1
|
Wei H, Zhu H, Ying W, Janssens H, Kvasnica M, Winne JM, Gao Y, Friml J, Ma Q, Tan S, Liu X, Russinova E, Sun L. Structural insights into brassinosteroid export mediated by the Arabidopsis ABC transporter ABCB1. PLANT COMMUNICATIONS 2025; 6:101181. [PMID: 39497419 DOI: 10.1016/j.xplc.2024.101181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Brassinosteroids (BRs) are steroidal phytohormones indispensable for plant growth, development, and responses to environmental stresses. The export of bioactive BRs to the apoplast is essential for BR signaling initiation, which requires binding of a BR molecule to the extracellular domains of the plasma membrane-localized receptor complex. We have previously shown that the Arabidopsis thaliana ATP-binding cassette (ABC) transporter ABCB19 functions as a BR exporter and, together with its close homolog ABCB1, positively regulates BR signaling. Here, we demonstrate that ABCB1 is another BR transporter. The ATP hydrolysis activity of ABCB1 can be stimulated by bioactive BRs, and its transport activity was confirmed in proteoliposomes and protoplasts. Structures of ABCB1 were determined in substrate-unbound (apo), brassinolide (BL)-bound, and ATP plus BL-bound states. In the BL-bound structure, BL is bound to the hydrophobic cavity formed by the transmembrane domain and triggers local conformational changes. Together, our data provide additional insights into ABC transporter-mediated BR export.
Collapse
Affiliation(s)
- Hong Wei
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Heyuan Zhu
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wei Ying
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Qian Ma
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Shutang Tan
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Xin Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Eugenia Russinova
- University Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium.
| | - Linfeng Sun
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Yagi H, Hara-Nishimura I, Ueda H. Quantitative analysis of the root posture of Arabidopsis thaliana mutants with wavy roots. QUANTITATIVE PLANT BIOLOGY 2024; 5:e9. [PMID: 39777035 PMCID: PMC11706685 DOI: 10.1017/qpb.2024.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 01/11/2025]
Abstract
Plant postures are affected by environmental stimuli. When the gravitational direction changes, the Arabidopsis thaliana mutants myosin xif xik (xif xik) and atp-binding cassette b19 (abcb19) exhibit aberrantly enhanced organ bending. Whether their phenotypes are due to the same mechanism is unknown. We characterized the primary root postures of these mutants. Their roots exhibited enhanced gravitropic bending with the same root-tip angles. The wavy roots of vertically grown plants were quantitatively evaluated using four indices. The straightness index (root base-to-tip length to total root-length ratio) was similar for xif xik and abcb19, and it slightly decreased for xif xik abcb19. The curvature index was similar for abcb19 and xif xik abcb19, but it decreased for xif xik, suggesting the ABCB19 deficiency caused the roots to curve more sharply. Combination of these indices for quantitative analyses of root postures may distinguish between similar wavy-root phenotypes and clarify genetic relationships.
Collapse
Affiliation(s)
- Hiroki Yagi
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
| | | | - Haruko Ueda
- Graduate School of Natural Science, Konan University, Kobe658-8501, Japan
- Faculty of Science and Engineering, Konan University, Kobe658-8501, Japan
| |
Collapse
|
3
|
Luschnig C, Friml J. Over 25 years of decrypting PIN-mediated plant development. Nat Commun 2024; 15:9904. [PMID: 39548100 PMCID: PMC11567971 DOI: 10.1038/s41467-024-54240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Identification of PIN exporters for auxin, the major coordinative signal in plants, some 25 years ago, signifies a landmark in our understanding of plant-specific mechanisms underlying development and adaptation. Auxin is directionally transported throughout the plant body; a unique feature already envisioned by Darwin and solidified by PINs' discovery and characterization. The PIN-based auxin distribution network with its complex regulations of PIN expression, localization and activity turned out to underlie a remarkable multitude of developmental processes and represents means to integrate endogenous and environmental signals. Given the recent anniversary, we here summarize past and current developments in this exciting field.
Collapse
Affiliation(s)
- Christian Luschnig
- Department of Applied Genetics and Cell Biology, Institute of Molecular Plant Biology, BOKU University, Wien, Austria.
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
4
|
Ali S, Tyagi A, Park S, Varshney RK, Bae H. A molecular perspective on the role of FERONIA in root growth, nutrient uptake, stress sensing and microbiome assembly. J Adv Res 2024:S2090-1232(24)00494-6. [PMID: 39505145 DOI: 10.1016/j.jare.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/25/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Roots perform multifaceted functions in plants such as movement of nutrients and water, sensing stressors, shaping microbiome, and providing structural support. How roots perceive and respond above traits at the molecular level remains largely unknown. Despite the enormous advancements in crop improvement, the majority of recent efforts have concentrated on above-ground traits leaving significant knowledge gaps in root biology. Also, studying root system architecture (RSA) is more difficult due to its intricacy and the difficulties of observing them during plant life cycle which has made it difficult to identify desired root traits for the crop improvement. However, with the aid of high-throughput phenotyping and genotyping tools many developmental and stress-mediated regulation of RSA has emerged in both model and crop plants leading to new insights in root biology. Our current understanding of upstream signaling events (cell wall, apoplast) in roots and how they are interconnected with downstream signaling cascades has largely been constrained by the fact that most research in plant systems concentrate on cytosolic signal transduction pathways while ignoring the early perception by cells' exterior parts. In this regard, we discussed the role of FERONIA (FER) a cell wall receptor-like kinase (RLK) which acts as a sensor and a bridge between apoplast and cytosolic signaling pathways in root biology. AIM OF THE REVIEW The goal of this review is to provide valuable insights into present understanding and future research perspectives on how FER regulates distinct root responses related to growth and stress adaptation. KEY SCIENTIFIC CONCEPTS OF REVIEW In plants, FER is a unique RLK because it can act as a multitasking sensor and regulates diverse growth, and adaptive traits. In this review, we mainly highlighted its role in root biology like how it modulates distinct root responses such as root development, sensing abiotic stressors, mechanical stimuli, nutrient transport, and shaping microbiome. Further, we provided an update on how FER controls root traits by involving Rapid Alkalinization Factor (RALF) peptides, calcium, reactive oxygen species (ROS) and hormonal signaling pathways.. We also highlight number of outstanding questions in FER mediated root responses that warrants future investigation. To sum up, this review provides a comprehsive information on the role of FER in root biology which can be utilized for the development of future climate resilient and high yielding crops based on the modified root system.
Collapse
Affiliation(s)
- Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea; Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Suvin Park
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea
| | - Rajeev K Varshney
- Center of Excellence in Genomics &, Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; Murdoch's Centre for Crop and Food Innovation, WA State Agricultural Biotechnology Centre, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Hanhong Bae
- Department of Biotechnology, Yeungnam University, Gyeongsan Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
5
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
6
|
Yadav S, Preethi V, Dadi S, Seth CS, G K, Chandrashekar BK, Vemanna RS. Small chemical molecules regulating the phytohormone signalling alter the plant's physiological processes to improve stress adaptation, growth and productivity. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1593-1610. [PMID: 39506995 PMCID: PMC11535105 DOI: 10.1007/s12298-024-01514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/22/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Small chemical molecules are attractive agents for improving the plant processes associated with plant growth and stress tolerance. Recent advances in chemical biology and structure-assisted drug discovery approaches have opened up new avenues in plant biology to discover new drug-like molecules to improve plant processes for sustained food production. Several compounds targeting phytohormone biosynthesis or signalling cascades were designed to alter plant physiological mechanisms. Altering Abscisic acid synthesis and its signalling process can improve drought tolerance, and the processes targeted are reversible. Molecules targeting cytokinin, Auxin, and gibberellic acid regulate plant physiological processes and can potentially improve plant growth, biomass and productivity. The potential of molecules may be exploited as agrochemicals to enhance agricultural productivity. The discovery of small molecules provides new avenues to improve crop production in changing climatic conditions and the nutritional quality of foods. We present the rational combinations of small molecules with inhibitory and co-stimulatory effects and discuss future opportunities in this field.
Collapse
Affiliation(s)
- Shobhna Yadav
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| | | | - Sujitha Dadi
- Department of Crop Physiology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | | | - Keshavareddy G
- Department of Entomology, University of Agricultural Sciences, GKVK, Bengaluru, 560065 India
| | - Babitha Kodaikallu Chandrashekar
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| | - Ramu Shettykothanur Vemanna
- Laboratory of Plant Functional Genomics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana 121 001 India
| |
Collapse
|
7
|
Zhang M, Zhao Y, Nan T, Jiao H, Yue S, Huang L, Yuan Y. Genome-wide analysis of Citrus medica ABC transporters reveals the regulation of fruit development by CmABCB19 and CmABCC10. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109027. [PMID: 39154422 DOI: 10.1016/j.plaphy.2024.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
ATP-binding cassette (ABC) transporters are vital for plant growth and development as they facilitate the transport of essential molecules. Despite the family's significance, limited information exists about its functional distinctions in Citrus medica. Our study identified 119 genes encoding ABC transporter proteins in the C. medica genome. Through an evolutionary tree and qPCR analysis, two ABC genes, CmABCB19 and CmABCC10, were implicated in C. medica fruit development, showing upregulation in normal fruits compared to malformed fruits. CmABCB19 was found to localize to the plasma membrane of Nicotiana tabacum, exhibiting indole-3-acetic acid (IAA) efflux activity in the yeast mutant strain yap1. CmABCC10, a tonoplast-localized transporter, exhibited efflux of diosmin, nobiletin, and naringin, with rutin influx in strain ycf1. Transgenic expression of CmABCB19 and CmABCC10 in Arabidopsis thaliana induced alterations in auxin and flavonoid content, impacting silique and seed size. This effect was attributed to the modulation of structural genes in the auxin biosynthesis (YUC5/9, CYP79B2, CYP83B1, SUR1) and flavonoid biosynthesis (4CL2/3, CHS, CHI, FLS1/3) pathways. In summary, the functional characterization of CmABCB19 and CmABCC10 illuminates auxin and flavonoid transport, offering insights into their interplay with biosynthetic pathways and providing a foundation for understanding the transporter's role in fruit development.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| | - Yuyang Zhao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Tiegui Nan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Honghong Jiao
- Co-construction Collaborative Innovation Center for Chinese Medicine Resources Industrialization by Shaanxi & Education Ministry, Shaanxi University of Chinese Medicine, Xianyang, China.
