1
|
Liang X, Wang Y, Shen W, Liao B, Liu X, Yang Z, Chen J, Zhao C, Liao Z, Cao J, Wang P, Wang P, Ke F, Xu J, Lin Q, Xi W, Wang L, Xu J, Zhao X, Sun C. Genomic and metabolomic insights into the selection and differentiation of bioactive compounds in citrus. MOLECULAR PLANT 2024; 17:1753-1772. [PMID: 39444162 DOI: 10.1016/j.molp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/30/2024] [Accepted: 10/22/2024] [Indexed: 10/25/2024]
Abstract
Bioactive compounds play an increasingly prominent role in breeding functional and nutritive fruit crops such as citrus. However, the genomic and metabolic bases for the selection and differentiation underlying bioactive compound variations in citrus remain poorly understood. In this study, we constructed a species-level variation atlas of genomes and metabolomes using 299 citrus accessions. A total of 19 829 significant SNPs were targeted to 653 annotated metabolites, among which multiple significant signals were identified for secondary metabolites, especially flavonoids. Significant differential accumulation of bioactive compounds in the phenylpropane pathway, mainly flavonoids and coumarins, was unveiled across ancestral citrus species during differentiation, which is likely associated with the divergent haplotype distribution and/or expression profiles of relevant genes, including p-coumaroyl coenzyme A 2'-hydroxylases, flavone synthases, cytochrome P450 enzymes, prenyltransferases, and uridine diphosphate glycosyltransferases. Moreover, we systematically evaluated the beneficial bioactivities such as the antioxidant and anticancer capacities of 219 citrus varieties, and identified robust associations between distinct bioactivities and specific metabolites. Collectively, these findings provide citrus breeding options for enrichment of beneficial flavonoids and avoidance of potential risk of coumarins. Our study will accelerate the application of genomic and metabolic engineering strategies in developing modern healthy citrus cultivars.
Collapse
Affiliation(s)
- Xiao Liang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Yue Wang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Wanxia Shen
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Bin Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Xiaojuan Liu
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zimeng Yang
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jiebiao Chen
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Chenning Zhao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Zhenkun Liao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China
| | - Jinping Cao
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China
| | - Ping Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Peng Wang
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Fuzhi Ke
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Jianguo Xu
- Zhejiang Citrus Research Institute, Taizhou, China
| | - Qiong Lin
- Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs/ Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanpeng Xi
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| | - Lishu Wang
- Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, USA
| | - Juan Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiaochun Zhao
- Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, China
| | - Chongde Sun
- Plant Growth, Development and Quality Improvement, Zhejiang Provincial Key Laboratory of Integrative Biology of Horticultural Plants, Zhejiang University, Hangzhou, China; Hainan Institute of Zhejiang University, Sanya, China.
| |
Collapse
|
2
|
Ma L, Wang J, Qiao K, Quan Y, Fan S, Wu L. Genome-Wide Analysis of Caffeoyl-CoA-O-methyltransferase (CCoAOMT) Family Genes and the Roles of GhCCoAOMT7 in Lignin Synthesis in Cotton. PLANTS (BASEL, SWITZERLAND) 2024; 13:2969. [PMID: 39519888 PMCID: PMC11547849 DOI: 10.3390/plants13212969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/11/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Caffeoyl coenzyme A-O-methyltransferase (CCoAOMT) has a critical function in the lignin biosynthesis pathway. However, its functions in cotton are not clear. In this research, we observed 50 CCoAOMT genes from four cotton species, including two diploids (Gossypium arboretum, 9, and Gossypium raimondii, 8) and two tetraploids (Gossypium hirsutum, 16, and Gossypium barbadense, 17), performed bioinformatic analysis, and focused on the involvement and functions of GhCCoAOMT7 in lignin synthesis of Gossypium hirsutum. CCoAOMT proteins were divided into four subgroups based on the phylogenetic tree analysis. Motif analysis revealed that all CCoAOMT proteins possess conserved Methyltransf_3 domains, and conserved structural features were identified based on the genes' exon-intron organization. A synteny analysis suggested that segmental duplications were the primary cause in the expansion of the CCoAOMT genes family. Transcriptomic data analysis of GhCCoAOMTs revealed that GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 were highly expressed in stems. Subcellular localization experiments of GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 showed that GhCCoAOMT2, GhCCoAOMT7, and GhCCoAOMT14 were localized in the nucleus and plasma membrane. However, there are no cis-regulatory elements related to lignin synthesis in the GhCCoAOMT7 gene promoter. GhCCoAOMT7 expression was inhibited by virus-induced gene silencing technology to obtain gene silencing lines, the suppression of GhCCoAOMT7 expression resulted in a 56% reduction in the lignin content in cotton stems, and the phloroglucinol staining area corresponding to the xylem was significantly decreased, indicating that GhCCoAOMT7 positively regulates lignin synthesis. Our results provided fundamental information regarding CCoAOMTs and highlighted their potential functions in cotton lignin biosynthesis and lignification.
Collapse
Affiliation(s)
- Lina Ma
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| | - Jin Wang
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| | - Kaikai Qiao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Yuewei Quan
- Handan Academy of Agricultural Sciences, Handan 056000, China;
| | - Shuli Fan
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Liqiang Wu
- Hebei Base of State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Hebei Agricultural University, Baoding 071000, China; (L.M.); (J.W.)
| |
Collapse
|
3
|
Xie C, An N, Zhou L, Shen X, Wang J, Yan Y, Sun X, Yuan Q. Establishing a coumarin production platform by protein and metabolic engineering. Metab Eng 2024; 86:89-98. [PMID: 39313108 DOI: 10.1016/j.ymben.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/21/2024] [Indexed: 09/25/2024]
Abstract
Coumarins are a vast family of natural products with diverse biological activities. Cinnamyl-CoA ortho-hydroxylases (CCHs) catalyze the gateway and rate-limiting step in coumarin biosynthesis. However, engineering CCHs is challenging due to the large size of the substrates and the vague structure-activity relationship. Herein, directed evolution and structure-guided engineering were performed to engineer a CCH (AtF6'H from Arabidopsis thaliana) using a fluorescence-based screening method, yielding the transplantable surface mutations and the substrate-specific pocket mutations with improved activity. Structural analysis and molecular dynamics simulations elucidated the conformational changes that led to increased catalytic efficiency. Applying appropriate variants with the optimized upstream biosynthetic pathways improved the titers of three simple coumarins by 5 to 22-fold. Further introducing glycosylation modules resulted in the production of four coumarin glucosides, among which the titer of aesculin was increased by 15.7-fold and reached 3 g/L in scale-up fermentation. This work unleashed the potential of CCHs and established an Escherichia coli platform for coumarins production.
Collapse
Affiliation(s)
- Chong Xie
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China
| | - Ning An
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China
| | - Lei Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China
| | - Xiaolin Shen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China
| | - Jia Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, GA, 30602, United States
| | - Xinxiao Sun
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China.
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, No.15, Beisanhuan East Road, Beijing, 100029, China.
| |
Collapse
|
4
|
He S, Gao J, Li B, Luo Z, Liu P, Xu X, Wu M, Yang J, He X, Wang Z. NtWIN1 regulates the biosynthesis of scopoletin and chlorogenic acid by targeting NtF6'H1 and NtCCoAMT genes in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108937. [PMID: 39018774 DOI: 10.1016/j.plaphy.2024.108937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024]
Abstract
Scopoletin and chlorogenic acid (CGA) are important polyphenols that regulate plant growth, development, and stress resistance. The ERF transcription factor WAX INDUCER1 (WIN1) promotes the biosynthesis of cutin, suberine, and wax. However, its full roles in regulating the accumulation of plant secondary metabolites still remain to be further clarified. In this study, NtWIN1 gene encoding a SHINE-type AP2/ERF transcription factor of the Va subgroup was identified from N. tabacum. NtWIN1 showed high expression levels in tobacco stems, sepals, and pistils. Overexpression (OE) and knock-out of NtWIN1 showed that it promoted the accumulation of total polyphenols and altered their composition. Compare to that of WT plants, the CGA contents significantly increased by 25%-50% in the leaves, flowers, and capsules of OE lines, while the scopoletin contents in the OE plants significantly decreased by 30%-67%. In contrast, the CGA contents in ntwin1 lines reduced by 23%-26%, and the scopoletin contents in ntwin1 increased by 38%-75% compare to that of WT plants. Chromatin immunoprecipitation and Dual-Luc transcription activation assays showed that NtWIN1 could bind to the promoters of NtF6'H1 and NtCCoAMT, thereby modulating their expression. The scopoletin content in ntwin1/ntf6'h1 double mutant was significantly lower than that in ntwin1 and WT plants, but showed no significant differences with that in ntf6'h1 mutant, further indicating that the inhibition of NtWIN1 on scopoletin accumulation depends on the activity of NtF6'H1. Our study illustrates the new roles of NtWIN1, and provides a possible target for regulating the synthesis of polyphenols in tobacco.
Collapse
Affiliation(s)
- Shun He
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Junping Gao
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China
| | - Bingyu Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xinxi He
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha, 410007, China.
| | - Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
6
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
7
|
Ihnatowicz A, Siwinska J, Perkowska I, Grosjean J, Hehn A, Bourgaud F, Lojkowska E, Olry A. Genes to specialized metabolites: accumulation of scopoletin, umbelliferone and their glycosides in natural populations of Arabidopsis thaliana. BMC PLANT BIOLOGY 2024; 24:806. [PMID: 39187756 PMCID: PMC11348552 DOI: 10.1186/s12870-024-05491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024]
Abstract
BACKGROUND Scopoletin and umbelliferone belong to coumarins, which are plant specialized metabolites with potent and wide biological activities, the accumulation of which is induced by various environmental stresses. Coumarins have been detected in various plant species, including medicinal plants and the model organism Arabidopsis thaliana. In recent years, key role of coumarins in maintaining iron (Fe) homeostasis in plants has been demonstrated, as well as their significant impact on the rhizosphere microbiome through exudates secreted into the soil environment. Several mechanisms underlying these processes require clarification. Previously, we demonstrated that Arabidopsis is an excellent model for studying genetic variation and molecular basis of coumarin accumulation in plants. RESULTS Here, through targeted metabolic profiling and gene expression analysis, the gene-metabolite network of scopoletin and umbelliferone accumulation was examined in more detail in selected Arabidopsis accessions (Col-0, Est-1, Tsu-1) undergoing different culture conditions and characterized by variation in coumarin content. The highest accumulation of coumarins was detected in roots grown in vitro liquid culture. The expression of 10 phenylpropanoid genes (4CL1, 4CL2, 4CL3, CCoAOMT1, C3'H, HCT, F6'H1, F6'H2,CCR1 and CCR2) was assessed by qPCR in three genetic backgrounds, cultured in vitro and in soil, and in two types of tissues (leaves and roots). We not only detected the expected variability in gene expression and coumarin accumulation among Arabidopsis accessions, but also found interesting polymorphisms in the coding sequences of the selected genes through in silico analysis and resequencing. CONCLUSIONS To the best of our knowledge, this is the first study comparing accumulation of simple coumarins and expression of phenylpropanoid-related genes in Arabidopsis accessions grown in soil and in liquid cultures. The large variations we detected in the content of coumarins and gene expression are genetically determined, but also tissue and culture dependent. It is particularly important considering that growing plants in liquid media is a widely used technology that provides a large amount of root tissue suitable for metabolomics. Research on differential accumulation of coumarins and related gene expression will be useful in future studies aimed at better understanding the physiological role of coumarins in roots and the surrounding environments.
