1
|
Farkas P, Fitzpatrick TB. Two pyridoxal phosphate homeostasis proteins are essential for management of the coenzyme pyridoxal 5'-phosphate in Arabidopsis. THE PLANT CELL 2024; 36:3689-3708. [PMID: 38954500 PMCID: PMC11371154 DOI: 10.1093/plcell/koae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 07/04/2024]
Abstract
Coenzyme management is important for homeostasis of the pool of active metabolic enzymes. The coenzyme pyridoxal 5'-phosphate (PLP) is involved in diverse enzyme reactions including amino acid and hormone metabolism. Regulatory proteins that contribute to PLP homeostasis remain to be explored in plants. Here, we demonstrate the importance of proteins annotated as PLP homeostasis proteins (PLPHPs) for controlling PLP in Arabidopsis (Arabidopsis thaliana). A systematic analysis indicates that while most organisms across kingdoms have a single PLPHP homolog, Angiosperms have two. PLPHPs from Arabidopsis bind PLP and exist as monomers, in contrast to reported PLP-dependent enzymes, which exist as multimers. Disrupting the function of both PLPHP homologs perturbs vitamin B6 (pyridoxine) content, inducing a PLP deficit accompanied by light hypersensitive root growth, unlike PLP biosynthesis mutants. Micrografting studies show that the PLP deficit can be relieved distally between shoots and roots. Chemical treatments probing PLP-dependent reactions, notably those for auxin and ethylene, provide evidence that PLPHPs function in the dynamic management of PLP. Assays in vitro show that Arabidopsis PLPHP can coordinate PLP transfer and withdrawal from other enzymes. This study thus expands our knowledge of vitamin B6 biology and highlights the importance of PLP coenzyme homeostasis in plants.
Collapse
Affiliation(s)
- Peter Farkas
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Vitamins & Environmental Stress Responses in Plants, Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
2
|
Fitzpatrick TB. B Vitamins: An Update on Their Importance for Plant Homeostasis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:67-93. [PMID: 38424064 DOI: 10.1146/annurev-arplant-060223-025336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
B vitamins are a source of coenzymes for a vast array of enzyme reactions, particularly those of metabolism. As metabolism is the basis of decisions that drive maintenance, growth, and development, B vitamin-derived coenzymes are key components that facilitate these processes. For over a century, we have known about these essential compounds and have elucidated their pathways of biosynthesis, repair, salvage, and degradation in numerous organisms. Only now are we beginning to understand their importance for regulatory processes, which are becoming an important topic in plants. Here, I highlight and discuss emerging evidence on how B vitamins are integrated into vital processes, from energy generation and nutrition to gene expression, and thereby contribute to the coordination of growth and developmental programs, particularly those that concern maintenance of a stable state, which is the foundational tenet of plant homeostasis.
Collapse
|
3
|
Parra M, Coppola M, Hellmann H. PDX proteins from Arabidopsis thaliana as novel substrates of cathepsin B: implications for vitamin B 6 biosynthesis regulation. FEBS J 2024; 291:2372-2387. [PMID: 38431778 DOI: 10.1111/febs.17110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
Vitamin B6 is a critical molecule for metabolism, development, and stress sensitivity in plants. It is a cofactor for numerous biochemical reactions, can serve as an antioxidant, and has the potential to increase tolerance against both biotic and abiotic stressors. Due to the importance of vitamin B6, its biosynthesis is likely tightly regulated. Plants can synthesize vitamin B6 de novo via the concerted activity of Pyridoxine Biosynthesis Protein 1 (PDX1) and PDX2. Previously, PDX proteins have been identified as targets for ubiquitination, indicating they could be marked for degradation by two highly conserved pathways: the Ubiquitin Proteasome Pathway (UPP) and the autophagy pathway. Initial experiments show that PDXs are in fact degraded, but surprisingly, in a ubiquitin-independent manner. Inhibitor studies pointed toward cathepsin B, a conserved lysosomal cysteine protease, which is implicated in both programed cell death and autophagy in humans and plants. In plants, cathepsin Bs are poorly described, and no confirmed substrates have been identified. Here, we present PDX proteins from Arabidopsis thaliana as interactors and substrates of a plant Cathepsin B. These findings not only describe a novel cathepsin B substrate in plants, but also provide new insights into how plants regulate de novo biosynthesis of vitamin B6.
Collapse
Affiliation(s)
- Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | | | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| |
Collapse
|
4
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
5
|
Sun Y, Zhou Y, Long Q, Xing J, Guo P, Liu Y, Zhang C, Zhang Y, Fernie AR, Shi Y, Luo Y, Luo J, Jin C. OsBCAT2, a gene responsible for the degradation of branched-chain amino acids, positively regulates salt tolerance by promoting the synthesis of vitamin B5. THE NEW PHYTOLOGIST 2024; 241:2558-2574. [PMID: 38258425 DOI: 10.1111/nph.19551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024]
Abstract
Salt stress negatively affects rice growth, development and yield. Metabolic adjustments contribute to the adaptation of rice under salt stress. Branched-chain amino acids (BCAA) are three essential amino acids that cannot be synthesized by humans or animals. However, little is known about the role of BCAA in response to salt stress in plants. Here, we showed that BCAAs may function as scavengers of reactive oxygen species (ROS) to provide protection against damage caused by salinity. We determined that branched-chain aminotransferase 2 (OsBCAT2), a protein responsible for the degradation of BCAA, positively regulates salt tolerance. Salt significantly induces the expression of OsBCAT2 rather than BCAA synthesis genes, which indicated that salt mainly promotes BCAA degradation and not de novo synthesis. Metabolomics analysis revealed that vitamin B5 (VB5) biosynthesis pathway intermediates were higher in the OsBCAT2-overexpressing plants but lower in osbcat2 mutants under salt stress. The salt stress-sensitive phenotypes of the osbcat2 mutants are rescued by exogenous VB5, indicating that OsBCAT2 affects rice salt tolerance by regulating VB5 synthesis. Our work provides new insights into the enzymes involved in BCAAs degradation and VB5 biosynthesis and sheds light on the molecular mechanism of BCAAs in response to salt stress.
Collapse
Affiliation(s)
- Yangyang Sun
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
- Sanya Research Institute of Hainan Academy of Agricultural Sciences, Sanya, 572025, China
| | - Yutong Zhou
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Qiyuan Long
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Junwei Xing
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Peizhen Guo
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yanchen Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Changjian Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Yuanyuan Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Yuheng Shi
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Yuehua Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- Yazhouwan National Laboratory, Sanya, 572025, China
| | - Cheng Jin
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan, 570288, China
| |
Collapse
|
6
|
Wang Y, Wang B, Chen J, Sun L, Hou Y, Wang Y, Wang J, Gan J, Barmukh R, Li S, Fan Z, Bao P, Cao B, Cai C, Jing X, Singh BK, Varshney RK, Zhao H. Dynamics of rhizosphere microbial structure and function associated with the biennial bearing of moso bamboo. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119977. [PMID: 38160549 DOI: 10.1016/j.jenvman.2023.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/10/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Moso bamboo (Phyllostachys edulis) is a valuable nontimber forestry product with a biennial cycle, producing abundant bamboo shoots within one year (on-year) and few shoots within the following year (off-year). Moso bamboo plants undergo clonal reproduction, resulting in similar genetic backgrounds. However, the number of moso bamboo shoots produced each year varies. Despite this variation, the impact of soil nutrients and the root microbiome on the biennial bearing of moso bamboo is poorly understood. We collected 139 soil samples and determined 14 major physicochemical properties of the rhizosphere, rhizoplane, and bulk soil in different seasons (i.e., the growing and deciduous seasons) and different years (i.e., on- and off-years). Based on 16S rRNA and metagenomic sequencing, major variations were found in the rhizospheric microbial composition during different seasons and years in the moso bamboo forest. Environmental driver analysis revealed that essential nutrients (i.e., SOC, TOC, TN, P, and NH4+) were the main drivers of the soil microbial community composition and were correlated with the on- and off-year cycles. Moreover, 19 MAGs were identified as important biomarkers that could distinguish on- and off-years. We found that both season and year influenced both the microbial community structure and functional pathways through the biosynthesis of nutrients that potentially interact with the moso bamboo growth rhythm, especially the on-year root-associated microbiome, which had a greater abundance of specific nutrients such as gibberellins and vitamin B6. This work provides a dynamic perspective of the differential responses of various on- and off-year microbial communities and enhances our understanding of bamboo soil microbiome biodiversity and stability.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | | | - Jianwei Chen
- BGI Research, Qingdao 266555, China; Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Lei Sun
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Yinguang Hou
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | | | - Jiongliang Wang
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China; State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Huangpu District, Guangzhou 510530, China
| | - Junwei Gan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Rutwik Barmukh
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Shanying Li
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Zeyu Fan
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Pengfei Bao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Bingchen Cao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China
| | - Chunju Cai
- Changning Bamboo Forest Ecosystem National Research Station, Yibin, Sichuan 644300, China
| | - Xiong Jing
- National Agricultural Exhibition Center/China Agricultural Museum, Beijing 100125, China
| | - Brajesh K Singh
- Global Centre for Land-Based Innovation, Hawkesbury Institute for the Environment Western Sydney University, Penrith, NSW 2751, Australia
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia.
| | - Hansheng Zhao
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Centre for Bamboo and Rattan, Beijing 100102, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China; Key Laboratory of National Forestry and Grassland Administration/Beijing for Bamboo & Rattan Science and Technology, Beijing 100102, China.
| |
Collapse
|
7
|
Ojosnegros S, Alvarez JM, Grossmann J, Gagliardini V, Quintanilla LG, Grossniklaus U, Fernández H. The Shared Proteome of the Apomictic Fern Dryopteris affinis ssp. affinis and Its Sexual Relative Dryopteris oreades. Int J Mol Sci 2022; 23:ijms232214027. [PMID: 36430514 PMCID: PMC9693225 DOI: 10.3390/ijms232214027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Ferns are a diverse evolutionary lineage, sister to the seed plants, which is of great ecological importance and has a high biotechnological potential. Fern gametophytes represent one of the simplest autotrophic, multicellular plant forms and show several experimental advantages, including a simple and space-efficient in vitro culture system. However, the molecular basis of fern growth and development has hardly been studied. Here, we report on a proteomic study that identified 417 proteins shared by gametophytes of the apogamous fern Dryopteris affinis ssp. affinis and its sexual relative Dryopteris oreades. Most proteins are predicted to localize to the cytoplasm, the chloroplast, or the nucleus, and are linked to enzymatic, binding, and structural activities. A subset of 145 proteins are involved in growth, reproduction, phytohormone signaling and biosynthesis, and gene expression, including homologs of SHEPHERD (SHD), HEAT SHOCK PROTEIN 90-5 (CR88), TRP4, BOBBER 1 (BOB1), FLAVONE 3'-O-METHYLTRANSFERASE 1 (OMT1), ZEAXANTHIN EPOXIDASE (ABA1), GLUTAMATE DESCARBOXYLASE 1 (GAD), and dsRNA-BINDING DOMAIN-LIKE SUPERFAMILY PROTEIN (HLY1). Nearly 25% of the annotated proteins are associated with responses to biotic and abiotic stimuli. As for biotic stress, the proteins PROTEIN SGT1 HOMOLOG B (SGT1B), SUPPRESSOR OF SA INSENSITIVE2 (SSI2), PHOSPHOLIPASE D ALPHA 1 (PLDALPHA1), SERINE/THREONINE-PROTEIN KINASE SRK2E (OST1), ACYL CARRIER PROTEIN 4 (ACP4), and NONHOST RESISTANCE TO P. S. PHASEOLICOLA1 (GLPK) are worth mentioning. Regarding abiotic stimuli, we found proteins associated with oxidative stress: SUPEROXIDE DISMUTASE[CU-ZN] 1 (CSD1), and GLUTATHIONE S-TRANSFERASE U19 (GSTU19), light intensity SERINE HYDROXYMETHYLTRANSFERASE 1 (SHM1) and UBIQUITIN-CONJUGATING ENZYME E2 35 (UBC35), salt and heavy metal stress included MITOCHONDRIAL PHOSPHATE CARRIER PROTEIN 3 (PHT3;1), as well as drought and thermotolerance: LEA7, DEAD-BOX ATP-DEPENDENT RNA HELICASE 38 (LOS4), and abundant heat-shock proteins and other chaperones. In addition, we identified interactomes using the STRING platform, revealing protein-protein associations obtained from co-expression, co-occurrence, text mining, homology, databases, and experimental datasets. By focusing on ferns, this proteomic study increases our knowledge on plant development and evolution, and may inspire future applications in crop species.
