations. We thus established that the ICU11-CP2 module is required for proper flower organ identity.
Collapse
Affiliation(s)
| | | | | | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
5
|
Rieu P, Arnoux-Courseaux M, Tichtinsky G, Parcy F. Thinking outside the F-box: how UFO controls angiosperm development. THE NEW PHYTOLOGIST 2023; 240:945-959. [PMID: 37664990 DOI: 10.1111/nph.19234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/19/2023] [Indexed: 09/05/2023]
Abstract
The formation of inflorescences and flowers is essential for the successful reproduction of angiosperms. In the past few decades, genetic studies have identified the LEAFY transcription factor and the UNUSUAL FLORAL ORGANS (UFO) F-box protein as two major regulators of flower development in a broad range of angiosperm species. Recent research has revealed that UFO acts as a transcriptional cofactor, redirecting the LEAFY floral regulator to novel cis-elements. In this review, we summarize the various roles of UFO across species, analyze past results in light of new discoveries and highlight the key questions that remain to be solved.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Moïra Arnoux-Courseaux
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRAE, IRIG-DBSCI-LPCV, 17 ave des martyrs, F-38054, Grenoble, France
| |
Collapse
|
6
|
Zhu K, Chen H, Mei X, Lu S, Xie H, Liu J, Chai L, Xu Q, Wurtzel ET, Ye J, Deng X. Transcription factor CsMADS3 coordinately regulates chlorophyll and carotenoid pools in Citrus hesperidium. PLANT PHYSIOLOGY 2023; 193:519-536. [PMID: 37224514 DOI: 10.1093/plphys/kiad300] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Citrus, 1 of the largest fruit crops with global economic and nutritional importance, contains fruit known as hesperidium with unique morphological types. Citrus fruit ripening is accompanied by chlorophyll degradation and carotenoid biosynthesis, which are indispensably linked to color formation and the external appearance of citrus fruits. However, the transcriptional coordination of these metabolites during citrus fruit ripening remains unknown. Here, we identified the MADS-box transcription factor CsMADS3 in Citrus hesperidium that coordinates chlorophyll and carotenoid pools during fruit ripening. CsMADS3 is a nucleus-localized transcriptional activator, and its expression is induced during fruit development and coloration. Overexpression of CsMADS3 in citrus calli, tomato (Solanum lycopersicum), and citrus fruits enhanced carotenoid biosynthesis and upregulated carotenogenic genes while accelerating chlorophyll degradation and upregulating chlorophyll degradation genes. Conversely, the interference of CsMADS3 expression in citrus calli and fruits inhibited carotenoid biosynthesis and chlorophyll degradation and downregulated the transcription of related genes. Further assays confirmed that CsMADS3 directly binds and activates the promoters of phytoene synthase 1 (CsPSY1) and chromoplast-specific lycopene β-cyclase (CsLCYb2), 2 key genes in the carotenoid biosynthetic pathway, and STAY-GREEN (CsSGR), a critical chlorophyll degradation gene, which explained the expression alterations of CsPSY1, CsLCYb2, and CsSGR in the above transgenic lines. These findings reveal the transcriptional coordination of chlorophyll and carotenoid pools in the unique hesperidium of Citrus and may contribute to citrus crop improvement.
Collapse
Affiliation(s)
- Kaijie Zhu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Hongyan Chen
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xuehan Mei
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Suwen Lu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Heping Xie
- The Experimental Station of Loose-skin Mandarins in Yichang, Agricultural Technical Service Center of Yiling District, Yichang, Hubei 443100, China
| | - Junwei Liu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lijun Chai
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Qiang Xu
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Eleanore T Wurtzel
- Department of Biological Sciences, Lehman College, The City University of New York, Bronx, NY 10468, USA
- The Graduate Center, The City University of New York, New York, NY 10016-16 4309, USA
| | - Junli Ye
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Lab for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| |
Collapse
|
7
|
Muthusamy M, Son S, Park SR, Lee SI. Heat shock factor binding protein BrHSBP1 regulates seed and pod development in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2023; 14:1232736. [PMID: 37719218 PMCID: PMC10499616 DOI: 10.3389/fpls.2023.1232736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023]
Abstract
Plant heat shock factor binding proteins (HSBPs) are well known for their implication in the negative regulation of heat stress response (HSR) pathways. Herein, we report on the hitherto unknown functions of HSBP1 in Brassica rapa (BrHSBP1). BrHBSP1 was found to be predominant in flower buds and young leaves, while its segmental duplicate, BrHSBP1-like, was abundant in green siliques. Exposure to abiotic stress conditions, such as heat, drought, cold, and H2O2, and to phytohormones was found to differentially regulate BrHSBP1. The activity of BrHSBP1-GFP fusion proteins revealed their cellular localization in nuclei and cytosols. Transgenic overexpression of BrHSBP1 (BrHSBP1OX) improved pod and seed sizes, while CRISPR-Cas BrHSBP1 knock-out mutants (Brhsbp1_KO) were associated with aborted seed and pod development. The transcriptomic signatures of BrHSBP1OX and Brhsbp1_KO lines revealed that 360 and 2381 genes, respectively, were differentially expressed (Log2FC≥2, padj<0.05) expressed relative to control lines. In particular, developmental processes, including plant reproductive structure development (RSD)-related genes, were relatively downregulated in Brhsbp1_KO. Furthermore, yeast two-hybrid assays confirmed that BrHSBP1 can physically bind to RSD and other genes. Taking the findings together, it is clear that BrHSBP1 is involved in seed development via the modulation of RSD genes. Our findings represent the addition of a new regulatory player in seed and pod development in B. rapa.
Collapse
Affiliation(s)
| | | | | | - Soo In Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences (NAS), Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Lin ZY, Zhu GF, Lu CQ, Gao J, Li J, Xie Q, Wei YL, Jin JP, Wang FL, Yang FX. Functional conservation and divergence of SEPALLATA-like genes in floral development in Cymbidium sinense. FRONTIERS IN PLANT SCIENCE 2023; 14:1209834. [PMID: 37711312 PMCID: PMC10498475 DOI: 10.3389/fpls.2023.1209834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/08/2023] [Indexed: 09/16/2023]
Abstract
Cymbidium sinense is one of the most important traditional Chinese Orchids due to its unique and highly ornamental floral organs. Although the ABCDE model for flower development is well-established in model plant species, the precise roles of these genes in C. sinense are not yet fully understood. In this study, four SEPALLATA-like genes were isolated and identified from C. sinense. CsSEP1 and CsSEP3 were grouped into the AGL9 clade, while CsSEP2 and CsSEP4 were included in the AGL2/3/4 clade. The expression pattern of CsSEP genes showed that they were significantly accumulated in reproductive tissues and expressed during flower bud development but only mildly detected or even undetected in vegetative organs. Subcellular localization revealed that CsSEP1 and CsSEP4 were localized to the nucleus, while CsSEP2 and CsSEP3 were located at the nuclear membrane. Promoter sequence analysis predicted that CsSEP genes contained a number of hormone response elements (HREs) and MADS-box binding sites. The early flowering phenotype observed in transgenic Arabidopsis plants expressing four CsSEP genes, along with the expression profiles of endogenous genes, such as SOC1, LFY, AG, FT, SEP3 and TCPs, in both transgenic Arabidopsis and C. sinense protoplasts, suggested that the CsSEP genes played a regulatory role in the flowering transition by influencing downstream genes related to flowering. However, only transgenic plants overexpressing CsSEP3 and CsSEP4 caused abnormal phenotypes of floral organs, while CsSEP1 and CsSEP2 had no effect on floral organs. Protein-protein interaction assays indicated that CsSEPs formed a protein complex with B-class CsAP3-2 and CsSOC1 proteins, affecting downstream genes to regulate floral organs and flowering time. Our findings highlighted both the functional conservation and divergence of SEPALLATA-like genes in C. sinense floral development. These results provided a valuable foundation for future studies of the molecular network underlying floral development in C. sinense.
Collapse
Affiliation(s)
- Zeng-Yu Lin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gen-Fa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Chu-Qiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jie Li
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yong-Lu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jian-Peng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feng-Lan Wang
- College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng-Xi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Institute of Environmental Horticulture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
9
|
Liu X, Xing Q, Liu X, Müller-Xing R. Expression of the Populus Orthologues of AtYY1, YIN and YANG Activates the Floral Identity Genes AGAMOUS and SEPALLATA3 Accelerating Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2023; 24:ijms24087639. [PMID: 37108801 PMCID: PMC10146089 DOI: 10.3390/ijms24087639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
YIN YANG 1 (YY1) encodes a dual-function transcription factor, evolutionary conserved between the animal and plant kingdom. In Arabidopsis thaliana, AtYY1 is a negative regulator of ABA responses and floral transition. Here, we report the cloning and functional characterization of the two AtYY1 paralogs, YIN and YANG (also named PtYY1a and PtYY1b) from Populus (Populus trichocarpa). Although the duplication of YY1 occurred early during the evolution of the Salicaceae, YIN and YANG are highly conserved in the willow tree family. In the majority of Populus tissues, YIN was more strongly expressed than YANG. Subcellular analysis showed that YIN-GFP and YANG-GFP are mainly localized in the nuclei of Arabidopsis. Stable and constitutive expression of YIN and YANG resulted in curled leaves and accelerated floral transition of Arabidopsis plants, which was accompanied by high expression of the floral identity genes AGAMOUS (AG) and SEPELLATA3 (SEP3) known to promote leaf curling and early flowering. Furthermore, the expression of YIN and YANG had similar effects as AtYY1 overexpression to seed germination and root growth in Arabidopsis. Our results suggest that YIN and YANG are functional orthologues of the dual-function transcription factor AtYY1 with similar roles in plant development conserved between Arabidopsis and Populus.
Collapse
Affiliation(s)
- Xinying Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Qian Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| | - Xuemei Liu
- Institute of Genetics, College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Ralf Müller-Xing
- Lushan Botanical Garden, Chinese Academy of Sciences (CAS), Jiujiang 332900, China
| |
Collapse
|
10
|
Wang H, Lu Y, Zhang T, Liu Z, Cao L, Chang Q, Liu Y, Lu X, Yu S, Li H, Jiang J, Liu G, Sederoff HW, Sederoff RR, Zhang Q, Zheng Z. The double flower variant of yellowhorn is due to a LINE1 transposon-mediated insertion. PLANT PHYSIOLOGY 2023; 191:1122-1137. [PMID: 36494195 PMCID: PMC9922402 DOI: 10.1093/plphys/kiac571] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
As essential organs of reproduction in angiosperms, flowers, and the genetic mechanisms of their development have been well characterized in many plant species but not in the woody tree yellowhorn (Xanthoceras sorbifolium). Here, we focused on the double flower phenotype in yellowhorn, which has high ornamental value. We found a candidate C-class gene, AGAMOUS1 (XsAG1), through bovine serum albumin sequencing and genetics analysis with a Long Interpersed Nuclear Elements 1 (LINE1) transposable element fragment (Xsag1-LINE1-1) inserted into its second intron that caused a loss-of-C-function and therefore the double flower phenotype. In situ hybridization of XsAG1 and analysis of the expression levels of other ABC genes were used to identify differences between single- and double-flower development processes. These findings enrich our understanding of double flower formation in yellowhorn and provide evidence that transposon insertions into genes can reshape plant traits in forest trees.