Collapse
Affiliation(s)
- Anna Ihnatowicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland.
| | - Joanna Siwinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Izabela Perkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | | | - Alain Hehn
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France
| | | | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, University of Gdansk, Abrahama 58, Gdansk, 80-307, Poland
| | - Alexandre Olry
- Université de Lorraine-INRAE, LAE, Nancy, F-54000, France.
| |
Collapse
|
8
|
Li Q, Dai Y, Huang XC, Sun L, Wang K, Guo X, Xu D, Wan D, An L, Wang Z, Tang H, Qi Q, Zeng H, Qin M, Xue JY, Zhao Y. The chromosome-scale assembly of the Notopterygium incisum genome provides insight into the structural diversity of coumarins. Acta Pharm Sin B 2024; 14:3760-3773. [PMID: 39220882 PMCID: PMC11365381 DOI: 10.1016/j.apsb.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 09/04/2024] Open
Abstract
Coumarins, derived from the phenylpropanoid pathway, represent one of the primary metabolites found in angiosperms. The alignment of the tetrahydropyran (THP) and tetrahydrofuran (THF) rings with the lactone structure results in the formation of at least four types of complex coumarins. However, the mechanisms underlying the structural diversity of coumarin remain poorly understood. Here, we report the chromosome-level genome assembly of Notopterygium incisum, spanning 1.64 Gb, with a contig N50 value of 22.7 Mb and 60,021 annotated protein-coding genes. Additionally, we identified the key enzymes responsible for shaping the structural diversity of coumarins, including two p-coumaroyl CoA 2'-hydroxylases crucial for simple coumarins basic skeleton architecture, two UbiA prenyltransferases responsible for angular or linear coumarins biosynthesis, and five CYP736 cyclases involved in THP and THF ring formation. Notably, two bifunctional enzymes capable of catalyzing both demethylsuberosin and osthenol were identified for the first time. Evolutionary analysis implies that tandem and ectopic duplications of the CYP736 subfamily, specifically arising in the Apiaceae, contributed to the structural diversity of coumarins in N. incisum. Conclusively, this study proposes a parallel evolution scenario for the complex coumarin biosynthetic pathway among different angiosperms and provides essential synthetic biology elements for the heterologous industrial production of coumarins.
Collapse
Affiliation(s)
- Qien Li
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Yiqun Dai
- School of Pharmacy, Bengbu Medical University, Bengbu 233030, China
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xin-Cheng Huang
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Lanlan Sun
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Kaixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Dingqiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Digao Wan
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Latai An
- Tibetan Medicine Research Center of Qinghai University, Tibetan Medical College, Qinghai University, Xining 810016, China
| | - Zixuan Wang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huanying Tang
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qi Qi
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Huihui Zeng
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Minjian Qin
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Yu Xue
- College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucheng Zhao
- Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
9
|
Qu W, Huang W, Chen C, Chen J, Zhao L, Jiang Y, Du X, Liu R, Chen Y, Hou K, Xu D, Wu W. AdNAC20 Regulates Lignin and Coumarin Biosynthesis in the Roots of Angelica dahurica var. Formosana. Int J Mol Sci 2024; 25:7998. [PMID: 39063240 PMCID: PMC11276817 DOI: 10.3390/ijms25147998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Wei Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China; (W.Q.); (W.H.); (C.C.); (J.C.); (L.Z.); (Y.J.); (X.D.); (R.L.); (Y.C.); (K.H.); (D.X.)
| |
Collapse
|
10
|
Manoilenko S, Dippe M, Fuchs T, Eisenschmidt-Bönn D, Ziegler J, Bauer AK, Wessjohann LA. Enzymatic one-step synthesis of natural 2-pyrones and new-to-nature derivatives from coenzyme A esters. J Biotechnol 2024; 388:72-82. [PMID: 38616039 DOI: 10.1016/j.jbiotec.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
The 2-pyrone moiety is present in a wide range of structurally diverse natural products with various biological activities. The plant biosynthetic routes towards these compounds mainly depend on the activity of either type III polyketide synthase-like 2-pyrone synthases or hydroxylating 2-oxoglutarate dependent dioxygenases. In the present study, the substrate specificity of these enzymes is investigated by a systematic screening using both natural and artificial substrates with the aims of efficiently forming (new) products and understanding the underlying catalytic mechanisms. In this framework, we focused on the in vitro functional characterization of a 2-pyrone synthase Gh2PS2 from Gerbera x hybrida and two dioxygenases AtF6'H1 and AtF6'H2 from Arabidopsis thaliana using a set of twenty aromatic and aliphatic CoA esters as substrates. UHPLC-ESI-HRMSn based analyses of reaction intermediates and products revealed a broad substrate specificity of the enzymes, enabling the facile "green" synthesis of this important class of natural products and derivatives in a one-step/one-pot reaction in aqueous environment without the need for halogenated or metal reagents and protective groups. Using protein modeling and substrate docking we identified amino acid residues that seem to be important for the observed product scope.
Collapse
Affiliation(s)
- Svitlana Manoilenko
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Martin Dippe
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| | - Tristan Fuchs
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Daniela Eisenschmidt-Bönn
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Anne-Katrin Bauer
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, Halle 06120, Germany.
| |
Collapse
|
11
|
Liu H, Wang Y, Chang Q, Li Q, Fang J, Cao N, Tong X, Jiang X, Yu X, Cheng Y. Combined metabolome and transcriptome reveal HmF6'H1 regulating simple coumarin accumulation against powdery mildew infection in Heracleum moellendorffii Hance. BMC PLANT BIOLOGY 2024; 24:507. [PMID: 38844853 PMCID: PMC11155083 DOI: 10.1186/s12870-024-05185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/22/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Powdery mildew, caused by Eeysiphe heraclei, seriously threatens Heracleum moellendorffii Hance. Plant secondary metabolites are essential to many activities and are necessary for defense against biotic stress. In order to clarify the functions of these metabolites in response to the pathogen, our work concentrated on the variations in the accumulation of secondary metabolites in H. moellendorffii during E. heraclei infection. RESULTS Following E. heraclei infection, a significant upregulation of coumarin metabolites-particularly simple coumarins and associated genes was detected by RNA-seq and UPLC-MS/MS association analysis. Identifying HmF6'H1, a Feruloyl CoA 6'-hydroxylase pivotal in the biosynthesis of the coumarin basic skeleton through ortho-hydroxylation, was a significant outcome. The cytoplasmic HmF6'H1 protein was shown to be able to catalyze the ortho-hydroxylation of p-coumaroyl-CoA and caffeoyl-CoA, resulting in the formation of umbelliferone and esculetin, respectively. Over-expression of the HmF6'H1 gene resulted in increased levels of simple coumarins, inhibiting the biosynthesis of furanocoumarins and pyranocoumarins by suppressing PT gene expression, enhancing H. moellendorffii resistance to powdery mildew. CONCLUSIONS These results established HmF6'H1 as a resistance gene aiding H. moellendorffii in combatting E. heraclei infection, offering additional evidence of feruloyl-CoA 6'-hydroxylase role in catalyzing various types of simple coumarins. Therefore, this work contributes to our understanding of the function of simple coumarins in plants' defense against powdery mildew infection.
Collapse
Affiliation(s)
- Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yiran Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - QinZheng Chang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Qiubi Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Jiahui Fang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Ning Cao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China.
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
12
|
Hamsa S, Rajarammohan S, Aswal M, Kumar M, Kaur J. Transcriptome responses of Arabidopsis to necrotrophic fungus Alternaria brassicae reveal pathways and candidate genes associated with resistance. PLANT MOLECULAR BIOLOGY 2024; 114:68. [PMID: 38842571 DOI: 10.1007/s11103-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.
Collapse
Affiliation(s)
- S Hamsa
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sivasubramanian Rajarammohan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
13
|
Gupta D, Guliani E, Bajaj K. Coumarin-Synthetic Methodologies, Pharmacology, and Application as Natural Fluorophore. Top Curr Chem (Cham) 2024; 382:16. [PMID: 38722386 DOI: 10.1007/s41061-024-00462-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Coumarins are secondary metabolites made up of benzene and α-pyrone rings fused together that can potentially treat various ailments, including cancer, metabolic, and degenerative disorders. Coumarins are a diverse category of both naturally occurring as well as synthesized compounds with numerous biological and therapeutic properties. Coumarins as fluorophores play a key role in fluorescent labeling of biomolecules, metal ion detection, microenvironment polarity detection, and pH detection. This review provides a detailed insight into the characteristics of coumarins as well as their biosynthesis in plants and metabolic pathways. Various synthetic strategies for coumarin core involving both conventional and green methods have been discussed comparing advantages and disadvantages of each method. Conventional methods discussed are Pechmann, Knoevenagel, Perkin, Wittig, Kostanecki, Buchwald-Hartwig, and metal-induced coupling reactions such as Heck and Suzuki, as well as green approaches involving microwave or ultrasound energy. Various pharmacological applications of coumarin derivatives are discussed in detail. The structural features and conditions responsible for influencing the fluorescence of coumarin core are also elaborated.
Collapse
Affiliation(s)
- Deepshikha Gupta
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India.
| | - Eksha Guliani
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India
| | - Kiran Bajaj
- Amity Institute of Applied Sciences, Amity University Uttar Pradesh, Sector 125, Noida, India
| |
Collapse
|
14
|
Wang X, Zhang J, Lu X, Bai Y, Wang G. Two diversities meet in the rhizosphere: root specialized metabolites and microbiome. J Genet Genomics 2024; 51:467-478. [PMID: 37879496 DOI: 10.1016/j.jgg.2023.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/15/2023] [Accepted: 10/15/2023] [Indexed: 10/27/2023]
Abstract
Plants serve as rich repositories of diverse chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes, including interactions with various microbes both beneficial and harmful. Considering microbes as bioreactors, the chemical diversity undergoes dynamic changes when root-derived specialized metabolites (RSMs) and microbes encounter each other in the rhizosphere. Recent advancements in sequencing techniques and molecular biology tools have not only accelerated the elucidation of biosynthetic pathways of RSMs but also unveiled the significance of RSMs in plant-microbe interactions. In this review, we provide a comprehensive description of the effects of RSMs on microbe assembly in the rhizosphere and the influence of corresponding microbial changes on plant health, incorporating the most up-to-date information available. Additionally, we highlight open questions that remain for a deeper understanding of and harnessing the potential of RSM-microbe interactions to enhance plant adaptation to the environment. Finally, we propose a pipeline for investigating the intricate associations between root exometabolites and the rhizomicrobiome.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Xinjun Lu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Wang J, Chen P, Zhao T, Huang X, Zong J, Luo Q, Peng C, Wu X, Qiu F, Zhao D, Xiang L, Zhang Y, Yang C, Zhang F, Liao Z, Fu Y, Zeng J. Biosynthesis of Scopoletin in Sweet Potato Confers Resistance against Fusarium oxysporum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7749-7764. [PMID: 38537104 DOI: 10.1021/acs.jafc.3c09389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Fusarium wilt is a severe fungal disease caused by Fusarium oxysporum in sweet potato. We conducted transcriptome analysis to explore the resistance mechanism of sweet potato against F. oxysporum. Our findings highlighted the role of scopoletin, a hydroxycoumarin, in enhancing resistance. In vitro experiments confirmed that scopoletin and umbelliferone had inhibitory effects on the F. oxysporum growth. We identified hydroxycoumarin synthase genes IbF6'H2 and IbCOSY that are responsible for scopoletin production in sweet potatoes. The co-overexpression of IbF6'H2 and IbCOSY in tobacco plants produced the highest scopoletin levels and disease resistance. This study provides insights into the molecular basis of sweet potato defense against Fusarium wilt and identifies valuable genes for breeding wilt-resistant cultivars.
