1
|
Li S, Zhang J, Chen C, Ali A, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B. Single-cell transcriptomic and cell‑type‑specific regulatory networks in Polima temperature-sensitive cytoplasmic male sterility of Brassica napus L. BMC PLANT BIOLOGY 2024; 24:1206. [PMID: 39701979 DOI: 10.1186/s12870-024-05916-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Thermosensitive male sterility (TMS) is a heritable agronomic trait influenced by the interaction between genotype and environment. The anthers of plants are composed of various specialized cells, each of which plays different roles in plant reproduction. In rapeseed (Brassica napus L.), Polima (pol) temperature-sensitive cytoplasmic male sterility (TCMS) is widely used in two-line breeding because its fertility can be partially restored at certain temperatures. The pol-TCMS line exhibits abnormal anther development and pollen abortion at high (restrictive) temperatures (HT, 25 °C) compared to at low (permissive) temperatures (LT, 16 °C). However, the response of different anther cell types to HT and the dynamic regulation of genes under such conditions remain largely unknown. RESULTS We present the first single-cell transcriptomic atlas of Brassica napus early developing flower bud tissues in response to HT. We identified 8 cell types and 17 transcriptionally distinct cell clusters via known marker genes under LT and HT treatment conditions. Under HT conditions, changes in the gene expression patterns of different cell clusters were observed, with the number of down-regulated genes in various cell types exceeding that of up-regulated genes. Pseudotime trajectory analysis revealed that HT strongly affected the development of early stamen/anther tissue cells. In combination with the snRNA-seq, WGCNA, and bulk RNA-seq results, we found that many transcription factors play crucial roles in the response to HT, especially heat response family genes. CONCLUSIONS Our study revealed the transcriptional regulatory network of floral bud tissue in the pol-TCMS line under HT/LT conditions and increased our understanding of high-temperature-induced anther developmental abnormalities, which may help researchers utilize TCMS in the two-line breeding of Brassica plants.
Collapse
Affiliation(s)
- Shipeng Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Caiwu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chaozhi Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, National Engineering Research Center of Rapeseed, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Lou H, Li S, Shi Z, Zou Y, Zhang Y, Huang X, Yang D, Yang Y, Li Z, Xu C. Engineering source-sink relations by prime editing confers heat-stress resilience in tomato and rice. Cell 2024:S0092-8674(24)01321-7. [PMID: 39674177 DOI: 10.1016/j.cell.2024.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 11/07/2024] [Indexed: 12/16/2024]
Abstract
A 2°C climate-warming scenario is expected to further exacerbate average crop losses by 3%-13%, yet few heat-tolerant staple-crop varieties are available toward meeting future food demands. Here, we develop high-efficiency prime-editing tools to precisely knockin a 10-bp heat-shock element (HSE) into promoters of cell-wall-invertase genes (CWINs) in elite rice and tomato cultivars. HSE insertion endows CWINs with heat-responsive upregulation in both controlled and field environments to enhance carbon partitioning to grain and fruits, resulting in per-plot yield increases of 25% in rice cultivar Zhonghua11 and 33% in tomato cultivar Ailsa Craig over heat-stressed controls, without fruit quality penalties. Up to 41% of heat-induced grain losses were rescued in rice. Beyond a prime-editing system for tweaking gene expression by efficiently delivering bespoke changes into crop genomes, we demonstrate broad and robust utility for targeted knockin of cis-regulatory elements to optimize source-sink relations and boost crop climate resilience.
Collapse
Affiliation(s)
- Huanchang Lou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shujia Li
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zihang Shi
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yupan Zou
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yueqin Zhang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaozhen Huang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dandan Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongfang Yang
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zuoyao Li
- College of Tropical Crops, Hainan University, Haikou, Hainan 570228, China
| | - Cao Xu
- Key Laboratory of Seed Innovation, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Begcy K. Heat stress: Pollen tubes ROSted by heat stress. Curr Biol 2024; 34:R1147-R1149. [PMID: 39561710 DOI: 10.1016/j.cub.2024.09.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Male gametophyte development is highly sensitive to elevated temperatures. A new study identifies potential drivers of reproductive thermoresilience during pollen tube growth by comparing a set of thermotolerant and thermosensitive tomato cultivars.
Collapse
Affiliation(s)
- Kevin Begcy
- Environmental Horticulture Department, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
4
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Foteh Ali M, Styler B, Althiab Almasaud R, Harkey AF, Reid RW, Loraine AE, Smith SE, Pease JB, Muday GK, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit and seed production in tomato. Curr Biol 2024; 34:5319-5333.e5. [PMID: 39510073 DOI: 10.1016/j.cub.2024.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/16/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on the ability of pollen grains to generate a pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. We used tomato as a model fruit crop to determine how high temperature affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to high temperature solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under high temperature. Analysis of the pollen tube transcriptome's response to high temperature allowed us to define two response modes (enhanced induction of stress responses and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response, identifying enhanced reactive oxygen species (ROS) homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under high-temperature conditions.
