1
|
Wang Q, Tian Y, Chen K, Zhu S, Xiong Y, Wang C, Yu X, Bai W, Zheng H, You S, Hu Y, Lei D, Jian A, Lu J, Yu H, Zhang X, Ren Y, Lei C, Cheng Z, Lin Q, Jiang L, Zhao Z, Wan J. OsPAD1, encoding a non-specific lipid transfer protein, is required for rice pollen aperture formation. PLANT MOLECULAR BIOLOGY 2024; 115:11. [PMID: 39709588 DOI: 10.1007/s11103-024-01531-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/09/2024] [Indexed: 12/23/2024]
Abstract
Plant lipid transfer proteins (LTPs) are distinguished by their capacity to facilitate lipid transport in vitro between membranes. This includes the transportation of lipid constituents from the tapetum to the microspore, thereby playing a pivotal role in the synthesis and construction of the pollen wall, encompassing the formation of the pollen aperture. However, our understanding of LTPs and their role in pollen aperture formation in rice remains limited. In this study, we have isolated and characterized a male sterile rice mutant named as pollen aperture defect 1 (Ospad1). When compared to the wild type, Ospad1 mutant plants exhibit pollen grain abortion due to the absence of the fibrillar-granular layer, ultimately leading to the leakage of contents from the malformed aperture. OsPAD1 encodes a non-specific LTP and is specifically expressed in the microspore during male development. Subsequently, in vitro lipid binding assays reveal that the recombinant OsPAD1 protein has the capability to bind to a broad spectrum of lipids. The malfunction of OsPAD1 results in disrupted lipid metabolism and compromised pollen aperture, ultimately leading to male sterility. Furthermore, yeast two-hybrid, bimolecular fluorescent complementation and pull-down assays all demonstrate that OsPAD1 can directly interact with OsINP1, an orthologue of a crucial aperture factor in Arabidopsis, together regulating rice aperture development. These findings offer new insights into the molecular mechanisms that underlie the function of LTPs in rice pollen aperture formation. This research holds potential implications not only for rice but also for other cereal crops.
Collapse
Affiliation(s)
- Qiming Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Keyi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yehui Xiong
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chaolong Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaowen Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenting Bai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hai Zheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shimin You
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dekun Lei
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Anqi Jian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiayu Lu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - ZhiJun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhigang Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Zhongshan Biological Breeding laboratoryr, Nanjing Agricultural University, Nanjing, 210095, China.
- State Key Laboratory of Crop Gene Resources and Breeding, National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
2
|
Koja Y, Arakawa T, Yoritaka Y, Joshima Y, Kobayashi H, Toda K, Takeda S. Basic design of artificial membrane-less organelles using condensation-prone proteins in plant cells. Commun Biol 2024; 7:1396. [PMID: 39462114 PMCID: PMC11514006 DOI: 10.1038/s42003-024-07102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Membrane-less organelles, formed by the condensation of biomolecules, play a pivotal role in eukaryotes. Artificial membrane-less organelles and condensates are effective tools for the creation of new cellular functions. However, it is poorly understood how to control the properties that affect condensate function, particularly in plants. Here, we report the construction of model artificial condensates using the condensation-prone proteins OsJAZ2 and AtFCA in a transient assay using rice (Oryza sativa) cells, and how condensate properties, such as subcellular localization, protein mobility, and size can be altered. We showed that proteins of interest can be recruited to condensates using nanobodies or chemically induced dimerization. Furthermore, by combining two types of condensation-prone proteins, we demonstrated that artificial hybrid condensates with heterogeneous material properties could be constructed. Finally, we showed that modified artificial condensates can be constructed in transgenic Arabidopsis thaliana plants. These results provide a framework for the basic design of synthetic membrane-less organelles in plants.
Collapse
Affiliation(s)
- Yoshito Koja
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Takuya Arakawa
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yusuke Yoritaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yu Joshima
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hazuki Kobayashi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Kenta Toda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Shin Takeda
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan.
| |
Collapse
|
3
|
Yang B, Huang X, Zhang Y, Gao X, Ding S, Qi J, Wang X. Genome-Wide Identification of Rubber Tree SCAMP Genes and Functional Characterization of HbSCAMP3. PLANTS (BASEL, SWITZERLAND) 2024; 13:2729. [PMID: 39409598 PMCID: PMC11478556 DOI: 10.3390/plants13192729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/20/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
Natural rubber produced by the rubber tree is a vital industrial raw material globally. Seven SCAMP gene family members were identified in the rubber tree, and the phylogenetic tree classified HbSCAMPs into three subfamilies. Significant differences were observed among HbSCAMPs in terms of gene length, number of exons, and composition of conserved motifs. The expansion of HbSCAMPs in the rubber tree genome is associated with segmental duplications. The high expression of HbSCAMP1-6 in petioles and HbSCAMP7 in stem tips, along with their distinct responses to drought, salt, and wound stresses, indicates their crucial roles in substance transport and stress adaptation. Transgenic poplar experiments demonstrated that overexpression of HbSCAMP3 significantly promotes plant height growth, with localization in the tobacco plasma membrane, suggesting its involvement in regulating plant growth through membrane transport processes. These findings enhance the understanding of HbSCAMPs in rubber trees and provide new insights into how plants finely tune gene family members to adapt to environmental changes.
Collapse
Affiliation(s)
- Baoyi Yang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi 832003, China;
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Xiao Huang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Xinsheng Gao
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Shitao Ding
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| | - Juncang Qi
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Agricultural College, Shihezi University, Shihezi 832003, China;
| | - Xiangjun Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; (X.H.); (Y.Z.); (X.G.); (S.D.)
| |
Collapse
|
4
|
Ma A, Nan N, Shi Y, Wang J, Guo P, Liu W, Zhou G, Yu J, Zhou D, Yun DJ, Li Y, Xu ZY. Autophagy receptor OsNBR1 modulates salt stress tolerance in rice. PLANT CELL REPORTS 2023; 43:17. [PMID: 38145426 DOI: 10.1007/s00299-023-03111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/05/2023] [Indexed: 12/26/2023]
Abstract
KEY MESSAGE Autophagy receptor OsNBR1 modulates salt stress tolerance by affecting ROS accumulation in rice. The NBR1 (next to BRCA1 gene 1), as important selective receptors, whose functions have been reported in animals and plants. Although the function of NBR1 responses to abiotic stress has mostly been investigated in Arabidopsis thaliana, the role of NBR1 under salt stress conditions remains unclear in rice (Oryza sativa). In this study, by screening the previously generated activation-tagged line, we identified a mutant, activation tagging 10 (AC10), which exhibited salt stress-sensitive phenotypes. TAIL-PCR (thermal asymmetric interlaced PCR) showed that the AC10 line carried a loss-of-function mutation in the OsNBR1 gene. OsNBR1 was found to be a positive regulator of salt stress tolerance and was localized in aggregates. A loss-of-function mutation in OsNBR1 increased salt stress sensitivity, whereas overexpression of OsNBR1 enhanced salt stress resistance. The osnbr1 mutants showed higher ROS (reactive oxygen species) production, whereas the OsNBR1 overexpression (OsNBR1OE) lines showed lower ROS production, than Kitaake plants under normal and salt stress conditions. Furthermore, RNA-seq analysis revealed that expression of OsRBOH9 (respiratory burst oxidase homologue) was increased in osnbr1 mutants, resulting in increased ROS accumulation in osnbr1 mutants. Together our results established that OsNBR1 responds to salt stress by influencing accumulation of ROS rather than by regulating transport of Na+ and K+ in rice.
Collapse
Affiliation(s)
- Ao Ma
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Nan Nan
- College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Yuejie Shi
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Wenxin Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Ganghua Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jinlei Yu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dongxiao Zhou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Dae-Jin Yun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, South Korea
| | - Yu Li
- Engineering Research Centre of Edible and Medicinal Fungi, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China.
| |
Collapse
|
5
|
Zhou C, Lin Q, Ren Y, Lan J, Miao R, Feng M, Wang X, Liu X, Zhang S, Pan T, Wang J, Luo S, Qian J, Luo W, Mou C, Nguyen T, Cheng Z, Zhang X, Lei C, Zhu S, Guo X, Wang J, Zhao Z, Liu S, Jiang L, Wan J. A CYP78As-small grain4-coat protein complex Ⅱ pathway promotes grain size in rice. THE PLANT CELL 2023; 35:4325-4346. [PMID: 37738653 PMCID: PMC10689148 DOI: 10.1093/plcell/koad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/11/2023] [Accepted: 08/11/2023] [Indexed: 09/24/2023]
Abstract
CYP78A, a cytochrome P450 subfamily that includes rice (Oryza sativa L.) BIG GRAIN2 (BG2, CYP78A13) and Arabidopsis thaliana KLUH (KLU, CYP78A5), generate an unknown mobile growth signal (referred to as a CYP78A-derived signal) that increases grain (seed) size. However, the mechanism by which the CYP78A pathway increases grain size remains elusive. Here, we characterized a rice small grain mutant, small grain4 (smg4), with smaller grains than its wild type due to restricted cell expansion and cell proliferation in spikelet hulls. SMG4 encodes a multidrug and toxic compound extrusion (MATE) transporter. Loss of function of SMG4 causes smaller grains while overexpressing SMG4 results in larger grains. SMG4 is mainly localized to endoplasmic reticulum (ER) exit sites (ERESs) and partially localized to the ER and Golgi. Biochemically, SMG4 interacts with coat protein complex Ⅱ (COPⅡ) components (Sar1, Sec23, and Sec24) and CYP78As (BG2, GRAIN LENGTH 3.2 [GL3.2], and BG2-LIKE 1 [BG2L1]). Genetically, SMG4 acts, at least in part, in a common pathway with Sar1 and CYP78As to regulate grain size. In summary, our findings reveal a CYP78As-SMG4-COPⅡ regulatory pathway for grain size in rice, thus providing new insights into the molecular and genetic regulatory mechanism of grain size.