Collapse
Affiliation(s)
- Jing Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peitao Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Tengfei Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xianhui Huang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jikai Zong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Qingqing Luo
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chao Peng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyan Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fei Qiu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Dongchao Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China
| | - Lien Xiang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chunxian Yang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Fangyuan Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhihua Liao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Yufan Fu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Junlan Zeng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Engineering and Technology Research Center for Sweet potato of Chongqing, SWU-TAAHC Medicinal Plant Joint R&D Centre, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
16
|
Zhu X, Wu J, Li S, Xiang L, Jin JM, Liang C, Tang SY. Artificial Biosynthetic Pathway for Efficient Synthesis of Vanillin, a Feruloyl-CoA-Derived Natural Product from Eugenol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6463-6470. [PMID: 38501643 DOI: 10.1021/acs.jafc.3c08723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Eugenol, the main component of essential oil from the Syzygium aromaticum clove tree, has great potential as an alternative bioresource feedstock for biosynthesis purposes. Although eugenol degradation to ferulic acid was investigated, an efficient method for directly converting eugenol to targeted natural products has not been established. Herein we identified the inherent inhibitions by simply combining the previously reported ferulic acid biosynthetic pathway and vanillin biosynthetic pathway. To overcome this, we developed a novel biosynthetic pathway for converting eugenol into vanillin, by introducing cinnamoyl-CoA reductase (CCR), which catalyzes conversion of coniferyl aldehyde to feruloyl-CoA. This approach bypasses the need for two catalysts, namely coniferyl aldehyde dehydrogenase and feruloyl-CoA synthetase, thereby eliminating inhibition while simplifying the pathway. To further improve efficiency, we enhanced CCR catalytic efficiency via directed evolution and leveraged an artificialvanillin biosensor for high-throughput screening. Switching the cofactor preference of CCR from NADP+ to NAD+ significantly improved pathway efficiency. This newly designed pathway provides an alternative strategy for efficiently biosynthesizing feruloyl-CoA-derived natural products using eugenol.
Collapse
Affiliation(s)
- Xiaochong Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieyuan Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shizhong Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - La Xiang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian-Ming Jin
- Beijing Key Laboratory of Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Chaoning Liang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuang-Yan Tang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
17
|
Wang Y, Wang T, Qi S, Zhao J, Kong J, Xue Z, Sun W, Zeng W. Genome-wide identification, expression profiling, and protein interaction analysis of the CCoAOMT gene family in the tea plant (Camellia sinensis). BMC Genomics 2024; 25:238. [PMID: 38438984 PMCID: PMC10913456 DOI: 10.1186/s12864-024-09972-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/04/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The caffeoyl-CoA-O methyltransferase (CCoAOMT) family plays a crucial role in the oxidative methylation of phenolic substances and is involved in various plant processes, including growth, development, and stress response. However, there is a limited understanding of the interactions among CCoAOMT protein members in tea plants. RESULTS In this study, we identified 10 members of the CsCCoAOMT family in the genome of Camellia sinensis (cultivar 'HuangDan'), characterized by conserved gene structures and motifs. These CsCCoAOMT members were located on six different chromosomes (1, 2, 3, 4, 6, and 14). Based on phylogenetic analysis, CsCCoAOMT can be divided into two groups: I and II. Notably, the CsCCoAOMT members of group Ia are likely to be candidate genes involved in lignin biosynthesis. Moreover, through the yeast two-hybrid (Y2H) assay, we established protein interaction networks for the CsCCoAOMT family, revealing 9 pairs of members with interaction relationships. CONCLUSIONS We identified the CCoAOMT gene family in Camellia sinensis and conducted a comprehensive analysis of their classifications, phylogenetic and synteny relationships, gene structures, protein interactions, tissue-specific expression patterns, and responses to various stresses. Our findings shed light on the evolution and composition of CsCCoAOMT. Notably, the observed interaction among CCoAOMT proteins suggests the potential formation of the O-methyltransferase (OMT) complex during the methylation modification process, expanding our understanding of the functional roles of this gene family in diverse biological processes.
Collapse
Affiliation(s)
- Yiqing Wang
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Tao Wang
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Siyu Qi
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiamin Zhao
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Jiumei Kong
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Zhihui Xue
- Anxi College of Tea Science, Fujian Agriculture and Forestry University, 350028, Quanzhou, China
| | - Weijiang Sun
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| | - Wen Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China.
| |
Collapse
|
18
|
Utomo JC, Barrell HB, Kumar R, Smith J, Brant MS, De la Hoz Siegler H, Ro DK. Reconstructing curcumin biosynthesis in yeast reveals the implication of caffeoyl-shikimate esterase in phenylpropanoid metabolic flux. Metab Eng 2024; 82:286-296. [PMID: 38387678 DOI: 10.1016/j.ymben.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Curcumin is a polyphenolic natural product from the roots of turmeric (Curcuma longa). It has been a popular coloring and flavoring agent in food industries with known health benefits. The conventional phenylpropanoid pathway is known to proceed from phenylalanine via p-coumaroyl-CoA intermediate. Although hydroxycinnamoyl-CoA: shikimate hydroxycinnamoyl transferase (HCT) plays a key catalysis in the biosynthesis of phenylpropanoid products at the downstream of p-coumaric acid, a recent discovery of caffeoyl-shikimate esterase (CSE) showed that an alternative pathway exists. Here, the biosynthetic efficiency of the conventional and the alternative pathway in producing feruloyl-CoA was examined using curcumin production in yeast. A novel modular multiplex genome-edit (MMG)-CRISPR platform was developed to facilitate rapid integrations of up to eight genes into the yeast genome in two steps. Using this MMG-CRISPR platform and metabolic engineering strategies, the alternative CSE phenylpropanoid pathway consistently showed higher titers (2-19 folds) of curcumin production than the conventional pathway in engineered yeast strains. In shake flask cultures using a synthetic minimal medium without phenylalanine, the curcumin production titer reached up to 1.5 mg/L, which is three orders of magnitude (∼4800-fold) improvement over non-engineered base strain. This is the first demonstration of de novo curcumin biosynthesis in yeast. Our work shows the critical role of CSE in improving the metabolic flux in yeast towards the phenylpropanoid biosynthetic pathway. In addition, we showcased the convenience and reliability of modular multiplex CRISPR/Cas9 genome editing in constructing complex synthetic pathways in yeast.
Collapse
Affiliation(s)
- Joseph Christian Utomo
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hailey Brynn Barrell
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Rahul Kumar
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Jessica Smith
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Maximilian Simon Brant
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hector De la Hoz Siegler
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Dae-Kyun Ro
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada.
| |
Collapse
|
19
|
Paffrath V, Tandron Moya YA, Weber G, von Wirén N, Giehl RFH. A major role of coumarin-dependent ferric iron reduction in strategy I-type iron acquisition in Arabidopsis. THE PLANT CELL 2024; 36:642-664. [PMID: 38016103 PMCID: PMC10896297 DOI: 10.1093/plcell/koad279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023]
Abstract
Many non-graminaceous species release various coumarins in response to iron (Fe) deficiency. However, the physiological relevance of these coumarins remains poorly understood. Here, we show that the three enzymes leading to sideretin biosynthesis co-exist in Arabidopsis (Arabidopsis thaliana) epidermal and cortical cells and that the shift to fraxetin at alkaline pH depends on MYB72-mediated repression of CYTOCHROME P450, FAMILY 82, SUBFAMILY C, POLYPEPTIDE 4 (CYP82C4). In vitro, only fraxetin and sideretin can reduce part of the Fe(III) that they mobilize. We demonstrate that coumarin-mediated Fe(III) reduction is critical under acidic conditions, as fraxetin and sideretin can complement the Fe(III)-chelate reductase mutant ferric reduction oxidase 2 (fro2), and disruption of coumarin biosynthesis in fro2 plants impairs Fe acquisition similar to in the Fe(II) uptake-deficient mutant iron-regulated transporter 1 (irt1). Disruption of sideretin biosynthesis in a fro2 cyp82C4-1 double mutant revealed that sideretin is the dominant chemical reductant that functions with FRO2 to mediate Fe(II) formation for root uptake. At alkaline pH, Fe(III) reduction by coumarins becomes almost negligible but fraxetin still sustains high Fe(III) mobilization, suggesting that its main function is to provide chelated Fe(III) for FRO2. Our study indicates that strategy-I plants link sideretin and fraxetin biosynthesis and secretion to external pH to recruit distinct coumarin chemical activities to maximize Fe acquisition according to prevailing soil pH conditions.
Collapse
Affiliation(s)
- Vanessa Paffrath
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Yudelsy A Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Günther Weber
- Leibniz-Institut für Analytische Wissenschaften (ISAS) e.V., Bunsen-Kirchhoff-Str 11, 44139 Dortmund, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| | - Ricardo F H Giehl
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Corrensstr 3, 06466 Seeland, Germany
| |
Collapse
|
20
|
Gao XY, Li XY, Zhang CY, Bai CY. Scopoletin: a review of its pharmacology, pharmacokinetics, and toxicity. Front Pharmacol 2024; 15:1268464. [PMID: 38464713 PMCID: PMC10923241 DOI: 10.3389/fphar.2024.1268464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/24/2024] [Indexed: 03/12/2024] Open
Abstract
Scopoletin is a coumarin synthesized by diverse medicinal and edible plants, which plays a vital role as a therapeutic and chemopreventive agent in the treatment of a variety of diseases. In this review, an overview of the pharmacology, pharmacokinetics, and toxicity of scopoletin is provided. In addition, the prospects and outlook for future studies are appraised. Scopoletin is indicated to have antimicrobial, anticancer, anti-inflammation, anti-angiogenesis, anti-oxidation, antidiabetic, antihypertensive, hepatoprotective, and neuroprotective properties and immunomodulatory effects in both in vitro and in vivo experimental trials. In addition, it is an inhibitor of various enzymes, including choline acetyltransferase, acetylcholinesterase, and monoamine oxidase. Pharmacokinetic studies have demonstrated the low bioavailability, rapid absorption, and extensive metabolism of scopoletin. These properties may be associated with its poor solubility in aqueous media. In addition, toxicity research indicates the non-toxicity of scopoletin to most cell types tested to date, suggesting that scopoletin will neither induce treatment-associated mortality nor abnormal performance with the test dose. Considering its favorable pharmacological activities, scopoletin has the potential to act as a drug candidate in the treatment of cancer, liver disease, diabetes, neurodegenerative disease, and mental disorders. In view of its merits and limitations, scopoletin is a suitable lead compound for the development of new, efficient, and low-toxicity derivatives. Additional studies are needed to explore its molecular mechanisms and targets, verify its toxicity, and promote its oral bioavailability.