Collapse
Affiliation(s)
- Sorel V Yimga Ouonkap
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Meenakshisundaram Palaniappan
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA; Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai 625104, India
| | - Kelsey Pryze
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Emma Jong
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA
| | - Mohammad Foteh Ali
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Rasha Althiab Almasaud
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA
| | - Alexandria F Harkey
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Robert W Reid
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Ann E Loraine
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223, USA
| | - Steven E Smith
- School of Natural Resources and the Environment, University of Arizona, 1064 E. Lowell Street, Tucson, AZ 85721, USA
| | - James B Pease
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA; Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 318 W. 12th Avenue, Columbus, OH 43210, USA
| | - Gloria K Muday
- Department of Biology, Wake Forest University, 1834 Wake Forest Road, Winston-Salem, NC 27109, USA
| | - Ravishankar Palanivelu
- School of Plant Sciences, University of Arizona, 1140 E S Campus Drive, Forbes 303B, Tucson, AZ 85721, USA.
| | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, 60 Olive Street, Providence, RI 02912, USA.
| |
Collapse
|
5
|
Pan Y, Yu B, Wei X, Qiu Y, Mao X, Liu Y, Yan W, Linghu Q, Li W, Guo H, Tang Z. Suppression of SMXL4 and SMXL5 confers enhanced thermotolerance through promoting HSFA2 transcription in Arabidopsis. THE PLANT CELL 2024; 36:4557-4575. [PMID: 39102897 PMCID: PMC11449109 DOI: 10.1093/plcell/koae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/20/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
Identifying the essential factors and underlying mechanisms regulating plant heat stress (HS) responses is crucial for mitigating the threat posed by HS on plant growth, development, distribution, and productivity. In this study, we found that the Arabidopsis (Arabidopsis thaliana) super-killer2 (ski2) dicer-like4 (dcl4) mutant, characterized by RNA processing defects and the accumulation of abundant 22-nt small interfering RNAs derived from protein-coding transcripts, displayed significantly increased expression levels of HS-responsive genes and enhanced thermotolerance. These traits primarily resulted from the suppression of SMAX1-LIKE4 (SMXL4) and SMXL5, which encode 2 putative transcriptional regulators that belong to the SMXL protein family. While smxl4 and smxl5 single mutants were similar to wild type, the smxl4 smxl5 double mutant displayed substantially heightened seedling thermotolerance. Further investigation demonstrated that SMXL4 and SMXL5 repressed the transcription of HEAT-SHOCK TRANSCRIPTION FACTOR A2 (HSFA2), encoding a master regulator of thermotolerance, independently of ethylene-response factor-associated amphiphilic repression motifs. Moreover, SMXL4 and SMXL5 interacted with HSFA1d and HSFA1e, central regulators sensing and transducing HS stimuli, and antagonistically affected their transactivation activity. In addition, HSFA2 directly bound to the SMXL4 and SMXL5 promoters, inducing their expression during recovery from HS. Collectively, our findings elucidate the role of the SMXL4/SMXL5-HSFA2 regulatory module in orchestrating plant thermotolerance under HS.
Collapse
Affiliation(s)
- Yajie Pan
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Bofan Yu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuping Qiu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Xin Mao
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Yuelin Liu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wei Yan
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Qianyan Linghu
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Wenyang Li
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Hongwei Guo
- New Cornerstone Science Laboratory, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Wang X, Chen Z, Guo J, Han X, Ji X, Ke M, Yu F, Yang P. OsMBF1a Facilitates Seed Germination by Regulating Biosynthesis of Gibberellic Acid and Abscisic Acid in Rice. Int J Mol Sci 2024; 25:9762. [PMID: 39337250 PMCID: PMC11432016 DOI: 10.3390/ijms25189762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024] Open
Abstract
Seed germination is a pivotal stage in the plant life cycle, orchestrated by a myriad of internal and external factors, notably plant hormones. The underlying molecular mechanisms governing rice seed germination remain largely unelucidated. Herein, we uncover OsMBF1a as a crucial regulatory factor that employs a dual strategy to promote seed germination: positively activating genes involved in gibberellin (GA) biosynthesis pathways, while negatively regulating key genes responsible for abscisic acid (ABA) synthesis. Furthermore, OsMBF1a modulates the endogenous levels of ABA and GA in rice seeds, reinforcing its central role in the germination process. The expression of ZmMBF1a and ZmMBF1b, the homologous genes in maize, in rice seeds similarly affects germination, indicating the conserved functionality of MBF1 family genes in regulating seed germination. This study provides novel insights into the molecular mechanisms underlying rice seed germination and underscores the significance of MBF1 family genes in plant growth and development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ziyun Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinghua Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao Han
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xujian Ji
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Meicheng Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| |
Collapse
|
7
|
Vashisth V, Sharma G, Giri J, Sharma AK, Tyagi AK. Rice A20/AN1 protein, OsSAP10, confers water-deficit stress tolerance via proteasome pathway and positive regulation of ABA signaling in Arabidopsis. PLANT CELL REPORTS 2024; 43:215. [PMID: 39138747 DOI: 10.1007/s00299-024-03304-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
KEY MESSAGE Overexpression of rice A20/AN1 zinc-finger protein, OsSAP10, improves water-deficit stress tolerance in Arabidopsis via interaction with multiple proteins. Stress-associated proteins (SAPs) constitute a class of A20/AN1 zinc-finger domain containing proteins and their genes are induced in response to multiple abiotic stresses. The role of certain SAP genes in conferring abiotic stress tolerance is well established, but their mechanism of action is poorly understood. To improve our understanding of SAP gene functions, OsSAP10, a stress-inducible rice gene, was chosen for the functional and molecular characterization. To elucidate its role in water-deficit stress (WDS) response, we aimed to functionally characterize its roles in transgenic Arabidopsis, overexpressing OsSAP10. OsSAP10 transgenics showed improved tolerance to water-deficit stress at seed germination, seedling and mature plant stages. At physiological and biochemical levels, OsSAP10 transgenics exhibited a higher survival rate, increased relative water content, high osmolyte accumulation (proline and soluble sugar), reduced water loss, low ROS production, low MDA content and protected yield loss under WDS relative to wild type (WT). Moreover, transgenics were hypersensitive to ABA treatment with enhanced ABA signaling and stress-responsive genes expression. The protein-protein interaction studies revealed that OsSAP10 interacts with proteins involved in proteasomal pathway, such as OsRAD23, polyubiquitin and with negative and positive regulators of stress signaling, i.e., OsMBP1.2, OsDRIP2, OsSCP and OsAMTR1. The A20 domain was found to be crucial for most interactions but insufficient for all interactions tested. Overall, our investigations suggest that OsSAP10 is an important candidate for improving water-deficit stress tolerance in plants, and positively regulates ABA and WDS signaling via protein-protein interactions and modulation of endogenous genes expression in ABA-dependent manner.