Collapse
Affiliation(s)
- Sara Ojosnegros
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - José Manuel Alvarez
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
| | - Jonas Grossmann
- Functional Genomic Center Zurich, University and ETH Zurich, 8092 Zurich, Switzerland
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Valeria Gagliardini
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Luis G. Quintanilla
- Department of Biology and Geology, Physics and Inorganic Chemistry, University Rey Juan Carlos, 28933 Móstoles, Spain
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, 8006 Zurich, Switzerland
| | - Helena Fernández
- Area of Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33071 Oviedo, Spain
- Correspondence: ; Tel.: +34-985-104-811
| |
Collapse
|
8
|
Yasir M, Kanwal HH, Hussain Q, Riaz MW, Sajjad M, Rong J, Jiang Y. Status and prospects of genome-wide association studies in cotton. FRONTIERS IN PLANT SCIENCE 2022; 13:1019347. [PMID: 36330239 PMCID: PMC9623101 DOI: 10.3389/fpls.2022.1019347] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Over the last two decades, the use of high-density SNP arrays and DNA sequencing have allowed scientists to uncover the majority of the genotypic space for various crops, including cotton. Genome-wide association study (GWAS) links the dots between a phenotype and its underlying genetics across the genomes of populations. It was first developed and applied in the field of human disease genetics. Many areas of crop research have incorporated GWAS in plants and considerable literature has been published in the recent decade. Here we will provide a comprehensive review of GWAS studies in cotton crop, which includes case studies on biotic resistance, abiotic tolerance, fiber yield and quality traits, current status, prospects, bottlenecks of GWAS and finally, thought-provoking question. This review will serve as a catalog of GWAS in cotton and suggest new frontiers of the cotton crop to be studied with this important tool.
Collapse
Affiliation(s)
- Muhammad Yasir
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Hafiza Hamrah Kanwal
- School of Computer Science, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Waheed Riaz
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Muhammad Sajjad
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Junkang Rong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yurong Jiang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
9
|
Lu C, Tian Y, Hou X, Hou X, Jia Z, Li M, Hao M, Jiang Y, Wang Q, Pu Q, Yin Z, Li Y, Liu B, Kang X, Zhang G, Ding X, Liu Y. Multiple forms of vitamin B 6 regulate salt tolerance by balancing ROS and abscisic acid levels in maize root. STRESS BIOLOGY 2022; 2:39. [PMID: 37676445 PMCID: PMC10441934 DOI: 10.1007/s44154-022-00061-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/22/2022] [Indexed: 09/08/2023]
Abstract
Salt stress causes osmotic stress, ion toxicity and oxidative stress, inducing the accumulation of abscisic acid (ABA) and excessive reactive oxygen species (ROS) production, which further damage cell structure and inhibit the development of roots in plants. Previous study showed that vitamin B6 (VB6) plays a role in plant responses to salt stress, however, the regulatory relationship between ROS, VB6 and ABA under salt stress remains unclear yet in plants. In our study, we found that salt stress-induced ABA accumulation requires ROS production, in addition, salt stress also promoted VB6 (including pyridoxamine (PM), pyridoxal (PL), pyridoxine (PN), and pyridoxal 5'-phosphate (PLP)) accumulation, which involved in ROS scavenging and ABA biosynthesis. Furthermore, VB6-deficient maize mutant small kernel2 (smk2) heterozygous is more susceptible to salt stress, and which failed to scavenge excessive ROS effectively or induce ABA accumulation in maize root under salt stress, interestingly, which can be restored by exogenous PN and PLP, respectively. According to these results, we proposed that PN and PLP play an essential role in balancing ROS and ABA levels under salt stress, respectively, it laid a foundation for VB6 to be better applied in crop salt resistance than ABA.
Collapse
Affiliation(s)
- Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yuan Tian
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xuanxuan Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Xin Hou
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zichang Jia
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Min Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Mingxia Hao
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Qingbin Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Shandong Pengbo Biotechnology Co., LTD, Taian, 271018, China
| | - Qiong Pu
- Shandong Agriculture and Engineering University, Jinan, 250000, Shandong, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
- Yantai Academy of Agricultural Sciences, Yantai, 265500, Shandong, China
| | - Xiaojing Kang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Guangyi Zhang
- Shandong Xinyuan Seed Industry Co., LTD, Taian, 271000, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection; Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
10
|
Liu Z, Farkas P, Wang K, Kohli M, Fitzpatrick TB. B vitamin supply in plants and humans: the importance of vitamer homeostasis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:662-682. [PMID: 35673947 PMCID: PMC9544542 DOI: 10.1111/tpj.15859] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 05/26/2023]
Abstract
B vitamins are a group of water-soluble micronutrients that are required in all life forms. With the lack of biosynthetic pathways, humans depend on dietary uptake of these compounds, either directly or indirectly, from plant sources. B vitamins are frequently given little consideration beyond their role as enzyme accessory factors and are assumed not to limit metabolism. However, it should be recognized that each individual B vitamin is a family of compounds (vitamers), the regulation of which has dedicated pathways. Moreover, it is becoming increasingly evident that individual family members have physiological relevance and should not be sidelined. Here, we elaborate on the known forms of vitamins B1 , B6 and B9 , their distinct functions and importance to metabolism, in both human and plant health, and highlight the relevance of vitamer homeostasis. Research on B vitamin metabolism over the past several years indicates that not only the total level of vitamins but also the oft-neglected homeostasis of the various vitamers of each B vitamin is essential to human and plant health. We briefly discuss the potential of plant biology studies in supporting human health regarding these B vitamins as essential micronutrients. Based on the findings of the past few years we conclude that research should focus on the significance of vitamer homeostasis - at the organ, tissue and subcellular levels - which could improve the health of not only humans but also plants, benefiting from cross-disciplinary approaches and novel technologies.
Collapse
Affiliation(s)
- Zeguang Liu
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Peter Farkas
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Kai Wang
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Morgan‐Océane Kohli
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in Plants, Department of Botany and Plant BiologyUniversity of GenevaQuai Ernest‐Ansermet 30CH‐1211Geneva 4Switzerland
| |
Collapse
|
11
|
Gao M, Gu X, Satterlee T, Duke MV, Scheffler BE, Gold SE, Glenn AE. Transcriptomic Responses of Fusarium verticillioides to Lactam and Lactone Xenobiotics. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:923112. [PMID: 37746160 PMCID: PMC10512309 DOI: 10.3389/ffunb.2022.923112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/12/2022] [Indexed: 09/26/2023]
Abstract
The important cereal crops of maize, rye, and wheat constitutively produce precursors to 2-benzoxazolinone, a phytochemical having antifungal effects towards many Fusarium species. However, Fusarium verticillioides can tolerate 2-benzoxazolinone by converting it into non-toxic metabolites through the synergism of two previously identified gene clusters, FDB1 and FDB2. Inspired by the induction of these two clusters upon exposure to 2-benzoxazolinone, RNA sequencing experiments were carried out by challenging F. verticillioides individually with 2-benzoxazolinone and three related chemical compounds, 2-oxindole, 2-coumaranone, and chlorzoxazone. These compounds all contain lactam and/or lactone moieties, and transcriptional analysis provided inferences regarding the degradation of such lactams and lactones. Besides induction of FDB1 and FDB2 gene clusters, four additional clusters were identified as induced by 2-benzoxazolinone exposure, including a cluster thought to be responsible for biosynthesis of pyridoxine (vitamin B6), a known antioxidant providing tolerance to reactive oxygen species. Three putative gene clusters were identified as induced by challenging F. verticillioides with 2-oxindole, two with 2-coumaranone, and two with chlorzoxazone. Interestingly, 2-benzoxazolinone and 2-oxindole each induced two specific gene clusters with similar composition of enzymatic functions. Exposure to 2-coumranone elicited the expression of the fusaric acid biosynthetic gene cluster. Another gene cluster that may encode enzymes responsible for degrading intermediate catabolic metabolites with carboxylic ester bonds was induced by 2-benzoxazolinone, 2-oxindole, and chlorzoxazone. Also, the induction of a dehalogenase encoding gene during chlorzoxazone exposure suggested its role in the removal of the chlorine atom. Together, this work identifies genes and putative gene clusters responsive to the 2-benzoxazolinone-like compounds with metabolic inferences. Potential targets for future functional analyses are discussed.
Collapse
Affiliation(s)
- Minglu Gao
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Xi Gu
- Institute of Bioinformatics, University of Georgia, Athens, GA, United States
| | - Timothy Satterlee
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Mary V. Duke
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Brian E. Scheffler
- United States Department of Agriculture (USDA), Agricultural Research Service, Genomics and Bioinformatics Research Unit, Stoneville, MS, United States
| | - Scott E. Gold
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| | - Anthony E. Glenn
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. National Poultry Research Center, Toxicology & Mycotoxin Research Unit, Athens, GA, United States
| |
Collapse
|
12
|
Liu H, Lu C, Li Y, Wu T, Zhang B, Liu B, Feng W, Xu Q, Dong H, He S, Chu Z, Ding X. The bacterial effector AvrRxo1 inhibits vitamin B6 biosynthesis to promote infection in rice. PLANT COMMUNICATIONS 2022; 3:100324. [PMID: 35576156 PMCID: PMC9251433 DOI: 10.1016/j.xplc.2022.100324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 06/02/2023]
Abstract
Xanthomonas oryzae pv. oryzicola (Xoc), which causes rice bacterial leaf streak, invades leaves mainly through stomata, which are often closed as a plant immune response against pathogen invasion. How Xoc overcomes stomatal immunity is unclear. Here, we show that the effector protein AvrRxo1, an ATP-dependent protease, enhances Xoc virulence and inhibits stomatal immunity by targeting and degrading rice OsPDX1 (pyridoxal phosphate synthase), thereby reducing vitamin B6 (VB6) levels in rice. VB6 is required for the activity of aldehyde oxidase, which catalyzes the last step of abscisic acid (ABA) biosynthesis, and ABA positively regulates rice stomatal immunity against Xoc. Thus, we provide evidence supporting a model in which a major bacterial pathogen inhibits plant stomatal immunity by directly targeting VB6 biosynthesis and consequently inhibiting the biosynthesis of ABA in guard cells to open stomata. Moreover, AvrRxo1-mediated VB6 targeting also explains the poor nutritional quality, including low VB6 levels, of Xoc-infected rice grains.
Collapse
Affiliation(s)
- Haifeng Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China; College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Tao Wu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Baogang Zhang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Baoyou Liu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Wenjie Feng
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Qian Xu
- College of Agronomy, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Hansong Dong
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China
| | - Shengyang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA; Department of Biology, Duke University, Durham, NC 27708, USA; Howard Hughes Medical Institute, Duke University, Durham, NC 27708, USA
| | - Zhaohui Chu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 Hubei, PR China.