Collapse
Affiliation(s)
- Xiao-Yan Gao
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Xu-Yang Li
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| | - Cong-Ying Zhang
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
- Key Laboratory of Mechanism and Evaluation of Chinese and Mongolian Pharmacy at Chifeng University, Chifeng University, Chifeng, China
| | - Chun-Ying Bai
- Basic Medicine College, Chifeng University, Chifeng, China
- Inner Mongolia Key Laboratory of Human Genetic Disease Research, Chifeng University, Chifeng, China
| |
Collapse
|
21
|
Geng S, Gao W, Li S, Chen Q, Jiao Y, Zhao J, Wang Y, Wang T, Qu Y, Chen Q. Rapidly mining candidate cotton drought resistance genes based on key indicators of drought resistance. BMC PLANT BIOLOGY 2024; 24:129. [PMID: 38383284 PMCID: PMC10880307 DOI: 10.1186/s12870-024-04801-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/05/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Focusing on key indicators of drought resistance is highly important for quickly mining candidate genes related to drought resistance in cotton. RESULTS In the present study, drought resistance was identified in drought resistance-related RIL populations during the flowering and boll stages, and multiple traits were evaluated; these traits included three key indicators: plant height (PH), single boll weight (SBW) and transpiration rate (Tr). Based on these three key indicators, three groups of extreme mixing pools were constructed for BSA-seq. Based on the mapping interval of each trait, a total of 6.27 Mb QTL intervals were selected on chromosomes A13 (3.2 Mb), A10 (2.45 Mb) and A07 (0.62 Mb) as the focus of this study. Based on the annotation information and qRT‒PCR analysis, three key genes that may be involved in the drought stress response of cotton were screened: GhF6'H1, Gh3AT1 and GhPER55. qRT‒PCR analysis of parental and extreme germplasm materials revealed that the expression of these genes changed significantly under drought stress. Cotton VIGS experiments verified the important impact of key genes on cotton drought resistance. CONCLUSIONS This study focused on the key indicators of drought resistance, laying the foundation for the rapid mining of drought-resistant candidate genes in cotton and providing genetic resources for directed molecular breeding of drought resistance in cotton.
Collapse
Affiliation(s)
- Shiwei Geng
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Wenju Gao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Shengmei Li
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Qin Chen
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yang Jiao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Jieyin Zhao
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yuxiang Wang
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - TingWei Wang
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Yanying Qu
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China
| | - Quanjia Chen
- 1Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, China.
| |
Collapse
|
22
|
Phucharoenrak P, Trachootham D. Bergaptol, a Major Furocoumarin in Citrus: Pharmacological Properties and Toxicity. Molecules 2024; 29:713. [PMID: 38338457 PMCID: PMC10856120 DOI: 10.3390/molecules29030713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Bergaptol (5-hydroxypsoralen or 5-hydroxyfuranocoumarin) is a naturally occurring furanocoumarin widely found in citrus fruits, which has multiple health benefits. Nonetheless, no specific review articles on bergaptol have been published. Compiling updated information on bergaptol is crucial in guiding future research direction and application. The present review focuses on the research evidence related to the pharmacological properties and toxicity of bergaptol. Bergaptol has anti-inflammatory, antioxidant, anti-cancer, anti-osteoporosis, anti-microbial, and anti-lipidemic effects. It can inhibit the activities of cytochrome P450s (CYP), especially CYP2C9 and CYP3A4, thereby affecting the metabolism and concentrations of some drugs and toxins. Compared with other coumarins, bergaptol has the least potency to inhibit CYP3A4 in cancer cells. Instead, it can suppress drug efflux transporters, such as P-glycoprotein, thereby overcoming chemotherapeutic drug resistance. Furthermore, bergaptol has antimicrobial effects with a high potential for inhibition of quorum sensing. In vivo, bergaptol can be retained in plasma for longer than other coumarins. Nevertheless, its toxicity has not been clearly reported. In vitro study suggests that, unlike most furocoumarins, bergaptol is not phototoxic or photomutagenic. Existing research on bergaptol has mostly been conducted in vitro. Further in vivo and clinical studies are warranted to identify the safe and effective doses of bergaptol for its multimodal application.
Collapse
|
23
|
Song N, Wu J. Synergistic induction of phytoalexins in Nicotiana attenuata by jasmonate and ethylene signaling mediated by NaWRKY70. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1063-1080. [PMID: 37870145 PMCID: PMC10837013 DOI: 10.1093/jxb/erad415] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 10/21/2023] [Indexed: 10/24/2023]
Abstract
Production of the phytoalexins scopoletin and scopolin is regulated by jasmonate (JA) and ethylene signaling in Nicotiana species in response to Alternaria alternata, the necrotrophic fungal pathogen that causes brown spot disease. However, how these two signaling pathways are coordinated to control this process remains unclear. In this study, we found that the levels of these two phytoalexins and transcripts of their key enzyme gene, feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), were synergistically induced in Nicotiana attenuata by co-treatment with methyl jasmonate (MeJA) and ethephon. By combination of RNA sequencing and virus-induced gene silencing, we identified a WRKY transcription factor, NaWRKY70, which had a similar expression pattern to NaF6'H1 and was responsible for A. alternata-induced NaF6'H1 expression. Further evidence from stable transformed plants with RNA interference, knock out and overexpression of NaWRKY70 demonstrated that it is a key player in the synergistic induction of phytoalexins and plant resistance to A. alternata. Electrophoretic mobility shift, chromatin immunoprecipitation-quantitative PCR, and dual-luciferase assays revealed that NaWRKY70 can bind directly to the NaF6'H1 promoter and activate its expression. Furthermore, the key regulator of the ethylene pathway, NaEIN3-like1, can directly bind to the NaWRKY70 promoter and activate its expression. Meanwhile, NaMYC2s, important JA pathway transcription factors, also indirectly regulate the expression of NaWRKY70 and NaF6'H1 to control scopoletin and scopolin production. Our data reveal that these phytoalexins are synergistically induced by JA and ethylene signaling during A. alternata infection, which is largely mediated by NaWRKY70, thus providing new insights into the defense responses against A. alternata in Nicotiana species.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Science, Beijing 10049, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
24
|
Zhu Z, Chen R, Zhang L. Simple phenylpropanoids: recent advances in biological activities, biosynthetic pathways, and microbial production. Nat Prod Rep 2024; 41:6-24. [PMID: 37807808 DOI: 10.1039/d3np00012e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Covering: 2000 to 2023Simple phenylpropanoids are a large group of natural products with primary C6-C3 skeletons. They are not only important biomolecules for plant growth but also crucial chemicals for high-value industries, including fragrances, nutraceuticals, biomaterials, and pharmaceuticals. However, with the growing global demand for simple phenylpropanoids, direct plant extraction or chemical synthesis often struggles to meet current needs in terms of yield, titre, cost, and environmental impact. Benefiting from the rapid development of metabolic engineering and synthetic biology, microbial production of natural products from inexpensive and renewable sources provides a feasible solution for sustainable supply. This review outlines the biological activities of simple phenylpropanoids, compares their biosynthetic pathways in different species (plants, bacteria, and fungi), and summarises key research on the microbial production of simple phenylpropanoids over the last decade, with a focus on engineering strategies that seem to hold most potential for further development. Moreover, constructive solutions to the current challenges and future perspectives for industrial production of phenylpropanoids are presented.
Collapse
Affiliation(s)
- Zhanpin Zhu
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Ruibing Chen
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Lei Zhang
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
- Institute of Interdisciplinary Integrative Medicine Research, Medical School of Nantong University, Nantong 226001, China
- Innovative Drug R&D Centre, College of Life Sciences, Huaibei Normal University, Huaibei 235000, China
| |
Collapse
|
25
|
Bai M, Jiang S, Chu S, Yu Y, Shan D, Liu C, Zong L, Liu Q, Liu N, Xu W, Mei Z, Jian J, Zhang C, Zhao S, Chiu TY, Simonsen HT. The telomere-to-telomere (T2T) genome of Peucedanum praeruptorum Dunn provides insights into the genome evolution and coumarin biosynthesis. Gigascience 2024; 13:giae025. [PMID: 38837945 PMCID: PMC11152176 DOI: 10.1093/gigascience/giae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/23/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Traditional Chinese medicine has used Peucedanum praeruptorum Dunn (Apiaceae) for a long time. Various coumarins, including the significant constituents praeruptorin (A-E), are the active constituents in the dried roots of P. praeruptorum. Previous transcriptomic and metabolomic studies have attempted to elucidate the distribution and biosynthetic network of these medicinal-valuable compounds. However, the lack of a high-quality reference genome impedes an in-depth understanding of genetic traits and thus the development of better breeding strategies. RESULTS A telomere-to-telomere (T2T) genome was assembled for P. praeruptorum by combining PacBio HiFi, ONT ultra-long, and Hi-C data. The final genome assembly was approximately 1.798 Gb, assigned to 11 chromosomes with genome completeness >98%. Comparative genomic analysis suggested that P. praeruptorum experienced 2 whole-genome duplication events. By the transcriptomic and metabolomic analysis of the coumarin metabolic pathway, we presented coumarins' spatial and temporal distribution and the expression patterns of critical genes for its biosynthesis. Notably, the COSY and cytochrome P450 genes showed tandem duplications on several chromosomes, which may be responsible for the high accumulation of coumarins. CONCLUSIONS A T2T genome for P. praeruptorum was obtained, providing molecular insights into the chromosomal distribution of the coumarin biosynthetic genes. This high-quality genome is an essential resource for designing engineering strategies for improving the production of these valuable compounds.