Collapse
Affiliation(s)
- Vishal Vashisth
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Gunjan Sharma
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Arun K Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Akhilesh K Tyagi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| |
Collapse
|
8
|
Zhu Z, Bao Y, Yang Y, Zhao Q, Li R. Research Progress on Heat Stress Response Mechanism and Control Measures in Medicinal Plants. Int J Mol Sci 2024; 25:8600. [PMID: 39201287 PMCID: PMC11355039 DOI: 10.3390/ijms25168600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/02/2024] Open
Abstract
Medicinal plants play a pivotal role in traditional medicine and modern pharmacology due to their various bioactive compounds. However, heat stress caused by climate change will seriously affect the survival and quality of medicinal plants. In this review, we update our understanding of the research progress on medicinal plants' response mechanisms and control measures under heat stress over the last decade. This includes physiological changes, molecular mechanisms, and technical means to improve the heat tolerance of medicinal plants under heat stress. It provides a reference for cultivating heat-resistant varieties of medicinal plants and the rational utilization of control measures to improve the heat resistance of medicinal plants.
Collapse
Affiliation(s)
- Ziwei Zhu
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ying Bao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yixi Yang
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu 610106, China; (Z.Z.); (Y.B.); (Y.Y.)
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
9
|
Ouonkap SVY, Palaniappan M, Pryze K, Jong E, Ali MF, Styler B, Almasaud RA, Harkey AF, Reid RW, Loraine AE, Smith SE, Muday GK, Pease JB, Palanivelu R, Johnson MA. Enhanced pollen tube performance at high temperature contributes to thermotolerant fruit production in tomato. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606234. [PMID: 39149357 PMCID: PMC11326152 DOI: 10.1101/2024.08.01.606234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Rising temperature extremes during critical reproductive periods threaten the yield of major grain and fruit crops. Flowering plant reproduction depends on development of sufficient numbers of pollen grains and on their ability to generate a cellular extension, the pollen tube, which elongates through the pistil to deliver sperm cells to female gametes for double fertilization. These critical phases of the life cycle are sensitive to temperature and limit productivity under high temperature (HT). Previous studies have investigated the effects of HT on pollen development, but little is known about how HT applied during the pollen tube growth phase affects fertility. Here, we used tomato as a model fruit crop to determine how HT affects the pollen tube growth phase, taking advantage of cultivars noted for fruit production in exceptionally hot growing seasons. We found that exposure to HT solely during the pollen tube growth phase limits fruit biomass and seed set more significantly in thermosensitive cultivars than in thermotolerant cultivars. Importantly, we found that pollen tubes from the thermotolerant Tamaulipas cultivar have enhanced growth in vivo and in vitro under HT. Analysis of the pollen tube transcriptome's response to HT allowed us to develop hypotheses for the molecular basis of cellular thermotolerance in the pollen tube and we define two response modes (enhanced induction of stress responses, and higher basal levels of growth pathways repressed by heat stress) associated with reproductive thermotolerance. Importantly, we define key components of the pollen tube stress response identifying enhanced ROS homeostasis and pollen tube callose synthesis and deposition as important components of reproductive thermotolerance in Tamaulipas. Our work identifies the pollen tube growth phase as a viable target to enhance reproductive thermotolerance and delineates key pathways that are altered in crop varieties capable of fruiting under HT conditions.
Collapse
Affiliation(s)
| | | | | | - Emma Jong
- School of Plant Sciences; University of Arizona
| | | | - Benjamin Styler
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| | | | | | - Robert W Reid
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Ann E Loraine
- Department of Bioinformatics and Genomics; UNC Charlotte
| | - Steven E Smith
- School of Natural Resources and the Environment; University of Arizona
| | | | - James B Pease
- Department of Evolution, Ecology and Organismal Biology; The Ohio State University
| | | | - Mark A Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry; Brown University
| |
Collapse
|
10
|
Yu B, Liang Y, Qin Q, Zhao Y, Yang C, Liu R, Gan Y, Zhou H, Qiu Z, Chen L, Yan S, Cao B. Transcription Cofactor CsMBF1c Enhances Heat Tolerance of Cucumber and Interacts with Heat-Related Proteins CsNFYA1 and CsDREB2. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15586-15600. [PMID: 38949485 DOI: 10.1021/acs.jafc.4c02398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Multiprotein bridging factor 1 (MBF1) is a very important transcription factor (TF) in plants, whose members influence numerous defense responses. Our study found that MBF1c in Cucurbitaceae was highly conserved. CsMBF1c expression was induced by temperature, salt stress, and abscisic acid (ABA) in cucumber. Overexpressed CsMBF1c enhanced the heat resistance of a cucumber, and the Csmbf1c mutant showed decreased resistance to high temperatures (HTs). CsMBF1c played an important role in stabilizing the photosynthetic system of cucumber under HT, and its expression was significantly associated with heat-related TFs and genes related to protein processing in the endoplasmic reticulum (ER). Protein interaction showed that CsMBF1c interacted with dehydration-responsive element binding protein 2 (CsDREB2) and nuclear factor Y A1 (CsNFYA1). Overexpression of CsNFYA1 in Arabidopsis improved the heat resistance. Transcriptional activation of CsNFYA1 was elevated by CsMBF1c. Therefore, CsMBF1c plays an important regulatory role in cucumber's resistance to high temperatures.