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, 271018 Shandong, PR China.
| |
Collapse
|
13
|
Liu Y, Maniero RA, Giehl RFH, Melzer M, Steensma P, Krouk G, Fitzpatrick TB, von Wirén N. PDX1.1-dependent biosynthesis of vitamin B 6 protects roots from ammonium-induced oxidative stress. MOLECULAR PLANT 2022; 15:820-839. [PMID: 35063660 DOI: 10.1016/j.molp.2022.01.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Despite serving as a major inorganic nitrogen source for plants, ammonium causes toxicity at elevated concentrations, inhibiting root elongation early on. While previous studies have shown that ammonium-inhibited root development relates to ammonium uptake and formation of reactive oxygen species (ROS) in roots, it remains unclear about the mechanisms underlying the repression of root growth and how plants cope with this inhibitory effect of ammonium. In this study, we demonstrate that ammonium-induced apoplastic acidification co-localizes with Fe precipitation and hydrogen peroxide (H2O2) accumulation along the stele of the elongation and differentiation zone in root tips, indicating Fe-dependent ROS formation. By screening ammonium sensitivity in T-DNA insertion lines of ammonium-responsive genes, we identified PDX1.1, which is upregulated by ammonium in the root stele and whose product catalyzes de novo biosynthesis of vitamin B6. Root growth of pdx1.1 mutants is hypersensitive to ammonium, while chemical complementation or overexpression of PDX1.1 restores root elongation. This salvage strategy requires non-phosphorylated forms of vitamin B6 that are able to quench ROS and rescue root growth from ammonium inhibition. Collectively, these results suggest that PDX1.1-mediated synthesis of non-phosphorylated B6 vitamers acts as a primary strategy to protect roots from ammonium-dependent ROS formation.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Rodolfo A Maniero
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Priscille Steensma
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Gabriel Krouk
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
14
|
Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. Natural Variation in Vitamin B 1 and Vitamin B 6 Contents in Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:856880. [PMID: 35444674 PMCID: PMC9014206 DOI: 10.3389/fpls.2022.856880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 05/03/2023]
Abstract
Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B1 (thiamine) and vitamin B6 (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B1 and B6 contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B1 and vitamin B6 contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B1 and B6 contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B1 and B6 biosynthesis de novo enzymes (THIC for vitamin B1, PDX1.3a-c and PDX2 for vitamin B6) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B1 contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B1 and B6 biosynthesis in rice.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jared B Fudge
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Teresa B Fitzpatrick
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
15
|
Strobbe S, Verstraete J, Fitzpatrick TB, Faustino M, Lourenço TF, Oliveira MM, Stove C, Van Der Straeten D. A novel panel of yeast assays for the assessment of thiamin and its biosynthetic intermediates in plant tissues. THE NEW PHYTOLOGIST 2022; 234:748-763. [PMID: 35037254 PMCID: PMC9303440 DOI: 10.1111/nph.17974] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
Thiamin (or thiamine), known as vitamin B1, represents an indispensable component of human diets, being pivotal in energy metabolism. Thiamin research depends on adequate vitamin quantification in plant tissues. A recently developed quantitative liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is able to assess the level of thiamin, its phosphorylated entities and its biosynthetic intermediates in the model plant Arabidopsis thaliana, as well as in rice. However, their implementation requires expensive equipment and substantial technical expertise. Microbiological assays can be useful in deter-mining metabolite levels in plant material and provide an affordable alternative to MS-based analysis. Here, we evaluate, by comparison to the LC-MS/MS reference method, the potential of a carefully chosen panel of yeast assays to estimate levels of total vitamin B1, as well as its biosynthetic intermediates pyrimidine and thiazole in Arabidopsis samples. The examined panel of Saccharomyces cerevisiae mutants was, when implemented in microbiological assays, capable of correctly assigning a series of wild-type and thiamin biofortified Arabidopsis plant samples. The assays provide a readily applicable method allowing rapid screening of vitamin B1 (and its biosynthetic intermediates) content in plant material, which is particularly useful in metabolic engineering approaches and in germplasm screening across or within species.
Collapse
Affiliation(s)
- Simon Strobbe
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| | - Jana Verstraete
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Teresa B. Fitzpatrick
- Vitamins and Environmental Stress Responses in PlantsDepartment of Botany and Plant BiologyUniversity of GenevaQuai E. Ansermet 301211GenevaSwitzerland
| | - Maria Faustino
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Tiago F. Lourenço
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António XavierUniversidade NOVA de LisboaPlant Functional Genomics – GPlantS LabAv. da República2780‐157OeirasPortugal
| | - Christophe Stove
- Laboratory of ToxicologyDepartment of BioanalysisGhent UniversityOttergemsesteenweg 460B‐9000GentBelgium
| | - Dominique Van Der Straeten
- Laboratory of Functional Plant BiologyDepartment of BiologyGhent UniversityK.L. Ledeganckstraat 35B‐9000GentBelgium
| |
Collapse
|
16
|
Colinas M, Fitzpatrick TB. Coenzymes and the primary and specialized metabolism interface. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102170. [PMID: 35063913 DOI: 10.1016/j.pbi.2021.102170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/06/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
In plants, primary and specialized metabolism have classically been distinguished as either essential for growth or required for survival in a particular environment. Coenzymes (organic cofactors) are essential for growth but their importance to specialized metabolism is often not considered. In line with the recent proposal of viewing primary and specialized metabolism as an integrated whole rather than segregated lots with a defined interface, we highlight here the importance of collating information on the regulation of coenzyme supply with metabolic demands using examples of vitamin B derived coenzymes. We emphasize that coenzymes can have enormous influence on the outcome of metabolic as well as engineered pathways and should be taken into account in the era of synthetic biology.
Collapse
Affiliation(s)
- Maite Colinas
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 80, D-07745 Jena, Germany.
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
17
|
Choudhury AR, Roy SK, Trivedi P, Choi J, Cho K, Yun SH, Walitang DI, Park JH, Kim K, Sa T. Label-free proteomics approach reveals candidate proteins in rice (Oryza sativa L.) important for ACC deaminase producing bacteria-mediated tolerance against salt stress. Environ Microbiol 2022; 24:3612-3624. [PMID: 35191581 DOI: 10.1111/1462-2920.15937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 11/30/2022]
Abstract
The omics-based studies are important for identifying characteristic proteins in plants to elucidate the mechanism of ACC deaminase producing bacteria-mediated salt tolerance. This study evaluates the changes in the proteome of rice inoculated with ACC deaminase producing bacteria under salt stress conditions. Salt stress resulted in a significant decrease in photosynthetic pigments, whereas inoculation of Methylobacterium oryzae CBMB20 had significantly increased pigment contents under normal and salt stress conditions. A total of 76, 51 and 33 differentially abundant proteins (DAPs) were identified in non-inoculated salt stressed plants, bacteria inoculated plants under normal and salt stress conditions, respectively. The abundances of proteins responsible for ethylene emission and programmed cell death were increased, and that of photosynthesis-related proteins were decreased in non-inoculated plants under salt stress. Whereas, bacteria-inoculated plants had shown higher abundance of antioxidant proteins, RuBisCo and ribosomal proteins that are important for enhancing stress tolerance and improving plant physiological traits. Collectively, salt stress might affect plant physiological traits by impairing photosynthetic machinery and accelerating apoptosis leading to a decline in biomass. However, inoculation of plants with bacteria can assist in enhancing photosynthetic activity, antioxidant activities and ethylene regulation related proteins for attenuating salt induced apoptosis and sustaining growth and development. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aritra Roy Choudhury
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Swapan Kumar Roy
- College of Agricultural Sciences, IUBAT-International University of Business Agriculture and Technology, Dhaka, Bangladesh
| | - Pankaj Trivedi
- Microbiome Network and Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Jeongyun Choi
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,Department of Agricultural Biology, Colorado State University, Fort Collins, CO, USA
| | - Kun Cho
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Sung Ho Yun
- Bio-chemical Analysis Team, Center for Research Equipment, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Denver I Walitang
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,College of Agriculture, Fisheries and Forestry, Romblon State University, Philippines
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea.,Department of Bioprocess Engineering, University of Science and Technology (UST) of Korea, Daejeon, Republic of Korea
| | - Kiyoon Kim
- National Forest Seed Variety Center, Chungju, Republic of Korea
| | - Tongmin Sa
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju, Republic of Korea.,The Korean Academy of Science and Technology, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Gorelova V, Colinas M, Dell’Aglio E, Flis P, Salt DE, Fitzpatrick TB. Phosphorylated B6 vitamer deficiency in SALT OVERLY SENSITIVE 4 mutants compromises shoot and root development. PLANT PHYSIOLOGY 2022; 188:220-240. [PMID: 34730814 PMCID: PMC8774746 DOI: 10.1093/plphys/kiab475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/05/2021] [Indexed: 05/31/2023]
Abstract
Stunted growth in saline conditions is a signature phenotype of the Arabidopsis SALT OVERLY SENSITIVE mutants (sos1-5) affected in pathways regulating the salt stress response. One of the mutants isolated, sos4, encodes a kinase that phosphorylates pyridoxal (PL), a B6 vitamer, forming the important coenzyme pyridoxal 5'-phosphate (PLP). Here, we show that sos4-1 and more recently isolated alleles are deficient in phosphorylated B6 vitamers including PLP. This deficit is concomitant with a lowered PL level. Ionomic profiling of plants under standard laboratory conditions (without salt stress) reveals that sos4 mutants are perturbed in mineral nutrient homeostasis, with a hyperaccumulation of transition metal micronutrients particularly in the root, accounting for stress sensitivity. This is coincident with the accumulation of reactive oxygen species, as well as enhanced lignification and suberization of the endodermis, although the Casparian strip is intact and functional. Further, micrografting shows that SOS4 activity in the shoot is necessary for proper root development. Growth under very low light alleviates the impairments, including salt sensitivity, suggesting that SOS4 is important for developmental processes under moderate light intensities. Our study provides a basis for the integration of SOS4 derived B6 vitamers into plant health and fitness.
Collapse
Affiliation(s)
- Vera Gorelova
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Maite Colinas
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Elisa Dell’Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Paulina Flis
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - David E Salt
- Future Food Beacon of Excellence and School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
19
|
Sakauchi K, Taira W, Otaki JM. Metabolomic Profiles of the Creeping Wood Sorrel Oxalis corniculata in Radioactively Contaminated Fields in Fukushima: Dose-Dependent Changes in Key Metabolites. Life (Basel) 2022; 12:life12010115. [PMID: 35054508 PMCID: PMC8780803 DOI: 10.3390/life12010115] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 12/27/2022] Open
Abstract
The biological impacts of the Fukushima nuclear accident, in 2011, on wildlife have been studied in many organisms, including the pale grass blue butterfly and its host plant, the creeping wood sorrel Oxalis corniculata. Here, we performed an LC–MS-based metabolomic analysis on leaves of this plant collected in 2018 from radioactively contaminated and control localities in Fukushima, Miyagi, and Niigata prefectures, Japan. Using 7967 peaks detected by LC–MS analysis, clustering analyses showed that nine Fukushima samples and one Miyagi sample were clustered together, irrespective of radiation dose, while two Fukushima (Iitate) and two Niigata samples were not in this cluster. However, 93 peaks were significantly different (FDR < 0.05) among the three dose-dependent groups based on background, low, and high radiation dose rates. Among them, seven upregulated and 15 downregulated peaks had single annotations, and their peak intensity values were positively and negatively correlated with ground radiation dose rates, respectively. Upregulated peaks were annotated as kudinoside D (saponin), andrachcinidine (alkaloid), pyridoxal phosphate (stress-related activated vitamin B6), and four microbe-related bioactive compounds, including antibiotics. Additionally, two peaks were singularly annotated and significantly upregulated (K1R1H1; peptide) or downregulated (DHAP(10:0); decanoyl dihydroxyacetone phosphate) most at the low dose rates. Therefore, this plant likely responded to radioactive pollution in Fukushima by upregulating and downregulating key metabolites. Furthermore, plant-associated endophytic microbes may also have responded to pollution, suggesting their contributions to the stress response of the plant.
Collapse
Affiliation(s)
- Ko Sakauchi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Research Planning Office, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan; (K.S.); (W.T.)