Collapse
Affiliation(s)
- Mingzhou Bai
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Sanjie Jiang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230000, China
- Anhui Province Key Laboratory of Research and Development of Chinese Medicine, Hefei 230000, China
| | - Yangyang Yu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Dai Shan
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chun Liu
- College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Liang Zong
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Qun Liu
- Wuhan BGI Technology Service Co., Ltd. BGI-Wuhan, Wuhan 430000, China
| | - Nana Liu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Weisong Xu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Zhanlong Mei
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Jianbo Jian
- DTU Bioengineering, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Chi Zhang
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Shancen Zhao
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
| | - Tsan-Yu Chiu
- BGI-Genomics, BGI-Shenzhen, Shenzhen 518000, China
- HIM-BGI Omics Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), Hangzhou 310000, China
| | - Henrik Toft Simonsen
- Laboratoire Biotechnologies Végétales Plantes aromatiques et médicinales, Université Jean Monnet, St. Étienne 42023, France
| |
Collapse
|
26
|
Song C, Zhang Y, Manzoor MA, Wei P, Yi S, Chu S, Tong Z, Song X, Xu T, Wang F, Peng H, Chen C, Han B. A chromosome-scale genome of Peucedanum praeruptorum provide insights into Apioideae evolution and medicinal ingredient biosynthesis. Int J Biol Macromol 2024; 255:128218. [PMID: 37992933 DOI: 10.1016/j.ijbiomac.2023.128218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/20/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
Peucedanum praeruptorum Dunn, a traditional Chinese medicine rich in coumarin, belongs to the Apiaceae family. A high-quality assembled genome of P. praeruptorum is lacking, which has posed obstacles to functional identification and molecular evolution studies of genes associated with coumarin production. Here, a chromosome-scale reference genome of P. praeruptorum, an important medicinal and aromatic plant, was first sequenced and assembled using Oxford Nanopore Technologies and Hi-C sequencing. The final assembled genome size was 1.83 Gb, with a contig N50 of 11.12 Mb. The entire BUSCO evaluation and second-generation read comparability rates were 96.0 % and 99.31 %, respectively. Furthermore, 99.91 % of the genome was anchored to 11 pseudochromosomes. The comparative genomic study revealed the presence of 18,593 orthogroups, which included 476 species-specific orthogroups and 1211 expanded gene families. Two whole-genome duplication (WGD) events and one whole-genome triplication (WGT) event occurred in P. praeruptorum. In addition to the γ-WGT shared by core eudicots or most eudicots, the first WGD was shared by Apiales, while the most recent WGD was unique to Apiaceae. Our study demonstrated that WGD events that occurred in Apioideae highlighted the important role of tandem duplication in the biosynthesis of coumarins and terpenes in P. praeruptorum. Additionally, the expansion of the cytochrome P450 monooxygenase, O-methyltransferase, ATP-binding cassette (ABC) transporter, and terpene synthase families may be associated with the abundance of coumarins and terpenoids. Moreover, we identified >170 UDP-glucosyltransferase members that may be involved in the glycosylation post-modification of coumarins. Significant gene expansion was observed in the ABCG, ABCB, and ABCC subgroups of the ABC transporter family, potentially facilitating the transmembrane transport of coumarins after bolting. The P. praeruptorum genome provides valuable insights into the machinery of coumarin biosynthesis and enhances our understanding of Apiaceae evolution.
Collapse
Affiliation(s)
- Cheng Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Yingyu Zhang
- Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 201109, China
| | - Peipei Wei
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanyong Yi
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Shanshan Chu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Zhenzhen Tong
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiangwen Song
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Tao Xu
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Fang Wang
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China
| | - Huasheng Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Cunwu Chen
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| | - Bangxing Han
- Anhui Dabieshan Academy of Traditional Chinese Medicine, Anhui Engineering Laboratory for Conservation and Sustainable Utilization of Traditional Chinese Medicine Resources, Anhui Engineering Research Center for Eco-agriculture of Traditional Chinese Medicine, College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an 237012, China.
| |
Collapse
|
27
|
Wu B, Shi S, Zhang H, Lu B, Nan P, A Y. Anabolic metabolism of autotoxic substance coumarins in plants. PeerJ 2023; 11:e16508. [PMID: 38077428 PMCID: PMC10710134 DOI: 10.7717/peerj.16508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Background Autotoxicity is an intraspecific manifestation of allelopathy in plant species. The specialized metabolites and their derivatives that cause intraspecific allelopathic inhibition in the plant are known as autotoxic substances. Consequently, autotoxic substances production seriously affects the renewal and stability of ecological communities. Methods This article systematically summarizes the types of autotoxic substances present in different plants. They mainly include phenolic compounds, terpenoids, and nitrogenous organic compounds. Phenolic coumarins are the main autotoxic substances in many plants. Therefore, we also discuss differences in coumarin types and content among plant varieties, developmental stages, and tissue parts, as well as their mechanisms of autotoxicity. In addition, we review the metabolic pathways involved in coumarin biosynthesis, the key enzymes, genes, and transcription factors, as well as factors affecting coumarin biosynthesis. Results Coumarin biosynthesis involves three stages: (1) the formation of the coumarin nucleus; (2) acylation, hydroxylation, and cyclization; (3) structural modification. The key enzymes involved in the coumarin nuclear formation stage include PAL, C4H, 4CL, HCT, CAOMT, COSY, F6'H, and CCoAOMT1, and the key genes involved include BGA, CYP450 and MDR, among others. Ortho-hydroxylation is a key step in coumarin biosynthesis and PS, COSY and S8H are the key enzymes involved in this process. Finally, UGTs are responsible for the glycosylation modification of coumarins, and the MaUGT gene may therefore be involved in coumarin biosynthesis. Conclusion It is important to elucidate the autotoxicity and anabolic mechanisms of coumarins to create new germplasms that produce fewer autotoxic substances.
Collapse
Affiliation(s)
- Bei Wu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Shangli Shi
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Huihui Zhang
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Baofu Lu
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Pan Nan
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Yun A
- Key Laboratory of Grassland Ecosystem of Ministry of Education, College of Pratacultural Science, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
28
|
Beesley A, Beyer SF, Wanders V, Levecque S, Bredenbruch S, Habash SS, Schleker ASS, Gätgens J, Oldiges M, Schultheiss H, Conrath U, Langenbach CJG. Engineered coumarin accumulation reduces mycotoxin-induced oxidative stress and disease susceptibility. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2490-2506. [PMID: 37578146 PMCID: PMC10651151 DOI: 10.1111/pbi.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 06/23/2023] [Accepted: 07/23/2023] [Indexed: 08/15/2023]
Abstract
Coumarins can fight pathogens and are thus promising for crop protection. Their biosynthesis, however, has not yet been engineered in crops. We tailored the constitutive accumulation of coumarins in transgenic Nicotiana benthamiana, Glycine max and Arabidopsis thaliana plants, as well as in Nicotiana tabacum BY-2 suspension cells. We did so by overexpressing A. thaliana feruloyl-CoA 6-hydroxylase 1 (AtF6'H1), encoding the key enzyme of scopoletin biosynthesis. Besides scopoletin and its glucoside scopolin, esculin at low level was the only other coumarin detected in transgenic cells. Mechanical damage of scopolin-accumulating tissue led to a swift release of scopoletin, presumably from the scopolin pool. High scopolin levels in A. thaliana roots coincided with reduced susceptibility to the root-parasitic nematode Heterodera schachtii. In addition, transgenic soybean plants were more tolerant to the soil-borne pathogenic fungus Fusarium virguliforme. Because mycotoxin-induced accumulation of reactive oxygen species and cell death were reduced in the AtF6'H1-overexpressors, the weaker sensitivity to F. virguliforme may be caused by attenuated oxidative damage of coumarin-hyperaccumulating cells. Together, engineered coumarin accumulation is promising for enhanced disease resilience of crops.
Collapse
Affiliation(s)
| | - Sebastian F. Beyer
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
- Present address:
BASF SE, Agricultural CenterLimburgerhofGermany
| | - Verena Wanders
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | - Sophie Levecque
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | | - Samer S. Habash
- Department of Molecular PhytomedicineUniversity of BonnBonnGermany
- Present address:
BASF Vegetable SeedsNunhemNetherlands
| | | | - Jochem Gätgens
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | - Marco Oldiges
- Department of Bioprocesses and BioanalyticsResearch Center Jülich GmbHJülichGermany
| | | | - Uwe Conrath
- Department of Plant PhysiologyRWTH Aachen UniversityAachenGermany
| | | |
Collapse
|
29
|
Chakraborty A, Mahajan S, Bisht MS, Sharma VK. Genome sequencing of Syzygium cumini (jamun) reveals adaptive evolution in secondary metabolism pathways associated with its medicinal properties. FRONTIERS IN PLANT SCIENCE 2023; 14:1260414. [PMID: 38046611 PMCID: PMC10693344 DOI: 10.3389/fpls.2023.1260414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/22/2023] [Indexed: 12/05/2023]
Abstract
Syzygium cumini, also known as jambolan or jamun, is an evergreen tree widely known for its medicinal properties, fruits, and ornamental value. To understand the genomic and evolutionary basis of its medicinal properties, we sequenced S. cumini genome for the first time from the world's largest tree genus Syzygium using Oxford Nanopore and 10x Genomics sequencing technologies. We also sequenced and assembled the transcriptome of S. cumini in this study. The tetraploid and highly heterozygous draft genome of S. cumini had a total size of 709.9 Mbp with 61,195 coding genes. The phylogenetic position of S. cumini was established using a comprehensive genome-wide analysis including species from 18 Eudicot plant orders. The existence of neopolyploidy in S. cumini was evident from the higher number of coding genes and expanded gene families resulting from gene duplication events compared to the other two sequenced species from this genus. Comparative evolutionary analyses showed the adaptive evolution of genes involved in the phenylpropanoid-flavonoid (PF) biosynthesis pathway and other secondary metabolites biosynthesis such as terpenoid and alkaloid in S. cumini, along with genes involved in stress tolerance mechanisms, which was also supported by leaf transcriptome data generated in this study. The adaptive evolution of secondary metabolism pathways is associated with the wide range of pharmacological properties, specifically the anti-diabetic property, of this species conferred by the bioactive compounds that act as nutraceutical agents in modern medicine.
Collapse
Affiliation(s)
| | | | | | - Vineet K. Sharma
- MetaBioSys Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
30
|
Yin Q, Wu T, Gao R, Wu L, Shi Y, Wang X, Wang M, Xu Z, Zhao Y, Su X, Su Y, Han X, Yuan L, Xiang L, Chen S. Multi-omics reveal key enzymes involved in the formation of phenylpropanoid glucosides in Artemisia annua. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107795. [PMID: 37301186 DOI: 10.1016/j.plaphy.2023.107795] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
Although mainly known for producing artemisinin, Artemisia annua is enriched in phenylpropanoid glucosides (PGs) with significant bioactivities. However, the biosynthesis of A. annua PGs is insufficiently investigated. Different A. annua ecotypes from distinct growing environments accumulate varying amounts of metabolites, including artemisinin and PGs such as scopolin. UDP-glucose:phenylpropanoid glucosyltransferases (UGTs) transfers glucose from UDP-glucose in PG biosynthesis. Here, we found that the low-artemisinin ecotype GS produces a higher amount of scopolin, compared to the high-artemisinin ecotype HN. By combining transcriptome and proteome analyses, we selected 28 candidate AaUGTs from 177 annotated AaUGTs. Using AlphaFold structural prediction and molecular docking, we determined the binding affinities of 16 AaUGTs. Seven of the AaUGTs enzymatically glycosylated phenylpropanoids. AaUGT25 converted scopoletin to scopolin and esculetin to esculin. The lack of accumulation of esculin in the leaf and the high catalytic efficiency of AaUGT25 on esculetin suggest that esculetin is methylated to scopoletin, the precursor of scopolin. We also discovered that AaOMT1, a previously uncharacterized O-methyltransferase, converts esculetin to scopoletin, suggesting an alternative route for producing scopoletin, which contributes to the high-level accumulation of scopolin in A. annua leaves. AaUGT1 and AaUGT25 responded to induction of stress-related phytohormones, implying the involvement of PGs in stress responses.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Tianze Wu
- School of Chemistry Chemical Engineering and Life Sciences, Wuhan University of Technology, No. 122, Lo Lion Road, Wuhan, Hubei, 430070, China
| | - Ranran Gao
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Lan Wu
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yuhua Shi
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xingwen Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Mengyue Wang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zhichao Xu
- Ministry of Education, Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Harbin, 150006, China
| | - Yueliang Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiaojia Su
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, 453000, China
| | - Yanyan Su
- Amway(China) Botanical R&D Center, Wuxi, 214115, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA; Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY, 40546-0236, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Shilin Chen
- Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
31
|
Sun G, Liao J, Kurze E, Hoffmann TD, Steinchen W, McGraphery K, Habegger R, Marek L, Catici DAM, Ludwig C, Jing T, Hoffmann T, Song C, Schwab W. Apocarotenoids are allosteric effectors of a dimeric plant glycosyltransferase involved in defense and lignin formation. THE NEW PHYTOLOGIST 2023; 238:2080-2098. [PMID: 36908092 DOI: 10.1111/nph.18875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 03/02/2023] [Indexed: 05/04/2023]
Abstract
Glycosyltransferases are nature's versatile tools to tailor the functionalities of proteins, carbohydrates, lipids, and small molecules by transferring sugars. Prominent substrates are hydroxycoumarins such as scopoletin, which serve as natural plant protection agents. Similarly, C13-apocarotenoids, which are oxidative degradation products of carotenoids/xanthophylls, protect plants by repelling pests and attracting pest predators. We show that C13-apocarotenoids interact with the plant glycosyltransferase NbUGT72AY1 and induce conformational changes in the enzyme catalytic center ultimately reducing its inherent UDP-α-d-glucose glucohydrolase activity and increasing its catalytic activity for productive hydroxycoumarin substrates. By contrast, C13-apocarotenoids show no effect on the catalytic activity toward monolignol lignin precursors, which are competitive substrates. In vivo studies in tobacco plants (Nicotiana benthamiana) confirmed increased glycosylation activity upon apocarotenoid supplementation. Thus, hydroxycoumarins and apocarotenoids represent specialized damage-associated molecular patterns, as they each provide precise information about the plant compartments damaged by pathogen attack. The molecular basis for the C13-apocarotenoid-mediated interplay of two plant protective mechanisms and their function as allosteric enhancers opens up potential applications of the natural products in agriculture and pharmaceutical industry.
