1
|
Legarrea S, LaTora AG, Simmons AM, Srinivasan R. Begomovirus Transmission to Tomato Plants Is Not Hampered by Plant Defenses Induced by Dicyphus hesperus Knight. Viruses 2024; 16:587. [PMID: 38675929 PMCID: PMC11055112 DOI: 10.3390/v16040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant-virus-vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant-omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato.
Collapse
Affiliation(s)
- Saioa Legarrea
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
- Department of Food and Agriculture, University of La Rioja, C/Madre de Dios, 53, 26006 Logroño, Spain
| | - Angela Gabrielle LaTora
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
- University of Georgia Extension Fulton County, 7741 Roswell Road NE, Room 248, Sandy Springs, GA 30350, USA
| | - Alvin M. Simmons
- U.S.D.A.—Agricultural Research Service, U.S. Vegetable Laboratory, 2700 Savannah Highway, Charleston, SC 29414, USA;
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, 1109 Experiment Street, Griffin, GA 30223, USA;
| |
Collapse
|
2
|
Yang J, Chen R, Wang C, Li C, Ye W, Zhang Z, Wang S. A widely targeted metabolite modificomics strategy for modified metabolites identification in tomato. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:810-823. [PMID: 38375781 DOI: 10.1111/jipb.13629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
The structural and functional diversity of plant metabolites is largely created via chemical modification of a basic backbone. However, metabolite modifications in plants have still not been thoroughly investigated by metabolomics approaches. In this study, a widely targeted metabolite modificomics (WTMM) strategy was developed based on ultra-high performance liquid chromatography-quadrupole-linear ion trap (UHPLC-Q-Trap) and UHPLC-Q-Exactive-Orbitrap (UHPLC-QE-Orbitrap), which greatly improved the detection sensitivity and the efficiency of identification of modified metabolites. A metabolite modificomics study was carried out using tomato as a model, and over 34,000 signals with MS2 information were obtained from approximately 232 neutral loss transitions. Unbiased metabolite profiling was also performed by utilizing high-resolution mass spectrometry data to annotate a total of 2,118 metabolites with 125 modification types; of these, 165 modified metabolites were identified in this study. Next, the WTMM database was used to assess diseased tomato tissues and 29 biomarkers were analyzed. In summary, the WTMM strategy is not only capable of large-scale detection and quantitative analysis of plant-modified metabolites in plants, but also can be used for plant biomarker development.
Collapse
Affiliation(s)
- Jun Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Ridong Chen
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Chao Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Chun Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Weizhen Ye
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Zhonghui Zhang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| | - Shouchuang Wang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya, 572025, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, 572208, China
| |
Collapse
|
3
|
Baranov D, Timerbaev V. Recent Advances in Studying the Regulation of Fruit Ripening in Tomato Using Genetic Engineering Approaches. Int J Mol Sci 2024; 25:760. [PMID: 38255834 PMCID: PMC10815249 DOI: 10.3390/ijms25020760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Tomato (Solanum lycopersicum L.) is one of the most commercially essential vegetable crops cultivated worldwide. In addition to the nutritional value, tomato is an excellent model for studying climacteric fruits' ripening processes. Despite this, the available natural pool of genes that allows expanding phenotypic diversity is limited, and the difficulties of crossing using classical selection methods when stacking traits increase proportionally with each additional feature. Modern methods of the genetic engineering of tomatoes have extensive potential applications, such as enhancing the expression of existing gene(s), integrating artificial and heterologous gene(s), pointing changes in target gene sequences while keeping allelic combinations characteristic of successful commercial varieties, and many others. However, it is necessary to understand the fundamental principles of the gene molecular regulation involved in tomato fruit ripening for its successful use in creating new varieties. Although the candidate genes mediate ripening have been identified, a complete picture of their relationship has yet to be formed. This review summarizes the latest (2017-2023) achievements related to studying the ripening processes of tomato fruits. This work attempts to systematize the results of various research articles and display the interaction pattern of genes regulating the process of tomato fruit ripening.
Collapse
Affiliation(s)
- Denis Baranov
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Vadim Timerbaev
- Laboratory of Expression Systems and Plant Genome Modification, Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Science, 142290 Pushchino, Russia;
- Laboratory of Plant Genetic Engineering, All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
4
|
Carty M, Zhang R, Li Z, Wang D, Fu ZQ. Launching, perceiving, and diminishing of airborne signals. MOLECULAR PLANT 2023; 16:1882-1884. [PMID: 37865821 DOI: 10.1016/j.molp.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Affiliation(s)
- Mikayla Carty
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ruize Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ziyue Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, and Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou 450002, China.
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
5
|
Teng D, Jing W, Lv B, Huang X, Zhao D, Kou J, Liu X, Dhiloo KH, Zhang Y. Two jasmonic acid carboxyl methyltransferases in Gossypium hirsutum involved in MeJA biosynthesis may contribute to plant defense. FRONTIERS IN PLANT SCIENCE 2023; 14:1249226. [PMID: 37731981 PMCID: PMC10508841 DOI: 10.3389/fpls.2023.1249226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Jasmonic acid (JA) and methyl jasmonate (MeJA), the crucial plant hormones, can induce the emission of plant volatiles and regulate the behavioral responses of insect pests or their natural enemies. In this study, two jasmonic acid carboxyl methyltransferases (JMTs), GhJMT1 and GhJMT2, involved in MeJA biosynthesis in Gossypium. hirsutum were identified and further functionally confirmed. In vitro, recombinant GhJMT1 and GhJMT2 were both responsible for the conversion of JA to MeJA. Quantitative real-time PCR (qPCR) measurement indicated that GhJMT1 and GhJMT2 were obviously up-regulated in leaves and stems of G. hirsutum after being treated with MeJA. In gas chromatography-mass spectrometry (GC-MS) analysis, MeJA treatment significantly induced plant volatiles emission such as (E)-β-ocimene, (Z)-3-hexenyl acetate, linalool and (3E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), which play vital roles in direct and indirect plant defenses. Moreover, antennae of parasitoid wasps Microplitis mediator showed electrophysiological responses to MeJA, β-ocimene, (Z)-3-hexenyl acetate and linalool at a dose dependent manner, while our previous research revealed that DMNT excites electrophysiological responses and behavioral tendencies. These findings provide a better understanding of MeJA biosynthesis and defense regulation in upland cotton, which lay a foundation to JA and MeJA employment in agricultural pest control.
Collapse
Affiliation(s)
- Dong Teng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Weixia Jing
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shandong Agricultural University, Taian, China
| | - Beibei Lv
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinzheng Huang
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Danyang Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, China
| | - Junfeng Kou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Plant Protection, Cangzhou Academy of Agriculture and Forestry Sciences, Cangzhou, China
| | - Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Khalid Hussain Dhiloo
- Department of Entomology, Faculty of Crop Protection, Sindh Agriculture University, Tandojam, Pakistan
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Kaur G, Abugu M, Tieman D. The dissection of tomato flavor: biochemistry, genetics, and omics. FRONTIERS IN PLANT SCIENCE 2023; 14:1144113. [PMID: 37346138 PMCID: PMC10281629 DOI: 10.3389/fpls.2023.1144113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Flavor and quality are the major drivers of fruit consumption in the US. However, the poor flavor of modern commercial tomato varieties is a major cause of consumer dissatisfaction. Studies in flavor research have informed the role of volatile organic compounds in improving overall liking and sweetness of tomatoes. These studies have utilized and applied the tools of molecular biology, genetics, biochemistry, omics, machine learning, and gene editing to elucidate the compounds and biochemical pathways essential for good tasting fruit. Here, we discuss the progress in identifying the biosynthetic pathways and chemical modifications of important tomato volatile compounds. We also summarize the advances in developing highly flavorful tomato varieties and future steps toward developing a "perfect tomato".
Collapse
Affiliation(s)
- Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Modesta Abugu
- Department of Horticulture Science, North Carolina State University, Raleigh, NC, United States
| | - Denise Tieman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
7
|
Tsai SH, Hsiao YC, Chang PE, Kuo CE, Lai MC, Chuang HW. Exploring the Biologically Active Metabolites Produced by Bacillus cereus for Plant Growth Promotion, Heat Stress Tolerance, and Resistance to Bacterial Soft Rot in Arabidopsis. Metabolites 2023; 13:metabo13050676. [PMID: 37233717 DOI: 10.3390/metabo13050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023] Open
Abstract
Eight gene clusters responsible for synthesizing bioactive metabolites associated with plant growth promotion were identified in the Bacillus cereus strain D1 (BcD1) genome using the de novo whole-genome assembly method. The two largest gene clusters were responsible for synthesizing volatile organic compounds (VOCs) and encoding extracellular serine proteases. The treatment with BcD1 resulted in an increase in leaf chlorophyll content, plant size, and fresh weight in Arabidopsis seedlings. The BcD1-treated seedlings also accumulated higher levels of lignin and secondary metabolites including glucosinolates, triterpenoids, flavonoids, and phenolic compounds. Antioxidant enzyme activity and DPPH radical scavenging activity were also found to be higher in the treated seedlings as compared with the control. Seedlings pretreated with BcD1 exhibited increased tolerance to heat stress and reduced disease incidence of bacterial soft rot. RNA-seq analysis showed that BcD1 treatment activated Arabidopsis genes for diverse metabolite synthesis, including lignin and glucosinolates, and pathogenesis-related proteins such as serine protease inhibitors and defensin/PDF family proteins. The genes responsible for synthesizing indole acetic acid (IAA), abscisic acid (ABA), and jasmonic acid (JA) were expressed at higher levels, along with WRKY transcription factors involved in stress regulation and MYB54 for secondary cell wall synthesis. This study found that BcD1, a rhizobacterium producing VOCs and serine proteases, is capable of triggering the synthesis of diverse secondary metabolites and antioxidant enzymes in plants as a defense strategy against heat stress and pathogen attack.
Collapse
Affiliation(s)
- Sih-Huei Tsai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Yi-Chun Hsiao
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Peter E Chang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Chen-En Kuo
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Mei-Chun Lai
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| | - Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi 600355, Taiwan
| |
Collapse
|
8
|
Li Y, Ma X, Xiao LD, Yu YN, Yan HL, Gong ZH. CaWRKY50 Acts as a Negative Regulator in Response to Colletotrichum scovillei Infection in Pepper. PLANTS (BASEL, SWITZERLAND) 2023; 12:1962. [PMID: 37653879 PMCID: PMC10221478 DOI: 10.3390/plants12101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/02/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Chili anthracnose is one of the most common and destructive fungal pathogens that affects the yield and quality of pepper. Although WRKY proteins play crucial roles in pepper resistance to a variety of pathogens, the mechanism of their resistance to anthracnose is still unknown. In this study, we found that CaWRKY50 expression was obviously induced by Colletotrichum scovillei infection and salicylic acid (SA) treatments. CaWRKY50-silencing enhanced pepper resistance to C. scovillei, while transient overexpression of CaWRKY50 in pepper increased susceptibility to C. scovillei. We further found that overexpression of CaWRKY50 in tomatoes significantly decreased resistance to C. scovillei by SA and reactive oxygen species (ROS) signaling pathways. Moreover, CaWRKY50 suppressed the expression of two SA-related genes, CaEDS1 (enhanced disease susceptibility 1) and CaSAMT1 (salicylate carboxymethyltransferase 1), by directly binding to the W-box motif in their promoters. Additionally, we demonstrated that CaWRKY50 interacts with CaWRKY42 and CaMIEL1 in the nucleus. Thus, our findings revealed that CaWRKY50 plays a negative role in pepper resistance to C. scovillei through the SA-mediated signaling pathway and the antioxidant defense system. These results provide a theoretical foundation for molecular breeding of pepper varieties resistant to anthracnose.
