1
|
Yang C, Huang L, Wang BC, Zhong Y, Ma X, Zhang C, Sun Q, Wu Y, Yao Y, Liu Q. Enhancing quality traits in staple crops: current advances and future perspectives. J Genet Genomics 2025:S1673-8527(25)00132-8. [PMID: 40348082 DOI: 10.1016/j.jgg.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Staple crops such as rice, wheat and maize are crucial for global food security; however, improving their quality remains a significant challenge. This review summarizes recent advances in enhancing crop quality, focusing on key areas such as the molecular mechanisms underlying endosperm filling initiation, starch granule synthesis, protein body formation, and the interactions between carbon and nitrogen metabolism. It also highlights ten unresolved questions related to starch-protein spatial distribution, epigenetic regulation, and the environmental impacts on quality traits. The integration of multi-omics approaches, and rational design strategies presents opportunities to develop high-yield "super-crop" varieties with enhanced nutritional value, better processing characteristics, and attributes preferred by consumers. Addressing these challenges is crucial to promote sustainable agriculture and achieve the dual objectives of food security and environmental conservation.
Collapse
Affiliation(s)
- Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lichun Huang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Bai-Chen Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Pei J, Wang Z, Heng Y, Chen Z, Wang K, Xiao Q, Li J, Hu Z, He H, Cao Y, Ye X, Deng XW, Liu Z, Ma L. Selection of dysfunctional alleles of bHLH1 and MYB1 has produced white grain in the tribe Triticeae. PLANT COMMUNICATIONS 2025; 6:101265. [PMID: 39893516 PMCID: PMC12010413 DOI: 10.1016/j.xplc.2025.101265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/20/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
Grain color is a key agronomic trait that greatly determines food quality. The molecular and evolutionary mechanisms that underlie grain-color regulation are also important questions in evolutionary biology and crop breeding. Here, we confirm that both bHLH and MYB genes have played a critical role in the evolution of grain color in Triticeae. Blue grain is the ancestral trait in Triticeae, whereas white grain caused by bHLH or MYB dysfunctions is the derived trait. HvbHLH1 and HvMYB1 have been the targets of selection in barley, and dysfunctions caused by deletion(s), insertion(s), and/or point mutation(s) in the vast majority of Triticeae species are accompanied by a change from blue grain to white grain. Wheat with white grains exhibits high seed vigor under stress. Artificial co-expression of ThbHLH1 and ThMYB1 in the wheat endosperm or aleurone layer can generate purple grains with health benefits and blue grains for use in a new hybrid breeding technology, respectively. Our study thus reveals that white grain may be a favorable derived trait retained through natural or artificial selection in Triticeae and that the ancient blue-grain trait could be regained and reused in molecular breeding of modern wheat.
Collapse
Affiliation(s)
- Jiawei Pei
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zheng Wang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Yanfang Heng
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Zhuo Chen
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ke Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qingmeng Xiao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Jian Li
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhaorong Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hang He
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Ying Cao
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Xingguo Ye
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Weifang, Shandong, China
| | - Zhijin Liu
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Ligeng Ma
- College of Life Sciences, Capital Normal University, Beijing, China.
| |
Collapse
|
3
|
Bhupenchandra I, Chongtham SK, Gangarani Devi A, Dutta P, Lamalakshmi E, Mohanty S, Choudhary AK, Das A, Sarika K, Kumar S, Yumnam S, Sagolsem D, Rupert Anand Y, Bhutia DD, Victoria M, Vinodh S, Tania C, Dhanachandra Sharma A, Deb L, Sahoo MR, Seth CS, Swapnil P, Meena M. Harnessing weedy rice as functional food and source of novel traits for crop improvement. PLANT, CELL & ENVIRONMENT 2025; 48:2498-2521. [PMID: 38436101 DOI: 10.1111/pce.14868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
A relative of cultivated rice (Oryza sativa L.), weedy or red rice (Oryza spp.) is currently recognized as the dominant weed, leading to a drastic loss of yield of cultivated rice due to its highly competitive abilities like producing more tillers, panicles, and biomass with better nutrient uptake. Due to its high nutritional value, antioxidant properties (anthocyanin and proanthocyanin), and nutrient absorption ability, weedy rice is gaining immense research attentions to understand its genetic constitution to augment future breeding strategies and to develop nutrition-rich functional foods. Consequently, this review focuses on the unique gene source of weedy rice to enhance the cultivated rice for its crucial features like water use efficiency, abiotic and biotic stress tolerance, early flowering, and the red pericarp of the seed. It explores the debating issues on the origin and evolution of weedy rice, including its high diversity, signalling aspects, quantitative trait loci (QTL) mapping under stress conditions, the intricacy of the mechanism in the expression of the gene flow, and ecological challenges of nutrient removal by weedy rice. This review may create a foundation for future researchers to understand the gene flow between cultivated crops and weedy traits and support an improved approach for the applicability of several models in predicting multiomics variables.
Collapse
Affiliation(s)
- Ingudam Bhupenchandra
- ICAR-Farm Science Centre Tamenglong, ICAR Research Complex for NEH Region, Manipur Centre, Imphal, Manipur, India
| | - Sunil Kumar Chongtham
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Ayam Gangarani Devi
- ICAR Research Complex for North Eastern Hill Region, Tripura Centre Lembucherra, Tripura, India
| | - Pranab Dutta
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Elangbam Lamalakshmi
- ICAR Research Complex for North Eastern Hill Region, Sikkim Centre, Tadong, Sikkim, India
| | - Sansuta Mohanty
- Molecular Biology and Biotechnology Department, Faculty of Agricultural Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| | - Anil K Choudhary
- Division of Crop Production, ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Anup Das
- ICAR Research Complex for North Eastern Hill Region, Lembucherra, Tripura, India
| | - Konsam Sarika
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | - Sumit Kumar
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
- Department of Plant Pathology, B.M. College of Agriculture, Khandwa, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior, Madhya Pradesh, India
| | - Sonika Yumnam
- All India Coordinated Research Project on Chickpea, Central Agricultural University, Imphal, Manipur, India
| | - Diana Sagolsem
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Y Rupert Anand
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Dawa Dolma Bhutia
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - M Victoria
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - S Vinodh
- Multi Technology Testing Centre and Vocational Training Centre, College of Horticulture, Central Agricultural University, Bermiok, Sikkim, India
| | - Chongtham Tania
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Lipa Deb
- School of Crop Protection, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Manas Ranjan Sahoo
- ICAR Research Complex for North Eastern Hill Region, Manipur Centre, Imphal, Manipur, India
| | | | - Prashant Swapnil
- Department of Botany, School of Basic Science, Central University of Punjab, Bhatinda, Punjab, India
| | - Mukesh Meena
- Laboratory of Phytopathology and Microbial Biotechnology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| |
Collapse
|
4
|
Lang H, Jia X, He B, Yu X. Advances and Future Prospects of Pigment Deposition in Pigmented Rice. PLANTS (BASEL, SWITZERLAND) 2025; 14:963. [PMID: 40265906 PMCID: PMC11945685 DOI: 10.3390/plants14060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/17/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025]
Abstract
Pigmented rice, particularly the black and red varieties, is popular due to its better nutritional value. Anthocyanins and proanthocyanidins are two major flavonoid subcategories with broad physiological functions and therapeutic significance. However, pigment deposition is a complex process, and the molecular mechanism involved remains unknown. This review explores the metabolites responsible for the pigmentation in various rice tissues. Moreover, the current challenges, feasible strategies, and potential future directions in pigmented rice research are reported.
Collapse
Affiliation(s)
- Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| | - Xingtian Jia
- Tongliao Institute of Agricultural and Animal Husbandry Sciences, Tongliao 028000, China;
| | - Bing He
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| | - Xiaoming Yu
- School of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, China; (B.H.); (X.Y.)
| |
Collapse
|
5
|
Takeda-Kimura Y, Mori T, Suzuki S, Sakamoto M, Saito K, Nakabayashi R, Tobimatsu Y, Umezawa T. Altered development and lignin deposition in rice p-COUMAROYL ESTER 3-HYDROXYLASE loss-of-function mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70039. [PMID: 40040338 DOI: 10.1111/tpj.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 01/25/2025] [Accepted: 01/29/2025] [Indexed: 03/06/2025]
Abstract
The aromatic composition of lignin greatly influences the potential utility of lignocellulosic biomass. Previously, we generated transgenic rice plants with altered lignin aromatic composition and enhanced biomass utilization properties by suppressing the expression of p-COUMAROYL ESTER 3-HYDROXYLASE (C3'H). While RNAi-derived C3'H-knockdown lines displayed relatively normal growth with substantially augmented levels of p-hydroxyphenyl-type lignin units, genome-edited C3'H-knockout lines exhibited severely impaired growth phenotype, leading to arrested seedling development. In this study, we further characterized the genome-edited C3'H-knockout rice by analyzing gene expression and phenolic metabolite profiles alongside phenotypic traits and cell wall lignin structure. The seedlings of the C3'H-knockout rice displayed irregular vasculature and ectopic lignification. RNA-sequencing analysis detected widespread changes in the expression of genes associated with plant growth, hormone biosynthesis and signaling, and stress responses in the C3'H-knockout rice. Overall, our data suggested that C3'H disruption activates metabolic sensor-mediated signaling pathways, which in turn regulate phenylpropanoid metabolism. In line with this, phenolic metabolite profiling of the C3'H-knockout rice revealed not only shifts in monolignol-associated phenylpropanoids but also reductions in flavonoids and salicylic acid derivatives. Moreover, changes in the aromatic composition of the mutant lignin and phenolic metabolites indicated the presence of parallel monolignol pathways enabling rice to produce guaiacyl- and syringyl-type monolignol derivatives in the absence of C3'H activity. Our findings contribute to a deeper understanding of the mechanisms underlying the growth defects of lignin-modified mutants, with implications for optimizing the utility of grass lignocellulose.
Collapse
Affiliation(s)
- Yuri Takeda-Kimura
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, Yamagata, 997-0037, Japan
| | - Tetsuya Mori
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Shiro Suzuki
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Faculty of Applied Biological Sciences, Graduate School of Natural Science and Technology, and The United Graduate School of Agricultural Science, Gifu University, Gifu, 501-1193, Japan
| | - Masahiro Sakamoto
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Ryo Nakabayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Toshiaki Umezawa
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| |
Collapse
|
6
|
Nguyen CX, Nguyen TD, Dinh TT, Nguyen LT, Ly LK, Chu HH, La TC, Do PT. Prime editing via precise sequence insertion restores function of the recessive rc allele in rice. PLANT CELL REPORTS 2025; 44:57. [PMID: 39961872 DOI: 10.1007/s00299-025-03450-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 02/03/2025] [Indexed: 05/09/2025]
Abstract
KEY MESSAGE An improved prime editing system precisely corrected a 14-bp deletion in the rc gene of white rice, restoring the production of brown pigments.