| | - Shiyan Yue
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Luqi Huang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Yuan Yuan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Experimental Research Center, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China; National Resource Center for Chinese Materia Medica, Chinese Academy of Chinese Medical Sciences (CACMS), Beijing, China.
| |
Collapse
|
8
|
Tang C, Zhang Y, Liu X, Zhang B, Si J, Xia H, Fan S, Kong L. Nitrate Starvation Induces Lateral Root Organogenesis in Triticum aestivum via Auxin Signaling. Int J Mol Sci 2024; 25:9566. [PMID: 39273513 PMCID: PMC11395443 DOI: 10.3390/ijms25179566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
The lateral root (LR) is an essential component of the plant root system, performing important functions for nutrient and water uptake in plants and playing a pivotal role in cereal crop productivity. Nitrate (NO3-) is an essential nutrient for plants. In this study, wheat plants were grown in 1/2 strength Hoagland's solution containing 5 mM NO3- (check; CK), 0.1 mM NO3- (low NO3-; LN), or 0.1 mM NO3- plus 60 mg/L 2,3,5-triiodobenzoic acid (TIBA) (LNT). The results showed that LN increased the LR number significantly at 48 h after treatment compared with CK, while not increasing the root biomass, and LNT significantly decreased the LR number and root biomass. The transcriptomic analysis showed that LN induced the expression of genes related to root IAA synthesis and transport and cell wall remodeling, and it was suppressed in the LNT conditions. A physiological assay revealed that the LN conditions increased the activity of IAA biosynthesis-related enzymes, the concentrations of tryptophan and IAA, and the activity of cell wall remodeling enzymes in the roots, whereas the content of polysaccharides in the LRP cell wall was significantly decreased compared with the control. Fourier-transform infrared spectroscopy and atomic microscopy revealed that the content of cell wall polysaccharides decreased and the cell wall elasticity of LR primordia (LRP) increased under the LN conditions. The effects of LN on IAA synthesis and polar transport, cell wall remodeling, and LR development were abolished when TIBA was applied. Our findings indicate that NO3- starvation may improve auxin homeostasis and the biological properties of the LRP cell wall and thus promote LR initiation, while TIBA addition dampens the effects of LN on auxin signaling, gene expression, physiological processes, and the root architecture.
Collapse
Affiliation(s)
- Chengming Tang
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yunxiu Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Xiao Liu
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Bin Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Jisheng Si
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Haiyong Xia
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shoujin Fan
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | - Lingan Kong
- College of Life Science, Shandong Normal University, Jinan 250014, China
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
9
|
Geisler MM. Embracing substrate multispecificity in plant ABC transporters. MOLECULAR PLANT 2024; 17:990-992. [PMID: 38816996 DOI: 10.1016/j.molp.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Affiliation(s)
- Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
10
|
Hammes UZ, Pedersen BP. Structure and Function of Auxin Transporters. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:185-209. [PMID: 38211951 DOI: 10.1146/annurev-arplant-070523-034109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Auxins, a group of central hormones in plant growth and development, are transported by a diverse range of transporters with distinct biochemical and structural properties. This review summarizes the current knowledge on all known auxin transporters with respect to their biochemical and biophysical properties and the methods used to characterize them. In particular, we focus on the recent advances that were made concerning the PIN-FORMED family of auxin exporters. Insights derived from solving their structures have improved our understanding of the auxin export process, and we discuss the current state of the art on PIN-mediated auxin transport, including the use of biophysical methods to examine their properties. Understanding the mechanisms of auxin transport is crucial for understanding plant growth and development, as well as for the development of more effective strategies for crop production and plant biotechnology.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- School of Life Sciences, Plant Systems Biology, Technical University of Munich, Freising, Germany;
| | | |
Collapse
|
11
|
Zeng W, Wang X, Li M. PINOID-centered genetic interactions mediate auxin action in cotyledon formation. PLANT DIRECT 2024; 8:e587. [PMID: 38766507 PMCID: PMC11099747 DOI: 10.1002/pld3.587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 05/22/2024]
Abstract
Auxin plays a key role in plant growth and development through auxin local synthesis, polar transport, and auxin signaling. Many previous reports on Arabidopsis have found that various types of auxin-related genes are involved in the development of the cotyledon, including the number, symmetry, and morphology of the cotyledon. However, the molecular mechanism by which auxin is involved in cotyledon formation remains to be elucidated. PID, which encodes a serine/threonine kinase localized to the plasma membrane, has been found to phosphorylate the PIN1 protein and regulate its polar distribution in the cell. The loss of function of pid resulted in an abnormal number of cotyledons and defects in inflorescence. It was interesting that the pid mutant interacted synergistically with various types of mutant to generate the severe developmental defect without cotyledon. PID and these genes were indicated to be strongly correlated with cotyledon formation. In this review, PID-centered genetic interactions, related gene functions, and corresponding possible pathways are discussed, providing a perspective that PID and its co-regulators control cotyledon formation through multiple pathways.
Collapse
Affiliation(s)
- Wei Zeng
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Xiutao Wang
- College of Life ScienceXinyang Normal UniversityXinyangChina
| | - Mengyuan Li
- College of Life ScienceXinyang Normal UniversityXinyangChina
| |
Collapse
|
12
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
13
|
Devi R, Goyal P, Verma B, Hussain S, Chowdhary F, Arora P, Gupta S. A transcriptome-wide identification of ATP-binding cassette (ABC) transporters revealed participation of ABCB subfamily in abiotic stress management of Glycyrrhiza glabra L. BMC Genomics 2024; 25:315. [PMID: 38532362 DOI: 10.1186/s12864-024-10227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
Transcriptome-wide survey divulged a total of 181 ABC transporters in G. glabra which were phylogenetically classified into six subfamilies. Protein-Protein interactions revealed nine putative GgABCBs (-B6, -B14, -B15, -B25, -B26, -B31, -B40, -B42 &-B44) corresponding to five AtABCs orthologs (-B1, -B4, -B11, -B19, &-B21). Significant transcript accumulation of ABCB6 (31.8 folds), -B14 (147.5 folds), -B15 (17 folds), -B25 (19.7 folds), -B26 (18.31 folds), -B31 (61.89 folds), -B40 (1273 folds) and -B42 (51 folds) was observed under the influence of auxin. Auxin transport-specific inhibitor, N-1-naphthylphthalamic acid, showed its effectiveness only at higher (10 µM) concentration where it down regulated the expression of ABCBs, PINs (PIN FORMED) and TWD1 (TWISTED DWARF 1) genes in shoot tissues, while their expression was seen to enhance in the root tissues. Further, qRT-PCR analysis under various growth conditions (in-vitro, field and growth chamber), and subjected to abiotic stresses revealed differential expression implicating role of ABCBs in stress management. Seven of the nine genes were shown to be involved in the stress physiology of the plant. GgABCB6, 15, 25 and ABCB31 were induced in multiple stresses, while GgABCB26, 40 & 42 were exclusively triggered under drought stress. No study pertaining to the ABC transporters from G. glabra is available till date. The present investigation will give an insight to auxin transportation which has been found to be associated with plant growth architecture; the knowledge will help to understand the association between auxin transportation and plant responses under the influence of various conditions.
Collapse
Affiliation(s)
- Ritu Devi
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pooja Goyal
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Registered from Guru Nanak Dev University, Amritsar, India
| | - Bhawna Verma
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shahnawaz Hussain
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Fariha Chowdhary
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Palak Arora
- Plant Biotechnology Division, Jammu, India
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Suphla Gupta
- Plant Biotechnology Division, Jammu, India.
- CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
14
|
Ying W, Wang Y, Wei H, Luo Y, Ma Q, Zhu H, Janssens H, Vukašinović N, Kvasnica M, Winne JM, Gao Y, Tan S, Friml J, Liu X, Russinova E, Sun L. Structure and function of the Arabidopsis ABC transporter ABCB19 in brassinosteroid export. Science 2024; 383:eadj4591. [PMID: 38513023 DOI: 10.1126/science.adj4591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024]
Abstract
Brassinosteroids are steroidal phytohormones that regulate plant development and physiology, including adaptation to environmental stresses. Brassinosteroids are synthesized in the cell interior but bind receptors at the cell surface, necessitating a yet to be identified export mechanism. Here, we show that a member of the ATP-binding cassette (ABC) transporter superfamily, ABCB19, functions as a brassinosteroid exporter. We present its structure in both the substrate-unbound and the brassinosteroid-bound states. Bioactive brassinosteroids are potent activators of ABCB19 ATP hydrolysis activity, and transport assays showed that ABCB19 transports brassinosteroids. In Arabidopsis thaliana, ABCB19 and its close homolog, ABCB1, positively regulate brassinosteroid responses. Our results uncover an elusive export mechanism for bioactive brassinosteroids that is tightly coordinated with brassinosteroid signaling.