- Correspondence: ; Tel.: +81-98-895-8557
| |
Collapse
|
20
|
Wei TJ, Li G, Wang MM, Jin YY, Zhang GH, Liu M, Yang HY, Jiang CJ, Liang ZW. Physiological and transcriptomic analyses reveal novel insights into the cultivar-specific response to alkaline stress in alfalfa (Medicago sativa L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113017. [PMID: 34823214 DOI: 10.1016/j.ecoenv.2021.113017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/14/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Soil alkalization severely limits plant growth and development, however, the mechanisms of alkaline response in plants remain largely unknown. In this study, we performed physiological and transcriptomic analyses using two alfalfa cultivars (Medicago sativa L.) with different sensitivities to alkaline conditions. The chlorophyll content and shoot fresh mass drastically declined in the alkaline-sensitive cultivar Algonquin (AG) following alkaline treatment (0-25 mM Na2CO3 solution), while the alkaline-tolerant cultivar Gongnong NO.1 (GN) maintained relatively stable growth and chlorophyll content. Compared with AG, GN had higher contents of Ca2+ and Mg2+; the ratios of Ca2+ and Mg2+ to Na+, proline and soluble sugar, as well as higher enzyme activities of peroxidase (POD) and catalase (CAT) under the alkaline conditions. Furthermore, transcriptomic analysis identified three categories of alkaline-responsive differentially expressed genes (DEGs) between the two cultivars: 48 genes commonly induced in both the cultivars (CAR), 574 genes from the tolerant cultivar (TAR), and 493 genes from the sensitive cultivar (SAR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that CAR genes were mostly involved in phenylpropanoid biosynthesis, lipid metabolism, and DNA replication and repair; TAR genes were significantly enriched in metabolic pathways, such as biosynthesis of amino acids and secondary metabolites including flavonoids, and the MAPK signaling pathway; SAR genes were specifically enriched in vitamin B6 metabolism. Taken together, the results identified candidate pathways associated with genetic variation in response to alkaline stress, providing novel insights into the mechanisms underlying alkaline tolerance in alfalfa.
Collapse
Affiliation(s)
- Tian-Jiao Wei
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Ming-Ming Wang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Yang-Yang Jin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Guo-Hui Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Miao Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Hao-Yu Yang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China
| | - Chang-Jie Jiang
- Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba 305-8642, Japan.
| | - Zheng-Wei Liang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Da'an Sodic Land Experiment Station, Da'an, Jilin 131317, China.
| |
Collapse
|
21
|
Novikova IV, Zhou M, Evans JE, Du C, Parra M, Kim DN, VanAernum ZL, Shaw JB, Hellmann H, Wysocki VH. Tunable Heteroassembly of a Plant Pseudoenzyme-Enzyme Complex. ACS Chem Biol 2021; 16:2315-2325. [PMID: 34520180 PMCID: PMC9979268 DOI: 10.1021/acschembio.1c00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudoenzymes have emerged as key regulatory elements in all kingdoms of life despite being catalytically nonactive. Yet many factors defining why one protein is active while its homologue is inactive remain uncertain. For pseudoenzyme-enzyme pairs, the similarity of both subunits can often hinder conventional characterization approaches. In plants, a pseudoenzyme, PDX1.2, positively regulates vitamin B6 production by association with its active catalytic homologues such as PDX1.3 through an unknown assembly mechanism. Here we used an integrative experimental approach to learn that such pseudoenzyme-enzyme pair associations result in heterocomplexes of variable stoichiometry, which are unexpectedly tunable. We also present the atomic structure of the PDX1.2 pseudoenzyme as well as the population averaged PDX1.2-PDX1.3 pseudoenzyme-enzyme pair. Finally, we dissected hetero-dodecamers of each stoichiometry to understand the arrangement of monomers in the heterocomplexes and identified symmetry-imposed preferences in PDX1.2-PDX1.3 interactions. Our results provide a new model of pseudoenzyme-enzyme interactions and their native heterogeneity.
Collapse
Affiliation(s)
- Irina V. Novikova
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - James E. Evans
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States; School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Chen Du
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Marcelina Parra
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Doo Nam Kim
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Zachary L. VanAernum
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jared B. Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Hanjo Hellmann
- School of Biological Sciences, Washington State University, Pullman, Washington 99164, United States
| | - Vicki H. Wysocki
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States; Resource for Native Mass Spectrometry Guided Structural Biology, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Li Y, Yang C, Ahmad H, Maher M, Fang C, Luo J. Benefiting others and self: Production of vitamins in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:210-227. [PMID: 33289302 DOI: 10.1111/jipb.13047] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Vitamins maintain growth and development in humans, animals, and plants. Because plants serve as essential producers of vitamins, increasing the vitamin contents in plants has become a goal of crop breeding worldwide. Here, we begin with a summary of the functions of vitamins. We then review the achievements to date in elucidating the molecular mechanisms underlying how vitamins are synthesized, transported, and regulated in plants. We also stress the exploration of variation in vitamins by the use of forward genetic approaches, such as quantitative trait locus mapping and genome-wide association studies. Overall, we conclude that exploring the diversity of vitamins could provide new insights into plant metabolism and crop breeding.
Collapse
Affiliation(s)
- Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hasan Ahmad
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohamed Maher
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanying Fang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Jie Luo
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| |
Collapse
|
23
|
Misra BB, Das V, Landi M, Abenavoli MR, Araniti F. Short-term effects of the allelochemical umbelliferone on Triticum durum L. metabolism through GC-MS based untargeted metabolomics. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110548. [PMID: 32771160 DOI: 10.1016/j.plantsci.2020.110548] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 04/21/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The present study used untargeted metabolomics to investigate the short-term metabolic changes induced in wheat seedlings by the specialized metabolite umbelliferone, an allelochemical. We used 10 day-old wheat seedlings treated with 104 μM umbelliferone over a time course experiment covering 6 time points (0 h, 6 h, 12 h, 24 h, 48 h, and 96 h), and compared the metabolomic changes to control (mock-treated) plants. Using gas chromatography mass spectrometry (GCMS)-based metabolomics, we obtained quantitative data on 177 metabolites that were derivatized (either derivatized singly or multiple times) or not, representing 139 non-redundant (unique) metabolites. Of these 139 metabolites, 118 were associated with a unique Human Metabolome Database (HMDB) identifier, while 113 were associated with a Kyoto Encyclopedia of Genes and Genomes (KEGG) identifier. Relative quantification of these metabolites across the time-course of umbelliferone treatment revealed 22 compounds (sugars, fatty acids, secondary metabolites, organic acids, and amino acids) that changed significantly (repeated measures ANOVA, P-value < 0.05) over time. Using multivariate partial least squares discriminant analysis (PLS-DA), we showed the grouping of samples based on time-course across the control and umbelliferone-treated plants, whereas the metabolite-metabolite Pearson correlations revealed tightly formed clusters of umbelliferone-derived metabolites, fatty acids, amino acids, and carbohydrates. Also, the time-course umbelliferone treatment revealed that phospho-l-serine, maltose, and dehydroquinic acid were the top three metabolites showing highest importance in discrimination among the time-points. Overall, the biochemical changes converge towards a mechanistic explanation of the plant metabolic responses induced by umbelliferone. In particular, the perturbation of metabolites involved in tryptophan metabolism, as well as the imbalance of the shikimate pathways, which are strictly interconnected, were significantly altered by the treatment, suggesting a possible mechanism of action of this natural compound.
Collapse
Affiliation(s)
- Biswapriya B Misra
- Center for Precision Medicine, Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, 27157, NC, USA.
| | - Vivek Das
- Novo Nordisk Research Center Seattle, Inc, Seattle, WA, USA
| | - M Landi
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - M R Abenavoli
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy
| | - Fabrizio Araniti
- Department AGRARIA, University Mediterranea of Reggio Calabria, Località Feo di Vito, SNC I-89124, Reggio Calabria RC, Italy.
| |
Collapse
|
24
|
Chien HJ, Yang MM, Wang WC, Hong XG, Zheng YF, Toh JT, Wu CC, Lai CC. Proteomic analysis of "Oriental Beauty" oolong tea leaves with different degrees of leafhopper infestation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8825. [PMID: 32396680 DOI: 10.1002/rcm.8825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2020] [Accepted: 04/30/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Oriental Beauty, a type of oolong tea native to Taiwan, is highly prized by connoisseurs for its unique fruity aroma and sweet taste. Leaves of Oriental Beauty vary in appearance, aroma, and taste, depending on the degree of tea green leafhopper (Jacobiasca formosana) infestation. In this study, the aim is to investigate the differential expression of proteins in leaves with low, medium, and high degrees of leafhopper infestation. METHODS Proteomic techniques 2DE (two-dimensional electrophoresis) and nanoscale liquid chromatography/tandem mass spectrometry (LC/MS/MS) were used to investigate the differential expression of proteins in tea leaves with different degrees of leafhopper infestation. RESULTS A total of 89 proteins were found to exhibit significant differences in expression. In a gene ontology analysis, most of these proteins participated in biosynthesis, carbohydrate metabolism, transport, responses to stress, and amino acid metabolism. CONCLUSIONS These results indicated that the unique aroma and taste of the leaves might be influenced by their protein expression profiles, as well as related factors such as defensive responses to tea green leafhopper saliva.
Collapse
Affiliation(s)
- Han-Ju Chien
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Man-Miao Yang
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Wei-Chen Wang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Xiang-Gui Hong
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Feng Zheng
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | - Jie-Teng Toh
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | - Chien-Chen Lai
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
25
|
Nutrient dose-responsive transcriptome changes driven by Michaelis-Menten kinetics underlie plant growth rates. Proc Natl Acad Sci U S A 2020; 117:12531-12540. [PMID: 32414922 PMCID: PMC7293603 DOI: 10.1073/pnas.1918619117] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
An increase in nutrient dose leads to proportional increases in crop biomass and agricultural yield. However, the molecular underpinnings of this nutrient dose-response are largely unknown. To investigate, we assayed changes in the Arabidopsis root transcriptome to different doses of nitrogen (N)-a key plant nutrient-as a function of time. By these means, we found that rate changes of genome-wide transcript levels in response to N-dose could be explained by a simple kinetic principle: the Michaelis-Menten (MM) model. Fitting the MM model allowed us to estimate the maximum rate of transcript change (V max), as well as the N-dose at which one-half of V max was achieved (K m) for 1,153 N-dose-responsive genes. Since transcription factors (TFs) can act in part as the catalytic agents that determine the rates of transcript change, we investigated their role in regulating N-dose-responsive MM-modeled genes. We found that altering the abundance of TGA1, an early N-responsive TF, perturbed the maximum rates of N-dose transcriptomic responses (V max), K m, as well as the rate of N-dose-responsive plant growth. We experimentally validated that MM-modeled N-dose-responsive genes included both direct and indirect TGA1 targets, using a root cell TF assay to detect TF binding and/or TF regulation genome-wide. Taken together, our results support a molecular mechanism of transcriptional control that allows an increase in N-dose to lead to a proportional change in the rate of genome-wide expression and plant growth.
Collapse
|
26
|
Noordally ZB, Trichtinger C, Dalvit I, Hofmann M, Roux C, Zamboni N, Pourcel L, Gas-Pascual E, Gisler A, Fitzpatrick TB. The coenzyme thiamine diphosphate displays a daily rhythm in the Arabidopsis nucleus. Commun Biol 2020; 3:209. [PMID: 32372067 PMCID: PMC7200797 DOI: 10.1038/s42003-020-0927-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/25/2020] [Indexed: 12/27/2022] Open
Abstract
In plants, metabolic homeostasis—the driving force of growth and development—is achieved through the dynamic behavior of a network of enzymes, many of which depend on coenzymes for activity. The circadian clock is established to influence coordination of supply and demand of metabolites. Metabolic oscillations independent of the circadian clock, particularly at the subcellular level is unexplored. Here, we reveal a metabolic rhythm of the essential coenzyme thiamine diphosphate (TDP) in the Arabidopsis nucleus. We show there is temporal separation of the clock control of cellular biosynthesis and transport of TDP at the transcriptional level. Taking advantage of the sole reported riboswitch metabolite sensor in plants, we show that TDP oscillates in the nucleus. This oscillation is a function of a light-dark cycle and is independent of circadian clock control. The findings are important to understand plant fitness in terms of metabolite rhythms. Noordally et al. show that the essential coenzyme thiamine diphosphate exhibits a daily rhythm in the Arabidopsis nucleus, which is driven by light-dark cycles and not by the circadian clock. This study provides insight into our understanding of the optimization of plant fitness.
