1
|
Cho LH, Yoon J, Baek G, Tun W, Kwon HC, Lee DW, Choi SH, Lee YS, Jeon JS, An G. Sucrose induces flowering by degradation of the floral repressor Ghd7 via K48-linked polyubiquitination in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39417650 DOI: 10.1111/jipb.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Abstract
Sucrose functions as a signaling molecule in several metabolic pathways as well as in various developmental processes. However, the molecular mechanisms by which sucrose regulates these processes remain largely unknown. In the present study, we demonstrate that sucrose promotes flowering by mediating the stability of a regulatory protein that represses flowering in rice. Exogenous application of sucrose promoted flowering by inducing florigen gene expression. Reduction of sucrose levels in the phloem through genetic modifications, such as the overexpression of the vacuolar invertase OsVIN2 or the mutation of OsSUT2, a sucrose transporter, delayed flowering. Analysis of relative transcript levels of floral regulatory genes showed that sucrose activated Ehd1 upstream of the florigen, with no significant effect on the expression of other upstream genes. Examination of protein stability after sucrose treatment of major floral repressors revealed that the Ghd7 protein was specifically degraded. The Ghd7 protein interacted with the E3 ligase IPA INTERACTING PROTEIN1 (IPI1), and sucrose-induced K48-linked polyubiquitination of Ghd7 via IPI1, leading to protein degradation. Mutants defective in IPI1 delayed flowering, confirming its role in modulating proteins involved in flowering. We conclude that sucrose acts as a signaling molecule to induce flowering by promoting Ghd7 degradation via IPI1.
Collapse
Affiliation(s)
- Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Korea
- Life and Industry Convergence Research Institute, Pusan National University, Miryang, 50463, Korea
| | - Jinmi Yoon
- Department of Biological Sciences, Inha University, Incheon, 22212, Korea
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, 22212, Korea
| | - Gibeom Baek
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463, Korea
| | - Win Tun
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| | - Hyeok Chan Kwon
- Department of Biological Sciences, Inha University, Incheon, 22212, Korea
- Department of Biological Sciences and Bioengineering, Inha University/Industry-Academia Interactive R&E Center for Bioprocess Innovation, Inha University, Incheon, 22212, Korea
| | - Dae-Woo Lee
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| | - Seok-Hyun Choi
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| | - Yang-Seok Lee
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| | - Jong-Seong Jeon
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| | - Gynheung An
- Crop Biotech Institute and Graduate School of Green-Bio Science, Kyung Hee University, Yongin, 17104, Korea
| |
Collapse
|
2
|
Liu D, Ning Q, Zhai L, Teng F, Li Y, Zhao R, Xiong Q, Zhan J, Li Z, Yang F, Zhang Z, Liu L. Coordinated control for the auricle asymmetric development by ZmIDD14 and ZmIDD15 fine-tune the high-density planting adaption in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2675-2687. [PMID: 38816933 DOI: 10.1111/pbi.14382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Multiple distinct specialized regions shape the architecture of maize leaves. Among them, the fringe-like and wedge-shaped auricles alter the angle between the leaf and stalk, which is a key trait in crop plant architecture. As planting density increased, a small leaf angle (LA) was typically selected to promote crop light capture efficiency and yield. In the present study, we characterized two paralogous INDETERMINATE DOMAIN (IDD) genes, ZmIDD14 and ZmIDD15, which contain the Cys2-His2 zinc finger domain and function redundantly to regulate auricle development and LA in maize. Loss-of-function mutants showed decreased LA by reducing adaxial sclerenchyma thickness and increasing the colourless cell layers. In addition, the idd14;idd15 double mutant exhibited asymmetrically smaller auricles, which might cause by a failed maintenance of symmetric expression of the key auricle size controlling gene, LIGULELESS(LG1). The transcripts of ZmIDD14 and ZmIDD15 enriched in the ligular region, where LG1 was highly expressed, and both proteins physically interacted with ZmILI1 to promote LG1 transcription. Notably, the idd14;idd15 enhanced the grain yield of hybrids under high planting densities by shaping the plant architecture with a smaller LA. These findings demonstrate the functions of ZmIDD14 and ZmIDD15 in controlling the abaxial/adaxial development of sclerenchyma in the midrib and polar development along the medial-lateral axes of auricles and provide an available tool for high-density and high-yield breeding in maize.
Collapse
Affiliation(s)
- Dan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qiang Ning
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lihong Zhai
- School of Basic Medicine, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Feng Teng
- Hubei Tenglong Seed Co., Ltd, Xiangyang, Hubei, China
| | - Yunfu Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Ran Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jimin Zhan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- Yazhouwan National Laboratory, Sanya, Hainan, China
| | - Lei Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Wu H, Liu M, Fang Y, Yang J, Xie X, Zhang H, Zhou D, Zhou Y, He Y, Chen J, Bai Q. Genome-Wide Characterization of the INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Solanum lycopersicum and the Functional Analysis of SlIDD15 in Shoot Gravitropism. Int J Mol Sci 2024; 25:10422. [PMID: 39408748 PMCID: PMC11476865 DOI: 10.3390/ijms251910422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The plant-specific IDD transcription factors (TFs) are vital for regulating plant growth and developmental processes. However, the characteristics and biological roles of the IDD gene family in tomato (Solanum lycopersicum) are still largely unexplored. In this study, 17 SlIDD genes were identified in the tomato genome and classified into seven subgroups according to the evolutionary relationships of IDD proteins. Analysis of exon-intron structures and conserved motifs reflected the evolutionary conservation of SlIDDs in tomato. Collinearity analysis revealed that segmental duplication promoted the expansion of the SlIDD family. Ka/Ks analysis indicated that SlIDD gene orthologs experienced predominantly purifying selection throughout evolution. The analysis of cis-acting elements revealed that the promoters of SlIDD genes contain numerous elements associated with light, plant hormones, and abiotic stresses. The RNA-seq data and qRT-PCR experimental results showed that the SlIDD genes exhibited tissue-specific expression. Additionally, Group A members from Arabidopsis thaliana and rice are known to play a role in regulating plant shoot gravitropism. QRT-PCR analysis confirmed that the expression level of SlIDD15 in Group A was high in the hypocotyls and stems. Subcellular localization demonstrated that the SlIDD15 protein was localized in the nucleus. Surprisingly, the loss-of-function of SlIDD15 by CRISPR/Cas9 gene editing technology did not display obvious gravitropic response defects, implying the existence of functional redundant factors within SlIDD15. Taken together, this study offers foundational insights into the tomato IDD gene family and serves as a valuable guide for exploring their molecular mechanisms in greater detail.
Collapse
Affiliation(s)
- Huan Wu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Mingli Liu
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yuqi Fang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jing Yang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Xiaoting Xie
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailong Zhang
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Dian Zhou
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Yueqiong Zhou
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yexin He
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
| | - Jianghua Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; (H.W.); (D.Z.)
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Quanzi Bai
- CAS Key Laboratory of Topical Plant Resources and Sustainable Use, CAS Center for Excellence in Molecular Plant Sciences, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, 88 Xuefu Road, Kunming 650223, China; (M.L.); (Y.F.); (J.Y.); (X.X.); (H.Z.); (Y.Z.); (Y.H.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Zhang T, Yu X, Liu D, Zhu D, Yi Q. Genome-wide identification, expression pattern and interacting protein analysis of INDETERMINATE DOMAIN (IDD) gene family in Phalaenopsis equestris. PeerJ 2024; 12:e18073. [PMID: 39346067 PMCID: PMC11438434 DOI: 10.7717/peerj.18073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/19/2024] [Indexed: 10/01/2024] Open
Abstract
The plant-specific INDETERMINATE DOMAIN (IDD) gene family is important for plant growth and development. However, a comprehensive analysis of the IDD family in orchids is limited. Based on the genome data of Phalaenopsis equestris, the IDD gene family was identified and analyzed by bioinformatics methods in this study. Ten putative P. equestris IDD genes (PeIDDs) were characterized and phylogenetically classified into two groups according to their full amino acid sequences. Protein motifs analysis revealed that overall structures of PeIDDs in the same group were relatively conserved. Its promoter regions harbored a large number of responsive elements, including light responsive, abiotic stress responsive elements, and plant hormone cis-acting elements. The transcript level of PeIDD genes under cold and drought conditions, and by exogenous auxin (NAA) and abscisic acid (ABA) treatments further confirmed that most PeIDDs responded to various conditions and might play essential roles under abiotic stresses and hormone responses. In addition, distinct expression profiles in different tissues/organs suggested that PeIDDs might be involved in various development processes. Furthermore, the prediction of protein-protein interactions (PPIs) revealed some PeIDDs (PeIDD3 or PeIDD5) might function via cooperating with chromatin remodeling factors. The results of this study provided a reference for further understanding the function of PeIDDs.
Collapse
Affiliation(s)
- Ting Zhang
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| | - Xin Yu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Da Liu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Deyan Zhu
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| | - Qingping Yi
- College of Bioengineering, Jingchu University of Technology, Jingmen, Hubei, China
- Hubei Engineering Research Center for Specialty Flowers Biological Breeding, Jingchu University of Technology, Jingmen, Hubei, China
| |
Collapse
|
5
|
Kozaki A. INDETERMINATE DOMAIN Transcription Factors in Crops: Plant Architecture, Disease Resistance, Stress Response, Flowering, and More. Int J Mol Sci 2024; 25:10277. [PMID: 39408609 PMCID: PMC11476729 DOI: 10.3390/ijms251910277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
INDETERMINATE DOMAIN (IDD) genes encode plant-specific transcription factors containing a conserved IDD domain with four zinc finger motifs. Previous studies on Arabidopsis IDDs (AtIDDs) have demonstrated that these genes play roles in diverse physiological and developmental processes, including plant architecture, seed and root development, flowering, stress responses, and hormone signaling. Recent studies have revealed important functions of IDDs from rice and maize, especially in regulating leaf differentiation, which is related to the evolution of C4 leaves from C3 leaves. Moreover, IDDs in crops are involved in the regulation of agriculturally important traits, including disease and stress resistance, seed development, and flowering. Thus, IDDs are valuable targets for breeding manipulation. This review explores the role of IDDs in plant development, environmental responses, and evolution, which provides idea for agricultural application.
Collapse
Affiliation(s)
- Akiko Kozaki
- Graduate School of Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan;
- Department of Biological Science, Faculty of Science, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
- Course of Bioscience, Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University, Ohya 836, Suruga-ku, Shizuoka 422-8021, Japan
| |
Collapse
|
6
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
7
|
Wu H, Zhang R, Diao X. Genome-Wide Characterization and Haplotypic Variation Analysis of the IDD Gene Family in Foxtail Millet ( Setaria italica). Int J Mol Sci 2024; 25:8804. [PMID: 39201492 PMCID: PMC11354513 DOI: 10.3390/ijms25168804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 09/02/2024] Open
Abstract
The indeterminate domain proteins (IDD proteins) play essential roles in the growth and development of various plant tissues and organs across different developmental stages, but members of this gene family have not yet been characterized in foxtail millet (Setaria italica). To have a comprehensive understanding of the IDD gene family in foxtail millet, we performed a genome-wide characterization and haplotypic variation analysis of the IDD gene family in foxtail millet. In this study, sixteen IDD genes were identified across the reference genome of Yugu1, a foxtail millet cultivar. Phylogenetic analysis revealed that the Setaria italica IDD (SiIDD) proteins were clustered into four groups together with IDD proteins from Arabidopsis thaliana (dicot) and Oryza sativa (monocot). Conserved protein motif and gene structure analyses revealed that the closely clustered SiIDD genes were highly conserved within each subgroup. Furthermore, chromosomal location analysis showed that the SiIDD genes were unevenly distributed on nine chromosomes of foxtail millet and shared collinear relationships with IDD genes of other grass species. Transcriptional analysis revealed that the SiIDD genes differed greatly in their expression patterns, and paralogous genes shared similar expression patterns. In addition, superior haplotypes for two SiIDD genes (SiIDD8 and SiIDD14) were identified to correlate with traits of early heading date, and high thousand seed weight and molecular markers were designed for SiIDD8 and SiIDD14 to distinguish different haplotypes for breeding. Taken together, the results of this study provide useful information for further functional investigation of SiIDD genes, and the superior haplotypes of SiIDD8 and SiIDD14 will be particularly beneficial for improving heading date and yield of foxtail millet in breeding programs.
Collapse
Affiliation(s)
- Hongpo Wu
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Renliang Zhang
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
| | - Xianmin Diao
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utlization of Ministry of Agriculture and Rural Affairs and State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (H.W.); (R.Z.)
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453500, China
| |
Collapse
|
8
|
Song Z, Li W, Lai X, Chen H, Wang L, Chen W, Li X, Zhu X. MaC2H2-IDD regulates fruit softening and involved in softening disorder induced by cold stress in banana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1937-1954. [PMID: 38491870 DOI: 10.1111/tpj.16719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/14/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.