Collapse
Affiliation(s)
- Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qibing Lin
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Rong Miao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Miao Feng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengzhong Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Pan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiachang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinsheng Qian
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfan Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhijun Cheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
6
|
Weng X, Shen Y, Jiang L, Zhao L, Wang H. Spatiotemporal organization and correlation of tip-focused exocytosis and endocytosis in regulating pollen tube tip growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111633. [PMID: 36775070 DOI: 10.1016/j.plantsci.2023.111633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/09/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Pollen tube polar growth is a key cellular process during plant fertilization and is regulated by tip-focused exocytosis and endocytosis. However, the spatiotemporal dynamics and localizations of apical exocytosis and endocytosis in the tip region are still a matter of debate. Here, we use a refined spinning-disk confocal microscope coupled with fluorescence recovery after photobleaching for sustained live imaging and quantitative analysis of rapid vesicular activities in growing pollen tube tips. We traced and analyzed the occurrence site of exocytic plasma membrane-targeting of Arabidopsis secretory carrier membrane protein 4 and its subsequent endocytosis in tobacco pollen tube tips. We demonstrated that the pollen tube apex is the site for both vesicle polar exocytic fusion and endocytosis to take place. In addition, we disrupted either tip-focused exocytosis or endocytosis and found that their dynamic activities are closely correlated with one another basing on the spatial organization of actin fringe. Collectively, our findings attempt to propose a new exocytosis and endocytosis-coordinated yin-yang working model underlying the apical membrane organization and dynamics during pollen tube tip growth.
Collapse
Affiliation(s)
- Xun Weng
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yifan Shen
- Utahloy International School of Guangzhou, Guangzhou 510642, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China; Institute of Plant Molecular Biology & Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Lifeng Zhao
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Weng X, Wang H. Apical vesicles: Social networking at the pollen tube tip. REPRODUCTION AND BREEDING 2022. [DOI: 10.1016/j.repbre.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
8
|
Choi C, Im JH, Lee J, Kwon SI, Kim WY, Park SR, Hwang DJ. OsDWD1 E3 ligase-mediated OsNPR1 degradation suppresses basal defense in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:966-981. [PMID: 36168109 DOI: 10.1111/tpj.15985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Many ubiquitin E3 ligases function in plant immunity. Here, we show that Oryza sativa (rice) DDB1 binding WD (OsDWD1) suppresses immune responses by targeting O. sativa non-expresser of pathogenesis-related gene 1 (OsNPR1) for degradation. Knock-down and overexpression experiments in rice plants showed that OsDWD1 is a negative regulator of the immune response and that OsNPR1 is a substrate of OsDWD1 and a substrate receptor of OsCRL4. After constructing the loss-of-function mutant OsDWD1R239A , we showed that the downregulation of OsNPR1 seen in rice lines overexpressing wild-type (WT) OsDWD1 (OsDWD1WT -ox) was compromised in OsDWD1R239A -ox lines, and that OsNPR1 upregulation enhanced resistance to pathogen infection, confirming that OsCRL4OsDWD1 regulates OsNPR1 protein levels. The enhanced disease resistance seen in OsDWD1 knock-down (OsDWD1-kd) lines contrasted with the reduced disease resistance in double knock-down (OsDWD1/OsNPR1-kd) lines, indicating that the enhanced disease resistance of OsDWD1-kd resulted from the accumulation of OsNPR1. Moreover, an in vivo heterologous protein degradation assay in Arabidopsis thaliana ddb1 mutants confirmed that the CUL4-based E3 ligase system can also influence OsNPR1 protein levels in Arabidopsis. Although OsNPR1 was degraded by the OsCRL4OsDWD1 -mediated ubiquitination system, the phosphodegron-motif-mutated NPR1 was partially degraded in the DWD1-ox protoplasts. This suggests that there might be another degradation process for OsNPR1. Taken together, these results indicate that OsDWD1 regulates OsNPR1 protein levels in rice to suppress the untimely activation of immune responses.
Collapse
Affiliation(s)
- Changhyun Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jong Hee Im
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Jinjeong Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Soon Il Kwon
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Institute of Agricultural and Life Sciences, Research Institute of Life Sciences, Gyeongsang National University, Jinju, 52825, Republic of Korea
| | - Sang Ryeol Park
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| | - Duk-Ju Hwang
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, 54874, Republic of Korea
| |
Collapse
|
9
|
Abstract
A variety of effector proteins contribute to host defense in Caenorhabditis elegans. However, beyond lytic enzymes and antimicrobial peptides and proteins, little is known about the exact function of these infection-related effectors. This study set out to identify pathogen-dependent cytokine-like molecules, focusing on C-type lectin domain-containing proteins (CLECs). In total, 38 CLECs that are differentially regulated in response to bacterial infections have been previously identified by microarray and transcriptome sequencing (RNA-seq) analyses in C. elegans. We successfully cloned 18 of these 38 CLECs and chose to focus on CLEC-47 because, among these 18 cloned CLECs, it was the smallest protein and was recombinantly expressed at the highest levels in prokaryotic cells examined by SDS-PAGE. Quantitative real-time PCR (qRT-PCR/qPCR) showed that the expression of clec-47 was induced by a variety of Gram-positive bacterial pathogens, including Enterococcus faecium, Staphylococcus aureus, and Cutibacterium acnes, but was suppressed by the Gram-negative bacteria Klebsiella pneumoniae and Pseudomonas aeruginosa. By expressing CLEC-47 in HEK 293 cells, we showed that CLEC-47 is released into the culture media, which the Golgi apparatus inhibitors (brefeldin A [BFA] and GolgiStop) could block. Purified recombinant CLEC-47 (maltose binding protein [MBP]–CLEC-47–His) did not display antimicrobial activity against ESKAPE pathogen isolates but bound directly to murine macrophage J774A.1 cells. Recombinant CLEC-47 attracted and recruited J774A.1 cells in a chemotaxis assay. In addition, qPCR studies and enzyme-linked immunosorbent assays (ELISAs) showed that CLEC-47 activates J774A.1 cells in a dose- and time-dependent manner to express the proinflammatory cytokines tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, and Macrophage Inflammatory Protein 2 (MIP-2). Moreover, C. elegans, fed with CLEC-47-expressing Escherichia coli, demonstrated enhanced expression of several antimicrobial proteins (CNC-1, CNC-2, CPR-1, and CPR-2) as well as the detoxification protein MTL-1. These data suggest that CLEC-47 functions as a novel cytokine-like signaling molecule and exemplify how the study of infection-related effectors in C. elegans can help elucidate the evolution of immune responses.
Collapse
|
10
|
Tao Y, Zou T, Zhang X, Liu R, Chen H, Yuan G, Zhou D, Xiong P, He Z, Li G, Zhou M, Liu S, Deng Q, Wang S, Zhu J, Liang Y, Yu X, Zheng A, Wang A, Liu H, Wang L, Li P, Li S. Secretory lipid transfer protein OsLTPL94 acts as a target of EAT1 and is required for rice pollen wall development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:358-377. [PMID: 34314535 DOI: 10.1111/tpj.15443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The plant pollen wall protects the male gametophyte from various biotic and abiotic stresses. The formation of a unique pollen wall structure and elaborate exine pattern is a well-organized process, which needs coordination between reproductive cells and the neighboring somatic cells. However, molecular mechanisms underlying this process remain largely unknown. Here, we report a rice male-sterile mutant (l94) that exhibits defective pollen exine patterning and abnormal tapetal cell development. MutMap and knockout analyses demonstrated that the causal gene encodes a type-G non-specific lipid transfer protein (OsLTPL94). Histological and cellular analyses established that OsLTPL94 is strongly expressed in the developing microspores and tapetal cells, and its protein is secreted to the plasma membrane. The l94 mutation impeded the secretory ability of OsLTPL94 protein. Further in vivo and in vitro investigations supported the hypothesis that ETERNAL TAPETUM 1 (EAT1), a basic helix-loop-helix transcription factor (bHLH TF), activated OsLTPL94 expression through direct binding to the E-box motif of the OsLTPL94 promoter, which was supported by the positive correlation between the expression of EAT1 and OsLTPL94 in two independent eat1 mutants. Our findings suggest that the secretory OsLTPL94 plays a key role in the coordinated development of tapetum and microspores with the regulation of EAT1.
Collapse
Affiliation(s)
- Yang Tao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guoqiang Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Zhiyuan He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Menglin Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sijing Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Aijun Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
11
|
Xie A, Xu X, Kuang P, Zhang L, Yu F. TMED3 promotes the progression and development of lung squamous cell carcinoma by regulating EZR. Cell Death Dis 2021; 12:804. [PMID: 34429402 PMCID: PMC8385054 DOI: 10.1038/s41419-021-04086-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 12/23/2022]
Abstract
Lung squamous cell carcinoma (LUSC) has a poor clinical prognosis and lacks effective targeted therapy. The transmembrane emp24 trafficking protein 3 (TMED3) belongs to the TMED family, which is responsible for the transport of intracellular proteins. This study was to explore the clinicopathological significance and biological effects of TMED3 in LUSC. Expression of TMED3 in LUSC was detected by immunohistochemical (IHC). The loss-of-function assays were used to investigate the effects of TMED3 on proliferation, apoptosis, cell cycle, and migration of LUSC cells. The influence of TMED3 knockdown on tumor growth in vivo was evaluated by mice xenograft models. In addition, the downstream target of TMED3 was recognized by RNA sequencing and Ingenuity Pathway Analysis (IPA). Moreover, TMED3 was upregulated in LUSC tissue, which was positively correlated with pathological grade. TMED3 knockdown was involved in the regulation of LUSC cell function, such as inhibition of proliferation, reduction of colony formation, induction of apoptosis, and reduction of migration. TMED3 knockdown induced abnormalities in apoptosis-related proteins in LUSC cells. In addition, the inhibition of cell migration by TMED3 knockdown was achieved by regulating EMT. Mechanically, EZR was considered as a potential target for TMED3 to regulate the progress of LUSC. Inhibition of EZR can inhibit the progression of LUSC, and even reduce the promoting effects of TMED3 overexpression on LUSC. In conclusion, TMED3 promoted the progression and development of LUSC by EZR, which may be a novel therapeutic target for LUSC.