Collapse
Affiliation(s)
- Cuong X Nguyen
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam.
| | - Trong D Nguyen
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thao T Dinh
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Linh T Nguyen
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Linh K Ly
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Ha H Chu
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Thang C La
- Department of Crop Science, College of Agriculture, Can Tho University, Can Tho, Vietnam
| | - Phat T Do
- Department of Plant Cell Technology, Institute of Biotechnology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
7
|
Zeng D, Qin R, Tang L, Jing C, Wen J, He P, Zhang J. Enrichment of rice endosperm with anthocyanins by endosperm-specific expression of rice endogenous genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109428. [PMID: 39721185 DOI: 10.1016/j.plaphy.2024.109428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/24/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
A diet rich in anthocyanins can benefit human health against a broad spectrum of human diseases due to the high antioxidant activities of anthocyanins. Enrichment of anthocyanins in the starchy endosperm of rice is an effective solution to provide nutritional food in human diets. However, previous attempts failed to engineer anthocyanin biosynthesis in the rice endosperm by transgenic expression of rice endogenous genes. In this study, four rice endogenous genes, OsDFR (encoding dihydroflavonol 4-reductase), OsRb (encoding a bHLH family transcription factor), OsC1 (encoding an R2R3-MYB-type transcription factor) and OsPAC1 (encoding a WD40 class protein), were employed to rebuild the anthocyanin biosynthesis pathway in the rice endosperm. Endosperm-specific expression of OsDFR-OsRb-OsC1 (DRC) or OsDFR-OsPAC1-OsRb-OsC1 (DPRC) resulted in transgenic rice germplasm with dark purple grains. The expression of endogenous anthocyanin biosynthesis-related genes was significantly upregulated in the transgenic lines. Metabolomics analysis revealed a substantial increase in flavonoids flux, including 12 anthocyanins, in the polished grains of these transgenic lines. Our findings demonstrated that ectopic expressing a minimal set of three rice endogenous genes enabled de novo anthocyanin biosynthesis in the rice endosperm. This study contributes valuable insights into the molecular mechanisms underlying rice organ coloration and provides valuable guidance for future anthocyanin biofortification in crops.
Collapse
Affiliation(s)
- Dongdong Zeng
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| | - Ran Qin
- Modern Seed Industry and Green Planting & Breeding Research Center, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Lin Tang
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Cuiyuan Jing
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jiahui Wen
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Peng He
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Zhang
- Biobank, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China; Department of Clinical Medicine, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
8
|
Purnama PR, Suwanchaikasem P, Junbuathong S, Chotechuen S, Moung-Ngam P, Kasettranan W, Paliyavuth C, Pongpanich M, Roytrakul S, Comai L, Buaboocha T, Chadchawan S. Uncovering genetic determinants of antioxidant properties in Thai landrace rice through genome-wide association analysis. Sci Rep 2025; 15:1443. [PMID: 39789126 PMCID: PMC11718077 DOI: 10.1038/s41598-024-83926-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Pigmented rice (Oryza sativa L.) is recognized as a source of natural antioxidant compounds, such as flavonoids, oryzanol, tocopherol, and anthocyanin. Because of their nutritional benefits, anthocyanin-enriched or pigmented rice varieties are feasible alternatives for promoting human health. Pigment biosynthesis in rice is a complex process that involves multiple biosynthetic and regulatory genes. This study aimed to identify the genes associated with antioxidant traits in local Thai rice and develop molecular markers for breeding programs. Single nucleotide polymorphisms (SNPs) in 233 rice cultivars, 119,541 SNPs from the promoters, and the first 5 exons of all genes were associated with antioxidant phenotypes determined using 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid), 2,2-diphenyl-1-picrylhydrazyl, ferric reducing antioxidant power, total flavonoid content, and total phenolic content assays through a mixed linear model (MLM) genome-wide association study (GWAS). GWAS analysis detected 336 quantitative trait nucleotides located at 93 loci, 83% of which were consistently mapped to the reported quantitative trait loci of antioxidant traits. Ten loci, including the OsRc gene, were consistently co-associated with all phenotypic traits. Two genetic markers for polymerase chain reaction detection were developed for the OsTT8 gene and the OsRc promoter, both of which were positively correlated with antioxidant properties. These markers can be applied for antioxidant trait selection in rice breeding programs.
Collapse
Affiliation(s)
- Putut Rakhmad Purnama
- Bioinformatics and Computational Biology Program, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Pipob Suwanchaikasem
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | | | - Somsong Chotechuen
- Division of Rice Research and Development, Rice Department, Bangkok, 10900, Thailand
| | - Peerapon Moung-Ngam
- Pathum Thani Rice Research Center, Thanyaburi, 12110, Pathum Thani, Thailand
| | - Waraluk Kasettranan
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanita Paliyavuth
- Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sittiruk Roytrakul
- Genome Technology Research Unit, Proteomics Research Laboratory National Science and Technology Development Agency , Pathum Thani, 12120, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Teerapong Buaboocha
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
9
|
Zhu T, Du M, Chen H, Li G, Wang M, Meng L. Recent insights into anthocyanin biosynthesis, gene involvement, distribution regulation, and domestication process in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 349:112282. [PMID: 39389316 DOI: 10.1016/j.plantsci.2024.112282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Anthocyanins are water-soluble natural pigments found broadly in plants. As members of the flavonoid family, they are widely distributed in various tissues and organs, including roots, leaves, and flowers, responsible for purple, red, blue, and orange colors. Beyond pigmentation, anthocyanins play a role in plant propagation, stress response, defense mechanisms, and human health benefits. Anthocyanin biosynthesis involves a series of conserved enzymes encoded by structural genes regulated by various transcription factors. In rice, anthocyanin-mediated pigmentation serves as an important morphological marker for varietal identification and purification, a critical nutrient source, and a key trait in studying rice domestication. Anthocyanin biosynthesis in rice is regulated by a ternary conserved MBW transcriptional complexes comprising MYB transcription factors (TFs), basic-helix-loop-helix (bHLH) TFs, and WD40 repeat protein, which activate the expression of structure genes. Wild rice (Oryza rufipogon) commonly has purple hull, purple stigma, purple apiculus, purple leaf, and red pericarp due to the accumulations of anthocyanin or proanthocyanin. However, most cultivated rice (Oryza sativa) varieties lose the anthocyanin phenotypes due to the function variations of some regulators including OsC1, OsRb, and Rc and the structure gene OsDFR. Over the past decades, significant progress has been made in understanding the molecular and genetic mechanisms of anthocyanin biosynthesis. This review summarizes research progress in rice anthocyanin biosynthetic pathways, genes involvements, distribution regulations, and domestication processes. Furthermore, it discusses future prospects for anthocyanin biosynthesis research in rice, aiming to provide a theoretical foundation for future investigations and applications, and to assist in breeding new rice varieties with organ-targeted anthocyanin deposition.
Collapse
Affiliation(s)
- Taotao Zhu
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengxue Du
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Huilin Chen
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Gang Li
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Mengping Wang
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China
| | - Lingzhi Meng
- College of Agriculture and Biology of Liaocheng University, Liaocheng 252000, China; Institute of Huanghe Studies, Liaocheng University, Liaocheng 252000, China.
| |
Collapse
|
10
|
Duan S, Ai H, Liu S, Zhou A, Cao Y, Huang X. Functional nutritional rice: current progresses and future prospects. FRONTIERS IN PLANT SCIENCE 2024; 15:1488210. [PMID: 39628528 PMCID: PMC11611556 DOI: 10.3389/fpls.2024.1488210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
More than half of the world's population relies on rice as their staple food for three meals a day. From a dietary perspective, rice can be considered the most important grain in the world. With the continuous improvement of people's living standards, the demand for food has gradually shifted from being full and eating well to being nutritious and healthy. Developing functional nutritional rice has become an important research direction and strategic initiative for developing a major food concept. In this paper, we review the current progress in the breeding of functional nutritional rice and mineral-biofortified rice. This review focuses on the following aspects: (i) the concept, rice basic structure, nutritional components, and categorization of functional nutritional rice; (ii) genes that have been applied and identified so far, including nutritional functional rice genes, mineral bioenhancement-related genes, and their regulatory mechanisms; (iii) based on the history and technical mainline of rice breeding, research progress in nutritional functional rice using conventional breeding, a combination of conventional breeding and marker-assisted breeding, mutagenesis breeding, genetic engineering technology, and gene editing technology. Based on the current research and industrialization issues, we highlight an outlook of the problems and future developmental directions in nutritional functional rice research.
Collapse
Affiliation(s)
- Sumei Duan
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Shengqin Liu
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| | - Aifeng Zhou
- Anhui Xin Fu Xiang Tian Ecological Agriculture Co. Ltd., Ma’anshan, China
| | - Yuhong Cao
- Ma’anshan Agriculture and Rural Bureau, Ma’anshan, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
11
|
Moon HS, Thiruvengadam M, Chi HY, Kim B, Prabhu S, Chung IM, Kim SH. Comparative study for metabolomics, antioxidant activity, and molecular docking simulation of the newly bred Korean red rice accessions. Food Chem 2024; 458:140277. [PMID: 38970957 DOI: 10.1016/j.foodchem.2024.140277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/08/2024]
Abstract
This study analyzed the metabolite profiles and antioxidant capacities of two waxy and non-waxy Korean red rice accessions newly bred. Fifteen phenolic compounds were detected in the rice samples. Accession1 had high fatty acids, phytosterols, and vitamin E; accession3 had high vitamin E and phytosterol; and accession4 had a high total flavonoid. The correlation analysis findings from this study validated the positive association between all the metabolites and antioxidant activity. in silico results revealed that protocatechuic acid had a docking score of -9.541, followed by luteolin, quercetin, and caffeic acid, all of which had significant docking scores and a significant number of contacts. Similarly, molecular dynamics simulations showed that phytochemicals had root mean square deviation values of <2.8 Å with Keap 1, indicating better stability. This study provides valuable insights into potential directions for future investigations and improvements in the functional qualities of other colored rice varieties.