Collapse
Affiliation(s)
- Wei Ying
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yaowei Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hong Wei
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Qian Ma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Heyuan Zhu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Nemanja Vukašinović
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Miroslav Kvasnica
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Palacký University, 77900 Olomouc, Czech Republic
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Yongxiang Gao
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Shutang Tan
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiří Friml
- Institute of Science and Technology Austria (ISTA), 3400 Klosterneuburg, Austria
| | - Xin Liu
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Linfeng Sun
- Department of Neurology of The First Affiliated Hospital of USTC, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
15
|
Zhang D, Yu Z, Zeng B, Liu X. Genome-wide analysis of the ABC gene family in almond and functional predictions during flower development, freezing stress, and salt stress. BMC PLANT BIOLOGY 2024; 24:12. [PMID: 38163883 PMCID: PMC10759767 DOI: 10.1186/s12870-023-04698-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/18/2023] [Indexed: 01/03/2024]
Abstract
ABC (ATP-binding cassette) transporter proteins are one of the most extensive protein families known to date and are ubiquitously found in animals, plants, and microorganisms. ABCs have a variety of functions, such as plant tissue development regulation, hormone transport, and biotic and abiotic stress resistance. However, the gene characterization and function of the ABC gene family in almond (Prunus dulcis) have not been thoroughly studied. In this study, we identified 117 PdABC genes using the whole genome of 'Wanfeng' almond obtained by sequencing and explored their protein characterization. The PdABC family members were classified into eight subfamilies. The members of the same subfamily had conserved motifs but poorly conserved numbers of exons and introns and were unevenly distributed among the eight subfamilies and on the eight chromosomes. Expression patterns showed that PdABC family members were significantly differentially expressed during almond development, dormant freezing stress, and salt stress. We found that PdABC59 and PdABC77 had extremely high expression levels in pollen. PdABC63 and PdABC64 had high expression levels during almond petal development and multiple stages of flower development. PdABC98 was highly expressed in annual dormant branches after six temperature-freezing stress treatments. PdABC29, PdABC69, and PdABC98 were highly expressed under different concentrations of salt stress. This study preliminarily investigated the expression characteristics of ABC genes in different tissues of almond during flower development, freezing stress and salt stress, and the results will provide a reference for further in-depth research and breeding of almond in the future.
Collapse
Affiliation(s)
- Dongdong Zhang
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Zhenfan Yu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830000, China
| | - Bin Zeng
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830000, China.
| | - Xingyue Liu
- College of Horticulture, Xinjiang Agricultural University, Urumqi, 830000, China
| |
Collapse
|
16
|
Naik J, Tyagi S, Rajput R, Kumar P, Pucker B, Bisht NC, Misra P, Stracke R, Pandey A. Flavonols affect the interrelated glucosinolate and camalexin biosynthetic pathways in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:219-240. [PMID: 37813680 DOI: 10.1093/jxb/erad391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/11/2023]
Abstract
Flavonols are structurally and functionally diverse biomolecules involved in plant biotic and abiotic stress tolerance, pollen development, and inhibition of auxin transport. However, their effects on global gene expression and signaling pathways are unclear. To explore the roles of flavonol metabolites in signaling, we performed comparative transcriptome and targeted metabolite profiling of seedlings from the flavonol-deficient Arabidopsis loss-of-function mutant flavonol synthase1 (fls1) with and without exogenous supplementation of flavonol derivatives (kaempferol, quercetin, and rutin). RNA-seq results indicated that flavonols modulate various biological and metabolic pathways, with significant alterations in camalexin and aliphatic glucosinolate synthesis. Flavonols negatively regulated camalexin biosynthesis but appeared to promote the accumulation of aliphatic glucosinolates via transcription factor-mediated up-regulation of biosynthesis genes. Interestingly, upstream amino acid biosynthesis genes involved in methionine and tryptophan synthesis were altered under flavonol deficiency and exogenous supplementation. Quercetin treatment significantly up-regulated aliphatic glucosinolate biosynthesis genes compared with kaempferol and rutin. In addition, expression and metabolite analysis of the transparent testa7 mutant, which lacks hydroxylated flavonol derivatives, clarified the role of quercetin in the glucosinolate biosynthesis pathway. This study elucidates the molecular mechanisms by which flavonols interfere with signaling pathways, their molecular targets, and the multiple biological activities of flavonols in plants.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shivi Tyagi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ruchika Rajput
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pawan Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Boas Pucker
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Naveen C Bisht
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Prashant Misra
- Plant Sciences and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ralf Stracke
- Faculty of Biology, Genetics and Genomics of Plants, Bielefeld University, 33615 Bielefeld, Germany
| | - Ashutosh Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
17
|
Smet W, Blilou I. A blast from the past: Understanding stem cell specification in plant roots using laser ablation. QUANTITATIVE PLANT BIOLOGY 2023; 4:e14. [PMID: 38034417 PMCID: PMC10685261 DOI: 10.1017/qpb.2023.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 12/02/2023]
Abstract
In the Arabidopsis root, growth is sustained by the meristem. Signalling from organiser cells, also termed the quiescent centre (QC), is essential for the maintenance and replenishment of the stem cells. Here, we highlight three publications from the founder of the concept of the stem cell niche in Arabidopsis and a pioneer in unravelling regulatory modules governing stem cell specification and maintenance, as well as tissue patterning in the root meristem: Ben Scheres. His research has tremendously impacted the plant field. We have selected three publications from the Scheres legacy, which can be considered a breakthrough in the field of plant developmental biology. van den Berg et al. (1995) and van den Berg et al. (1997) uncovered that positional information-directed patterning. Sabatini et al. (1999), discovered that auxin maxima determine tissue patterning and polarity. We describe how simple but elegant experimental designs have provided the foundation of our current understanding of the functioning of the root meristem.
Collapse
Affiliation(s)
- Wouter Smet
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Ikram Blilou
- Biological and Environmental Science and Engineering (BESE) Division, Plant Cell and Developmental Biology, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Lee Y, Tjeerdema E, Kling S, Chang N, Hamdoun A. Solute carrier (SLC) expression reveals skeletogenic cell diversity. Dev Biol 2023; 503:68-82. [PMID: 37611888 DOI: 10.1016/j.ydbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Within the developing embryo is a microcosm of cell type diversity. Single cell RNA-sequencing (scRNA-seq) is used to reveal cell types, typically by grouping cells according to their gene regulatory states. However, both across and within these regulatory states are additional layers of cellular diversity represented by the differential expression of genes that govern cell function. Here, we analyzed scRNA-seq data representing the late gastrula stage of Strongylocentrotus purpuratus (purple sea urchin) to understand the patterning of transporters belonging to the ABC and SLC families. These transporters handle diverse substrates from amino acids to signaling molecules, nutrients and xenobiotics. Using transporter-based clustering, we identified unique transporter patterns that are both shared across cell lineages, as well as those that were unique to known cell types. We further explored three patterns of transporter expression in mesodermal cells including secondary mesenchyme cells (pigment cells and blastocoelar cells) and skeletogenic cells (primary mesenchyme cells). The results revealed the enrichment of SMTs potentially involved in nutrient absorption (SLC5A9, SLC7A11, SLC35F3, and SLC52A3) and skeletogenesis (SLC9A3, SLC13A2/3/5, and SLC39A13) in pigment cells and blastocoelar cells respectively. The results indicated that the strategy of clustering by cellular activity can be useful for discovering cellular populations that would otherwise remain obscured.
Collapse
Affiliation(s)
- Yoon Lee
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Svenja Kling
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nathan Chang
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Amro Hamdoun
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
19
|
Caygill S, Dolan L. ATP binding cassette transporters and uridine diphosphate glycosyltransferases are ancient protein families that evolved roles in herbicide resistance through exaptation. PLoS One 2023; 18:e0287356. [PMID: 37733747 PMCID: PMC10513242 DOI: 10.1371/journal.pone.0287356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/25/2023] [Indexed: 09/23/2023] Open
Abstract
ATP-binding cassette (ABC) transporters actively transport various substances across membranes, while uridine diphosphate (UDP) glycosyltransferases (UGTs) are proteins that catalyse the chemical modification of various organic compounds. Both of these protein superfamilies have been associated with conferring herbicide resistance in weeds. Little is known about the evolutionary history of these protein families in the Archaeplastida. To infer the evolutionary histories of these protein superfamilies, we compared protein sequences collected from 10 species which represent distinct lineages of the Archaeplastida-the lineage including glaucophyte algae, rhodophyte algae, chlorophyte algae and the streptophytes-and generated phylogenetic trees. We show that ABC transporters were present in the last common ancestor of the Archaeplastida which lived 1.6 billion years ago, and the major clades identified in extant plants were already present then. Conversely, we only identified UGTs in members of the streptophyte lineage, which suggests a loss of these proteins in earlier diverging Archaeplastida lineages or arrival of UGTs into a common ancestor of the streptophyte lineage through horizontal gene transfer from a non-Archaeplastida eukaryote lineage. We found that within the streptophyte lineage, most diversification of the UGT protein family occurred in the vascular lineage, with 17 of the 20 clades identified in extant plants present only in vascular plants. Based on our findings, we conclude that ABC transporters and UGTs are ancient protein families which diversified during Archaeplastida evolution, which may have evolved for developmental functions as plants began to occupy new environmental niches and are now being selected to confer resistance to a diverse range of herbicides in weeds.
Collapse
Affiliation(s)
- Samuel Caygill
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | - Liam Dolan
- Gregor Mendel Institute, Vienna, Austria
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
20
|
Li R, Wang Z, Wang JW, Li L. Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees. PLANT COMMUNICATIONS 2023; 4:100665. [PMID: 37491818 PMCID: PMC10504605 DOI: 10.1016/j.xplc.2023.100665] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 07/27/2023]
Abstract
Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter. However, our molecular understanding of the biological processes that underlie these two types of growth is incomplete. In this study, we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem. Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors. These regulatory networks may be controlled by auxin accumulation and distribution. Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation. This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems, increasing our understanding of the cellular differentiation dynamics that occur during stem growth in trees.