Collapse
|
11
|
Rieu P, Turchi L, Thévenon E, Zarkadas E, Nanao M, Chahtane H, Tichtinsky G, Lucas J, Blanc-Mathieu R, Zubieta C, Schoehn G, Parcy F. The F-box protein UFO controls flower development by redirecting the master transcription factor LEAFY to new cis-elements. NATURE PLANTS 2023; 9:315-329. [PMID: 36732360 DOI: 10.1038/s41477-022-01336-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/20/2022] [Indexed: 06/18/2023]
Abstract
In angiosperms, flower development requires the combined action of the transcription factor LEAFY (LFY) and the ubiquitin ligase adaptor F-box protein, UNUSUAL FLORAL ORGANS (UFO), but the molecular mechanism underlying this synergy has remained unknown. Here we show in transient assays and stable transgenic plants that the connection to ubiquitination pathways suggested by the UFO F-box domain is mostly dispensable. On the basis of biochemical and genome-wide studies, we establish that UFO instead acts by forming an active transcriptional complex with LFY at newly discovered regulatory elements. Structural characterization of the LFY-UFO-DNA complex by cryo-electron microscopy further demonstrates that UFO performs this function by directly interacting with both LFY and DNA. Finally, we propose that this complex might have a deep evolutionary origin, largely predating flowering plants. This work reveals a unique mechanism of an F-box protein directly modulating the DNA binding specificity of a master transcription factor.
Collapse
Affiliation(s)
- Philippe Rieu
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Laura Turchi
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
- Translational Innovation in Medicine and Complexity, Université Grenoble Alpes, CNRS, Grenoble, France
| | - Emmanuel Thévenon
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Eleftherios Zarkadas
- IBS, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
- EMBL, ISBG, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Max Nanao
- Structural Biology Group, European Synchrotron Radiation Facility, Grenoble, France
| | - Hicham Chahtane
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
- Green Mission Pierre Fabre, Conservatoire Botanique Pierre Fabre, Institut de Recherche Pierre Fabre, Soual, France
| | - Gabrielle Tichtinsky
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Jérémy Lucas
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Romain Blanc-Mathieu
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Chloe Zubieta
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France
| | - Guy Schoehn
- IBS, Université Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - François Parcy
- Laboratoire Physiologie Cellulaire et Végétale, IRIG-DBSCI-LPCV, Université Grenoble Alpes, CEA, CNRS, INRAE, Grenoble, France.
| |
Collapse
|
12
|
Chen L, Yan Y, Ke H, Zhang Z, Meng C, Ma L, Sun Z, Chen B, Liu Z, Wang G, Yang J, Wu J, Li Z, Wu L, Zhang G, Zhang Y, Wang X, Ma Z. SEP-like genes of Gossypium hirsutum promote flowering via targeting different loci in a concentration-dependent manner. FRONTIERS IN PLANT SCIENCE 2022; 13:990221. [PMID: 36531379 PMCID: PMC9752867 DOI: 10.3389/fpls.2022.990221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 11/02/2022] [Indexed: 06/17/2023]
Abstract
SEP genes are famous for their function in the morphological novelty of bisexual flowers. Although the diverse functions of SEP genes were reported, only the regulatory mechanisms underlying floral organ development have been addressed. In this study, we identified SEP-like genes in Gossypium and found that SEP3 genes were duplicated in diploid cotton varieties. GhSEP4.1 and GhSEP4.2 were abundantly transcribed in the shoot apical meristem (SAM), but only GhSEP4.2 was expressed in the leaf vasculature. The expression pattern of GhSEPs in floral organs was conserved with that of homologs in Arabidopsis, except for GhSEP2 that was preponderantly expressed in ovules and fibers. The overexpression and silencing of each single GhSEP gene suggested their distinct role in promoting flowering via direct binding to GhAP1 and GhLFY genomic regions. The curly leaf and floral defects in overexpression lines with a higher expression of GhSEP genes revealed the concentration-dependent target gene regulation of GhSEP proteins. Moreover, GhSEP proteins were able to dimerize and interact with flowering time regulators. Together, our results suggest the dominant role of GhSEP4.2 in leaves to promote flowering via GhAP1-A04, and differently accumulated GhSEP proteins in the SAM alternately participate in forming the dynamic tetramer complexes to target at the different loci of GhAP1 and GhLFY to maintain reproductive growth. The regulatory roles of cotton SEP genes reveal their conserved and diversified functions.
Collapse
|
13
|
Genome-Wide Identification, Evolution, and Expression Characterization of the Pepper (Capsicum spp.) MADS-box Gene Family. Genes (Basel) 2022; 13:genes13112047. [PMID: 36360285 PMCID: PMC9690561 DOI: 10.3390/genes13112047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
MADS domain transcription factors play roles throughout the whole lifecycle of plants from seeding to flowering and fruit-bearing. However, systematic research into MADS-box genes of the economically important vegetable crop pepper (Capsicum spp.) is still lacking. We identified 174, 207, and 72 MADS-box genes from the genomes of C. annuum, C. baccatum, and C. chinense, respectively. These 453 MADS-box genes were divided into type I (Mα, Mβ, Mγ) and type II (MIKC* and MIKCC) based on their phylogenetic relationships. Collinearity analysis identified 144 paralogous genes and 195 orthologous genes in the three Capsicum species, and 70, 114, and 10 MADS-box genes specific to C. annuum, C. baccatum, and C. chinense, respectively. Comparative genomic analysis highlighted functional differentiation among homologous MADS-box genes during pepper evolution. Tissue expression analysis revealed three main expression patterns: highly expressed in roots, stems, leaves, and flowers (CaMADS93/CbMADS35/CcMADS58); only expressed in roots; and specifically expressed in flowers (CaMADS26/CbMADS31/CcMADS11). Protein interaction network analysis showed that type II CaMADS mainly interacted with proteins related to flowering pathway and flower organ development. This study provides the basis for an in-depth study of the evolutionary features and biological functions of pepper MADS-box genes.
Collapse
|
14
|
Pi M, Hu S, Cheng L, Zhong R, Cai Z, Liu Z, Yao JL, Kang C. The MADS-box gene FveSEP3 plays essential roles in flower organogenesis and fruit development in woodland strawberry. HORTICULTURE RESEARCH 2021; 8:247. [PMID: 34848694 PMCID: PMC8632884 DOI: 10.1038/s41438-021-00673-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 05/02/2023]
Abstract
Flower and fruit development are two key steps for plant reproduction. The ABCE model for flower development has been well established in model plant species; however, the functions of ABCE genes in fruit crops are less understood. In this work, we identified an EMS mutant named R27 in woodland strawberry (Fragaria vesca), showing the conversion of petals, stamens, and carpels to sepaloid organs in a semidominant inheritance fashion. Mapping by sequencing revealed that the class E gene homolog FveSEP3 (FvH4_4g23530) possessed the causative mutation in R27 due to a G to E amino acid change in the conserved MADS domain. Additional fvesep3CR mutants generated by CRISPR/Cas9 displayed similar phenotypes to fvesep3-R27. Overexpressing wild-type or mutated FveSEP3 in Arabidopsis suggested that the mutation in R27 might cause a dominant-negative effect. Further analyses indicated that FveSEP3 physically interacted with each of the ABCE proteins in strawberry. Moreover, both R27 and fvesep3CR mutants exhibited parthenocarpic fruit growth and delayed fruit ripening. Transcriptome analysis revealed that both common and specific differentially expressed genes were identified in young fruit at 6-7 days post anthesis (DPA) of fvesep3 and pollinated wild type when compared to unpollinated wild type, especially those in the auxin pathway, a key hormone regulating fruit set in strawberry. Together, we provided compelling evidence that FveSEP3 plays predominant E functions compared to other E gene homologs in flower development and that FveSEP3 represses fruit growth in the absence of pollination and promotes fruit ripening in strawberry.
Collapse
Affiliation(s)
- Mengting Pi
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shaoqiang Hu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Ruhan Zhong
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhuoying Cai
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, New Zealand
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Gao W, Zhang L, Wang J, Liu Z, Zhang Y, Xue C, Liu M, Zhao J. ZjSEP3 modulates flowering time by regulating the LHY promoter. BMC PLANT BIOLOGY 2021; 21:527. [PMID: 34763664 PMCID: PMC8582215 DOI: 10.1186/s12870-021-03305-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND SEPALLATA3 (SEP3), which is conserved across various plant species, plays essential and various roles in flower and fruit development. However, the regulatory network of the role of SEP3 in flowering time at the molecular level remained unclear. RESULTS Here, we investigated that SEP3 in Ziziphus jujuba Mill. (ZjSEP3) was expressed in four floral organs and exhibited strong transcriptional activation activity. ZjSEP3 transgenic Arabidopsis showed an early-flowering phenotype and altered the expression of some genes related to flowering. Among them, the expression of LATE ELONGATED HYPOCOTYL (AtLHY), the key gene of circadian rhythms, was significantly suppressed. Yeast one-hybrid (Y1H) and electrophoretic mobility shift assays (EMSAs) further verified that ZjSEP3 inhibited the transcription of AtLHY by binding to the CArG-boxes in its promoter. Moreover, ZjSEP3 also could bind to the ZjLHY promoter and the conserved binding regions of ZjSEP3 were found in the LHY promoter of various plant species. The ectopic regulatory pathway of ZjSEP3-AtLHY was further supported by the ability of 35S::AtLHY to rescue the early-flowering phenotype in ZjSEP3 transgenic plants. In ZjSEP3 transgenic plants, total chlorophyll content and the expression of genes involved in chlorophyll synthesis increased during vegetative stages, which should contribute to its early flowering and relate to the regulatory of AtLHY. CONCLUSION Overall, ZjSEP3-AtLHY pathway represents a novel regulatory mechanism that is involved in the regulation of flowering time.
Collapse
Affiliation(s)
- Weilin Gao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Jiurui Wang
- College of Forestry, Hebei Agricultural University, Baoding, 071000, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China.
| |
Collapse
|
16
|
Singkaravanit-Ogawa S, Kosaka A, Kitakura S, Uchida K, Nishiuchi T, Ono E, Fukunaga S, Takano Y. Arabidopsis CURLY LEAF functions in leaf immunity against fungal pathogens by concomitantly repressing SEPALLATA3 and activating ORA59. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:1005-1019. [PMID: 34506685 DOI: 10.1111/tpj.15488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Arabidopsis non-host resistance against non-adapted fungal pathogens including Colletotrichum fungi consists of pre-invasive and post-invasive immune responses. Here we report that non-host resistance against non-adapted Colletotrichum spp. in Arabidopsis leaves requires CURLY LEAF (CLF), which is critical for leaf development, flowering and growth. Microscopic analysis of pathogen behavior revealed a requirement for CLF in both pre- and post-invasive non-host resistance. The loss of a functional SEPALLATA3 (SEP3) gene, ectopically expressed in clf mutant leaves, suppressed not only the defect of the clf plants in growth and leaf development but also a defect in non-host resistance against the non-adapted Colletotrichum tropicale. However, the ectopic overexpression of SEP3 in Arabidopsis wild-type leaves did not disrupt the non-host resistance. The expression of multiple plant defensin (PDF) genes that are involved in non-host resistance against C. tropicale was repressed in clf leaves. Moreover, the Octadecanoid-responsive Arabidopsis 59 (ORA59) gene, which is required for PDF expression, was also repressed in clf leaves. Notably, when SEP3 was overexpressed in the ora59 mutant background, C. tropicale produced clear lesions in the inoculated leaves, indicating an impairment in non-host resistance. Furthermore, ora59 plants overexpressing SEP3 exhibited a defect in leaf immunity to the adapted Colletotrichum higginsianum. Since the ora59 plants overexpressing SEP3 did not display obvious leaf curling or reduced growth, in contrast to the clf mutants, these results strongly suggest that concomitant SEP3 repression and ORA59 induction via CLF are required for Arabidopsis leaf immunity to Colletotrichum fungi, uncoupled from CLF's function in growth and leaf development.