Collapse
Affiliation(s)
- Hee-Sung Moon
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Hee-Youn Chi
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Backki Kim
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Republic of Korea
| | - Srinivasan Prabhu
- Division of Phytochemistry and Drug Design, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683104, Kerala, India
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Seung-Hyun Kim
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
12
|
Rebeira S, Jayatilake D, Prasantha R, Kariyawasam T, Suriyagoda L. Assessment of antioxidant properties in selected pigmented and non-pigmented rice (Oryza sativa L.) germplasm and determination of its association with Rc gene haplotypes. BMC PLANT BIOLOGY 2024; 24:884. [PMID: 39342098 PMCID: PMC11438363 DOI: 10.1186/s12870-024-05623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Antioxidant properties of rice provide various health benefits due to its ability to inhibit cellular oxidation. Antioxidant content of rice is known to be linked with the pericarp pigmentation. The Rc gene of rice (Os07g0211500) codes for a basic helix-loop-helix (bHLH) protein, acting as a transcriptional factor in regulating proanthocyanidin biosynthesis. The current study was carried out to evaluate the variation of antioxidant properties in a selected panel of rice accessions and assess the possibility of using haplotypes defined based on the Rc gene to predict pericarp pigmentation and antioxidant content in rice. RESULTS Thirty-two rice accessions were evaluated for grain pericarp colour and antioxidant properties; total phenolic content (TPC), total flavonoids (TFC), proanthocyanidins (PAC) and radical scavenging activity (RSA). The parameters TPC, TFC and PAC showed significant positive correlation with RSA (r > 0.69; P < 0.01). The study panel showed a wide variation for antioxidant properties and rice accessions such as Sudu Heenati, Deweraddiri, Madathawalu, Masuran, Ld 368, At 311, Kalu Heenati, Bw 272-6B, Pokkali, At 362 and Wanni Dahanala exhibited profound potential with respect to antioxidant properties. Based on three-target sites previously reported as critical for the function of the coded bHLH protein (an A/C SNP at 1,353-bp, a 1-bp insertion/deletion at 1,388-bp, and a 14-bp insertion/deletion at 1,408-1,421-bp positioned in the mRNA corresponding to the exon 6 of rice Rc gene), three haplotypes were defined (H1-H3). Pigmentation of the rice pericarp could be successfully explained based on the defined haplotypes (H1 (C/G/+): red, and H2 (A/G/+) and H3 (C/G/-): white), and the H1 haplotype corresponded to a significantly (P < 0.05) higher TPC, TFC, PAC and RSA compared to the other haplotypes. CONCLUSIONS The studied rice accessions showed a significant variation with respect to antioxidant properties. Haplotype H1 defined based on the three-target sites in the exon 6 of Rc gene can detect rice accessions with red pigmented pericarp and high antioxidant properties effectively. Hence, its use can be recommended as an alternative to biochemical assays for screening during rice breeding programs.
Collapse
Affiliation(s)
- Srikanthi Rebeira
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Food Research Unit, Department of Agriculture, Peradeniya, Sri Lanka
| | - Dimanthi Jayatilake
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Rohitha Prasantha
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Thamali Kariyawasam
- Department of Agricultural Biology, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Lalith Suriyagoda
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
- Department of Crop Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
13
|
Correia PMP, Najafi J, Palmgren M. De novo domestication: what about the weeds? TRENDS IN PLANT SCIENCE 2024; 29:962-970. [PMID: 38637173 DOI: 10.1016/j.tplants.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/06/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024]
Abstract
Most high-yielding crops are susceptible to abiotic and biotic stresses, making them particularly vulnerable to the potential effects of climate change. A possible alternative is to accelerate the domestication of wild plants that are already tolerant to harsh conditions and to increase their yields by methods such as gene editing. We foresee that crops' wild progenitors could potentially compete with the resulting de novo domesticated plants, reducing yields. To improve the recognition of weeds, we propose using gene editing techniques to introduce traits into de novo domesticated crops that will allow for visual recognition of the crops by weeding robots that have been trained by machine learning.
Collapse
Affiliation(s)
- Pedro M P Correia
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Javad Najafi
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Michael Palmgren
- NovoCrops Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
14
|
Alam M, Lou G, Abbas W, Osti R, Ahmad A, Bista S, Ahiakpa JK, He Y. Improving Rice Grain Quality Through Ecotype Breeding for Enhancing Food and Nutritional Security in Asia-Pacific Region. RICE (NEW YORK, N.Y.) 2024; 17:47. [PMID: 39102064 DOI: 10.1186/s12284-024-00725-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/28/2024] [Indexed: 08/06/2024]
Abstract
Rice grain is widely consumed as a staple food, providing essential nutrition for households, particularly marginalized families. It plays a crucial role in ensuring food security, promoting human nutrition, supporting good health, and contributing to global food and nutritional security. Addressing the diverse quality demands of emerging diverse and climate-risked population dietary needs requires the development of a single variety of rice grain that can meet the various dietary and nutritional requirements. However, there is a lack of concrete definition for rice grain quality, making it challenging to cater to the different demands. The lack of sufficient genetic study and development in improving rice grain quality has resulted in widespread malnutrition, hidden hunger, and micronutrient deficiencies affecting a significant portion of the global population. Therefore, it is crucial to identify genetically evolved varieties with marked qualities that can help address these issues. Various factors account for the declining quality of rice grain and requires further study to improve their quality for healthier diets. We characterized rice grain quality using Lancastrians descriptor and a multitude of intrinsic and extrinsic quality traits. Next, we examined various components of rice grain quality favored in the Asia-Pacific region. This includes preferences by different communities, rice industry stakeholders, and value chain actors. We also explored the biological aspects of rice grain quality in the region, as well as specific genetic improvements that have been made in these traits. Additionally, we evaluated the factors that can influence rice grain quality and discussed the future directions for ensuring food and nutritional security and meeting consumer demands for grain quality. We explored the diverse consumer bases and their varied preferences in Asian-Pacific countries including India, China, Nepal, Bhutan, Vietnam, Sri Lanka, Pakistan, Thailand, Cambodia, Philippines, Bangladesh, Indonesia, Korea, Myanmar and Japan. The quality preferences encompassed a range of factors, including rice head recovery, grain shape, uniform size before cooking, gelatinization, chalkiness, texture, amylose content, aroma, red-coloration of grain, soft and shine when cooked, unbroken when cooked, gelatinization, less water required for cooking, gelatinization temperature (less cooking time), aged rice, firm and dry when cooked (gel consistency), extreme white, soft when chewed, easy-to-cook rice (parboiled rice), vitamins, and minerals. These preferences were evaluated across high, low, and medium categories. A comprehensive analysis is provided on the enhancement of grain quality traits, including brown rice recovery, recovery rate of milled rice, head rice recovery, as well as morphological traits such as grain length, grain width, grain length-width ratio, and grain chalkiness. We also explored the characteristics of amylose, gel consistency, gelatinization temperature, viscosity, as well as the nutritional qualities of rice grains such as starch, protein, lipids, vitamins, minerals, phytochemicals, and bio-fortification potential. The various factors that impact the quality of rice grains, including pre-harvest, post-harvest, and genotype considerations were explored. Additionally, we discussed the future direction and genetic strategies to effectively tackle these challenges. These qualitative characteristics represent the fundamental focus of regional and national breeding strategies employed by different countries to meet consumer preference. Given the significance of rice as a staple food in Asia-Pacific countries, it is primarily consumed domestically, with only a small portion being exported internationally. All the important attributes must be clearly defined within specific parameters. It is crucial for geneticists and breeders to develop a rice variety that can meet the diverse demands of consumers worldwide by incorporating multiple desirable traits. Thus, the goal of addressing global food and nutritional security, and human healthy can be achieved.
Collapse
Affiliation(s)
- Mufid Alam
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Guangming Lou
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waseem Abbas
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Rajani Osti
- College of Humanities and Social Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Aqeel Ahmad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Science and Natural Resource Research, Chinese Academy of Science (CAS), Beijing, China
| | - Sunita Bista
- Sichuan Agricultural University, Chengdu, Sichuan, China
| | - John K Ahiakpa
- National Key Laboratory of Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yuqing He
- National Key Laboratory of Crop Genetic Improvement and National Center of Crop Molecular Breeding, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Myint ZM, Koide Y, Takanishi W, Ikegaya T, Kwan C, Hikichi K, Tokuyama Y, Okada S, Onishi K, Ishikawa R, Fujita D, Yamagata Y, Matsumura H, Kishima Y, Kanazawa A. OlCHR, encoding a chromatin remodeling factor, is a killer causing hybrid sterility between rice species Oryza sativa and O. longistaminata. iScience 2024; 27:109761. [PMID: 38706863 PMCID: PMC11067373 DOI: 10.1016/j.isci.2024.109761] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/26/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
The genetic mechanisms of reproductive isolation have been widely investigated within Asian cultivated rice (Oryza sativa); however, relevant genes between diverged species have been in sighted rather less. Herein, a gene showing selfish behavior was discovered in hybrids between the distantly related rice species Oryza longistaminata and O. sativa. The selfish allele S13l in the S13 locus impaired male fertility, discriminately eliminating pollens containing the allele S13s from O. sativa in heterozygotes (S13s/S13l). Genetic analysis revealed that a gene encoding a chromatin-remodeling factor (CHR) is involved in this phenomenon and a variety of O. sativa owns the truncated gene OsCHR745, whereas its homologue OlCHR has a complete structure in O. longistaminata. CRISPR-Cas9-mediated loss of function mutants restored fertility in hybrids. African cultivated rice, which naturally lacks the OlCHR homologue, is compatible with both S13s and S13l carriers. These results suggest that OlCHR is a Killer gene, which leads to reproductive isolation.
Collapse
Affiliation(s)
- Zin Mar Myint
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yohei Koide
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Wakana Takanishi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Tomohito Ikegaya
- National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Choi Kwan
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kiwamu Hikichi
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Yoshiki Tokuyama
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Shuhei Okada
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Kazumitsu Onishi
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Ryo Ishikawa
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | | | | - Yuji Kishima
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | - Akira Kanazawa
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| |
Collapse
|
16
|
Lap B, Magudeeswari P, Tyagi W, Rai M. Genetic analysis of purple pigmentation in rice seed and vegetative parts - implications on developing high-yielding purple rice (Oryza sativa L.). J Appl Genet 2024; 65:241-254. [PMID: 38191812 DOI: 10.1007/s13353-023-00825-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Pigmentation in rice grains is an important quality parameter. Purple-coloured rice (Oryza sativa L.) indicates the presence of high anthocyanin with benefits of antioxidant properties. However, the genetic mechanism of grain colour is not fully understood. Therefore, the study focused on understanding pigmentation in grain pericarp and vegetative parts, and its relationship with blast resistance and enhanced grain yield. Three local cultivars from the northeastern region (NER) of India - Chakhao Poireiton (purple), Mang Meikri (light brown), and Kala Joha (white) - along with high-yielding varieties (HYVs) Shasharang (light brown) and Sahbhagi dhan (white) were used to develop biparental populations. The findings suggested that pigmentation in vegetative tissue was governed by the inter-allelic interaction of several genes. Haplotype analysis revealed that Kala3 complemented Kala4 in enhancing purple pigmentation and that Kala4 is not the only gene responsible for purple colour as evident by the presence of a desired allele for markers RID3 and RID4 (Kala4 locus) in Chakhao Poireiton and Kala Joha irrespective of their pericarp colour, implying the involvement of some other additional, unidentified genes/loci. RID3 and RID4 together with RM15191 (Kala3 locus) could be employed as a reliable marker set for marker-assisted selection (MAS). Pericarp colour was strongly correlated with colour in different vegetative parts, but showed a negative correlation with grain yield. Pb1, reported to be associated with panicle blast resistance, contributed to leaf blast resistance. Transgressive segregants for improved pigmentation and high yield were identified. The selection of lines exhibiting coloured pericarp, high anthocyanin content, aroma, blast resistance, and increased yield compared to their respective HYV parents will be valuable resources in the rice breeding programme.