Collapse
Affiliation(s)
- Renhui Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
21
|
Solanki M, Shukla LI. Recent advances in auxin biosynthesis and homeostasis. 3 Biotech 2023; 13:290. [PMID: 37547917 PMCID: PMC10400529 DOI: 10.1007/s13205-023-03709-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 07/18/2023] [Indexed: 08/08/2023] Open
Abstract
The plant proliferation is linked with auxins which in turn play a pivotal role in the rate of growth. Also, auxin concentrations could provide insights into the age, stress, and events leading to flowering and fruiting in the sessile plant kingdom. The role in rejuvenation and plasticity is now evidenced. Interest in plant auxins spans many decades, information from different plant families for auxin concentrations, transcriptional, and epigenetic evidences for gene regulation is evaluated here, for getting an insight into pattern of auxin biosynthesis. This biosynthesis takes place via an tryptophan-independent and tryptophan-dependent pathway. The independent pathway initiated before the tryptophan (trp) production involves indole as the primary substrate. On the other hand, the trp-dependent IAA pathway passes through the indole pyruvic acid (IPyA), indole-3-acetaldoxime (IAOx), and indole acetamide (IAM) pathways. Investigations on trp-dependent pathways involved mutants, namely yucca (1-11), taa1, nit1, cyp79b and cyp79b2, vt2 and crd, and independent mutants of tryptophan, ins are compiled here. The auxin conjugates of the IAA amide and ester-linked mutant gh3, iar, ilr, ill, iamt1, ugt, and dao are remarkable and could facilitate the assimilation of auxins. Efforts are made herein to provide an up-to-date detailed information about biosynthesis leading to plant sustenance. The vast information about auxin biosynthesis and homeostasis is consolidated in this review with a simplified model of auxin biosynthesis with keys and clues for important missing links since auxins can enable the plants to proliferate and override the environmental influence and needs to be probed for applications in sustainable agriculture. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03709-6.
Collapse
Affiliation(s)
- Manish Solanki
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
- Puducherry, India
| | - Lata Israni Shukla
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Kalapet, Pondicherry, 605014 India
| |
Collapse
|
22
|
Zhao P, Zhang J, Chen S, Zhang Z, Wan G, Mao J, Wang Z, Tan S, Xiang C. ERF1 inhibits lateral root emergence by promoting local auxin accumulation and repressing ARF7 expression. Cell Rep 2023; 42:112565. [PMID: 37224012 DOI: 10.1016/j.celrep.2023.112565] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 02/28/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Lateral roots (LRs) are crucial for plants to sense environmental signals in addition to water and nutrient absorption. Auxin is key for LR formation, but the underlying mechanisms are not fully understood. Here, we report that Arabidopsis ERF1 inhibits LR emergence by promoting local auxin accumulation with altered distribution and regulating auxin signaling. Loss of ERF1 increases LR density compared with the wild type, whereas ERF1 overexpression causes the opposite phenotype. ERF1 enhances auxin transport by upregulating PIN1 and AUX1, resulting in excessive auxin accumulation in the endodermal, cortical, and epidermal cells surrounding LR primordia. Furthermore, ERF1 represses ARF7 transcription, thereby downregulating the expression of cell-wall remodeling genes that facilitate LR emergence. Together, our study reveals that ERF1 integrates environmental signals to promote local auxin accumulation with altered distribution and repress ARF7, consequently inhibiting LR emergence in adaptation to fluctuating environments.
Collapse
Affiliation(s)
- Pingxia Zhao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jing Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Siyan Chen
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zisheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guangyu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jieli Mao
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zhen Wang
- College of Life Sciences, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Shutang Tan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Chengbin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
23
|
Monroy-González Z, Uc-Chuc MA, Quintana-Escobar AO, Duarte-Aké F, Loyola-Vargas VM. Characterization of the PIN Auxin Efflux Carrier Gene Family and Its Expression during Zygotic Embryogenesis in Persea americana. PLANTS (BASEL, SWITZERLAND) 2023; 12:2280. [PMID: 37375905 DOI: 10.3390/plants12122280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Auxins are responsible for a large part of the plant development process. To exert their action, they must move throughout the plant and from cell to cell, which is why plants have developed complex transport systems for indole-3-acetic acid (IAA). These transporters involve proteins that transport IAA into cells, transporters that move IAA to or from different organelles, mainly the endoplasmic reticulum, and transporters that move IAA out of the cell. This research determined that Persea americana has 12 PIN transporters in its genome. The twelve transporters are expressed during different stages of development in P. americana zygotic embryos. Using different bioinformatics tools, we determined the type of transporter of each of the P. americana PIN proteins and their structure and possible location in the cell. We also predict the potential phosphorylation sites for each of the twelve-PIN proteins. The data show the presence of highly conserved sites for phosphorylation and those sites involved in the interaction with the IAA.
Collapse
Affiliation(s)
- Zurisadai Monroy-González
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Miguel A Uc-Chuc
- Centro de Investigaciones Regionales Dr. Hideyo Noguchi, Avenida Itzáes, No. 490 x Calle 59, Col. Centro, Merida CP 97000, Yucatan, Mexico
| | - Ana O Quintana-Escobar
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Fátima Duarte-Aké
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| | - Víctor M Loyola-Vargas
- Centro de Investigación Científica de Yucatán, Unidad de Bioquímica y Biología Molecular de Plantas, Calle 43 No. 130 x 32 y 34, Chuburná de Hidalgo, Merida CP 97205, Yucatan, Mexico
| |
Collapse
|
24
|
Kafkas S, Ma X, Zhang X, Topçu H, Navajas-Pérez R, Wai CM, Tang H, Xu X, Khodaeiaminjan M, Güney M, Paizila A, Karcı H, Zhang X, Lin J, Lin H, Herrán RDL, Rejón CR, García-Zea JA, Robles F, Muñoz CDV, Hotz-Wagenblatt A, Min XJ, Özkan H, Motalebipour EZ, Gozel H, Çoban N, Kafkas NE, Kilian A, Huang H, Lv X, Liu K, Hu Q, Jacygrad E, Palmer W, Michelmore R, Ming R. Pistachio genomes provide insights into nut tree domestication and ZW sex chromosome evolution. PLANT COMMUNICATIONS 2023; 4:100497. [PMID: 36435969 DOI: 10.1016/j.xplc.2022.100497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 10/01/2022] [Accepted: 11/23/2022] [Indexed: 05/11/2023]
Abstract
Pistachio is a nut crop domesticated in the Fertile Crescent and a dioecious species with ZW sex chromosomes. We sequenced the genomes of Pistacia vera cultivar (cv.) Siirt, the female parent, and P. vera cv. Bagyolu, the male parent. Two chromosome-level reference genomes of pistachio were generated, and Z and W chromosomes were assembled. The ZW chromosomes originated from an autosome following the first inversion, which occurred approximately 8.18 Mya. Three inversion events in the W chromosome led to the formation of a 12.7-Mb (22.8% of the W chromosome) non-recombining region. These W-specific sequences contain several genes of interest that may have played a pivotal role in sex determination and contributed to the initiation and evolution of a ZW sex chromosome system in pistachio. The W-specific genes, including defA, defA-like, DYT1, two PTEN1, and two tandem duplications of six VPS13A paralogs, are strong candidates for sex determination or differentiation. Demographic history analysis of resequenced genomes suggest that cultivated pistachio underwent severe domestication bottlenecks approximately 7640 years ago, dating the domestication event close to the archeological record of pistachio domestication in Iran. We identified 390, 211, and 290 potential selective sweeps in 3 cultivar subgroups that underlie agronomic traits such as nut development and quality, grafting success, flowering time shift, and drought tolerance. These findings have improved our understanding of the genomic basis of sex determination/differentiation and horticulturally important traits and will accelerate the improvement of pistachio cultivars and rootstocks.
Collapse
Affiliation(s)
- Salih Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey.
| | - Xiaokai Ma
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of Orchid Conservation and Utilization of National Forestry and Grassland Administration, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingtan Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hayat Topçu
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Rafael Navajas-Pérez
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Ching Man Wai
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Haibao Tang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuming Xu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China; Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mortaza Khodaeiaminjan
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Murat Güney
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Aibibula Paizila
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Harun Karcı
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Xiaodan Zhang
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jing Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Han Lin
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Roberto de la Herrán
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Carmelo Ruiz Rejón
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | | | - Francisca Robles
- Departamento de Genética, Facultad de Ciencias, Campus de Fuentenueva s/n, 18071 Granada, Spain
| | - Coral Del Val Muñoz
- Department of Computer Science, University of Granada, Granada, Spain; Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI Institute), 18014 Granada, Spain
| | - Agnes Hotz-Wagenblatt
- German Cancer Research Center, Omics IT and Data Management Core Facility, Heidelberg, Germany
| | - Xiangjia Jack Min
- Department of Biological Sciences, Youngstown State University, Youngstown, OH 44555, USA
| | - Hakan Özkan
- Department of Field Crops, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | | | - Hatice Gozel
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nergiz Çoban
- Pistachio Research Institute, Şahinbey, Gaziantep 27060, Turkey
| | - Nesibe Ebru Kafkas
- Department of Horticulture, Faculty of Agriculture, University of Çukurova, Adana 01330, Turkey
| | - Andrej Kilian
- Diversity Arrays Technology, University of Canberra, Canberra, ACT, Australia
| | - HuaXing Huang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xuanrui Lv
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kunpeng Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qilin Hu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, School of Future Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ewelina Jacygrad
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - William Palmer
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Richard Michelmore
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
25
|
Aryal B, Xia J, Hu Z, Stumpe M, Tsering T, Liu J, Huynh J, Fukao Y, Glöckner N, Huang HY, Sáncho-Andrés G, Pakula K, Ziegler J, Gorzolka K, Zwiewka M, Nodzynski T, Harter K, Sánchez-Rodríguez C, Jasiński M, Rosahl S, Geisler MM. An LRR receptor kinase controls ABC transporter substrate preferences during plant growth-defense decisions. Curr Biol 2023; 33:2008-2023.e8. [PMID: 37146609 DOI: 10.1016/j.cub.2023.04.029] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 02/27/2023] [Accepted: 04/13/2023] [Indexed: 05/07/2023]
Abstract
The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.