Collapse
Affiliation(s)
- An Xie
- Jiangxi Institute of Urology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Xinping Xu
- Jiangxi Institute of Respiratory Disease, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Peng Kuang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Ling Zhang
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, 17 Yong Wai Zheng Street, Nanchang City, Jiangxi Province, China.
| |
Collapse
|
12
|
Huang Y, Li T, Xu T, Tang Z, Guo J, Cai Y. Multiple Xanthomonas campestris pv. campestris 8004 type III effectors inhibit immunity induced by flg22. PLANTA 2020; 252:88. [PMID: 33057902 DOI: 10.1007/s00425-020-03484-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Xanthomonas campestris pv. campestris 8004 secretes several effector proteins that interfere with plant phosphorylation. Xanthomonas campestris pv. campestris (Xcc) can infect cruciferous plants and cause black rot. The strain Xcc8004 secretes effector proteins that interfere with plant cellular processes into host cells using a type III secretion (T3S) system. Several of the 24 predicted T3S effectors in the Xcc8004 genome have been implicated in the suppression of the Arabidopsis thaliana pattern-triggered immunity (PTI) response. We used an A. thaliana mesophyll protoplast-based assay to identify Xcc8004 T3S effectors that effectively interfere with PTI signalling induced by the bacterial peptide flg22. 11 of the 24 tested effector proteins (XopK, XopQ, HrpW, XopN, XopAC, XopD, XopZ1, XopAG, AvrBs2, XopL and XopX-1) inhibited expression of the flg22-inducible gene FRK1, and five effectors (XopK, XopG, XopQ, XopL and XopX-1) inhibited the expression of the flg22-inducible gene WRKY33. Therefore, there are 12 effector proteins that can inhibit the expression of relevant flg22-inducible genes. It was further investigated whether the 12 effector proteins affect the phosphorylation activation of mitogen-activated protein (MAP) kinases MPK3/MPK6, and four effector proteins (XopK, XopQ, XopZ1 and XopX-1) were found to markedly inhibit MPK3/MPK6 activation. Moreover, a subcellular localisation analysis revealed that the tested effectors were localised within various subcellular compartments. These results indicate that multiple T3S effectors in the Xcc8004 genome interfere with flg22-induced PTI signalling via various molecular mechanisms.
Collapse
Affiliation(s)
- Yan Huang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Tongqi Li
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Ting Xu
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Zizhong Tang
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Jingya Guo
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yi Cai
- School of Life Sciences, Sichuan Agricultural University, Ya'an, 625014, China.
| |
Collapse
|
13
|
Alghamdi AAA, Benwell CJ, Atkinson SJ, Lambert J, Johnson RT, Robinson SD. NRP2 as an Emerging Angiogenic Player; Promoting Endothelial Cell Adhesion and Migration by Regulating Recycling of α5 Integrin. Front Cell Dev Biol 2020; 8:395. [PMID: 32528960 PMCID: PMC7264094 DOI: 10.3389/fcell.2020.00395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 01/01/2023] Open
Abstract
Angiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on β3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organization. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.
Collapse
Affiliation(s)
- Abdullah A A Alghamdi
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Christopher J Benwell
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| | - Samuel J Atkinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Jordi Lambert
- Faculty of Medicine and Health Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Robert T Johnson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Stephen D Robinson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, United Kingdom.,Gut Microbes and Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Gao D, Sun W, Wang D, Dong H, Zhang R, Yu S. A xylan glucuronosyltransferase gene exhibits pleiotropic effects on cellular composition and leaf development in rice. Sci Rep 2020; 10:3726. [PMID: 32111928 PMCID: PMC7048734 DOI: 10.1038/s41598-020-60593-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/10/2020] [Indexed: 11/09/2022] Open
Abstract
Leaf chlorophyll content is an important physiological indicator of plant growth, metabolism and nutritional status, and it is highly correlated with leaf nitrogen content and photosynthesis. In this study, we report the cloning and identification of a xylan glucuronosyltransferase gene (OsGUX1) that affects relative chlorophyll content in rice leaf. Using a set of chromosomal segment substitution lines derived from a cross of wild rice accession ACC10 and indica variety Zhenshan 97 (ZS97), we identified numerous quantitative trait loci for relative chlorophyll content. One major locus of them for relative chlorophyll content was mapped to a 10.3-kb region that contains OsGUX1. The allele OsGUX1AC from ACC10 significantly decreases nitrogen content and chlorophyll content of leaf compared with OsGUX1ZS from ZS97. The overexpression of OsGUX1 reduced chlorophyll content, and the suppression of this gene increased chlorophyll content of rice leaf. OsGUX1 is located in Golgi apparatus, and highly expressed in seedling leaf and the tissues in which primary cell wall synthesis occurring. Our experimental data indicate that OsGUX1 is responsible for addition of glucuronic acid residues onto xylan and participates in accumulation of cellulose and hemicellulose in the cell wall deposition, thus thickening the primary cell wall of mesophyll cells, which might lead to reduced chlorophyll content in rice leaf. These findings provide insights into the association of cell wall components with leaf nitrogen content in rice.
Collapse
Affiliation(s)
- Dawei Gao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenqiang Sun
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dianwen Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hualin Dong
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ran Zhang
- Biomass & Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sibin Yu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
15
|
Razzaque S, Elias SM, Haque T, Biswas S, Jewel GMNA, Rahman S, Weng X, Ismail AM, Walia H, Juenger TE, Seraj ZI. Gene Expression analysis associated with salt stress in a reciprocally crossed rice population. Sci Rep 2019; 9:8249. [PMID: 31160691 PMCID: PMC6546764 DOI: 10.1038/s41598-019-44757-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/21/2019] [Indexed: 11/27/2022] Open
Abstract
The rice landrace Horkuch, endemic to the southern saline coast of Bangladesh, is known to have salt tolerance traits and can therefore contribute to a high yielding recipient for breeding purposes. In this study, we reciprocally crossed Horkuch with high yielding but salt sensitive IR29 to detect the complement of genes that were responsible for conferring salt tolerance versus sensitivity at the seedling developmental stage. We looked at tolerant and sensitive F3 families from individual F2 segregating plants and analyzed them for differential gene expressions using RNAseq. In general, we observed higher numbers of genes differentially expressed in leaves compared to root tissues. This included both upregulation and downregulation of gene expression across our experimental factors. Gene expression decreased in sensitive leaf after stress exposure where tolerant plants showed the opposite trend. In root, tolerant plants expression decreased at higher time points of stress exposure. We also observed a strong maternal cytoplasmic effect on gene expression and this was most evident in roots where there was upregulation in functional enrichments related to phosphorylation, electron carriers, transporter and cation transmembrane activities. Stress groups (tolerant and sensitive) response in F3 families were distinctive in both cytoplasmic backgrounds and involved uniquely upregulated genes in tolerant progenies including membrane sensor proteins, enzymes involved with signaling pathways, such as those producing trehalose and G-protein coupled receptor proteins, photosynthesis-related enzymes and golgi body recycling as well as prolamin precursor proteins involved in refolding of proteins. On the other hand, sensitivity was found to be associated with differential upregulation of only a few redox proteins and higher number of apoptosis related genes compared to the tolerant response. Overall, our highly replicated experimental design was powerful and allowed the detection of relatively subtle differential expression. Our future goal is to correlate these expression differences with QTLs in this population, which would help identify the relative importance of specific genetic loci and provide a direct avenue for combining higher levels of salt tolerance with better agronomic traits in rice.
Collapse
Affiliation(s)
- Samsad Razzaque
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sabrina M Elias
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska, 68583, USA
| | - Taslima Haque
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Sudip Biswas
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - G M Nurnabi Azad Jewel
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Sazzadur Rahman
- Plant Physiology Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Xiaoyu Weng
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | | | - Harkamal Walia
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska, 68583, USA
| | - Thomas E Juenger
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, 78712, USA
| | - Zeba I Seraj
- Plant Biotechnology Lab, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
16
|
Peng F, Wang C, Zhu J, Zeng J, Kang H, Fan X, Sha L, Zhang H, Zhou Y, Wang Y. Expression of TpNRAMP5, a metal transporter from Polish wheat (Triticum polonicum L.), enhances the accumulation of Cd, Co and Mn in transgenic Arabidopsis plants. PLANTA 2018. [PMID: 29523961 DOI: 10.1007/s00425-018-2872-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
TpRNAMP5 is mainly expressed in the plasma membrane of roots and basal stems. It functions as a metal transporter for Cd, Mn and Co accumulation. Numerous natural resistance-associated macrophage proteins (NRAMPs) have been functionally identified in various plant species, including Arabidopsis, rice, soybean and tobacco, but no information is available on NRAMP genes in wheat. In this study, we isolated a TpNRAMP5 from dwarf Polish wheat (DPW, Triticum polonicum L.), a species with high tolerance to Cd and Zn. Expression pattern analysis revealed that TpNRAMP5 is mainly expressed in roots and basal stems of DPW. TpNRAMP5 was localized at the plasma membrane of Arabidopsis leaf protoplast. Expression of TpNRAMP5 in yeast significantly increased yeast sensitivity to Cd and Co, but not Zn, and enhanced Cd and Co concentrations. Expression of TpNRAMP5 in Arabidopsis significantly increased Cd, Co and Mn concentrations in roots, shoots and whole plants, but had no effect on Fe and Zn concentrations. These results indicate that TpNRAMP5 is a metal transporter enhancing the accumulation of Cd, Co and Mn, but not Zn and Fe. Genetic manipulation of TpNRAMP5 can be applied in the future to limit the transfer of Cd from soil to wheat grains, thereby protecting human health.
Collapse
Affiliation(s)
- Fan Peng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jianshu Zhu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Wenjiang, 611130, Sichuan, China.
| |
Collapse
|
17
|
Chu TTH, Hoang TG, Trinh DC, Bureau C, Meynard D, Vernet A, Ingouff M, Do NV, Périn C, Guiderdoni E, Gantet P, Maurel C, Luu DT. Sub-cellular markers highlight intracellular dynamics of membrane proteins in response to abiotic treatments in rice. RICE (NEW YORK, N.Y.) 2018; 11:23. [PMID: 29651780 PMCID: PMC5897272 DOI: 10.1186/s12284-018-0209-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Cell biology approach using membrane protein markers tagged with fluorescent proteins highlights the dynamic behaviour of plant cell membranes, not only in the standard but also in changing environmental conditions. In the past, this strategy has been extensively developed in plant models such as Arabidopsis. RESULTS Here, we generated a set of transgenic lines expressing membrane protein markers to extend this approach to rice, one of the most cultivated crop in the world and an emerging plant model. Lines expressing individually eight membrane protein markers including five aquaporins (OsPIP1;1, OsPIP2;4, OsPIP2;5, OsTIP1;1, OsTIP2;2) and three endosomal trafficking proteins (OsRab5a, OsGAP1, OsSCAMP1) were obtained. Importantly, we challenged in roots the aquaporin-expressing transgenic lines upon salt and osmotic stress and uncovered a highly dynamic behaviour of cell membrane. CONCLUSION We have uncovered the relocalization and dynamics of plasma membrane aquaporins upon salt and osmotic stresses in rice. Importantly, our data support a model where relocalization of OsPIPs is concomitant with their high cycling dynamics.