Collapse
Affiliation(s)
- Guangxin Sun
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Jieren Liao
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043, Marburg, Germany
| | - Kate McGraphery
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ruth Habegger
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Ludwig Marek
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Dragana A M Catici
- Center for Protein Assemblies (CPA), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748, Garching, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), School of Life Sciences Weihenstephan, Technische Universität München, Gregor-Mendel-Str. 4, 85354, Freising, Germany
| | - Tingting Jing
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Thomas Hoffmann
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036, Hefei, Anhui, China
| | - Wilfried Schwab
- Biotechnology of Natural Products, School of Life Sciences Weihenstephan, Technische Universität München, Liesel-Beckmann-Str. 1, 85354, Freising, Germany
| |
Collapse
|
32
|
Liao J, Sun G, Kurze E, Steinchen W, Hoffmann TD, Song C, Zou Z, Hoffmann T, Schwab WG. Subfunctionalization of a monolignol to a phytoalexin glucosyltransferase is accompanied by substrate inhibition. PLANT COMMUNICATIONS 2023; 4:100506. [PMID: 36566353 DOI: 10.1016/j.xplc.2022.100506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 05/11/2023]
Abstract
Uridine diphosphate-dependent glycosyltransferases (UGTs) mediate the glycosylation of plant metabolites, thereby altering their physicochemical properties and bioactivities. Plants possess numerous UGT genes, with the encoded enzymes often glycosylating multiple substrates and some exhibiting substrate inhibition kinetics, but the biological function and molecular basis of these phenomena are not fully understood. The promiscuous monolignol/phytoalexin glycosyltransferase NbUGT72AY1 exhibits substrate inhibition (Ki) at 4 μM scopoletin, whereas the highly homologous monolignol StUGT72AY2 is inhibited at 190 μM. We therefore used hydrogen/deuterium exchange mass spectrometry and structure-based mutational analyses of both proteins and introduced NbUGT72AY1 residues into StUGT72AY2 and vice versa to study promiscuity and substrate inhibition of UGTs. A single F87I and chimeric mutant of NbUGT72AY1 showed significantly reduced scopoletin substrate inhibition, whereas its monolignol glycosylation activity was almost unaffected. Reverse mutations in StUGT72AY2 resulted in increased scopoletin glycosylation, leading to enhanced promiscuity, which was accompanied by substrate inhibition. Studies of 3D structures identified open and closed UGT conformers, allowing visualization of the dynamics of conformational changes that occur during catalysis. Previously postulated substrate access tunnels likely serve as drainage channels. The results suggest a two-site model in which the second substrate molecule binds near the catalytic site and blocks product release. Mutational studies showed that minor changes in amino acid sequence can enhance the promiscuity of the enzyme and add new capabilities such as substrate inhibition without affecting existing functions. The proposed subfunctionalization mechanism of expanded promiscuity may play a role in enzyme evolution and highlights the importance of promiscuous enzymes in providing new functions.
Collapse
Affiliation(s)
- Jieren Liao
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Guangxin Sun
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Elisabeth Kurze
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wieland Steinchen
- Center for Synthetic Microbiology (SYNMIKRO) & Faculty of Chemistry, Philipps-University Marburg, Karl-von-Frisch-Straße 14, 35043 Marburg, Germany
| | - Timothy D Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, International Joint Laboratory on Tea Chemistry and Health Effects, Anhui Agricultural University, 230036 Hefei, Anhui, P. R. China
| | - Zhiwei Zou
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany
| | - Wilfried G Schwab
- Biotechnology of Natural Products, Technische Universität München, Liesel-Beckmann-Str. 1, 85354 Freising, Germany.
| |
Collapse
|
33
|
Singh M, Kumar M, Nalawade SA, Puneeth Kumar DRGKR, Gopi HN. Cyclization of N-Boc-( E)-α,β-unsaturated γ-amino acid active esters into N-Boc-( Z)-α,β-unsaturated γ-lactams through E → Z isomerization. Org Biomol Chem 2023; 21:3766-3769. [PMID: 37097126 DOI: 10.1039/d3ob00127j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Here, we are reporting the spontaneous transformation of the active esters of N-Boc protected E-α,β-unsaturated γ-amino acids into the corresponding Z-α,β-unsaturated γ-lactams with concomitant E → Z isomerization in the presence of a weak base. No cyclization was observed in the absence of the base. Analysis revealed that amide γ-NH is crucial for both lactamization and E → Z isomerization. This mild transformation provides easy access to the synthetically challenging α,β-unsaturated γ-lactams and also gives new insights into the E → Z isomerization of double bonds.
Collapse
Affiliation(s)
- Manjeet Singh
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Manish Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Sachin A Nalawade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - DRGKoppalu R Puneeth Kumar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| | - Hosahudya N Gopi
- Department of Chemistry, Indian Institute of Science Education and Research, Dr Homi Bhabha Road, Pashan, Pune-411008, India.
| |
Collapse
|
34
|
Tao M, Liu S, Li Y, Liu A, Tian J, Liu Y, Fu H, Zhu W. Molecular characterization of a feruloyl-CoA 6'-hydroxylase involved in coumarin biosynthesis in Clematis terniflora DC. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:162-170. [PMID: 36709578 DOI: 10.1016/j.plaphy.2023.01.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/05/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Coumarin is an important secondary metabolite that affects plant physiology. It is a lactone of cis-o-hydroxycinnamic acid and widely exists in medicinal plants. Clematis terniflora DC. is a plant belonging to Ranunculaceae and is rich in variety of coumarins. Feruloyl-CoA 6'-hydroxylase has been reported as a key enzyme in the formation of coumarin basic skeleton only in some common plants, however, its evidence in other species is still lacking especially for the biosynthesis of coumarins in C. terniflora. In the present study, we identified a feruloyl-CoA 6'-hydroxylase CtF6'H in C. terniflora, and functional characterization indicated that CtF6'H could hydroxylate feruloyl-CoA to 6-hydroxyferuloyl-CoA. Furthermore, the expression level of CtF6'H was differed among different tissues in C. terniflora, while under UV-B radiation, the level of CtF6'H was increased in the leaves. Biochemical characteristics and subcellular location showed that CtF6'H was mainly present in the cytosol. The crystal structure of CtF6'H was simulated by homology modeling to predict the potential residues affecting enzyme activity. This study provides the additional evidence of feruloyl-CoA 6'-hydroxylase in different plant species and enriches our understanding of biosynthetic mechanism of coumarin in C. terniflora.
Collapse
Affiliation(s)
- Minglei Tao
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China; College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Shengzhi Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Yaohan Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Amin Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Jingkui Tian
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuchang Liu
- International Center of Zhejiang Fuyang High School, Hangzhou, 311400, China
| | - Hongwei Fu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wei Zhu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
35
|
Kim CY, Mitchell AJ, Kastner DW, Albright CE, Gutierrez MA, Glinkerman CM, Kulik HJ, Weng JK. Emergence of a proton exchange-based isomerization and lactonization mechanism in the plant coumarin synthase COSY. Nat Commun 2023; 14:597. [PMID: 36737607 PMCID: PMC9898226 DOI: 10.1038/s41467-023-36299-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Plants contain rapidly evolving specialized enzymes that support the biosynthesis of functionally diverse natural products. In coumarin biosynthesis, a BAHD acyltransferase-family enzyme COSY was recently discovered to accelerate coumarin formation as the only known BAHD enzyme to catalyze an intramolecular acyl transfer reaction. Here we investigate the structural and mechanistic basis for COSY's coumarin synthase activity. Our structural analyses reveal an unconventional active-site configuration adapted to COSY's specialized activity. Through mutagenesis studies and deuterium exchange experiments, we identify a unique proton exchange mechanism at the α-carbon of the o-hydroxylated trans-hydroxycinnamoyl-CoA substrates during the catalytic cycle of COSY. Quantum mechanical cluster modeling and molecular dynamics further support this key mechanism for lowering the activation energy of the rate-limiting trans-to-cis isomerization step in coumarin production. This study unveils an unconventional catalytic mechanism mediated by a BAHD-family enzyme, and sheds light on COSY's evolutionary origin and its recruitment to coumarin biosynthesis in eudicots.
Collapse
Affiliation(s)
- Colin Y Kim
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew J Mitchell
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | - David W Kastner
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claire E Albright
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA
| | | | | | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jing-Ke Weng
- Whitehead Institute for Biomedical Research, Cambridge, MA, 02142, USA. .,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
36
|
Identification of a Novel Coumarins Biosynthetic Pathway in the Endophytic Fungus Fusarium oxysporum GU-7 with Antioxidant Activity. Appl Environ Microbiol 2023; 89:e0160122. [PMID: 36598487 PMCID: PMC9888266 DOI: 10.1128/aem.01601-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Coumarins are generally considered to be produced by natural plants. Fungi have been reported to produce coumarins, but their biosynthetic pathways are still unknown. In this study, Fusarium oxysporum GU-7 and GU-60 were isolated from Glycyrrhiza uralensis, and their antioxidant activities were determined to be significantly different. Abundant dipeptide, phenolic acids, and the plant-derived coumarins fraxetin and scopoletin were identified in GU-7 by untargeted metabolomics, and these compounds may account for its stronger antioxidant activity compared to GU-60. Combined with metabolome and RNA sequencing analysis, we identified 24 potentially key genes involved in coumarin biosynthesis and 6 intermediate metabolites. Interestingly, the best hit of S8H, a key gene involved in hydroxylation at the C-8 position of scopoletin to yield fraxetin, belongs to a plant species. Additionally, nondestructive infection of G. uralensis seeds with GU-7 significantly improved the antioxidant activity of seedlings compared to the control group. This antioxidant activity may depend on the biological characteristics of endophytes themselves, as we observed a positive correlation between the antioxidant activity of endophytic fungi and that of their nondestructively infected seedlings. IMPORTANCE Plant-produced coumarins have been shown to play an important role in assembly of the plant microbiomes and iron acquisition. Coumarins can also be produced by some microorganisms. However, studies on coumarin biosynthesis in microorganisms are still lacking. We report for the first time that fraxetin and scopoletin were simultaneously produced by F. oxysporum GU-7 with strong free radical scavenging abilities. Subsequently, we identified intermediate metabolites and key genes in the biosynthesis of these two coumarins. This is the first report on the coumarin biosynthesis pathway in nonplant species, providing new strategies and perspectives for coumarin production and expanding research on new ways for plants to obtain iron.