Collapse
Affiliation(s)
- Zunyang Song
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenhui Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiuhua Lai
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Hangcong Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Lihua Wang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Weixin Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xueping Li
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiaoyang Zhu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center for Postharvest Technology of Horticultural Crops in South China, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| |
Collapse
|
9
|
Rajendran S, Kang YM, Yang IB, Eo HB, Baek KL, Jang S, Eybishitz A, Kim HC, Je BI, Park SJ, Kim CM. Functional characterization of plant specific Indeterminate Domain (IDD) transcription factors in tomato (Solanum lycopersicum L.). Sci Rep 2024; 14:8015. [PMID: 38580719 PMCID: PMC10997639 DOI: 10.1038/s41598-024-58903-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 04/04/2024] [Indexed: 04/07/2024] Open
Abstract
Plant-specific transcription factors (TFs) are responsible for regulating the genes involved in the development of plant-specific organs and response systems for adaptation to terrestrial environments. This includes the development of efficient water transport systems, efficient reproductive organs, and the ability to withstand the effects of terrestrial factors, such as UV radiation, temperature fluctuations, and soil-related stress factors, and evolutionary advantages over land predators. In rice and Arabidopsis, INDETERMINATE DOMAIN (IDD) TFs are plant-specific TFs with crucial functions, such as development, reproduction, and stress response. However, in tomatoes, IDD TFs remain uncharacterized. Here, we examined the presence, distribution, structure, characteristics, and expression patterns of SlIDDs. Database searches, multiple alignments, and motif alignments suggested that 24 TFs were related to Arabidopsis IDDs. 18 IDDs had two characteristic C2H2 domains and two C2HC domains in their coding regions. Expression analyses suggest that some IDDs exhibit multi-stress responsive properties and can respond to specific stress conditions, while others can respond to multiple stress conditions in shoots and roots, either in a tissue-specific or universal manner. Moreover, co-expression database analyses suggested potential interaction partners within IDD family and other proteins. This study functionally characterized SlIDDs, which can be studied using molecular and bioinformatics methods for crop improvement.
Collapse
Affiliation(s)
- Sujeevan Rajendran
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Yu Mi Kang
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - In Been Yang
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Hye Bhin Eo
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Kyung Lyung Baek
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Seonghoe Jang
- World Vegetable Center Korea Office (WKO), Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Assaf Eybishitz
- World Vegetable Center, P.O. Box 42, Tainan, 74199, Shanhua, Taiwan
| | - Ho Cheol Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Byeong Il Je
- Department of Horticultural and Life Science, Pusan National University, Milyang, 50463, Korea
| | - Soon Ju Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Chul Min Kim
- Department of Horticulture Industry, Wonkwang University, Iksan, 54538, Republic of Korea.
| |
Collapse
|
10
|
Feng J, Wang Y, Ge W, Zhang K, Cui J. Regulatory mechanism of the miR172e-LbrAP2 module during the vegetative growth phase transition in Lilium. PLANTA 2023; 259:26. [PMID: 38110586 DOI: 10.1007/s00425-023-04308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
MAIN CONCLUSION It was proved for the first time that the miR172e-LbrAP2 module regulated the vegetative growth phase transition in Lilium, which provided a new approach to shorten the juvenile stage of Lilium, improved the reproduction rate, and reduced the propagation cost of Lilium commercial bulbs. Lilium is an ornamental bulb plant that takes at least 3 years to cultivate into commercial seed bulbs under natural conditions. The aim of this study was to shorten the Lilium expansion cycle. In this study, the growth cycle of lily tubers induced by low temperature of 15 °C was significantly shorter than that of tubers grown at a conventional temperature. Quantitative real-time PCR analysis showed that the expression patterns of miR172e and LbrAP2 were negatively correlated. GUS histochemical staining confirmed that miR172e and LbrAP2 in tobacco leaves interacted with each other after co-transformation. The shear sites of miR172e and its target gene, LbrAP2, upon binding, were identified by RLM 5' RACE analysis. In addition, miR172e and LbrAP2 showed opposite expression patterns after the transformation of Arabidopsis. miR172e overexpression accelerated the transition from juvenile to adult plants, whereas LbrAP2 overexpression inhibited this process, thus indicating that miR172e negatively regulated the target gene LbrAP2. Upregulation of the transcription factor LbrAP2 delayed the phase transition of plants, whereas miR172 inhibited the transcriptional translation of LbrAP2, thereby accelerating the phase transition. Low-temperature treatment of Lilium bulbs can shorten Lilium development, which provides a new approach to accelerating Lilium commercial bulb breeding and reducing breeding costs.
Collapse
Affiliation(s)
- Junting Feng
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Yiqing Wang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Wei Ge
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Kezhong Zhang
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| | - Jinteng Cui
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Laboratory of Urban and Rural Ecological Environment, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
| |
Collapse
|
11
|
Su J, Lu Z, Zeng J, Zhang X, Yang X, Wang S, Zhang F, Jiang J, Chen F. Multi-locus genome-wide association study and genomic prediction for flowering time in chrysanthemum. PLANTA 2023; 259:13. [PMID: 38063918 DOI: 10.1007/s00425-023-04297-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
MAIN CONCLUSION Multi-locus GWAS detected several known and candidate genes responsible for flowering time in chrysanthemum. The associations could greatly increase the predictive ability of genome selection that accelerates the possible application of GS in chrysanthemum breeding. Timely flowering is critical for successful reproduction and determines the economic value for ornamental plants. To investigate the genetic architecture of flowering time in chrysanthemum, a multi-locus genome-wide association study (GWAS) was performed using a collection of 200 accessions and 330,710 single-nucleotide polymorphisms (SNPs) via 3VmrMLM method. Five flowering time traits including budding (FBD), visible colouring (VC), early opening (EO), full-bloom (OF) and senescing (SF) stages, plus five derived conditional traits were recorded in two environments. Extensive phenotypic variations were observed for these flowering time traits with coefficients of variation ranging from 6.42 to 38.27%, and their broad-sense heritability ranged from 71.47 to 96.78%. GWAS revealed 88 stable quantitative trait nucleotides (QTNs) and 93 QTN-by-environment interactions (QEIs) associated with flowering time traits, accounting for 0.50-8.01% and 0.30-10.42% of the phenotypic variation, respectively. Amongst the genes around these stable QTNs and QEIs, 21 and 10 were homologous to known flowering genes in Arabidopsis; 20 and 11 candidate genes were mined by combining the functional annotation and transcriptomics data, respectively, such as MYB55, FRIGIDA-like, WRKY75 and ANT. Furthermore, genomic selection (GS) was assessed using three models and seven unique marker datasets. We found the prediction accuracy (PA) using significant SNPs identified by GWAS under SVM model exhibited the best performance with PA ranging from 0.90 to 0.95. Our findings provide new insights into the dynamic genetic architecture of flowering time and the identified significant SNPs and candidate genes will accelerate the future molecular improvement of chrysanthemum.
Collapse
Affiliation(s)
- Jiangshuo Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Zhaowen Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Junwei Zeng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xuefeng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Xiuwei Yang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Siyue Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Weigang No. 1, Nanjing, 210095, Jiangsu, People's Republic of China.
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
12
|
Liu Q, Teng S, Deng C, Wu S, Li H, Wang Y, Wu J, Cui X, Zhang Z, Quick WP, Brutnell TP, Sun X, Lu T. SHORT ROOT and INDETERMINATE DOMAIN family members govern PIN-FORMED expression to regulate minor vein differentiation in rice. THE PLANT CELL 2023; 35:2848-2870. [PMID: 37154077 PMCID: PMC10396363 DOI: 10.1093/plcell/koad125] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 03/08/2023] [Accepted: 04/02/2023] [Indexed: 05/10/2023]
Abstract
C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.
Collapse
Affiliation(s)
- Qiming Liu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Shouzhen Teng
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Chen Deng
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Suting Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Haoshu Li
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Yanwei Wang
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Jinxia Wu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuean Cui
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Zhiguo Zhang
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - William Paul Quick
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
- C4 Rice Centre, International Rice Research Institute, Los Banos, Laguna 4030, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Thomas P Brutnell
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Xuehui Sun
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| | - Tiegang Lu
- Biotechnology Research Institute (BRI), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Joint Laboratory for Photosynthesis Enhancement and C4 Rice Development, BRI, CAAS, Beijing 100081, China
| |
Collapse
|
13
|
Liu Y, Lyu T, Lyu Y. Study on the Flower Induction Mechanism of Hydrangea macrophylla. Int J Mol Sci 2023; 24:ijms24097691. [PMID: 37175398 PMCID: PMC10178854 DOI: 10.3390/ijms24097691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/15/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The flower induction of Hydrangea macrophylla "Endless Summer" is regulated by a complex gene network that involves multiple signaling pathways to ensure continuous flowering throughout the growing season, but the molecular determinants of flower induction are not yet clear. In this study, genes potentially involved in signaling pathway mediating the regulatory mechanism of flower induction were identified through the transcriptomic profiles, and a hypothetical model for this regulatory mechanism was obtained by an analysis of the available transcriptomic data, suggesting that sugar-, hormone-, and flowering-related genes participated in the flower induction process of H. macrophylla "Endless Summer". The expression profiles of the genes involved in the biosynthesis and metabolism of sugar showed that the beta-amylase gene BAM1 displayed a high expression level at the BS2 stage and implied the hydrolysis of starch. It may be a signaling molecule that promotes the transition from vegetative growth to reproductive growth in H. macrophylla "Endless Summer". Complex hormone regulatory networks involved in abscisic acid (ABA), auxin (IAA), zeatin nucleoside (ZR), and gibberellin (GA) also induced flower formation in H. macrophylla. ABA participated in flower induction by regulating flowering genes. The high content of IAA and the high expression level of the auxin influx carrier gene LAX5 at the BS2 stage suggested that the flow of auxin between sources and sinks in H. macrophylla is involved in the regulation of floral induction as a signal. In addition, flowering-related genes were mainly involved in the photoperiodic pathway, the aging pathway, and the gibberellin pathway. As a result, multiple pathways, including the photoperiodic pathway, the aging pathway, and the gibberellin pathway, which were mainly mediated by crosstalk between sugar and hormone signals, regulated the molecular network involved in flower induction in H. macrophylla "Endless Summer".
Collapse
Affiliation(s)
- Yun Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| | - Tong Lyu
- Beijing Flower Engineering Technology Research Center, Plant Institute, China National Botanical Garden North Park, Beijing 100093, China
| | - Yingmin Lyu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, China National Engineering Research Center for Floriculture, College of Landscape Architecture, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Bellucci E, Benazzo A, Xu C, Bitocchi E, Rodriguez M, Alseekh S, Di Vittori V, Gioia T, Neumann K, Cortinovis G, Frascarelli G, Murube E, Trucchi E, Nanni L, Ariani A, Logozzo G, Shin JH, Liu C, Jiang L, Ferreira JJ, Campa A, Attene G, Morrell PL, Bertorelle G, Graner A, Gepts P, Fernie AR, Jackson SA, Papa R. Selection and adaptive introgression guided the complex evolutionary history of the European common bean. Nat Commun 2023; 14:1908. [PMID: 37019898 PMCID: PMC10076260 DOI: 10.1038/s41467-023-37332-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 03/14/2023] [Indexed: 04/07/2023] Open
Abstract
Domesticated crops have been disseminated by humans over vast geographic areas. Common bean (Phaseolus vulgaris L.) was introduced in Europe after 1492. Here, by combining whole-genome profiling, metabolic fingerprinting and phenotypic characterisation, we show that the first common bean cultigens successfully introduced into Europe were of Andean origin, after Francisco Pizarro's expedition to northern Peru in 1529. We reveal that hybridisation, selection and recombination have shaped the genomic diversity of the European common bean in parallel with political constraints. There is clear evidence of adaptive introgression into the Mesoamerican-derived European genotypes, with 44 Andean introgressed genomic segments shared by more than 90% of European accessions and distributed across all chromosomes except PvChr11. Genomic scans for signatures of selection highlight the role of genes relevant to flowering and environmental adaptation, suggesting that introgression has been crucial for the dissemination of this tropical crop to the temperate regions of Europe.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Benazzo
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Chunming Xu
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Valerio Di Vittori
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Giulia Frascarelli
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Ester Murube
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Emiliano Trucchi
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
- Department of Life and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Laura Nanni
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy
| | - Andrea Ariani
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, 85100, Potenza, Italy
| | - Jin Hee Shin
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Chaochih Liu
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Liang Jiang
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
| | - Juan José Ferreira
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Ana Campa
- Regional Agrifood Research and Development Service (SERIDA), 33310, Villaviciosa, Asturias, Spain
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, 07100, Sassari, Italy
- Centro per la Conservazione e Valorizzazione della Biodiversità Vegetale-CBV, Università degli Studi di Sassari, 07041, Alghero, Italy
| | - Peter L Morrell
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, 55108-6026, USA
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 06466, Seeland, Germany
| | - Paul Gepts
- Department of Plant Sciences, University of California, 95616-8780, Davis, CA, USA
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology (MPI-MP), 14476, Potsdam-Golm, Germany
- Center for Plant Systems Biology and Plant Biotechnology, 4000, Plovdiv, Bulgaria
| | - Scott A Jackson
- Center for Applied Genetic Technologies, University of Georgia, 30602, Athens, GA, USA
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Marche Polytechnic University, 60131, Ancona, Italy.