Collapse
Affiliation(s)
- Yang Li
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Xiao Ma
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Luo-Dan Xiao
- Yibin Research Institute of Tea Industry, Yibin 644000, China;
| | - Ya-Nan Yu
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| | - Hui-Ling Yan
- Institute of Cash Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050051, China
| | - Zhen-Hui Gong
- College of Horticulture, Northwest A&F University, Yangling 712100, China; (Y.L.); (X.M.); (Y.-N.Y.)
| |
Collapse
|
9
|
Sapkota M, Pereira L, Wang Y, Zhang L, Topcu Y, Tieman D, van der Knaap E. Structural variation underlies functional diversity at methyl salicylate loci in tomato. PLoS Genet 2023; 19:e1010751. [PMID: 37141297 PMCID: PMC10187894 DOI: 10.1371/journal.pgen.1010751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/16/2023] [Accepted: 04/19/2023] [Indexed: 05/06/2023] Open
Abstract
Methyl salicylate is an important inter- and intra-plant signaling molecule, but is deemed undesirable by humans when it accumulates to high levels in ripe fruits. Balancing the tradeoff between consumer satisfaction and overall plant health is challenging as the mechanisms regulating volatile levels have not yet been fully elucidated. In this study, we investigated the accumulation of methyl salicylate in ripe fruits of tomatoes that belong to the red-fruited clade. We determine the genetic diversity and the interaction of four known loci controlling methyl salicylate levels in ripe fruits. In addition to Non-Smoky Glucosyl Transferase 1 (NSGT1), we uncovered extensive genome structural variation (SV) at the Methylesterase (MES) locus. This locus contains four tandemly duplicated Methylesterase genes and genome sequence investigations at the locus identified nine distinct haplotypes. Based on gene expression and results from biparental crosses, functional and non-functional haplotypes for MES were identified. The combination of the non-functional MES haplotype 2 and the non-functional NSGT1 haplotype IV or V in a GWAS panel showed high methyl salicylate levels in ripe fruits, particularly in accessions from Ecuador, demonstrating a strong interaction between these two loci and suggesting an ecological advantage. The genetic variation at the other two known loci, Salicylic Acid Methyl Transferase 1 (SAMT1) and tomato UDP Glycosyl Transferase 5 (SlUGT5), did not explain volatile variation in the red-fruited tomato germplasm, suggesting a minor role in methyl salicylate production in red-fruited tomato. Lastly, we found that most heirloom and modern tomato accessions carried a functional MES and a non-functional NSGT1 haplotype, ensuring acceptable levels of methyl salicylate in fruits. Yet, future selection of the functional NSGT1 allele could potentially improve flavor in the modern germplasm.
Collapse
Affiliation(s)
- Manoj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Lara Pereira
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Yanbing Wang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Lei Zhang
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Yasin Topcu
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| | - Denise Tieman
- Horticultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
10
|
Huang C, Sun P, Yu S, Fu G, Deng Q, Wang Z, Cheng S. Analysis of Volatile Aroma Components and Regulatory Genes in Different Kinds and Development Stages of Pepper Fruits Based on Non-Targeted Metabolome Combined with Transcriptome. Int J Mol Sci 2023; 24:ijms24097901. [PMID: 37175606 PMCID: PMC10178352 DOI: 10.3390/ijms24097901] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Aroma is a crucial attribute affecting the quality of pepper and its processed products, which has significant commercial value. However, little is known about the composition of volatile aroma compounds (VACs) in pepper fruits and their potential molecular regulatory mechanisms. In this study, HS-SPME-GC-MS combined with transcriptome sequencing is used to analyze the composition and formation mechanism of VACs in different kinds and development stages of pepper fruits. The results showed that 149 VACs, such as esters, alcohols, aldehydes, and terpenoids, were identified from 4 varieties and 3 development stages, and there were significant quantitative differences among different samples. Volatile esters were the most important aroma components in pepper fruits. PCA analysis showed that pepper fruits of different developmental stages had significantly different marker aroma compounds, which may be an important provider of pepper's characteristic aroma. Transcriptome analysis showed that many differential genes (DEGs) were enriched in the metabolic pathways related to the synthesis of VACs, such as fatty acids, amino acids, MVA, and MEP in pepper fruits. In addition, we identified a large number of differential transcription factors (TFs) that may regulate the synthesis of VACs. Combined analysis of differential aroma metabolites and DEGs identified two co-expression network modules highly correlated with the relative content of VACs in pepper fruit. This study confirmed the basic information on the changes of VACs in the fruits of several Chinese spicy peppers at different stages of development, screened out the characteristic aroma components of different varieties, and revealed the molecular mechanism of aroma formation, providing a valuable reference for the quality breeding of pepper.
Collapse
Affiliation(s)
- Chuang Huang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Peixia Sun
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shuang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Genying Fu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Qin Deng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Zhiwei Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| | - Shanhan Cheng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Štambuk P, Šikuten I, Preiner D, Maletić E, Karoglan Kontić J, Tomaz I. Croatian Native Grapevine Varieties' VOCs Responses upon Plasmopara viticola Inoculation. PLANTS (BASEL, SWITZERLAND) 2023; 12:404. [PMID: 36679116 PMCID: PMC9863345 DOI: 10.3390/plants12020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The Plasmopara viticola pathogen causes one of the most severe grapevine diseases, namely downy mildew. The response to P. viticola involves both visible symptoms and intricate metabolomic alterations, particularly in relation to volatile organic compounds, and depends on the degree of resistance of a particular variety. There are numerous native grapevine varieties in Croatia, and they vary in susceptibility to this oomycete. As previously reported, in vitro leaf disc bioassay and polyphenolic compound analysis are complementary methods that can be used to separate native varieties into various resistance classes. This research used the Solid Phase Microextraction-Arrow Gas Chromatography-Mass Spectrometry method to identify the early alterations in the VOCs in the leaves after P. viticola inoculation. Based on the absolute peak area of sesquiterpenes, some discrepancies between the sampling terms were noticed. The presence of certain chemical compounds such as humulene, ylangene, and α-farnesene helped distinguish the non-inoculated and inoculated samples. Although specific VOC responses to P. viticola infection of native varieties from various resistance classes could not be identified, the response of less susceptible native varieties and resistant controls was associated with an increase in the absolute peak area of several compounds, including geranylacetone, ß-ocimene, and (E)-2-hexen-1-ol.
Collapse
Affiliation(s)
- Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska Cesta 25, 10000 Zagreb, Croatia
| |
Collapse
|
12
|
Frick EM, Sapkota M, Pereira L, Wang Y, Hermanns A, Giovannoni JJ, van der Knaap E, Tieman DM, Klee HJ. A family of methyl esterases converts methyl salicylate to salicylic acid in ripening tomato fruit. PLANT PHYSIOLOGY 2023; 191:110-124. [PMID: 36315067 PMCID: PMC9806648 DOI: 10.1093/plphys/kiac509] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Methyl salicylate imparts a potent flavor and aroma described as medicinal and wintergreen that is undesirable in tomato (Solanum lycopersicum) fruit. Plants control the quantities of methyl salicylate through a variety of biosynthetic pathways, including the methylation of salicylic acid to form methyl salicylate and subsequent glycosylation to prevent methyl salicylate emission. Here, we identified a subclade of tomato methyl esterases, SALICYLIC ACID METHYL ESTERASE1-4, responsible for demethylation of methyl salicylate to form salicylic acid in fruits. This family was identified by proximity to a highly significant methyl salicylate genome-wide association study locus on chromosome 2. Genetic mapping studies in a biparental population confirmed a major methyl salicylate locus on chromosome 2. Fruits from SlMES1 knockout lines emitted significantly (P < 0,05, t test) higher amounts of methyl salicylate than wild-type fruits. Double and triple mutants of SlMES2, SlMES3, and SlMES4 emitted even more methyl salicylate than SlMES1 single knockouts-but not at statistically distinguishable levels-compared to the single mutant. Heterologously expressed SlMES1 and SlMES3 acted on methyl salicylate in vitro, with SlMES1 having a higher affinity for methyl salicylate than SlMES3. The SlMES locus has undergone major rearrangement, as demonstrated by genome structure analysis in the parents of the biparental population. Analysis of accessions that produce high or low levels of methyl salicylate showed that SlMES1 and SlMES3 genes expressed the highest in the low methyl salicylate lines. None of the MES genes were appreciably expressed in the high methyl salicylate-producing lines. We concluded that the SlMES gene family encodes tomato methyl esterases that convert methyl salicylate to salicylic acid in ripe tomato fruit. Their ability to decrease methyl salicylate levels by conversion to salicylic acid is an attractive breeding target to lower the level of a negative contributor to flavor.
Collapse
Affiliation(s)
- Elizabeth M Frick
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Manoj Sapkota
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Lara Pereira
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Yanbing Wang
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Anna Hermanns
- Section of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - James J Giovannoni
- United States Department of Agriculture-Agricultural Research Service and Boyce Thompson Institute, Cornell University campus, Ithaca, New York 14853, USA
| | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia 30602, USA
- Department of Horticulture, University of Georgia, Athens, Georgia 30602, USA
| | - Denise M Tieman
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| | - Harry J Klee
- Horticultural Sciences, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
13
|
Derivatization Strategies in Flavor Analysis: An Overview over the Wine and Beer Scenario. CHEMISTRY 2022. [DOI: 10.3390/chemistry4040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wine and beer are the most appreciated and consumed beverages in the world. This success is mainly due to their characteristic taste, smell, and aroma, which can delight consumer’s palates. These olfactory characteristics are produced from specific classes of volatile compounds called “volatile odor-active compounds” linked to different factors such as age and production. Given the vast market of drinking beverages, the characterization of these odor compounds is increasingly important. However, the chemical complexity of these beverages has led the scientific community to develop several analytical techniques for extracting and quantifying these molecules. Even though the recent “green-oriented” trend is directed towards direct preparation-free procedures, for some class of analytes a conventional step like derivatization is unavoidable. This review is a snapshot of the most used derivatization strategies developed in the last 15 years for VOAs’ determination in wine and beer, the most consumed fermented beverages worldwide and among the most complex ones. A comprehensive overview is provided for every method, whereas pros and cons are critically analyzed and discussed. Emphasis was given to miniaturized methods which are more consistent with the principles of “green analytical chemistry”.