Collapse
Affiliation(s)
- Bingwei Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
- School of Biology and Agriculture, Shaoguan University, Shaoguan 512005, China
| | - Yonggui Liang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Qiteng Qin
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yafei Zhao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chenyu Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Renjian Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Yuwei Gan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Huoyan Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Zhengkun Qiu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/Lingnan Guangdong Laboratory of Modern Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
11
|
Singh S, Praveen A, Dudha N, Bhadrecha P. Integrating physiological and multi-omics methods to elucidate heat stress tolerance for sustainable rice production. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1185-1208. [PMID: 39100874 PMCID: PMC11291831 DOI: 10.1007/s12298-024-01480-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/06/2024]
Abstract
Heat stress presents unique challenges compared to other environmental stressors, as predicting crop responses and understanding the mechanisms for heat tolerance are complex tasks. The escalating impact of devastating climate changes heightens the frequency and intensity of heat stresses, posing a noteworthy threat to global agricultural productivity, especially in rice-dependent regions of the developing world. Humidity has been demonstrated to negatively affect rice yields worldwide. Plants have evolved intricate biochemical adaptations, involving intricate interactions among genes, proteins, and metabolites, to counter diverse external signals and ensure their survival. Modern-omics technologies, encompassing transcriptomics, metabolomics, and proteomics, have revolutionized our comprehension of the intricate biochemical and cellular shifts that occur in stressed agricultural plants. Integrating these multi-omics approaches offers a comprehensive view of cellular responses to heat stress and other challenges, surpassing the insights gained from multi-omics analyses. This integration becomes vital in developing heat-tolerant crop varieties, which is crucial in the face of increasingly unpredictable weather patterns. To expedite the development of heat-resistant rice varieties, aiming at sustainability in terms of food production and food security globally, this review consolidates the latest peer-reviewed research highlighting the application of multi-omics strategies.
Collapse
Affiliation(s)
- Shilpy Singh
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Namrata Dudha
- Department of Biotechnology and Microbiology, School of Sciences, Noida International University, Gautam Budh Nagar, U.P. 203201 India
| | - Pooja Bhadrecha
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab India
| |
Collapse
|
12
|
Wang P, Liu WC, Han C, Wang S, Bai MY, Song CP. Reactive oxygen species: Multidimensional regulators of plant adaptation to abiotic stress and development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:330-367. [PMID: 38116735 DOI: 10.1111/jipb.13601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Reactive oxygen species (ROS) are produced as undesirable by-products of metabolism in various cellular compartments, especially in response to unfavorable environmental conditions, throughout the life cycle of plants. Stress-induced ROS production disrupts normal cellular function and leads to oxidative damage. To cope with excessive ROS, plants are equipped with a sophisticated antioxidative defense system consisting of enzymatic and non-enzymatic components that scavenge ROS or inhibit their harmful effects on biomolecules. Nonetheless, when maintained at relatively low levels, ROS act as signaling molecules that regulate plant growth, development, and adaptation to adverse conditions. Here, we provide an overview of current approaches for detecting ROS. We also discuss recent advances in understanding ROS signaling, ROS metabolism, and the roles of ROS in plant growth and responses to various abiotic stresses.
Collapse
Affiliation(s)
- Pengtao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Wen-Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Situ Wang
- Faculty of Science, McGill University, Montreal, H3B1X8, Canada
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
13
|
Sato H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Complex plant responses to drought and heat stress under climate change. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1873-1892. [PMID: 38168757 DOI: 10.1111/tpj.16612] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Global climate change is predicted to result in increased yield losses of agricultural crops caused by environmental conditions. In particular, heat and drought stress are major factors that negatively affect plant development and reproduction, and previous studies have revealed how these stresses induce plant responses at physiological and molecular levels. Here, we provide a comprehensive overview of current knowledge concerning how drought, heat, and combinations of these stress conditions affect the status of plants, including crops, by affecting factors such as stomatal conductance, photosynthetic activity, cellular oxidative conditions, metabolomic profiles, and molecular signaling mechanisms. We further discuss stress-responsive regulatory factors such as transcription factors and signaling factors, which play critical roles in adaptation to both drought and heat stress conditions and potentially function as 'hubs' in drought and/or heat stress responses. Additionally, we present recent findings based on forward genetic approaches that reveal natural variations in agricultural crops that play critical roles in agricultural traits under drought and/or heat conditions. Finally, we provide an overview of the application of decades of study results to actual agricultural fields as a strategy to increase drought and/or heat stress tolerance. This review summarizes our current understanding of plant responses to drought, heat, and combinations of these stress conditions.