| |
Collapse
|
15
|
Brůna T, Aryal R, Dudchenko O, Sargent DJ, Mead D, Buti M, Cavallini A, Hytönen T, Andrés J, Pham M, Weisz D, Mascagni F, Usai G, Natali L, Bassil N, Fernandez GE, Lomsadze A, Armour M, Olukolu B, Poorten T, Britton C, Davik J, Ashrafi H, Aiden EL, Borodovsky M, Worthington M. A chromosome-length genome assembly and annotation of blackberry (Rubus argutus, cv. "Hillquist"). G3 (BETHESDA, MD.) 2023; 13:jkac289. [PMID: 36331334 PMCID: PMC9911083 DOI: 10.1093/g3journal/jkac289] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Blackberries (Rubus spp.) are the fourth most economically important berry crop worldwide. Genome assemblies and annotations have been developed for Rubus species in subgenus Idaeobatus, including black raspberry (R. occidentalis), red raspberry (R. idaeus), and R. chingii, but very few genomic resources exist for blackberries and their relatives in subgenus Rubus. Here we present a chromosome-length assembly and annotation of the diploid blackberry germplasm accession "Hillquist" (R. argutus). "Hillquist" is the only known source of primocane-fruiting (annual-fruiting) in tetraploid fresh-market blackberry breeding programs and is represented in the pedigree of many important cultivars worldwide. The "Hillquist" assembly, generated using Pacific Biosciences long reads scaffolded with high-throughput chromosome conformation capture sequencing, consisted of 298 Mb, of which 270 Mb (90%) was placed on 7 chromosome-length scaffolds with an average length of 38.6 Mb. Approximately 52.8% of the genome was composed of repetitive elements. The genome sequence was highly collinear with a novel maternal haplotype-resolved linkage map of the tetraploid blackberry selection A-2551TN and genome assemblies of R. chingii and red raspberry. A total of 38,503 protein-coding genes were predicted, of which 72% were functionally annotated. Eighteen flowering gene homologs within a previously mapped locus aligning to an 11.2 Mb region on chromosome Ra02 were identified as potential candidate genes for primocane-fruiting. The utility of the "Hillquist" genome has been demonstrated here by the development of the first genotyping-by-sequencing-based linkage map of tetraploid blackberry and the identification of possible candidate genes for primocane-fruiting. This chromosome-length assembly will facilitate future studies in Rubus biology, genetics, and genomics and strengthen applied breeding programs.
Collapse
Affiliation(s)
- Tomáš Brůna
- School of Biological Sciences, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Rishi Aryal
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, Kent, UK
- Natural Resources Institute, University of Greenwich, Medway Campus, Chatham Maritime, Kent, UK
| | - Daniel Mead
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, UK
- Owlstone Medical Ltd, Cambridge CB4 0GJ, UK
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00790 Helsinki, Finland
| | - Melanie Pham
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - David Weisz
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy
| | - Nahla Bassil
- USDA-ARS, National Clonal Germplasm Repository, Corvallis, OR 97333, USA
| | - Gina E Fernandez
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA
| | - Alexandre Lomsadze
- Department of Biomedical Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332, USA
| | - Mitchell Armour
- Department of Horticulture, University of Arkansas, Fayetteville, AR 72701, USA
| | - Bode Olukolu
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | | | | | - Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, N-1431 Ås, Norway
| | - Hamid Ashrafi
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Erez Lieberman Aiden
- Department of Computer Science, Center for Theoretical Biological Physics, Rice University, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, The Center for Genome Architecture, Houston, TX 77030, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Mark Borodovsky
- Department of Biomedical Engineering, School of Computational Science and Engineering, Center for Bioinformatics and Computational Genomics, Georgia Tech, Atlanta, GA 30332USA
| | | |
Collapse
|
16
|
Xuan L, Wang Q, Liu Z, Xu B, Cheng S, Zhang Y, Lu D, Dong B, Zhang D, Zhang L, Ma J, Shen Y. Metabolic analysis of the regulatory mechanism of sugars on secondary flowering in Magnolia. BMC Mol Cell Biol 2022; 23:56. [DOI: 10.1186/s12860-022-00458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/02/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Magnolia, a traditional and important ornamental plant in urban greening, has been cultivated for about 2000 years in China for its elegant flower shape and gorgeous flower color. Most varieties of Magnolia bloom once a year in spring, whereas a few others, such as Magnolia liliiflora Desr. ‘Hongyuanbao’, also bloom for the second time in summer or early autumn. Such a twice flowering trait is desirable for its high ornamental value, while its underlying mechanism remains unclear.
Methods
Paraffin section was used to show the flowering time and phenotypic changes of M. liliiflora ‘Hongyuanbao’ during the twice flowering periods from March 28 to August 25, 2018. Gas chromatography-mass spectrometry (GC-MS) was then performed to explore the chemical metabolites through the twice flower bud differentiation process in ‘Hongyuanbao’, and the metabolites were screened and identified by orthogonal projection to latent structures discriminant analysis (OPLS-DA). Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis (KEGG) was used to reveal the relationship between the sugar metabolites and twice-flowering characteristic. To further investigate the potential role of sucrose and trehalose on flowering regulation of ‘Hongyuanbao’, the plants once finished the spring flowering were regularly sprayed with sucrose and trehalose solutions at 30 mM, 60 mM, and 90 mM concentrations from April 22, 2019. The flower bud differentiation processes of sprayed plants were observed and the expression patterns of the genes involved in sucrose and trehalose metabolic pathways were studied by quantitative reverse transcription PCR (qRT-PCR).
Results
It showed that ‘Hongyuanbao’ could complete flower bud differentiation twice in a year and flowered in both spring and summer. The metabolites of flower bud differentiation had a significant variation between the first and second flower buds. Compared to the first flower bud differentiation process, the metabolites in the sucrose and trehalose metabolic pathways were significantly up-regulated during the second flower bud differentiation process. Besides that, the expression levels of a number of trehalose-6-phosphate synthase (TPS) genes including MlTPS1, MlTPS5, MlTPS6, MlTPS7 and MlTPS9 were substantially increased in the second flower differentiation process compared with the first process. Exogenous treatments indicated that compared to the control plants (sprayed with water, CK), all three concentrations of trehalose could accelerate flowering and the effect of 60 mM concentration was the most significant. For the sucrose foliar spray, only the 60 mM concentration accelerated flowering compared with CK. It suggested that different concentration of trehalose and sucrose might have different effects. Expression analysis showed that sucrose treatment increased the transcription levels of MlTPS5 and MlTPS6, whereas trehalose treatment increased MlTPS1, showing that different MlTPS genes took part in sucrose and trehalose metabolic pathways respectively. The expression levels of a number of flowering-related genes, such as MlFT, MlLFY, and MlSPL were also increased in response to the sprays of sucrose and trehalose.
Conclusions
We provide a novel insight into the effect of sucrose and trehalose on the flowering process in Magnolia. Under the different sugar contents treatments, the time of flower bud differentiation of Magnolia was advanced. Induced and accelerated flowering in response to sucrose and trehalose foliar spray, coupled with elevated expression of trehalose regulatory and response genes, suggests that secondary flower bud formation is a promoted by altered endogenous sucrose and trehalose levels. Those results give a new understanding of sucrose and trehalose on twice-flowering in Magnolia and provide a preliminary speculation for inducing and accelerating the flowering process in Magnolia.
Collapse
|
17
|
Guo X, Zhou M, Chen J, Shao M, Zou L, Ying Y, Liu S. Genome-Wide Identification of the Highly Conserved INDETERMINATE DOMAIN ( IDD) Zinc Finger Gene Family in Moso Bamboo ( Phyllostachys edulis). Int J Mol Sci 2022; 23:ijms232213952. [PMID: 36430436 PMCID: PMC9695771 DOI: 10.3390/ijms232213952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) proteins, a family of transcription factors unique to plants, function in multiple developmental processes. Although the IDD gene family has been identified in many plants, little is known about it in moso bamboo. In this present study, we identified 32 PheIDD family genes in moso bamboo and randomly sequenced the full-length open reading frames (ORFs) of ten PheIDDs. All PheIDDs shared a highly conserved IDD domain that contained two canonical C2H2-ZFs, two C2HC-ZFs, and a nuclear localization signal. Collinearity analysis showed that segmental duplication events played an important role in expansion of the PheIDD gene family. Synteny analysis indicated that 30 PheIDD genes were orthologous to those of rice (Oryza sativa). Thirty PheIDDs were expressed at low levels, and most PheIDDs exhibited characteristic organ-specific expression patterns. Despite their diverse expression patterns in response to exogenous plant hormones, 8 and 22 PheIDDs responded rapidly to IAA and 6-BA treatments, respectively. The expression levels of 23 PheIDDs were closely related to the outgrowth of aboveground branches and 20 PheIDDs were closely related to the awakening of underground dormant buds. In addition, we found that the PheIDD21 gene generated two products by alternative splicing. Both isoforms interacted with PheDELLA and PheSCL3. Furthermore, both isoforms could bind to the cis-elements of three genes (PH02Gene17121, PH02Gene35441, PH02Gene11386). Taken together, our work provides valuable information for studying the molecular breeding mechanism of lateral organ development in moso bamboo.
Collapse
|
18
|
Liu J, Shu D, Tan Z, Ma M, Guo N, Gao S, Duan G, Kuai B, Hu Y, Li S, Cui D. The Arabidopsis IDD14 transcription factor interacts with bZIP-type ABFs/AREBs and cooperatively regulates ABA-mediated drought tolerance. THE NEW PHYTOLOGIST 2022; 236:929-942. [PMID: 35842794 DOI: 10.1111/nph.18381] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factors mediate various aspects of plant growth and development. We previously reported that an Arabidopsis IDD subfamily regulates spatial auxin accumulation, and thus organ morphogenesis and gravitropic responses. However, its functions in stress responses are not well defined. Here, we use a combination of physiological, biochemical, molecular, and genetic approaches to provide evidence that the IDD14 cooperates with basic leucine zipper-type binding factors/ABA-responsive element (ABRE)-binding proteins (ABRE-binding factors (ABFs)/AREBs) in ABA-mediated drought tolerance. idd14-1D, a gain-of-function mutant of IDD14, exhibits decreased leaf water loss and improved drought tolerance, whereas inactivation of IDD14 in idd14-1 results in increased transpiration and reduced drought tolerance. Altered IDD14 expression affects ABA sensitivity and ABA-mediated stomatal closure. IDD14 can physically interact with ABF1-4 and subsequently promote their transcriptional activities. Moreover, ectopic expression and mutation of ABFs could, respectively, suppress and enhance plant sensitivity to drought stress in the idd14-1 mutant. Our results demonstrate that IDD14 forms a functional complex with ABFs and positively regulates drought-stress responses, thus revealing a previously unidentified role of IDD14 in ABA signaling and drought responses.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Defeng Shu
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Zilong Tan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Mei Ma
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Ning Guo
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Shan Gao
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Guangyou Duan
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Benke Kuai
- State Key Laboratory of Genetic Engineering and Fudan Center for Genetic Diversity and Designing Agriculture, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Shipeng Li
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan, 250200, China
- School of Life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
19
|
Zhang Y, Zhu Q, Ai H, Feng T, Huang X. Comparative Analysis on the Evolution of Flowering Genes in Sugar Pathway in Brassicaceae. Genes (Basel) 2022; 13:genes13101749. [PMID: 36292634 PMCID: PMC9602146 DOI: 10.3390/genes13101749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 09/24/2022] [Indexed: 11/30/2022] Open
Abstract
Sugar plays an important role in regulating the flowering of plants. However, studies of genes related to flowering regulation by the sugar pathway of Brassicaceae plants are scarce. In this study, we performed a comprehensive comparative genomics analysis of the flowering genes in the sugar pathway from seven members of the Brassicaceae, including: Arabidopsis thaliana, Arabidopsis lyrata, Astelia pumila, Camelina sativa, Brassica napus, Brassica oleracea, and Brassica rapa. We identified 105 flowering genes in the sugar pathway of these plants, and they were categorized into nine groups. Protein domain analysis demonstrated that the IDD8 showed striking structural variations in different Brassicaceae species. Selection pressure analysis revealed that sugar pathway genes related to flowering were subjected to strong purifying selection. Collinearity analysis showed that the identified flowering genes expanded to varying degrees, but SUS4 was absent from the genomes of Astelia pumila, Camelina sativa, Brassica napus, Brassica oleracea, and Brassica rapa. Tissue-specific expression of ApADG indicated functional differentiation. To sum up, genome-wide identification revealed the expansion, contraction, and diversity of flowering genes in the sugar pathway during Brassicaceae evolution. This study lays a foundation for further study on the evolutionary characteristics and potential biological functions of flowering genes in the sugar pathway of Brassicaceae.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Life Sciences, Shihezi University, Shihezi 832003, China
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Qianbin Zhu
- College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hao Ai
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Tingting Feng
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
| | - Xianzhong Huang
- Center for Crop Biotechnology, College of Agriculture, Anhui Science and Technology University, Chuzhou 233100, China
- Correspondence:
| |
Collapse
|
20
|
Kiełbowicz-Matuk A, Grądzka K, Biegańska M, Talar U, Czarnecka J, Rorat T. The StBBX24 protein affects the floral induction and mediates salt tolerance in Solanum tuberosum. FRONTIERS IN PLANT SCIENCE 2022; 13:965098. [PMID: 36160990 PMCID: PMC9490078 DOI: 10.3389/fpls.2022.965098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
The transition from vegetative growth to reproductive development is a critical developmental switch in flowering plants to ensure a successful life cycle. However, while the genes controlling flowering are well-known in model plants, they are less well-understood in crops. In this work, we generated potato lines both silenced and overexpressed for the expression of StBBX24, a clock-controlled gene encoding a B-box protein located in the cytosol and nuclear chromatin fraction. We revealed that Solanum tuberosum lines silenced for StBBX24 expression displayed much earlier flowering than wild-type plants. Conversely, plants overexpressing StBBX24 mostly did not produce flower buds other than wild-type plants. In addition, RT-qPCR analyses of transgenic silenced lines revealed substantial modifications in the expression of genes functioning in flowering. Furthermore, S. tuberosum lines silenced for StBBX24 expression displayed susceptibility to high salinity with a lower capacity of the antioxidant system and strongly decreased expression of genes encoding Na+ transporters that mediate salt tolerance, contrary to the plants with StBBX24 overexpression. Altogether, these data reveal that StBBX24 participates in potato flowering repression and is involved in salt stress response.