Collapse
Affiliation(s)
- Thi Thu Huyen Chu
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- University of Science and Technology of Hanoi, LMI RICE, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Thi Giang Hoang
- National key laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Pham Van Dong, Co Nhue, Tuliem, Hanoi, Vietnam
- University of Science and Technology of Hanoi, LMI RICE, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
- IRD, LMI RICE, Agricultural Genetics Institute, Pham Van Dong road, Co Nhue, Tuliem, Hanoï, Vietnam
| | - Duy Chi Trinh
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- University of Science and Technology of Hanoi, LMI RICE, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
| | - Charlotte Bureau
- CIRAD, UMR AGAP, 34398, Montpellier, France
- Université de Montpellier, CIRAD-INRA-Montpellier SupAgro, 34000, Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP, 34398, Montpellier, France
- Université de Montpellier, CIRAD-INRA-Montpellier SupAgro, 34000, Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP, 34398, Montpellier, France
- Université de Montpellier, CIRAD-INRA-Montpellier SupAgro, 34000, Montpellier, France
| | - Mathieu Ingouff
- Université de Montpellier, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | - Nang Vinh Do
- National key laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, Pham Van Dong, Co Nhue, Tuliem, Hanoi, Vietnam
- IRD, LMI RICE, Agricultural Genetics Institute, Pham Van Dong road, Co Nhue, Tuliem, Hanoï, Vietnam
| | - Christophe Périn
- CIRAD, UMR AGAP, 34398, Montpellier, France
- Université de Montpellier, CIRAD-INRA-Montpellier SupAgro, 34000, Montpellier, France
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP, 34398, Montpellier, France
- Université de Montpellier, CIRAD-INRA-Montpellier SupAgro, 34000, Montpellier, France
| | - Pascal Gantet
- University of Science and Technology of Hanoi, LMI RICE, 18 Hoang Quoc Viet, Nghia Do, Cau Giay, Hanoi, Vietnam
- IRD, LMI RICE, Agricultural Genetics Institute, Pham Van Dong road, Co Nhue, Tuliem, Hanoï, Vietnam
- Université de Montpellier, UMR DIADE, 911 Avenue Agropolis, 34394, Montpellier Cedex 5, France
| | | | - Doan-Trung Luu
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France.
| |
Collapse
|
18
|
Chung KP, Zeng Y, Li Y, Ji C, Xia Y, Jiang L. Signal motif-dependent ER export of the Qc-SNARE BET12 interacts with MEMB12 and affects PR1 trafficking in Arabidopsis. J Cell Sci 2018; 131:jcs.202838. [PMID: 28546447 DOI: 10.1242/jcs.202838] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/23/2017] [Indexed: 12/27/2022] Open
Abstract
Soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors (SNAREs) are well-known for their role in controlling membrane fusion, the final, but crucial step, in vesicular transport in eukaryotes. SNARE proteins contribute to various biological processes including pathogen defense and channel activity regulation, as well as plant growth and development. Precise targeting of SNARE proteins to destined compartments is a prerequisite for their proper functioning. However, the underlying mechanism(s) for SNARE targeting in plants remains obscure. Here, we investigate the targeting mechanism of the Arabidopsis thaliana Qc-SNARE BET12, which is involved in protein trafficking in the early secretory pathway. Two distinct signal motifs that are required for efficient BET12 ER export were identified. Pulldown assays and in vivo imaging implicated that both the COPI and COPII pathways were required for BET12 targeting. Further studies using an ER-export-defective form of BET12 revealed that the Golgi-localized Qb-SNARE MEMB12, a negative regulator of pathogenesis-related protein 1 (PR1; At2g14610) secretion, was its interacting partner. Ectopic expression of BET12 caused no inhibition in the general ER-Golgi anterograde transport but caused intracellular accumulation of PR1, suggesting that BET12 has a regulatory role in PR1 trafficking in A. thaliana.
Collapse
Affiliation(s)
- Kin Pan Chung
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yimin Li
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Changyang Ji
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China .,The Chinese University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
19
|
Peng F, Wang C, Cheng Y, Kang H, Fan X, Sha L, Zhang H, Zeng J, Zhou Y, Wang Y. Cloning and Characterization of TpNRAMP3, a Metal Transporter From Polish Wheat ( Triticum polonicum L.). FRONTIERS IN PLANT SCIENCE 2018; 9:1354. [PMID: 30294336 PMCID: PMC6158329 DOI: 10.3389/fpls.2018.01354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/28/2018] [Indexed: 05/15/2023]
Abstract
Essential transition metals and non-essential metals often co-exist in arable soils. In plants, some transition metal transporters, such as the natural resistance-associated macrophage proteins (NRAMPs), poorly selectively transport metals with similar chemical properties whether they are essential or non-essential. In this study, a member of the NRAMP transporter family, TpNRAMP3, was identified from dwarf Polish wheat (Triticum polonicum L.). TpNRAMP3 encodes a plasma membrane-localized protein and was highly expressed in leaf blades and roots at the jointing and booting stages, and in the first nodes at the grain filling stage. Expression of TpNRAMP3 increased sensitivity to Cd and Co, but not Zn, and increased the Cd and Co concentrations in yeast. TpNRAMP3 expression in Arabidopsis increased concentrations of Cd, Co, and Mn, but not Fe or Zn, in roots, shoots, and whole plant. However, TpNRAMP3 did not affect translocation of Cd, Co, or Mn from roots to shoots. These results suggest that TpNRAMP3 is a transporter for Cd, Co, and Mn accumulation, but not for Fe or Zn. However, Cd and Co are non-essential toxic metals; selective genetic manipulation of TpNRAMP3 will help breed low Cd- and Co-accumulating cultivars.
Collapse
Affiliation(s)
- Fan Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Chao Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Yiran Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Lina Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Haiqin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Jian Zeng
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Yonghong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Joint International Research Laboratory of Crop Resources and Genetic Improvement, Sichuan Agricultural University, Chengdu, China
- *Correspondence: Yi Wang,
| |
Collapse
|
20
|
Wang X, Chung KP, Lin W, Jiang L. Protein secretion in plants: conventional and unconventional pathways and new techniques. JOURNAL OF EXPERIMENTAL BOTANY 2017; 69:21-37. [PMID: 28992209 DOI: 10.1093/jxb/erx262] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Protein secretion is an essential process in all eukaryotic cells and its mechanisms have been extensively studied. Proteins with an N-terminal leading sequence or transmembrane domain are delivered through the conventional protein secretion (CPS) pathway from the endoplasmic reticulum (ER) to the Golgi apparatus. This feature is conserved in yeast, animals, and plants. In contrast, the transport of leaderless secretory proteins (LSPs) from the cytosol to the cell exterior is accomplished via the unconventional protein secretion (UPS) pathway. So far, the CPS pathway has been well characterized in plants, with several recent studies providing new information about the regulatory mechanisms involved. On the other hand, studies on UPS pathways in plants remain descriptive, although a connection between UPS and the plant defense response is becoming more and more apparent. In this review, we present an update on CPS and UPS. With the emergence of new techniques, a more comprehensive understanding of protein secretion in plants can be expected in the future.
Collapse
Affiliation(s)
- Xiangfeng Wang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Kin Pan Chung
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Weili Lin
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Liwen Jiang
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
- CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, China
| |
Collapse
|
21
|
Overexpression of SCAMP3 is an indicator of poor prognosis in hepatocellular carcinoma. Oncotarget 2017; 8:109247-109257. [PMID: 29312605 PMCID: PMC5752518 DOI: 10.18632/oncotarget.22665] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022] Open
Abstract
SCAMP3, an isoform of the secretory carrier membrane proteins (SCAMPs) family, is a membrane-trafficking protein involved in endosome transport. Previous microarray data showed that SCAMP3 mRNA is highly expressed in hepatocellular carcinoma (HCC). In this study, the expression and clinical significance of SCAMP3 in 100 pairs of HCC and adjacent normal tissue were investigated. siRNA transfection was performed to silence SCAMP3 expression in HCC cells. The MTS assay and flow cytometry were used to detect the proliferation, cell cycle progression of HCC cells. Compared with adjacent normal tissues, SCAMP3 expression was dramatically increased in HCC tissues demonstrated by Western blotting (P < 0.05). In immunohistochemistry, compared with the adjacent normal tissues, SCAMP3 was detected in 96% of the HCC samples with a significant increase in intensity and number of stained cells (P < 0.05). Also, high SCAMP3 expression was found in 86% of the HCC samples (P < 0.05). The increased SCAMP3 expression was significantly correlated with vascular invasion (P = 0.004) and tumor stage (P = 0.001). Univariate and multivariate survival analyses showed that the expression of SCAMP3 was an independent prognostic factor of overall survival of HCC patients. Knockdown of SCAMP3 expression led to suppression of cell proliferation and blockage of cell cycle of HCC cells. In conclusion, our present study suggested that SCAMP3 may serve as a promising prognostic biomarker and molecular target of HCC and further investigation is warranted.
Collapse
|
22
|
Guo J, Miao Y, Cai Y. Analysis of Membrane Protein Topology in the Plant Secretory Pathway. Methods Mol Biol 2017; 1662:87-95. [PMID: 28861819 DOI: 10.1007/978-1-4939-7262-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Topology of membrane proteins provides important information for the understanding of protein function and intermolecular associations. Integrate membrane proteins are generally transported from endoplasmic reticulum (ER) to Golgi and downstream compartments in the plant secretory pathway. Here, we describe a simple method to study membrane protein topology along the plant secretory pathway by transiently coexpressing a fluorescent protein (XFP)-tagged membrane protein and an ER export inhibitor protein, ARF1 (T31N), in tobacco BY-2 protoplast. By fractionation, microsome isolation, and trypsin digestion, membrane protein topology could be easily detected by either direct confocal microscopy imaging or western-blot analysis using specific XFP antibodies. A similar strategy in determining membrane protein topology could be widely adopted and applied to protein analysis in a broad range of eukaryotic systems, including yeast cells and mammalian cells.