Collapse
Affiliation(s)
- Hikaru Sato
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | - Junya Mizoi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuraoka, Setagara-ku, Tokyo, 156-8502, Japan
| |
Collapse
|
14
|
Xue M, Han X, Zhang L, Chen S. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize ( Zea mays L.). Genes (Basel) 2024; 15:289. [PMID: 38540348 PMCID: PMC10970198 DOI: 10.3390/genes15030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 06/14/2024] Open
Abstract
High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyue Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
15
|
Wang Q, Wu Y, Wu W, Lyu L, Li W. A review of changes at the phenotypic, physiological, biochemical, and molecular levels of plants due to high temperatures. PLANTA 2024; 259:57. [PMID: 38307982 DOI: 10.1007/s00425-023-04320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/23/2023] [Indexed: 02/04/2024]
Abstract
MAIN CONCLUSION This review summarizes the physiological, biochemical, and molecular regulatory network changes in plants in response to high temperature. With the continuous rise in temperature, high temperature has become an important issue limiting global plant growth and development, affecting the phenotype and physiological and biochemical processes of plants and seriously restricting crop yield and tree growth speed. As sessile organisms, plants inevitably encounter high temperatures and improve their heat tolerance by activating molecular networks related to heat stress, such as signal transduction, synthesis of metabolites, and gene expression. Heat tolerance is a polygenic trait regulated by a variety of genes, transcription factors, proteins, and metabolites. Therefore, this review summarizes the changes in physiological, biochemical and molecular regulatory networks in plants under high-temperature conditions to lay a foundation for an in-depth understanding of the mechanisms involved in plant heat tolerance responses.
Collapse
Affiliation(s)
- Que Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China.
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing, 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China.
| |
Collapse
|
16
|
Kang X, Zhao L, Liu X. Calcium Signaling and the Response to Heat Shock in Crop Plants. Int J Mol Sci 2023; 25:324. [PMID: 38203495 PMCID: PMC10778685 DOI: 10.3390/ijms25010324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/22/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Climate change and the increasing frequency of high temperature (HT) events are significant threats to global crop yields. To address this, a comprehensive understanding of how plants respond to heat shock (HS) is essential. Signaling pathways involving calcium (Ca2+), a versatile second messenger in plants, encode information through temporal and spatial variations in ion concentration. Ca2+ is detected by Ca2+-sensing effectors, including channels and binding proteins, which trigger specific cellular responses. At elevated temperatures, the cytosolic concentration of Ca2+ in plant cells increases rapidly, making Ca2+ signals the earliest response to HS. In this review, we discuss the crucial role of Ca2+ signaling in raising plant thermotolerance, and we explore its multifaceted contributions to various aspects of the plant HS response (HSR).
Collapse
Affiliation(s)
| | - Liqun Zhao
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Xiaotong Liu
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| |
Collapse
|
17
|
Li L, Ju Y, Zhang C, Tong B, Lu Y, Xie X, Li W. Genome-wide analysis of the heat shock transcription factor family reveals saline-alkali stress responses in Xanthoceras sorbifolium. PeerJ 2023; 11:e15929. [PMID: 37753174 PMCID: PMC10519200 DOI: 10.7717/peerj.15929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/30/2023] [Indexed: 09/28/2023] Open
Abstract
The heat shock transcription factor (HSF) family is involved in regulating growth, development, and abiotic stress. The characteristics and biological functions of HSF family member in X. sorbifolium, an important oil and ornamental plant, have never been reported. In this study, 21 XsHSF genes were identified from the genome of X. sorbifolium and named XsHSF1-XsHSF21 based on their chromosomal positions. Those genes were divided into three groups, A, B, and C, containing 12, one, and eight genes, respectively. Among them, 20 XsHSF genes are located on 11 chromosomes. Protein structure analysis suggested that XsHSF proteins were conserved, displaying typical DNA binding domains (DBD) and oligomerization domains (OD). Moreover, HSF proteins within the same group contain specific motifs, such as motif 5 in the HSFC group. All XsHSF genes have one intron in the CDS region, except XsHSF1 which has two introns. Promoter analysis revealed that in addition to defense and stress responsiveness elements, some promoters also contained a MYB binding site and elements involved in multiple hormones responsiveness and anaerobic induction. Duplication analysis revealed that XsHSF1 and XsHSF4 genes were segmentally duplicated while XsHSF2, XsHSF9, and XsHSF13 genes might have arisen from transposition. Expression pattern analysis of leaves and roots following salt-alkali treatment using qRT-PCR indicated that five XsHSF genes were upregulated and one XsHSF gene was downregulated in leaves upon NaCl treatment suggesting these genes may play important roles in salt response. Additionally, the expression levels of most XsHSFs were decreased in leaves and roots following alkali-induced stress, indicating that those XsHSFs may function as negative regulators in alkali tolerance. MicroRNA target site prediction indicated that 16 of the XsHSF genes may be regulated by multiple microRNAs, for example XsHSF2 might be regulated by miR156, miR394, miR395, miR408, miR7129, and miR854. And miR164 may effect the mRNA levels of XsHSF3 and XsHSF17, XsHSF9 gene may be regulated by miR172. The expression trends of miR172 and miR164 in leaves and roots on salt treatments were opposite to the expression trend of XsHSF9 and XsHSF3 genes, respectively. Promoter analysis showed that XsHSFs might be involved in light and hormone responses, plant development, as well as abiotic stress responses. Our results thus provide an overview of the HSF family in X. sorbifolium and lay a foundation for future functional studies to reveal its roles in saline-alkali response.