Collapse
Affiliation(s)
| | - Ayumi Kosaka
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Saeko Kitakura
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kotaro Uchida
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Takumi Nishiuchi
- Advanced Science Research Center, Institute for Gene Research, Kanazawa University, Ishikawa, Japan
| | - Erika Ono
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Satoshi Fukunaga
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Yoshitaka Takano
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| |
Collapse
|
17
|
Nezhdanova AV, Slugina MA, Dyachenko EA, Kamionskaya AM, Kochieva EZ, Shchennikova AV. Analysis of the structure and function of the tomato Solanum lycopersicum L. MADS-box gene SlMADS5. Vavilovskii Zhurnal Genet Selektsii 2021; 25:492-501. [PMID: 34595372 PMCID: PMC8453369 DOI: 10.18699/vj21.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/12/2021] [Accepted: 05/18/2021] [Indexed: 12/01/2022] Open
Abstract
At all stages of f lowering, a decisive role is played by the family of MADS-domain transcription factors,
the combinatorial action of which is described by the ABCDE-model of f lower development. The current volume of
data suggests a high conservatism of ABCDE genes in angiosperms. The E-proteins SEPALLATA are the central hub of
the MADS-complexes, which determine the identity of the f loral organs. The only representative of the SEPALLATA3
clade in tomato Solanum lycopersicum L., SlMADS5, is involved in determining the identity of petals, stamens, and
carpels; however, data on the functions of the gene are limited. The study was focused on the SlMADS5 functional
characterization. Structural and phylogenetic analyses of SlMADS5 conf irmed its belonging to the SEP3 clade. An
in silico expression analysis revealed the absence of gene transcripts in roots, leaves, and shoot apical meristem,
and their presence in f lowers, fruits, and seeds at different stages of development. Two-hybrid analysis showed
the ability of SlMADS5 to activate transcription of the target gene and interact with TAGL1. Transgenic plants Nicotiana
tabacum L. with constitutive overexpression of SlMADS5 cDNA f lowered 2.2 times later than the control; plants
formed thickened leaves, 2.5–3.0 times thicker stems, 1.5–2.7 times shortened internodes, and 1.9 times fewer
f lowers and capsules than non-transgenic plants. The f lower structure did not differ from the control; however, the
corolla petals changed color from light pink to magenta. Analysis of the expression of SlMADS5 and the tobacco
genes NtLFY, NtAP1, NtWUS, NtAG, NtPLE, NtSEP1, NtSEP2, and NtSEP3 in leaves and apexes of transgenic and control
plants showed that SlMADS5 mRNA is present only in tissues of transgenic lines. The other genes analyzed were
highly expressed in the reproductive meristem of control plants. Gene transcripts were absent or were imperceptibly
present in the leaves and vegetative apex of the control, as well as in the leaves and apexes of transgenic lines.
The results obtained indicate the possible involvement of SlMADS5 in the regulation of f lower meristem development
and the pathway of anthocyanin biosynthesis in petals.
Collapse
Affiliation(s)
- A V Nezhdanova
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - M A Slugina
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E A Dyachenko
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - A M Kamionskaya
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - A V Shchennikova
- Institute of Bioengineering, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
18
|
Adal AM, Binson E, Remedios L, Mahmoud SS. Expression of lavender AGAMOUS-like and SEPALLATA3-like genes promote early flowering and alter leaf morphology in Arabidopsis thaliana. PLANTA 2021; 254:54. [PMID: 34410495 DOI: 10.1007/s00425-021-03703-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The expression of full-length cDNAs encoding lavender AGAMOUS-like (LaAG-like) and SEPALLATA3-like (LaSEP3-like) transcription factors induces early flowering and impacts the leaf morphology at a strong expression level in Arabidopsis. Lavandula angustifolia is widely cultivated as an ornamental plant due to its attractive flower structure, and as a source of valuable essential oils for use in cosmetics, alternative medicines, and culinary products. We recently employed RNA-Seq and transcript profiling to describe a number of transcription factors (TFs) that potentially control flower development in this plant. In this study, we investigated the roles of two TFs, LaAGAMOUS-like (LaAG-like) and LaSEPALLATA3-like (LaSEP3-like), that exhibited substantial homology to Arabidopsis thaliana floral development genes, AGAMOUS and SEPALLATA3, respectively, in flowering initiation in Arabidopsis. We stably and constitutively expressed LaAG-like and LaSEP3-like cDNAs in separate Arabidopsis plants. All transgenic plants flowered earlier than the wild-type controls. However, plants that modestly overexpressed the gene were phenotypically normal, while those that strongly expressed the transgene developed curly leaves. We also assessed the expression of five endogenous flowering time regulating genes, from which high expression of Flowering Locus T (AtFT) mRNA in both LaAG-like (type-I and -II) and LaSEP3-like (type-I), and Leafy (AtLFY) mRNAs in LaSEP3-like (type-I) transgenic plants were detected, compared to wild-type controls. Our results suggest that with controlled expression, lavender AG-like and SEP3-like genes are potentially useful for the regulation of flowering time in commercial lavender species, and could be used for plant improvement studies through molecular genetics and targeted breeding programs.
Collapse
Affiliation(s)
- Ayelign M Adal
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Elinor Binson
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Lisa Remedios
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Soheil S Mahmoud
- Department of Biology, The University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
19
|
Zhang C, Wei L, Yu X, Li H, Wang W, Wu S, Duan F, Bao M, Chan Z, He Y. Functional conservation and divergence of SEPALLATA-like genes in the development of two-type florets in marigold. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110938. [PMID: 34134845 DOI: 10.1016/j.plantsci.2021.110938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/06/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
Marigold (Tagetes erecta), as one member of Asteraceae family, bears a typical capitulum with two morphologically distinct florets. The SEPALLATA genes are involved in regulating the floral meristem determinacy, organ identity, fruit maturation, seed formation, and plant architecture. Here, five SEP-like genes were cloned and identified from marigold. Sequence alignment and phylogenetic analysis demonstrated that TeSEP3-1, TeSEP3-2, and TeSEP3-3 proteins were grouped into SEP3 clade, and TeSEP1 and TeSEP4 proteins were clustered into SEP1/2/4 clade. Quantitative real-time PCR analysis revealed that TeSEP1 and TeSEP3-3 were broadly expressed in floral organs, and that TeSEP3-2 and TeSEP4 were mainly expressed in pappus and corollas, while TeSEP3-1 was mainly expressed in two inner whorls. Ectopic expression of TeSEP1, TeSEP3-2, TeSEP3-3, and TeSEP4 in arabidopsis and tobacco resulted in early flowering. However, overexpression of TeSEP3-1 in arabidopsis and tobacco caused no visible phenotypic changes. Notably, overexpression of TeSEP4 in tobacco decreased the number of petals and stamens. Overexpression of TeSEP1 in tobacco led to longer sepals and simpler inflorescence architecture. The comprehensive pairwise interaction analysis suggested that TeSEP proteins had a broad interaction with class A, C, D, E proteins to form dimers. The yeast three-hybrid analysis suggested that in ternary complexes, class B proteins interacted with TeSEP3 by forming heterodimer TePI-TeAP3-2. The regulatory network analysis of MADS-box genes in marigold further indicated that TeSEP proteins played a "glue" role in regulating floral organ development, implying functional conservation and divergence of MADS box genes in regulating two-type floret developments. This study provides an insight into the formation mechanism of floral organs of two-type florets, thus broadening our knowledge of the genetic basis of flower evolution.
Collapse
Affiliation(s)
- Chunling Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Ludan Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Xiaomin Yu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Hang Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Wenjing Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Shenzhong Wu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Feng Duan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Zhulong Chan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| | - Yanhong He
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Key Laboratory of Urban Agriculture in Central China (Pilot Run), Ministry of Agriculture, Wuhan, 430070, China.
| |
Collapse
|
20
|
Liu H, Yang L, Tu Z, Zhu S, Zhang C, Li H. Genome-wide identification of MIKC-type genes related to stamen and gynoecium development in Liriodendron. Sci Rep 2021; 11:6585. [PMID: 33753780 PMCID: PMC7985208 DOI: 10.1038/s41598-021-85927-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
The organogenesis and development of reproductive organs, i.e., stamen and gynoecium, are important floral characteristics that are closely related to pollinators and reproductive fitness. As a genus from Magnoliaceae, Liriodendron has only two relict species: L. chinense and L. tulipifera. Despite the similar flower shapes of these species, their natural seed-setting rates differ significantly, implying interspecies difference in floral organogenesis and development. MADS-box genes, which participate in floral organogenesis and development, remain unexplored in Liriodendron. Here, to explore the interspecies difference in floral organogenesis and development and identify MADS-box genes in Liriodendron, we examined the stamen and gynoecium primordia of the two Liriodendron species by scanning electron microscopy combined with paraffin sectioning, and then collected two types of primordia for RNA-seq. A total of 12 libraries were constructed and 42,268 genes were identified, including 35,269 reference genes and 6,999 new genes. Monoterpenoid biosynthesis was enriched in L. tulipifera. Genome-wide analysis of 32 MADS-box genes was conducted, including phylogenetic trees, exon/intron structures, and conserved motif distributions. Twenty-six genes were anchored on 17 scaffolds, and six new genes had no location information. The expression profiles of MIKC-type genes via RT-qPCR acrossing six stamen and gynoecium developmental stages indicates that the PI-like, AG/STK-like, SEP-like, and SVP-like genes may contribute to the species-specific differentiation of the organogenesis and development of reproductive organs in Liriodendron. Our findings laid the groundwork for the future exploration of the mechanism underlying on the interspecific differences in reproductive organ development and fitness in Liriodendron.