Collapse
Affiliation(s)
- Bharati Lap
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - P Magudeeswari
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
| | - Wricha Tyagi
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India
- Present Address: CMBTE, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences (CPGSAS), Central Agricultural University (Imphal), Umiam, Meghalaya, India.
| |
Collapse
|
17
|
Lu N. Revisiting decade-old questions in proanthocyanidin biosynthesis: current understanding and new challenges. FRONTIERS IN PLANT SCIENCE 2024; 15:1373975. [PMID: 38595764 PMCID: PMC11002137 DOI: 10.3389/fpls.2024.1373975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
Proanthocyanidins (PAs), one of the most abundant natural polymers found in plants, are gaining increasing attention because of their beneficial effects for agriculture and human health. The study of PA biosynthesis has been active for decades, and progress has been drastically accelerated since the discovery of key enzymes such as Anthocyanidin Reductase (ANR), Leucoanthocyanidin Reductase (LAR), and key transcription factors such as Transparent Testa 2 (TT2) and Transparent Testa 8 (TT8) in the early 2000s. Scientists raised some compelling questions regarding PA biosynthesis about two decades ago in the hope that addressing these questions would lead to an enhanced understanding of PA biosynthesis in plants. These questions focus on the nature of starter and extension units for PA biosynthesis, the stereochemistry of PA monomers and intermediates, and how and where the polymerization or condensation steps work subcellularly. Here, I revisit these long-standing questions and provide an update on progress made toward answering them. Because of advanced technologies in genomics, bioinformatics and metabolomics, we now have a much-improved understanding of functionalities of key enzymes and identities of key intermediates in the PA biosynthesis and polymerization pathway. Still, several questions, particularly the ones related to intracellular PA transportation and deposition, as well as enzyme subcellular localization, largely remain to be explored. Our increasing understanding of PA biosynthesis in various plant species has led to a new set of compelling open questions, suggesting future research directions to gain a more comprehensive understanding of PA biosynthesis.
Collapse
Affiliation(s)
- Nan Lu
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, United States
| |
Collapse
|
18
|
Xie L, Wu D, Fang Y, Ye C, Zhu QH, Wei X, Fan L. Population genomic analysis unravels the evolutionary roadmap of pericarp color in rice. PLANT COMMUNICATIONS 2024; 5:100778. [PMID: 38062703 PMCID: PMC10943583 DOI: 10.1016/j.xplc.2023.100778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024]
Abstract
Pigmented rice stands out for its nutritional value and is gaining more and more attention. Wild rice, domesticated red rice, and weedy rice all have a red pericarp and a comprehensive genetic background in terms of the red-pericarp phenotype. We performed population genetic analyses using 5104 worldwide rice accessions, including 2794 accessions with red or black pericarps, 85 of which were newly sequenced in this study. The results suggested an evolutionary trajectory of red landraces originating from wild rice, and the split times of cultivated red and white rice populations were estimated to be within the past 3500 years. Cultivated red rice was found to feralize to weedy rice, and weedy rice could be further re-domesticated to cultivated red rice. A genome-wide association study based on the 2794 accessions with pigmented pericarps revealed several new candidate genes associated with the red-pericarp trait for further functional characterization. Our results provide genomic evidence for the origin of pigmented rice and a valuable genomic resource for genetic investigation and breeding of pigmented rice.
Collapse
Affiliation(s)
- Lingjuan Xie
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 310014, China
| | - Dongya Wu
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Yu Fang
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shanghai ZKW Molecular Breeding Technology Co., Ltd., Shanghai 200234, China
| | - Chuyu Ye
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, Black Mountain Laboratories, Canberra, ACT 2601, Australia
| | - Xinghua Wei
- China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China
| | - Longjiang Fan
- Institute of Crop Sciences & Institute of Bioinformatics, Zhejiang University, Hangzhou 310058, China; Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi 310014, China.
| |
Collapse
|
19
|
Thakro V, Varshney N, Malik N, Daware A, Srivastava R, Mohanty JK, Basu U, Narnoliya L, Jha UC, Tripathi S, Tyagi AK, Parida SK. Functional allele of a MATE gene selected during domestication modulates seed color in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:53-71. [PMID: 37738381 DOI: 10.1111/tpj.16469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/14/2023] [Accepted: 08/29/2023] [Indexed: 09/24/2023]
Abstract
Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.
Collapse
Affiliation(s)
- Virevol Thakro
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Varshney
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Naveen Malik
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, 303002, India
| | - Anurag Daware
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jitendra K Mohanty
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Udita Basu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Laxmi Narnoliya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Uday Chand Jha
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
| | - Shailesh Tripathi
- Indian Institute of Pulses Research (IIPR), Kanpur, 208024, India
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, 110012, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Plant Molecular Biology, University of Delhi, South Campus, New Delhi, 110021, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
20
|
Schoemaker DL, Qiu Y, de Leon N, Hirsch CN, Kaeppler SM. Genetic analysis of pericarp pigmentation variation in Corn Belt dent maize. G3 (BETHESDA, MD.) 2023; 14:jkad256. [PMID: 37950891 PMCID: PMC10755172 DOI: 10.1093/g3journal/jkad256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
The US standard for maize commercially grown for grain specifies that yellow corn can contain at maximum 5% corn of other colors. Inbred parents of commercial hybrids typically have clear pericarp, but transgressive segregants in breeding populations can display variation in pericarp pigmentation. We identified 10 doubled haploid biparental populations segregating for pigmented pericarp and evaluated qualitative genetic models using chi-square tests of observed and expected frequencies. Pigmentation ranged from light to dark brown color, and pigmentation intensity was quantitatively measured across 1,327 inbred lines using hue calculated from RGB pixel values. Genetic mapping was used to identify loci associated with pigmentation intensity. For 9 populations, pigmentation inheritance best fit a hypothesis of a 2- or 3-gene epistatic model. Significant differences in pigment intensity were observed across populations. W606S-derived inbred lines with the darkest pericarp often had clear glumes, suggesting the presence of a novel P1-rw allele, a hypothesis supported by a significant quantitative trait locus peak at P1. A separate quantitative trait locus region on chromosome 2 between 221.64 and 226.66 Mbp was identified in LH82-derived populations, and the peak near p1 was absent. A genome-wide association study using 416 inbred lines from the Wisconsin Diversity panel with full genome resequencing revealed 4 significant associations including the region near P1. This study supports that pericarp pigmentation among dent maize inbreds can arise by transgressive segregation when pigmentation in the parental generation is absent and is partially explained by functional allelic variation at the P1 locus.
Collapse
Affiliation(s)
- Dylan L Schoemaker
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Yinjie Qiu
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Natalia de Leon
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
| | - Candice N Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Shawn M Kaeppler
- Department of Plant and Agroecosystem Sciences, University of Wisconsin—Madison, Madison, WI 53706, USA
- Wisconsin Crop Innovation Center, University of Wisconsin—Madison, Middleton, WI 53562, USA
| |
Collapse
|
21
|
Sudan J, Urwat U, Farooq A, Pakhtoon MM, Zaffar A, Naik ZA, Batool A, Bashir S, Mansoor M, Sofi PA, Sofi NUR, Shikari AB, Khan MK, Hossain MA, Henry RJ, Zargar SM. Explicating genetic architecture governing nutritional quality in pigmented rice. PeerJ 2023; 11:e15901. [PMID: 37719119 PMCID: PMC10501373 DOI: 10.7717/peerj.15901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023] Open
Abstract
Rice is one of the most important staple plant foods that provide a major source of calories and nutrients for tackling the global hunger index especially in developing countries. In terms of nutritional profile, pigmented rice grains are favoured for their nutritional and health benefits. The pigmented rice varieties are rich sources of flavonoids, anthocyanin and proanthocyanidin that can be readily incorporated into diets to help address various lifestyle diseases. However, the cultivation of pigmented rice is limited due to low productivity and unfavourable cooking qualities. With the advances in genome sequencing, molecular breeding, gene expression analysis and multi-omics approaches, various attempts have been made to explore the genetic architecture of rice grain pigmentation. In this review, we have compiled the current state of knowledge of the genetic architecture and nutritional value of pigmentation in rice based upon the available experimental evidence. Future research areas that can help to deepen our understanding and help in harnessing the economic and health benefits of pigmented rice are also explored.
Collapse
Affiliation(s)
- Jebi Sudan
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Uneeb Urwat
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Asmat Farooq
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Mohammad Maqbool Pakhtoon
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Aaqif Zaffar
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Zafir Ahmad Naik
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Aneesa Batool
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Saika Bashir
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Madeeha Mansoor
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Najeebul Ul Rehman Sofi
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Jammu and Kashmir, India
| | - Asif B. Shikari
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (J&K), Srinagar, Jammu and Kashmir, India
| | - Mohd. Kamran Khan
- Department of Soil Sciences and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Turkey
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert J. Henry
- Queensland Alliance for Agriculture and Food Innovation, Queensland University, Brisbane, Australia
| | - Sajad Majeed Zargar
- Proteomics Lab, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
22
|
Wang Z, Guo Z, Zou T, Zhang Z, Zhang J, He P, Song R, Liu Z, Zhu H, Zhang G, Fu X. Substitution Mapping and Allelic Variations of the Domestication Genes from O. rufipogon and O. nivara. RICE (NEW YORK, N.Y.) 2023; 16:38. [PMID: 37668809 PMCID: PMC10480103 DOI: 10.1186/s12284-023-00655-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Domestication from wild rice species to cultivated rice is a key milestone, which involved changes of many specific traits and the variations of the genetic systems. Among the AA-genome wild rice species, O. rufipogon and O. nivara, have many favorable genes and thought to be progenitors of O. sativa. RESULTS In the present study, by using O. rufipogon and O. nivara as donors, the single segment substitution lines (SSSLs) have been developed in the background of the elite indica cultivar, HJX74. In the SSSLs population, 11 genes for 5 domestication traits, including tiller angle, spreading panicle, awn, seed shattering, and red pericarp, were identified and mapped on 5 chromosomes through substitution mapping. Herein, allelic variations of 7 genes were found through sequence alignment with the known genes, that is, TA7-RUF was allelic to PROG1, TA8-RUF was allelic to TIG1, SPR4-NIV was allelic to OsLG1, AN4-RUF was allelic to An-1, SH4-NIV was allelic to SH4, and both RC7-RUF and RC7-NIV were allelic to Rc. Meanwhile, 4 genes, TA11-NIV, SPR3-NIV, AN3-NIV, and AN4-NIV, were considered as the novel genes identified in these SSSLs, because of none known genes for the related domestication traits found in the chromosomal locations of them. CONCLUSION The results indicated that the SSSLs would be precious germplasm resources for gene mining and utilization from wild rice species, and it laid the foundation for further analyses of the novel domestication genes to better understand the genetic basis in regulating the traits variation during domestication.