Collapse
|
14
|
Payá C, Minguillón S, Hernández M, Miguel SM, Campos L, Rodrigo I, Bellés JM, López-Gresa MP, Lisón P. SlS5H silencing reveals specific pathogen-triggered salicylic acid metabolism in tomato. BMC PLANT BIOLOGY 2022; 22:549. [PMID: 36443652 PMCID: PMC9706870 DOI: 10.1186/s12870-022-03939-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Salicylic acid (SA) is a major plant hormone that mediates the defence pathway against pathogens. SA accumulates in highly variable amounts depending on the plant-pathogen system, and several enzyme activities participate in the restoration of its levels. Gentisic acid (GA) is the product of the 5-hydroxylation of SA, which is catalysed by S5H, an enzyme activity regarded as a major player in SA homeostasis. GA accumulates at high levels in tomato plants infected by Citrus Exocortis Viroid (CEVd), and to a lesser extend upon Pseudomonas syringae DC3000 pv. tomato (Pst) infection. RESULTS We have studied the induction of tomato SlS5H gene by different pathogens, and its expression correlates with the accumulation of GA. Transient over-expression of SlS5H in Nicotiana benthamiana confirmed that SA is processed by SlS5H in vivo. SlS5H-silenced tomato plants were generated, displaying a smaller size and early senescence, together with hypersusceptibility to the necrotrophic fungus Botrytis cinerea. In contrast, these transgenic lines exhibited an increased defence response and resistance to both CEVd and Pst infections. Alternative SA processing appears to occur for each specific pathogenic interaction to cope with SA levels. In SlS5H-silenced plants infected with CEVd, glycosylated SA was the most discriminant metabolite found. Instead, in Pst-infected transgenic plants, SA appeared to be rerouted to other phenolics such as feruloyldopamine, feruloylquinic acid, feruloylgalactarate and 2-hydroxyglutarate. CONCLUSION Using SlS5H-silenced plants as a tool to unbalance SA levels, we have studied the re-routing of SA upon CEVd and Pst infections and found that, despite the common origin and role for SA in plant pathogenesis, there appear to be different pathogen-specific, alternate homeostasis pathways.
Collapse
Affiliation(s)
- C. Payá
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. Minguillón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. Hernández
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - S. M. Miguel
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - L. Campos
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - I. Rodrigo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - J. M. Bellés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - M. P. López-Gresa
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| | - P. Lisón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC), Universitat Politècnica de València (UPV), Ciudad Politécnica de la Innovación (CPI) 8 E, Ingeniero Fausto Elio s/n, 46011 Valencia, Spain
| |
Collapse
|
15
|
Dong H, Zhang W, Li Y, Feng Y, Wang X, Liu Z, Li D, Wen X, Ma S, Zhang X. Overexpression of salicylic acid methyltransferase reduces salicylic acid-mediated pathogen resistance in poplar. FRONTIERS IN PLANT SCIENCE 2022; 13:973305. [PMID: 36388494 PMCID: PMC9660245 DOI: 10.3389/fpls.2022.973305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Salicylic acid (SA) is generally considered to be a critical signal transduction factor in plant defenses against pathogens. It could be converted to methyl salicylate (MeSA) for remote signals by salicylic acid methyltransferase (SAMT) and converted back to SA by SA-binding protein 2 (SABP2). In order to verify the function of SAMT in poplar plants, we isolated the full-length cDNA sequence of PagSAMT from 84K poplar and cultivated PagSAMT overexpression lines (OE-2 isolate) to test its role in SA-mediated defenses against the virulent fungal pathogen Botryosphaeria dothidea. Our results showed that after inoculation with B. dothidea, OE-2 significantly increased MeSA content and reduced SA content which is associated with increased expression of SAMT in both infected and uninfected leaves, when compared against the wild type (WT). Additionally, SAMT overexpression plant lines (OE-2) exhibited higher expression of pathogenesis-related genes PR-1 and PR-5, but were still susceptible to B. dothidea suggesting that in poplar SA might be responsible for resistance against this pathogen. This study expands the current understanding of joint regulation of SAMT and SABP2 and the balance between SA and MeSA in poplar responses to pathogen invasion.
Collapse
Affiliation(s)
- Huixia Dong
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Wei Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yuqian Feng
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xuan Wang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhenkai Liu
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xiaojian Wen
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Shuai Ma
- Resources Management, Chinese Academy of Forestry, Beijing, China
| | - Xingyao Zhang
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Wang S, Qiang Q, Xiang L, Fernie AR, Yang J. Targeted approaches to improve tomato fruit taste. HORTICULTURE RESEARCH 2022; 10:uhac229. [PMID: 36643745 PMCID: PMC9832879 DOI: 10.1093/hr/uhac229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 09/30/2022] [Indexed: 06/17/2023]
Abstract
Tomato (Solanum lycopersicum) is the most valuable fruit and horticultural crop species worldwide. Compared with the fruits of their progenitors, those of modern tomato cultivars are, however, often described as having unsatisfactory taste or lacking flavor. The flavor of a tomato fruit arises from a complex mix of tastes and volatile metabolites, including sugars, acids, amino acids, and various volatiles. However, considerable differences in fruit flavor occur among tomato varieties, resulting in mixed consumer experiences. While tomato breeding has traditionally been driven by the desire for continual increases in yield and the introduction of traits that provide a long shelf-life, consumers are prepared to pay a reasonable premium for taste. Therefore, it is necessary to characterize preferences of tomato flavor and to define its underlying genetic basis. Here, we review recent conceptual and technological advances that have rendered this more feasible, including multi-omics-based QTL and association analyses, along with the use of trained testing panels, and machine learning approaches. This review proposes how the comprehensive datasets compiled to date could allow a precise rational design of tomato germplasm resources with improved organoleptic quality for the future.
Collapse
Affiliation(s)
- Shouchuang Wang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | | | - Lijun Xiang
- College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Alisdair R Fernie
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| | - Jun Yang
- To whom correspondence should be addressed. E-mail: , or . Tel: 86-0898-66184571. Fax number: 0898-66184571
| |
Collapse
|
17
|
Cholmaitri C, Uthairatanakij A, Laohakunjit N, Jitareerat P, Mingvanish W. Controlled release sachet of methyl salicylate from rice husk absorbents for delayed ripening in ‘Namwa’ bananas. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Yang J, Liang B, Zhang Y, Liu Y, Wang S, Yang Q, Geng X, Liu S, Wu Y, Zhu Y, Lin T. Genome-wide association study of eigenvectors provides genetic insights into selective breeding for tomato metabolites. BMC Biol 2022; 20:120. [PMID: 35606872 PMCID: PMC9128223 DOI: 10.1186/s12915-022-01327-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/10/2022] [Indexed: 01/05/2023] Open
Abstract
Background Long-term domestication and intensive breeding of crop plants aim to establish traits desirable for human needs, and characteristics related to yield, disease resistance, and postharvest storage have traditionally received considerable attention. These processes have led also to negative consequences, as is the case of loss of variants controlling fruit quality, for instance in tomato. Tomato fruit quality is directly associated to metabolite content profiles; however, a full understanding of the genetics affecting metabolite content during tomato domestication and improvement has not been reached due to limitations of the single detection methods previously employed. Here, we aim to reach a broad understanding of changes in metabolite content using a genome-wide association study (GWAS) with eigenvector decomposition (EigenGWAS) on tomato accessions. Results An EigenGWAS was performed on 331 tomato accessions using the first eigenvector generated from the genomic data as a “phenotype” to understand the changes in fruit metabolite content during breeding. Two independent gene sets were identified that affected fruit metabolites during domestication and improvement in consumer-preferred tomatoes. Furthermore, 57 candidate genes related to polyphenol and polyamine biosynthesis were discovered, and a major candidate gene chlorogenate: glucarate caffeoyltransferase (SlCGT) was identified, which affected the quality and diseases resistance of tomato fruit, revealing the domestication mechanism of polyphenols. Conclusions We identified gene sets that contributed to consumer liking during domestication and improvement of tomato. Our study reports novel evidence of selective sweeps and key metabolites controlled by multiple genes, increasing our understanding of the mechanisms of metabolites variation during those processes. It also supports a polygenic selection model for the application of tomato breeding. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01327-x.
Collapse
|
19
|
Nascimento CA, Teixeira-Silva NS, Caserta R, Marques MOM, Takita MA, de Souza AA. Overexpression of CsSAMT in Citrus sinensis Induces Defense Response and Increases Resistance to Xanthomonas citri subsp. citri. FRONTIERS IN PLANT SCIENCE 2022; 13:836582. [PMID: 35401588 PMCID: PMC8988300 DOI: 10.3389/fpls.2022.836582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Citrus canker is a destructive disease caused by Xanthomonas citri subsp. citri, which affects all commercial sweet orange (Citrus sinensis [L.] Osbeck) cultivars. Salicylic acid (SA) and systemic-acquired resistance (SAR) have been demonstrated to have a crucial role in mediating plant defense responses against this phytopathogen. To induce SAR, SA is converted to methyl salicylate (MeSA) by an SA-dependent methyltransferase (SAMT) and translocated systemically to prime noninfected distal tissues. Here, we generated sweet orange transgenic plants (based on cvs. Hamlin and Valencia) overexpressing the SAMT gene from Citrus (CsSAMT) and evaluated their resistance to citrus canker. We obtained four independent transgenic lines and confirmed their significantly higher MeSA volatilization compared to wild-type controls. Plants overexpressing CsSAMT showed reduced symptoms of citrus canker and bacterial populations in all transgenic lines without compromising plant development. One representative transgenic line (V44SAMT) was used to evaluate resistance response in primary and secondary sites. Without inoculation, V44SAMT modulated CsSAMT, CsNPR1, CsNPR3, and CsWRKY22 expression, indicating that this plant is in a primed defense status. The results demonstrate that MeSA signaling prompts the plant to respond more efficiently to pathogen attacks and induces immune responses in transgenic plants at both primary and secondary infection sites.