Collapse
Affiliation(s)
- Huanhuan Liu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lichun Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Zhonghua Tu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Shenghua Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Chengge Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Huogen Li
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
21
|
Qi X, Liu C, Song L, Li M. PaMADS7, a MADS-box transcription factor, regulates sweet cherry fruit ripening and softening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110634. [PMID: 33218650 DOI: 10.1016/j.plantsci.2020.110634] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
E-class MADS-box transcription factors, SEPALLATA (SEP) genes have an important role in floral organ initiation and development and fruit ripening. In this study, four sweet cherry SEP-like genes (PaMADS2, PaMADS4, PaMADS5, and PaMADS7) were cloned and functionally characterized. Gene expression analysis showed that the differential expression levels of PaMADS4 and PaMADS7 coincided with fruit ripening, and expression of PaMADS2 and PaMADS5 did not. Expression of PaMADS7 was affected by ABA and IAA. Subcellular localization assay demonstrated that four sweet cherry SEP-like proteins were all localized inside the nucleus. Silencing PaMADS7 using TRV-mediated virus-induced gene silencing inhibited fruit ripening and influenced major ripening-related physiological processes, such as ABA content, soluble sugar contents, fruit firmness, and anthocyanin content, as well as expression of ripening-related genes. In addition, silencing of PaMADS7 induced phenotype defects that suppressed fruit ripening, which were rescued by exogenous ABA. Furthermore, yeast one-hybrid assay (Y1H) and transient expression analyses revealed that PaMADS7 directly binds to the promoter of PaPG1, which is involved in sweet cherry fruit softening, and positively activated PaPG1expression. These results showed that PaMADS7 is an indispensable positive regulator of sweet cherry fruit ripening and softening.
Collapse
Affiliation(s)
- Xiliang Qi
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Congli Liu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Lulu Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Ming Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
22
|
Pu ZQ, Ma YY, Lu MX, Ma YQ, Xu ZQ. Cloning of a SEPALLATA4-like gene (IiSEP4) in Isatis indigotica Fortune and characterization of its function in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:229-237. [PMID: 32563851 DOI: 10.1016/j.plaphy.2020.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
E-class MADS-box genes, SEPALLATA (SEP), participate in various aspects of plant development together with B-, C- and D-class MADS-box genes. IiSEP4, a homologous gene of SEP4, was cloned from Isatis indigotica. IiSEP4 was highly expressed in sepals, and its mRNA was mildly detected in leaves, inflorescences, flowers, stamens and young silicles. Constitutive expression of IiSEP4 in Arabidopsis thaliana caused early flowering, accompanied by the reduction of flowers and floral organs. Moreover, the sepals in some flowers were transformed into carpelloid structures with stigmatic papillae, and obviously accompanied by ovule formation. Yeast two-hybrid assays demonstrated that IiSEP4 interacts with other woad MADS proteins to determine the identity of floral organs. These findings reveal the important roles of IiSEP4 in floral development of I. indigotica. The results of this study can lay a foundation for further study on biological functions of MADS transcriptional factors in I. indigotica.
Collapse
Affiliation(s)
- Zuo-Qian Pu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Ye-Ye Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Meng-Xin Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Yan-Qin Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Zi-Qin Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), Shaanxi Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
23
|
Rao S, Balyan S, Jha S, Mathur S. Novel insights into expansion and functional diversification of MIR169 family in tomato. PLANTA 2020; 251:55. [PMID: 31974682 DOI: 10.1007/s00425-020-03346-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 05/23/2023]
Abstract
MAIN CONCLUSION Expansion of MIR169 members by duplication and new mature forms, acquisition of new promoters, differential precursor-miRNA processivity and engaging novel targets increase the functional diversification of MIR169 in tomato. MIR169 family is an evolutionarily conserved miRNA family in plants. A systematic in-depth analysis of MIR169 family in tomato is lacking. We report 18 miR169 precursors, annotating new loci for MIR169a, b and d, as well as 3 novel mature isoforms (MIR169f/g/h). The family has expanded by both tandem- and segmental-duplication events during evolution. A tandem-pair MIR169b/b-1 and MIR169b-2/h is polycistronic in nature coding for three MIR169b isoforms and a new variant miR169h, that is evidently absent in the wild relatives S. pennellii and S. pimpinellifolium. Seven novel miR169 targets including RNA-binding protein, protein-phosphatase, aminotransferase, chaperone, tetratricopeptide-repeat-protein, and transcription factors ARF-9B and SEPELLATA-3 were established by efficient target cleavage in the presence of specific precursors as well as increased target abundance upon miR169 chelation by short-tandem-target-mimic construct in transient assays. Comparative antagonistic expression profiles of MIR169:target pairs suggest MIR169 family as ubiquitous regulator of various abiotic stresses (heat, cold, dehydration and salt) and developmental pathways. This regulation is partly brought about by acquisition of new promoters as demonstrated by promoter MIR169:GUS reporter assays as well as differential processivity of different precursors and miRNA cleavage efficiencies. Thus, the current study augments the functional horizon of MIR169 family with applications for stress tolerance in crops.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sonia Balyan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Sarita Jha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India.
| |
Collapse
|
24
|
Barcaccia G, Palumbo F, Scariolo F, Vannozzi A, Borin M, Bona S. Potentials and Challenges of Genomics for Breeding Cannabis Cultivars. FRONTIERS IN PLANT SCIENCE 2020; 11:573299. [PMID: 33101342 PMCID: PMC7546024 DOI: 10.3389/fpls.2020.573299] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 05/12/2023]
Abstract
Cannabis (Cannabis sativa L.) is an influential yet controversial agricultural plant with a very long and prominent history of recreational, medicinal, and industrial usages. Given the importance of this species, we deepened some of the main challenges-along with potential solutions-behind the breeding of new cannabis cultivars. One of the main issues that should be fixed before starting new breeding programs is the uncertain taxonomic classification of the two main taxa (e.g., indica and sativa) of the Cannabis genus. We tried therefore to examine this topic from a molecular perspective through the use of DNA barcoding. Our findings seem to support a unique species system (C. sativa) based on two subspecies: C. sativa subsp. sativa and C. sativa subsp. indica. The second key issue in a breeding program is related to the dioecy behavior of this species and to the comprehension of those molecular mechanisms underlying flower development, the main cannabis product. Given the role of MADS box genes in flower identity, we analyzed and reorganized all the genomic and transcriptomic data available for homeotic genes, trying to decipher the applicability of the ABCDE model in Cannabis. Finally, reviewing the limits of the conventional breeding methods traditionally applied for developing new varieties, we proposed a new breeding scheme for the constitution of F1 hybrids, without ignoring the indisputable contribution offered by genomics. In this sense, in parallel, we resumed the main advances in the genomic field of this species and, ascertained the lack of a robust set of SNP markers, provided a discriminant and polymorphic panel of SSR markers as a valuable tool for future marker assisted breeding programs.
Collapse
|
25
|
Palumbo F, Vannozzi A, Magon G, Lucchin M, Barcaccia G. Genomics of Flower Identity in Grapevine ( Vitis vinifera L.). FRONTIERS IN PLANT SCIENCE 2019; 10:316. [PMID: 30949190 PMCID: PMC6437108 DOI: 10.3389/fpls.2019.00316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 02/27/2019] [Indexed: 05/09/2023]
Abstract
The identity of the four characteristic whorls of typical eudicots, namely, sepals, petals, stamens, and carpels, is specified by the overlapping action of homeotic genes, whose single and combined contributions have been described in detail in the so-called ABCDE model. Continuous species-specific refinements and translations resulted in this model providing the basis for understanding the genetic and molecular mechanisms of flower development in model organisms, such as Arabidopsis thaliana and other main plant species. Although grapevine (Vitis vinifera L.) represents an extremely important cultivated fruit crop globally, studies related to the genetic determinism of flower development are still rare, probably because of the limited interest in sexual reproduction in a plant that is predominantly propagated asexually. Nonetheless, several studies have identified and functionally characterized some ABCDE orthologs in grapevine. The present study is intended to provide a comprehensive screenshot of the transcriptional behavior of 18 representative grapevine ABCDE genes encoding MADS-box transcription factors in a developmental kinetic process, from preanthesis to the postfertilization stage and in different flower organs, namely, the calyx, calyptra, anthers, filaments, ovary, and embryos. The transcript levels found were compared with the proposed model for Arabidopsis to evaluate their biological consistency. With a few exceptions, the results confirmed the expression pattern expected based on the Arabidopsis data.
Collapse
|
26
|
Verma N. Transcriptional regulation of anther development in Arabidopsis. Gene 2018; 689:202-209. [PMID: 30572098 DOI: 10.1016/j.gene.2018.12.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/23/2018] [Accepted: 12/06/2018] [Indexed: 01/15/2023]
Abstract
This review focuses on the current knowledge of transcription factors involved in Arabidopsis anther development. Anther development is a multistage process and controlled by a complex network of transcription factors acting in spatio/temporal manner. Molecular understanding of anther developmental pathway is critical from the perspective of controlling male fertility and hybrid generation. Generation of hybrid lines relies upon the effective mechanisms of controlling the process of pollen development and pollen release. Controlling any developmental program requires a good knowledge of regulatory pathways governing that developmental program. In a regulatory pathway, transcription factors represent an important link between the developmental program and response of genes to growth regulators and environmental signals. Therefore, identifying the entire cohort of anther specific transcription factors is an essential step towards the molecular understanding of regulatory networks involved in pollen formation and pollen release.
Collapse
Affiliation(s)
- Neetu Verma
- Department of Genetics, University of Delhi South Campus, Benito Juarez Road, New Delhi 110021, India.
| |
Collapse
|
27
|
Coito JL, Silva H, Ramos MJN, Montez M, Cunha J, Amâncio S, Costa MMR, Rocheta M. Vitis Flower Sex Specification Acts Downstream and Independently of the ABCDE Model Genes. FRONTIERS IN PLANT SCIENCE 2018; 9:1029. [PMID: 30061913 PMCID: PMC6055017 DOI: 10.3389/fpls.2018.01029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/25/2018] [Indexed: 05/20/2023]
Abstract
The most discriminating characteristic between the cultivated Vitis vinifera subsp. vinifera and the wild-form Vitis vinifera subsp. sylvestris is their sexual system. Flowers of cultivars are mainly hermaphroditic, whereas wild plants have female and male individuals whose flowers follow a hermaphroditic pattern during early stages of development and later develop non-functional reproductive organs. In angiosperms, the basic developmental system for floral organ identity is explained by the ABCDE model. This model postulates that regulatory gene functions work in a combinatorial way to confer organ identity in each whorl. In wild Vitis nothing is known about the function and expression profile of these genes. Here we show an overall view of the temporal and spatial expression pattern of the ABCDE genes as well as the pattern of VviSUPERMAN that establishes a boundary between the stamen and the carpel whorls, in the male, female and complete flower types. The results show a similar pattern in Vitis species suggesting that the pathway leading to unisexuality acts independently and/or downstream of B- and C- function genes.