Collapse
Affiliation(s)
- Zhangqiang Wang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zisheng Guo
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Tuo Zou
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jianan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ping He
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Ruifeng Song
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Haitao Zhu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Guiquan Zhang
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Xuelin Fu
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Xia H, Pu X, Zhu X, Yang X, Guo H, Diao H, Zhang Q, Wang Y, Sun X, Zhang H, Zhang Z, Zeng Y, Li Z. Genome-Wide Association Study Reveals the Genetic Basis of Total Flavonoid Content in Brown Rice. Genes (Basel) 2023; 14:1684. [PMID: 37761824 PMCID: PMC10531027 DOI: 10.3390/genes14091684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Flavonoids have anti-inflammatory, antioxidative, and anticarcinogenic effects. Breeding rice varieties rich in flavonoids can prevent chronic diseases such as cancer and cardio-cerebrovascular diseases. However, most of the genes reported are known to regulate flavonoid content in leaves or seedlings. To further elucidate the genetic basis of flavonoid content in rice grains and identify germplasm rich in flavonoids in grains, a set of rice core collections containing 633 accessions from 32 countries was used to determine total flavonoid content (TFC) in brown rice. We identified ten excellent germplasms with TFC exceeding 300 mg/100 g. Using a compressed mixed linear model, a total of 53 quantitative trait loci (QTLs) were detected through a genome-wide association study (GWAS). By combining linkage disequilibrium (LD) analysis, location of significant single nucleotide polymorphisms (SNPs), gene expression, and haplotype analysis, eight candidate genes were identified from two important QTLs (qTFC1-6 and qTFC9-7), among which LOC_Os01g59440 and LOC_Os09g24260 are the most likely candidate genes. We also analyzed the geographic distribution and breeding utilization of favorable haplotypes of the two genes. Our findings provide insights into the genetic basis of TFC in brown rice and could facilitate the breeding of flavonoid-rich varieties, which may be a prevention and adjuvant treatment for cancer and cardio-cerebrovascular diseases.
Collapse
Affiliation(s)
- Haijian Xia
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xiaoying Pu
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Xiaoyang Zhu
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xiaomeng Yang
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Haifeng Guo
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Henan Diao
- Heihe Branch of Heilongjiang Academy of Agricultural Sciences, Heihe 164300, China
| | - Quan Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Yulong Wang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Xingming Sun
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Hongliang Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Zhanying Zhang
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
| | - Yawen Zeng
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences/Agricultural Biotechnology Key Laboratory of Yunnan Province, Kunming 650205, China; (X.P.)
| | - Zichao Li
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (H.X.)
- Sanya Institute, China Agricultural University, Sanya 572025, China
| |
Collapse
|
24
|
Osakina A, Jia Y. Genetic Diversity of Weedy Rice and Its Potential Application as a Novel Source of Disease Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2850. [PMID: 37571004 PMCID: PMC10421194 DOI: 10.3390/plants12152850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023]
Abstract
Weeds that infest crops are a primary factor limiting agricultural productivity worldwide. Weedy rice, also called red rice, has experienced independent evolutionary events through gene flow from wild rice relatives and de-domestication from cultivated rice. Each evolutionary event supplied/equipped weedy rice with competitive abilities that allowed it to thrive with cultivated rice and severely reduce yields in rice fields. Understanding how competitiveness evolves is important not only for noxious agricultural weed management but also for the transfer of weedy rice traits to cultivated rice. Molecular studies of weedy rice using simple sequence repeat (SSR), restriction fragment length polymorphism (RFLP), and whole-genome sequence have shown great genetic variations in weedy rice populations globally. These variations are evident both at the whole-genome and at the single-allele level, including Sh4 (shattering), Hd1 (heading and flowering), and Rc (pericarp pigmentation). The goal of this review is to describe the genetic diversity of current weedy rice germplasm and the significance of weedy rice germplasm as a novel source of disease resistance. Understanding these variations, especially at an allelic level, is also crucial as individual loci that control important traits can be of great target to rice breeders.
Collapse
Affiliation(s)
- Aron Osakina
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130, USA;
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| | - Yulin Jia
- USDA ARS Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| |
Collapse
|
25
|
Lu Y. Gene Genealogy-Based Mutation Analysis Reveals Emergence of Aus, Tropical japonica, and Aromatic of Oryza sativa during the Later Stage of Rice Domestication. Genes (Basel) 2023; 14:1412. [PMID: 37510316 PMCID: PMC10379336 DOI: 10.3390/genes14071412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Asian rice (Oryza sativa L.) has become a model for understanding gene functions and domestication in recent decades; however, its own diversification is still controversial. Although the division of indica and japonica and five subgroups (aus, indica (sensu stricto), japonica (sensu stricto), tropical japonica, and aromatic) are broadly accepted, how they are phylogenetically related is not transparent. To clarify their relationships, a sample of 121 diverse genes was chosen here from 12 Oryza genomes (two parental and ten O. sativa (Os)) in parallel to allow gene genealogy-based mutation (GGM) analysis. From the sample, 361 Os mutations were shared by two or more subgroups (referred to here as trans mutations) from 549 mutations identified at 51 Os loci. The GGM analysis and related tests indicates that aus diverged from indica at a time significantly earlier than when tropical japonica split from japonica. The results also indicate that aromatic was selected from hybrid progeny of aus and tropical japonica and that all five subgroups share a significant number of the early mutations identified previously. The results suggest that aus, tropical japonica, and aromatic emerged sequentially within the most recent 4-5 millennia of rice domestication after the split of indica and japonica.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Danpreedanan N, Yamuangmorn S, Jamjod S, Prom-U-Thai C, Pusadee T. Genotypic Variation of Purple Rice in Response to Shading in Yield, Anthocyanin Content, and Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:2582. [PMID: 37447142 DOI: 10.3390/plants12132582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023]
Abstract
Purple rice (Oryza sativa L.) contains anthocyanin, which acts as an antioxidant and functional food for humans. The levels of anthocyanin growth and production in rice are mainly controlled by the availability of light. However, shade can affect anthocyanin biosynthesis genes. Therefore, the objective of this study was to determine the yield and anthocyanin content among four purple rice varieties, which provide the difference in colors of purple and green leaves. This study also evaluated gene expression affected by shading treatment to understand the relation of grain anthocyanin and expression level. This research was conducted using a split plot design using four levels of shading (levels of shading from anthesis to maturity) with three replications, no shading, 30% shading, 50% shading, and 70% shading, as the main plots and purple rice varieties as subplots, KJ CMU-107, K2, K4, and KDK10, from anthesis to maturity. Shading significantly decreased yield and yield components, but increased grain anthocyanin content. Nonetheless, the response of yield and grain anthocyanin content to shading did not show a significant different between purple and green leaf varieties. In addition, the level of OsDFR gene expression was different depending on the shading level in four rice varieties. The OsDFR gene presented the highest expression at shading levels of 30% for K4 and 50% for KDK10, while the expression of the OsDFR gene was not detected in the purple rice varieties with green leaves (KJ CMU-107 and K2). The response of grain anthocyanin and gene expression of OsDFR to light treatment did not show significantly differences between the purple and green leaf varieties, suggesting that the appearance of anthocyanin in leaves might be not related to anthocyanin synthesis in the grain. Taken together, the results suggest that some purple rice varieties were more suitable for planting under low light intensity based on a lower level of grain yield loss, strong shade tolerance, and high anthocyanin content in leaf and grain pericarp. However, it is necessary to explore the effects of light intensity on genes and intermediates in the anthocyanin synthesis pathway for further study.
Collapse
Affiliation(s)
- Nantapat Danpreedanan
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sansanee Jamjod
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chanakan Prom-U-Thai
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Tonapha Pusadee
- Department of Plant and Soil Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand
- Lanna Rice Research Center, Chiang Mai University, Chiang Mai 50100, Thailand
| |
Collapse
|
27
|
Prasad C T M, Kodde J, Angenent GC, Hay FR, McNally KL, Groot SPC. Identification of the rice Rc gene as a main regulator of seed survival under dry storage conditions. PLANT, CELL & ENVIRONMENT 2023; 46:1962-1980. [PMID: 36891587 DOI: 10.1111/pce.14581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 05/04/2023]
Abstract
Seed deterioration during storage results in poor germination, reduced vigour, and non-uniform seedling emergence. The aging rate depends on storage conditions and genetic factors. This study aims to identify these genetic factors determining the longevity of rice (Oryza sativa L.) seeds stored under experimental aging conditions mimicking long-term dry storage. Genetic variation for tolerance to aging was studied in 300 Indica rice accessions by storing dry seeds under an elevated partial pressure of oxygen (EPPO) condition. A genome-wide association analysis identified 11 unique genomic regions for all measured germination parameters after aging, differing from those previously identified in rice under humid experimental aging conditions. The significant single nucleotide polymorphism in the most prominent region was located within the Rc gene, encoding a basic helix-loop-helix transcription factor. Storage experiments using near-isogenic rice lines (SD7-1D (Rc) and SD7-1d (rc) with the same allelic variation confirmed the role of the wildtype Rc gene, providing stronger tolerance to dry EPPO aging. In the seed pericarp, a functional Rc gene results in accumulation of proanthocyanidins, an important sub-class of flavonoids having strong antioxidant activity, which may explain the variation in tolerance to dry EPPO aging.
Collapse
Affiliation(s)
- Manjunath Prasad C T
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
- Department of Seed Science and Technology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Jan Kodde
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerco C Angenent
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Molecular Biology, Wageningen University & Research, Wageningen, The Netherlands
| | - Fiona R Hay
- Department of Agroecology, Aarhus University, Slagelse, Denmark
| | | | - Steven P C Groot
- Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
28
|
Shu P, Zhang Z, Wu Y, Chen Y, Li K, Deng H, Zhang J, Zhang X, Wang J, Liu Z, Xie Y, Du K, Li M, Bouzayen M, Hong Y, Zhang Y, Liu M. A comprehensive metabolic map reveals major quality regulations in red-flesh kiwifruit (Actinidia chinensis). THE NEW PHYTOLOGIST 2023; 238:2064-2079. [PMID: 36843264 DOI: 10.1111/nph.18840] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/12/2023] [Indexed: 05/04/2023]
Abstract
Kiwifruit (Actinidia chinensis) is one of the popular fruits world-wide, and its quality is mainly determined by key metabolites (sugars, flavonoids, and vitamins). Previous works on kiwifruit are mostly done via a single omics approach or involve only limited metabolites. Consequently, the dynamic metabolomes during kiwifruit development and ripening and the underlying regulatory mechanisms are poorly understood. In this study, using high-resolution metabolomic and transcriptomic analyses, we investigated kiwifruit metabolic landscapes at 11 different developmental and ripening stages and revealed a parallel classification of 515 metabolites and their co-expressed genes into 10 distinct metabolic vs gene modules (MM vs GM). Through integrative bioinformatics coupled with functional genomic assays, we constructed a global map and uncovered essential transcriptomic and transcriptional regulatory networks for all major metabolic changes that occurred throughout the kiwifruit growth cycle. Apart from known MM vs GM for metabolites such as soluble sugars, we identified novel transcription factors that regulate the accumulation of procyanidins, vitamin C, and other important metabolites. Our findings thus shed light on the kiwifruit metabolic regulatory network and provide a valuable resource for the designed improvement of kiwifruit quality.