Collapse
Affiliation(s)
- Cesar Augusto Nascimento
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas – UNICAMP, Campinas, Brazil
| | | | - Raquel Caserta
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| | | | - Marco Aurelio Takita
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| | - Alessandra A. de Souza
- Citrus Research Center “Sylvio Moreira”, Agronomic Institute – IAC, Cordeirópolis, Brazil
| |
Collapse
|
20
|
Lee Díaz AS, Rizaludin MS, Zweers H, Raaijmakers JM, Garbeva P. Exploring the Volatiles Released from Roots of Wild and Domesticated Tomato Plants under Insect Attack. Molecules 2022; 27:1612. [PMID: 35268714 PMCID: PMC8911868 DOI: 10.3390/molecules27051612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Plants produce volatile organic compounds that are important in communication and defense. While studies have largely focused on volatiles emitted from aboveground plant parts upon exposure to biotic or abiotic stresses, volatile emissions from roots upon aboveground stress are less studied. Here, we investigated if tomato plants under insect herbivore attack exhibited a different root volatilome than non-stressed plants, and whether this was influenced by the plant's genetic background. To this end, we analyzed one domesticated and one wild tomato species, i.e., Solanum lycopersicum cv Moneymaker and Solanum pimpinellifolium, respectively, exposed to leaf herbivory by the insect Spodoptera exigua. Root volatiles were trapped with two sorbent materials, HiSorb and PDMS, at 24 h after exposure to insect stress. Our results revealed that differences in root volatilome were species-, stress-, and material-dependent. Upon leaf herbivory, the domesticated and wild tomato species showed different root volatile profiles. The wild species presented the largest change in root volatile compounds with an overall reduction in monoterpene emission under stress. Similarly, the domesticated species presented a slight reduction in monoterpene emission and an increased production of fatty-acid-derived volatiles under stress. Volatile profiles differed between the two sorbent materials, and both were required to obtain a more comprehensive characterization of the root volatilome. Collectively, these results provide a strong basis to further unravel the impact of herbivory stress on systemic volatile emissions.
Collapse
Affiliation(s)
- Ana Shein Lee Díaz
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (H.Z.); (J.M.R.); (P.G.)
| | - Muhammad Syamsu Rizaludin
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (H.Z.); (J.M.R.); (P.G.)
| | - Hans Zweers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (H.Z.); (J.M.R.); (P.G.)
| | - Jos M. Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (H.Z.); (J.M.R.); (P.G.)
- Institute of Biology, Leiden University, 2333 BE Leiden, The Netherlands
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands; (H.Z.); (J.M.R.); (P.G.)
| |
Collapse
|
21
|
Liu Q, Lin B, Tao Y. Improved methylation in E. coli via an efficient methyl supply system driven by betaine. Metab Eng 2022; 72:46-55. [DOI: 10.1016/j.ymben.2022.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 12/21/2022]
|
22
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
23
|
Dubs NM, Davis BR, de Brito V, Colebrook KC, Tiefel IJ, Nakayama MB, Huang R, Ledvina AE, Hack SJ, Inkelaar B, Martins TR, Aartila SM, Albritton KS, Almuhanna S, Arnoldi RJ, Austin CK, Battle AC, Begeman GR, Bickings CM, Bradfield JT, Branch EC, Conti EP, Cooley B, Dotson NM, Evans CJ, Fries AS, Gilbert IG, Hillier WD, Huang P, Hyde KW, Jevtovic F, Johnson MC, Keeler JL, Lam A, Leach KM, Livsey JD, Lo JT, Loney KR, Martin NW, Mazahem AS, Mokris AN, Nichols DM, Ojha R, Okorafor NN, Paris JR, Reboucas TF, Sant'Anna PB, Seitz MR, Seymour NR, Slaski LK, Stemaly SO, Ulrich BR, Van Meter EN, Young ML, Barkman TJ. A collaborative classroom investigation of the evolution of SABATH methyltransferase substrate preference shifts over 120 million years of flowering plant history. Mol Biol Evol 2022; 39:6503504. [PMID: 35021222 PMCID: PMC8890502 DOI: 10.1093/molbev/msac007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Next-generation sequencing has resulted in an explosion of available data, much of which remains unstudied in terms of biochemical function; yet, experimental characterization of these sequences has the potential to provide unprecedented insight into the evolution of enzyme activity. One way to make inroads into the experimental study of the voluminous data available is to engage students by integrating teaching and research in a college classroom such that eventually hundreds or thousands of enzymes may be characterized. In this study, we capitalize on this potential to focus on SABATH methyltransferase enzymes that have been shown to methylate the important plant hormone, salicylic acid (SA), to form methyl salicylate. We analyze data from 76 enzymes of flowering plant species in 23 orders and 41 families to investigate how widely conserved substrate preference is for SA methyltransferase orthologs. We find a high degree of conservation of substrate preference for SA over the structurally similar metabolite, benzoic acid, with recent switches that appear to be associated with gene duplication and at least three cases of functional compensation by paralogous enzymes. The presence of Met in active site position 150 is a useful predictor of SA methylation preference in SABATH methyltransferases but enzymes with other residues in the homologous position show the same substrate preference. Although our dense and systematic sampling of SABATH enzymes across angiosperms has revealed novel insights, this is merely the “tip of the iceberg” since thousands of sequences remain uncharacterized in this enzyme family alone.
Collapse
Affiliation(s)
- Nicole M Dubs
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Breck R Davis
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Victor de Brito
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kate C Colebrook
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ian J Tiefel
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Madison B Nakayama
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ruiqi Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Audrey E Ledvina
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Samantha J Hack
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Brent Inkelaar
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Talline R Martins
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sarah M Aartila
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kelli S Albritton
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Sarah Almuhanna
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ryan J Arnoldi
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Clara K Austin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber C Battle
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Gregory R Begeman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Caitlin M Bickings
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jonathon T Bradfield
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Eric C Branch
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Eric P Conti
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Breana Cooley
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nicole M Dotson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Cheyone J Evans
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber S Fries
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ivan G Gilbert
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Weston D Hillier
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Pornkamol Huang
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kaitlin W Hyde
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Filip Jevtovic
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Mark C Johnson
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Julie L Keeler
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Albert Lam
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kyle M Leach
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jeremy D Livsey
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Jonathan T Lo
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Kevin R Loney
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nich W Martin
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Amber S Mazahem
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Aurora N Mokris
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Destiny M Nichols
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Ruchi Ojha
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nnanna N Okorafor
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Joshua R Paris
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | | | | | - Mathew R Seitz
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Nathan R Seymour
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Lila K Slaski
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Stephen O Stemaly
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Benjamin R Ulrich
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Emile N Van Meter
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Meghan L Young
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008
| |
Collapse
|
24
|
Liao L, Zhang W, Zhang B, Fang T, Wang XF, Cai Y, Ogutu C, Gao L, Chen G, Nie X, Xu J, Zhang Q, Ren Y, Yu J, Wang C, Deng CH, Ma B, Zheng B, You CX, Hu DG, Espley R, Lin-Wang K, Yao JL, Allan AC, Khan A, Korban SS, Fei Z, Ming R, Hao YJ, Li L, Han Y. Unraveling a genetic roadmap for improved taste in the domesticated apple. MOLECULAR PLANT 2021; 14:1454-1471. [PMID: 34022440 DOI: 10.1016/j.molp.2021.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 05/26/2023]
Abstract
Although taste is an important aspect of fruit quality, an understanding of its genetic control remains elusive in apple and other fruit crops. In this study, we conducted genomic sequence analysis of 497 Malus accessions and revealed erosion of genetic diversity caused by apple breeding and possible independent domestication events of dessert and cider apples. Signatures of selection for fruit acidity and size, but not for fruit sugar content, were detected during the processes of both domestication and improvement. Furthermore, we found that single mutations in major genes affecting fruit taste, including Ma1, MdTDT, and MdSOT2, dramatically decrease malate, citrate, and sorbitol accumulation, respectively, and correspond to important domestication events. Interestingly, Ma1 was identified to have pleiotropic effects on both organic acid content and sugar:acid ratio, suggesting that it plays a vital role in determining fruit taste. Fruit taste is unlikely to have been negatively affected by linkage drag associated with selection for larger fruit that resulted from the pyramiding of multiple genes with minor effects on fruit size. Collectively, our study provides new insights into the genetic basis of fruit quality and its evolutionary roadmap during apple domestication, pinpointing several candidate genes for genetic manipulation of fruit taste in apple.
Collapse
Affiliation(s)
- Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Weihan Zhang
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Ting Fang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiao-Fei Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yaming Cai
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing 100049, China
| | - Collins Ogutu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Gang Chen
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoqing Nie
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsheng Xu
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Quanyan Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Yiran Ren
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Jianqiang Yu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Chukun Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Cecilia H Deng
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Baiquan Ma
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Beibei Zheng
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chun-Xiang You
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Da-Gang Hu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China
| | - Richard Espley
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Jia-Long Yao
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Awais Khan
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY 14456, USA
| | - Schuyler S Korban
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853, USA
| | - Ray Ming
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Yu-Jin Hao
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An 271018, China.
| | - Li Li
- Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China.
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Hubei Hongshan Laboratory, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China; Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
25
|
Debbarma J, Saikia B, Singha DL, Maharana J, Velmuruagan N, Dekaboruah H, Arunkumar KP, Chikkaputtaiah C. XSP10 and SlSAMT, Fusarium wilt disease responsive genes of tomato ( Solanum lycopersicum L.) express tissue specifically and interact with each other at cytoplasm in vivo. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1559-1575. [PMID: 34366597 PMCID: PMC8295444 DOI: 10.1007/s12298-021-01025-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Fusarium wilt caused by Fusarium oxysporum f. sp. lycopersici (Fol) is a major fungal disease of tomato (Solanum lycopersicum L.). Xylem sap protein 10 (XSP10) and Salicylic acid methyl transferase (SlSAMT) have been identified as putative negative regulatory genes associated with Fusarium wilt of tomato. Despite their importance as potential genes for developing Fusarium wilt disease tolerance, very little knowledge is available about their expression, cell biology, and functional genomics. Semi-quantitative and quantitative real-time PCR expression analysis of XSP10 and SlSAMT, in this study, revealed higher expression in root and flower tissue respectively in different tomato cultivars viz. Micro-Tom (MT), Arka Vikas (AV), and Arka Abhed (AA). Therefore, the highly up-regulated expression of XSP10 and SlSAMT in biotic stress susceptible tomato cultivar (AV) than a multiple disease resistant cultivar (AA) suggested the disease susceptibility nature of these genes for Fusarium wilt. Sub-cellular localization analysis through the expression of gateway cloning constructs in tomato protoplasts and seedlings showed the predominant localization of XSP10 in the nucleus and SlSAMT at the cytoplasm. A strong in vivo protein-protein interaction of XSP10 with SlSAMT at cytoplasm from bi-molecular fluorescent complementation study suggested that these two proteins function together in regulating responses to Fusarium wilt tolerance in tomato. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01025-y.