Collapse
Affiliation(s)
- Jinya Guo
- Department of Bioengineering, Sichuan Agricultural University, Sichuan, 625014, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Yi Cai
- Department of Bioengineering, Sichuan Agricultural University, Sichuan, 625014, China.
| |
Collapse
|
23
|
Abstract
In plant secretory pathways, the Golgi apparatus serves as the major sorting hub to receive de novo synthesized protein from the endoplasmic reticulum for further sorting to post-Golgi compartments or for residence in the cisternae of Golgi stacks. Meanwhile, Golgi functions as a pivotal biochemical factory to make modifications of N-glycans and to produce mature glycoproteins. Fluorescent tag-based confocal microscopy in combination with the brefeldin A drug or the genetic tools to disturb Golgi function have been shown as powerful approaches to analyze Golgi-mediated protein traffic in transiently expressed plant protoplasts or in stably expressed transgenic plants. Various endoglycosidases like Endo H and PNGase F have been widely used to monitor Golgi-mediated glycosylation of secretory proteins. Here, using fluorescently tagged Golgi-resident proteins and known glycosylated proteins as examples, we describe detailed protocols to analyze Golgi-mediated protein traffic and glycosylation in transiently expressed protoplasts derived from Arabidopsis suspension culture cells and in stably expressed transgenic plants.
Collapse
Affiliation(s)
- Wenjin Shen
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhidan Xiao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jinbo Shen
- State Key Laboratory of Agrobiotechnology, Centre for Cell and Developmental Biology, School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Wang H, Zhuang X, Wang X, Law AHY, Zhao T, Du S, Loy MMT, Jiang L. A Distinct Pathway for Polar Exocytosis in Plant Cell Wall Formation. PLANT PHYSIOLOGY 2016; 172:1003-1018. [PMID: 27531442 PMCID: PMC5047090 DOI: 10.1104/pp.16.00754] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/08/2016] [Indexed: 05/02/2023]
Abstract
Post-Golgi protein sorting and trafficking to the plasma membrane (PM) is generally believed to occur via the trans-Golgi network (TGN). In this study using Nicotiana tabacum pectin methylesterase (NtPPME1) as a marker, we have identified a TGN-independent polar exocytosis pathway that mediates cell wall formation during cell expansion and cytokinesis. Confocal immunofluorescence and immunogold electron microscopy studies demonstrated that Golgi-derived secretory vesicles (GDSVs) labeled by NtPPME1-GFP are distinct from those organelles belonging to the conventional post-Golgi exocytosis pathway. In addition, pharmaceutical treatments, superresolution imaging, and dynamic studies suggest that NtPPME1 follows a polar exocytic process from Golgi-GDSV-PM/cell plate (CP), which is distinct from the conventional Golgi-TGN-PM/CP secretion pathway. Further studies show that ROP1 regulates this specific polar exocytic pathway. Taken together, we have demonstrated an alternative TGN-independent Golgi-to-PM polar exocytic route, which mediates secretion of NtPPME1 for cell wall formation during cell expansion and cytokinesis and is ROP1-dependent.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiaohong Zhuang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Xiangfeng Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Teng Zhao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Shengwang Du
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Michael M T Loy
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China (H.W., X.Z., X.W., A.H.Y.L., L.J.);College of Life Sciences, South China Agricultural University, Guangzhou 510642, China (H.W.);Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (T.Z., S.D., M.M.T.L.);Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China (S.D.); andCUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China (L.J.)
| |
Collapse
|
25
|
Zhao T, Lau SC, Wang Y, Su Y, Wang H, Cheng A, Herrup K, Ip NY, Du S, Loy MMT. Multicolor 4D Fluorescence Microscopy using Ultrathin Bessel Light Sheets. Sci Rep 2016; 6:26159. [PMID: 27189786 PMCID: PMC4870613 DOI: 10.1038/srep26159] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 04/26/2016] [Indexed: 01/06/2023] Open
Abstract
We demonstrate a simple and efficient method for producing ultrathin Bessel (‘non-diffracting’) light sheets of any color using a line-shaped beam and an annulus filter. With this robust and cost-effective technology, we obtained two-color, 3D images of biological samples with lateral/axial resolution of 250 nm/400 nm, and high-speed, 4D volume imaging of 20 μm sized live sample at 1 Hz temporal resolution.
Collapse
Affiliation(s)
- Teng Zhao
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Sze Cheung Lau
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ying Wang
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yumian Su
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hao Wang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Aifang Cheng
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Karl Herrup
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Nancy Y Ip
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shengwang Du
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.,Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - M M T Loy
- Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
26
|
Zhou A, Bu Y, Takano T, Zhang X, Liu S. Conserved V-ATPase c subunit plays a role in plant growth by influencing V-ATPase-dependent endosomal trafficking. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:271-83. [PMID: 25917395 PMCID: PMC11388952 DOI: 10.1111/pbi.12381] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 03/10/2015] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
In plant cells, the vacuolar-type H(+)-ATPases (V-ATPase) are localized in the tonoplast, Golgi, trans-Golgi network and endosome. However, little is known about how V-ATPase influences plant growth, particularly with regard to the V-ATPase c subunit (VHA-c). Here, we characterized the function of a VHA-c gene from Puccinellia tenuiflora (PutVHA-c) in plant growth. Compared to the wild-type, transgenic plants overexpressing PutVHA-c in Arabidopsis thaliana exhibit better growth phenotypes in root length, fresh weight, plant height and silique number under the normal and salt stress conditions due to noticeably higher V-ATPase activity. Consistently, the Arabidopsis atvha-c5 mutant shows reduced V-ATPase activity and retarded plant growth. Furthermore, confocal and immunogold electron microscopy assays demonstrate that PutVHA-c is mainly localized to endosomal compartments. The treatment of concanamycin A (ConcA), a specific inhibitor of V-ATPases, leads to obvious aggregation of the endosomal compartments labelled with PutVHA-c-GFP. Moreover, ConcA treatment results in the abnormal localization of two plasma membrane (PM) marker proteins Pinformed 1 (AtPIN1) and regulator of G protein signalling-1 (AtRGS1). These findings suggest that the decrease in V-ATPase activity blocks endosomal trafficking. Taken together, our results strongly suggest that the PutVHA-c plays an important role in plant growth by influencing V-ATPase-dependent endosomal trafficking.
Collapse
Affiliation(s)
- Aimin Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Yuanyuan Bu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Tetsuo Takano
- Asian Natural Environmental Science Center, The University of Tokyo, Nishitokyo-shi, Tokyo, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| | - Shenkui Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, China
| |
Collapse
|
27
|
Li C, Yeh FL, Cheung AY, Duan Q, Kita D, Liu MC, Maman J, Luu EJ, Wu BW, Gates L, Jalal M, Kwong A, Carpenter H, Wu HM. Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis. eLife 2015; 4. [PMID: 26052747 PMCID: PMC4458842 DOI: 10.7554/elife.06587] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/13/2015] [Indexed: 11/13/2022] Open
Abstract
The Arabidopsis receptor kinase FERONIA (FER) is a multifunctional regulator for plant growth and reproduction. Here we report that the female gametophyte-expressed glycosylphosphatidylinositol-anchored protein (GPI-AP) LORELEI and the seedling-expressed LRE-like GPI-AP1 (LLG1) bind to the extracellular juxtamembrane region of FER and show that this interaction is pivotal for FER function. LLG1 interacts with FER in the endoplasmic reticulum and on the cell surface, and loss of LLG1 function induces cytoplasmic retention of FER, consistent with transport of FER from the endoplasmic reticulum to the plasma membrane in a complex with LLG1. We further demonstrate that LLG1 is a component of the FER-regulated RHO GTPase signaling complex and that fer and llg1 mutants display indistinguishable growth, developmental and signaling phenotypes, analogous to how lre and fer share similar reproductive defects. Together our results support LLG1/LRE acting as a chaperone and co-receptor for FER and elucidate a mechanism by which GPI-APs enable the signaling capacity of a cell surface receptor. DOI:http://dx.doi.org/10.7554/eLife.06587.001 Plants respond to changes in their environment by altering how they grow and when they reproduce. A protein called FERONIA is found in most types of cells and regulates many of the processes that drive these responses, such as cell growth and communication between male and female cells. FERONIA sits in the membrane that surrounds the cell, where it can detect molecules in the cell wall and from outside the cell, and send signals to locations within the cell. However, it is not clear how FERONIA is able to specifically regulate different processes to produce the right response in a particular cell at a particular time. A family of proteins called glycosylphosphatidylinositol-anchored proteins (GPI-APs for short) play important roles in plants, animals, and other eukaryotic organisms. Li et al. studied FERONIA and two closely related GPI-APs called LLG1—which is produced in seedlings, and LORELEI, which is only found in female sex cells. The experiments show that plants missing either LLG1 or FERONIA had similar defects in growth and in how they respond to plant hormones. Plants missing LORELEI had similar defects in their ability to reproduce as the plants missing FERONIA. This suggests that FERONIA works with either LLG1 or LORELEI to regulate similar processes in different situations. Li et al. found that FERONIA binds to LLG1 in a compartment within the cell called the endoplasmic reticulum—where proteins are assembled—before both proteins are moved together to the cell membrane. In the absence of LLG1, FERONIA fails to reach the cell membrane, and a large amount of FERONIA remains trapped in the endoplasmic reticulum. Therefore, LLG1 acts as a ‘chaperone’ that delivers FERONIA to the membrane where it is required to regulate plant growth. Li et al. found that LORELEI also interacts with FERONIA. Both LLG1 and LORELEI bind to the same region of FERONIA, which is on the outer surface of the cell membrane. These findings show that FERONIA is able to perform different roles in cells by teaming up with different members of the GPI-AP family of proteins. The next challenges will be to find out if, and how, LLG1 and LORELEI affect the ability of FERONIA to respond to signals from the cell wall and outside the cell. DOI:http://dx.doi.org/10.7554/eLife.06587.002
Collapse
Affiliation(s)
- Chao Li
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Fang-Ling Yeh
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Qiaohong Duan
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Daniel Kita
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Ming-Che Liu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Jacob Maman
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Emily J Luu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Brendan W Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Laura Gates
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Methun Jalal
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Amy Kwong
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Hunter Carpenter
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| | - Hen-Ming Wu
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States
| |
Collapse
|
28
|
Chevalier AS, Chaumont F. Trafficking of plant plasma membrane aquaporins: multiple regulation levels and complex sorting signals. PLANT & CELL PHYSIOLOGY 2015; 56:819-29. [PMID: 25520405 PMCID: PMC7107115 DOI: 10.1093/pcp/pcu203] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 12/04/2014] [Indexed: 05/21/2023]
Abstract
Aquaporins are small channel proteins which facilitate the diffusion of water and small neutral molecules across biological membranes. Compared with animals, plant genomes encode numerous aquaporins, which display a large variety of subcellular localization patterns. More specifically, plant aquaporins of the plasma membrane intrinsic protein (PIP) subfamily were first described as plasma membrane (PM)-resident proteins, but recent research has demonstrated that the trafficking and subcellular localization of these proteins are complex and highly regulated. In the past few years, PIPs emerged as new model proteins to study subcellular sorting and membrane dynamics in plant cells. At least two distinct sorting motifs (one cytosolic, the other buried in the membrane) are required to direct PIPs to the PM. Hetero-oligomerization and interaction with SNAREs (soluble N-ethylmaleimide-sensitive factor protein attachment protein receptors) also influence the subcellular trafficking of PIPs. In addition to these constitutive processes, both the progression of PIPs through the secretory pathway and their dynamics at the PM are responsive to changing environmental conditions.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4, L7.07.14, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
Chevalier AS, Bienert GP, Chaumont F. A new LxxxA motif in the transmembrane Helix3 of maize aquaporins belonging to the plasma membrane intrinsic protein PIP2 group is required for their trafficking to the plasma membrane. PLANT PHYSIOLOGY 2014; 166:125-38. [PMID: 24989232 PMCID: PMC4149701 DOI: 10.1104/pp.114.240945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Aquaporins play important roles in maintaining plant water status under challenging environments. The regulation of aquaporin density in cell membranes is essential to control transcellular water flows. This work focuses on the maize (Zea mays) plasma membrane intrinsic protein (ZmPIP) aquaporin subfamily, which is divided into two sequence-related groups (ZmPIP1s and ZmPIP2s). When expressed alone in mesophyll protoplasts, ZmPIP2s are efficiently targeted to the plasma membrane, whereas ZmPIP1s are retained in the endoplasmic reticulum (ER). A protein domain-swapping approach was utilized to demonstrate that the transmembrane domain3 (TM3), together with the previously identified N-terminal ER export diacidic motif, account for the differential localization of these proteins. In addition to protoplasts, leaf epidermal cells transiently transformed by biolistic particle delivery were used to confirm and refine these results. By generating artificial proteins consisting of a single transmembrane domain, we demonstrated that the TM3 of ZmPIP1;2 or ZmPIP2;5 discriminates between ER and plasma membrane localization, respectively. More specifically, a new LxxxA motif in the TM3 of ZmPIP2;5, which is highly conserved in plant PIP2s, was shown to regulate its anterograde routing along the secretory pathway, particularly its export from the ER.