Collapse
|
37
|
Metabolites and Plant Hormones Related to the Resistance Response to Feeding Stimulation and Leaf Clipping Control in Chinese Pine ( Pinus tabuliformis Carr.). Curr Issues Mol Biol 2023; 45:1086-1099. [PMID: 36826017 PMCID: PMC9955327 DOI: 10.3390/cimb45020072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 02/03/2023] Open
Abstract
This experiment was conducted to define changes in metabolic pathways in response to mandibulate insect feeding and to provide a reference for further investigation of the molecular mechanisms underlying the development of conifer resistance. Chinese pine (Pinus tabuliformis Carr.) in good growth status in natural condition was chosen for stimulation by 10 pine caterpillars (Dendrolimus tabulaefomis Tsai et Liu) as feeding stimulation (FS), leaf clipping control (LCC) as mechanical damage, and CK group (with no treatment) (recorded as 0 h). The metabolome and total flavonoid content were measured in the needles at 0, 2, and 8 h after treatment. Plant hormones were measured with needles at 0, 0.5, 1, 1.5, 2, 4, 6, and 8 h after different treatments. The results show that a total of 30.8% flavonoids are identified by metabolomics analysis. Compared with leaf clipping control, feeding stimulation of Chinese pine caterpillars significantly induced the upregulation of metabolites in the flavonoid pathway in Chinese pine, and the plant hormones JA and IAA showed expression trends consistent with those of the metabolome. According to the biological processes of the four plant hormones involved, JA and SA are mostly involved in resistance formation, and in this study, both of them also have fluctuating expressions influenced by feeding stimulation, while the expressions of the growth-related hormones IAA and ABA have no significant changes at other time points except for 1 h after treatment. Thus, the flavonoid pathway is one of the main pathways involved in resistance formation in conifers, and JA and IAA are involved in the formation of resistance.
Collapse
|
38
|
Yang Y, Lai W, Long L, Gao W, Xu F, Li P, Zhou S, Ding Y, Hu H. Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Sci Rep 2023; 13:1488. [PMID: 36707547 PMCID: PMC9883468 DOI: 10.1038/s41598-023-28084-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important role in cotton fiber development. In this study, the physiological changes and proteomic profiles of cotton (Gossypium hirsutum) ovules were analyzed after 20 days of ABA or ABA inhibitor (ABAI) treatment. The results showed that compared to the control (CK), the fiber length was significantly decreased under ABA treatment and increased under ABAI treatment. Using a tandem mass tags-based quantitative technique, the proteomes of cotton ovules were comprehensively analyzed. A total of 7321 proteins were identified, of which 365 and 69 differentially accumulated proteins (DAPs) were identified in ABA versus CK and ABAI versus CK, respectively. Specifically, 345 and 20 DAPs were up- and down-regulated in the ABA group, and 65 and 4 DAPs were up- and down-regulated in the ABAI group, respectively. The DAPs in the ABA group were mainly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis and flavonoid secondary metabolism, whereas the DAPs in the ABAI group were mainly enriched in the indole alkaloid biosynthesis and phenylpropanoid biosynthesis pathways. Moreover, 9 proteins involved in phenylpropanoid biosynthesis were upregulated after ABA treatment, suggesting that this pathway might play important roles in the response to ABA, and 3 auxin-related proteins were upregulated, indicating that auxin might participate in the regulation of fiber development under ABAI treatment.
Collapse
Affiliation(s)
- Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Shihan Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| |
Collapse
|
39
|
Singh G, Agrawal H, Bednarek P. Specialized metabolites as versatile tools in shaping plant-microbe associations. MOLECULAR PLANT 2023; 16:122-144. [PMID: 36503863 DOI: 10.1016/j.molp.2022.12.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/02/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Plants are rich repository of a large number of chemical compounds collectively referred to as specialized metabolites. These compounds are of importance for adaptive processes including responses against changing abiotic conditions and interactions with various co-existing organisms. One of the strikingly affirmed functions of these specialized metabolites is their involvement in plants' life-long interactions with complex multi-kingdom microbiomes including both beneficial and harmful microorganisms. Recent developments in genomic and molecular biology tools not only help to generate well-curated information about regulatory and structural components of biosynthetic pathways of plant specialized metabolites but also to create and screen mutant lines defective in their synthesis. In this review, we have comprehensively surveyed the function of these specialized metabolites and discussed recent research findings demonstrating the responses of various microbes on tested mutant lines having defective biosynthesis of particular metabolites. In addition, we attempt to provide key clues about the impact of these metabolites on the assembly of the plant microbiome by summarizing the major findings of recent comparative metagenomic analyses of available mutant lines under customized and natural microbial niches. Subsequently, we delineate benchmark initiatives that aim to engineer or manipulate the biosynthetic pathways to produce specialized metabolites in heterologous systems but also to diversify their immune function. While denoting the function of these metabolites, we also discuss the critical bottlenecks associated with understanding and exploiting their function in improving plant adaptation to the environment.
Collapse
Affiliation(s)
- Gopal Singh
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland
| | - Paweł Bednarek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznań, Poland.
| |
Collapse
|
40
|
Wang Z, Ma L, Liu P, Luo Z, Li Z, Wu M, Xu X, Pu W, Huang P, Yang J. Transcription factor NtWRKY33a modulates the biosynthesis of polyphenols by targeting NtMYB4 and NtHCT genes in tobacco. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111522. [PMID: 36332766 DOI: 10.1016/j.plantsci.2022.111522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/21/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
There are abundant polyphenols in tobacco leaves mainly including chlorogenic acid (CGA), rutin, and scopoletin, which not only influence plant growth, development, and environmental adaptation, but also have a great impact on the industrial utilization of tobacco leaves. Few transcription factors regulating the biosynthesis of polyphenols have been identified in tobacco so far. In this study, two NtWRKY33 genes were identified from N. tabacum genome. NtWRKY33a showed higher transcriptional activity than NtWRKY33b, and encoded a nuclear localized protein. Overexpression and knock-out of NtWRKY33a gene revealed that NtWRKY33a inhibited the accumulation of rutin, scopoletin, and total polyphenols, but meanwhile promoted the biosynthesis of CGA. Chromatin immunoprecipitation and Dual-Luc assays indicated that NtWRKY33a could directly bind to the promoters of NtMYB4 and NtHCT, and thus induced the transcription of these two genes. The contents of polyphenols in ntwrky33a, ntmy4, and ntwrky33a/ntmyb4 mutants further confirmed that the repression of NtWRKY33a on the biosynthesis of rutin, scopoletin, and total polyphenols depends on the activity of NtMYB4. Moreover, the promotion of NtHCT by NtWRKY33a modulates the distribution of metabolism flux into the synthesis of CGA. Ectopic expression of NtWRKY33a inhibit the expression of NtSAUR14, NtSAUR59, NtSAUR66, NtIAA4, NtIAA17, and NtIAA19 genes, indicating that NtWRKY33a might be involved in the regulation of plant auxin response. Our study revealed new functions of NtWRKY33a in regulating the synthesis of polyphenols, and provided a promising target for manipulating polyphenols contents in tobacco.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Lanxin Ma
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Xin Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Wenxuan Pu
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China
| | - Pingjun Huang
- Technology Center, China Tobacco Hunan Industrial Co., Ltd., Changsha 410007, China.
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China.
| |
Collapse
|
41
|
Robe K, Conjero G, Dubos C. The Use of Spectral Imaging to Follow the Iron and pH-Dependent Accumulation of Fluorescent Coumarins. Methods Mol Biol 2023; 2665:23-30. [PMID: 37166589 DOI: 10.1007/978-1-0716-3183-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plants challenged with iron deficiency produce in their roots and secrete into the rhizosphere several small molecules named coumarins that derive from the phenylpropanoid pathway. Coumarins are biosynthesized in different root cell types and transported to the root epidermis prior to their secretion in the surrounding media. Taking advantage of the natural fluorescence of most coumarins glycosides when exposed to UV light, we developed a method to uncover their individual cellular localization and accumulation. This approach couples spectral imaging acquisition and linear unmixing analysis. In this protocol, we describe guidelines, experimental setup, and conditions for the analysis of coumarins localization and accumulation in Arabidopsis thaliana root seedlings grown in control and iron deficiency conditions, at both acidic and alkaline pH.
Collapse
Affiliation(s)
- Kevin Robe
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Geneviève Conjero
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- IPSiM, Univ. Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France.
| |
Collapse
|
42
|
Antika L, Meilawati L, Dewi R, Tasfiyati A, Septama A. Scopoletin: Anticancer potential and mechanism of action. Asian Pac J Trop Biomed 2023. [DOI: 10.4103/2221-1691.367685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
43
|
Han X, Li C, Sun S, Ji J, Nie B, Maker G, Ren Y, Wang L. The chromosome-level genome of female ginseng (Angelica sinensis) provides insights into molecular mechanisms and evolution of coumarin biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1224-1237. [PMID: 36259135 DOI: 10.1111/tpj.16007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Coumarins are natural products with important medicinal values, and include simple coumarins, furanocoumarins and pyranocoumarins. Female ginseng (Angelica sinensis) is a renowned herb with abundant coumarins, originated in China and known for the treatment of female ailments for thousands of years. The molecular basis of simple coumarin biosynthesis in A. sinensis and the evolutionary history of the genes involved in furanocoumarin biosynthesis are largely unknown. Here, we generated the first chromosome-scale genome of A. sinensis. It has a genome size of 2.37 Gb, which was generated by combining PacBio and Hi-C sequencing technologies. The genome was predicted to contain 43 202 protein-coding genes dispersed mainly on 11 pseudochromosomes. We not only provided evidence for whole-genome duplication (WGD) specifically occurring in the Apioideae subfamily, but also demonstrated the vital role of tandem duplication for phenylpropanoid biosynthesis in A. sinensis. Combined analyses of transcriptomic and metabolomic data revealed key genes and candidate transcription factors regulating simple coumarin biosynthesis. Furthermore, phylogenomic synteny network analyses suggested prenyltransferase genes involved in furanocoumarin biosynthesis evolved independently in the Moraceae, Fabaceae, Rutaceae and Apiaceae after ζ and ε WGD. Our work sheds light on coumarin biosynthesis, and provides a benchmark for accelerating genetic research and molecular breeding in A. sinensis.