Collapse
Affiliation(s)
- Johni Debbarma
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Banashree Saikia
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Dhanawantari L. Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
| | - Jitendra Maharana
- Distributed Information Centre (DIC), Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam India
- Present Address: Institute of Biological Chemistry, Academia Sinica, Taipei, 11529 Taiwan
| | - Natarajan Velmuruagan
- Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, 791110 Arunachal Pradesh India
| | - Hariprasanna Dekaboruah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
| | - Kallare P. Arunkumar
- Central Muga Eri Research and Training Institute (CMER&TI), Lahdoigarh, Jorhat, 785006 Assam India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002 Uttar Pradesh India
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006 Assam India
| |
Collapse
|
26
|
Pereira L, Sapkota M, Alonge M, Zheng Y, Zhang Y, Razifard H, Taitano NK, Schatz MC, Fernie AR, Wang Y, Fei Z, Caicedo AL, Tieman DM, van der Knaap E. Natural Genetic Diversity in Tomato Flavor Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:642828. [PMID: 34149747 PMCID: PMC8212054 DOI: 10.3389/fpls.2021.642828] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/23/2021] [Indexed: 05/22/2023]
Abstract
Fruit flavor is defined as the perception of the food by the olfactory and gustatory systems, and is one of the main determinants of fruit quality. Tomato flavor is largely determined by the balance of sugars, acids and volatile compounds. Several genes controlling the levels of these metabolites in tomato fruit have been cloned, including LIN5, ALMT9, AAT1, CXE1, and LoxC. The aim of this study was to identify any association of these genes with trait variation and to describe the genetic diversity at these loci in the red-fruited tomato clade comprised of the wild ancestor Solanum pimpinellifolium, the semi-domesticated species Solanum lycopersicum cerasiforme and early domesticated Solanum lycopersicum. High genetic diversity was observed at these five loci, including novel haplotypes that could be incorporated into breeding programs to improve fruit quality of modern tomatoes. Using newly available high-quality genome assemblies, we assayed each gene for potential functional causative polymorphisms and resolved a duplication at the LoxC locus found in several wild and semi-domesticated accessions which caused lower accumulation of lipid derived volatiles. In addition, we explored gene expression of the five genes in nine phylogenetically diverse tomato accessions. In general, the expression patterns of these genes increased during fruit ripening but diverged between accessions without clear relationship between expression and metabolite levels.
Collapse
Affiliation(s)
- Lara Pereira
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
| | - Manoj Sapkota
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Michael Alonge
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Yi Zheng
- Boyce Thompson Institute, Ithaca, NY, United States
| | - Youjun Zhang
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Hamid Razifard
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Nathan K. Taitano
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
| | - Michael C. Schatz
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Ying Wang
- Department of Biological Sciences, Mississippi State University, Starkville, MS, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, United States
- U.S. Department of Agriculture, Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Ana L. Caicedo
- Biology Department, University of Massachusetts Amherst, Amherst, MA, United States
| | - Denise M. Tieman
- Horticultural Sciences, University of Florida, Gainesville, FL, United States
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, United States
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, United States
- Department of Horticulture, University of Georgia, Athens, GA, United States
| |
Collapse
|
27
|
Meucci A, Shiriaev A, Rosellini I, Malorgio F, Pezzarossa B. Se-Enrichment Pattern, Composition, and Aroma Profile of Ripe Tomatoes after Sodium Selenate Foliar Spraying Performed at Different Plant Developmental Stages. PLANTS 2021; 10:plants10061050. [PMID: 34071129 PMCID: PMC8224791 DOI: 10.3390/plants10061050] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 05/20/2021] [Accepted: 05/20/2021] [Indexed: 12/11/2022]
Abstract
Foliar spray with selenium salts can be used to fortify tomatoes, but the results vary in relation to the Se concentration and the plant developmental stage. The effects of foliar spraying with sodium selenate at concentrations of 0, 1, and 1.5 mg Se L−1 at flowering and fruit immature green stage on Se accumulation and quality traits of tomatoes at ripening were investigated. Selenium accumulated up to 0.95 µg 100 g FW−1, with no significant difference between the two concentrations used in fruit of the first truss. The treatment performed at the flowering stage resulted in a higher selenium concentration compared to the immature green treatment in the fruit of the second truss. Cu, Zn, K, and Ca content was slightly modified by Se application, with no decrease in fruit quality. When applied at the immature green stage, Se reduced the incidence of blossom-end rot. A group of volatile organic compounds (2-phenylethyl alcohol, guaiacol, (E)-2-heptenal, 1-penten-3-one and (E)-2-pentenal), positively correlated with consumer liking and flavor intensity, increased following Se treatment. These findings indicate that foliar spraying, particularly if performed at flowering stage, is an efficient method to enrich tomatoes with Se, also resulting in positive changes in fruit aroma profile.
Collapse
Affiliation(s)
- Annalisa Meucci
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
| | - Anton Shiriaev
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy;
- Correspondence:
| | - Irene Rosellini
- Research Institute on Terrestrial Ecosystems, 56124 Pisa, Italy; (I.R.); (B.P.)
| | - Fernando Malorgio
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | - Beatrice Pezzarossa
- Research Institute on Terrestrial Ecosystems, 56124 Pisa, Italy; (I.R.); (B.P.)
| |
Collapse
|
28
|
Poitou X, Redon P, Pons A, Bruez E, Delière L, Marchal A, Cholet C, Geny-Denis L, Darriet P. Methyl salicylate, a grape and wine chemical marker and sensory contributor in wines elaborated from grapes affected or not by cryptogamic diseases. Food Chem 2021; 360:130120. [PMID: 34034050 DOI: 10.1016/j.foodchem.2021.130120] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/12/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Methyl salicylate (MeSA) is a plant metabolite that induces plant defence resistance and an odorous volatile compound presenting green nuances. This volatile compound was shown to be present in wine samples, sometimes at concentrations above its olfactory detection threshold. MeSA is localized in grapes, particularly in the skins and stems, and is extracted during red wine vinification. It was detected at the highest concentrations in wines of several grape varieties, made from grapes affected by cryptogamic diseases, namely downy mildew caused by Plasmopara viticola, and black rot caused by Guignardia bidwellii. It has also been detected in wines from vines affected by Esca, a Grapevine Trunk Disease. MeSA can also be considered to be a chemical marker in grapes and wine indicative of the level of development of several vine cryptogamic diseases.
Collapse
Affiliation(s)
- Xavier Poitou
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Pascaline Redon
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Alexandre Pons
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France; Seguin Moreau France, Z.I. Merpins, B.P. 94, F-16103 Cognac, France.
| | - Emilie Bruez
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Laurent Delière
- INRAE, ISVV, UE 1442 Vigne Bordeaux; UMR 1065 Santé & Agroécologie du Vignoble, F-33140 Villenave d'Ornon, France.
| | - Axel Marchal
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Céline Cholet
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Laurence Geny-Denis
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| | - Philippe Darriet
- Univ. Bordeaux, Unité de recherche Œnologie, EA 4577, USC 1366 INRAE, F-33140 Villenave d'Ornon, France.
| |
Collapse
|
29
|
Li S, Chen K, Grierson D. Molecular and Hormonal Mechanisms Regulating Fleshy Fruit Ripening. Cells 2021; 10:1136. [PMID: 34066675 PMCID: PMC8151651 DOI: 10.3390/cells10051136] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022] Open
Abstract
This article focuses on the molecular and hormonal mechanisms underlying the control of fleshy fruit ripening and quality. Recent research on tomato shows that ethylene, acting through transcription factors, is responsible for the initiation of tomato ripening. Several other hormones, including abscisic acid (ABA), jasmonic acid (JA) and brassinosteroids (BR), promote ripening by upregulating ethylene biosynthesis genes in different fruits. Changes to histone marks and DNA methylation are associated with the activation of ripening genes and are necessary for ripening initiation. Light, detected by different photoreceptors and operating through ELONGATED HYPOCOTYL 5(HY5), also modulates ripening. Re-evaluation of the roles of 'master regulators' indicates that MADS-RIN, NAC-NOR, Nor-like1 and other MADS and NAC genes, together with ethylene, promote the full expression of genes required for further ethylene synthesis and change in colour, flavour, texture and progression of ripening. Several different types of non-coding RNAs are involved in regulating expression of ripening genes, but further clarification of their diverse mechanisms of action is required. We discuss a model that integrates the main hormonal and genetic regulatory interactions governing the ripening of tomato fruit and consider variations in ripening regulatory circuits that operate in other fruits.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture & Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China;
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, Sutton Bonington Campus, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
30
|
Smoleń S, Czernicka M, Kowalska I, Kȩska K, Halka M, Grzebelus D, Grzanka M, Skoczylas Ł, Pitala J, Koronowicz A, Kováčik P. New Aspects of Uptake and Metabolism of Non-organic and Organic Iodine Compounds-The Role of Vanadium and Plant-Derived Thyroid Hormone Analogs in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:653168. [PMID: 33936138 PMCID: PMC8086602 DOI: 10.3389/fpls.2021.653168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/19/2021] [Indexed: 05/26/2023]
Abstract
The process of uptake and translocation of non-organic iodine (I) ions, I- and IO3 -, has been relatively well-described in literature. The situation is different for low-molecular-weight organic aromatic I compounds, as data on their uptake or metabolic pathway is only fragmentary. The aim of this study was to determine the process of uptake, transport, and metabolism of I applied to lettuce plants by fertigation as KIO3, KIO3 + salicylic acid (KIO3+SA), and iodosalicylates, 5-iodosalicylic acid (5-ISA) and 3,5-diiodosalicylic acid (3,5-diISA), depending on whether additional fertilization with vanadium (V) was used. Each I compound was applied at a dose of 10 μM, SA at a dose of 10 μM, and V at a dose of 0.1 μM. Three independent 2-year-long experiments were carried out with lettuce; two with pot systems using a peat substrate and mineral soil and one with hydroponic lettuce. The effectiveness of I uptake and translocation from the roots to leaves was as follows: 5-ISA > 3,5-diISA > KIO3. Iodosalicylates, 5-ISA and 3,5-diISA, were naturally synthesized in plants, similarly to other organic iodine metabolites, i.e., iodotyrosine, as well as plant-derived thyroid hormone analogs (PDTHA), triiodothyronine (T3) and thyroxine (T4). T3 and T4 were synthesized in roots with the participation of endogenous and exogenous 5-ISA and 3,5-diISA and then transported to leaves. The level of plant enrichment in I was safe for consumers. Several genes were shown to perform physiological functions, i.e., per64-like, samdmt, msams5, and cipk6.