Collapse
Affiliation(s)
- Zeenat B Noordally
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Celso Trichtinger
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Manuel Hofmann
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Céline Roux
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, 8093, Zurich, Switzerland
| | - Lucille Pourcel
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Elisabet Gas-Pascual
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Alexandra Gisler
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
27
|
Bowazolo C, Tse SPK, Beauchemin M, Lo SCL, Rivoal J, Morse D. Label-free MS/MS analyses of the dinoflagellate Lingulodinium identifies rhythmic proteins facilitating adaptation to a diurnal LD cycle. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135430. [PMID: 31818571 DOI: 10.1016/j.scitotenv.2019.135430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/06/2019] [Indexed: 06/10/2023]
Abstract
Protein levels were assessed in the dinoflagellate Lingulodinium polyedra over the course of a diurnal cycle using a label-free LC-MS/MS approach. Roughly 1700 proteins were quantitated in a triplicate dataset over a daily period, and 13 were found to show significant rhythmic changes. Included among the proteins found to be most abundant at night were the two bioluminescence proteins, luciferase and luciferin binding protein, as well as a proliferating cell nuclear protein involved in the nightly DNA replication. Aconitase and a pyrophosphate fructose-6-phosphate-1-phosphotransferase were also found to be more abundant at night, suggestive of an increased ability to generate ATP by glucose catabolism when photosynthesis does not occur. Among the proteins more abundant during the day were found a 2-epi-5-epi-valiolone synthase, potentially involved in synthesis of mycosporin-like amino acids that can act as a "microbial sunscreen", and an enzyme synthesizing vitamin B6 which is known to protect against oxidative stress. A lactate oxidoreductase was also found to be more abundant during the day, perhaps to counteract the pH changes due to carbon fixation by facilitating conversion of pyruvate to lactate. This unbiased proteomic approach reveals novel insights into the daily metabolic changes of this dinoflagellate. Furthermore, the observation that only a limited number of proteins vary support a model where metabolic flux through pathways can be controlled by variations in a select few, possibly rate limiting, steps. Data are available via ProteomeXchange with identifier PXD006994.
Collapse
Affiliation(s)
- Carl Bowazolo
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Sirius P K Tse
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Mathieu Beauchemin
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - Samuel C-L Lo
- Shenzhen Key Laboratory of Food Biological Safety Control, Department of Applied Biology and Chemical Technology, Hung Hom, Kowloon, Hong Kong SAR, China
| | - Jean Rivoal
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| | - David Morse
- Institut de Recherche en biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Canada
| |
Collapse
|
28
|
Zhao L, Xie L, Huang J, Su Y, Zhang C. Proper Glyphosate Application at Post-anthesis Lowers Grain Moisture Content at Harvest and Reallocates Non-structural Carbohydrates in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:580883. [PMID: 33362811 PMCID: PMC7758537 DOI: 10.3389/fpls.2020.580883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Glyphosate (GP)-based herbicides have been widely applied to crops for weed control and pre-harvest desiccation. The objective of this research was to evaluate the effects of pre-harvest GP application on maize or how it physiologically alters this crop. Here, we applied four GP treatment (Control, GP150, GP200, and GP250) on maize lines of Z58 and PH6WC belonging to different maturity groups at grain-filling stages form DAP30 to DAP45. GP application significantly decreased the grain moisture content at harvest by 22-35% for Z58 and by 15-41% for PH6WC. However, the responses of grain weight to glyphosate vary with inbred lines and application time. A high concentration of glyphosate (GP250) reduced the grain weight of Z58 and low concentrations (GP150 and GP200) did not affect, while the grain weight of PH6WC significantly decreased under glyphosate treatment. In summary, our results revealed that timely and appropriate GP application lowers grain moisture content without causing seed yield and quality loss. GP application adversely affected photosynthesis by promoting maturation and leaf senescence. Meanwhile, it also enhanced non-structural carbohydrate (soluble sugars and starch) remobilization from the vegetative organs to the grains. Hence, GP treatment coordinates plant senescence and assimilate remobilization. RNA sequencing revealed that glyphosate regulated the transcript levels of sugar signaling-related genes and induced assimilate repartitioning in grains. This work indicates the practical significance of GP application for maize seed production and harvest, which highlights the contributions of source-sink communication to maize yield in response to external stress or pre-harvest desiccant application.
Collapse
|
29
|
Samsatly J, Bayen S, Jabaji SH. Vitamin B6 Is Under a Tight Balance During Disease Development by Rhizoctonia solani on Different Cultivars of Potato and on Arabidopsis thaliana Mutants. FRONTIERS IN PLANT SCIENCE 2020; 11:875. [PMID: 32670323 PMCID: PMC7327096 DOI: 10.3389/fpls.2020.00875] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 05/28/2020] [Indexed: 05/06/2023]
Abstract
Vitamin B6 is well recognized as an essential antioxidant and plays a role in stress responses. Co-expression of plant and pathogen-derived vitamin B6 genes is critical during disease development of R. solani. However, little is known about the functionality of vitamin B6 vitamers during plant-R. solani interactions and their involvement in disease tolerance. Here, we explored the possible involvement of vitamin B6 during disease progression of potato cultivars of different susceptibility levels to R. solani. A distinct pattern of gene expression, pyridoxine (PN) concentration, and fungal biomass was found in the susceptible cv. Russet Burbank and tolerant cv. Chieftain. Accumulation of reactive oxygen species (ROS) in R. solani mycelia or plant tissues applying non-fluorescence or fluorescence methods was related to up-regulation in the vitamin B6 pathway and is indicative of oxidative stress. Russet Burbank was susceptible to R. solani, which was linked to reduced amounts of VB6 content. Prior to infection, constitutive PN levels were significantly higher in Russet Burbank by 1.6-fold compared to Chieftain. Upon infection with R. solani, PN levels in infected tissues increased more in Chieftain (1.7-fold) compared to Russet Burbank (1.4-fold). R. solani AG3 infection of potato sprouts in both cultivars significantly activates the fungal and plant vitamin B6 and glutathione-S-transferase (GST) genes in a tissue-specific response. Significant fold increases of transcript abundance of the fungal genes ranged from a minimum of 3.60 (RsolSG3GST) to a maximum of 13.91 (RsolAG3PDX2) in the surrounding necrotic lesion tissues (zone 1). On the other hand, PCA showed that the top plant genes STGST and STPDX1.1 were linked to both tissues of necrotic lesions (zone 2) and their surrounding areas of necrotic lesions. Functional characterization of Arabidopsis pdx1.3 mutants challenged with R. solani provided evidence into the role of the vitamin B6 pathway in the maintenance of plant tolerance during disease progression. Overall, we demonstrate that the production of vitamin VB6 is under tight control and is an essential determinant of disease development during the interaction of R. solani with potato cultivars.
Collapse
Affiliation(s)
- Jamil Samsatly
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Stéphane Bayen
- Department of Food Science and Agricultural Chemistry, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Suha H. Jabaji
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- *Correspondence: Suha H. Jabaji,
| |
Collapse
|
30
|
Nan N, Wang J, Shi Y, Qian Y, Jiang L, Huang S, Liu Y, Wu Y, Liu B, Xu Z. Rice plastidial NAD-dependent malate dehydrogenase 1 negatively regulates salt stress response by reducing the vitamin B6 content. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:172-184. [PMID: 31161713 PMCID: PMC6920159 DOI: 10.1111/pbi.13184] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 05/05/2023]
Abstract
Salinity is an important environmental factor that adversely impacts crop growth and productivity. Malate dehydrogenases (MDHs) catalyse the reversible interconversion of malate and oxaloacetate using NAD(H)/NADP(H) as a cofactor and regulate plant development and abiotic stress tolerance. Vitamin B6 functions as an essential cofactor in enzymatic reactions involved in numerous cellular processes. However, the role of plastidial MDH in rice (Oryza sativa) in salt stress response by altering vitamin B6 content remains unknown. In this study, we identified a new loss-of-function osmdh1 mutant displaying salt stress-tolerant phenotype. The OsMDH1 was expressed in different tissues of rice plants including leaf, leaf sheath, panicle, glume, bud, root and stem and was induced in the presence of NaCl. Transient expression of OsMDH1-GFP in rice protoplasts showed that OsMDH1 localizes to chloroplast. Transgenic rice plants overexpressing OsMDH1 (OsMDH1OX) displayed a salt stress-sensitive phenotype. Liquid chromatography-mass spectrometry (LC-MS) metabolic profiling revealed that the amount of pyridoxine was significantly reduced in OsMDH1OX lines compared with the NIP plants. Moreover, the pyridoxine content was higher in the osmdh1 mutant and lower in OsMDH1OX plants than in the NIP plants under the salt stress, indicating that OsMDH1 negatively regulates salt stress-induced pyridoxine accumulation. Furthermore, genome-wide RNA-sequencing (RNA-seq) analysis indicated that ectopic expression of OsMDH1 altered the expression level of genes encoding key enzymes of the vitamin B6 biosynthesis pathway, possibly reducing the level of pyridoxine. Together, our results establish a novel, negative regulatory role of OsMDH1 in salt stress tolerance by affecting vitamin B6 content of rice tissues.
Collapse
Affiliation(s)
- Nan Nan
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yangwen Qian
- Biogle Genome Editing CenterChangzhouJiangsu ProvinceChina
| | - Long Jiang
- School of AgronomyJilin College of Agricultural Science & TechnologyJilinChina
| | - Shuangzhan Huang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Ying Wu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Zheng‐Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
31
|
Dell'Aglio E, Dalvit I, Loubéry S, Fitzpatrick TB. Clarification of the dispensability of PDX1.2 for Arabidopsis viability using CRISPR/Cas9. BMC PLANT BIOLOGY 2019; 19:464. [PMID: 31684863 PMCID: PMC6829848 DOI: 10.1186/s12870-019-2071-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND PDX1.2 has recently been shown to be a regulator of vitamin B6 biosynthesis in plants and is implicated in biotic and abiotic stress resistance. PDX1.2 expression is strongly and rapidly induced by heat stress. Interestingly, PDX1.2 is restricted to eudicota, wherein it behaves as a non-catalytic pseudoenzyme and is suggested to provide an adaptive advantage to this clade. A first report on an Arabidopsis insertion mutant claims that PDX1.2 is indispensable for viability, being essential for embryogenesis. However, a later study using an independent insertion allele suggests that knockout mutants of pdx1.2 are viable. Therefore, the essentiality of PDX1.2 for Arabidopsis viability is a matter of debate. Given the important implications of PDX1.2 in stress responses, it is imperative to clarify if it is essential for plant viability. RESULTS We have studied the previously reported insertion alleles of PDX1.2, one of which is claimed to be essential for embryogenesis (pdx1.2-1), whereas the other is viable (pdx1.2-2). Our study shows that pdx1.2-1 carries multiple T-DNA insertions, but the T-DNA insertion in PDX1.2 is not responsible for the loss of embryogenesis. By contrast, the pdx1.2-2 allele is an overexpressor of PDX1.2 under standard growth conditions and not a null allele as previously reported. Nonetheless, upregulation of PDX1.2 expression under heat stress is impaired in this mutant line. In wild type Arabidopsis, studies of PDX1.2-YFP fusion proteins show that the protein is enhanced under heat stress conditions. To clarify if PDX1.2 is essential for Arabidopsis viability, we generated several independent mutant lines using the CRISPR-Cas9 gene editing technology. All of these lines are viable and behave similar to wild type under standard growth conditions. Reciprocal crosses of a subset of the CRISPR lines with pdx1.2-1 recovers viability of the latter line and demonstrates that knocking out the functionality of PDX1.2 does not impair embryogenesis. CONCLUSIONS Gene editing reveals that PDX1.2 is dispensable for Arabidopsis viability and resolves conflicting reports in the literature on its function.