Collapse
Affiliation(s)
- Lulu Li
- Qingdao Agricultural University, Qingdao, China
| | - Yiqian Ju
- Qingdao Agricultural University, Qingdao, China
| | | | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Xiaoman Xie
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan, China
| | - Wei Li
- Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
18
|
Xia D, Guan L, Yin Y, Wang Y, Shi H, Li W, Zhang D, Song R, Hu T, Zhan X. Genome-Wide Analysis of MBF1 Family Genes in Five Solanaceous Plants and Functional Analysis of SlER24 in Salt Stress. Int J Mol Sci 2023; 24:13965. [PMID: 37762268 PMCID: PMC10531278 DOI: 10.3390/ijms241813965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/06/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Multiprotein bridging factor 1 (MBF1) is an ancient family of transcription coactivators that play a crucial role in the response of plants to abiotic stress. In this study, we analyzed the genomic data of five Solanaceae plants and identified a total of 21 MBF1 genes. The expansion of MBF1a and MBF1b subfamilies was attributed to whole-genome duplication (WGD), and the expansion of the MBF1c subfamily occurred through transposed duplication (TRD). Collinearity analysis within Solanaceae species revealed collinearity between members of the MBF1a and MBF1b subfamilies, whereas the MBF1c subfamily showed relative independence. The gene expression of SlER24 was induced by sodium chloride (NaCl), polyethylene glycol (PEG), ABA (abscisic acid), and ethrel treatments, with the highest expression observed under NaCl treatment. The overexpression of SlER24 significantly enhanced the salt tolerance of tomato, and the functional deficiency of SlER24 decreased the tolerance of tomato to salt stress. SlER24 enhanced antioxidant enzyme activity to reduce the accumulation of reactive oxygen species (ROS) and alleviated plasma membrane damage under salt stress. SlER24 upregulated the expression levels of salt stress-related genes to enhance salt tolerance in tomato. In conclusion, this study provides basic information for the study of the MBF1 family of Solanaceae under abiotic stress, as well as a reference for the study of other plants.
Collapse
Affiliation(s)
- Dongnan Xia
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Lulu Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Xianyang 712100, China;
| | - Yue Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Yixi Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Hongyan Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Wenyu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Dekai Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Ran Song
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Tixu Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| | - Xiangqiang Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Xianyang 712100, China; (D.X.); (Y.Y.); (Y.W.); (H.S.); (W.L.); (D.Z.); (R.S.)
| |
Collapse
|
19
|
Wang X, Tan NWK, Chung FY, Yamaguchi N, Gan ES, Ito T. Transcriptional Regulators of Plant Adaptation to Heat Stress. Int J Mol Sci 2023; 24:13297. [PMID: 37686100 PMCID: PMC10487819 DOI: 10.3390/ijms241713297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Heat stress (HS) is becoming an increasingly large problem for food security as global warming progresses. As sessile species, plants have evolved different mechanisms to cope with the disruption of cellular homeostasis, which can impede plant growth and development. Here, we summarize the mechanisms underlying transcriptional regulation mediated by transcription factors, epigenetic regulators, and regulatory RNAs in response to HS. Additionally, cellular activities for adaptation to HS are discussed, including maintenance of protein homeostasis through protein quality control machinery, and autophagy, as well as the regulation of ROS homeostasis via a ROS-scavenging system. Plant cells harmoniously regulate their activities to adapt to unfavorable environments. Lastly, we will discuss perspectives on future studies for improving urban agriculture by increasing crop resilience to HS.
Collapse
Affiliation(s)
- Xuejing Wang
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| | - Nicholas Wui Kiat Tan
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Fong Yi Chung
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Nobutoshi Yamaguchi
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| | - Eng-Seng Gan
- School of Applied Science, Republic Polytechnic, Singapore 738964, Singapore; (N.W.K.T.); (F.Y.C.)
| | - Toshiro Ito
- Department of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Nara, Japan; (X.W.); (N.Y.)
| |
Collapse
|
20
|
Hu D, Zhang X, Xue P, Nie Y, Liu J, Li Y, Wang C, Wan X. Exogenous melatonin ameliorates heat damages by regulating growth, photosynthetic efficiency and leaf ultrastructure of carnation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107698. [PMID: 37060867 DOI: 10.1016/j.plaphy.2023.107698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/21/2023] [Accepted: 04/06/2023] [Indexed: 05/07/2023]
Abstract
Carnation (Dianthus caryophyllus L.) is a floral crop that is highly valuable commercially. However, high temperatures adversely affect its growth and the quality of its cut flowers. Melatonin (MT) is a indole substance that can mitigate plant damage under heat stress. In this study, the leaves of carnation seedlings were sprayed with different concentrations of MT before exposure to high temperature. The indices of growth, physiological and chlorophyll fluorescence were measured and analyzed by the membership function method. The results showed that treatment with 100 μM MT was the most effective at ameliorating damage on carnation. We then analyzed the effects of 100 μM MT pretreatment on carnation at different time points of heat stress and found that this concentration of MT ameliorated the damage caused by heat stress, increased the content of photosynthetic pigments, enhanced the performance of photosystem II and improved photosynthesis. In addition, MT also reduced cell damage and lipid peroxidation, increased the activities of antioxidant enzymes and regulated the accumulation of osmotic substances in carnation. Moreover, MT increased the fresh/dry weight of stems and roots, promoted the opening of stomata, and protected the integrity of chloroplast structure of carnation. Compared with heat stress, pre-spraying with MT significantly down-regulated the transcription of a chlorophyll degradation gene and up-regulated the transcription of stress-related genes. Overall, this study provides a theoretical foundation for the mitigation of the adverse effects of exogenous MT under heat stress and proposes beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Diandian Hu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xiaojing Zhang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Pengcheng Xue
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yuanyuan Nie
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Jinyu Liu
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Yan Li
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Can Wang
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China
| | - Xueli Wan
- College of Landscape and Forestry, Qingdao Agricultural University, No.100, Changcheng Road, Chengyang District, Qingdao, 266109, Shandong, People's Republic of China.