Collapse
Affiliation(s)
- Sylwester Smoleń
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Małgorzata Czernicka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Iwona Kowalska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Kinga Kȩska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Maria Halka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Marlena Grzanka
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Łukasz Skoczylas
- Department of Plant Product Technology and Nutrition Hygiene, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Aneta Koronowicz
- Department of Human Nutrition and Dietetics, Faculty of Food Technology, University of Agriculture in Krakow, Kraków, Poland
| | - Peter Kováčik
- Department of Agrochemistry and Plant Nutrition, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| |
Collapse
|
31
|
Zhou F, Last RL, Pichersky E. Degradation of salicylic acid to catechol in Solanaceae by SA 1-hydroxylase. PLANT PHYSIOLOGY 2021; 185:876-891. [PMID: 33793924 PMCID: PMC8133591 DOI: 10.1093/plphys/kiaa096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/07/2020] [Indexed: 05/16/2023]
Abstract
The hormone salicylic acid (SA) plays crucial roles in plant defense, stress responses, and in the regulation of plant growth and development. Whereas the biosynthetic pathways and biological functions of SA have been extensively studied, SA catabolism is less well understood. In this study, we report the identification and functional characterization of an FAD/NADH-dependent SA 1-hydroxylase from tomato (Solanum lycopersicum; SlSA1H), which catalyzes the oxidative decarboxylation of SA to catechol. Transcript levels of SlSA1H were highest in stems and its expression was correlated with the formation of the methylated catechol derivatives guaiacol and veratrole. Consistent with a role in SA catabolism, SlSA1H RNAi plants accumulated lower amounts of guaiacol and failed to produce any veratrole. Two O-methyltransferases involved in the conversion of catechol to guaiacol and guaiacol to veratrole were also functionally characterized. Subcellular localization analyses revealed the cytosolic localization of this degradation pathway. Phylogenetic analysis and functional characterization of SA1H homologs from other species indicated that this type of FAD/NADH-dependent SA 1-hydroxylases evolved recently within the Solanaceae family.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert L Last
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48823, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48823, USA
| | - Eran Pichersky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Author for correspondence:
| |
Collapse
|
32
|
Zou X, Zhao K, Liu Y, Du M, Zheng L, Wang S, Xu L, Peng A, He Y, Long Q, Chen S. Overexpression of Salicylic Acid Carboxyl Methyltransferase ( CsSAMT1) Enhances Tolerance to Huanglongbing Disease in Wanjincheng Orange ( Citrus sinensis (L.) Osbeck). Int J Mol Sci 2021; 22:ijms22062803. [PMID: 33802058 PMCID: PMC7999837 DOI: 10.3390/ijms22062803] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Citrus Huanglongbing (HLB) disease or citrus greening is caused by Candidatus Liberibacter asiaticus (Las) and is the most devastating disease in the global citrus industry. Salicylic acid (SA) plays a central role in regulating plant defenses against pathogenic attack. SA methyltransferase (SAMT) modulates SA homeostasis by converting SA to methyl salicylate (MeSA). Here, we report on the functions of the citrus SAMT (CsSAMT1) gene from HLB-susceptible Wanjincheng orange (Citrus sinensis (L.) Osbeck) in plant defenses against Las infection. The CsSAMT1 cDNA was expressed in yeast. Using in vitro enzyme assays, yeast expressing CsSAMT1 was confirmed to specifically catalyze the formation of MeSA using SA as a substrate. Transgenic Wanjincheng orange plants overexpressing CsSAMT1 had significantly increased levels of SA and MeSA compared to wild-type controls. HLB resistance was evaluated for two years and showed that transgenic plants displayed significantly alleviated symptoms including a lack of chlorosis, low bacterial counts, reduced hyperplasia of the phloem cells, and lower levels of starch and callose compared to wild-type plants. These data confirmed that CsSAMT1 overexpression confers an enhanced tolerance to Las in citrus fruits. RNA-seq analysis revealed that CsSAMT1 overexpression significantly upregulated the citrus defense response by enhancing the transcription of disease resistance genes. This study provides insight for improving host resistance to HLB by manipulation of SA signaling in citrus fruits.
Collapse
|
33
|
Comparative transcriptome analysis of Rheum australe, an endangered medicinal herb, growing in its natural habitat and those grown in controlled growth chambers. Sci Rep 2021; 11:3702. [PMID: 33580100 PMCID: PMC7881009 DOI: 10.1038/s41598-020-79020-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 11/02/2020] [Indexed: 01/30/2023] Open
Abstract
Rheum australe is an endangered medicinal herb of high altitude alpine region of Himalayas and is known to possess anti-cancerous properties. Unlike many herbs of the region, R. australe has broad leaves. The species thrives well under the environmental extremes in its niche habitat, therefore an understanding of transcriptome of R. australe to environmental cues was of significance. Since, temperature is one of the major environmental variables in the niche of R. australe, transcriptome was studied in the species growing in natural habitat and those grown in growth chambers maintained at 4 °C and 25 °C to understand genes associated with different temperatures. A total of 39,136 primarily assembled transcripts were obtained from 10,17,74,336 clean read, and 21,303 unigenes could match to public databases. An analysis of transcriptome by fragments per kilobase of transcript per million, followed by validation through qRT-PCR showed 22.4% up- and 22.5% down-regulated common differentially expressed genes in the species growing under natural habitat and at 4 °C as compared to those at 25 °C. These genes largely belonged to signaling pathway, transporters, secondary metabolites, phytohormones, and those associated with cellular protection, suggesting their importance in imparting adaptive advantage to R. australe in its niche.
Collapse
|
34
|
Martina M, Tikunov Y, Portis E, Bovy AG. The Genetic Basis of Tomato Aroma. Genes (Basel) 2021; 12:genes12020226. [PMID: 33557308 PMCID: PMC7915847 DOI: 10.3390/genes12020226] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 02/06/2023] Open
Abstract
Tomato (Solanum lycopersicum L.) aroma is determined by the interaction of volatile compounds (VOCs) released by the tomato fruits with receptors in the nose, leading to a sensorial impression, such as "sweet", "smoky", or "fruity" aroma. Of the more than 400 VOCs released by tomato fruits, 21 have been reported as main contributors to the perceived tomato aroma. These VOCs can be grouped in five clusters, according to their biosynthetic origins. In the last decades, a vast array of scientific studies has investigated the genetic component of tomato aroma in modern tomato cultivars and their relatives. In this paper we aim to collect, compare, integrate and summarize the available literature on flavour-related QTLs in tomato. Three hundred and 5ifty nine (359) QTLs associated with tomato fruit VOCs were physically mapped on the genome and investigated for the presence of potential candidate genes. This review makes it possible to (i) pinpoint potential donors described in literature for specific traits, (ii) highlight important QTL regions by combining information from different populations, and (iii) pinpoint potential candidate genes. This overview aims to be a valuable resource for researchers aiming to elucidate the genetics underlying tomato flavour and for breeders who aim to improve tomato aroma.
Collapse
Affiliation(s)
- Matteo Martina
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
| | - Yury Tikunov
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
| | - Ezio Portis
- DISAFA, Plant Genetics and Breeding, University of Turin, 10095 Grugliasco, Italy;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands;
- Correspondence: (E.P.); (A.G.B.); Tel.: +39-011-6708807 (E.P.); +31-317-480762 (A.G.B.)
| |
Collapse
|
35
|
Riccini A, Picarella ME, De Angelis F, Mazzucato A. Bulk RNA-Seq analysis to dissect the regulation of stigma position in tomato. PLANT MOLECULAR BIOLOGY 2021; 105:263-285. [PMID: 33104942 DOI: 10.1007/s11103-020-01086-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 10/15/2020] [Indexed: 06/11/2023]
Abstract
Transcriptomic analysis of tomato genotypes contrasting for stigma position suggests that stigma insertion occurred by the disruption of a process that finds a parallel in Arabidopsis gynoecium development. Domestication of cultivated tomato (Solanum lycopersicum L.) included the transition from allogamy to autogamy that occurred through the loss of self-incompatibilty and the retraction of the stigma within the antheridial cone. Although the inserted stigma is an established phenotype in modern tomatoes, an exserted stigma is still present in several landraces or vintage varieties. Moreover, exsertion of the stigma is a frequent response to high temperature stress and, being a cause of reduced fertility, a trait of increasing importance. Few QTLs for stigma position have been described and only one of the underlying genes identified. To gain insights on genes involved in stigma position in tomato, a bulk RNA sequencing (RNA-Seq) approach was adopted, using two groups of contrasting genotypes. Phenotypic analysis confirmed the extent and the stability of stigma position in the selected genotypes, whereas they were highly heterogeneous for other reproductive and productive traits. The RNA-Seq analysis yielded 801 differentially expressed genes (DEGs), 566 up-regulated and 235 down-regulated in the genotypes with exserted stigma. Validation by quantitative PCR indicated a high reliability of the RNA-Seq data. Up-regulated DEGs were enriched for genes involved in the cell wall metabolism, lipid transport, auxin response and flavonoid biosynthesis. Down-regulated DEGs were enriched for genes involved in translation. Validation of selected genes on pistil tissue of the 26 single genotypes revealed that differences between bulks could both be due to a general trend of the bulk or to the behaviour of single genotypes. Novel candidate genes potentially involved in the control of stigma position in tomato are discussed.
Collapse
Affiliation(s)
- A Riccini
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - M E Picarella
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - F De Angelis
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy
| | - A Mazzucato
- Department of Agriculture and Forest Sciences, University of Tuscia, Via S.C. de Lellis snc, 01100, Viterbo, Italy.
| |
Collapse
|
36
|
Fenn MA, Giovannoni JJ. Phytohormones in fruit development and maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:446-458. [PMID: 33274492 DOI: 10.1111/tpj.15112] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/23/2020] [Indexed: 05/21/2023]
Abstract
Phytohormones are integral to the regulation of fruit development and maturation. This review expands upon current understanding of the relationship between hormone signaling and fruit development, emphasizing fleshy fruit and highlighting recent work in the model crop tomato (Solanum lycopersicum) and additional species. Fruit development comprises fruit set initiation, growth, and maturation and ripening. Fruit set transpires after fertilization and is associated with auxin and gibberellic acid (GA) signaling. Interaction between auxin and GAs, as well as other phytohormones, is mediated by auxin-responsive Aux/IAA and ARF proteins. Fruit growth consists of cell division and expansion, the former shown to be influenced by auxin signaling. While regulation of cell expansion is less thoroughly understood, evidence indicates synergistic regulation via both auxin and GAs, with input from additional hormones. Fruit maturation, a transitional phase that precipitates ripening, occurs when auxin and GA levels subside with a concurrent rise in abscisic acid (ABA) and ethylene. During fruit ripening, ethylene plays a clear role in climacteric fruits, whereas non-climacteric ripening is generally associated with ABA. Recent evidence indicates varying requirements for both hormones within both ripening physiologies, suggesting rebalancing and specification of roles for common regulators rather than reliance upon one. Numerous recent discoveries pertaining to the molecular basis of hormonal activity and crosstalk are discussed, while we also note that many questions remain such as the molecular basis of additional hormonal activities, the role of epigenome changes, and how prior discoveries translate to the plethora of angiosperm species.