Collapse
Affiliation(s)
- Bibek Aryal
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jian Xia
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Zehan Hu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Michael Stumpe
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tashi Tsering
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Jie Liu
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - John Huynh
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Yoichiro Fukao
- College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Nina Glöckner
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Hsin-Yao Huang
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Gloria Sáncho-Andrés
- Department of Biology, ETH Zurich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Konrad Pakula
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; NanoBioMedical Centre, Adam Mickiewicz University, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland
| | - Joerg Ziegler
- Department Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Karin Gorzolka
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Tomasz Nodzynski
- Mendel Centre for Plant Genomics and Proteomics Masaryk University, CEITEC MU Kamenice 5, Building A26, 625 00 Brno, Czech Republic
| | - Klaus Harter
- Zentrum für Molekularbiologie der Pflanzen, Pflanzenphysiologie, Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | | | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704 Poznań, Poland; Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Sabine Rosahl
- Department Biochemistry of Plant Interactions, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany
| | - Markus M Geisler
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
26
|
Chen J, Hu Y, Hao P, Tsering T, Xia J, Zhang Y, Roth O, Njo MF, Sterck L, Hu Y, Zhao Y, Geelen D, Geisler M, Shani E, Beeckman T, Vanneste S. ABCB-mediated shootward auxin transport feeds into the root clock. EMBO Rep 2023; 24:e56271. [PMID: 36718777 PMCID: PMC10074126 DOI: 10.15252/embr.202256271] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/01/2023] Open
Abstract
Although strongly influenced by environmental conditions, lateral root (LR) positioning along the primary root appears to follow obediently an internal spacing mechanism dictated by auxin oscillations that prepattern the primary root, referred to as the root clock. Surprisingly, none of the hitherto characterized PIN- and ABCB-type auxin transporters seem to be involved in this LR prepatterning mechanism. Here, we characterize ABCB15, 16, 17, 18, and 22 (ABCB15-22) as novel auxin-transporting ABCBs. Knock-down and genome editing of this genetically linked group of ABCBs caused strongly reduced LR densities. These phenotypes were correlated with reduced amplitude, but not reduced frequency of the root clock oscillation. High-resolution auxin transport assays and tissue-specific silencing revealed contributions of ABCB15-22 to shootward auxin transport in the lateral root cap (LRC) and epidermis, thereby explaining the reduced auxin oscillation. Jointly, these data support a model in which LRC-derived auxin contributes to the root clock amplitude.
Collapse
Affiliation(s)
- Jian Chen
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yangjie Hu
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Pengchao Hao
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Tashi Tsering
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Jian Xia
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Yuqin Zhang
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Ohad Roth
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Maria F Njo
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Lieven Sterck
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Yun Hu
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Yunde Zhao
- Section of Cell and Developmental BiologyUniversity of California San DiegoLa JollaCAUSA
| | - Danny Geelen
- Department of Plants and CropsGhent UniversityGhentBelgium
| | - Markus Geisler
- Department of BiologyUniversity of FribourgFribourgSwitzerland
| | - Eilon Shani
- School of Plant Sciences and Food SecurityTel‐Aviv UniversityTel‐AvivIsrael
| | - Tom Beeckman
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentBelgium
- Center for Plant Systems Biology, VIBGhentBelgium
- Department of Plants and CropsGhent UniversityGhentBelgium
- Lab of Plant Growth AnalysisGhent University Global CampusIncheonRepublic of Korea
| |
Collapse
|
27
|
Jourquin J, Fernandez AI, Wang Q, Xu K, Chen J, Šimura J, Ljung K, Vanneste S, Beeckman T. GOLVEN peptides regulate lateral root spacing as part of a negative feedback loop on the establishment of auxin maxima. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad123. [PMID: 37004244 DOI: 10.1093/jxb/erad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 06/19/2023]
Abstract
Lateral root initiation requires the accumulation of auxin in lateral root founder cells, yielding a local auxin maximum. The positioning of auxin maxima along the primary root determines the density and spacing of lateral roots. The GOLVEN6 (GLV6) and GLV10 signaling peptides and their receptors have been established as regulators of lateral root spacing via their inhibitory effect on lateral root initiation in Arabidopsis. However, it remained unclear how these GLV peptides interfere with auxin signaling or homeostasis. Here, we show that GLV6/10 signaling regulates the expression of a subset of auxin response genes, downstream of the canonical auxin signaling pathway, while simultaneously inhibiting the establishment of auxin maxima within xylem-pole pericycle cells that neighbor lateral root initiation sites. We present genetic evidence that this inhibitory effect relies on the activity of the PIN3 and PIN7 auxin export proteins. Furthermore, GLV6/10 peptide signaling was found to enhance PIN7 abundance in the plasma membranes of xylem-pole pericycle cells, which likely stimulates auxin efflux from these cells. Based on these findings, we propose a model in which the GLV6/10 signaling pathway serves as a negative feedback mechanism that contributes to the robust patterning of auxin maxima along the primary root.
Collapse
Affiliation(s)
- Joris Jourquin
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| | - Jian Chen
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Steffen Vanneste
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent 9000, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Faculty of Sciences, Ghent University, Ghent 9052, Belgium
- Center for Plant Systems Biology, VIB-UGent, Ghent 9052, Belgium
| |
Collapse
|
28
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
29
|
Li L, Chen X. Auxin regulation on crop: from mechanisms to opportunities in soybean breeding. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:16. [PMID: 37313296 PMCID: PMC10248601 DOI: 10.1007/s11032-023-01361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/10/2023] [Indexed: 06/15/2023]
Abstract
Breeding crop varieties with high yield and ideal plant architecture is a desirable goal of agricultural science. The success of "Green Revolution" in cereal crops provides opportunities to incorporate phytohormones in crop breeding. Auxin is a critical phytohormone to determine nearly all the aspects of plant development. Despite the current knowledge regarding auxin biosynthesis, auxin transport and auxin signaling have been well characterized in model Arabidopsis (Arabidopsis thaliana) plants, how auxin regulates crop architecture is far from being understood, and the introduction of auxin biology in crop breeding stays in the theoretical stage. Here, we give an overview on molecular mechanisms of auxin biology in Arabidopsis, and mainly summarize auxin contributions for crop plant development. Furthermore, we propose potential opportunities to integrate auxin biology in soybean (Glycine max) breeding.
Collapse
Affiliation(s)
- Linfang Li
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| |
Collapse
|
30
|
Zhang Y, Han S, Lin Y, Qiao J, Han N, Li Y, Feng Y, Li D, Qi Y. Auxin Transporter OsPIN1b, a Novel Regulator of Leaf Inclination in Rice ( Oryza sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:409. [PMID: 36679122 PMCID: PMC9861231 DOI: 10.3390/plants12020409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/09/2023] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
Leaf inclination is one of the most important components of the ideal architecture, which effects yield gain. Leaf inclination was shown that is mainly regulated by brassinosteroid (BR) and auxin signaling. Here, we reveal a novel regulator of leaf inclination, auxin transporter OsPIN1b. Two CRISPR-Cas9 homozygous mutants, ospin1b-1 and ospin1b-2, with smaller leaf inclination compared to the wild-type, Nipponbare (WT/NIP), while overexpression lines, OE-OsPIN1b-1 and OE-OsPIN1b-2 have opposite phenotype. Further cell biological observation showed that in the adaxial region, OE-OsPIN1b-1 has significant bulge compared to WT/NIP and ospin1b-1, indicating that the increase in the adaxial cell division results in the enlarging of the leaf inclination in OE-OsPIN1b-1. The OsPIN1b was localized on the plasma membrane, and the free IAA contents in the lamina joint of ospin1b mutants were significantly increased while they were decreased in OE-OsPIN1b lines, suggesting that OsPIN1b might action an auxin transporter such as AtPIN1 to alter IAA content and leaf inclination. Furthermore, the OsPIN1b expression was induced by exogenous epibrassinolide (24-eBL) and IAA, and ospin1b mutants are insensitive to BR or IAA treatment, indicating that the effecting leaf inclination is regulated by OsPIN1b. This study contributes a new gene resource for molecular design breeding of rice architecture.
Collapse
Affiliation(s)
- Yanjun Zhang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Shaqila Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yuqing Lin
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiyue Qiao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310006, China
| | - Naren Han
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanyan Li
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Yaning Feng
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot 010030, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
31
|
Schmidt L, Nagel KA, Galinski A, Sannemann W, Pillen K, Maurer A. Unraveling Genomic Regions Controlling Root Traits as a Function of Nitrogen Availability in the MAGIC Wheat Population WM-800. PLANTS (BASEL, SWITZERLAND) 2022; 11:3520. [PMID: 36559632 PMCID: PMC9785272 DOI: 10.3390/plants11243520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
An ever-growing world population demands to be fed in the future and environmental protection and climate change need to be taken into account. An important factor here is nitrogen uptake efficiency (NUpE), which is influenced by the root system (the interface between plant and soil). To understand the natural variation of root system architecture (RSA) as a function of nitrogen (N) availability, a subset of the multiparent advanced generation intercross (MAGIC) winter wheat population WM-800 was phenotyped under two contrasting N treatments in a high-throughput phenotyping system at the seedling stage. Fourteen root and shoot traits were measured. Subsequently, these traits were genetically analyzed using 13,060 polymorphic haplotypes and SNPs in a genome-wide association study (GWAS). In total, 64 quantitative trait loci (QTL) were detected; 60 of them were N treatment specific. Candidate genes for the detected QTL included NRT1.1 and genes involved in stress signaling under N-, whereas candidate genes under N+ were more associated with general growth, such as mei2 and TaWOX11b. This finding may indicate (i) a disparity of the genetic control of root development under low and high N supply and, furthermore, (ii) the need for an N specific selection of genes and genotypes in breeding new wheat cultivars with improved NUpE.