Collapse
Affiliation(s)
- João L. Coito
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Helena Silva
- Plant Functional Biology Centre, Biosystems and Integrative Sciences Institute, University of Minho, Braga, Portugal
| | - Miguel J. N. Ramos
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Miguel Montez
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Jorge Cunha
- Instituto Nacional de Investigação Agrária e Veterinária, Oeiras, Portugal
| | - Sara Amâncio
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria M. R. Costa
- Plant Functional Biology Centre, Biosystems and Integrative Sciences Institute, University of Minho, Braga, Portugal
| | - Margarida Rocheta
- Linking Landscape, Environment, Agriculture and Food (LEAF), School of Agriculture, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
28
|
Identification and Characterization of the MADS-Box Genes and Their Contribution to Flower Organ in Carnation (Dianthus caryophyllus L.). Genes (Basel) 2018; 9:genes9040193. [PMID: 29617274 PMCID: PMC5924535 DOI: 10.3390/genes9040193] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/22/2018] [Accepted: 03/22/2018] [Indexed: 01/22/2023] Open
Abstract
Dianthus is a large genus containing many species with high ornamental economic value. Extensive breeding strategies permitted an exploration of an improvement in the quality of cultivated carnation, particularly in flowers. However, little is known on the molecular mechanisms of flower development in carnation. Here, we report the identification and description of MADS-box genes in carnation (DcaMADS) with a focus on those involved in flower development and organ identity determination. In this study, 39 MADS-box genes were identified from the carnation genome and transcriptome by the phylogenetic analysis. These genes were categorized into four subgroups (30 MIKCc, two MIKC*, two Mα, and five Mγ). The MADS-box domain, gene structure, and conserved motif compositions of the carnation MADS genes were analysed. Meanwhile, the expression of DcaMADS genes were significantly different in stems, leaves, and flower buds. Further studies were carried out for exploring the expression of DcaMADS genes in individual flower organs, and some crucial DcaMADS genes correlated with their putative function were validated. Finally, a new expression pattern of DcaMADS genes in flower organs of carnation was provided: sepal (three class E genes and two class A genes), petal (two class B genes, two class E genes, and one SHORT VEGETATIVE PHASE (SVP)), stamen (two class B genes, two class E genes, and two class C), styles (two class E genes and two class C), and ovary (two class E genes, two class C, one AGAMOUS-LIKE 6 (AGL6), one SEEDSTICK (STK), one B sister, one SVP, and one Mα). This result proposes a model in floral organ identity of carnation and it may be helpful to further explore the molecular mechanism of flower organ identity in carnation.
Collapse
|
29
|
Sobral R, Costa MMR. Role of floral organ identity genes in the development of unisexual flowers of Quercus suber L. Sci Rep 2017; 7:10368. [PMID: 28871195 PMCID: PMC5583232 DOI: 10.1038/s41598-017-10732-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/04/2017] [Indexed: 11/29/2022] Open
Abstract
Monoecious species provide an excellent system to study the specific determinants that underlie male and female flower development. Quercus suber is a monoecious species with unisexual flowers at inception. Despite the overall importance of this and other tree species with a similar reproductive habit, little is known regarding the mechanisms involved in the development of their male and female flowers. Here, we have characterised members of the ABCDE MADS-box gene family of Q. suber. The temporal expression of these genes was found to be sex-biased. The B-class genes, in particular, are predominantly, or exclusively (in the case of QsPISTILLATA), expressed in the male flowers. Functional analysis in Arabidopsis suggests that the B-class genes have their function conserved. The identification of sex-biased gene expression plus the identification of unusual protein-protein interactions suggest that the floral organ identity of Q. suber may be under control of specific changes in the dynamics of the ABCDE model. This study constitutes a major step towards the characterisation of the mechanisms involved in reproductive organ identity in a monoecious tree with a potential contribution towards the knowledge of conserved developmental mechanisms in other species with a similar sex habit.
Collapse
Affiliation(s)
- Rómulo Sobral
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - M Manuela R Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Center, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
30
|
Zhang S, Lu S, Yi S, Han H, Liu L, Zhang J, Bao M, Liu G. Functional conservation and divergence of five SEPALLATA-like genes from a basal eudicot tree, Platanus acerifolia. PLANTA 2017; 245:439-457. [PMID: 27833998 DOI: 10.1007/s00425-016-2617-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
MAIN CONCLUSION Five SEP -like genes were cloned and identified from Platanus acerifolia through the analysis of expression profiles, protein-protein interaction patterns, and transgenic phenotypes, which suggested that they play conservative and diverse functions in floral initiation and development, fruit development, bud growth, and dormancy. SEPALLATA (SEP) genes have been well characterized in core eudicots and some monocots, and they play important and diverse roles in plant development, including flower meristem initiation, floral organ identity, and fruit development and ripening. However, the knowledge on the function and evolution of SEP-like genes in basal eudicot species is very limited. Here, we cloned and identified five SEP-like genes from London plane (Platanus acerifolia), a basal eudicot tree that is widely used for landscaping in cities. Sequence alignment and phylogenetic analysis indicated that three genes (PlacSEP1.1, PlacSEP1.2, and PlacSEP1.3) belong to the SEP1/2/4 clade, while the other two genes (PlacSEP3.1 and PlacSEP3.2) are grouped into the SEP3 clade. Quantitative real-time PCR (qRT-PCR) analysis showed that all PlacSEPs, except PlacSEP1.1 and PlacSEP1.2, were expressed during the male and female inflorescence initiation, and throughout the flower and fruit development process. PlacSEP1.2 gene expression was only detected clearly in female inflorescence at April. PlacSEP1.3 and PlacSEP3.1 were also expressed, although relatively weak, in vegetative buds of adult trees. No evident PlacSEPs transcripts were detected in various organs of juvenile trees. Overexpression of PlacSEPs in Arabidopsis and tobacco plants resulted in different phenotypic alterations. 35S:PlacSEP1.1, 35S:PlacSEP1.3, and 35S:PlacSEP3.2 transgenic Arabidopsis plants showed evident early flowering, with less rosette leaves but more cauline leaves, while 35S:PlacSEP1.2 and PlacSEP3.1 transgenic plants showed no visible phenotypic changes. 35S:PlacSEP1.1 and 35S:PlacSEP3.2 transgenic Arabidopsis plants also produced smaller and curled leaves. Overexpression of PlacSEP1.1 and PlacSEP3.1 in tobacco resulted in the early flowering and producing more lateral branches. Yeast two-hybrid analysis indicated that PlacSEPs proteins can form homo- or hetero-dimers with the Platanus APETALA1 (AP1)/FRUITFULL (FUL), B-, C-, and D-class MADS-box proteins in different interacting patterns and intensities. Our results suggest that the five PlacSEP genes may play important and divergent roles during floral initiation and development, as well as fruit development, by collaborating with FUL, B-, C-, and D-class MADS-box genes in London plane; PlacSEP1.3 and PlacSEP3.1 genes might also involve in vegetative bud growth and dormancy. The results provide valuable data for us to understand the functional evolution of SEP-like genes in basal eudicot species.
Collapse
Affiliation(s)
- Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shunjiao Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737, China
| | - Shuangshuang Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Danzhou, 571737, China
| | - Hongji Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lei Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiaqi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Guofeng Liu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
31
|
Sun P, Miao H, Yu X, Jia C, Liu J, Zhang J, Wang J, Wang Z, Wang A, Xu B, Jin Z. A Novel Role for Banana MaASR in the Regulation of Flowering Time in Transgenic Arabidopsis. PLoS One 2016; 11:e0160690. [PMID: 27486844 PMCID: PMC4972433 DOI: 10.1371/journal.pone.0160690] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 07/23/2016] [Indexed: 11/18/2022] Open
Abstract
The abscisic acid (ABA)-, stress-, and ripening-induced (ASR) protein is a plant-specific hydrophilic transcriptional factor involved in fruit ripening and the abiotic stress response. To date, there have been no studies on the role of ASR genes in delayed flowering time. Here, we found that the ASR from banana, designated as MaASR, was preferentially expressed in the banana female flowers from the eighth, fourth, and first cluster of the inflorescence. MaASR transgenic lines (L14 and L38) had a clear delayed-flowering phenotype. The number of rosette leaves, sepals, and pedicel trichomes in L14 and L38 was greater than in the wild type (WT) under long day (LD) conditions. The period of buds, mid-flowers, and full bloom of L14 and L38 appeared later than the WT. cDNA microarray and quantitative real-time PCR (qRT-PCR) analyses revealed that overexpression of MaASR delays flowering through reduced expression of several genes, including photoperiod pathway genes, vernalization pathway genes, gibberellic acid pathway genes, and floral integrator genes, under short days (SD) for 28 d (from vegetative to reproductive transition stage); however, the expression of the autonomous pathway genes was not affected. This study provides the first evidence of a role for ASR genes in delayed flowering time in plants.
Collapse
Affiliation(s)
- Peiguang Sun
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Hongxia Miao
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Xiaomeng Yu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Caihong Jia
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Juhua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jianbin Zhang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Jingyi Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Zhuo Wang
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Anbang Wang
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
| | - Biyu Xu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- * E-mail: (BX); (ZJ)
| | - Zhiqiang Jin
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou 570102, China
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
- * E-mail: (BX); (ZJ)
| |
Collapse
|
32
|
Arango-Ocampo C, González F, Alzate JF, Pabón-Mora N. The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae). EvoDevo 2016; 7:16. [PMID: 27489612 DOI: 10.1186/s1322701600546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/19/2016] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; however, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. RESULTS We studied floral development in two species of petal-less poppies Bocconia frutescens and Macleaya cordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci-specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes in B. frutescens have resulted in functional copies with expanded expression patterns than those predicted by the model. CONCLUSIONS Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans.
Collapse
Affiliation(s)
| | - Favio González
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Fernando Alzate
- Centro de Secuenciación Genómica Nacional (CSGN), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
33
|
Arango-Ocampo C, González F, Alzate JF, Pabón-Mora N. The developmental and genetic bases of apetaly in Bocconia frutescens (Chelidonieae: Papaveraceae). EvoDevo 2016; 7:16. [PMID: 27489612 PMCID: PMC4971710 DOI: 10.1186/s13227-016-0054-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 07/19/2016] [Indexed: 01/01/2023] Open
Abstract
Background Bocconia and Macleaya are the only genera of the poppy family (Papaveraceae) lacking petals; however, the developmental and genetic processes underlying such evolutionary shift have not yet been studied. Results We studied floral development in two species of petal-less poppies Bocconiafrutescens and Macleayacordata as well as in the closely related petal-bearing Stylophorum diphyllum. We generated a floral transcriptome of B. frutescens to identify MADS-box ABCE floral organ identity genes expressed during early floral development. We performed phylogenetic analyses of these genes across Ranunculales as well as RT-PCR and qRT-PCR to assess loci-specific expression patterns. We found that petal-to-stamen homeosis in petal-less poppies occurs through distinct developmental pathways. Transcriptomic analyses of B. frutescens floral buds showed that homologs of all MADS-box genes are expressed except for the APETALA3-3 ortholog. Species-specific duplications of other ABCE genes in B. frutescens have resulted in functional copies with expanded expression patterns than those predicted by the model. Conclusions Petal loss in B. frutescens is likely associated with the lack of expression of AP3-3 and an expanded expression of AGAMOUS. The genetic basis of petal identity is conserved in Ranunculaceae and Papaveraceae although they have different number of AP3 paralogs and exhibit dissimilar floral groundplans. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0054-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Favio González
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Fernando Alzate
- Centro de Secuenciación Genómica Nacional (CSGN), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
34
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
35
|
Yan H, Zhang H, Wang Q, Jian H, Qiu X, Baudino S, Just J, Raymond O, Gu L, Wang J, Bendahmane M, Tang K. The Rosa chinensis cv. Viridiflora Phyllody Phenotype Is Associated with Misexpression of Flower Organ Identity Genes. FRONTIERS IN PLANT SCIENCE 2016; 7:996. [PMID: 27462328 PMCID: PMC4941542 DOI: 10.3389/fpls.2016.00996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 06/24/2016] [Indexed: 05/21/2023]
Abstract
Phyllody is a flower abnormality in which leaf-like structures replace flower organs in all whorls. Here, we investigated the origin and the molecular mechanism of phyllody phenotype in Rosa chinensis cv. Viridiflora, an ancient naturally occurring Chinese mutant cultivar. Reciprocal grafting experiments and microscopy analyses, demonstrated that the phyllody phenotype in Viridiflora is not associated with phytoplasmas infection. Transcriptome comparisons by the mean of RNA-Seq identified 672 up-regulated and 666 down-regulated genes in Viridiflora compared to its closely related genotype R. chinensis cv. Old Blush. A fraction of these genes are putative homologs of genes known to be involved in flower initiation and development. We show that in flower whorl 2 of Viridiflora, a down-regulation of the floral organ identity genes RcPISTILLATA (RcPI), RcAPETALA3 (RcAP3) and RcSEPALLATA3 (RcSEP3), together with an up-regulation of the putative homolog of the gene SUPPRESSOR of OVEREXPRESSION of CONSTANS1 (RcSOC1) are likely at the origin of the loss of petal identity and leaf-like structures formation. In whorl 3 of Viridiflora, ectopic expression of RcAPETALA2 (RcAP2) along with the down regulation of RcPI, RcAP3, and RcSEP3 is associated with loss of stamens identity and leaf-like structures formation. In whorl 4, the ectopic expression of RcAP2 associated with a down-regulation of RcSEP3 and of the C-class gene RcAGAMOUS correlate with loss of pistil identity. The latter also suggested the antagonist effect between the A and C class genes in the rose. Together, these data suggest that modified expression of the ABCE flower organ identity genes is associated with the phyllody phenotype in the rose Viridiflora and that these genes are important for normal flower organs development.