Collapse
Affiliation(s)
- Matthew A Fenn
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - James J Giovannoni
- Section of Plant Breeding and Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, 14853, USA
- United States Department of Agriculture - Agricultural Research Service and Boyce Thompson Institute for Plant Research, Cornell University campus, Ithaca, NY, 14853, USA
| |
Collapse
|
37
|
Gómez LM, Teixeira-Silva NS, Caserta R, Takita MA, Marques MOM, de Souza AA. Overexpression of Citrus reticulata SAMT in Nicotiana tabacum increases MeSA volatilization and decreases Xylella fastidiosa symptoms. PLANTA 2020; 252:103. [PMID: 33185761 DOI: 10.1007/s00425-020-03511-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
MAIN CONCLUSION Nicotiana tabacum overexpressing CrSAMT from Citrus reticulata increased production of MeSA, which works as an airborne signal in neighboring wild-type plants, inducing PR1 and increasing resistance to the pathogen Xylella fastidiosa. Xylella fastidiosa is one of the major threats to plant health worldwide, affecting yield in many crops. Despite many efforts, the development of highly productive resistant varieties has been challenging. In studying host plant resistance, the S-adenosyl-L-methionine: salicylic acid carboxyl methyltransferase gene (SAMT) from Citrus reticulata, a X. fastidiosa resistant species, was upregulated in response to pathogen infection. SAMT is involved with the catalysis and production of methyl salicylate (MeSA), an airborne signal responsible for triggering systemic acquired resistance. Here we used tobacco as a model system and generated transgenic plants overexpressing C. reticulata SAMT (CrSAMT). We performed an in silico structural characterization of CrSAMT and investigated its biotechnological potential in modulating the immune system in transgenic plants. The increase of MeSA production in transgenic lines was confirmed by gas chromatography (GC-MS). The transgenic lines showed upregulation of PR1, and their incubation with neighboring wild-type plants activated PR1 expression, indicating that MeSA worked as an airborne signal. In addition, transgenic plants showed significantly fewer symptoms when challenged with X. fastidiosa. Altogether, these data suggest that CrSAMT plays a role in host defense response and can be used in biotechnology approaches to confer resistance against X. fastidiosa.
Collapse
Affiliation(s)
- Laura M Gómez
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, km 158, PO Box 04, Cordeirópolis, SP, 13490-970, Brazil
- Entomology and Plant Pathology Department, Auburn University, Auburn, AL, USA
| | - Natália S Teixeira-Silva
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, km 158, PO Box 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Raquel Caserta
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, km 158, PO Box 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Marco A Takita
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, km 158, PO Box 04, Cordeirópolis, SP, 13490-970, Brazil
| | - Márcia O M Marques
- Departamento de Fitoquímica/IAC, Avenida Doutor Theodureto Almeida Camargo 1500, Campinas, SP, 13012970, Brazil
| | - Alessandra A de Souza
- Centro de Citricultura Sylvio Moreira/IAC, Rodovia Anhanguera, km 158, PO Box 04, Cordeirópolis, SP, 13490-970, Brazil.
| |
Collapse
|
38
|
Guo Y, Qiao D, Yang C, Chen J, Li Y, Liang S, Lin K, Chen Z. Genome-wide identification and expression analysis of SABATH methyltransferases in tea plant ( Camellia sinensis): insights into their roles in plant defense responses. PLANT SIGNALING & BEHAVIOR 2020; 15:1804684. [PMID: 32787495 PMCID: PMC8550540 DOI: 10.1080/15592324.2020.1804684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/02/2023]
Abstract
SABATH methyltransferases convent plant small-molecule metabolites into volatile methyl esters, which play important roles in many biological processes and defense reactions in plants. In this study, a total of 32 SABATH genes were identified in the Camellia sinensis var. sinensis (CSS) genome, which were renamed CsSABATH1 to CsSABATH32. Genome location annotation suggested that tandem duplication was responsible for the expansion of SABATH genes in tea plant. Multiple sequence alignment and phylogenetic analysis showed that the CsSABATHs could be classified into three groups (I, II and III), which were also supported by gene structures and conserved motifs analysis. Group II contained only two CsSABATH proteins, which were closely related to PtIAMT, AtIAMT and OsIAMT. The group III SABATH genes of tea plant exhibited expansion on the CSS genome compared with Camellia sinensis var. assamica (CSA) genome. Based on RNA-seq data, the CsSABATHs exhibited tissue-specific expression patterns, and the members with high expression in buds and young leaves were also obviously upregulated after MeJA treatment. The expression of many transcription factors was significantly correlated with that of different members of the CsSABATH gene family, suggesting a potential regulatory relationship between them. Quantitative real-time PCR (qPCR) expression analysis showed that CsSABATHs could respond to exogenous JA, SA and MeSA treatments in tea plants. RNA-seq data analysis and qPCR validation suggested that CsSABATH8, 11, 16, 25, 29 and 32 might play a special role in plant defense against insect herbivory. These results provide references for evolutionary studies of the plant SABATH family and the exploration of the potential roles of CsSABATHs in tea plant defense responses.
Collapse
Affiliation(s)
- Yan Guo
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Dahe Qiao
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Chun Yang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Juan Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Yan Li
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Sihui Liang
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Kaiqin Lin
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| | - Zhengwu Chen
- Tea Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, China
| |
Collapse
|
39
|
Koeduka T, Suzuki H, Taguchi G, Matsui K. Biochemical characterization of the jasmonic acid methyltransferase gene from wasabi ( Eutrema japonicum). PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:389-392. [PMID: 33088207 PMCID: PMC7557669 DOI: 10.5511/plantbiotechnology.20.0622a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 05/23/2023]
Abstract
Methyl jasmonate and jasmonic acid play important roles as signaling molecules in regulating plant development and stress-related responses. Previous studies have shown that jasmonic acid carboxyl methyltransferase (JMT), which belongs to the SABATH methyltransferase gene family, catalyzes the transfer of methyl groups from S-adenosyl-L-methionine to the carboxyl groups of jasmonic acid. In the present study, we used RNA-seq analysis to identify a putative JMT gene, EujJMT, in wasabi (Eutrema japonicum). The EujJMT proteins showed the highest similarity (89% identity) to JMT proteins of Brassica rapa. Functional characterization of a recombinant EujJMT protein expressed in Escherichia coli showed the highest level of activity with jasmonic acid among the different carboxylic acids tested. The apparent Km value of EujJMT using jasmonic acid as substrate was 62.6 µM, which is comparable to the values of known JMTs. Phylogenetic analysis suggested that EujJMT shares a common ancestor with the JMTs of Arabidopsis and Brassica species and that the strict substrate specificity toward jasmonic acid is conserved among Brassicaceae JMTs.
Collapse
Affiliation(s)
- Takao Koeduka
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Hideyuki Suzuki
- Department of Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kazusa, Chiba 292-0818, Japan
| | - Goro Taguchi
- Department of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
40
|
Çolak NG, Eken NT, Ülger M, Frary A, Doğanlar S. Exploring wild alleles from Solanum pimpinellifolium with the potential to improve tomato flavor compounds. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110567. [PMID: 32771168 DOI: 10.1016/j.plantsci.2020.110567] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/09/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Most consumers complain about the flavor of current tomato cultivars and many pay a premium for alternatives such as heirloom varieties. Breeding for fruit flavor is difficult because it is a quantitatively inherited trait influenced by taste, aroma and environmental factors. A lack of genetic diversity in modern tomato cultivars also necessitates exploration of new sources for flavor alleles. Wild tomato S. pimpinellifolium and inbred backcross lines were assessed for individual sugars and organic acids which are two of the main components of tomato flavor. S. pimpinellifolium was found to harbor alleles that could be used to increase glucose and fructose content and adjust acidity by altering malic and citric acid levels. Single nucleotide polymorphism markers were used to detect 14 quantitative trait loci (QTLs) for sugars and 71 for organic acids. Confirmation was provided by comparing map locations with previously identified loci. Thus, seven (50 %) of the sugar QTLs and 22 (31 %) of the organic acids loci were supported by analyses in other tomato populations. Examination of the genomic sequence containing the QTLs allowed identification of potential candidate genes for several flavor components.
Collapse
Affiliation(s)
- Nergiz Gürbüz Çolak
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | - Neslihan Tek Eken
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | | | - Anne Frary
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| | - Sami Doğanlar
- Department of Molecular Biology and Genetics, Faculty of Science, Izmir Institute of Technology, İzmir 35433, Turkey.
| |
Collapse
|
41
|
Pu H, Shan S, Wang Z, Duan W, Tian J, Zhang L, Li J, Song H, Xu X. Dynamic Changes of DNA Methylation Induced by Heat Treatment Were Involved in Ethylene Signal Transmission and Delayed the Postharvest Ripening of Tomato Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8976-8986. [PMID: 32686929 DOI: 10.1021/acs.jafc.0c02971] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Deoxyribonucleic acid (DNA) methylation plays an important role in fruit ripening and senescence. Here, the role of DNA methylation of the CpG island of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 genes induced by heat treatment (37 °C) in postharvest ripening of tomato fruit was studied. After heat treatment, the firmness and vitamin C content showed higher levels, the loss of aldehydes in volatile components was delayed, and the activities of methylase and demethylase decreased in tomato fruit. Moreover, in heat-treated fruit, significant changes in DNA methylation of SlACS10, LeCTR1, LeEIN3, LeERT10, and SlERF-A1 were induced, the expression of LeERT10 and LeEIN3 was inhibited, the expression of SlERF-A1 was increased, by which ethylene signal transmission might be suppressed and the postharvest ripening of tomato fruit was delayed. The present study provided valuable information for understanding the essential role of DNA methylation in the postharvest ripening of tomato fruit.
Collapse
Affiliation(s)
- Huili Pu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Shuangshuang Shan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zhiqiang Wang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Wenhui Duan
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jixin Tian
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lin Zhang
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Jiangkuo Li
- Tianjin Key Laboratory of Postharvest Physiology and Storage of Agricultural Products, National Engineering and Technology Research Center for Preservation of Agricultural Products, Tianjin 300384, China
| | - Hongmiao Song
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Xiangbin Xu
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
42
|
Methyl Salicylate and Sesquiterpene Emissions Are Indicative for Aphid Infestation on Scots Pine. FORESTS 2020. [DOI: 10.3390/f11050573] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biotic stresses on forest trees are caused by various pest insects and plant pathogens. Attack by these parasites is known to induce the emissions of various biogenic volatile organic compounds (BVOCs), and the profile of these emissions often differs between infested and healthy plants. This difference in emission profile can be used for the non-destructive early-stage diagnosis of the stressor organism. We studied how phloem feeding by a large pine aphid (Cinara pinea Mordvilko) on the branch bark of Scots pine (Pinus sylvestris L.) affects BVOC emissions compared to those of healthy plants in two experiments. We found that in aphid-infested plants, methyl salicylate (MeSA) emissions significantly increased, and the emission rates were dependent on aphid density on the studied branch. Aphid infestation did not significantly affect total monoterpene emission, while the emissions of total sesquiterpenes were substantially higher in aphid-infested saplings than in uninfested plants. Sesquiterpene (E, E)-α-farnesene was emitted at increased rates in both experiments, and the aphid alarm pheromone sesquiterpene (E)-β-farnesene, only in the experiment with higher aphid pressure. We conclude that the rapid increase in MeSA emissions is the most reliable indicator of aphid infestation in pine trees together with (E, E)-α-farnesene.