Collapse
Affiliation(s)
- Agnieszka Kiełbowicz-Matuk
- Department of Regulation of Gene Expression, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | | | | | | | | |
Collapse
|
21
|
Vergata C, Yousefi S, Buti M, Vestrucci F, Gholami M, Sarikhani H, Salami SA, Martinelli F. Meta-analysis of transcriptomic responses to cold stress in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2022; 49:704-724. [PMID: 35379384 DOI: 10.1071/fp21230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Transcriptomic analyses are needful tools to gain insight into the molecular mechanisms underlying plant responses to abiotic stresses. The aim of this study was to identify key genes differentially regulated in response to chilling stress in various plant species with different levels of tolerance to low temperatures. A meta-analysis was performed using the RNA-Seq data of published studies whose experimental conditions were comparable. The results confirmed the importance of ethylene in the hormonal cross-talk modulating the defensive responses against chilling stress, especially in sensitive species. The transcriptomic activity of five Ethylene Response Factors genes and a REDOX Responsive Transcription Factor 1 involved in hormone-related pathways belonging to ethylene metabolism and signal transduction were induced. Transcription activity of two genes encoding for heat shock factors was enhanced, together with various genes associated with developmental processes. Several transcription factor families showed to be commonly induced between different plant species. Protein-protein interaction networks highlighted the role of the photosystems I and II, as well as genes encoding for HSF and WRKY transcription factors. A model of gene regulatory network underlying plant responses to chilling stress was developed, allowing the delivery of new candidate genes for genetic improvement of crops towards low temperatures tolerance.
Collapse
Affiliation(s)
- Chiara Vergata
- Department of Biology, University of Florence, Firenze, Italy
| | - Sanaz Yousefi
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Firenze, Italy
| | | | - Mansour Gholami
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Hassan Sarikhani
- Department of Horticultural Science, Bu-Ali Sina University, Hamedan, Iran
| | - Seyed Alireza Salami
- Department of Horticultural Sciences, Faculty of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| | | |
Collapse
|
22
|
Liang F, Zhang Y, Wang X, Yang S, Fang T, Zheng S, Zeng L. Integrative mRNA and Long Noncoding RNA Analysis Reveals the Regulatory Network of Floral Bud Induction in Longan ( Dimocarpus longan Lour.). FRONTIERS IN PLANT SCIENCE 2022; 13:923183. [PMID: 35774802 PMCID: PMC9237614 DOI: 10.3389/fpls.2022.923183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
Longan (Dimocarpus longan Lour.) is a tropical/subtropical fruit tree of significant economic importance. Floral induction is an essential process for longan flowering and plays decisive effects on the longan yield. Due to the instability of flowering, it is necessary to understand the molecular mechanisms of floral induction in longan. In this study, mRNA and long noncoding RNA (lncRNA) transcriptome sequencing were performed using the apical buds of fruiting branches as materials. A total of 7,221 differential expressions of mRNAs (DEmRNAs) and 3,238 differential expressions of lncRNAs (DElncRNAs) were identified, respectively. KEGG enrichment analysis of DEmRNAs highlighted the importance of starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways during floral induction. Combining the analysis of weighted gene co-expression network (WGCNA) and expression pattern of DEmRNAs in the three pathways, specific transcriptional characteristics at each stage during floral induction and regulatory network involving co-expressed genes were investigated. The results showed that sucrose metabolism and auxin signal transduction may be crucial for the growth and maturity of autumn shoots in September and October (B1-B2 stage); starch and sucrose metabolic, circadian rhythms, and plant hormone signal transduction pathways participated in the regulation of floral bud physiological differentiation together in November and December (B3-B4 stage) and the crosstalk among three pathways was also found. Hub genes in the co-expression network and key DEmRNAs in three pathways were identified. The circadian rhythm genes FKF1 and GI were found to activate SOC1gene through the photoperiod core factor COL genes, and they were co-expressed with auxin, gibberellin, abscisic acid, ethylene signaling genes, and sucrose biosynthesis genes at B4 stage. A total of 12 hub-DElncRNAs had potential for positively affecting their distant target genes in three putative key pathways, predominantly in a co-transcriptional manner. A hypothetical model of regulatory pathways and key genes and lncRNAs during floral bud induction in longan was proposed finally. Our studies will provide valuable clues and information to help elucidate the potential molecular mechanisms of floral initiation in longan and woody fruit trees.
Collapse
Affiliation(s)
- Fan Liang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yiyong Zhang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaodan Wang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuo Yang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Fang
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shaoquan Zheng
- Fujian Breeding Engineering Technology Research Center for Longan & Loquat, Fruit Research Institute, Fujian Academy of Agricultural Sciences, Fuzho, China
| | - Lihui Zeng
- Insititute of Genetics and Breeding in Horticultural Plants, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
23
|
Lin M, Ma S, Quan K, Yang E, Hu L, Chen X. Comparative transcriptome analysis provides insight into the molecular mechanisms of long-day photoperiod in Moringa oleifera. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:935-946. [PMID: 35722507 PMCID: PMC9203643 DOI: 10.1007/s12298-022-01186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 05/03/2023]
Abstract
Moringa oleifera, is commonly cultivated as a vegetable in tropical and subtropical regions because of nutritional and medicinal benefits of its fruits, immature pods, leaves, and flowers. Flowering at the right time is one of the important traits for crop yield in M.oleifera. Under normal conditions, photoperiod is one of the key factors in determining when plant flower. However, the molecular mechanism underlying the effects of a long-day photoperiod on Moringa is not clearly understood. In the present study, deep RNA sequencing and sugar metabolome were conducted of Moringa leaves under long-day photoperiod. As a result, differentially expressed genes were significantly associated with starch and sucrose pathway and the circadian rhythm-plant pathway. In starch and sucrose pathway, sucrose, fructose, trehalose, glucose, and maltose exhibited pronounced rhythmicity over 24 h, and TPS (trehalose-6-phosphate synthase) genes constituted key regulatory genes. In an Arabidopsis overexpression line hosting the MoTPS1 or MoTPS2 genes, flowering occurred earlier under a short-day photoperiod. These results will support molecular breeding of Moringa and may help clarify to genetic architecture of long-day photoperiod related traits. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01186-4.
Collapse
Affiliation(s)
- Mengfei Lin
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Shiying Ma
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Kehui Quan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
| | - Endian Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| | - Lei Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| | - Xiaoyang Chen
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, China 410001
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China 510642
| |
Collapse
|
24
|
Ji X, Gao Q, Chen F, Bai M, Zhuang Z, Peng Y. Mutant lpa1 Analysis of ZmLPA1 Gene Regulates Maize Leaf-Angle Development through the Auxin Pathway. Int J Mol Sci 2022; 23:ijms23094886. [PMID: 35563277 PMCID: PMC9102400 DOI: 10.3390/ijms23094886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 12/03/2022] Open
Abstract
Maize plant type is one of the main factors determining maize yield, and leaf angle is an important aspect of plant type. The rice Loose Plant Architecture1 (LPA1) gene and Arabidopsis AtIDD15/SHOOT GRAVITROPISM5 (SGR5) gene are related to their leaf angle. However, the homologous ZmLPA1 in maize has not been studied. In this study, the changing of leaf angle, as well as gene expression in leaves in maize mutant lpa1 and wild-type ‘B73’ under different IAA concentrations were investigated. The regulation effect of IAA on the leaf angle of lpa1 was significantly stronger than that of the wild type. Transcriptome analysis showed that different exogenous IAA treatments had a common enrichment pathway—the indole alkaloid biosynthesis pathway—and among the differentially expressed genes, four genes—AUX1, AUX/IAA, ARF and SAUR—were significantly upregulated. This study revealed the regulation mechanism of ZmLPA1 gene on maize leaf angle and provided a promising gene resource for maize breeding.
Collapse
Affiliation(s)
- Xiangzhuo Ji
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
| | - Qiaohong Gao
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
| | - Fenqi Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
| | - Mingxing Bai
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
| | - Zelong Zhuang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
| | - Yunling Peng
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (X.J.); (Q.G.); (F.C.); (M.B.); (Z.Z.)
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China
- Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-138-9323-8528
| |
Collapse
|
25
|
Liang Q, Song K, Lu M, Dai T, Yang J, Wan J, Li L, Chen J, Zhan R, Wang S. Transcriptome and Metabolome Analyses Reveal the Involvement of Multiple Pathways in Flowering Intensity in Mango. FRONTIERS IN PLANT SCIENCE 2022; 13:933923. [PMID: 35909785 PMCID: PMC9330041 DOI: 10.3389/fpls.2022.933923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 06/13/2022] [Indexed: 05/19/2023]
Abstract
Mango (Mangifera indica L.) is famous for its sweet flavor and aroma. China is one of the major mango-producing countries. Mango is known for variations in flowering intensity that impacts fruit yield and farmers' profitability. In the present study, transcriptome and metabolome analyses of three cultivars with different flowering intensities were performed to preliminarily elucidate their regulatory mechanisms. The transcriptome profiling identified 36,242 genes. The major observation was the differential expression patterns of 334 flowering-related genes among the three mango varieties. The metabolome profiling detected 1,023 metabolites that were grouped into 11 compound classes. Our results show that the interplay of the FLOWERING LOCUS T and CONSTANS together with their upstream/downstream regulators/repressors modulate flowering robustness. We found that both gibberellins and auxins are associated with the flowering intensities of studied mango varieties. Finally, we discuss the roles of sugar biosynthesis and ambient temperature pathways in mango flowering. Overall, this study presents multiple pathways that can be manipulated in mango trees regarding flowering robustness.
Collapse
Affiliation(s)
- Qingzhi Liang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- *Correspondence: Qingzhi Liang
| | - Kanghua Song
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Mingsheng Lu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Tao Dai
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Tropical Crops, Yunnan Agricultural University, Puer, China
| | - Jie Yang
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jiaxin Wan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Li Li
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jingjing Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Rulin Zhan
- Haikou Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Rulin Zhan
| | - Songbiao Wang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- Songbiao Wang
| |
Collapse
|
26
|
The Overexpression of NUC Promotes Development and Increases Resistance to Nitrogen Deficiency in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111413. [PMID: 34768843 PMCID: PMC8583770 DOI: 10.3390/ijms222111413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
NUTCRACKER (NUC) is a transcription factor expressed in multiple tissues, but little is known about its physiological roles. In this study, we explored the physiological function of NUC with the Arabidopsis knockout, rescue, and overexpression lines. We found that NUC overexpression promoted development at the germination, seedling, and juvenile stages. NUC overexpression increased resistance to nitrogen (N) deficiency stress by increasing the chlorophyll content, suppressing anthocyanin accumulation, and increasing the biomass under N deficiency. In contrast, the absence of NUC did not affect such characteristics. N deficiency significantly increased the expression of NUC in leaves but did not affect the expression of NUC in roots. The overexpression of NUC promoted primary root length under both normal and N deficiency conditions. Furthermore, we found that the N-responsive and lateral-root-related genes TGA1 and NRT2.4 had NUC-binding sites in their promoter regions and that their expression was upregulated by NUC under N deficiency. The overexpression of the NUC increased the number and length of the lateral roots under N deficiency through inducible promotion. Multiple lines of investigation suggest that the regulatory function of the NUC could be bypassed through its redundant MAGPIE (MGP) when the NUC is absent. Our findings provide novel insight into NUC's functions and will assist efforts to improve plants' development and resistance to nutrient stresses.