Collapse
Affiliation(s)
- Huijun Yan
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Hao Zhang
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Qigang Wang
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Hongying Jian
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Xianqin Qiu
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Sylvie Baudino
- Université de Lyon, UJM-Saint-Etienne, CNRS, BVpam FRE 3727Saint-Etienne, France
| | - Jeremy Just
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRALyon, France
| | - Olivier Raymond
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRALyon, France
| | - Lianfeng Gu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| | - Mohammed Bendahmane
- Laboratoire de Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRALyon, France
| | - Kaixue Tang
- Flower Research Institute of Yunnan Academy of Agricultural SciencesKunming, China
| |
Collapse
|
36
|
Kubota S, Kanno A. Analysis of the floral MADS-box genes from monocotyledonous Trilliaceae species indicates the involvement of SEPALLATA3-like genes in sepal-petal differentiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:266-276. [PMID: 26706077 DOI: 10.1016/j.plantsci.2015.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/20/2015] [Accepted: 10/22/2015] [Indexed: 06/05/2023]
Abstract
The evolution of greenish sepals from petaloid outer tepals has occurred repeatedly in various lineages of non-grass monocots. Studies in distinct monocot species showed that the evolution of sepals could be explained by the ABC model; for example, the defect of B-class function in the outermost whorl was linked to the evolution of sepals. Here, floral MADS-box genes from three sepal-bearing monocotyledonous Trilliaceae species, Trillium camschatcense, Paris verticillata, and Kinugasa japonica were examined. Unexpectedly, expression of not only A- but also B-class genes was detected in the sepals of all three species. Although the E-class gene is generally expressed across all floral whorls, no expression was detected in sepals in the three species examined here. Overexpression of the E-class SEPALLATA3-like gene from T. camschatcense (TcamSEP) in Arabidopsis thaliana produced phenotypes identical to those reported for orthologs in other monocots. Additionally, yeast hybrid experiments indicated that TcamSEP could form a higher-order complex with an endogenous heterodimer of B-class APETALA3/DEFICIENS-like (TcamDEF) and PISTILLATA/GLOBOSA-like (TcamGLO) proteins. These results suggest a conserved role for Trilliaceae SEPALLATA3-like genes in functionalization of the B-class genes, and that a lack of SEPALLATA3-like gene expression in the outermost whorl may be related to the formation of greenish sepals.
Collapse
Affiliation(s)
- Shosei Kubota
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| | - Akira Kanno
- Graduate School of Life Sciences, Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
| |
Collapse
|
37
|
Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q, Zhao X, Zhang D, Yuan Z. Interactions of OsMADS1 with Floral Homeotic Genes in Rice Flower Development. MOLECULAR PLANT 2015; 8:1366-84. [PMID: 25917758 DOI: 10.1016/j.molp.2015.04.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 04/05/2015] [Accepted: 04/16/2015] [Indexed: 05/23/2023]
Abstract
During reproductive development, rice plants develop unique flower organs which determine the final grain yield. OsMADS1, one of SEPALLATA-like MADS-box genes, has been unraveled to play critical roles in rice floral organ identity specification and floral meristem determinacy. However, the molecular mechanisms underlying interactions of OsMADS1 with other floral homeotic genes in regulating flower development remains largely elusive. In this work, we studied the genetic interactions of OsMADS1 with B-, C-, and D-class genes along with physical interactions among their proteins. We show that the physical and genetic interactions between OsMADS1 and OsMADS3 are essential for floral meristem activity maintenance and organ identity specification; while OsMADS1 physically and genetically interacts with OsMADS58 in regulating floral meristem determinacy and suppressing spikelet meristem reversion. We provided important genetic evidence to support the neofunctionalization of two rice C-class genes (OsMADS3 and OsMADS58) during flower development. Gene expression profiling and quantitative RT-PCR analyses further revealed that OsMADS1 affects the expression of many genes involved in floral identity and hormone signaling, and chromatin immunoprecipitation (ChIP)-PCR assay further demonstrated that OsMADS17 is a direct target gene of OsMADS1. Taken together, these results reveal that OsMADS1 has diversified regulatory functions in specifying rice floral organ and meristem identity, probably through its genetic and physical interactions with different floral homeotic regulators.
Collapse
Affiliation(s)
- Yun Hu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Changsong Yin
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xuelian Yang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Baozhe Ping
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Anxue Li
- Shanghai Ocean University, Shanghai 201306, China
| | - Ru Jia
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Zhijing Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Qiang Cai
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Xiangxiang Zhao
- Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huaian 223300, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China; School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Zheng Yuan
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China.
| |
Collapse
|
38
|
Iglesias FM, Bruera NA, Dergan-Dylon S, Marino-Buslje C, Lorenzi H, Mateos JL, Turck F, Coupland G, Cerdán PD. The arabidopsis DNA polymerase δ has a role in the deposition of transcriptionally active epigenetic marks, development and flowering. PLoS Genet 2015; 11:e1004975. [PMID: 25693187 PMCID: PMC4334202 DOI: 10.1371/journal.pgen.1004975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 12/29/2014] [Indexed: 11/18/2022] Open
Abstract
DNA replication is a key process in living organisms. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Whereas loss of DNA polymerase activity is incompatible with life, viable mutants of Polα and Polε were isolated, allowing the identification of their functions beyond DNA replication. In contrast, no viable mutants in the Polδ polymerase-domain were reported in multicellular organisms. Here we identify such a mutant which is also thermosensitive. Mutant plants were unable to complete development at 28°C, looked normal at 18°C, but displayed increased expression of DNA replication-stress marker genes, homologous recombination and lysine 4 histone 3 trimethylation at the SEPALLATA3 (SEP3) locus at 24°C, which correlated with ectopic expression of SEP3. Surprisingly, high expression of SEP3 in vascular tissue promoted FLOWERING LOCUS T (FT) expression, forming a positive feedback loop with SEP3 and leading to early flowering and curly leaves phenotypes. These results strongly suggest that the DNA polymerase δ is required for the proper establishment of transcriptionally active epigenetic marks and that its failure might affect development by affecting the epigenetic control of master genes. Three DNA polymerases replicate DNA in Eukaryotes. DNA polymerase α (Polα) initiates strand synthesis, which is performed by Polε and Polδ in leading and lagging strands, respectively. Not only the information encoded in the DNA, but also the inheritance of chromatin states is essential during development. Loss of function mutants in DNA polymerases lead to lethal phenotypes. Hence, hypomorphic alleles are necessary to study their roles beyond DNA replication. Here we identify a thermosensitive mutant of the Polδ in the model plant Arabidopsis thaliana, which bears an aminoacid substitution in the polymerase-domain. The mutants were essentially normal at 18°C but arrested development at 28°C. Interestingly, at 24°C we were able to study the roles of Polδ in epigenetic inheritance and plant development. We observed a tight connection between DNA replication stress and an increase the deposition of transcriptionally active chromatin marks in the SEPALLATA3 (SEP3) locus. Finally, we tested by genetic means that the ectopic expression of SEP3 was indeed the cause of early flowering and the leaf phenotypes by promoting the expression of FLOWERING LOCUS T (FT). These results link Polδ activity to the proper establishment of transcriptionally active epigenetic marks, which then impact the development of multicellular organisms.
Collapse
Affiliation(s)
| | | | | | | | - Hernán Lorenzi
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Julieta L. Mateos
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Franziska Turck
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pablo D. Cerdán
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
39
|
McCarthy EW, Mohamed A, Litt A. Functional Divergence of APETALA1 and FRUITFULL is due to Changes in both Regulation and Coding Sequence. FRONTIERS IN PLANT SCIENCE 2015; 6:1076. [PMID: 26697035 PMCID: PMC4667048 DOI: 10.3389/fpls.2015.01076] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/17/2015] [Indexed: 05/21/2023]
Abstract
Gene duplications are prevalent in plants, and functional divergence subsequent to duplication may be linked with the occurrence of novel phenotypes in plant evolution. Here, we examine the functional divergence of Arabidopsis thaliana APETALA1 (AP1) and FRUITFULL (FUL), which arose via a duplication correlated with the origin of the core eudicots. Both AP1 and FUL play a role in floral meristem identity, but AP1 is required for the formation of sepals and petals whereas FUL is involved in cauline leaf and fruit development. AP1 and FUL are expressed in mutually exclusive domains but also differ in sequence, with unique conserved motifs in the C-terminal domains of the proteins that suggest functional differentiation. To determine whether the functional divergence of AP1 and FUL is due to changes in regulation or changes in coding sequence, we performed promoter swap experiments, in which FUL was expressed in the AP1 domain in the ap1 mutant and vice versa. Our results show that FUL can partially substitute for AP1, and AP1 can partially substitute for FUL; thus, the functional divergence between AP1 and FUL is due to changes in both regulation and coding sequence. We also mutated AP1 and FUL conserved motifs to determine if they are required for protein function and tested the ability of these mutated proteins to interact in yeast with known partners. We found that these motifs appear to play at best a minor role in protein function and dimerization capability, despite being strongly conserved. Our results suggest that the functional differentiation of these two paralogous key transcriptional regulators involves both differences in regulation and in sequence; however, sequence changes in the form of unique conserved motifs do not explain the differences observed.