| |
Collapse
|
21
|
Hendrix S, Dard A, Meyer AJ, Reichheld JP. Redox-mediated responses to high temperature in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2489-2507. [PMID: 36794477 DOI: 10.1093/jxb/erad053] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/03/2023] [Indexed: 06/06/2023]
Abstract
As sessile organisms, plants are particularly affected by climate change and will face more frequent and extreme temperature variations in the future. Plants have developed a diverse range of mechanisms allowing them to perceive and respond to these environmental constraints, which requires sophisticated signalling mechanisms. Reactive oxygen species (ROS) are generated in plants exposed to various stress conditions including high temperatures and are presumed to be involved in stress response reactions. The diversity of ROS-generating pathways and the ability of ROS to propagate from cell to cell and to diffuse through cellular compartments and even across membranes between subcellular compartments put them at the centre of signalling pathways. In addition, their capacity to modify the cellular redox status and to modulate functions of target proteins, notably through cysteine oxidation, show their involvement in major stress response transduction pathways. ROS scavenging and thiol reductase systems also participate in the transmission of oxidation-dependent stress signals. In this review, we summarize current knowledge on the functions of ROS and oxidoreductase systems in integrating high temperature signals, towards the activation of stress responses and developmental acclimation mechanisms.
Collapse
Affiliation(s)
- Sophie Hendrix
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590, Diepenbeek, Belgium
| | - Avilien Dard
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| | - Andreas J Meyer
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113, Bonn, Germany
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, F-66860 Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, F-66860 Perpignan, France
| |
Collapse
|
22
|
Global Analysis of Dark- and Heat-Regulated Alternative Splicing in Arabidopsis. Int J Mol Sci 2023; 24:ijms24065299. [PMID: 36982373 PMCID: PMC10049525 DOI: 10.3390/ijms24065299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Alternative splicing (AS) is one of the major post-transcriptional regulation mechanisms that contributes to plant responses to various environmental perturbations. Darkness and heat are two common abiotic factors affecting plant growth, yet the involvement and regulation of AS in the plant responses to these signals remain insufficiently examined. In this study, we subjected Arabidopsis seedlings to 6 h of darkness or heat stress and analyzed their transcriptome through short-read RNA sequencing. We revealed that both treatments altered the transcription and AS of a subset of genes yet with different mechanisms. Dark-regulated AS events were found enriched in photosynthesis and light signaling pathways, while heat-regulated AS events were enriched in responses to abiotic stresses but not in heat-responsive genes, which responded primarily through transcriptional regulation. The AS of splicing-related genes (SRGs) was susceptible to both treatments; while dark treatment mostly regulated the AS of these genes, heat had a strong effect on both their transcription and AS. PCR analysis showed that the AS of the Serine/Arginine-rich family gene SR30 was reversely regulated by dark and heat, and heat induced the upregulation of multiple minor SR30 isoforms with intron retention. Our results suggest that AS participates in plant responses to these two abiotic signals and reveal the regulation of splicing regulators during these processes.
Collapse
|
23
|
Wu Z, Li T, Zhang D, Teng N. Lily HD-Zip I Transcription Factor LlHB16 Promotes Thermotolerance by Activating LlHSFA2 and LlMBF1c. PLANT & CELL PHYSIOLOGY 2022; 63:1729-1744. [PMID: 36130232 DOI: 10.1093/pcp/pcac131] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/23/2022] [Accepted: 09/20/2022] [Indexed: 06/15/2023]
Abstract
HD-Zip I transcription factors play important roles in plant development and response to abiotic stresses; however, their roles in thermotolerance are largely unknown. Through transcriptome analysis in lily (Lilium longiflorum), we isolated and identified a HD-Zip I gene differentially expressed at high temperatures, LlHB16, which belongs to the β2 subgroup and positively regulates thermotolerance. The expression of LlHB16 was rapidly and continuously activated by heat stress. LlHB16 protein localized to the nucleus and exhibited transactivation activity in both plant and yeast cells, and its C-terminus contributed to its transcriptional activity. Overexpressing LlHB16 in Arabidopsis and lily improved thermotolerance and activated the expression of heat-related genes in both plants, especially that of HSFA2 and MBF1c. In addition, LlHB16 overexpression in Arabidopsis also caused growth defects, delayed flowering and abscisic acid (ABA) insensitivity. Further analysis revealed that LlHB16 directly binds to the promoters of LlHSFA2 and LlMBF1c and activates their expressions. Similarly, the expression of AtHSFA2 and AtMBF1c was also elevated in LlHB16 transgenic Arabidopsis lines. Together, our findings demonstrate that LlHB16 participates in the establishment of thermotolerance involved in activating LlHSFA2 and LlMBF1c, and LlHB16 overexpression resulted in ABA insensitivity in transgenic plants, suggesting that LlHB16 links the basal heat-responsive pathway and ABA signal to collaboratively regulate thermotolerance.