Collapse
|
27
|
Xu Q, Liesche J. Sugar export from Arabidopsis leaves: actors and regulatory strategies. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5275-5284. [PMID: 34037757 DOI: 10.1093/jxb/erab241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Plant acclimation and stress responses depend on the dynamic optimization of carbon balance between source and sink organs. This optimization also applies to the leaf export rate of photosynthetically produced sugars. So far, investigations into the molecular mechanisms of how the rate is controlled have focused on sugar transporters responsible for loading sucrose into the phloem sieve element-companion cell complex of leaf veins. Here, we take a broader view of the various proteins with potential direct influence on the leaf sugar export rate in the model plant Arabidopsis thaliana, helped by the cell type-specific transcriptome data that have recently become available. Furthermore, we integrate current information on the regulation of these potential target proteins. Our analysis identifies putative control points and units of transcriptionally and post-transcriptionally co-regulated genes. Most notable is the potential regulatory unit of sucrose transporters (SUC2, SWEET11, SWEET12, and SUC4) and proton pumps (AHA3 and AVP1). Our analysis can guide future research aimed at understanding the regulatory network controlling leaf sugar export by providing starting points for characterizing regulatory strategies and identifying regulatory factors that link sugar export rate to the major signaling pathways.
Collapse
Affiliation(s)
- Qiyu Xu
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
| | - Johannes Liesche
- College of Life Sciences, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Biomass Energy Center for Arid and Semiarid Lands, Northwest A&F University, Yangling, China
- Institute for Molecular Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
28
|
Ravi S, Campagna G, Della Lucia MC, Broccanello C, Bertoldo G, Chiodi C, Maretto L, Moro M, Eslami AS, Srinivasan S, Squartini A, Concheri G, Stevanato P. SNP Alleles Associated With Low Bolting Tendency in Sugar Beet. FRONTIERS IN PLANT SCIENCE 2021; 12:693285. [PMID: 34322145 PMCID: PMC8311237 DOI: 10.3389/fpls.2021.693285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
The identification of efficient molecular markers related to low bolting tendency is a priority in sugar beet (Beta vulgaris L.) breeding. This study aimed to identify SNP markers associated with low bolting tendency by establishing a genome-wide association study. An elaborate 3-year field trial comprising 13 sugar beet lines identified L14 as the one exhibiting the lowest bolting tendency along with an increased survival rate after autumnal sowing. For SNP discovery following phenotyping, contrasting phenotypes of 24 non-bolting and 15 bolting plants of the L14 line were sequenced by restriction site-associated DNA sequencing (RAD-seq). An association model was established with a set of 10,924 RAD-based single nucleotide polymorphism (SNP) markers. The allelic status of the most significantly associated SNPs ranked based on their differential allelic status between contrasting phenotypes (p < 0.01) was confirmed on three different validation datasets comprising diverse sugar beet lines and varieties adopting a range of SNP detection technologies. This study has led to the identification of SNP_36780842 and SNP_48607347 linked to low bolting tendency and can be used for marker-assisted breeding and selection in sugar beet.
Collapse
Affiliation(s)
- Samathmika Ravi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Campagna
- Cooperativa Produttori Agricoli Società Cooperativa Agricola (COPROB), Minerbio, Italy
| | - Maria Cristina Della Lucia
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Chiara Broccanello
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giovanni Bertoldo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Claudia Chiodi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Laura Maretto
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Matteo Moro
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Azam Sadat Eslami
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | | | - Andrea Squartini
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Giuseppe Concheri
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| |
Collapse
|
29
|
Wang Z, Wong DCJ, Wang Y, Xu G, Ren C, Liu Y, Kuang Y, Fan P, Li S, Xin H, Liang Z. GRAS-domain transcription factor PAT1 regulates jasmonic acid biosynthesis in grape cold stress response. PLANT PHYSIOLOGY 2021; 186:1660-1678. [PMID: 33752238 PMCID: PMC8260143 DOI: 10.1093/plphys/kiab142] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 05/19/2023]
Abstract
Cultivated grapevine (Vitis) is a highly valued horticultural crop, and cold stress affects its growth and productivity. Wild Amur grape (Vitis amurensis) PAT1 (Phytochrome A signal transduction 1, VaPAT1) is induced by low temperature, and ectopic expression of VaPAT1 enhances cold tolerance in Arabidopsis (Arabidopsis thaliana). However, little is known about the molecular mechanism of VaPAT1 during the cold stress response in grapevine. Here, we confirmed the overexpression of VaPAT1 in transformed grape calli enhanced cold tolerance. Yeast two-hybrid and bimolecular fluorescence complementation assays highlighted an interaction between VaPAT1 with INDETERMINATE-DOMAIN 3 (VaIDD3). A role of VaIDD3 in cold tolerance was also indicated. Transcriptome analysis revealed VaPAT1 and VaIDD3 overexpression and cold treatment coordinately modulate the expression of stress-related genes including lipoxygenase 3 (LOX3), a gene encoding a key jasmonate biosynthesis enzyme. Co-expression network analysis indicated LOX3 might be a downstream target of VaPAT1. Both electrophoretic mobility shift and dual luciferase reporter assays showed the VaPAT1-IDD3 complex binds to the IDD-box (AGACAAA) in the VaLOX3 promoter to activate its expression. Overexpression of both VaPAT1 and VaIDD3 increased the transcription of VaLOX3 and JA levels in transgenic grape calli. Conversely, VaPAT1-SRDX (dominant repression) and CRISPR/Cas9-mediated mutagenesis of PAT1-ED causing the loss of the C-terminus in grape calli dramatically prohibited the accumulation of VaLOX3 and JA levels during cold treatment. Together, these findings point to a pivotal role of VaPAT1 in the cold stress response in grape by regulating JA biosynthesis.
Collapse
Affiliation(s)
- Zemin Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Darren Chern Jan Wong
- Department of Ecology and Evolution, Research School of Biology, Australian National University, Acton, ACT 2601, Australia
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Guangzhao Xu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Chong Ren
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| | - Yanfei Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Yangfu Kuang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
- China Wine Industry Technology Institute, Yinchuan 750021, China
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| | - Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Economic Botany, Core Botanical Gardens, Chinese academy of Sciences, Wuhan 430074, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, the Chinese Academy of Science, Beijing 100093, China
| |
Collapse
|
30
|
Dai Y, Sun X, Wang C, Li F, Zhang S, Zhang H, Li G, Yuan L, Chen G, Sun R, Zhang S. Gene co-expression network analysis reveals key pathways and hub genes in Chinese cabbage (Brassica rapa L.) during vernalization. BMC Genomics 2021; 22:236. [PMID: 33823810 PMCID: PMC8022416 DOI: 10.1186/s12864-021-07510-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 03/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Vernalization is a type of low temperature stress used to promote rapid bolting and flowering in plants. Although rapid bolting and flowering promote the reproduction of Chinese cabbages (Brassica rapa L. ssp. pekinensis), this process causes their commercial value to decline. Clarifying the mechanisms of vernalization is essential for its further application. We performed RNA sequencing of gradient-vernalization in order to explore the reasons for the different bolting process of two Chinese cabbage accessions during vernalization. RESULTS There was considerable variation in gene expression between different-bolting Chinese cabbage accessions during vernalization. Comparative transcriptome analysis and weighted gene co-expression network analysis (WGCNA) were performed for different-bolting Chinese cabbage during different vernalization periods. The biological function analysis and hub gene annotation of highly relevant modules revealed that shoot system morphogenesis and polysaccharide and sugar metabolism caused early-bolting 'XBJ' to bolt and flower faster; chitin, ABA and ethylene-activated signaling pathways were enriched in late-bolting 'JWW'; and leaf senescence and carbohydrate metabolism enrichment were found in the two Chinese cabbage-related modules, indicating that these pathways may be related to bolting and flowering. The high connectivity of hub genes regulated vernalization, including MTHFR2, CPRD49, AAP8, endoglucanase 10, BXLs, GATLs, and WRKYs. Additionally, five genes related to flower development, BBX32 (binds to the FT promoter), SUS1 (increases FT expression), TSF (the closest homologue of FT), PAO and NAC029 (plays a role in leaf senescence), were expressed in the two Chinese cabbage accessions. CONCLUSION The present work provides a comprehensive overview of vernalization-related gene networks in two different-bolting Chinese cabbages during vernalization. In addition, the candidate pathways and hub genes related to vernalization identified here will serve as a reference for breeders in the regulation of Chinese cabbage production.
Collapse
Affiliation(s)
- Yun Dai
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Changjiang West Road, NO.130, Hefei, 230036, Anhui, China
| | - Xiao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chenggang Wang
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Changjiang West Road, NO.130, Hefei, 230036, Anhui, China
| | - Fei Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shifan Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guoliang Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lingyun Yuan
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Changjiang West Road, NO.130, Hefei, 230036, Anhui, China
| | - Guohu Chen
- College of Horticulture, Vegetable Genetics and Breeding Laboratory, Anhui Agricultural University, Changjiang West Road, NO.130, Hefei, 230036, Anhui, China
| | - Rifei Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shujiang Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
31
|
Milyaev A, Kofler J, Klaiber I, Czemmel S, Pfannstiel J, Flachowsky H, Stefanelli D, Hanke MV, Wünsche JN. Toward Systematic Understanding of Flower Bud Induction in Apple: A Multi-Omics Approach. FRONTIERS IN PLANT SCIENCE 2021; 12:604810. [PMID: 33841452 PMCID: PMC8030266 DOI: 10.3389/fpls.2021.604810] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The induction of flower buds in apple (Malus × domestica Borkh.) is tightly connected to biennial bearing, which is characterized by alternating years with high (ON) and low or no (OFF) crop loads. In order to study this irregular cropping behavior, spur buds from ON- and OFF-trees of the biennial-bearing cultivar 'Fuji' and the regular bearing cultivar 'Gala' were collected. First, the time of flower bud initiation was precisely determined for both cultivars by histological analysis. Moreover, for a systematic understanding of flower bud induction in apple, the physiological and molecular mechanisms within the bud tissue were evaluated over four weeks prior to flower bud initiation by employing a multi-omics approach, including RNA sequencing, proteomic and metabolic profiling. Gene and protein enrichment analysis detected physiological pathways promoting and inhibiting early flower bud development. Metabolic profiles from the cropping treatments revealed a greater abundance of thiamine, chlorogenic acid, and an adenine derivative in spur buds from OFF-trees, whereas tryptophan was more abundant in the buds collected from ON-trees. Cultivar comparison indicated that chlorogenic acid was more abundant in 'Gala' than in 'Fuji' spur buds, whereas the opposite effect was found for tryptophan. Genes controlling tryptophan biosynthesis were not affected by ON- and OFF-treatments, but genes assigned to the metabolism of tryptophan into indoleacetate were differentially expressed between cultivars and treatments. The multi-omics approach permitted analyzing complex plant metabolic processes involved in early flower bud development and more specifically presumably in flower bud induction by tracing some pathways from gene to product level.