Collapse
Affiliation(s)
- Elizabeth W. McCarthy
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
| | - Abeer Mohamed
- Department of Agricultural Botany, Faculty of Agriculture (Saba Basha), Alexandria UniversityAlexandria, Egypt
| | - Amy Litt
- Department of Botany and Plant Sciences, University of California, RiversideRiverside, CA, USA
- *Correspondence: Amy Litt,
| |
Collapse
|
40
|
Pabón-Mora N, Suárez-Baron H, Ambrose BA, González F. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae). FRONTIERS IN PLANT SCIENCE 2015; 6:1095. [PMID: 26697047 PMCID: PMC4675851 DOI: 10.3389/fpls.2015.01095] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 05/21/2023]
Abstract
Aristolochia fimbriata (Aristolochiaceae: Piperales) exhibits highly synorganized flowers with a single convoluted structure forming a petaloid perianth that surrounds the gynostemium, putatively formed by the congenital fusion between stamens and the upper portion of the carpels. Here we present the flower development and morphology of A. fimbriata, together with the expression of the key regulatory genes that participate in flower development, particularly those likely controlling perianth identity. A. fimbriata is a member of the magnoliids, and thus gene expression detected for all ABCE MADS-box genes in this taxon, can also help to elucidate patterns of gene expression prior the independent duplications of these genes in eudicots and monocots. Using both floral development and anatomy in combination with the isolation of MADS-box gene homologs, gene phylogenetic analyses and expression studies (both by reverse transcription PCR and in situ hybridization), we present hypotheses on floral organ identity genes involved in the formation of this bizarre flower. We found that most MADS-box genes were expressed in vegetative and reproductive tissues with the exception of AfimSEP2, AfimAGL6, and AfimSTK transcripts that are only found in flowers and capsules but are not detected in leaves. Two genes show ubiquitous expression; AfimFUL that is found in all floral organs at all developmental stages as well as in leaves and capsules, and AfimAG that has low expression in leaves and is found in all floral organs at all stages with a considerable reduction of expression in the limb of anthetic flowers. Our results indicate that expression of AfimFUL is indicative of pleiotropic roles and not of a perianth identity specific function. On the other hand, expression of B-class genes, AfimAP3 and AfimPI, suggests their conserved role in stamen identity and corroborates that the perianth is sepal and not petal-derived. Our data also postulates an AGL6 ortholog as a candidate gene for sepal identity in the Aristolochiaceae and provides testable hypothesis for a modified ABCE model in synorganized magnoliid flowers.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical Garden, BronxNY, USA
- *Correspondence: Natalia Pabón-Mora,
| | | | | | - Favio González
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de ColombiaBogotá, Colombia
| |
Collapse
|
41
|
Jetha K, Theißen G, Melzer R. Arabidopsis SEPALLATA proteins differ in cooperative DNA-binding during the formation of floral quartet-like complexes. Nucleic Acids Res 2014; 42:10927-42. [PMID: 25183521 PMCID: PMC4176161 DOI: 10.1093/nar/gku755] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The SEPALLATA (SEP) genes of Arabidopsis thaliana encode MADS-domain transcription factors that specify the identity of all floral organs. The four Arabidopsis SEP genes function in a largely yet not completely redundant manner. Here, we analysed interactions of the SEP proteins with DNA. All of the proteins were capable of forming tetrameric quartet-like complexes on DNA fragments carrying two sequence elements termed CArG-boxes. Distances between the CArG-boxes for strong cooperative DNA-binding were in the range of 4-6 helical turns. However, SEP1 also bound strongly to CArG-box pairs separated by smaller or larger distances, whereas SEP2 preferred large and SEP4 preferred small inter-site distances for binding. Cooperative binding of SEP3 was comparatively weak for most of the inter-site distances tested. All SEP proteins constituted floral quartet-like complexes together with the floral homeotic proteins APETALA3 (AP3) and PISTILLATA (PI) on the target genes AP3 and SEP3. Our results suggest an important part of an explanation for why the different SEP proteins have largely, but not completely redundant functions in determining floral organ identity: they may bind to largely overlapping, but not identical sets of target genes that differ in the arrangement and spacing of the CArG-boxes in their cis-regulatory regions.
Collapse
Affiliation(s)
- Khushboo Jetha
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Günter Theißen
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany
| | - Rainer Melzer
- Department of Genetics, Friedrich Schiller University Jena, Philosophenweg 12, D-07743 Jena, Germany Department of Genetics, Institute of Biology, University of Leipzig, Talstraße 33, D-04103 Leipzig, Germany
| |
Collapse
|
42
|
Fernandez DE, Wang CT, Zheng Y, Adamczyk BJ, Singhal R, Hall PK, Perry SE. The MADS-Domain Factors AGAMOUS-LIKE15 and AGAMOUS-LIKE18, along with SHORT VEGETATIVE PHASE and AGAMOUS-LIKE24, Are Necessary to Block Floral Gene Expression during the Vegetative Phase. PLANT PHYSIOLOGY 2014; 165:1591-1603. [PMID: 24948837 PMCID: PMC4119041 DOI: 10.1104/pp.114.242990] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 05/18/2023]
Abstract
Multiple factors, including the MADS-domain proteins AGAMOUS-LIKE15 (AGL15) and AGL18, contribute to the regulation of the transition from vegetative to reproductive growth. AGL15 and AGL18 were previously shown to act redundantly as floral repressors and upstream of FLOWERING LOCUS T (FT) in Arabidopsis (Arabidopsis thaliana). A series of genetic and molecular experiments, primarily focused on AGL15, was performed to more clearly define their role. agl15 agl18 mutations fail to suppress ft mutations but show additive interactions with short vegetative phase (svp) mutations in ft and suppressor of constans1 (soc1) backgrounds. Chromatin immunoprecipitation analyses with AGL15-specific antibodies indicate that AGL15 binds directly to the FT locus at sites that partially overlap those bound by SVP and FLOWERING LOCUS C. In addition, expression of AGL15 in the phloem effectively restores wild-type flowering times in agl15 agl18 mutants. When agl15 agl18 mutations are combined with agl24 svp mutations, the plants show upward curling of rosette and cauline leaves, in addition to early flowering. The change in leaf morphology is associated with elevated levels of FT and ectopic expression of SEPALLATA3 (SEP3), leading to ectopic expression of floral genes. Leaf curling is suppressed by sep3 and ft mutations and enhanced by soc1 mutations. Thus, AGL15 and AGL18, along with SVP and AGL24, are necessary to block initiation of floral programs in vegetative organs.
Collapse
Affiliation(s)
- Donna E Fernandez
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Chieh-Ting Wang
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Yumei Zheng
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Benjamin J Adamczyk
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Rajneesh Singhal
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Pamela K Hall
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| | - Sharyn E Perry
- Department of Botany, University of Wisconsin, Madison, Wisconsin 53706 (D.E.F., C.-T.W., B.J.A., R.S., P.K.H.); andDepartment of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546 (Y.Z., S.E.P.)
| |
Collapse
|
43
|
Huang F, Xu G, Chi Y, Liu H, Xue Q, Zhao T, Gai J, Yu D. A soybean MADS-box protein modulates floral organ numbers, petal identity and sterility. BMC PLANT BIOLOGY 2014; 14:89. [PMID: 24693922 PMCID: PMC4021551 DOI: 10.1186/1471-2229-14-89] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/27/2014] [Indexed: 05/22/2023]
Abstract
BACKGROUND The MADS-box transcription factors play fundamental roles in reproductive developmental control. Although the roles of many plant MADS-box proteins have been extensively studied, there are almost no functional studies of them in soybean, an important protein and oil crop in the world. In addition, the MADS-box protein orthologs may have species-specific functions. Controlling male fertility is an important goal in plant hybrid breeding but is difficult in some crops like soybean. The morphological structure of soybean flowers prevents the cross-pollination. Understanding the molecular mechanisms for floral development will aid in engineering new sterile materials that could be applied in hybrid breeding programs in soybean. RESULT Through microarray analysis, a flower-enriched gene in soybean was selected and designated as GmMADS28. GmMADS28 belongs to AGL9/SEP subfamily of MADS-box proteins, localized in nucleus and showed specific expression patterns in floral meristems as well as stamen and petal primordia. Expression of GmMADS28 in the stamens and petals of a soybean mutant NJS-10Hfs whose stamens are converted into petals was higher than in those of wild-type plants. Constitutive expression of GmMADS28 in tobacco promoted early flowering and converted stamens and sepals to petals. Interestingly, transgenic plants increased the numbers of sepal, petal and stamen from five to six and exhibited male sterility due to the shortened and curly filaments and the failure of pollen release from the anthers. The ectopic expression of GmMADS28 was found to be sufficient to activate expression of tobacco homologs of SOC1, LEAFY, AGL8/FUL, and DEF. In addition, we observed the interactions of GmMADS28 with soybean homologs of SOC1, AP1, and AGL8/FUL proteins. CONCLUSION In this study, we observed the roles of GmMADS28 in the regulation of floral organ number and petal identity. Compared to other plant AGL9/SEP proteins, GmMADS28 specifically regulates floral organ number, filament length and pollen release. The sterility caused by the ectopic expression of GmMADS28 offers a promising way to genetically produce new sterile material that could potentially be applied in the hybrid breeding of crops like soybean.
Collapse
Affiliation(s)
- Fang Huang
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangli Xu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yingjun Chi
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haicui Liu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Qian Xue
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Junyi Gai
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| | - Deyue Yu
- National key laboratory of crop genetics and germplasm enhancement, National Center for Soybean Improvement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Prunet N, Jack TP. Flower development in Arabidopsis: there is more to it than learning your ABCs. Methods Mol Biol 2014; 1110:3-33. [PMID: 24395250 DOI: 10.1007/978-1-4614-9408-9_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257-263, 1980; Koornneef et al., J Hered 74:265-272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195-203, 1988; Bowman et al., Plant Cell 1:37-52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.
Collapse
Affiliation(s)
- Nathanaël Prunet
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
45
|
Risseeuw E, Venglat P, Xiang D, Komendant K, Daskalchuk T, Babic V, Crosby W, Datla R. An activated form of UFO alters leaf development and produces ectopic floral and inflorescence meristems. PLoS One 2013; 8:e83807. [PMID: 24376756 PMCID: PMC3871548 DOI: 10.1371/journal.pone.0083807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 11/09/2013] [Indexed: 11/25/2022] Open
Abstract
Plants are unique in their ability to continuously produce new meristems and organ primordia. In Arabidopsis, the transcription factor LEAFY (LFY) functions as a master regulator of a gene network that is important for floral meristem and organ specification. UNUSUAL FLORAL ORGANS (UFO) is a co-activator of LEAFY and is required for proper activation of APETALA3 in the floral meristem during the specification of stamens and petals. The ufo mutants display defects in other parts of the flower and the inflorescence, suggestive of additional roles. Here we show that the normal determinacy of the developing Arabidopsis leaves is affected by the expression of a gain-of-function UFO fusion protein with the VP16 transcriptional activator domain. In these lines, the rosette and cauline leaf primordia exhibit reiterated serration, and upon flowering produce ectopic meristems that develop into flowers, bract leaves and inflorescences. These striking phenotypes reveal that developing leaves maintain the competency to initiate flower and inflorescence programs. Furthermore, the gain-of-function phenotypes are dependent on LFY and the SEPALLATA (SEP) MADS-box transcription factors, indicative of their functional interactions with UFO. The findings of this study also suggest that UFO promotes the establishment of the lateral meristems and primordia in the peripheral zone of the apical and floral meristems by enhancing the activity of LFY. These novel phenotypes along with the mutant phenotypes of UFO orthologs in other plant species suggest a broader function for UFO in plants.