Collapse
Affiliation(s)
- Elisa Dell'Aglio
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
- Present Address: Biologie Fonctionnelle, Insectes et Interactions, Institut National des Sciences Appliquées de Lyon, Institut National de la Recherche Agronomique, University of Lyon, F-69621, Villeurbanne, France
| | - Ivan Dalvit
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Sylvain Loubéry
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211, Geneva, Switzerland.
| |
Collapse
|
32
|
Mangel N, Fudge JB, Li K, Wu T, Tohge T, Fernie AR, Szurek B, Fitzpatrick TB, Gruissem W, Vanderschuren H. Enhancement of vitamin B 6 levels in rice expressing Arabidopsis vitamin B 6 biosynthesis de novo genes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:1047-1065. [PMID: 31063672 PMCID: PMC6852651 DOI: 10.1111/tpj.14379] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 03/19/2019] [Accepted: 04/10/2019] [Indexed: 05/06/2023]
Abstract
Vitamin B6 (pyridoxine) is vital for key metabolic reactions and reported to have antioxidant properties in planta. Therefore, enhancement of vitamin B6 content has been hypothesized to be a route to improve resistance to biotic and abiotic stresses. Most of the current studies on vitamin B6 in plants are on eudicot species, with monocots remaining largely unexplored. In this study, we investigated vitamin B6 biosynthesis in rice, with a view to examining the feasibility and impact of enhancing vitamin B6 levels. Constitutive expression in rice of two Arabidopsis thaliana genes from the vitamin B6 biosynthesis de novo pathway, AtPDX1.1 and AtPDX2, resulted in a considerable increase in vitamin B6 in leaves (up to 28.3-fold) and roots (up to 12-fold), with minimal impact on general growth. Rice lines accumulating high levels of vitamin B6 did not display enhanced tolerance to abiotic stress (salt) or biotic stress (resistance to Xanthomonas oryzae infection). While a significant increase in vitamin B6 content could also be achieved in rice seeds (up to 3.1-fold), the increase was largely due to its accumulation in seed coat and embryo tissues, with little enhancement observed in the endosperm. However, seed yield was affected in some vitamin B6 -enhanced lines. Notably, expression of the transgenes did not affect the expression of the endogenous rice PDX genes. Intriguingly, despite transgene expression in leaves and seeds, the corresponding proteins were only detectable in leaves and could not be observed in seeds, possibly pointing to a mode of regulation in this organ.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Jared B. Fudge
- Department of Botany and Plant BiologyUniversity of GenevaGeneva1211Switzerland
| | - Kuan‐Te Li
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Ting‐Ying Wu
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
| | - Takayuki Tohge
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
- Present address:
Graduate School of Biological SciencesNara Institute of Science and TechnologyIkomaNara630‐0192Japan
| | - Alisdair R. Fernie
- Max‐Planck‐Institute for Molecular Plant PhysiologyPotsdam‐Gölm14476Germany
| | - Boris Szurek
- IRDCiradUniversity of MontpellierIPMEMontpellier34394France
| | | | - Wilhelm Gruissem
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Advanced Plant Biotechnology CenterNational Chung Hsing UniversityTaichung City40227Taiwan
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of BiologyETH ZürichZürichSwitzerland
- Plant Genetics LabTERRA Research and Teaching CentreGembloux Agro BioTechUniversity of LiègeGembloux5030Belgium
| |
Collapse
|
33
|
Ekhtari S, Razeghi J, Hasanpur K, Kianianmomeni A. Different regulations of cell-type transcription by UV-B in multicellular green alga Volvox carteri. PLANT SIGNALING & BEHAVIOR 2019; 14:1657339. [PMID: 31446835 PMCID: PMC6804692 DOI: 10.1080/15592324.2019.1657339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 06/03/2023]
Abstract
There is a scarcity of research reports on the effect of ultraviolet (UV)-B radiation on genome-wide transcriptional regulation in the multicellular green microalga including Volvox carteri (V. carteri). This microalga possesses only two cell types including mortal and motile somatic cells, as well as immortal and immotile reproductive cells. Therefore, the present study evaluated the effect of low-dose UV-B radiation on the cell-type-specific gene expression pattern of reproductive and somatic cells in an asexual life cycle of V. carteri using RNA sequence method. To this end, the separated reproductive and somatic cells were treated for 1 hour at an intensity of 0.056 mW/cm-2 UV-B radiation. Then, a transcriptome analysis was conducted between the UV-B and white light treated groups in either of the cell types. Based on differential gene expression analyses, no differentially expressed genes were found in reproductive cells under the treatment as compared to the control group. This type of cell maintained its steady state. However, treating the somatic cells with UV-B radiation led to at least 126 differentially expressed genes compared to the untreated control group. In addition, the results of a direct comparison demonstrated a restricted and wide response to UV-B radiation in somatic cells as compared to reproductive cells. Based on the results, UV-B radiation could be involved in cell-type-specific regulation of biological pathways.
Collapse
Affiliation(s)
- S. Ekhtari
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - J. Razeghi
- Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - K. Hasanpur
- Department of Animal Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - A. Kianianmomeni
- Department of Cellular and Developmental Biology of Plants, Faculty of Natural Sciences, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
34
|
Lakstygal AM, de Abreu MS, Lifanov DA, Wappler-Guzzetta EA, Serikuly N, Alpsyshov ET, Wang D, Wang M, Tang Z, Yan D, Demin KA, Volgin AD, Amstislavskaya TG, Wang J, Song C, Alekseeva P, Kalueff AV. Zebrafish models of diabetes-related CNS pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:48-58. [PMID: 30476525 DOI: 10.1016/j.pnpbp.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.
Collapse
Affiliation(s)
- Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Dmitry A Lifanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; School of Pharmacy, Southwest University, Chongqing, China
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Polina Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Ural Federal University, Ekaterinburg, Russia; Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; ZENEREI Research Center, Slidell, LA, USA.
| |
Collapse
|
35
|
Sircar S, Parekh N. Meta-analysis of drought-tolerant genotypes in Oryza sativa: A network-based approach. PLoS One 2019; 14:e0216068. [PMID: 31059518 PMCID: PMC6502313 DOI: 10.1371/journal.pone.0216068] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 04/12/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Drought is a severe environmental stress. It is estimated that about 50% of the world rice production is affected mainly by drought. Apart from conventional breeding strategies to develop drought-tolerant crops, innovative computational approaches may provide insights into the underlying molecular mechanisms of stress response and identify drought-responsive markers. Here we propose a network-based computational approach involving a meta-analytic study of seven drought-tolerant rice genotypes under drought stress. RESULTS Co-expression networks enable large-scale analysis of gene-pair associations and tightly coupled clusters that may represent coordinated biological processes. Considering differentially expressed genes in the co-expressed modules and supplementing external information such as resistance/tolerance QTLs, transcription factors, network-based topological measures, we identify and prioritize drought-adaptive co-expressed gene modules and potential candidate genes. Using the candidate genes that are well-represented across the datasets as 'seed' genes, two drought-specific protein-protein interaction networks (PPINs) are constructed with up- and down-regulated genes. Cluster analysis of the up-regulated PPIN revealed ABA signalling pathway as a central process in drought response with a probable crosstalk with energy metabolic processes. Tightly coupled gene clusters representing up-regulation of core cellular respiratory processes and enhanced degradation of branched chain amino acids and cell wall metabolism are identified. Cluster analysis of down-regulated PPIN provides a snapshot of major processes associated with photosynthesis, growth, development and protein synthesis, most of which are shut down during drought. Differential regulation of phytohormones, e.g., jasmonic acid, cell wall metabolism, signalling and posttranslational modifications associated with biotic stress are elucidated. Functional characterization of topologically important, drought-responsive uncharacterized genes that may play a role in important processes such as ABA signalling, calcium signalling, photosynthesis and cell wall metabolism is discussed. Further transgenic studies on these genes may help in elucidating their biological role under stress conditions. CONCLUSION Currently, a large number of resources for rice functional genomics exist which are mostly underutilized by the scientific community. In this study, a computational approach integrating information from various resources such as gene co-expression networks, protein-protein interactions and pathway-level information is proposed to provide a systems-level view of complex drought-responsive processes across the drought-tolerant genotypes.
Collapse
Affiliation(s)
- Sanchari Sircar
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad, India
- * E-mail:
| |
Collapse
|
36
|
Chandrasekaran M, Paramasivan M, Chun SC. Bacillus subtilis CBR05 induces Vitamin B6 biosynthesis in tomato through the de novo pathway in contributing disease resistance against Xanthomonas campestris pv. vesicatoria. Sci Rep 2019; 9:6495. [PMID: 31019197 PMCID: PMC6482200 DOI: 10.1038/s41598-019-41888-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 03/15/2019] [Indexed: 02/03/2023] Open
Abstract
Expression profiling for genes involved in Vitamin B6 (VitB6) biosynthesis was undertaken to delineate the involvement of de novo and salvage pathway induced by Bacillus subtilis CBR05 against, Xanthomonas campestris pv. vesicatoria in tomato. Pyridoxine biosynthesis (PDX) genes such as PDX1.2 and PDX1.3, were found to be overexpressed significantly at 72 hpi in B. subtilis and pyridoxine inoculated plants. Most significant upregulation was observed in the transcript profile of PDX1.3, which showed more than 12- fold increase in expression. Unfortunately, salt sensitive overlay4 (SOS4) profiling showed irregular expression which corroborates that SOS4 role in VitB6 biosynthesis needs further studies for deciphering a clear notion about their role in tomato. Antioxidant enzymes i.e., superoxide dismutase, catalase, polyphenol oxidase, and peroxidase activities clearly demonstrate escalation till 48 hpi and gets reduced in 72 hpi. Pot trials also confirm that B. subtilis compared to pyridoxine supplementation alone show plant disease resistance and elongated roots. The present study confirms that B. subtilis, as a versatile agent in eliciting induced systemic resistance regulated by de novo pathway as a model for plant defense against X. campestris pv. vesicatoria substantiated by VitB6 biosynthesis. Nevertheless, the study is preliminary and needs further evidence for affirming this phenomenon.
Collapse
Affiliation(s)
- Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul, 05006, Republic of Korea
| | - Manivannan Paramasivan
- Department of Microbiology, Bharathidasan University, Tiruchirappalli, 620024, Tamilnadu, India
| | - Se-Chul Chun
- Department of Environmental Health Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea.
| |
Collapse
|
37
|
SNZ3 Encodes a PLP Synthase Involved in Thiamine Synthesis in Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:335-344. [PMID: 30498136 PMCID: PMC6385983 DOI: 10.1534/g3.118.200831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pyridoxal 5′-phosphate (the active form of vitamin B6) is a cofactor that is important for a broad number of biochemical reactions and is essential for all forms of life. Organisms that can synthesize pyridoxal 5′-phosphate use either the deoxyxylulose phosphate-dependent or -independent pathway, the latter is encoded by a two-component pyridoxal 5′-phosphate synthase. Saccharomyces cerevisiae contains three paralogs of the two-component SNZ/SNO pyridoxal 5′-phosphate synthase. Past work identified the biochemical activity of Snz1p, Sno1p and provided in vivo data that SNZ1 was involved in pyridoxal 5′-phosphate biosynthesis. Snz2p and Snz3p were considered redundant isozymes and no growth condition requiring their activity was reported. Genetic data herein showed that either SNZ2 or SNZ3 are required for efficient thiamine biosynthesis in Saccharomyces cerevisiae. Further, SNZ2 or SNZ3 alone could satisfy the cellular requirement for pyridoxal 5′-phosphate (and thiamine), while SNZ1 was sufficient for pyridoxal 5′-phosphate synthesis only if thiamine was provided. qRT-PCR analysis determined that SNZ2,3 are repressed ten-fold by the presence thiamine. In total, the data were consistent with a requirement for PLP in thiamine synthesis, perhaps in the Thi5p enzyme, that could only be satisfied by SNZ2 or SNZ3. Additional data showed that Snz3p is a pyridoxal 5′-phosphate synthase in vitro and is sufficient to satisfy the pyridoxal 5′-phosphate requirement in Salmonella enterica when the medium has excess ammonia.