Collapse
Affiliation(s)
- Adrien S Chevalier
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Gerd Patrick Bienert
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - François Chaumont
- Institut des Sciences de la Vie, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
30
|
Kobae Y, Fujiwara T. Earliest colonization events of Rhizophagus irregularis in rice roots occur preferentially in previously uncolonized cells. PLANT & CELL PHYSIOLOGY 2014; 55:1497-510. [PMID: 24899551 DOI: 10.1093/pcp/pcu081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Arbuscular mycorrhizal (AM) fungi form a symbiotic association with several plant species. An arbuscule, a finely branched structure of AM fungi, is formed in root cells and plays essential roles in resource exchange. Because arbuscules are ephemeral, host cells containing collapsed arbuscules can be recolonized, and a wide region of roots can be continuously colonized by AM fungi, suggesting that repetitive recolonization in root cells is required for continuous mycorrhization. However, recolonization frequency has not been quantified because of the lack of appropriate markers for visualization of the cellular processes after arbuscule collapse; therefore, the nature of the colonization sequence remains uncertain. Here we observed that a green fluorescent protein (GFP)-tagged secretory carrier membrane protein (SCAMP) of rice was expressed even in cells with collapsed arbuscules, allowing live imaging coupled with GFP-SCAMP to evaluate the colonization and recolonization sequences. The average lifetime of intact arbuscules was 1-2 d. Cells with collapsed arbuscules were rarely recolonized and formed a new arbuscule during the observation period of 5 d, whereas de novo colonization occurred even in close proximity to cells containing collapsed arbuscules and contributed to the expansion of the colonized region. Colonization spread into an uncolonized region of roots but sparsely into a previously colonized region having no metabolically active arbuscule but several intercellular hyphae. Therefore, we propose that a previously colonized region tends to be intolerant to new colonization in rice roots. Our observations highlight the overlooked negative impact of the degeneration stage of arbuscules in the colonization sequence.
Collapse
Affiliation(s)
- Yoshihiro Kobae
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, 113-8657 Japan
| |
Collapse
|
31
|
Gao C, Cai Y, Wang Y, Kang BH, Aniento F, Robinson DG, Jiang L. Retention mechanisms for ER and Golgi membrane proteins. TRENDS IN PLANT SCIENCE 2014; 19:508-15. [PMID: 24794130 DOI: 10.1016/j.tplants.2014.04.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 03/27/2014] [Accepted: 04/03/2014] [Indexed: 05/18/2023]
Abstract
Unless there are mechanisms to selectively retain membrane proteins in the endoplasmic reticulum (ER) or in the Golgi apparatus, they automatically proceed downstream to the plasma or vacuole membranes. Two types of coat protein complex I (COPI)-interacting motifs in the cytosolic tails of membrane proteins seem to facilitate membrane retention in the early secretory pathway of plants: a dilysine (KKXX) motif (which is typical of p24 proteins) for the ER and a KXE/D motif (which occurs in the Arabidopsis endomembrane protein EMP12) for the Golgi apparatus. The KXE/D motif is highly conserved in all eukaryotic EMPs and is additionally present in hundreds of other proteins of unknown subcellular localization and function. This novel signal may represent a new general mechanism for Golgi targeting and the retention of polytopic integral membrane proteins.
Collapse
Affiliation(s)
- Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yejun Wang
- Vaccine and Infectious Disease Organization, University of Saskatchewan, 120 Veterinary Road, Saskatoon, SK, S7N5E3, Canada
| | - Byung-Ho Kang
- Microbiology and Cell Science, University of Florida, Gainesville, FL 32611, USA
| | - Fernando Aniento
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad de Valencia, Spain
| | - David G Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| |
Collapse
|
32
|
Retzer K, Butt H, Korbei B, Luschnig C. The far side of auxin signaling: fundamental cellular activities and their contribution to a defined growth response in plants. PROTOPLASMA 2014; 251:731-46. [PMID: 24221297 PMCID: PMC4059964 DOI: 10.1007/s00709-013-0572-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 05/04/2023]
Abstract
Recent years have provided us with spectacular insights into the biology of the plant hormone auxin, leaving the impression of a highly versatile molecule involved in virtually every aspect of plant development. A combination of genetics, biochemistry, and cell biology has established auxin signaling pathways, leading to the identification of two distinct modes of auxin perception and downstream regulatory cascades. Major targets of these signaling modules are components of the polar auxin transport machinery, mediating directional distribution of the phytohormone throughout the plant body, and decisively affecting plant development. Alterations in auxin transport, metabolism, or signaling that occur as a result of intrinsic as well as environmental stimuli, control adjustments in morphogenetic programs, giving rise to defined growth responses attributed to the activity of the phytohormone. Some of the results obtained from the analysis of auxin, however, do not fit coherently into a picture of highly specific signaling events, but rather suggest mutual interactions between auxin and fundamental cellular pathways, like the control of intracellular protein sorting or translation. Crosstalk between auxin and these basic determinants of cellular activity and how they might shape auxin effects in the control of morphogenesis are the subject of this review.
Collapse
Affiliation(s)
- Katarzyna Retzer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Haroon Butt
- Department of Biological Sciences, Forman Christian College, Ferozepur Road, Lahore, 54600 Pakistan
| | - Barbara Korbei
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| | - Christian Luschnig
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, BOKU, Wien Muthgasse 18, 1190 Wien, Austria
| |
Collapse
|
33
|
Shen J, Fu J, Ma J, Wang X, Gao C, Zhuang C, Wan J, Jiang L. Isolation, culture, and transient transformation of plant protoplasts. CURRENT PROTOCOLS IN CELL BIOLOGY 2014; 63:2.8.1-17. [PMID: 24894837 DOI: 10.1002/0471143030.cb0208s63] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Transient gene expression in protoplasts, which has been used in several plant species, is an important and versatile tool for rapid functional gene analysis, protein subcellular localization, and biochemical manipulations. This unit describes transient gene expression by electroporation of DNA into protoplasts of Arabidopsis or tobacco suspension-cultured cells and by polyethylene glycol (PEG)-mediated DNA transformation into protoplasts derived from rice leaf sheaths. PEG-mediated DNA transformation for transient gene expression in rice protoplasts in suspension culture is also described as an alternative technique. Methods for collecting intracellular and secreted proteins are also provided.
Collapse
Affiliation(s)
- Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hyodo K, Kaido M, Okuno T. Traffic jam on the cellular secretory pathway generated by a replication protein from a plant RNA virus. PLANT SIGNALING & BEHAVIOR 2014; 9:e28644. [PMID: 24714629 PMCID: PMC4091560 DOI: 10.4161/psb.28644] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/25/2014] [Indexed: 05/29/2023]
Abstract
Although positive-strand RNA [(+)RNA] viruses have a limited coding capacity, they can replicate efficiently in host cells because of their ability to use host-derived proteins, membranes, lipids, and metabolites, and to rewire cellular trafficking pathways. Previously, we showed that a plant RNA virus, the Red clover necrotic mosaic virus (RCNMV), hijacked Arf1 and Sar1, which are small GTPases that regulate the biogenesis of COPI and COPII vesicles, respectively, for viral RNA replication. These small GTPases are relocated from appropriate subcellular compartments to the viral RNA replication sites by p27 replication protein, which raises the possibility that RCNMV interferes with the cellular secretory pathway. Here, we examined this possibility by using green fluorescent protein-fused rice SCAMP1 and Arabidopsis LRR84A as secretory pathway marker proteins and showed that p27 inhibited the trafficking of these proteins. RCNMV-mediated inhibition of the host secretion pathway and its possible impact on plant-virus interaction are discussed.