Collapse
Affiliation(s)
- Anton Milyaev
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Julian Kofler
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Iris Klaiber
- Mass Spectrometry Unit, Core Facility Hohenheim (640), University of Hohenheim, Stuttgart, Germany
| | - Stefan Czemmel
- Quantitative Biology Center (QBiC) Tübingen, University of Tübingen, Tübingen, Germany
| | - Jens Pfannstiel
- Mass Spectrometry Unit, Core Facility Hohenheim (640), University of Hohenheim, Stuttgart, Germany
| | - Henryk Flachowsky
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Dario Stefanelli
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Bundoora, VIC, Australia
| | - Magda-Viola Hanke
- Institute for Breeding Research on Fruit Crops, Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Dresden, Germany
| | - Jens-Norbert Wünsche
- Section of Crop Physiology of Specialty Crops (340f), Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
32
|
Yang X, Zhang Y, Shan J, Sun J, Li D, Zhang X, Li W, Zhao L. GmIDD Is Induced by Short Days in Soybean and May Accelerate Flowering When Overexpressed in Arabidopsis via Inhibiting AGAMOUS-LIKE 18. FRONTIERS IN PLANT SCIENCE 2021; 12:629069. [PMID: 33841461 PMCID: PMC8029582 DOI: 10.3389/fpls.2021.629069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/22/2021] [Indexed: 05/31/2023]
Abstract
Photoperiod is one of the main climatic factors that determine flowering time and yield. Some members of the INDETERMINATE DOMAIN (IDD) transcription factor family have been reported to be involved in regulation of flowering time in Arabidopsis, maize, and rice. In this study, the domain analysis showed that GmIDD had a typical ID domain and was a member of the soybean IDD transcription factor family. Quantitative real-time PCR analysis showed that GmIDD was induced by short day conditions in leaves and regulated by circadian clock. Under long day conditions, transgenic Arabidopsis overexpressing GmIDD flowered earlier than wild-type, and idd mutants flowered later, while the overexpression of GmIDD rescued the late-flowering phenotype of idd mutants. Chromatin immunoprecipitation sequencing assays of GmIDD binding sites in GmIDD-overexpression (GmIDD-ox) Arabidopsis further identified potential direct targets, including a transcription factor, AGAMOUS-like 18 (AGL18). GmIDD might inhibit the transcriptional activity of flower repressor AGL18 by binding to the TTTTGGTCC motif of AGL18 promoter. Furthermore, the results also showed that GmIDD overexpression increased the transcription levels of flowering time-related genes FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1), LEAFY (LFY) and APETALA1 (AP1) in Arabidopsis. Taken together, GmIDD appeared to inhibit the transcriptional activity of AGL18 and induced the expression of FT gene to promote Arabidopsis flowering.
Collapse
|
33
|
Han R, Truco MJ, Lavelle DO, Michelmore RW. A Composite Analysis of Flowering Time Regulation in Lettuce. FRONTIERS IN PLANT SCIENCE 2021; 12:632708. [PMID: 33763095 PMCID: PMC7982828 DOI: 10.3389/fpls.2021.632708] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 02/16/2021] [Indexed: 05/08/2023]
Abstract
Plants undergo profound physiological changes when transitioning from vegetative to reproductive growth. These changes affect crop production, as in the case of leafy vegetables. Lettuce is one of the most valuable leafy vegetable crops in the world. Past genetic studies have identified multiple quantitative trait loci (QTLs) that affect the timing of the floral transition in lettuce. Extensive functional molecular studies in the model organism Arabidopsis provide the opportunity to transfer knowledge to lettuce to explore the mechanisms through which genetic variations translate into changes in flowering time. In this review, we integrated results from past genetic and molecular studies for flowering time in lettuce with orthology and functional inference from Arabidopsis. This summarizes the basis for all known genetic variation underlying the phenotypic diversity of flowering time in lettuce and how the genetics of flowering time in lettuce projects onto the established pathways controlling flowering time in plants. This comprehensive overview reveals patterns across experiments as well as areas in need of further study. Our review also represents a resource for developing cultivars with delayed flowering time.
Collapse
Affiliation(s)
- Rongkui Han
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - Maria José Truco
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Dean O. Lavelle
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
| | - Richard W. Michelmore
- The Genome and Biomedical Sciences Facility, University of California, Davis, Davis, CA, United States
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
- *Correspondence: Richard W. Michelmore,
| |
Collapse
|
34
|
Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. Int J Mol Sci 2020; 22:E318. [PMID: 33396811 PMCID: PMC7795015 DOI: 10.3390/ijms22010318] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022] Open
Abstract
C and N are the most important essential elements constituting organic compounds in plants. The shoots and roots depend on each other by exchanging C and N through the xylem and phloem transport systems. Complex mechanisms regulate C and N metabolism to optimize plant growth, agricultural crop production, and maintenance of the agroecosystem. In this paper, we cover the recent advances in understanding C and N metabolism, regulation, and transport in plants, as well as their underlying molecular mechanisms. Special emphasis is given to the mechanisms of starch metabolism in plastids and the changes in responses to environmental stress that were previously overlooked, since these changes provide an essential store of C that fuels plant metabolism and growth. We present general insights into the system biology approaches that have expanded our understanding of core biological questions related to C and N metabolism. Finally, this review synthesizes recent advances in our understanding of the trade-off concept that links C and N status to the plant's response to microorganisms.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata 950-2181, Japan; (M.B.); (T.M.)
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Kuni Sueyoshi
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
| | - Takuji Ohyama
- Department of Life and Food Sciences, Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan;
- Faculty of Applied Biosciences, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
35
|
Rahmati Ishka M, Vatamaniuk OK. Copper deficiency alters shoot architecture and reduces fertility of both gynoecium and androecium in Arabidopsis thaliana. PLANT DIRECT 2020; 4:e00288. [PMID: 33283140 PMCID: PMC7700745 DOI: 10.1002/pld3.288] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 05/05/2023]
Abstract
Copper deficiency reduces plant growth, male fertility, and seed set. The contribution of copper to female fertility and the underlying molecular aspects of copper deficiency-caused phenotypes are not well known. We show that among copper deficiency-caused defects in Arabidopsis thaliana were also the increased shoot branching, delayed flowering and senescence, and entirely abolished gynoecium fertility. The increased shoot branching of copper-deficient plants was rescued by the exogenous application of auxin or copper. The delayed flowering was associated with the decreased expression of the floral activator, FT. Copper deficiency also decreased the expression of senescence-associated genes, WRKY53 and SAG13, but increased the expression of SAG12. The reduced fertility of copper-deficient plants stemmed from multiple factors including the abnormal stigma papillae development, the abolished gynoecium fertility, and the failure of anthers to dehisce. The latter defect was associated with reduced lignification, the upregulation of copper microRNAs and the downregulation of their targets, laccases, implicated in lignin synthesis. Copper-deficient plants accumulated ROS in pollen and had reduced cytochrome c oxidase activity in both leaves and floral buds. This study opens new avenues for the investigation into the relationship between copper homeostasis, hormone-mediated shoot architecture, gynoecium fertility, and copper deficiency-derived nutritional signals leading to the delay in flowering and senescence.
Collapse
Affiliation(s)
- Maryam Rahmati Ishka
- Soil and Crop Sciences SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| | - Olena K. Vatamaniuk
- Soil and Crop Sciences SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
- Plant Biology SectionSchool of Integrative Plant ScienceCornell UniversityIthacaNYUSA
| |
Collapse
|
36
|
Wang ST, Guo XF, Yao TS, Xuan YH. Indeterminate domain 3 negatively regulates plant erectness and the resistance of rice to sheath blight by controlling PIN-FORMED gene expressions. PLANT SIGNALING & BEHAVIOR 2020; 15:1809847. [PMID: 32842845 PMCID: PMC7588189 DOI: 10.1080/15592324.2020.1809847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 05/31/2023]
Abstract
Plant architecture and disease resistance are the key factors that control the production of yield. However, the mechanism behind these factors is largely unknown. In this study, we identified that indeterminate domain 3 (IDD3) was obviously induced by inoculation of Rhizoctonia solani AG1-IA. Plants that overexpressed IDD3 (IDD3 OX) were more susceptible, while idd3 mutants showed a similar response to sheath blight disease compared with wild-type plants. Interestingly, IDD3 OX plants developed a wider tiller angle and exhibited altered shoot gravitropism, while idd3 knock-out mutants showed no visible morphological differences compared with the wild-type plants. IDD3 is ubiquitously expressed in different tissues and stages, and the IDD3 transcript was induced by exogenously applied auxin. Expression of the PIN-FORMED (PIN) and Aux/IAA genes was altered in IDD3 OX compared with wild-type plants. Furthermore, IDD3 OX plants are sensitive to auxin and the polar auxin transporter inhibitor N-1-naphthylphalamic acid (NPA). Further yeast-one hybrid, chromatin immunoprecipitation (ChIP) and transient assays revealed that IDD3 directly represses PIN1b via promoter binding. Inoculation with R. solani indicated that PIN1b RNAi plants are more susceptible to sheath blight disease (ShB) compared with the wild-type. Taken together, our analyses suggest that IDD3 controls plant architecture and the resistance of rice to ShB via the regulation of PIN auxin transporter genes.
Collapse
Affiliation(s)
- Si Ting Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao Fan Guo
- School of Life Science and Technology, Hubei Engineering University, Xiaogan, China
| | - Ting Shan Yao
- Citrus Research Institute, Southwest University, Chongqing, China
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
37
|
Zhang T, Tan M, Geng L, Li J, Xiang Y, Zhang B, Zhao Y. New insight into comprehensive analysis of INDETERMINATE DOMAIN (IDD) gene family in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:547-556. [PMID: 32912488 DOI: 10.1016/j.plaphy.2020.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 06/11/2023]
Abstract
The INDETERMINATE DOMAIN (IDD) transcription factor (TF), as a family of plant-specific zinc-finger proteins, regulates a variety of development processes and abiotic stresses in plants. IDD genes have been identified and characterized in other plants, however, the rice IDD family genes have not been investigated at genome-wide. In this study, 15 OsIDD genes were identified in rice genome and phylogenetically classified into two groups. Conserved motifs and potential interaction protein analysis about OsIDD proteins were carried out. Exon-intron structures, cis-acting elements and expression profiles of OsIDD genes were also examined. Exon-intron structures analysis revealed that overall structures of OsIDD genes were relatively conserved although they contained different numbers of introns. Cis-acting elements analysis suggested that most OsIDD gene transcripts could be induced by various abiotic stresses and phytohormones. The expression patterns of OsIDD genes were detected by qRT-PCR under cold and drought conditions, and by exogenous auxin (2,4-D), gibberellin (GA3), and abscisic acid (ABA) treatments, respectively. The results showed that the OsIDDs might play essential roles under abiotic stresses and hormone responses. Distinct expression profiles in tissues/organs suggested that OsIDDs might be involved in different development processes in rice. More interestingly, the prediction of protein-protein interactions (PPIs) revealed OsIDDs could cooperate with some histone modifiers. Yeast two-hybrid assays were performed and confirmed it. Collectively, these results provide a foundation for further elucidation on the molecular mechanisms of OsIDD genes and advance our understanding of their biological function in rice.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Mingfang Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Leping Geng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jiajia Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Bang Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
38
|
Prochetto S, Reinheimer R. Step by step evolution of Indeterminate Domain (IDD) transcriptional regulators: from algae to angiosperms. ANNALS OF BOTANY 2020; 126:85-101. [PMID: 32206771 PMCID: PMC7304464 DOI: 10.1093/aob/mcaa052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 03/19/2020] [Indexed: 06/10/2023]
Abstract
INTRODUCTION The Indeterminate Domain (IDD) proteins are a plant-specific subclass of C2H2 Zinc Finger transcription factors. Some of these transcription factors play roles in diverse aspects of plant metabolism and development, but the function of most of IDD genes is unknown and the molecular evolution of the subfamily has not been explored in detail. METHODS In this study, we mined available genome sequences of green plants (Viridiplantae) to reconstruct the phylogeny and then described the motifs/expression patterns of IDD genes. KEY RESULTS We identified the complete set of IDD genes of 16 Streptophyta genomes. We found that IDD and its sister clade STOP arose by a duplication at the base of Streptophyta. Once on land, the IDD genes duplicated extensively, giving rise to at least ten lineages. Some of these lineages were lost in extant non-vascular plants and gymnosperms, but all of them were retained in angiosperms, duplicating profoundly in dicots and monocots and acquiring, at the same time, surprising heterogeneity in their C-terminal regions and expression patterns. CONCLUSIONS IDDs were present in the last common ancestor of Streptophyta. On land, IDDs duplicated extensively, leading to ten lineages. Later, IDDs were recruited by angiosperms where they diversified greatly in number, C-terminal and expression patterns. Interestingly, such diversification occurred during the evolution of novel traits of the plant body. This study provides a solid framework of the orthology relationships of green land plant IDD transcription factors, thus increasing the accuracy of orthologue identification in model and non-model species and facilitating the identification of agronomically important genes related to plant metabolism and development.
Collapse
Affiliation(s)
- Santiago Prochetto
- Fellow of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentina
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| | - Renata Reinheimer
- Member of Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina (CONICET), FBCB, Santa Fe, Argentinaand
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
39
|
Gene Regulation via the Combination of Transcription Factors in the INDETERMINATE DOMAIN and GRAS Families. Genes (Basel) 2020; 11:genes11060613. [PMID: 32498388 PMCID: PMC7349898 DOI: 10.3390/genes11060613] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/29/2022] Open
Abstract
INDETERMINATE DOMAIN (IDD) family proteins are plant-specific transcription factors. Some Arabidopsis IDD (AtIDD) proteins regulate the expression of SCARECROW (SCR) by interacting with GRAS family transcription factors SHORT-ROOT (SHR) and SCR, which are involved in root tissue formation. Some AtIDD proteins regulate genes involved in the synthesis (GA3ox1) or signaling (SCL3) of gibberellic acid (GA) by interacting with DELLA proteins, a subfamily of the GRAS family. We analyzed the DNA binding properties and protein–protein interactions of select AtIDD proteins. We also investigated the transcriptional activity of the combination of AtIDD and GRAS proteins (AtIDD proteins combined with SHR and SCR or with REPRESSOR of ga1-3 (RGA)) on the promoters of SCR,SCL3, and GA3ox1 by conducting a transient assay using Arabidopsis culture cells. Our results showed that the SCR promoter could be activated by the IDD and RGA complexes and that the SCL3 and GA3ox1 promoters could be activated by the IDD, SHR, and SCR complexes, indicating the possibility that these complexes regulate and consequently coordinate the expression of genes involved in GA synthesis (GA3ox1), GA signaling (SCL3), and root formation (SCR).