Collapse
|
38
|
Czégény G, Kőrösi L, Strid Å, Hideg É. Multiple roles for Vitamin B 6 in plant acclimation to UV-B. Sci Rep 2019; 9:1259. [PMID: 30718682 PMCID: PMC6361899 DOI: 10.1038/s41598-018-38053-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/19/2018] [Indexed: 01/24/2023] Open
Abstract
Direct and indirect roles of vitamin B6 in leaf acclimation to supplementary UV-B radiation are shown in vitamin B6 deficient Arabidopsis thaliana mutant rsr4-1 and C24 wild type. Responses to 4 days of 3.9 kJ m-2 d-1 biologically effective UV-B dose were compared in terms of leaf photochemistry, vitamer content, and antioxidant enzyme activities; complemented with a comprehensive study of vitamer ROS scavenging capacities. Under UV-B, rsr4-1 leaves lost more (34%) photochemical yield than C24 plants (24%). In the absence of UV-B, rsr4-1 leaves contained markedly less pyridoxal-5'-phosphate (PLP) than C24 ones, but levels increased up to the C24 contents in response to UV-B. Activities of class-III ascorbate and glutathione peroxidases increased in C24 leaves upon the UV-B treatment but not in the rsr4-1 mutant. SOD activities remained the same in C24 but decreased by more than 50% in rsr4-1 under UV-B. Although PLP was shown to be an excellent antioxidant in vitro, our results suggest that the UV-B protective role of B6 vitamers is realized indirectly, via supporting peroxidase defence rather than by direct ROS scavenging. We hypothesize that the two defence pathways are linked through the PLP-dependent biosynthesis of cystein and heme, affecting peroxidases.
Collapse
Affiliation(s)
- Gyula Czégény
- Department of Plant Biology, University of Pécs, Pécs, Hungary
| | - László Kőrösi
- Research Institute for Viticulture and Oenology, University of Pécs, Pécs, Hungary
| | - Åke Strid
- School of Science & Technology, Örebro Life Science Center, Örebro University, Örebro, Sweden
| | - Éva Hideg
- Department of Plant Biology, University of Pécs, Pécs, Hungary.
| |
Collapse
|
39
|
ShuoHao H, Jing L, Jie Z, JianYun Z, LongQuan H. Identification and characterization of a pyridoxal 5'-phosphate phosphatase in tobacco plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 278:88-95. [PMID: 30471733 DOI: 10.1016/j.plantsci.2018.10.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/21/2018] [Accepted: 10/16/2018] [Indexed: 06/09/2023]
Abstract
Pyridoxal 5'-phosphate (PLP), the catalytically active form of vitamin B6, is an important cofactor for many biochemical transformations. PLP is also a very reactive molecule, and the most well-established mechanism for maintaining low levels of free PLP is its dephosphorylation by phosphatases. In our previous study, the crude enzyme extract from tobacco leaves rapidly hydrolyzed PLP at a pH optimum of 5.5. Using PLP as a substrate, a novel acid phosphatase was purified from tobacco leaves and characterized. Whether there is a PLP specific phosphatase in plants is still unknown. In this study, a cDNA clone sharing 34.72% homology with human PLP phosphatase sequences was identified from N. tabacum and characterized. The cDNA encodes a polypeptide of 319 amino acid residues, and the recombinant enzyme purified from E. coli exhibited maximum catalytic activity for PLP at pH 7.5. The properties of the purified enzyme, including pH optimum, metal requirement, optimum substrate and inhibitors were similar to those of human PLP phosphatase. Subcellular localization analysis showed that the PLP phosphatase is mainly located in chloroplast. We down-regulated the gene expression with plant RNA interference technology and found that the down-regulation has a greater impact on the transcription of genes encoding vitamin B6 metabolic enzymes. Our study further suggested that the PLP phosphatase plays an important role for maintaining PLP homeostasis within the chloroplast in plants.
Collapse
Affiliation(s)
- Huang ShuoHao
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Liu Jing
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Zhou Jie
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China
| | - Zhang JianYun
- School of Foreign Languages, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| | - Huang LongQuan
- School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, People's Republic of China.
| |
Collapse
|
40
|
Kim G, Jang S, Yoon EK, Lee SA, Dhar S, Kim J, Lee MM, Lim J. Involvement of Pyridoxine/Pyridoxamine 5'-Phosphate Oxidase (PDX3) in Ethylene-Induced Auxin Biosynthesis in the Arabidopsis Root. Mol Cells 2018; 41:1033-1044. [PMID: 30453730 PMCID: PMC6315319 DOI: 10.14348/molcells.2018.0363] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
As sessile organisms, plants have evolved to adjust their growth and development to environmental changes. It has been well documented that the crosstalk between different plant hormones plays important roles in the coordination of growth and development of the plant. Here, we describe a novel recessive mutant, mildly insensitive to ethylene (mine), which displayed insensitivity to the ethylene precursor, ACC (1-aminocyclopropane-1-carboxylic acid), in the root under the dark-grown conditions. By contrast, mine roots exhibited a normal growth response to exogenous IAA (indole-3-acetic acid). Thus, it appears that the growth responses of mine to ACC and IAA resemble those of weak ethylene insensitive (wei) mutants. To understand the molecular events underlying the crosstalk between ethylene and auxin in the root, we identified the MINE locus and found that the MINE gene encodes the pyridoxine 5'-phosphate (PNP)/pyridoxamine 5'-phosphate (PMP) oxidase, PDX3. Our results revealed that MINE/PDX3 likely plays a role in the conversion of the auxin precursor tryptophan to indole-3-pyruvic acid in the auxin biosynthesis pathway, in which TAA1 (TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1) and its related genes (TRYPTOPHAN AMINOTRANSFERASE RELATED 1 and 2; TAR1 and TAR2) are involved. Considering that TAA1 and TARs belong to a subgroup of PLP (pyridoxal-5'-phosphate)-dependent enzymes, we propose that PLP produced by MINE/PDX3 acts as a cofactor in TAA1/TAR-dependent auxin biosynthesis induced by ethylene, which in turn influences the crosstalk between ethylene and auxin in the Arabidopsis root.
Collapse
Affiliation(s)
- Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore,
Singapore
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Wanju,
Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Jinkwon Kim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul,
Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul,
Korea
| |
Collapse
|
41
|
Karlik E, Gozukirmizi N. Expression analysis of lncRNA AK370814 involved in the barley vitamin B6 salvage pathway under salinity. Mol Biol Rep 2018; 45:1597-1609. [PMID: 30298351 DOI: 10.1007/s11033-018-4289-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 07/30/2018] [Indexed: 01/17/2023]
Abstract
Long non-coding RNAs (lncRNAs), which are longer than > 200 nt, perform various functions in a variety of important biological processes. The aim of this study is the investigation of relative expression levels of AK372815 putative pyridoxal reductase (PLR) gene and sense lncRNA AK370814 on four barley genotypes (Hasat, Beysehir 99, Konevi 98 and Tarm 92) in response to 150 mM salinity application during 3 days post-germination. Seeds were placed randomly in petri dishes containing (a) only H2O (control), (b) 150 mM NaCl, for 72 h. RNA isolation was carried out using TriPure® reagent from 150 mM salt-treated root and shoot samples. Relative expression levels of AK372815 PLR and sense lncRNA AK370814 were determined by qPCR. Results demonstrated that salinity affected the expression levels of both AK372815 PLR gene and sense lncRNA AK370814 during germination. Although expression levels of AK372815 PLR tended to be down-regulated under salinity, expression levels of sense lncRNA AK370814 were up-regulated. Another goal of this study is improvement of alternative approach to NGS technologies for determination of relative expression levels of sense lncRNAs under particular circumstances. This is the first report that demonstrates a relationship between lncRNA and vitamin B6 salvage pathway.
Collapse
Affiliation(s)
- Elif Karlik
- Department of Biotechnology, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.
| | - Nermin Gozukirmizi
- Department of Molecular Biology and Genetics, Istanbul University, 34134, Vezneciler, Istanbul, Turkey.,Department of Molecular Biology and Genetics, İstinye University, 34010, Zeytinburnu, İstanbul, Turkey
| |
Collapse
|
42
|
Parra M, Stahl S, Hellmann H. Vitamin B₆ and Its Role in Cell Metabolism and Physiology. Cells 2018; 7:cells7070084. [PMID: 30037155 PMCID: PMC6071262 DOI: 10.3390/cells7070084] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/11/2022] Open
Abstract
Vitamin B6 is one of the most central molecules in cells of living organisms. It is a critical co-factor for a diverse range of biochemical reactions that regulate basic cellular metabolism, which impact overall physiology. In the last several years, major progress has been accomplished on various aspects of vitamin B6 biology. Consequently, this review goes beyond the classical role of vitamin B6 as a cofactor to highlight new structural and regulatory information that further defines how the vitamin is synthesized and controlled in the cell. We also discuss broader applications of the vitamin related to human health, pathogen resistance, and abiotic stress tolerance. Overall, the information assembled shall provide helpful insight on top of what is currently known about the vitamin, along with addressing currently open questions in the field to highlight possible approaches vitamin B6 research may take in the future.
Collapse
Affiliation(s)
- Marcelina Parra
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Seth Stahl
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| | - Hanjo Hellmann
- Hellmann Lab, School of Biological Sciences, College of Liberal Arts and Sciences, Washington State University, Pullman, 99164-6234 WA, USA.
| |
Collapse
|
43
|
Bagri DS, Upadhyaya DC, Kumar A, Upadhyaya CP. Overexpression of PDX-II gene in potato (Solanum tuberosum L.) leads to the enhanced accumulation of vitamin B6 in tuber tissues and tolerance to abiotic stresses. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:267-275. [PMID: 29807600 DOI: 10.1016/j.plantsci.2018.04.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/24/2018] [Accepted: 04/28/2018] [Indexed: 05/21/2023]
Abstract
Vitamin B6 is a vital metabolite required for living organisms as a cofactor in several metabolic biochemical reactions and recognized as a potent antioxidant molecule which modulates the expression of the proteins responsible for the scavenging of cellular reactive oxygen species. It is well established that the microorganisms and plants can synthesize the B6 de novo, therefore, all the animals including humans must acquire it from the plant dietary resources. However, the bioavailability of the vitamin in the edible portions of the commonly consumed plants is insufficient to meet the daily recommended doses. Genetic engineering techniques have proven successful in increasing the vitamin B6 content in the model plants. Present study describe the development of transgenic potato (Solanum tuberosum L. cv. Kufri chipsona) overexpressing key vitamin B6 pathway gene, the PDXII (NCBI database Ref. ID- NM_125447.2) isolated from Arabidopsis thaliana under the control of CaMV 35S constitutive promoter. The stable integration and expression of transgene in the transgenic lines were confirmed by PCR, Southern blot and RT-PCR analysis. Transgenic tubers exhibited considerably improved vitamin B6 accumulation (up to 107-150%) in comparison to the untransformed controls potato. This increase in vitamin B6 was also correlated with the increased mRNA expression of PDXII gene. The prominent increase in the B6 content of transgenic potato was also associated with the capability to survive under abiotic stresses, therefore, the transgenic lines were able to withstand various abiotic stresses imposed by salinity (NaCl) or methyl viologen (MV). We thus demonstrated that overexpression of PDXII gene under the control of a constitutive promoter enhanced the accumulation of the vitamin B6 which also augmented the tolerance under various abiotic stresses in potato (Solanum tuberosum L.).