Collapse
Affiliation(s)
- Laura Schmidt
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Kerstin A. Nagel
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Anna Galinski
- IBG-2: Plant Sciences, Institute of Bio- and Geosciences, Research Institute Jülich GmbH, 52425 Jülich, Germany
| | - Wiebke Sannemann
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| | - Andreas Maurer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120 Halle, Germany
| |
Collapse
|
32
|
Effects of High Temperature-Triggered Transcriptomics on the Physiological Adaptability of Cenococcum geophilum, an Ectomycorrhizal Fungus. Microorganisms 2022; 10:microorganisms10102039. [PMID: 36296315 PMCID: PMC9607556 DOI: 10.3390/microorganisms10102039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
High temperature stress caused by global warming presents a challenge to the healthy development of forestry. Cenococcum geophilum is a common ectomycorrhizal fungus (ECMF) in the forest system and has become an important fungus resource with application potential in forest vegetation restoration. In this study, three sensitive isolates of C. geophilum (ChCg01, JaCg144 and JaCg202) and three tolerant isolates of C. geophilum (ACg07, ChCg28 and ChCg100) were used to analyze the physiological and molecular responses to high temperature. The results showed that high temperature had a significant negative effect on the growth of sensitive isolates while promoting the growth of tolerant isolates. The antioxidative enzymes activity of C. geophilum isolates increased under high temperature stress, and the SOD activity of tolerant isolates (A07Cg and ChCg100) was higher than that of sensitive isolates (ChCg01 and JaCg202) significantly. The tolerant isolates secreted more succinate, while the sensitive isolates secreted more oxalic acid under high temperature stress. Comparative transcriptomic analysis showed that differentially expressed genes (DEGs) of six C. geophilum isolates were significantly enriched in "antioxidant" GO entry in the molecular. In addition, the "ABC transporters" pathway and the "glyoxylate and dicarboxylic acid metabolic" were shared in the three tolerant isolates and the three sensitive isolates, respectively. These results were further verified by RT-qPCR analysis. In conclusion, our findings suggest that C. geophilum can affect the organic acid secretion and increase antioxidant enzyme activity in response to high temperature by upregulating related genes.
Collapse
|
33
|
Yue R, Sun Q, Ding J, Li W, Li W, Zhao M, Lu S, Zeng T, Zhang H, Zhao S, Tie S, Meng Z. Functional analysis revealed the involvement of ZmABCB15 in resistance to rice black-streaked dwarf virus infection. BMC PLANT BIOLOGY 2022; 22:484. [PMID: 36217105 PMCID: PMC9552357 DOI: 10.1186/s12870-022-03861-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Maize rough dwarf disease (MRDD), caused by rice black-streaked dwarf virus (RBSDV) belonging to the Fijivirus genus, seriously threatens maize production worldwide. Three susceptible varieties (Ye478, Zheng 58, and Zhengdan 958) and two resistant varieties (P138 and Chang7-2) were used in our study. RESULTS A set of ATP-binding cassette subfamily B (ABCB) transporter genes were screened to evaluate their possible involvements in RBSDV resistance. In the present study, ZmABCB15, an ABCB transporter family member, was cloned and functionally identified. Expression analysis showed that ZmABCB15 was significantly induced in the resistant varieties, not in the susceptible varieties, suggesting its involvement in resistance to the RBSDV infection. ZmABCB15 gene encodes a putative polar auxin transporter containing two trans-membrane domains and two P-loop nucleotide-binding domains. Transient expression analysis indicated that ZmABCB15 is a cell membrance localized protein. Over-expression of ZmABCB15 enhanced the resistance by repressing the RBSDV replication ratio. ZmABCB15 might participate in the RBSDV resistance by affecting the homeostasis of active and inactive auxins in RBSDV infected seedlings. CONCLUSIONS Polar auxin transport might participate in the RBSDV resistance by affecting the distribution of endogenous auxin among tissues. Our data showed the involvement of polar auxin transport in RBSDV resistance and provided novel mechanism underlying the auxin-mediated disease control technology.
Collapse
Affiliation(s)
- Runqing Yue
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Qi Sun
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianguo Ding
- Weihai Academy of Agricultural Sciences, Weihai, China
| | - Wenlan Li
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wencai Li
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Meng Zhao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shouping Lu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Tingru Zeng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hua Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Suxian Zhao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuanggui Tie
- Henan Academy of Agricultural Sciences Zhengzhou, Zhengzhou, China
| | - Zhaodong Meng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
34
|
Qu R, Zhang P, Liu Q, Wang Y, Guo W, Du Z, Li X, Yang L, Yan S, Gu X. Genome-edited ATP BINDING CASSETTE B1 transporter SD8 knockouts show optimized rice architecture without yield penalty. PLANT COMMUNICATIONS 2022; 3:100347. [PMID: 35690904 PMCID: PMC9483111 DOI: 10.1016/j.xplc.2022.100347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 05/27/2023]
Abstract
This study reports the identification of the rice open reading frame Semi-Dwarf in chr8 (SD8) that encodes a putative ortholog of Arabidopsis thaliana ABCB1. Genome editing of SD8 leads to optimized rice architecture by reducing plant height and flag-leaf angle without yield penalty. Rice SD8 knockouts may also have the potential for increased yield under high density planting.
Collapse
Affiliation(s)
- Ruihong Qu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Pingxian Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei, China
| | - Qing Liu
- College of Life Sciences, Hebei Agricultural University, Baoding, 071001 Hebei, China
| | - Yifan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Weijun Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Zhuoying Du
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Xiulan Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Liwen Yang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| | - Shuangyong Yan
- Tianjin Key Laboratory of Crop Genetics and Breeding, Tianjin Crop Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300384, China.
| | - Xiaofeng Gu
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
35
|
Liu J, Ghelli R, Cardarelli M, Geisler M. Arabidopsis TWISTED DWARF1 regulates stamen elongation by differential activation of ABCB1,19-mediated auxin transport. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4818-4831. [PMID: 35512423 DOI: 10.1093/jxb/erac185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
Despite clear evidence that a local accumulation of auxin is likewise critical for male fertility, much less is known about the components that regulate auxin-controlled stamen development. In this study, we analyzed physiological and morphological parameters in mutants of key players of ABCB-mediated auxin transport, and spatially and temporally dissected their expression on the protein level as well as auxin fluxes in the Arabidopsis stamens. Our analyses revealed that the FKBP42, TWISTED DWARF1 (TWD1), promotes stamen elongation and, to a lesser extent, anther dehiscence, as well as pollen maturation, and thus is required for seed development. Most of the described developmental defects in twd1 are shared with the abcb1 abcb19 mutant, which can be attributed to the fact that TWD1-as a described ABCB chaperone-is a positive regulator of ABCB1- and ABCB19-mediated auxin transport. However, reduced stamen number was dependent on TWD1 but not on investigated ABCBs, suggesting additional players downstream of TWD1. We predict an overall housekeeping function for ABCB1 during earlier stages, while ABCB19 seems to be responsible for the key event of rapid elongation at later stages of stamen development. Our data indicate that TWD1 controls stamen development by differential activation of ABCB1,19-mediated auxin transport in the stamen.
Collapse
Affiliation(s)
- Jie Liu
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| | - Roberta Ghelli
- IBPM-CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | - Maura Cardarelli
- IBPM-CNR, Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P. le A. Moro 5, 00185 Roma, Italy
| | - Markus Geisler
- University of Fribourg, Department of Biology, CH-1700 Fribourg, Switzerland
| |
Collapse
|
36
|
Smailagić D, Banjac N, Ninković S, Savić J, Ćosić T, Pěnčík A, Ćalić D, Bogdanović M, Trajković M, Stanišić M. New Insights Into the Activity of Apple Dihydrochalcone Phloretin: Disturbance of Auxin Homeostasis as Physiological Basis of Phloretin Phytotoxic Action. FRONTIERS IN PLANT SCIENCE 2022; 13:875528. [PMID: 35873993 PMCID: PMC9302884 DOI: 10.3389/fpls.2022.875528] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Apple species are the unique naturally rich source of dihydrochalcones, phenolic compounds with an elusive role in planta, but suggested auto-allelochemical features related to "apple replant disease" (ARD). Our aim was to elucidate the physiological basis of the phytotoxic action of dihydrochalcone phloretin in the model plant Arabidopsis and to promote phloretin as a new prospective eco-friendly phytotoxic compound. Phloretin treatment induced a significant dose-dependent growth retardation and severe morphological abnormalities and agravitropic behavior in Arabidopsis seedlings. Histological examination revealed a reduced starch content in the columella cells and a serious disturbance in root architecture, which resulted in the reduction in length of meristematic and elongation zones. Significantly disturbed auxin metabolome profile in roots with a particularly increased content of IAA accumulated in the lateral parts of the root apex, accompanied by changes in the expression of auxin biosynthetic and transport genes, especially PIN1, PIN3, PIN7, and ABCB1, indicates the role of auxin in physiological basis of phloretin-induced growth retardation. The results reveal a disturbance of auxin homeostasis as the main mechanism of phytotoxic action of phloretin. This mechanism makes phloretin a prospective candidate for an eco-friendly bioherbicide and paves the way for further research of phloretin role in ARD.
Collapse
Affiliation(s)
- Dijana Smailagić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Nevena Banjac
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Slavica Ninković
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Jelena Savić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tatjana Ćosić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czechia
| | - Dušica Ćalić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milica Bogdanović
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Milena Trajković
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Mariana Stanišić
- Institute for Biological Research “Siniša Stanković” – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
37
|
Mellor NL, Voß U, Ware A, Janes G, Barrack D, Bishopp A, Bennett MJ, Geisler M, Wells DM, Band LR. Systems approaches reveal that ABCB and PIN proteins mediate co-dependent auxin efflux. THE PLANT CELL 2022; 34:2309-2327. [PMID: 35302640 PMCID: PMC9134068 DOI: 10.1093/plcell/koac086] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/10/2022] [Indexed: 05/11/2023]
Abstract
Members of the B family of membrane-bound ATP-binding cassette (ABC) transporters represent key components of the auxin efflux machinery in plants. Over the last two decades, experimental studies have shown that modifying ATP-binding cassette sub-family B (ABCB) expression affects auxin distribution and plant phenotypes. However, precisely how ABCB proteins transport auxin in conjunction with the more widely studied family of PIN-formed (PIN) auxin efflux transporters is unclear, and studies using heterologous systems have produced conflicting results. Here, we integrate ABCB localization data into a multicellular model of auxin transport in the Arabidopsis thaliana root tip to predict how ABCB-mediated auxin transport impacts organ-scale auxin distribution. We use our model to test five potential ABCB-PIN regulatory interactions, simulating the auxin dynamics for each interaction and quantitatively comparing the predictions with experimental images of the DII-VENUS auxin reporter in wild-type and abcb single and double loss-of-function mutants. Only specific ABCB-PIN regulatory interactions result in predictions that recreate the experimentally observed DII-VENUS distributions and long-distance auxin transport. Our results suggest that ABCBs enable auxin efflux independently of PINs; however, PIN-mediated auxin efflux is predominantly through a co-dependent efflux where co-localized with ABCBs.