Collapse
Affiliation(s)
- Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zixin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Kunyan Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jing Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Jiayu Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhibin Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, 610213, Sichuan, China
| | - Mondher Bouzayen
- GBF Laboratory, Université de Toulouse, INRA, Castanet-Tolosan, 31320, France
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick, CV4 7AL, UK
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
29
|
Sedeek K, Zuccolo A, Fornasiero A, Weber AM, Sanikommu K, Sampathkumar S, Rivera LF, Butt H, Mussurova S, Alhabsi A, Nurmansyah N, Ryan EP, Wing RA, Mahfouz MM. Multi-omics resources for targeted agronomic improvement of pigmented rice. NATURE FOOD 2023; 4:366-371. [PMID: 37169820 DOI: 10.1038/s43016-023-00742-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 03/24/2023] [Indexed: 05/13/2023]
Abstract
Pigmented rice (Oryza sativa L.) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.
Collapse
Affiliation(s)
- Khalid Sedeek
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Andrea Zuccolo
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Alice Fornasiero
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Annika M Weber
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Krishnaveni Sanikommu
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Sangeetha Sampathkumar
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Luis F Rivera
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Saule Mussurova
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Abdulrahman Alhabsi
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nurmansyah Nurmansyah
- Department of Agronomy, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA
| | - Rod A Wing
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
- International Rice Research Institute, Strategic Innovation, Los Baños, Philippines
| | - Magdy M Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
- Center for Desert Agriculture, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| |
Collapse
|
30
|
Wang W, Qiu X, Wang Z, Xie T, Sun W, Xu J, Zhang F, Yu S. Deciphering the Genetic Architecture of Color Variation in Whole Grain Rice by Genome-Wide Association. PLANTS (BASEL, SWITZERLAND) 2023; 12:927. [PMID: 36840275 PMCID: PMC9960595 DOI: 10.3390/plants12040927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Whole grain rice is recommended in a natural healthy diet because of its high nutritional and healthful benefits compared to polished or white rice. The whole grain contains the pericarp with many assorted colors (such as brown, red, and black) associated with taste and commercial quality. The color attributes of whole grain or brown rice are usually undesirable and need to be improved. To decipher the genetic basis of color variation in the whole grain rice, we conducted a genome-wide association analysis of three parameters of grain colors (brightness, redness, and yellowness) in a panel of 682 rice accessions. Twenty-six loci were identified for the color parameters, implying that grain color is under polygenic control. Among them, some major-effect loci were co-localized with the previously identified genes such as Rc and Rd. To eliminate the possible mask of Rc on other loci influencing grain color, we performed the association analysis in a subset of the panel that excluded the pigmented (red and black) rice. Eighteen loci or SNPs were detected to be associated with grain color in the subpopulation, many of which were not reported before. Two significant peak SNP regions on chromosomes 1 and 9 were validated using near-isogenic lines. Based on differential expression analysis of annotated genes within the SNP regions and metabolic analysis of pooled extreme samples, we found at least three annotated genes as potential candidates involved in the flavonoid metabolic pathway related to pericarp color. These results provide insights into the genetic basis of rice grain color and facilitate genomic breeding to improve appearance and commercial quality of whole grain rice.
Collapse
Affiliation(s)
- Wenjun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Ziqi Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyi Xie
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianlong Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fan Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
32
|
Li X, Sheng J, Li Z, He Y, Zu Y, Li Y. Enhanced UV-B Radiation Induced the Proanthocyanidins Accumulation in Red Rice Grain of Traditional Rice Cultivars and Increased Antioxidant Capacity in Aging Mice. Int J Mol Sci 2023; 24:ijms24043397. [PMID: 36834809 PMCID: PMC9960751 DOI: 10.3390/ijms24043397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Proanthocyanidins are major UV-absorbing compounds. To clarify the effect of enhanced UV-B radiation on the proanthocyanidin synthesis and antioxidant capacity of traditional rice varieties in Yuanyang terraced fields, we studied the effects of enhanced UV-B radiation (0, 2.5, 5.0, 7.5 kJ·m-2·d-1) on the rice grain morphology, proanthocyanidins content, and synthesis. The effects of UV-B radiation on the antioxidant capacity of rice were evaluated by feeding aging model mice. The results showed that UV-B radiation significantly affected the grain morphology of red rice and increased the compactness of starch grains in the starch storage cells of central endosperm. The content of proanthocyanidin B2 and C1 in the grains was significantly increased by 2.5 and 5.0 kJ·m-2·d-1 UV-B radiation. The activity of leucoanthocyanidin reductase was higher in rice treated by 5.0 kJ·m-2·d-1 than other treatments. The number of neurons in the hippocampus CA1 of mice brain fed red rice increased. After 5.0 kJ·m-2·d-1 treatment, red rice has the best antioxidant effect on aging model mice. UV-B radiation induces the synthesis of rice proanthocyanidins B2 and C1, and the antioxidant capacity of rice is related to the content of proanthocyanidins.
Collapse
Affiliation(s)
- Xiang Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- National Engineering Research Center for Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650231, China
| | - Jianjun Sheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Zuran Li
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Yongmei He
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yanqun Zu
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
| | - Yuan Li
- College of Resources and Environment, Yunnan Agricultural University, Kunming 650201, China
- Correspondence:
| |
Collapse
|
33
|
Liu C, Wang T, Chen H, Ma X, Jiao C, Cui D, Han B, Li X, Jiao A, Ruan R, Xue D, Wang Y, Han L. Genomic footprints of Kam Sweet Rice domestication indicate possible migration routes of the Dong people in China and provide resources for future rice breeding. MOLECULAR PLANT 2023; 16:415-431. [PMID: 36578210 DOI: 10.1016/j.molp.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
The Dong people are one of China's 55 recognized ethnic minorities, but there has been a long-standing debate about their origins. In this study, we performed whole-genome resequencing of Kam Sweet Rice (KSR), a valuable, rare, and ancient rice landrace unique to the Dong people. Through comparative genomic analyses of KSR and other rice landraces from south of the Yangtze River Basin in China, we provide evidence that the ancestors of the Dong people likely originated from the southeast coast of China at least 1000 years ago. Alien introgression and admixture in KSR demonstrated multiple migration events in the history of the Dong people. Genomic footprints of domestication demonstrated characteristics of KSR that arose from artificial selection and geographical adaptation by the Dong people. The key genes GS3, Hd1, and DPS1 (related to agronomic traits) and LTG1 and MYBS3 (related to cold tolerance) were identified as domestication targets, reflecting crop improvement and changes in the geographical environment of the Dong people during migration. A genome-wide association study revealed a candidate yield-associated gene, Os01g0923300, a specific haplotype in KSR that is important for regulating grain number per panicle. RNA-sequencing and quantitative reverse transcription-PCR results showed that this gene was more highly expressed in KSR than in ancestral populations, indicating that it may have great value in increasing yield potential in other rice accessions. In summary, our work develops a novel approach for studying human civilization and migration patterns and provides valuable genomic datasets and resources for future breeding of high-yield and climate-resilient rice varieties.
Collapse
Affiliation(s)
- Chunhui Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin 301700, China
| | - Huicha Chen
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Xiaoding Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Jiao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Cui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bing Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaobing Li
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Aixia Jiao
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Renchao Ruan
- Institute of Crop Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Dayuan Xue
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yanjie Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Longzhi Han
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
34
|
Protective Effect of Red Rice Extract Rich in Proanthocyanidins in a Murine Colitis Model. Biomedicines 2023; 11:biomedicines11020265. [PMID: 36830802 PMCID: PMC9953176 DOI: 10.3390/biomedicines11020265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/14/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023] Open
Abstract
Inflammatory bowel disease (IBD) has become a global concern. Proanthocyanidin-rich red rice extract (PRRE) has been shown to suppress the inflammatory response in cellular cultures. However, the anti-colitis effect of PRRE has never been investigated in animals. This study aimed to examine the protective effect of the PRRE against dextran sulfate sodium (DSS)-induced colitis in mice. Male mice were orally administrated with PRRE of 50, 250 and 500 mg/kg/day for 21 days. Acute colitis was subsequently induced by administrated 2.5% DSS in drinking water for the final seven days. Sulfasalazine-treated mice were the positive group. All doses of PRRE and sulfasalazine significantly ameliorated DSS-induced severity of colitis, as indicated by decreasing daily activity index and restoring colon shortening. Treatments with PRRE, but not sulfasalazine, significantly reduced the histopathological index and infiltration of inflammatory cells. Furthermore, the PRRE treatments effectively improved mucous in colonic goblet cells using PAS staining, and suppressed the production of pro-inflammatory cytokines TNF-α, IL-1β and IL-6 induced by DSS, while sulfasalazine reduced only IL-1β and IL-6. This study suggested that PRRE had a greater anti-colitis effect than sulfasalazine. Thus, PRRE has a potential anti-colitis effect, and should be developed in a clinical trial as a natural active pharmaceutical ingredient for IBD.
Collapse
|
35
|
Shahidi F, Danielski R, Rhein SO, Meisel LA, Fuentes J, Speisky H, Schwember AR, de Camargo AC. Wheat and Rice beyond Phenolic Acids: Genetics, Identification Database, Antioxidant Properties, and Potential Health Effects. PLANTS (BASEL, SWITZERLAND) 2022; 11:3283. [PMID: 36501323 PMCID: PMC9739071 DOI: 10.3390/plants11233283] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Wheat and rice play a vital role in human nutrition and food security. A better understanding of the potential health benefits associated with consuming these cereals, combined with studies by plant scientists and food chemists to view the entire food value chain from the field, pre and post-harvest processing, and subsequent "fork" consumption, may provide the necessary tools to optimize wheat and rice production towards the goal of better human health improvement and food security, providing tools to better adapt to the challenges associated with climate change. Since the available literature usually focuses on only one food chain segment, this narrative review was designed to address the identities and concentration of phenolics of these cereal crops from a farm-to-fork perspective. Wheat and rice genetics, phenolic databases, antioxidant properties, and potential health effects are summarized. These cereals contain much more than phenolic acids, having significant concentrations of flavonoids (including anthocyanins) and proanthocyanidins in a cultivar-dependent manner. Their potential health benefits in vitro have been extensively studied. According to a number of in vivo studies, consumption of whole wheat, wheat bran, whole rice, and rice bran may be strategies to improve health. Likewise, anthocyanin-rich cultivars have shown to be very promising as functional foods.