Collapse
Affiliation(s)
- Deepak Singh Bagri
- Plant Molecular Biology Laboratory, Department of Biotechnology, Dr Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Devanshi Chandel Upadhyaya
- Plant Molecular Biology Laboratory, Department of Biotechnology, Dr Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research laboratory, Department of Botany, Dr Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India
| | - Chandrama Prakash Upadhyaya
- Plant Molecular Biology Laboratory, Department of Biotechnology, Dr Harisingh Gour Central University, Sagar, 470003, Madhya Pradesh, India.
| |
Collapse
|
44
|
Vitamin B6 biosynthetic genes expression and antioxidant enzyme properties in tomato against, Erwinia carotovora subsp. carotovora. Int J Biol Macromol 2018; 116:31-36. [PMID: 29738862 DOI: 10.1016/j.ijbiomac.2018.05.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 11/22/2022]
Abstract
Vitamin B6 (VitB6) is an essential cofactor for >140 biochemical reactions. Also, VitB6 is a potent antioxidant and helps plants cope with both biotic and abiotic stress conditions. However, the role of VitB6 in plant disease resistance has yet to be confirmed using molecular biology approaches. Here, we analyzed the expression patterns of VitB6 biosynthetic genes, including the de novo (PDX1 [PDX1.2 and 1.3] and PDX2) and the salvage (SOS4) pathways during the response to Erwinia carotovora subsp. carotovora. By quantitative PCR, we found that the most significant upregulation in the transcript profile of PDX2, which showed a 9.2-fold increase in expression at 12 h post inoculation (hpi) compared to 24-48 hpi. We also detected significant upregulation of PDX1.2 and PDX1.3, which were 6.6- and 4.3-fold upregulated at 24 hpi compared to 12 hpi, while SOS4 showed only low-level expression. Also, at 24 hpi, a significant increase in superoxide dismutase, catalase, peroxidase, and polyphenol oxidase activities was observed in plants. Our findings confirm that the expression of de novo and salvage pathway genes is induced by E. carotovora and that this plays an important role in the regulation of defense response by modulating cellular antioxidant capacity.
Collapse
|
45
|
Strobbe S, Van Der Straeten D. Toward Eradication of B-Vitamin Deficiencies: Considerations for Crop Biofortification. FRONTIERS IN PLANT SCIENCE 2018; 9:443. [PMID: 29681913 PMCID: PMC5897740 DOI: 10.3389/fpls.2018.00443] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/21/2018] [Indexed: 05/08/2023]
Abstract
'Hidden hunger' involves insufficient intake of micronutrients and is estimated to affect over two billion people on a global scale. Malnutrition of vitamins and minerals is known to cause an alarming number of casualties, even in the developed world. Many staple crops, although serving as the main dietary component for large population groups, deliver inadequate amounts of micronutrients. Biofortification, the augmentation of natural micronutrient levels in crop products through breeding or genetic engineering, is a pivotal tool in the fight against micronutrient malnutrition (MNM). Although these approaches have shown to be successful in several species, a more extensive knowledge of plant metabolism and function of these micronutrients is required to refine and improve biofortification strategies. This review focuses on the relevant B-vitamins (B1, B6, and B9). First, the role of these vitamins in plant physiology is elaborated, as well their biosynthesis. Second, the rationale behind vitamin biofortification is illustrated in view of pathophysiology and epidemiology of the deficiency. Furthermore, advances in biofortification, via metabolic engineering or breeding, are presented. Finally, considerations on B-vitamin multi-biofortified crops are raised, comprising the possible interplay of these vitamins in planta.
Collapse
|
46
|
Burns EE, Keith BK, Refai MY, Bothner B, Dyer WE. Constitutive redox and phosphoproteome changes in multiple herbicide resistant Avena fatua L. are similar to those of systemic acquired resistance and systemic acquired acclimation. JOURNAL OF PLANT PHYSIOLOGY 2018; 220:105-114. [PMID: 29169105 DOI: 10.1016/j.jplph.2017.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/26/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
Plants are routinely confronted with numerous biotic and abiotic stressors, and in response have evolved highly effective strategies of systemic acquired resistance (SAR) and systemic acquired acclimation (SAA), respectively. A much more evolutionarily recent abiotic stress is the application of herbicides to control weedy plants, and their intensive use has selected for resistant weed populations that cause substantial crop yield losses and increase production costs. Non-target site resistance (NTSR) to herbicides is rapidly increasing worldwide and is associated with alterations in generalized stress defense networks. This work investigated protein post-translational modifications associated with NTSR in multiple herbicide resistant (MHR) Avena fatua, and their commonalities with those of SAR and SAA. We used proteomic, biochemical, and immunological approaches to compare constitutive protein profiles in MHR and herbicide susceptible (HS) A. fatua populations. Phosphoproteome and redox proteome surveys showed that post-translational modifications of proteins with functions in core cellular processes were reduced in MHR plants, while those involved in xenobiotic and stress response, reactive oxygen species detoxification and redox maintenance, heat shock response, and intracellular signaling were elevated in MHR as compared to HS plants. More specifically, MHR plants contained constitutively elevated levels of three protein kinases including the lectin S-receptor-like serine/threonine-protein kinase LecRK2, a well-characterized component of SAR. Analyses of superoxide dismutase enzyme activity and protein levels did not reveal constitutive differences between MHR and HS plants. The overall results support the idea that herbicide stress is perceived similarly to other abiotic stresses, and that A. fatua NTSR shares analogous features with SAR and SAA. We speculate that MHR A. fatua's previous exposure to sublethal herbicide doses, as well as earlier evolution under a diversity of abiotic and biotic stressors, has led to a heightened state of stress preparedness that includes NTSR to a number of unrelated herbicides.
Collapse
Affiliation(s)
- Erin E Burns
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Barbara K Keith
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States
| | - Mohammed Y Refai
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - Brian Bothner
- Department of Chemistry & Biochemistry Research, PO Box 173400, Montana State University, Bozeman, MT 59717, United States
| | - William E Dyer
- Department of Plant Sciences & Plant Pathology, PO Box 173150, Montana State University, Bozeman, MT 59717, United States.
| |
Collapse
|
47
|
Identification of Genes Involved in the Responses of Tangor (C. reticulata × C. sinensis) to Drought Stress. BIOMED RESEARCH INTERNATIONAL 2017; 2017:8068725. [PMID: 29085842 PMCID: PMC5612316 DOI: 10.1155/2017/8068725] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 07/31/2017] [Indexed: 12/22/2022]
Abstract
Drought is the major abiotic stress with adverse effects on citrus, decreasing the agronomical yield and influencing the fruit quality. In this study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) technique was used to investigate the transcriptional profile changes and identify drought-responsive genes in “Amakusa” tangor (C. reticulata × C. sinensis), a hybrid citrus sensitive to water stress. The 255 out of 6,245 transcript-derived fragments (TDFs) displayed altered expression patterns including (A) induction, (B) repression, (C) upregulation, and (D) downregulation. With BLAST search, the gene products of differentially expressed fragments (DEFs) could be classified into several categories: cellular processes, transcription, transport, metabolism, stress/stimuli response, and developmental processes. Downregulated genes were highly represented by photosynthesis and basic metabolism, while upregulated ones were enriched in genes that were involved in transcription regulation, defense, energy, and transport. Present result also revealed some transient and up- and then downregulated genes such as aquaporin protein and photosystem enzyme. Expression patterns of 17 TDFs among 18 homologous to function-known genes were confirmed by qRT-PCR analysis. The present results revealed potential mechanism of drought tolerance in fruit crop and also provided candidate genes for future experiments in citrus.
Collapse
|
48
|
Park SI, Kim YS, Kim JJ, Mok JE, Kim YH, Park HM, Kim IS, Yoon HS. Improved stress tolerance and productivity in transgenic rice plants constitutively expressing the Oryza sativa glutathione synthetase OsGS under paddy field conditions. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:39-47. [PMID: 28527337 DOI: 10.1016/j.jplph.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Reactive oxygen species, which increase under various environmental stresses, have deleterious effects on plants. An important antioxidant, glutathione, is used to detoxify reactive oxygen species in plant cells and is mainly produced by two enzymes: gamma-glutamylcysteine synthetase (γ-ECS) and glutathione synthetase (GS). To evaluate the functional roles of the glutathione synthetase gene (OsGS) in rice, we generated four independent transgenic rice plants (TG1-TG4) that overexpressed OsGS under the control of the constitutively expressed OsCc1 promoter. When grown under natural paddy field conditions, the TG rice plants exhibited greater growth development, higher chlorophyll content, and higher GSH/GSSH ratios than control wild-type (WT) rice plants. Subsequently, the TG rice plants enhanced redox homeostasis by preventing hydroperoxide-mediated membrane damage, which improved their adaptation to environmental stresses. As a result, TG rice plants improved rice grain yield and total biomass following increases in panicle number and number of spikelets per panicle, despite differences in climate during the cultivation periods of 2014 and 2015. Overall, our results indicate that OsGS overexpression improved redox homeostasis by enhancing the glutathione pool, which resulted in greater tolerance to environmental stresses in the paddy fields.
Collapse
Affiliation(s)
- Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Saeng Kim
- Research Institute of Ulleung-do & Dok-do, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Eun Mok
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Yul-Ho Kim
- Highland Agriculture Research Institute, National Institute of Crop Science, Rural Development Administration, Pyeongchang 25342, Republic of Korea
| | - Hyang-Mi Park
- National Institute of Crop Science, Rural Development Administration, Wanju 54955, Republic of Korea
| | - Il-Sup Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 702-701, Republic of Korea; School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
49
|
Chien HJ, Chu YW, Chen CW, Juang YM, Chien MW, Liu CW, Wu CC, Tzen JT, Lai CC. 2-DE combined with two-layer feature selection accurately establishes the origin of oolong tea. Food Chem 2016; 211:392-9. [DOI: 10.1016/j.foodchem.2016.05.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/01/2022]
|
50
|
Sang T, Shan X, Li B, Shu S, Sun J, Guo S. Comparative proteomic analysis reveals the positive effect of exogenous spermidine on photosynthesis and salinity tolerance in cucumber seedlings. PLANT CELL REPORTS 2016; 35:1769-82. [PMID: 27351994 DOI: 10.1007/s00299-016-1995-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/12/2016] [Indexed: 05/17/2023]
Abstract
Our results based on proteomics data and physiological alterations proposed the putative mechanism of exogenous Spd enhanced salinity tolerance in cucumber seedlings. Current studies showed that exogenous spermidine (Spd) could alleviate harmful effects of salinity. It is important to increase our understanding of the beneficial physiological responses of exogenous Spd treatment, and to determine the molecular responses underlying these responses. Here, we combined a physiological analysis with iTRAQ-based comparative proteomics of cucumber (Cucumis sativus L.) leaves, treated with 0.1 mM exogenous Spd, 75 mM NaCl and/or exogenous Spd. A total of 221 differentially expressed proteins were found and involved in 30 metabolic pathways, such as photosynthesis, carbohydrate metabolism, amino acid metabolism, stress response, signal transduction and antioxidant. Based on functional classification of the differentially expressed proteins and the physiological responses, we found cucumber seedlings treated with Spd under salt stress had higher photosynthesis efficiency, upregulated tetrapyrrole synthesis, stronger ROS scavenging ability and more protein biosynthesis activity than NaCl treatment, suggesting that these pathways may promote salt tolerance under high salinity. This study provided insights into how exogenous Spd protects photosynthesis and enhances salt tolerance in cucumber seedlings.
Collapse
Affiliation(s)
- Ting Sang
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Shan
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Bin Li
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jin Sun
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Facility Horticulture Institute, Nanjing Agricultural University, Suqian, Jiangsu, 223800, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetables Genetic Improvement of Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Facility Horticulture Institute, Nanjing Agricultural University, Suqian, Jiangsu, 223800, China.
| |
Collapse
|