Collapse
Affiliation(s)
| | | | - Alexander Ware
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - George Janes
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Duncan Barrack
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Anthony Bishopp
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Malcolm J Bennett
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - Darren M Wells
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
38
|
Karannagoda N, Spokevicius A, Hussey S, Cassan-Wang H, Grima-Pettenati J, Bossinger G. Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. PLANT MOLECULAR BIOLOGY 2022; 109:51-65. [PMID: 35292886 PMCID: PMC9072461 DOI: 10.1007/s11103-022-01255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.
Collapse
Affiliation(s)
- Nadeeshani Karannagoda
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia.
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, Victoria, 3083, Australia.
| | - Antanas Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| | - Steven Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| |
Collapse
|
39
|
Perico C, Tan S, Langdale JA. Developmental regulation of leaf venation patterns: monocot versus eudicots and the role of auxin. THE NEW PHYTOLOGIST 2022; 234:783-803. [PMID: 35020214 PMCID: PMC9994446 DOI: 10.1111/nph.17955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Organisation and patterning of the vascular network in land plants varies in different taxonomic, developmental and environmental contexts. In leaves, the degree of vascular strand connectivity influences both light and CO2 harvesting capabilities as well as hydraulic capacity. As such, developmental mechanisms that regulate leaf venation patterning have a direct impact on physiological performance. Development of the leaf venation network requires the specification of procambial cells within the ground meristem of the primordium and subsequent proliferation and differentiation of the procambial lineage to form vascular strands. An understanding of how diverse venation patterns are manifest therefore requires mechanistic insight into how procambium is dynamically specified in a growing leaf. A role for auxin in this process was identified many years ago, but questions remain. In this review we first provide an overview of the diverse venation patterns that exist in land plants, providing an evolutionary perspective. We then focus on the developmental regulation of leaf venation patterns in angiosperms, comparing patterning in eudicots and monocots, and the role of auxin in each case. Although common themes emerge, we conclude that the developmental mechanisms elucidated in eudicots are unlikely to fully explain how parallel venation patterns in monocot leaves are elaborated.
Collapse
Affiliation(s)
- Chiara Perico
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Sovanna Tan
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| | - Jane A. Langdale
- Department of Plant SciencesUniversity of OxfordSouth Parks RdOxfordOX1 3RBUK
| |
Collapse
|
40
|
Jenness MK, Tayengwa R, Bate GA, Tapken W, Zhang Y, Pang C, Murphy AS. Loss of Multiple ABCB Auxin Transporters Recapitulates the Major twisted dwarf 1 Phenotypes in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:840260. [PMID: 35528937 PMCID: PMC9069160 DOI: 10.3389/fpls.2022.840260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
FK506-BINDING PROTEIN 42/TWISTED DWARF 1 (FKBP42/TWD1) directly regulates cellular trafficking and activation of multiple ATP-BINDING CASSETTE (ABC) transporters from the ABCB and ABCC subfamilies. abcb1 abcb19 double mutants exhibit remarkable phenotypic overlap with twd1 including severe dwarfism, stamen elongation defects, and compact circinate leaves; however, twd1 mutants exhibit greater loss of polar auxin transport and additional helical twisting of roots, inflorescences, and siliques. As abcc1 abcc2 mutants do not exhibit any visible phenotypes and TWD1 does not interact with PIN or AUX1/LAX auxin transporters, loss of function of other ABCB auxin transporters is hypothesized to underly the remaining morphological phenotypes. Here, gene expression, mutant analyses, pharmacological inhibitor studies, auxin transport assays, and direct auxin quantitations were used to determine the relative contributions of loss of other reported ABCB auxin transporters (4, 6, 11, 14, 20, and 21) to twd1 phenotypes. From these analyses, the additional reduction in plant height and the twisted inflorescence, root, and silique phenotypes observed in twd1 compared to abcb1 abcb19 result from loss of ABCB6 and ABCB20 function. Additionally, abcb6 abcb20 root twisting exhibited the same sensitivity to the auxin transport inhibitor 1-napthalthalamic acid as twd1 suggesting they are the primary contributors to these auxin-dependent organ twisting phenotypes. The lack of obvious phenotypes in higher order abcb4 and abcb21 mutants suggests that the functional loss of these transporters does not contribute to twd1 root or shoot twisting. Analyses of ABCB11 and ABCB14 function revealed capacity for auxin transport; however, their activities are readily outcompeted by other substrates, suggesting alternate functions in planta, consistent with a spectrum of relative substrate affinities among ABCB transporters. Overall, the results presented here suggest that the ABCB1/19 and ABCB6/20 pairs represent the primary long-distance ABCB auxin transporters in Arabidopsis and account for all reported twd1 morphological phenotypes. Other ABCB transporters appear to participate in highly localized auxin streams or mobilize alternate transport substrates.
Collapse
Affiliation(s)
- Mark K. Jenness
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Reuben Tayengwa
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Gabrielle A. Bate
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Wiebke Tapken
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Changxu Pang
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Angus S. Murphy
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| |
Collapse
|
41
|
New Insights into Evolution of the ABC Transporter Family in Mesostigma viride, a Unicellular Charophyte Algae. Curr Issues Mol Biol 2022; 44:1646-1660. [PMID: 35723370 PMCID: PMC9164057 DOI: 10.3390/cimb44040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 11/17/2022] Open
Abstract
ATP-binding cassette (ABC) transporters play an important role in driving the exchange of multiple molecules across cell membranes. The plant ABC transporter family is among the largest protein families, and recent progress has advanced our understanding of ABC classification. However, the ancestral form and deep origin of plant ABCs remain elusive. In this study, we identified 59 ABC transporters in Mesostigma viride, a unicellular charophyte algae that represents the earliest diverging lineage of streptophytes, and 1034 ABCs in genomes representing a broad taxonomic sampling from distantly related plant evolutionary lineages, including chlorophytes, charophytes, bryophytes, lycophytes, gymnosperms, basal angiosperms, monocots, and eudicots. We classified the plant ABC transporters by comprehensive phylogenetic analysis of each subfamily. Our analysis revealed the ancestral type of ABC proteins as well as duplication and gene loss during plant evolution, contributing to our understanding of the functional conservation and diversity of this family. In summary, this study provides new insight into the origin and evolution of plant ABC transporters.
Collapse
|
42
|
Carignano A, Chen DH, Mallory C, Wright RC, Seelig G, Klavins E. Modular, robust and extendible multicellular circuit design in yeast. eLife 2022; 11:74540. [PMID: 35312478 PMCID: PMC9000959 DOI: 10.7554/elife.74540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/20/2022] [Indexed: 11/13/2022] Open
Abstract
Division of labor between cells is ubiquitous in biology but the use of multi-cellular consortia for engineering applications is only beginning to be explored. A significant advantage of multi-cellular circuits is their potential to be modular with respect to composition but this claim has not yet been extensively tested using experiments and quantitative modeling. Here, we construct a library of 24 yeast strains capable of sending, receiving or responding to three molecular signals, characterize them experimentally and build quantitative models of their input-output relationships. We then compose these strains into two- and three-strain cascades as well as a four-strain bistable switch and show that experimentally measured consortia dynamics can be predicted from the models of the constituent parts. To further explore the achievable range of behaviors, we perform a fully automated computational search over all two-, three- and four-strain consortia to identify combinations that realize target behaviors including logic gates, band-pass filters and time pulses. Strain combinations that are predicted to map onto a target behavior are further computationally optimized and then experimentally tested. Experiments closely track computational predictions. The high reliability of these model descriptions further strengthens the feasibility and highlights the potential for distributed computing in synthetic biology.
Collapse
Affiliation(s)
- Alberto Carignano
- Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
| | - Dai Hua Chen
- Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
| | - Cannon Mallory
- Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
| | | | - Georg Seelig
- Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
| | - Eric Klavins
- Department of Electrical and Computer Engineering, University of Washington, Seattle, United States
| |
Collapse
|
43
|
Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines. Life (Basel) 2022; 12:life12020282. [PMID: 35207570 PMCID: PMC8875087 DOI: 10.3390/life12020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is sensitive to a minor decrease in temperature at early growth stages, resulting in deteriorated growth at later stages. Although there are significant variations in maize germplasm in response to cold stress, the metabolic responses as stress tolerance mechanisms are largely unknown. Therefore, this study aimed at providing insight into the metabolic responses under cold stress at the early growth stages of maize. Two inbred lines, tolerant (B144) and susceptible (Q319), were subjected to cold stress at the seedling stage, and their corresponding metabolic profiles were explored. The study identified differentially accumulated metabolites in both cultivars in response to induced cold stress with nine core conserved cold-responsive metabolites. Guanosine 3′,5′-cyclic monophosphate was detected as a potential biomarker metabolite to differentiate cold tolerant and sensitive maize genotypes. Furthermore, Quercetin-3-O-(2″′-p-coumaroyl)sophoroside-7-O-glucoside, Phloretin, Phloretin-2′-O-glucoside, Naringenin-7-O-Rutinoside, L-Lysine, L-phenylalanine, L-Glutamine, Sinapyl alcohol, and Feruloyltartaric acid were regulated explicitly in B144 and could be important cold-tolerance metabolites. These results increase our understanding of cold-mediated metabolic responses in maize that can be further utilized to enhance cold tolerance in this significant crop.