Collapse
Affiliation(s)
- Eddy Risseeuw
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
- * E-mail: (ER); (RD)
| | - Prakash Venglat
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
| | - Daoquan Xiang
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
| | - Kristina Komendant
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
| | - Tim Daskalchuk
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
| | - Vivijan Babic
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
| | - William Crosby
- Department of Biological Sciences, University of Windsor, Windsor, Canada
| | - Raju Datla
- Plant Biotechnology Institute, National Research Council, Saskatoon, Canada
- * E-mail: (ER); (RD)
| |
Collapse
|
46
|
Pabón-Mora N, Hidalgo O, Gleissberg S, Litt A. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales. FRONTIERS IN PLANT SCIENCE 2013; 4:358. [PMID: 24062757 PMCID: PMC3775002 DOI: 10.3389/fpls.2013.00358] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 08/23/2013] [Indexed: 05/03/2023]
Abstract
Gene duplication and loss provide raw material for evolutionary change within organismal lineages as functional diversification of gene copies provide a mechanism for phenotypic variation. Here we focus on the APETALA1/FRUITFULL MADS-box gene lineage evolution. AP1/FUL genes are angiosperm-specific and have undergone several duplications. By far the most significant one is the core-eudicot duplication resulting in the euAP1 and euFUL clades. Functional characterization of several euAP1 and euFUL genes has shown that both function in proper floral meristem identity, and axillary meristem repression. Independently, euAP1 genes function in floral meristem and sepal identity, whereas euFUL genes control phase transition, cauline leaf growth, compound leaf morphogenesis and fruit development. Significant functional variation has been detected in the function of pre-duplication basal-eudicot FUL-like genes, but the underlying mechanisms for change have not been identified. FUL-like genes in the Papaveraceae encode all functions reported for euAP1 and euFUL genes, whereas FUL-like genes in Aquilegia (Ranunculaceae) function in inflorescence development and leaf complexity, but not in flower or fruit development. Here we isolated FUL-like genes across the Ranunculales and used phylogenetic approaches to analyze their evolutionary history. We identified an early duplication resulting in the RanFL1 and RanFL2 clades. RanFL1 genes were present in all the families sampled and are mostly under strong negative selection in the MADS, I and K domains. RanFL2 genes were only identified from Eupteleaceae, Papaveraceae s.l., Menispermaceae and Ranunculaceae and show relaxed purifying selection at the I and K domains. We discuss how asymmetric sequence diversification, new motifs, differences in codon substitutions and likely protein-protein interactions resulting from this Ranunculiid-specific duplication can help explain the functional differences among basal-eudicot FUL-like genes.
Collapse
Affiliation(s)
- Natalia Pabón-Mora
- Grupo de Biotecnología, Instituto de Biología, Universidad de AntioquiaMedellín, Colombia
- The New York Botanical GardenBronx, NY, USA
| | - Oriane Hidalgo
- Laboratori de Botànica, Facultat de Farmàcia, Universitat de BarcelonaBarcelona, Spain
| | | | - Amy Litt
- The New York Botanical GardenBronx, NY, USA
| |
Collapse
|
47
|
Yockteng R, Almeida AMR, Morioka K, Alvarez-Buylla ER, Specht CD. Molecular evolution and patterns of duplication in the SEP/AGL6-like lineage of the Zingiberales: a proposed mechanism for floral diversification. Mol Biol Evol 2013; 30:2401-22. [PMID: 23938867 DOI: 10.1093/molbev/mst137] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The diversity of floral forms in the plant order Zingiberales has evolved through alterations in floral organ morphology. One striking alteration is the shift from fertile, filamentous stamens to sterile, laminar (petaloid) organs in the stamen whorls, attributed to specific pollination syndromes. Here, we examine the role of the SEPALLATA (SEP) genes, known to be important in regulatory networks underlying floral development and organ identity, in the evolution of development of the diverse floral organs phenotypes in the Zingiberales. Phylogenetic analyses show that the SEP-like genes have undergone several duplication events giving rise to multiple copies. Selection tests on the SEP-like genes indicate that the two copies of SEP3 have mostly evolved under balancing selection, probably due to strong functional restrictions as a result of their critical role in floral organ specification. In contrast, the two LOFSEP copies have undergone differential positive selection, indicating neofunctionalization. Reverse transcriptase-polymerase chain reaction, gene expression from RNA-seq data, and in situ hybridization analyses show that the recovered genes have differential expression patterns across the various whorls and organ types found in the Zingiberales. Our data also suggest that AGL6, sister to the SEP-like genes, may play an important role in stamen morphology in the Zingiberales. Thus, the SEP-like genes are likely to be involved in some of the unique morphogenetic patterns of floral organ development found among this diverse order of tropical monocots. This work contributes to a growing body of knowledge focused on understanding the role of gene duplications and the evolution of entire gene networks in the evolution of flower development.
Collapse
Affiliation(s)
- Roxana Yockteng
- Department of Plant and Microbial Biology, Department of Integrative Biology and the University and Jepson Herbaria, University of California, Berkeley
| | | | | | | | | |
Collapse
|
48
|
Lee S, Shin K, Lee I, Song HR, Noh YS, Lee RA, Lee S, Kim SY, Park SK, Lee S, Soh MS. Genetic identification of a novel locus, ACCELERATED FLOWERING 1 that controls chromatin modification associated with histone H3 lysine 27 trimethylation in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 208:20-27. [PMID: 23683925 DOI: 10.1016/j.plantsci.2013.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 03/11/2013] [Accepted: 03/12/2013] [Indexed: 06/02/2023]
Abstract
Flowering on time is a critically important for successful reproduction of plants. Here we report an early-flowering mutant in Arabidopsis thaliana, accelerated flowering 1-1D (afl1-1D) that exhibited pleiotropic developmental defects including semi-dwarfism, curly leaf, and increased branching. Genetic analysis showed that afl1-1D mutant is a single, dominant mutant. Chromosomal mapping indicates that AFL1 resides at the middle of chromosome 4, around which no known flowering-related genes have been characterized. Expression analysis and double mutant studies with late flowering mutants in various floral pathways indicated that elevated FT is responsible for the early-flowering of afl1-1D mutant. Interestingly, not only flowering-related genes, but also several floral homeotic genes were ectopically overexpressed in the afl1-1D mutants in both FT-dependent and -independent manner. The degree of histone H3 Lys27-trimethylation (H3K27me3) was reduced in several chromatin including FT, FLC, AG and SEP3 in the afl1-1D, suggesting that afl1-1D might be involved in chromatin modification. In support, double mutant analysis of afl1-1D and lhp1-4 revealed epistatic interaction between afl1-1D and lhp1-4 in regard to flowering control. Taken together, we propose that AFL1 regulate various aspect of development through chromatin modification, particularly associated with H3K27me3 in A. thaliana.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Molecular Biology, College of Life Science, Sejong University, Seoul 143-747, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Pu L, Liu MS, Kim SY, Chen LFO, Fletcher JC, Sung ZR. EMBRYONIC FLOWER1 and ULTRAPETALA1 Act Antagonistically on Arabidopsis Development and Stress Response. PLANT PHYSIOLOGY 2013; 162:812-30. [PMID: 23632855 PMCID: PMC3668072 DOI: 10.1104/pp.112.213223] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 04/22/2013] [Indexed: 05/02/2023]
Abstract
Epigenetic regulation of gene expression is of fundamental importance for eukaryotic development. EMBRYONIC FLOWER1 (EMF1) is a plant-specific gene that participates in Polycomb group-mediated transcriptional repression of target genes such as the flower MADS box genes AGAMOUS, APETALA3, and PISTILLATA. Here, we investigated the molecular mechanism underlying the curly leaf and early flowering phenotypes caused by reducing EMF1 activity in the leaf primordia of LFYasEMF1 transgenic plants and propose a combined effect of multiple flower MADS box gene activities on these phenotypes. ULTRAPETALA1 (ULT1) functions as a trithorax group factor that counteracts Polycomb group action in Arabidopsis (Arabidopsis thaliana). Removing ULT1 activity rescues both the abnormal developmental phenotypes and most of the misregulated gene expression of LFYasEMF1 plants. Reducing EMF1 activity increases salt tolerance, an effect that is diminished by introducing the ult1-3 mutation into the LFYasEMF1 background. EMF1 is required for trimethylating lysine-27 on histone 3 (H3K27me3), and ULT1 associates with ARABIDOPSIS TRITHORAX1 (ATX1) for trimethylating lysine-3 on histone 4 (H3K4me3) at flower MADS box gene loci. Reducing EMF1 activity decreases H3K27me3 marks and increases H3K4me3 marks on target gene loci. Removing ULT1 activity has the opposite effect on the two histone marks. Removing both gene activities restores the active and repressive marks to near wild-type levels. Thus, ULT1 acts as an antirepressor that counteracts EMF1 action through modulation of histone marks on target genes. Our analysis indicates that, instead of acting as off and on switches, EMF1 and ULT1 mediate histone mark deposition and modulate transcriptional activities of the target genes.
Collapse
Affiliation(s)
- Li Pu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (L.P., S.Y.K., J.C.F., Z.R.S.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang 115, Taipei, Taiwan (M.-S.L., L.-F.O.C.)
| | - Mao-Sen Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (L.P., S.Y.K., J.C.F., Z.R.S.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang 115, Taipei, Taiwan (M.-S.L., L.-F.O.C.)
| | - Sang Yeol Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (L.P., S.Y.K., J.C.F., Z.R.S.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang 115, Taipei, Taiwan (M.-S.L., L.-F.O.C.)
| | - Long-Fang O. Chen
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (L.P., S.Y.K., J.C.F., Z.R.S.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang 115, Taipei, Taiwan (M.-S.L., L.-F.O.C.)
| | - Jennifer C. Fletcher
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720 (L.P., S.Y.K., J.C.F., Z.R.S.); and
- Institute of Plant and Microbial Biology, Academia Sinica, Nankang 115, Taipei, Taiwan (M.-S.L., L.-F.O.C.)
| | | |
Collapse
|
50
|
Larsson E, Franks RG, Sundberg E. Auxin and the Arabidopsis thaliana gynoecium. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2619-27. [PMID: 23585670 DOI: 10.1093/jxb/ert099] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Recent research is beginning to reveal how intricate networks of hormones and transcription factors coordinate the complex patterning of the gynoecium, the female reproductive structure of flowering plants. This review summarizes recent advances in understanding of how auxin biosynthesis, transport, and responses together generate specific gynoecial domains. This review also highlights areas where future research endeavours are likely to provide additional insight into the homeostatic molecular mechanisms by which auxin regulates gynoecium development.
Collapse
Affiliation(s)
- Emma Larsson
- Department of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, Linnean Centre for Plant Biology in Uppsala, Uppsala BioCenter, Box 7080, SE-75007 Uppsala, Sweden
| | | | | |
Collapse
|