Collapse
Affiliation(s)
- Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Renan Danielski
- Department of Biochemistry, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada
| | - Samantha Ottani Rhein
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Lee A. Meisel
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Jocelyn Fuentes
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Hernan Speisky
- Nutrition and Food Technology Institute, University of Chile, Santiago 7830490, Chile
| | - Andrés R. Schwember
- Departament of Plant Sciences, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | | |
Collapse
|
36
|
Zhang Y, Han E, Peng Y, Wang Y, Wang Y, Geng Z, Xu Y, Geng H, Qian Y, Ma S. Rice co-expression network analysis identifies gene modules associated with agronomic traits. PLANT PHYSIOLOGY 2022; 190:1526-1542. [PMID: 35866684 PMCID: PMC9516743 DOI: 10.1093/plphys/kiac339] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Identifying trait-associated genes is critical for rice (Oryza sativa) improvement, which usually relies on map-based cloning, quantitative trait locus analysis, or genome-wide association studies. Here we show that trait-associated genes tend to form modules within rice gene co-expression networks, a feature that can be exploited to discover additional trait-associated genes using reverse genetics. We constructed a rice gene co-expression network based on the graphical Gaussian model using 8,456 RNA-seq transcriptomes, which assembled into 1,286 gene co-expression modules functioning in diverse pathways. A number of the modules were enriched with genes associated with agronomic traits, such as grain size, grain number, tiller number, grain quality, leaf angle, stem strength, and anthocyanin content, and these modules are considered to be trait-associated gene modules. These trait-associated gene modules can be used to dissect the genetic basis of rice agronomic traits and to facilitate the identification of trait genes. As an example, we identified a candidate gene, OCTOPUS-LIKE 1 (OsOPL1), a homolog of the Arabidopsis (Arabidopsis thaliana) OCTOPUS gene, from a grain size module and verified it as a regulator of grain size via functional studies. Thus, our network represents a valuable resource for studying trait-associated genes in rice.
Collapse
Affiliation(s)
- Yu Zhang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Ershang Han
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuming Peng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yuzhou Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yifan Wang
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Zhenxing Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Yupu Xu
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | - Haiying Geng
- MOE Key Laboratory for Cellular Dynamics, School of Life Sciences, University of Science and Technology of China, Innovation Academy for Seed Design, Chinese Academy of Sciences, Hefei, China
| | | | | |
Collapse
|
37
|
QTL Pyramiding and Its Use in Breeding for Increasing the Phytoextraction Efficiency of Soil Cd via High-Cd-Accumulating Rice. PLANTS 2022; 11:plants11162178. [PMID: 36015482 PMCID: PMC9415887 DOI: 10.3390/plants11162178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Phytoextraction by high-Cd-accumulating rice lacking a functional OsHMA3 allele is promising for Cd removal from paddy soils. To increase rice Cd extraction efficiency, we developed a new high-Cd variety, TJN25-11. For this, we pyramided a nonfunctional OsHMA3 allele from a high-Cd variety, Jarjan, and two QTLs for increased shoot Cd concentrations, which were discovered in a mapping population derived from a high-Cd variety, Nepal 555, and a low-Cd variety, Tachisugata. In two Cd-contaminated paddy fields under drained aerobic soil conditions, TJN25-11 presented significantly higher Cd concentrations in the straw and panicles than the OsHMA3-deficient varieties TJTT8 and Cho-ko-koku. Among the varieties, TJN25-11 had a relatively high shoot biomass, resulting in the highest Cd accumulation in the shoots. The soil Cd decreased by approximately 20% after TJN25-11 growth. The amount of Cd that accumulated in the TJN25-11 aerial parts was much greater than the amount of Cd that decreased in the topsoil, suggesting that Cd was absorbed from deeper soil layers. Thus, we revealed the effects of QTL pyramiding on shoot Cd accumulation and Cd phytoextraction efficiency. Since TJN25-11 has favorable agronomic traits for compatibility with Japanese cultivation systems, this variety could be useful for Cd phytoextraction in Cd-contaminated paddy fields.
Collapse
|
38
|
Mudgal S, Singh N. Diversity in phenolics, amino acids, rheology and noodles glycemic response of brown rice from non-basmati and basmati rice. Food Res Int 2022; 158:111500. [DOI: 10.1016/j.foodres.2022.111500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/25/2022]
|
39
|
Sun X, Zhang Z, Li J, Zhang H, Peng Y, Li Z. Uncovering Hierarchical Regulation among MYB-bHLH-WD40 Proteins and Manipulating Anthocyanin Pigmentation in Rice. Int J Mol Sci 2022; 23:8203. [PMID: 35897779 PMCID: PMC9332703 DOI: 10.3390/ijms23158203] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022] Open
Abstract
Anthocyanins accumulate in various organs of rice, and the regulatory genes involved in pigmentation of specific organs, such as pericarp, hull, leaf, apiculus, and stigma have been elucidated. However, the corresponding gene for rice culm pigmentation has not been clarified. The well-known MYB-bHLH-WD40 (MBW) complex plays vital role in regulating the anthocyanin biosynthesis pathway in plants. However, the core members of MBW and the hierarchical regulation between these members are not fully elucidated in rice. Here, by map-based cloning, we identified the culm-specific pigmentation gene S1 whose alleles are also known for hull/pericarp pigmentation. We also clarified that one WD40 protein encoding gene, WA1, is indispensable for anthocyanin biosynthesis in rice. In the cascading regulation among MBW members, S1 (bHLH) acts as the master gene by activating the expression of C1 (MYB), and then C1 activates the expression of WA1 (WD40), which is unique in plant species. This enables MBW members to be coordinated in a common way to efficiently regulate anthocyanin biosynthesis genes. Based on these studies, we explored the minimal gene set required for anthocyanin biosynthesis in rice. These findings will help us design new rice varieties with anthocyanin accumulation in specific organs as needed.
Collapse
Affiliation(s)
- Xingming Sun
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zhanying Zhang
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jinjie Li
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Hongliang Zhang
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Youliang Peng
- Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China;
| | - Zichao Li
- State Key Laboratory of Agrobiotechnology, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; (X.S.); (Z.Z.); (J.L.); (H.Z.)
- Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
40
|
Han Z, Li F, Qiao W, Nong B, Cheng Y, Zhang L, Huang J, Wang Y, Lou D, Ge J, Xing M, Fan W, Nie Y, Guo W, Wang S, Liu Z, Li D, Zheng X, Yang Q. Identification of candidate genes and clarification of the maintenance of the green pericarp of weedy rice grains. FRONTIERS IN PLANT SCIENCE 2022; 13:930062. [PMID: 35937328 PMCID: PMC9354532 DOI: 10.3389/fpls.2022.930062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
The weedy rice (Oryza sativa f. spontanea) pericarp has diverse colors (e.g., purple, red, light-red, and white). However, research on pericarp colors has focused on red and purple, but not green. Unlike many other common weedy rice resources, LM8 has a green pericarp at maturity. In this study, the coloration of the LM8 pericarp was evaluated at the cellular and genetic levels. First, an examination of their ultrastructure indicated that LM8 chloroplasts were normal regarding plastid development and they contained many plastoglobules from the early immature stage to maturity. Analyses of transcriptome profiles and differentially expressed genes revealed that most chlorophyll (Chl) degradation-related genes in LM8 were expressed at lower levels than Chl a/b cycle-related genes in mature pericarps, suggesting that the green LM8 pericarp was associated with inhibited Chl degradation in intact chloroplasts. Second, the F2 generation derived from a cross between LM8 (green pericarp) and SLG (white pericarp) had a pericarp color segregation ratio of 9:3:4 (green:brown:white). The bulked segregant analysis of the F2 populations resulted in the identification of 12 known genes in the chromosome 3 and 4 hotspot regions as candidate genes related to Chl metabolism in the rice pericarp. The RNA-seq and sqRT-PCR assays indicated that the expression of the Chl a/b cycle-related structural gene DVR (encoding divinyl reductase) was sharply up-regulated. Moreover, genes encoding magnesium-chelatase subunit D and the light-harvesting Chl a/b-binding protein were transcriptionally active in the fully ripened dry pericarp. Regarding the ethylene signal transduction pathway, the CTR (encoding an ethylene-responsive protein kinase) and ERF (encoding an ethylene-responsive factor) genes expression profiles were determined. The findings of this study highlight the regulatory roles of Chl biosynthesis- and degradation-related genes influencing Chl accumulation during the maturation of the LM8 pericarp.
Collapse
Affiliation(s)
- Zhenyun Han
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fei Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weihua Qiao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Baoxuan Nong
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yunlian Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lifang Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingfen Huang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanyan Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danjing Lou
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jinyue Ge
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Meng Xing
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Weiya Fan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yamin Nie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenlong Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shizhuang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ziran Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danting Li
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Xiaoming Zheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
- International Rice Research Institute, Metro Manila, Philippines
| | - Qingwen Yang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
41
|
Zhao D, Zhang C, Li Q, Liu Q. Genetic control of grain appearance quality in rice. Biotechnol Adv 2022; 60:108014. [PMID: 35777622 DOI: 10.1016/j.biotechadv.2022.108014] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 05/27/2022] [Accepted: 06/23/2022] [Indexed: 02/08/2023]
Abstract
Grain appearance, one of the key determinants of rice quality, reflects the ability to attract consumers, and is characterized by four major properties: grain shape, chalkiness, transparency, and color. Mining of valuable genes, genetic mechanisms, and breeding cultivars with improved grain appearance are essential research areas in rice biology. However, grain appearance is a complex and comprehensive trait, making it challenging to understand the molecular details, and therefore, achieve precise improvement. This review highlights the current findings of grain appearance control, including a detailed description of the key genes involved in the formation of grain appearance, and the major environmental factors affecting chalkiness. We also discuss the integration of current knowledge on valuable genes to enable accurate breeding strategies for generation of rice grains with superior appearance quality.
Collapse
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
42
|
|
43
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
44
|
Wang J, Zhang C, Li Y. Genome-Wide Identification and Expression Profiles of 13 Key Structural Gene Families Involved in the Biosynthesis of Rice Flavonoid Scaffolds. Genes (Basel) 2022; 13:genes13030410. [PMID: 35327963 PMCID: PMC8951560 DOI: 10.3390/genes13030410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 12/31/2022] Open
Abstract
Flavonoids are a class of key polyphenolic secondary metabolites with broad functions in plants, including stress defense, growth, development and reproduction. Oryza sativa L. (rice) is a well-known model plant for monocots, with a wide range of flavonoids, but the key flavonoid biosynthesis-related genes and their molecular features in rice have not been comprehensively and systematically characterized. Here, we identified 85 key structural gene candidates associated with flavonoid biosynthesis in the rice genome. They belong to 13 families potentially encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonol synthase (FLS), leucoanthocyanidin dioxygenase (LDOX), anthocyanidin synthase (ANS), flavone synthase II (FNSII), flavanone 2-hydroxylase (F2H), flavonoid 3′-hydroxylase (F3′H), flavonoid 3′,5′-hydroxylase (F3′5′H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR) and leucoanthocyanidin reductase (LAR). Through structural features, motif analyses and phylogenetic relationships, these gene families were further grouped into five distinct lineages and were examined for conservation and divergence. Subsequently, 22 duplication events were identified out of a total of 85 genes, among which seven pairs were derived from segmental duplication events and 15 pairs were from tandem duplications, demonstrating that segmental and tandem duplication events play important roles in the expansion of key flavonoid biosynthesis-related genes in rice. Furthermore, these 85 genes showed spatial and temporal regulation in a tissue-specific manner and differentially responded to abiotic stress (including six hormones and cold and salt treatments). RNA-Seq, microarray analysis and qRT-PCR indicated that these genes might be involved in abiotic stress response, plant growth and development. Our results provide a valuable basis for further functional analysis of the genes involved in the flavonoid biosynthesis pathway in rice.