Collapse
|
35
|
Ding Y, Wang J, Chun Lai JH, Ling Chan VH, Wang X, Cai Y, Tan X, Bao Y, Xia J, Robinson DG, Jiang L. Exo70E2 is essential for exocyst subunit recruitment and EXPO formation in both plants and animals. Mol Biol Cell 2013; 25:412-26. [PMID: 24307681 PMCID: PMC3907280 DOI: 10.1091/mbc.e13-10-0586] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In contrast to a single copy of Exo70 in yeast and mammals, the Arabidopsis genome contains 23 paralogues of Exo70 (AtExo70). Using AtExo70E2 and its GFP fusion as probes, we recently identified a novel double-membrane organelle termed exocyst-positive organelle (EXPO) that mediates an unconventional protein secretion in plant cells. Here we further demonstrate that AtExo70E2 is essential for exocyst subunit recruitment and for EXPO formation in both plants and animals. By performing transient expression in Arabidopsis protoplasts, we established that a number of exocyst subunits (especially the members of the Sec family) are unable to be recruited to EXPO in the absence of AtExo70E2. The paralogue AtExo70A1 is unable to substitute for AtExo70E2 in this regard. Fluorescence resonance energy transfer assay and bimolecular fluorescence complementation analyses confirm the interaction between AtExo70E2 and Sec6 and Sec10. AtExo70E2, but not its yeast counterpart, is also capable of inducing EXPO formation in an animal cell line (HEK293A cells). Electron microscopy confirms the presence of double-membraned, EXPO-like structures in HEK293A cells expressing AtExo70E2. Inversely, neither human nor yeast Exo70 homologues cause the formation of EXPO in Arabidopsis protoplasts. These results point to a specific and crucial role for AtExo70E2 in EXPO formation.
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China Division of Life Science, Division of Biomedical Engineering and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, D-69120 Heidelberg, Germany Shenzhen Research Institute, Chinese University of Hong Kong, Shenzhen 518057, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wang H, Zhuang X, Cai Y, Cheung AY, Jiang L. Apical F-actin-regulated exocytic targeting of NtPPME1 is essential for construction and rigidity of the pollen tube cell wall. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:367-79. [PMID: 23906068 DOI: 10.1111/tpj.12300] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/15/2013] [Accepted: 07/18/2013] [Indexed: 05/03/2023]
Abstract
In tip-confined growing pollen tubes, delivery of newly synthesized cell wall materials to the rapidly expanding apical surface requires spatial organization and temporal regulation of the apical F-actin filament and exocytosis. In this study, we demonstrate that apical F-actin is essential for the rigidity and construction of the pollen tube cell wall by regulating exocytosis of Nicotiana tabacum pectin methylesterase (NtPPME1). Wortmannin disrupts the spatial organization of apical F-actin in the pollen tube tip and inhibits polar targeting of NtPPME1, which subsequently alters the rigidity and pectic composition of the pollen tube cell wall, finally causing growth arrest of the pollen tube. In addition to mechanistically linking cell wall construction and apical F-actin, wortmannin can be used as a useful tool for studying endomembrane trafficking and cytoskeletal organization in pollen tubes.
Collapse
Affiliation(s)
- Hao Wang
- School of Life Sciences, Centre for Cell and Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | |
Collapse
|
37
|
Hu G, Suo Y, Huang J. A crucial role of the RGS domain in trans-Golgi network export of AtRGS1 in the protein secretory pathway. MOLECULAR PLANT 2013; 6:1933-1944. [PMID: 23793400 DOI: 10.1093/mp/sst109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The secretory pathway is responsible for the transport of newly synthesized transmembrane proteins from the endoplasmic reticulum to their destinations via the Golgi/trans-Golgi network (TGN). Cargo proteins at each station are actively sorted by specific sorting signals on the cargo and the corresponding coat complexes. Here, we used the Arabidopsis regulator of G-protein signaling (AtRGS1), which contains an N-terminal potentially sensing glucose seven-transmembrane domain and a C-terminal RGS domain, as a model to uncover sorting motifs required for its cell surface expression. Expression of wild-type and truncated or mutated AtRGS1 fluorescent fusion proteins identified two cysteine residues in the extracellular N-terminus that are essential for endoplasmic reticulum exit and/or correct folding of AtRGS1. The linker between the seven-transmembrane and RGS domains contains an endoplasmic reticulum export signal, whereas the C-terminus is dispensable for the plasma membrane expression of AtRGS1. Interestingly, deletion of the RGS domain results in Golgi/TGN localization of the truncated AtRGS1. Further analysis using site-directed mutagenesis showed that a tyrosine-based motif embedded in the RGS domain is essential for Golgi/TGN export of AtRGS1. These results reveal a new role for the RGS domain in regulating AtRGS1 trafficking from the Golgi/TGN to the plasma membrane and explain the interaction between the seven-transmembrane and RGS domains.
Collapse
Affiliation(s)
- Guangzhen Hu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Feng Lin Road, Shanghai 200032, China
| | | | | |
Collapse
|
38
|
Jia T, Gao C, Cui Y, Wang J, Ding Y, Cai Y, Ueda T, Nakano A, Jiang L. ARA7(Q69L) expression in transgenic Arabidopsis cells induces the formation of enlarged multivesicular bodies. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2817-29. [PMID: 23682115 PMCID: PMC3697957 DOI: 10.1093/jxb/ert125] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arabidopsis thaliana ARA7 (AtRabF2b), a member of the plant Rab5 small GTPases functioning in the vacuolar transport pathway, localizes to pre-vacuolar compartments (PVCs), known as multivesicular bodies (MVBs) in plant cells. Overexpression of the constitutively active GTP-bound mutant of ARA7, ARA7(Q69L), induces the formation of large ring-like structures (1-2 µm in diameter). To better understand the biology of these ARA7(Q69L)-induced ring-like structures, transgenic Arabidopsis cell lines expressing ARA7(Q69L) tagged with green fluorescent protein (GFP) under the control of a heat shock-inducible promoter were generated. In these transgenic cells, robust ring-like structures were formed after 4 h of heat shock induction. Transient co-expression, confocal imaging, and immunogold electron microscopy (immunogold-EM) experiments demonstrated that these GFP-ARA7(Q69L)-labelled ring-like structures were distinct from the Golgi apparatus and trans-Golgi network, but were labelled with an antibody against an MVB marker protein. In addition, live cell imaging and detailed EM analysis showed that the GFP-ARA7(Q69L)-induced spherical structures originated from the homotypic fusion of MVBs. In summary, it was demonstrated that GFP-ARA7(Q69L) expression is an efficient tool for studying PVC/MVB-mediated protein trafficking and vacuolar degradation in plant cells.
Collapse
Affiliation(s)
- Tianran Jia
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Caiji Gao
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yong Cui
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akihiko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Molecular Membrane Biology Laboratory, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
39
|
Wang J, Shen J, Cai Y, Robinson DG, Jiang L. Successful transport to the vacuole of heterologously expressed mung bean 8S globulin occurs in seed but not in vegetative tissues. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1587-601. [PMID: 23382549 PMCID: PMC3617825 DOI: 10.1093/jxb/ert014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
This study investigated the subcellular location of mung bean (Vigna radiata) 8S globulin in transient expression systems as well as in tobacco (Nicotiana tabacum) BY-2 cells and different tissues from a transgenic Arabidopsis (Arabidopsis thaliana) line stably expressing this storage globulin. When transiently expressed in protoplasts from both BY-2 cells and Arabidopsis suspension cultured cells, the 8S globulin located to structures that were neither Golgi nor pre-vacuolar compartments (PVCs). Immunogold electron microscopy of the transgenics reveals the 8S globulin-positive structures to be small, spherical, ribosome-covered endoplasmic reticulum (ER)-derived bodies. In BY-2 cells and all vegetative cells, the 8S globulin was present as a pro-form. However, in Arabidopsis embryos, with the onset of endogenous storage protein synthesis, the 8S globulin exited the ER and passed through the PVC to the protein storage vacuole where it was processed to its smaller mature form. These results clearly demonstrated that, when taken out of context and expressed in vegetative cells, the mung bean 8S storage globulin cannot exit the ER, and indicate that natural targeting of storage proteins to the vacuole should be better studied in the maturing seed.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
- Department of Biology, South University of Science and Technology of China, Shenzhen, PR China
| | - Jinbo Shen
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| |
Collapse
|
40
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
41
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
42
|
Ding Y, Wang J, Wang J, Stierhof YD, Robinson DG, Jiang L. Unconventional protein secretion. TRENDS IN PLANT SCIENCE 2012; 17:606-15. [PMID: 22784825 DOI: 10.1016/j.tplants.2012.06.004] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/08/2012] [Accepted: 06/12/2012] [Indexed: 05/11/2023]
Abstract
It is generally believed that protein secretion or exocytosis is achieved via a conventional ER (endoplasmic reticulum)-Golgi-TGN (trans-Golgi network)-PM (plasma membrane) pathway in the plant endomembrane system. However, such signal peptide (SP)-dependent protein secretion cannot explain the increasing number of SP-lacking proteins which are found outside of the PM in plant cells. The process by which such leaderless secretory proteins (LSPs) gain access to the cell exterior is termed unconventional protein secretion (UPS) and has been well-studied in animal and yeast cells, but largely ignored by the plant community. Here, we review the evidence for UPS in plants especially in regard to the recently discovered EXPO (exocyst-positive-organelle).
Collapse
Affiliation(s)
- Yu Ding
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
43
|
Komarova NY, Meier S, Meier A, Grotemeyer MS, Rentsch D. Determinants for Arabidopsis peptide transporter targeting to the tonoplast or plasma membrane. Traffic 2012; 13:1090-105. [PMID: 22537078 DOI: 10.1111/j.1600-0854.2012.01370.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 04/19/2012] [Accepted: 04/26/2012] [Indexed: 12/29/2022]
Abstract
Di- and tripeptide transporters of the PTR/NRT1 (peptide transporter/nitrate transporter1)-family are localized either at the tonoplast (TP) or plasma membrane (PM). As limited information is available on structural determinants required for targeting of plant membrane proteins, we performed gene shuffling and domain swapping experiments of Arabidopsis PTRs. A 7 amino acid fragment of the hydrophilic N-terminal region of PTR2, PTR4 and PTR6 was required for TP localization and sufficient to redirect not only PM-localized PTR1 or PTR5, but also sucrose transporter SUC2 to the TP. Alanine scanning mutagenesis identified L(11) and I(12) of PTR2 to be essential for TP targeting, while only one acidic amino acid at position 5, 6 or 7 was required, revealing a dileucine (LL or LI) motif with at least one upstream acidic residue. Similar dileucine motifs could be identified in other plant TP transporters, indicating a broader role of this targeting motif in plants. Targeting to the PM required the loop between transmembrane domain 6 and 7 of PTR1 or PTR5. Deletion of either PM or TP targeting signals resulted in retention in internal membranes, indicating that PTR trafficking to these destination membranes requires distinct signals and is in both cases not by default.