Collapse
|
43
|
|
44
|
Evaluate the effects of salt stress on physico-chemical characteristics in the germination of rice (Oryza sativa L.) in response to methyl salicylate (MeSA). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101470] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Cheng G, Chang P, Shen Y, Wu L, El-Sappah AH, Zhang F, Liang Y. Comparing the Flavor Characteristics of 71 Tomato ( Solanum lycopersicum) Accessions in Central Shaanxi. FRONTIERS IN PLANT SCIENCE 2020; 11:586834. [PMID: 33362814 PMCID: PMC7758415 DOI: 10.3389/fpls.2020.586834] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/06/2020] [Indexed: 05/21/2023]
Abstract
Flavor is an important quality of mature tomato fruits. Compared with heirloom tomatoes, modern commercial tomato cultivars are considerably less flavorful. This study aimed to compare the flavor of 71 tomato accessions (8 pink cherry, PC; 11 red cherry, RC; 15 pink large-fruited, PL; and 37 red large-fruited, RL) using hedonism scores and odor activity values. Taste compounds were detected using high-performance liquid chromatography. Volatiles were detected using gas chromatography-olfactometry-mass spectrometry. The flavor of tomato accessions can be evaluated using the DTOPSIS analysis method. According to the results of DTOPSIS analysis, 71 tomato accessions can be divided into 4 classes. Tomato accessions PL11, PC4, PC2, PC8, RL35, RC6, and RC10 had better flavor; accessions PC4, PC8, RC10, RL2, and RL35 had better tomato taste; and accessions PL11, PC2, and RC6 had better tomato odor. The concentrations of total soluble solids, fructose, glucose, and citric acid were shown to positively contribute to tomato taste. Tomato odor was mainly derived from 15 volatiles, namely, 1-hexanol, (Z)-3-hexen-1-ol, hexanal, (E)-2-hexenal, (E)-2-heptenal, (E)-2-octenal, (E,E)-2,4-decadienal, (Z)-3,7-dimethyl-2,6-octadieal, 2,6,6-timethyl-1-cyclohexene-1-carboxaldehyde, (2E)-3-(3-pentyl-2-oxiranyl)acrylaldehyde, 6-methyl-5-hepten-2-one, (E)-6,10-dimetyl-5,9-undecadien-2-one, methyl salicylate, 4-allyl-2-methoxyphenol, and 2-isobutylthiazole. Significant positive correlations (P < 0.05) were detected between the compound concentrations and flavor scores. The above-mentioned compounds can be used as parameters for the evaluation of flavor characteristics and as potential targets to improve the flavor quality of tomato varieties.
Collapse
Affiliation(s)
- Guoting Cheng
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Peipei Chang
- Institute of Agricultural Sciences, Dezhou, China
| | - Yuanbo Shen
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Liting Wu
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
| | - Ahmed H. El-Sappah
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Department of Genetics, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Fei Zhang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- *Correspondence: Fei Zhang,
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology in Arid Regions, Northwest A&F University, Yangling, China
- Yan Liang,
| |
Collapse
|
46
|
Halka M, Smoleń S, Czernicka M, Klimek-Chodacka M, Pitala J, Tutaj K. Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 144:35-48. [PMID: 31557638 DOI: 10.1016/j.plaphy.2019.09.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 05/20/2023]
Abstract
The uptake process and physiological reaction of plants to aromatic iodine compounds have not yet been documented. The aim of this research was to compare uptake by tomato plants of KI and KIO3, as well as of organic iodine compounds - 5-ISA (5-iodosalicylic acid), 3,5-diISA (3,5-diiodosalicylic acid), 2-IBeA (2-iodobenzoic acid), 4-IBeA (4-iodobenzoic acid) and 2,3,5-triIBeA (2,3,5-triiodobenzoic acid). Only 2,3,5-triIBeA had a negative influence on plant development. All organic iodine compounds were taken up by roots and transported to leaves and fruits. Among all the compounds applied, the most efficiently transferred iodine was 2-IBeA - to fruits, and 4-IBeA - to leaves. The order of iodine accumulation in fruit cell compartments was as follows: organelles > cell walls > soluble portions of cells; for leaf and root cells, it was: organelles > cell walls or soluble portions, depending on the compound applied. The compounds studied influence iodine metabolism through expression of the HMT gene which encodes halide ion methyltransferase in leaves and roots. Also, their influence on modification of the activity of the SAMT and S3H genes that encode salicylic acid carboxyl methyltransferase and salicylic acid 3-hydroxylase was established. It was discovered that exogenously applied 5-ISA, 3,5-diISA, 2-IBeA and 4-IBeA are genuinely (endogenously) synthesised in tomato plants; to date, this has not been described for the tomato, nor for any other species of higher plant.
Collapse
Affiliation(s)
- Mariya Halka
- Unit of Plant Nutrition, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland.
| | - Sylwester Smoleń
- Unit of Plant Nutrition, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Krakow, Poland; Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland.
| | - Małgorzata Czernicka
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland.
| | - Magdalena Klimek-Chodacka
- Unit of Genetics, Plant Breeding and Seed Science, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland.
| | - Joanna Pitala
- Laboratory of Mass Spectrometry, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland.
| | - Krzysztof Tutaj
- Department of Biochemistry and Toxicology, Faculty of Biology, Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950, Lublin, Poland.
| |
Collapse
|
47
|
Pollier J, De Geyter N, Moses T, Boachon B, Franco-Zorrilla JM, Bai Y, Lacchini E, Gholami A, Vanden Bossche R, Werck-Reichhart D, Goormachtig S, Goossens A. The MYB transcription factor Emission of Methyl Anthranilate 1 stimulates emission of methyl anthranilate from Medicago truncatula hairy roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:637-654. [PMID: 31009122 DOI: 10.1111/tpj.14347] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/13/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Plants respond to herbivore or pathogen attacks by activating specific defense programs that include the production of bioactive specialized metabolites to eliminate or deter the attackers. Volatiles play an important role in the interaction of a plant with its environment. Through transcript profiling of jasmonate-elicited Medicago truncatula cells, we identified Emission of Methyl Anthranilate (EMA) 1, a MYB transcription factor that is involved in the emission of the volatile compound methyl anthranilate when expressed in M. truncatula hairy roots, giving them a fruity scent. RNA sequencing (RNA-Seq) analysis of the fragrant roots revealed the upregulation of a methyltransferase that was subsequently characterized to catalyze the O-methylation of anthranilic acid and was hence named M. truncatula anthranilic acid methyl transferase (MtAAMT) 1. Given that direct activation of the MtAAMT1 promoter by EMA1 could not be unambiguously demonstrated, we further probed the RNA-Seq data and identified the repressor protein M. truncatula plant AT-rich sequence and zinc-binding (MtPLATZ) 1. Emission of Methyl Anthranilate 1 binds a tandem repeat of the ACCTAAC motif in the MtPLATZ1 promoter to transactivate gene expression. Overexpression of MtPLATZ1 in transgenic M. truncatula hairy roots led to transcriptional silencing of EMA1, indicating that MtPLATZ1 may be part of a negative feedback loop to control the expression of EMA1. Finally, application of exogenous methyl anthranilate boosted EMA1 and MtAAMT1 expression dramatically, thus also revealing a positive amplification loop. Such positive and negative feedback loops seem to be the norm rather than the exception in the regulation of plant specialized metabolism.
Collapse
Affiliation(s)
- Jacob Pollier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Nathan De Geyter
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Tessa Moses
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Benoît Boachon
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | | | - Yuechen Bai
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Elia Lacchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Azra Gholami
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Robin Vanden Bossche
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Danièle Werck-Reichhart
- Institut de Biologie Moléculaire des Plantes, Unité Propre de Recherche 2357 du Centre National de la Recherche Scientifique, Université de Strasbourg, 67000, Strasbourg, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, B-9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, B-9052, Ghent, Belgium
| |
Collapse
|
48
|
Liu H, Meng F, Chen S, Yin T, Hu S, Shao Z, Liu Y, Zhu C, Ye H, Wang Q. Ethanol treatment improves the sensory quality of cherry tomatoes stored at room temperature. Food Chem 2019; 298:125069. [PMID: 31260991 DOI: 10.1016/j.foodchem.2019.125069] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 06/19/2019] [Accepted: 06/23/2019] [Indexed: 01/02/2023]
Abstract
The effects of ethanol treatment on quality characteristics of cherry tomatoes were investigated over 11 days of storage at room temperature (25 °C). Results showed that sensory quality was improved after ethanol treatment, with redder, softer fruits at the edible stage (11 days) compared with control fruit. In addition, the contents of ascorbic acid, sucrose and fructose were elevated after ethanol treatment as well as the concentration of 6-methyl-5-hepten-2-one. Conversely, decreased levels of methyl salicylate (MeSA), guaiacol, (Z)-3-hexenal and (E)-2-hexenal were observed. Selected consumers showed a preference for ethanol-treated cherry tomato fruits compared with controls. Taken together, 0.1% ethanol application has the potential to improve the quality characteristics of cherry tomatoes stored at room temperature.
Collapse
Affiliation(s)
- Haoran Liu
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Fanliang Meng
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Chen
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Tingting Yin
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Songshen Hu
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Zhiyong Shao
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Liu
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Changqing Zhu
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China
| | - Hongxia Ye
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| | - Qiaomei Wang
- State Agriculture Ministry Laboratory of Horticultural Crop Growth and Development, Department of Horticulture, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
49
|
Abstract
Although flavor is an essential element for consumer acceptance of food, breeding programs have focused primarily on yield, leading to significant declines in flavor for many vegetables. The deterioration of flavor quality has concerned breeders; however, the complexity of this trait has hindered efforts to improve or even maintain it. Recently, the integration of flavor-associated metabolic profiling with other omics methodologies derived from big data has become a prominent trend in this research field. Here, we provide an overview of known metabolites contributing to flavor in the major vegetables as well as genetic analyses of the relevant metabolic pathways based on different approaches, especially multi-omics. We present examples demonstrating how omics analyses can help us to understand the accomplishments of historical flavor breeding practices and implement further improvements. The integration of genetics, cultivation, and postharvest practices with genome-scale data analyses will create enormous potential for further flavor quality improvements.
Collapse
Affiliation(s)
- Guangtao Zhu
- The CAAS-YNNU Joint Academy of Potato Sciences, Yunnan Normal University, Kunming 650500, China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Junbo Gou
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Harry Klee
- Horticultural Sciences Department, Plant Innovation Center, University of Florida, Gainesville, Florida 32611, USA
| | - Sanwen Huang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
50
|
|