Collapse
Affiliation(s)
- Xiaoxu Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Cheng Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Shichao Sun
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jiaojiao Ji
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Bao Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Garth Maker
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Yonglin Ren
- College of Science, Health, Engineering and Education, Murdoch University, 6150, Western Australia, Murdoch, 90 South Street, Australia
| | - Li Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, 528200, Foshan, China
| |
Collapse
|
44
|
Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of Cicer-Ascochyta Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1034-1047. [PMID: 35939621 DOI: 10.1094/mpmi-06-22-0134-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ritu Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yeshveer Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
45
|
Kushalappa AC, Hegde NG, Yogendra KN. Metabolic pathway genes for editing to enhance multiple disease resistance in plants. JOURNAL OF PLANT RESEARCH 2022; 135:705-722. [PMID: 36036859 DOI: 10.1007/s10265-022-01409-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Diseases are one of the major constraints in commercial crop production. Genetic diversity in varieties is the best option to manage diseases. Molecular marker-assisted breeding has produced hundreds of varieties with good yields, but the resistance level is not satisfactory. With the advent of whole genome sequencing, genome editing is emerging as an excellent option to improve the inadequate traits in these varieties. Plants produce thousands of antimicrobial secondary metabolites, which as polymers and conjugates are deposited to reinforce the secondary cell walls to contain the pathogen to an initial infection area. The resistance metabolites or the structures produced from them by plants are either constitutive (CR) or induced (IR), following pathogen invasion. The production of each resistance metabolite is controlled by a network of biosynthetic R genes, which are regulated by a hierarchy of R genes. A commercial variety also has most of these R genes, as in resistant, but a few may be mutated (SNPs/InDels). A few mutated genes, in one or more metabolic pathways, depending on the host-pathogen interaction, can be edited, and stacked to increase resistance metabolites or structures produced by them, to achieve required levels of multiple pathogen resistance under field conditions.
Collapse
Affiliation(s)
- Ajjamada C Kushalappa
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada.
| | - Niranjan G Hegde
- Plant Science Department, McGill University, Ste.-Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Kalenahalli N Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| |
Collapse
|
46
|
Jia D, Jin C, Gong S, Wang X, Wu T. RNA-Seq and Iso-Seq Reveal the Important Role of COMT and CCoAOMT Genes in Accumulation of Scopoletin in Noni ( Morinda citrifolia). Genes (Basel) 2022; 13:1993. [PMID: 36360230 PMCID: PMC9689816 DOI: 10.3390/genes13111993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 10/27/2022] [Indexed: 11/24/2023] Open
Abstract
Scopoletin, the main component of clinical drugs and the functional component of health products, is highly abundant in noni fruit (Morinda citrifolia). Multiple enzyme genes regulate scopoletin accumulation. In the present study, differentially expressed genes of noni were analyzed by RNA sequencing (RNA-Seq) and the full-length genes by isoform-sequencing (Iso-Seq) to find the critical genes in the scopoletin accumulation mechanism pathway. A total of 32,682 full-length nonchimeric reads (FLNC) were obtained, out of which 16,620 non-redundant transcripts were validated. Based on KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation and differential expression analysis, two differentially expressed genes, caffeic acid 3-O-methyltransferase (COMT) and caffeoyl-CoA O-methyltransferase (CCoAOMT), were found in the scopoletin accumulation pathway of noni. Real-time quantitative polymerase chain reaction (q-PCR), phylogenetic tree analysis, gene expression analysis, and the change in scopoletin content confirmed that these two proteins are important in this pathway. Based on these results, the current study supposed that COMT and CCoAOMT play a significant role in the accumulation of scopoletin in noni fruit, and COMT (gene number: gene 7446, gene 8422, and gene 6794) and CCoAOMT (gene number: gene 12,084) were more significant. These results provide the importance of COMT and CCoAOMT and a basis for further understanding the accumulation mechanism of scopoletin in noni.
Collapse
Affiliation(s)
| | | | | | | | - Tian Wu
- Southwest Landscape Architecture Engineering Research Center of State Forestry Administration, Landscape Architecture and Horticulture Science School, Southwest Forestry University, Kunming 650000, China
| |
Collapse
|
47
|
Rodrigues JL, Gomes D, Rodrigues LR. Challenges in the Heterologous Production of Furanocoumarins in Escherichia coli. Molecules 2022; 27:molecules27217230. [PMID: 36364054 PMCID: PMC9656933 DOI: 10.3390/molecules27217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 12/02/2022] Open
Abstract
Coumarins and furanocoumarins are plant secondary metabolites with known biological activities. As they are present in low amounts in plants, their heterologous production emerged as a more sustainable and efficient approach to plant extraction. Although coumarins biosynthesis has been positively established, furanocoumarin biosynthesis has been far more challenging. This study aims to evaluate if Escherichia coli could be a suitable host for furanocoumarin biosynthesis. The biosynthetic pathway for coumarins biosynthesis in E. coli was effectively constructed, leading to the production of umbelliferone, esculetin and scopoletin (128.7, 17.6, and 15.7 µM, respectively, from tyrosine). However, it was not possible to complete the pathway with the enzymes that ultimately lead to furanocoumarins production. Prenyltransferase, psoralen synthase, and marmesin synthase did not show any activity when expressed in E. coli. Several strategies were tested to improve the enzymes solubility and activity with no success, including removing potential N-terminal transit peptides and expression of cytochrome P450 reductases, chaperones and/or enzymes to increase dimethylallylpyrophosphate availability. Considering the results herein obtained, E. coli does not seem to be an appropriate host to express these enzymes. However, new alternative microbial enzymes may be a suitable option for reconstituting the furanocoumarins pathway in E. coli. Nevertheless, until further microbial enzymes are identified, Saccharomyces cerevisiae may be considered a preferred host as it has already been proven to successfully express some of these plant enzymes.
Collapse
Affiliation(s)
- Joana L. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: ; Tel.: +35-125-360-4423
| | - Daniela Gomes
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Lígia R. Rodrigues
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
48
|
Wu J, Zhu W, Shan X, Liu J, Zhao L, Zhao Q. Glycoside-specific metabolomics combined with precursor isotopic labeling for characterizing plant glycosyltransferases. MOLECULAR PLANT 2022; 15:1517-1532. [PMID: 35996753 DOI: 10.1016/j.molp.2022.08.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/19/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Glycosylation by uridine diphosphate-dependent glycosyltransferases (UGTs) in plants contributes to the complexity and diversity of secondary metabolites. UGTs are generally promiscuous in their use of acceptors, making it challenging to reveal the function of UGTs in vivo. Here, we described an approach that combined glycoside-specific metabolomics and precursor isotopic labeling analysis to characterize UGTs in Arabidopsis. We revisited the UGT72E cluster, which has been reported to catalyze the glycosylation of monolignols. Glycoside-specific metabolomics analysis reduced the number of differentially accumulated metabolites in the ugt72e1e2e3 mutant by at least 90% compared with that from traditional untargeted metabolomics analysis. In addition to the two previously reported monolignol glycosides, a total of 62 glycosides showed reduced accumulation in the ugt72e1e2e3 mutant, 22 of which were phenylalanine-derived glycosides, including 5-OH coniferyl alcohol-derived and lignan-derived glycosides, as confirmed by isotopic tracing of [13C6]-phenylalanine precursor. Our method revealed that UGT72Es could use coumarins as substrates, and genetic evidence showed that UGT72Es endowed plants with enhanced tolerance to low iron availability under alkaline conditions. Using the newly developed method, the function of UGT78D2 was also evaluated. These case studies suggest that this method can substantially contribute to the characterization of UGTs and efficiently investigate glycosylation processes, the complexity of which have been highly underestimated.
Collapse
Affiliation(s)
- Jie Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wentao Zhu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaotong Shan
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinyue Liu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Lingling Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiao Zhao
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
49
|
Ménard D, Blaschek L, Kriechbaum K, Lee CC, Serk H, Zhu C, Lyubartsev A, Nuoendagula , Bacsik Z, Bergström L, Mathew A, Kajita S, Pesquet E. Plant biomechanics and resilience to environmental changes are controlled by specific lignin chemistries in each vascular cell type and morphotype. THE PLANT CELL 2022; 34:koac284. [PMID: 36215679 PMCID: PMC9709985 DOI: 10.1093/plcell/koac284] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/11/2022] [Indexed: 05/12/2023]
Abstract
The biopolymer lignin is deposited in the cell walls of vascular cells and is essential for long-distance water conduction and structural support in plants. Different vascular cell types contain distinct and conserved lignin chemistries, each with specific aromatic and aliphatic substitutions. Yet, the biological role of this conserved and specific lignin chemistry in each cell type remains unclear. Here, we investigated the roles of this lignin biochemical specificity for cellular functions by producing single cell analyses for three cell morphotypes of tracheary elements, which all allow sap conduction but differ in their morphology. We determined that specific lignin chemistries accumulate in each cell type. Moreover, lignin accumulated dynamically, increasing in quantity and changing in composition, to alter the cell wall biomechanics during cell maturation. For similar aromatic substitutions, residues with alcohol aliphatic functions increased stiffness whereas aldehydes increased flexibility of the cell wall. Modifying this lignin biochemical specificity and the sequence of its formation impaired the cell wall biomechanics of each morphotype and consequently hindered sap conduction and drought recovery. Together, our results demonstrate that each sap-conducting vascular cell type distinctly controls their lignin biochemistry to adjust their biomechanics and hydraulic properties to face developmental and environmental constraints.
Collapse
Affiliation(s)
- Delphine Ménard
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Leonard Blaschek
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
| | - Konstantin Kriechbaum
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Cheng Choo Lee
- Umeå Core Facility for Electron Microscopy (UCEM), Umeå University, 901 87 Umeå, Sweden
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
| | - Chuantao Zhu
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Alexander Lyubartsev
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Nuoendagula
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Zoltán Bacsik
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Lennart Bergström
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Aji Mathew
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, 106 91 Stockholm, Sweden
| | - Shinya Kajita
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Edouard Pesquet
- Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, 106 91 Stockholm, Sweden
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, 901 87 Umeå, Sweden
- Bolin Centre for Climate Research, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
50
|
Ma Q, Xu J, Feng Y, Wu X, Lu X, Zhang P. Knockdown of p-Coumaroyl Shikimate/Quinate 3′-Hydroxylase Delays the Occurrence of Post-Harvest Physiological Deterioration in Cassava Storage Roots. Int J Mol Sci 2022; 23:ijms23169231. [PMID: 36012496 PMCID: PMC9409078 DOI: 10.3390/ijms23169231] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Cassava storage roots are an important source of food, feed, and material for starch-based industries in many countries. After harvest, rapid post-harvest physiological deterioration (PPD) reduces their palatability and marketability. During the PPD process, vascular streaking occurs through over-accumulation of coumarins, the biosynthesis of which involves the key enzyme p-coumaroyl shikimate/quinate 3′-hydroxylase (C3′H). Repression of MeC3′H expression by RNA interference in transgenic cassava plants caused a significant delay in PPD by decreasing scopoletin and scopolin accumulation in field-harvested storage roots. This study demonstrates that MeC3′H is the key enzyme participating in coumarin biosynthesis during PPD and shows that MeC3′H is a useful target gene for editing to prolong the shelf life of cassava storage roots.
Collapse
Affiliation(s)
- Qiuxiang Ma
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jia Xu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yancai Feng
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyun Wu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xinlu Lu
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|