Collapse
Affiliation(s)
- Nataliya Y Komarova
- Institute of Plant Sciences, University of Bern, Altenbergrain 21, 3013, Bern, Switzerland
| | | | | | | | | |
Collapse
|
44
|
Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L. Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 2012; 13:1023-40. [PMID: 22486829 DOI: 10.1111/j.1600-0854.2012.01360.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Revised: 04/02/2012] [Accepted: 04/04/2012] [Indexed: 12/31/2022]
Abstract
In plant cells, how integral plasma membrane (PM) proteins are degraded in a cargo ubiquitination-independent manner remains elusive. Here, we studied the degradative pathway of two plant PM proteins: AtLRR84A, a type I integral membrane protein belonging to the leucine-rich repeat receptor-like kinase protein family, and OsSCAMP1 (rice secretory carrier membrane protein 1), a tetraspan transmembrane protein located on the PM and trans-Golgi network (TGN) or early endosome (EE). Using wortmannin and ARA7(Q69L) mutant that could enlarge the multivesicular body (MVB) or prevacuolar compartment (PVC) as tools, we demonstrated that, when expressed as green fluorescent protein (GFP) fusions in tobacco BY-2 or Arabidopsis protoplasts, both AtLRR84A and OsSCAMP1 were degraded in the lytic vacuole via the internal vesicles of MVB/PVC in a cargo ubiquitination-independent manner. Such MVB/PVC-mediated vacuolar degradation of PM proteins was further supported by immunocytochemical electron microscopy (immunoEM) study showing the labeling of the fusions on the internal vesicles of the PVC/MVB. Thus, cargo ubiquitination-independent and PVC-mediated degradation of PM proteins in the vacuole is functionally operated in plant cells.
Collapse
Affiliation(s)
- Yi Cai
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Bandmann V, Homann U. Clathrin-independent endocytosis contributes to uptake of glucose into BY-2 protoplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:578-84. [PMID: 22211449 DOI: 10.1111/j.1365-313x.2011.04892.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In eukaryotic cells, several pathways exist for the internalization of plasma membrane proteins and extracellular cargo molecules. These endocytic pathways can be divided into clathrin-dependent and clathrin-independent pathways. While clathrin-dependent pathways are known to be involved in a variety of cellular processes in plants, clathrin-independent pathways have so far only been identified in animal and yeast cells. Here we show that internalization of fluorescent glucose into BY-2 cells leads to accumulation of the sugar in compartments of the endocytic pathway. This endocytic uptake of glucose was not blocked by ikarugamycin, an inhibitor of clathrin-dependent endocytosis, suggesting a role for clathrin-independent endocytosis in glucose uptake. Investigations of fusion and fission of single vesicles by membrane capacitance measurements revealed stimulation of endocytic activity by extracellular glucose. Glucose-stimulated fission of vesicles was not affected by addition of ikarugamycin or blocking of clathrin coat formation by transient over-expression of HUB1 (the C-terminal part of the clathrin heavy chain). These data demonstrate that clathrin-independent endocytosis does occur in plant cells. This pathway may represent a common mechanism for the uptake of external nutrients.
Collapse
Affiliation(s)
- Vera Bandmann
- Institut für Botanik, Technische Universität Darmstadt, Schnittspahnstraße 3-5, Darmstadt, Germany
| | | |
Collapse
|
46
|
Sun F, Suen PK, Zhang Y, Liang C, Carrie C, Whelan J, Ward JL, Hawkins ND, Jiang L, Lim BL. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. THE NEW PHYTOLOGIST 2012; 194:206-219. [PMID: 22269069 DOI: 10.1111/j.1469-8137.2011.04026.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
• Overexpression of AtPAP2, a purple acid phosphatase (PAP) with a unique C-terminal hydrophobic motif in Arabidopsis, resulted in earlier bolting and a higher seed yield. Metabolite analysis showed that the shoots of AtPAP2 overexpression lines contained higher levels of sugars and tricarboxylic acid (TCA) metabolites. Enzyme assays showed that sucrose phosphate synthase (SPS) activity was significantly upregulated in the overexpression lines. The higher SPS activity arose from a higher level of SPS protein, and was independent of SnRK1. • AtPAP2 was found to be targeted to both plastids and mitochondria via its C-terminal hydrophobic motif. Ectopic expression of a truncated AtPAP2 without this C-terminal motif in Arabidopsis indicated that the subcellular localization of AtPAP2 is essential for its biological actions. • Plant PAPs are generally considered to mediate phosphorus acquisition and redistribution. AtPAP2 is the first PAP shown to modulate carbon metabolism and the first shown to be dual-targeted to both plastids and mitochondria by a C-terminal targeting signal. • One PAP-like sequence carrying a hydrophobic C-terminal motif could be identified in the genome of the smallest free-living photosynthetic eukaryote, Ostreococcus tauri. This might reflect a common ancestral function of AtPAP2-like sequences in the regulation of carbon metabolism.
Collapse
Affiliation(s)
- Feng Sun
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Pui Kit Suen
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Youjun Zhang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chao Liang
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chris Carrie
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley WA 6009, Australia
| | - Jane L Ward
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Nathaniel D Hawkins
- National Centre for Plant and Microbial Metabolomics, Rothamsted Research, West Common, Harpenden, Herts, AL5 2JQ, UK
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, the Chinese University of Hong Kong, Hong Kong, China
| | - Boon Leong Lim
- School of Biological Sciences, the University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
47
|
Law AHY, Chow CM, Jiang L. Secretory carrier membrane proteins. PROTOPLASMA 2012; 249:269-83. [PMID: 21633931 DOI: 10.1007/s00709-011-0295-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Accepted: 05/22/2011] [Indexed: 05/24/2023]
Abstract
Secretory carrier membrane proteins (SCAMPs) are a family of integral membrane proteins that play roles in mediating exocytosis in animal cells. However, relatively little is known about the subcellular localization, trafficking, and function of SCAMPs in plants. Several recent studies in plant cells indicate that plant SCAMPs share many similarities with their mammalian homologs although there are differences. In this review, we will first summarize and compare animal and plant SCAMPs in terms of their subcellular localization, trafficking, and possible functions. We will then present a phylogenetic analysis of plant and animal SCAMPs. Finally, we will present expression analysis on selective Arabidopsis SCAMPs in the hope of pointing to directions for functional characterization of plant SCAMPs in the future.
Collapse
Affiliation(s)
- Angus Ho Yin Law
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
48
|
Cheng X, Wang H. Multiple targeting motifs direct NRAMP1 into lysosomes. Biochem Biophys Res Commun 2012; 419:578-83. [PMID: 22382021 DOI: 10.1016/j.bbrc.2012.02.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/12/2012] [Indexed: 11/16/2022]
Abstract
Natural resistance-associated macrophage protein 1 (NRAMP1) containing 548 amino acids (AA) and 12 transmembrane domains (TMDs) is localized in membranes of lysosomes. Our study aimed to investigate the targeting motifs of NRAMP1 by expressing GFP-tagged full-length and truncated NRAMP1 proteins and overlapping with the lysosomal marker Lamp1-RFP in Chinese hamster ovary (CHO) cells. The NH(2)-terminal amino acids 73-140 region including TMD2 was essential for NRAMP1 lysosomal targeting. The AA.263-334 region containing the tyrosine-based motif (327)YAPI(330) targeted NRAMP1 into lysosomes. Additionally, two internal signal peptides AA.451-483 and AA.489-522 were identified as lysosomal targeting motifs. Taken together, NRAMP1 consists of multiple targeting motifs for trafficking into lysosomes.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | |
Collapse
|
49
|
Wang J, Tse YC, Hinz G, Robinson DG, Jiang L. Storage globulins pass through the Golgi apparatus and multivesicular bodies in the absence of dense vesicle formation during early stages of cotyledon development in mung bean. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:1367-80. [PMID: 22143915 PMCID: PMC3276096 DOI: 10.1093/jxb/err366] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During seed development and maturation, large amounts of storage proteins are synthesized and deposited in protein storage vacuoles (PSVs). Multiple mechanisms have been proposed to be responsible for transporting storage proteins to PSVs in developing seeds. In this study, a specific antibody was raised against the mung bean (Vigna radiata) seed storage protein 8S globulin and its deposition was followed via immunogold electron microscopy in developing mung bean cotyledons. It is demonstrated that non-aggregated 8S globulins are present in multivesicular bodies (MVBs) in early stages of cotyledon development where neither dense vesicles (DVs) nor a PSV were recognizable. However, at later stages of cotyledon development, condensed globulins were visible in both DVs and distinct MVBs with a novel form of partitioning, with the internal vesicles being pushed to one sector of this organelle. These distinct MVBs were no longer sensitive to wortmannin. This study thus indicates a possible role for MVBs in transporting storage proteins to PSVs during the early stage of seed development prior to the involvement of DVs. In addition, wortmannin treatment is shown to induce DVs to form aggregates and to fuse with the plasma membrane.
Collapse
Affiliation(s)
- Junqi Wang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yu Chung Tse
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Giselbert Hinz
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - David G. Robinson
- Department of Plant Cell Biology, Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Popescu SC. A model for the biosynthesis and transport of plasma membrane-associated signaling receptors to the cell surface. FRONTIERS IN PLANT SCIENCE 2012; 3:71. [PMID: 22639660 PMCID: PMC3355576 DOI: 10.3389/fpls.2012.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 03/26/2012] [Indexed: 05/03/2023]
Abstract
Intracellular protein transport is emerging as critical in determining the outcome of receptor-activated signal transduction pathways. In plants, relatively little is known about the nature of the molecular components and mechanisms involved in coordinating receptor synthesis and transport to the cell surface. Recent advances in this field indicate that signaling pathways and intracellular transport machinery converge and coordinate to render receptors competent for signaling at their plasma membrane (PM) activity sites. The biogenesis and transport to the cell surface of signaling receptors appears to require both general trafficking and receptor-specific factors. Several molecular determinants, residing or associated with compartments of the secretory pathway and known to influence aspects in receptor biogenesis, are discussed and integrated into a predictive cooperative model for the functional expression of signaling receptors at the PM.
Collapse
Affiliation(s)
- Sorina C. Popescu
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
- *Correspondence: Sorina C. Popescu, Boyce Thompson Institute for Plant Research, Tower Road, Ithaca, NY 14853, USA. e-mail:
| |
Collapse
|