Collapse
|
40
|
Xing L, Qi S, Zhou H, Zhang W, Zhang C, Ma W, Zhang Q, Shah K, Han M, Zhao J. Epigenomic Regulatory Mechanism in Vegetative Phase Transition of Malus hupehensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4812-4829. [PMID: 32227940 DOI: 10.1021/acs.jafc.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In woody plants, phase transitions substantially affect growth and development. Although there has been considerable interest in the regulatory mechanisms underlying phase changes, the associated epigenetic modifications remain relatively uncharacterized. We examined the DNA methylation changes and the transcriptional responses in adult and juvenile Malus hupehensis leaves. The DNA methylations were 66.61% and 68.3% in the CG context, 49.12% and 52.44% in the CHG context, and 7.02% and 8.22% in the CHH context for the adult and juvenile leaves, respectively. The number of differentially methylated regions in all contexts distributed in the genic regions varied. Additionally, inhibited DNA methylation in adult leaves activated the transcription of indole-3-acetic acid related genes in the signaling, response, and transport pathways. Moreover, the opposite methylation and expression patterns were observed for the SPL and AP2 family genes between the adult and juvenile leaves. Both gene families contribute to the M. hupehensis vegetative phase transition. Furthermore, the hyper-/hypomethylation of the gene body or promoter of transcription factor genes may lead to up-/downregulated gene expression. The methylation levels of the WRKY (22), NAC (21), ERF (8), WOX (2), KNAT (6), EIN3 (2), SCL (7), ZAT (7), and HSF (4) genes were higher in the adult leaves than in the juvenile leaves, whereas the opposite pattern was observed for the TCP (2), MADS-box (11), and DOF (3) genes. An analysis of the correlation between methylation and transcription indicated the methylation of the gene body in all contexts and the methylation of the promoter in the CG and CHG contexts are negatively correlated with gene expression. However, the methylation of the promoter in the CHH context is positively correlated with gene expression. These findings reflect the diversity in the epigenetic regulation of gene expression and may be useful for elucidating the epigenetic regulatory mechanism underlying the M. hupehensis vegetative phase transition.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Qingwei Zhang
- College of Life Science, Southwest University, Chongqing, People's Republic of China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Juan Zhao
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
- College of Mechanical and Electronic Engineering, Northwest A & F University, 712100 Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
41
|
Fan T, Zhang Q, Hu Y, Wang Z, Huang Y. Genome-wide identification of lncRNAs during hickory (Carya cathayensis) flowering. Funct Integr Genomics 2020; 20:591-607. [PMID: 32215772 DOI: 10.1007/s10142-020-00737-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/04/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Non-coding RNAs with lengths greater than 200 bp are known as long non-coding RNAs (lncRNAs), and these RNAs play important role in gene regulation and plant development. However, to date, little is known regarding the role played by lncRNAs during flowering in hickory (Carya cathayensis). Here, we performed whole transcriptome RNA-sequencing of samples from hickory female and male floral buds, in which three samples (H0311PF, H0318PF, and H0402PF) represent pre-flowering, flowering, and post-flowering, respectively, while eight male samples collected from May 8th to June 13th as this time course are the key stage for male floral bud differentiation. We identified 2163 lncRNAs in hickory during flowering, containing 213 intronic, 1488 intergenic, and 462 antisense lncRNAs. We noticed that 510 and 648 lncRNAs were differentially expressed corresponding to female and male floral buds, respectively. And some of the lncRNAs were in a tightly tissue-specific or stage-specific manner. To further understand the roles of the lncRNAs, we predicted the function of the lncRNAs in cis- and trans-acting modes. The results showed that 924 lncRNAs were cis-correlated with 1536 protein-coding genes, while 1207 lncRNAs co-expressed (trans-acting) with 7432 protein-coding genes (R > 0.95 or R < - 0.95). These lncRNAs were all enriched in flower development-associated biological processes, i.e., circadian rhythm, vernalization response, response to gibberellin, inflorescence development, floral organ development, etc. To further understand the relationships between lncRNAs and floral-core genes, we build a co-expressing lncRNA-mRNA flowering network. We classified these floral genes into different pathway (photoperiod, vernalization, gibberellin, autonomous, and sucrose pathway) according to their particular functions. We found a set of lncRNAs that preferentially expressed in these pathways. The network showed that some lncRNAs (i.e., XLOC_038669, XLOC_017938) functioned in a particular flowering time pathway, while others (i.e., XLOC_011251, XLOC_04110) were involved in multiple pathway. Furthermore, some lncRNAs (i.e., XLOC_038669, XLOC_009597, and XLOC_049539) played roles in single or multiple pathways via interaction with each other. This study provides a genome-wide survey of hickory flower-related lncRNAs and will contribute to further understanding of the molecular mechanism underpinning flowering in hickory.
Collapse
Affiliation(s)
- Tongqiang Fan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Qixiang Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China
| | - Zhengjia Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China.
| | - Youjun Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, People's Republic of China.
| |
Collapse
|
42
|
Sun Q, Li DD, Chu J, Yuan DP, Li S, Zhong LJ, Han X, Xuan YH. Indeterminate Domain Proteins Regulate Rice Defense to Sheath Blight Disease. RICE (NEW YORK, N.Y.) 2020; 13:15. [PMID: 32140886 PMCID: PMC7058748 DOI: 10.1186/s12284-020-0371-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/28/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Loose Plant Architecture 1 (LPA1), an indeterminate domain (IDD) protein, exhibits almost no expression in the leaves, but the overexpression of LPA1 significantly increases the resistance of rice to sheath blight disease (ShB) via the activation of PIN-FORMED 1a (PIN1a). RESULTS In this study, we determined that Rhizoctonia solani infection significantly induced LPA1 expression in the leaves, and lpa1 was more susceptible to R. solani compared with the wild-type and revertant plants. In addition, infection with R. solani altered the expression of IDD3, IDD5, IDD10, and IDD13, and yeast two-hybrid, split-GFP, and coimmunoprecipitation assays showed that LPA1 interacts with IDD3 and IDD13. IDD13 RNAi plants were more susceptible, while IDD13 overexpressors were less susceptible to ShB compared with the wild-type. In parallel, idd3 exhibited no significant differences, while IDD3 overexpressors were more susceptible compared to the wild-type response to ShB. Additional chromatin-immunoprecipitation and electrophoretic mobility shift assay experiments indicated that IDD13 and IDD3 bound to the PIN1a promoter, and the transient assay indicated that IDD13 and IDD3 positively and negatively regulate PIN1a expression, respectively. Moreover, IDD13, IDD3, and LPA1 form a transcription factor complex that regulates PIN1a. A genetic study showed that the LPA1 repressor lines were similar to lpa1/IDD13 RNAi and were more susceptible than the lpa1 and IDD13 RNAi plants in response to ShB. The overexpression of IDD13 increased resistance to ShB in the lpa1 background. CONCLUSIONS Taken together, our analyses established that IDD3, IDD13, and LPA1 form a transcription factor complex to regulate the defense of rice against ShB possibly via the regulation of PIN1a.
Collapse
Affiliation(s)
- Qian Sun
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dan Dan Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jin Chu
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - De Peng Yuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shuang Li
- Shaanxi Key Laboratory of Chinese Jujube, Yan'an University, Yan'an, 716000, Shaanxi, China
- College of Life Science, Yan'an University, Yan'an, 716000, Shaanxi, China
| | - Li Juan Zhong
- Microbial Research Institute, Liaoning Academy of Agricultural Sciences, Chaoyang, 122000, China
| | - Xiao Han
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
43
|
Interaction Between Induced and Natural Variation at oil yellow1 Delays Reproductive Maturity in Maize. G3-GENES GENOMES GENETICS 2020; 10:797-810. [PMID: 31822516 PMCID: PMC7003087 DOI: 10.1534/g3.119.400838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We previously demonstrated that maize (Zea mays) locus very oil yellow1 (vey1) encodes a putative cis-regulatory expression polymorphism at the magnesium chelatase subunit I gene (aka oil yellow1) that strongly modifies the chlorophyll content of the semi-dominant Oy1-N1989 mutants. The vey1 allele of Mo17 inbred line reduces chlorophyll content in the mutants leading to reduced photosynthetic output. Oy1-N1989 mutants in B73 reached reproductive maturity four days later than wild-type siblings. Enhancement of Oy1-N1989 by the Mo17 allele at the vey1 QTL delayed maturity further, resulting in detection of a flowering time QTL in two bi-parental mapping populations crossed to Oy1-N1989. The near isogenic lines of B73 harboring the vey1 allele from Mo17 delayed flowering of Oy1-N1989 mutants by twelve days. Just as previously observed for chlorophyll content, vey1 had no effect on reproductive maturity in the absence of the Oy1-N1989 allele. Loss of chlorophyll biosynthesis in Oy1-N1989 mutants and enhancement by vey1 reduced CO2 assimilation. We attempted to separate the effects of photosynthesis on the induction of flowering from a possible impact of chlorophyll metabolites and retrograde signaling by manually reducing leaf area. Removal of leaves, independent of the Oy1-N1989 mutant, delayed flowering but surprisingly reduced chlorophyll contents of emerging leaves. Thus, defoliation did not completely separate the identity of the signal(s) that regulates flowering time from changes in chlorophyll content in the foliage. These findings illustrate the necessity to explore the linkage between metabolism and the mechanisms that connect it to flowering time regulation.
Collapse
|
44
|
Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT, Gaiarsa JW, Diniz AL, Oliveira MDM, Ferreira SDS, Nishiyama MY, ten-Caten F, Ragagnin GT, Andrade PDM, de Souza RF, Nicastro GG, Pandya R, Kim C, Guo H, Durham AM, Carneiro MS, Zhang J, Zhang X, Zhang Q, Ming R, Schatz MC, Davidson B, Paterson AH, Heckerman D. Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world's leading biomass crop. Gigascience 2019; 8:giz129. [PMID: 31782791 PMCID: PMC6884061 DOI: 10.1093/gigascience/giz129] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/23/2019] [Accepted: 10/08/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Sugarcane cultivars are polyploid interspecific hybrids of giant genomes, typically with 10-13 sets of chromosomes from 2 Saccharum species. The ploidy, hybridity, and size of the genome, estimated to have >10 Gb, pose a challenge for sequencing. RESULTS Here we present a gene space assembly of SP80-3280, including 373,869 putative genes and their potential regulatory regions. The alignment of single-copy genes in diploid grasses to the putative genes indicates that we could resolve 2-6 (up to 15) putative homo(eo)logs that are 99.1% identical within their coding sequences. Dissimilarities increase in their regulatory regions, and gene promoter analysis shows differences in regulatory elements within gene families that are expressed in a species-specific manner. We exemplify these differences for sucrose synthase (SuSy) and phenylalanine ammonia-lyase (PAL), 2 gene families central to carbon partitioning. SP80-3280 has particular regulatory elements involved in sucrose synthesis not found in the ancestor Saccharum spontaneum. PAL regulatory elements are found in co-expressed genes related to fiber synthesis within gene networks defined during plant growth and maturation. Comparison with sorghum reveals predominantly bi-allelic variations in sugarcane, consistent with the formation of 2 "subgenomes" after their divergence ∼3.8-4.6 million years ago and reveals single-nucleotide variants that may underlie their differences. CONCLUSIONS This assembly represents a large step towards a whole-genome assembly of a commercial sugarcane cultivar. It includes a rich diversity of genes and homo(eo)logous resolution for a representative fraction of the gene space, relevant to improve biomass and food production.