Collapse
|
45
|
Lu Y, Xu Y, Li N. Early Domestication History of Asian Rice Revealed by Mutations and Genome-Wide Analysis of Gene Genealogies. RICE (NEW YORK, N.Y.) 2022; 15:11. [PMID: 35166949 PMCID: PMC8847465 DOI: 10.1186/s12284-022-00556-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/22/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND Asian rice (Oryza sativa L.) has been a model plant but its cultivation history is inadequately understood, and its origin still under debate. Several enigmas remain, including how this annual crop shifted its growth habit from its perennial ancestor, O. rufipogon, why genetic divergence between indica and japonica appears older than the history of human domestication, and why some domestication genes do not show signals of introgression between subgroups. Addressing these issues may benefit both basic research and rice breeding. RESULTS Gene genealogy-based mutation (GGM) analysis shows that history of Asian rice is divided into two phases (Phase I and II) of about equal lengths. Mutations occurred earlier than the partition of indica and japonica to Os genome mark Phase-I period. We diagnosed 91 such mutations among 101 genes sampled across 12 chromosomes of Asian rice and its wild relatives. Positive selection, detected more at 5' regions than at coding regions of some of the genes, involved 22 loci (e.g., An-1, SH4, Rc, Hd3a, GL3.2, OsMYB3, OsDFR, and OsMYB15), which affected traits from easy harvesting, grain color, flowering time, productivity, to likely taste and tolerance. Phase-I mutations of OsMYB3, OsHd3a and OsDFR were experimentally tested and all caused enhanced functions of the genes in vivo. Phase-II period features separate cultivations, lineage-specific selection, and expanded domestication to more genes. Further genomic analysis, along with phenotypic comparisons, indicates that O. sativa is hybrid progeny of O. rufipogon and O. nivara, inherited slightly more genes of O. rufipogon. Congruently, modern alleles of the sampled genes are approximately 6% ancient, 38% uni-specific, 40% bi-specific (mixed), and 15% new after accumulating significant mutations. Results of sequencing surveys across modern cultivars/landraces indicate locus-specific usages of various alleles while confirming the associated mutations. CONCLUSIONS Asian rice was initially domesticated as one crop and later separate selection mediated by human resulted in its major subgroups. This history and the hybrid origin well explain previous puzzles. Positive selection, particularly in 5' regions, was the major force underlying trait domestication. Locus-specific domestication can be characterized and the result may facilitate breeders in developing better rice varieties in future.
Collapse
Affiliation(s)
- Yingqing Lu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Yunzhang Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
- Present Address: College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016 China
| | - Nan Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 20 Nan Xin Cun, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
46
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
47
|
Yang W, Chen L, Zhao J, Wang J, Li W, Yang T, Dong J, Ma Y, Zhou L, Chen J, Wu W, Zhang S, Liu B. Genome-Wide Association Study of Pericarp Color in Rice Using Different Germplasm and Phenotyping Methods Reveals Different Genetic Architectures. FRONTIERS IN PLANT SCIENCE 2022; 13:841191. [PMID: 35356125 PMCID: PMC8959774 DOI: 10.3389/fpls.2022.841191] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/02/2022] [Indexed: 05/08/2023]
Abstract
Pericarp colors (PC) in rice are determined by the types and content of flavonoids in the pericarp. The flavonoid compounds have strong antioxidant activities and are beneficial to human health. However, the genetic basis of PC in rice is still not well-understood. In this study, a genome-wide association study (GWAS) of PC was performed in a diverse rice collection consisting of 442 accessions using different phenotyping methods in two locations over 2 years. In the whole population consisting of white and colored pericarp rice, a total of 11 quantitative trait loci (QTLs) were identified using two phenotyping methods. Among these QTLs, nine were identified using the phenotypes represented by the presence and absence of pigmentation in pericarp, while 10 were identified using phenotypes of the degree of PC (DPC), in which eight are common QTLs identified using the two phenotyping methods. Using colored rice accessions and phenotypes based on DPC, four QTLs were identified, and they were totally different from the QTLs identified using the whole population, suggesting the masking effects of major genes on minor genes. Compared with the previous studies, 10 out of the 15 QTLs are first reported in this study. Based on the differential expression analysis of the predicted genes within the QTL region by both RNA-seq and real-time PCR (RT-PCR) and the gene functions in previous studies, LOC_Os01g49830, encoding a RAV transcription factor was considered as the candidate gene underlying qPC-1, a novel QTL with a large effect in this study. Our results provide a new insight into the genetic basis of PC in rice and contribute to developing the value-added rice with optimized flavonoid content through molecular breeding.
Collapse
Affiliation(s)
- Wu Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Luo Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Junliang Zhao
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jian Wang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wenhui Li
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Tifeng Yang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jingfang Dong
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Yamei Ma
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Lian Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Jiansong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Wei Wu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
| | - Shaohong Zhang
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- *Correspondence: Shaohong Zhang,
| | - Bin Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou, China
- Guangdong Rice Engineering Laboratory, Guangzhou, China
- Bin Liu,
| |
Collapse
|
48
|
Shi J, Shi J, Liang W, Zhang D. Integrating GWAS and transcriptomics to identify genes involved in seed dormancy in rice. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3553-3562. [PMID: 34312681 DOI: 10.1007/s00122-021-03911-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Several QTLs and genes responsible for seed dormancy were detected and SNP candidates were shown to cause changes in seed germination. Seed dormancy is a key agricultural trait to prevent pre-harvest sprouting in crop plants such as rice (Oryza sativa L.), wheat (Triticum aestivum), and barley (Hordeum vulgare L.). However, our knowledge of seed dormancy is hampered by the complexities of studying a trait that changes over time after seed harvest, and is complicated by interactions between phytohormones, seed coat components and the environment. Here, we have conducted a genome-wide association study using a panel of 311 natural accessions of cultivated rice, examining a total of 519,158 single nucleotide polymorphisms (SNPs). Eight quantitative trait loci (QTLs) were found to associate with seed dormancy in the whole panel and five in the Japonica and Indica subpanel; expression of candidate genes within 100 kb of each QTL was examined in two published, germination-specific transcriptomic datasets. Ten candidate genes, differentially expressed within the first four days post-imbibition, were identified. Five of these genes had previously been associated with awn length, heading date, yield, and spikelet length phenotypes. Two candidates were validated using Quantitative Reverse Transcription (qRT)-PCR. In addition, previously identified genes involved in hormone signaling during germination were found to be differentially expressed between a japonica and an indica line; SNPs in the promoter of Os9BGlu33 were associated with germination index, with qRT-PCR validation. Collectively, our results are useful for future characterization of seed dormancy mechanism and crop improvement, and suggest haplotypes for further analysis that may be of use to boost PHS resistance in rice.
Collapse
Affiliation(s)
- Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia, 5064, Australia.
| |
Collapse
|
49
|
Ji H, Shin Y, Lee C, Oh H, Yoon IS, Baek J, Cha YS, Lee GS, Kim SL, Kim KH. Genomic Variation in Korean japonica Rice Varieties. Genes (Basel) 2021; 12:genes12111749. [PMID: 34828355 PMCID: PMC8623644 DOI: 10.3390/genes12111749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/24/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022] Open
Abstract
Next-generation sequencing technologies have enabled the discovery of numerous sequence variations among closely related crop varieties. We analyzed genome resequencing data from 24 Korean temperate japonica rice varieties and discovered 954,233 sequence variations, including 791,121 single nucleotide polymorphisms (SNPs) and 163,112 insertions/deletions (InDels). On average, there was one variant per 391 base-pairs (bp), a variant density of 2.6 per 1 kbp. Of the InDels, 10,860 were longer than 20 bp, which enabled conversion to markers resolvable on an agarose gel. The effect of each variant on gene function was predicted using the SnpEff program. The variants were categorized into four groups according to their impact: high, moderate, low, and modifier. These groups contained 3524 (0.4%), 27,656 (2.9%), 24,875 (2.6%), and 898,178 (94.1%) variants, respectively. To test the accuracy of these data, eight InDels from a pre-harvest sprouting resistance QTL (qPHS11) target region, four highly polymorphic InDels, and four functional sequence variations in known agronomically important genes were selected and successfully developed into markers. These results will be useful to develop markers for marker-assisted selection, to select candidate genes in map-based cloning, and to produce efficient high-throughput genome-wide genotyping systems for Korean temperate japonica rice varieties.
Collapse
|
50
|
Lap B, Rai M, Tyagi W. Playing with colours: genetics and regulatory mechanisms for anthocyanin pathway in cereals. Biotechnol Genet Eng Rev 2021; 37:1-29. [PMID: 34470563 DOI: 10.1080/02648725.2021.1928991] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Cereals form the most important source of energy in our food. Currently, demand for coloured food grains is significantly increasing globally because of their antioxidant properties and enhanced nutritional value. Coloured grains of major and minor cereals are due to accumulation of secondary metabolites like carotenoids and flavonoids such as anthocyanin, proanthocyanin, phlobaphenes in pericarp, aleurone, lemma, testa or seed coat of grains. Differential accumulation of colour in grains is regulated by several regulatory proteins and enzymes involved in flavonoid and caroteniod biosynthesis. MYB and bHLH gene family members are the major regulators of these pathways. Genes for colour across various cereals have been extensively studied; however, only a few functional and allele-specific markers to be utilized directly in breeding programmes are reported so far. In this review, while briefly discussing the well studied and explored carotenoid pathway, we focus on a much more complex anthocyanin pathway that is found across cereals. The genes and their orthologs that are responsible for encoding key regulators of anthocyanin biosynthesis are discussed. This review also focuses on the genetic factors that influence colour change in different cereal crops, and the available/reported markers that can be used in breeding programs for utilizing this pathway for enhancing food and nutritional security.
Collapse
Affiliation(s)
- Bharati Lap
- School of Crop Improvement, CPGS-AS, CAU (I), Umiam, India
| | - Mayank Rai
- School of Crop Improvement, College of Post Graduate Studies in Agricultural Sciences, Central Agricultural University (Imphal) College of Post-Graduate Studies, Umiam, Meghalaya, India
| | - Wricha Tyagi
- New Zealand Institute for Plant and Food Research Ltd, Umiam, India
| |
Collapse
|