Collapse
|
44
|
Banasiak J, Jasiński M. ATP-binding cassette transporters in nonmodel plants. THE NEW PHYTOLOGIST 2022; 233:1597-1612. [PMID: 34614235 DOI: 10.1111/nph.17779] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Knowledge about plant ATP-binding cassette (ABC) proteins is of great value for sustainable agriculture, economic yield, and the generation of high-quality products, especially under unfavorable growth conditions. We have learned much about ABC proteins in model organisms, notably Arabidopsis thaliana; however, the importance of research dedicated to these transporters extends far beyond Arabidopsis biology. Recent progress in genomic and transcriptomic approaches for nonmodel and noncanonical model plants allows us to look at ABC transporters from a wider perspective and consider chemodiversity and functionally driven adaptation as distinctive mechanisms during their evolution. Here, by considering several representatives from agriculturally important families and recent progress in functional characterization of nonArabidopsis ABC proteins, we aim to bring attention to understanding the evolutionary background, distribution among lineages and possible mechanisms underlying the adaptation of this versatile transport system for plant needs. Increasing the knowledge of ABC proteins in nonmodel plants will facilitate breeding and development of new varieties based on, for example, genetic variations of endogenous genes and/or genome editing, representing an alternative to transgenic approaches.
Collapse
Affiliation(s)
- Joanna Banasiak
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
| | - Michał Jasiński
- Department of Plant Molecular Physiology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego 12/14, 61-704, Poznań, Poland
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Dojazd 11, 60-632, Poznań, Poland
| |
Collapse
|
45
|
Abstract
From embryogenesis to fruit formation, almost every aspect of plant development and differentiation is controlled by the cellular accumulation or depletion of auxin from cells and tissues. The respective auxin maxima and minima are generated by cell-to-cell auxin transport via transporter proteins. Differential auxin accumulation as a result of such transport processes dynamically regulates auxin distribution during differentiation. In this review, we introduce all auxin transporter (families) identified to date and discuss the knowledge on prominent family members, namely, the PIN-FORMED exporters, ATP-binding cassette B (ABCB)-type transporters, and AUX1/LAX importers. We then concentrate on the biochemical features of these transporters and their regulation by posttranslational modifications and interactors.
Collapse
Affiliation(s)
- Ulrich Z Hammes
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Angus S Murphy
- Department of Plant Science and Landscape Architecture
- Agriculture Biotechnology Center, University of Maryland, College Park, Maryland 20742, USA
| | - Claus Schwechheimer
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
46
|
Wang W, Gao H, Liang Y, Li J, Wang Y. Molecular basis underlying rice tiller angle: Current progress and future perspectives. MOLECULAR PLANT 2022; 15:125-137. [PMID: 34896639 DOI: 10.1016/j.molp.2021.12.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 05/20/2023]
Abstract
Crop plant architecture is an important agronomic trait that contributes greatly to crop yield. Tiller angle is one of the most critical components that determine crop plant architecture, which in turn substantially affects grain yield mainly owing to its large influence on plant density. Gravity is a fundamental physical force that acts on all organisms on earth. Plant organs sense gravity to control their growth orientation, including tiller angle in rice (Oryza sativa). This review summarizes recent research advances made using rice tiller angle as a research model, providing insights into domestication of rice tiller angle, genetic regulation of rice tiller angle, and shoot gravitropism. Finally, we propose that current discoveries in rice can shed light on shoot gravitropism and improvement of plant tiller/branch angle in other species, thereby contributing to agricultural production in the future.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Hengbin Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Liang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jiayang Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yonghong Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China; Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
47
|
Mishra BS, Sharma M, Laxmi A. Role of sugar and auxin crosstalk in plant growth and development. PHYSIOLOGIA PLANTARUM 2022; 174:e13546. [PMID: 34480799 DOI: 10.1111/ppl.13546] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/27/2021] [Accepted: 08/30/2021] [Indexed: 05/07/2023]
Abstract
Under the natural environment, nutrient signals interact with phytohormones to coordinate and reprogram plant growth and survival. Sugars are important molecules that control almost all morphological and physiological processes in plants, ranging from seed germination to senescence. In addition to their functions as energy resources, osmoregulation, storage molecules, and structural components, sugars function as signaling molecules and interact with various plant signaling pathways, such as hormones, stress, and light to modulate growth and development according to fluctuating environmental conditions. Auxin, being an important phytohormone, is associated with almost all stages of the plant's life cycle and also plays a vital role in response to the dynamic environment for better growth and survival. In the previous years, substantial progress has been made that showed a range of common responses mediated by sugars and auxin signaling. This review discusses how sugar signaling affects auxin at various levels from its biosynthesis to perception and downstream gene activation. On the same note, the review also highlights the role of auxin signaling in fine-tuning sugar metabolism and carbon partitioning. Furthermore, we discussed the crosstalk between the two signaling machineries in the regulation of various biological processes, such as gene expression, cell cycle, development, root system architecture, and shoot growth. In conclusion, the review emphasized the role of sugar and auxin crosstalk in the regulation of several agriculturally important traits. Thus, engineering of sugar and auxin signaling pathways could potentially provide new avenues to manipulate for agricultural purposes.
Collapse
Affiliation(s)
- Bhuwaneshwar Sharan Mishra
- National Institute of Plant Genome Research, New Delhi, India
- Bhuwaneshwar Sharan Mishra, Ram Gulam Rai P. G. College Banktashiv, Affiliated to Deen Dayal Upadhyaya Gorakhpur University Gorakhpur, Deoria, Uttar Pradesh, India
| | - Mohan Sharma
- National Institute of Plant Genome Research, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, New Delhi, India
| |
Collapse
|
48
|
Do THT, Martinoia E, Lee Y, Hwang JU. 2021 update on ATP-binding cassette (ABC) transporters: how they meet the needs of plants. PLANT PHYSIOLOGY 2021; 187:1876-1892. [PMID: 35235666 PMCID: PMC8890498 DOI: 10.1093/plphys/kiab193] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 04/10/2021] [Indexed: 05/02/2023]
Abstract
Recent developments in the field of ABC proteins including newly identified functions and regulatory mechanisms expand the understanding of how they function in the development and physiology of plants.
Collapse
Affiliation(s)
- Thanh Ha Thi Do
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
| | - Enrico Martinoia
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Plant and Microbial Biology, University Zurich, Zurich 8008, Switzerland
| | - Youngsook Lee
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Department of Life Sciences, POSTECH, Pohang 37673, South Korea
| | - Jae-Ung Hwang
- Division of Integrative Bioscience and Biotechnology, POSTECH, Pohang, 37673, South Korea
- Author for communication:
| |
Collapse
|
49
|
Deslauriers SD, Spalding EP. Electrophysiological study of Arabidopsis ABCB4 and PIN2 auxin transporters: Evidence of auxin activation and interaction enhancing auxin selectivity. PLANT DIRECT 2021; 5:e361. [PMID: 34816076 PMCID: PMC8595762 DOI: 10.1002/pld3.361] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/21/2021] [Indexed: 05/25/2023]
Abstract
Polar auxin transport through plant tissue strictly requires polarly localized PIN proteins and uniformly distributed ABCB proteins. A functional synergy between the two types of membrane protein where their localizations overlap may create the degree of asymmetric auxin efflux required to produce polar auxin transport. We investigated this possibility by expressing ABCB4 and PIN2 in human embryonic kidney cells and measuring whole-cell ionic currents with the patch-clamp technique and CsCl-based electrolytes. ABCB4 activity was 1.81-fold more selective for Cl- over Cs+ and for PIN2 the value was 2.95. We imposed auxin gradients and determined that ABCB4 and PIN2 were 12-fold more permeable to the auxin anion (IAA-) than Cl-. This measure of the intrinsic selectivity of the transport pathway was 21-fold when ABCB4 and PIN2 were co-expressed. If this increase occurs in plants, it could explain why asymmetric PIN localization is not sufficient to create polar auxin flow. Some form of co-action or synergy between ABCB4 and PIN2 that increases IAA- selectivity at the cell face where both occur may be important. We also found that auxin stimulated ABCB4 activity, which may contribute to a self-reinforcement of auxin transport known as canalization.
Collapse
Affiliation(s)
- Stephen D. Deslauriers
- Department of BotanyUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Division of Science and MathUniversity of MinnesotaMorrisMNUSA
| | | |
Collapse
|
50
|
Yang Y, Huang Q, Wang X, Mei J, Sharma A, Tripathi DK, Yuan H, Zheng B. Genome-wide identification and expression profiles of ABCB gene family in Chinese hickory (Carya cathayensis Sarg.) during grafting. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:477-487. [PMID: 34757298 DOI: 10.1016/j.plaphy.2021.10.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/09/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Chinese hickory (Carya cathayensis Sarg.) is an important nut tree species native to China. Excessive plant height and long juvenile phase has restricted development of its industry. Recently, grafting has been used increasingly in production practice of this species to solve the problems above. Previous studies have proved the importance of auxin during Chinese hickory grafting. However, the function of ATP-binding cassette subfamily B (ABCB) genes during Chinese hickory grafting is less studied. In this study, 23 ABCB genes were identified and characterized in Chinese hickory (CcABCBs). The expression profiles of auxin-related ABCBs among tissues, under auxin-related phytohormone treatments and during grafting were determined. CcABCB proteins were divided into half-size and full-size transporters. Many phytohormone-related cis-acting regulatory elements were detected on the promoters of CcABCB genes. Four CcABCB genes homologous to auxin-related AtABCB1, 6, 19 and 20 in Arabidopsis were selected for expression analysis. The four genes displayed varying expression patterns in different tissues of Chinese hickory. Expressions of the four CcABCB genes were regulated by auxin-related phytohormones to varying degrees. Expression levels of the four genes were significantly changed at different stages of grafting, especially 7 days after grafting, indicating their involvement of auxin homeostasis regulation during grafting. In addition, the expressions of CcABCB1 were regulated by IAA and NPA treatments during grafting in comparison with CK treatment, while expressions of the other 3 CcABCB genes were slightly affected. This study will lay the foundation for understanding the potential regulatory roles of CcABCB genes during Chinese hickory grafting.
Collapse
Affiliation(s)
- Ying Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Qiaoyu Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Jiaqi Mei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | - Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China
| | | | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China.
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China; College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|