Collapse
Affiliation(s)
- Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Carolina Gimiliani Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Hayan Lee
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CACA94598, United States of America
| | - Gabriel Rodrigues Alves Margarido
- Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Avenida Pádua Dias, 11, Piracicaba, SP 13418-900, Brazil
| | - Carlos Takeshi Hotta
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Jonas Weissmann Gaiarsa
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Augusto Lima Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Mauro de Medeiros Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Sávio de Siqueira Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Milton Yutaka Nishiyama
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
- Laboratório Especial de Toxinologia Aplicada, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP05503-900, Brazil
| | - Felipe ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Geovani Tolfo Ragagnin
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, 277, São Paulo, SP 05508-090, Brazil
| | - Pablo de Morais Andrade
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, SP 05508-000, Brazil
| | - Robson Francisco de Souza
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Gianlucca Gonçalves Nicastro
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av.Professor Lineu Prestes, 1734, São Paulo, SP 05508-900, Brazil
| | - Ravi Pandya
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Changsoo Kim
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
- Department of Crop Science, Chungnam National University, 99 Daehak Ro Yuseong Gu, Deajeon,34134, South Korea
| | - Hui Guo
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - Alan Mitchell Durham
- Departamento de Ciências da Computação, Instituto de Matemática e Estatística, Universidade de São Paulo, Rua do Matão, 1010, São Paulo, SP 05508-090, Brazil
| | - Monalisa Sampaio Carneiro
- Departamento de Biotecnologia e Produção Vegetal e Animal, Centro de Ciências Agrárias, Universidade Federal de São Carlos, Rodovia Washington Luis km 235, Araras, SP 13.565-905, Brazil
| | - Jisen Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Xingtan Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Qing Zhang
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
| | - Ray Ming
- FAFU and UIUC-SIB Joint Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Shangxiadian Road, Fuzhou 350002, Fujian, China
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 201 W. Gregory Dr. Urbana, Urbana, Illinois 61801, United States of America
| | - Michael C Schatz
- Cold Spring Harbor Laboratory, One Bungtown Road, Koch Building #1119, Cold Spring Harbor, NY11724, United States of America
- Departments of Computer Science and Biology, Johns Hopkins University, 3400 North Charles Street,Baltimore, MD 21218-2608, United States of America
| | - Bob Davidson
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 120 Green Street, Athens, GA 30602-7223,United States of America
| | - David Heckerman
- Microsoft Research, One Microsoft Way, Redmond, WA 98052, United States of America
| |
Collapse
|
45
|
Zhang W, Yuan J, Cheng T, Tang MJ, Sun K, Song SL, Xu FJ, Dai CC. Flowering-mediated root-fungus symbiosis loss is related to jasmonate-dependent root soluble sugar deprivation. PLANT, CELL & ENVIRONMENT 2019; 42:3208-3226. [PMID: 31373013 DOI: 10.1111/pce.13636] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 07/27/2019] [Accepted: 07/30/2019] [Indexed: 05/22/2023]
Abstract
The role of flowering in root-fungal symbiosis is not well understood. Because flowering and fungal symbionts are supported by carbohydrates, we hypothesized that flowering modulates root-beneficial fungal associations through alterations in carbohydrate metabolism and transport. We monitored fungal colonization and soluble sugars in the roots of Arabidopsis thaliana following inoculation with a mutualistic fungus Phomopsis liquidambari across different plant developmental stages. Jasmonate signalling of wild-type plants, sugar transport, and root invertase of wild-type and jasmonate-insensitive plants were exploited to assess whether and how jasmonate-dependent sugar dynamics are involved in flowering-mediated fungal colonization alterations. We found that flowering restricts root-fungal colonization and activates root jasmonate signalling upon fungal inoculation. Jasmonates reduce the constitutive and fungus-induced accumulation of root glucose and fructose at the flowering stage. Further experiments with sugar transport and metabolism mutant lines revealed that root glucose and fructose positively influence fungal colonization. Diurnal, jasmonate-dependent inhibitions of sugar transport and soluble invertase activity were identified as likely mechanisms for flowering-mediated root sugar depletion upon fungal inoculation. Collectively, our results reveal that flowering drives root-fungus cooperation loss, which is related to jasmonate-dependent root soluble sugar depletion. Limiting the spread of root-fungal colonization may direct more resources to flower development.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jie Yuan
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ting Cheng
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Meng-Jun Tang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Kai Sun
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Shi-Li Song
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Fang-Ji Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
46
|
Völz R, Rayapuram N, Hirt H. Phosphorylation regulates the activity of INDETERMINATE-DOMAIN (IDD/BIRD) proteins in response to diverse environmental conditions. PLANT SIGNALING & BEHAVIOR 2019; 14:e1642037. [PMID: 31314681 PMCID: PMC6768238 DOI: 10.1080/15592324.2019.1642037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/01/2019] [Accepted: 06/27/2019] [Indexed: 05/29/2023]
Abstract
INDETERMINATE-DOMAIN proteins (IDDs) belong to a diverse plant-specific family of transcriptional regulators that coordinate distinct functions during plant growth and development. The functions of several of these IDD members are transcriptionally regulated, but so far nothing is known about the regulation at the post-translational level in spite of the fact that post-translational modifications of these proteins have been reported in several large-scale proteomics studies. Recently, we showed that IDD4 is a repressor of basal immunity and its characteristic traits are predominantly determined by the phosphorylation at two distinct phosphorylation sites. This finding prompted us to comprehensively review phosphorylation of the various IDD members from the plethora of phosphoproteomics studies demonstrating the post-translational modification of IDDs at highly conserved sites under various experimental conditions. We reckon that the phosphorylation of IDDs is an underrated mechanistic aspect in their regulation and we postulate their importance in IDD/BIRD functioning.
Collapse
Affiliation(s)
- Ronny Völz
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Naganand Rayapuram
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Center for Desert Agriculture, Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France
- University of Vienna, Vienna, Austria
| |
Collapse
|
47
|
López-González C, Juárez-Colunga S, Morales-Elías NC, Tiessen A. Exploring regulatory networks in plants: transcription factors of starch metabolism. PeerJ 2019; 7:e6841. [PMID: 31328026 PMCID: PMC6625501 DOI: 10.7717/peerj.6841] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/25/2019] [Indexed: 11/20/2022] Open
Abstract
Biological networks are complex (non-linear), redundant (cyclic) and compartmentalized at the subcellular level. Rational manipulation of plant metabolism may have failed due to inherent difficulties of a comprehensive understanding of regulatory loops. We first need to identify key factors controlling the regulatory loops of primary metabolism. The paradigms of plant networks are revised in order to highlight the differences between metabolic and transcriptional networks. Comparison between animal and plant transcription factors (TFs) reveal some important differences. Plant transcriptional networks function at a lower hierarchy compared to animal regulatory networks. Plant genomes contain more TFs than animal genomes, but plant proteins are smaller and have less domains as animal proteins which are often multifunctional. We briefly summarize mutant analysis and co-expression results pinpointing some TFs regulating starch enzymes in plants. Detailed information is provided about biochemical reactions, TFs and cis regulatory motifs involved in sucrose-starch metabolism, in both source and sink tissues. Examples about coordinated responses to hormones and environmental cues in different tissues and species are listed. Further advancements require combined data from single-cell transcriptomic and metabolomic approaches. Cell fractionation and subcellular inspection may provide valuable insights. We propose that shuffling of promoter elements might be a promising strategy to improve in the near future starch content, crop yield or food quality.
Collapse
Affiliation(s)
| | | | | | - Axel Tiessen
- Departamento de Ingeniería Genética, CINVESTAV Unidad Irapuato, Irapuato, México.,Laboratorio Nacional PlanTECC, Irapuato, México
| |
Collapse
|
48
|
Vï Lz R, Kim SK, Mi J, Mariappan KG, Siodmak A, Al-Babili S, Hirt H. A Chimeric IDD4 Repressor Constitutively Induces Immunity in Arabidopsis via the Modulation of Salicylic Acid and Jasmonic Acid Homeostasis. PLANT & CELL PHYSIOLOGY 2019; 60:1536-1555. [PMID: 30989238 DOI: 10.1093/pcp/pcz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
INDETERMINATE DOMAIN (IDD)/BIRD proteins belong to a highly conserved plant-specific group of transcription factors with dedicated functions in plant physiology and development. Here, we took advantage of the chimeric repressor gene-silencing technology (CRES-T, SRDX) to widen our view on the role of IDD4/IMPERIAL EAGLE and IDD family members in plant immunity. The hypomorphic idd4SRDX lines are compromised in growth and show a robust autoimmune phenotype. Hormonal measurements revealed the concomitant accumulation of salicylic acid and jasmonic acid suggesting that IDDs are involved in regulating the metabolism of these biotic stress hormones. The analysis of immunity-pathways showed enhanced activation of immune MAP kinase-signaling pathways, the accumulation of hydrogen peroxide and spontaneous programmed cell death. The transcriptome of nonelicited idd4SRDX lines can be aligned to approximately 40% of differentially expressed genes (DEGs) in flg22-treated wild-type plants. The pattern of DEGs implies IDDs as pivotal repressors of flg22-dependent gene induction. Infection experiments showed the increased resistance of idd4SRDX lines to Pseudomonas syringae and Botrytis cinerea implying a function of IDDs in defense adaptation to hemibiotrophs and necrotrophs. Genome-wide IDD4 DNA-binding studies (DAP-SEQ) combined with DEG analysis of idd4SRDX lines identified IDD4-regulated functional gene clusters that contribute to plant growth and development. In summary, we discovered that the expression of idd4SRDX activates a wide range of defense-related traits opening up the possibility to apply idd4SRDX as a powerful tool to stimulate innate immunity in engineered crops.
Collapse
Affiliation(s)
- Ronny Vï Lz
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Agricultural Biotechnology, Center for Fungal Genetic Resources and Plant Immunity Research Center, Seoul National University, Seoul, Korea
| | - Soon-Kap Kim
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Jianing Mi
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Kiruthiga G Mariappan
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Anna Siodmak
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Heribert Hirt
- Division of Biological and Environmental Sciences and Engineering, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Universit� Paris-Sud, Universit� Evry, Universit� Paris-Saclay, B�timent 630, Orsay, France
- Max Perutz Laboratories, University of Vienna, Vienna, Austria
| |
Collapse
|
49
|
Kumar M, Le DT, Hwang S, Seo PJ, Kim HU. Role of the INDETERMINATE DOMAIN Genes in Plants. Int J Mol Sci 2019; 20:ijms20092286. [PMID: 31075826 PMCID: PMC6539433 DOI: 10.3390/ijms20092286] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023] Open
Abstract
The INDETERMINATE DOMAIN (IDD) genes comprise a conserved transcription factor family that regulates a variety of developmental and physiological processes in plants. Many recent studies have focused on the genetic characterization of IDD family members and revealed various biological functions, including modulation of sugar metabolism and floral transition, cold stress response, seed development, plant architecture, regulation of hormone signaling, and ammonium metabolism. In this review, we summarize the functions and working mechanisms of the IDD gene family in the regulatory network of metabolism and developmental processes.
Collapse
Affiliation(s)
- Manu Kumar
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Dung Thi Le
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Seongbin Hwang
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul 08826, Korea.
| | - Hyun Uk Kim
- Department of Bioindustry and Bioresource Engineering, Plant Engineering Research Institute, Sejong University, Seoul 05006, Korea.
| |
Collapse
|
50
|
Zhao ML, Ni J, Chen MS, Xu ZF. Ectopic Expression of Jatropha curcas TREHALOSE-6-PHOSPHATE PHOSPHATASE J Causes Late-Flowering and Heterostylous Phenotypes in Arabidopsis but not in Jatropha. Int J Mol Sci 2019; 20:E2165. [PMID: 31052421 PMCID: PMC6540179 DOI: 10.3390/ijms20092165] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/30/2022] Open
Abstract
Trehalose-6-phosphate (T6P) phosphatase (TPP), a dephosphorylating enzyme, catalyzes the dephosphorylation of T6P, generating trehalose. In Jatropha, we found six members of the TPP family. Five of them JcTPPA, JcTPPC, JcTPPD, JcTPPG, and JcTPPJ are highly expressed in female flowers or male flowers, or both, suggesting that members of the JcTPP family may participate in flower development in Jatropha. The wide expression of JcTPPJ gene in various organs implied its versatile roles and thus was chosen for unraveling its biological functions during developmental process. We constructed an overexpression vector of JcTPPJ cDNA driven by the cauliflower mosaic virus (CaMV) 35S promoter for genetic transformation. Compared with control Arabidopsis plants, 35S:JcTPPJ transgenic Arabidopsis plants presented greater sucrose contents in their inflorescences and displayed late-flowering and heterostylous phenotypes. Exogenous application of sucrose to the inflorescence buds of wild-type Arabidopsis repressed the development of the perianth and filaments, with a phenocopy of the 35S:JcTPPJ transgenic Arabidopsis. These results suggested that the significantly increased sucrose level in the inflorescence caused (or induced) by JcTTPJ overexpression, was responsible for the formation of heterostylous flower phenotype. However, 35S:JcTPPJ transgenic Jatropha displayed no obvious phenotypic changes, implying that JcTPPJ alone may not be sufficient for regulating flower development in Jatropha. Our results are helpful for understanding the function of TPPs, which may regulate flower organ development by manipulating the sucrose status in plants.
Collapse
Affiliation(s)
- Mei-Li Zhao
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jun Ni
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Mao-Sheng Chen
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| | - Zeng-Fu Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|