Collapse
Affiliation(s)
- Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd., Nanjing, Jiangsu 210043, China
| |
Collapse
|
24
|
Zhang Y, Wang S, Li W, Wang S, Hao L, Xu C, Yu Y, Xiang L, Li T, Jiang F. A long noncoding RNA HILinc1 enhances pear thermotolerance by stabilizing PbHILT1 transcripts through complementary base pairing. Commun Biol 2022; 5:1134. [PMID: 36289367 PMCID: PMC9606298 DOI: 10.1038/s42003-022-04010-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 09/20/2022] [Indexed: 12/04/2022] Open
Abstract
As global warming intensifies, heat stress has become a major environmental constraint threatening crop production and quality worldwide. Here, we characterize Heat-induced long intergenic noncoding RNA 1 (HILinc1), a cytoplasm-enriched lincRNA that plays a key role in thermotolerance regulation of pear (Pyrus spp.). HILinc1 Target 1 (PbHILT1) which is the target transcript of HILinc1, was stabilized via complementary base pairing to upregulate its expression. PbHILT1 could bind to Heat shock transcription factor A1b (PbHSFA1b) to enhance its transcriptional activity, leading to the upregulation of a major downstream transcriptional regulator, Multiprotein bridging factor 1c (PbMBF1c), during heat response. Transient overexpressing of either HILinc1 or PbHILT1 increases thermotolerance in pear, while transient silencing of HILinc1 or PbHILT1 makes pear plants more heat sensitive. These findings provide evidences for a new regulatory mechanism by which HILinc1 facilitates PbHSFA1b activity and enhances pear thermotolerance through stabilizing PbHILT1 transcripts. Heat stress in pear cultivar results in upregulation of long non-coding RNA HILinc1, which binds to and stabilizes PbHILT1 mRNA, which codes for a protein that interacts with heat shock factor A1b, improving thermotolerance.
Collapse
Affiliation(s)
- Yi Zhang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shengnan Wang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Wei Li
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Shengyuan Wang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Li Hao
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Chaoran Xu
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Yunfei Yu
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Ling Xiang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Tianzhong Li
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| | - Feng Jiang
- grid.22935.3f0000 0004 0530 8290Collage of Horticulture, China Agricultural University, 100193 Beijing, China
| |
Collapse
|
25
|
Huang LZ, Zhou M, Ding YF, Zhu C. Gene Networks Involved in Plant Heat Stress Response and Tolerance. Int J Mol Sci 2022; 23:ijms231911970. [PMID: 36233272 PMCID: PMC9569452 DOI: 10.3390/ijms231911970] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 12/03/2022] Open
Abstract
Global warming is an environmental problem that cannot be ignored. High temperatures seriously affect the normal growth and development of plants, and threaten the development of agriculture and the distribution and survival of species at risk. Plants have evolved complex but efficient mechanisms for sensing and responding to high temperatures, which involve the activation of numerous functional proteins, regulatory proteins, and non-coding RNAs. These mechanisms consist of large regulatory networks that regulate protein and RNA structure and stability, induce Ca2+ and hormone signal transduction, mediate sucrose and water transport, activate antioxidant defense, and maintain other normal metabolic pathways. This article reviews recent research results on the molecular mechanisms of plant response to high temperatures, highlighting future directions or strategies for promoting plant heat tolerance, thereby helping to identify the regulatory mechanisms of heat stress responses in plants.
Collapse
Affiliation(s)
| | | | - Yan-Fei Ding
- Correspondence: (Y.-F.D.); (C.Z.); Tel.: +86-571-8683-6090 (C.Z.)
| | - Cheng Zhu
- Correspondence: (Y.-F.D.); (C.Z.); Tel.: +86-571-8683-6090 (C.Z.)
| |
Collapse
|
26
|
Hui W, Zheng H, Fan J, Wang J, Saba T, Wang K, Wu J, Wu H, Zhong Y, Chen G, Gong W. Genome-wide characterization of the MBF1 gene family and its expression pattern in different tissues and stresses in Zanthoxylum armatum. BMC Genomics 2022; 23:652. [PMID: 36104767 PMCID: PMC9472409 DOI: 10.1186/s12864-022-08863-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Background Multiprotein bridging factor 1 (MBF1) is a crucial transcriptional coactivator in animals, plants, and some microorganisms, that plays a necessary role in growth development and stress tolerance. Zanthoxylum armatum is an important perennial plant for the condiments and pharmaceutical industries, whereas the potential information in the genes related to stress resistance remains poorly understood in Z. armatum. Results Herein, six representative species were selected for use in a genome-wide investigation of the MBF1 family, including Arabidopsis thaliana, Oryza sativa, Populus trichocarpa, Citrus sinensis, Ginkgo biloba, and Z. armatum. The results showed that the MBF1 genes could be divided into two groups: Group I contained the MBF1a and MBF1b subfamilies, and group II was independent of the MBF1c subfamily.. Most species have at least two different MBF1 genes, and MBF1c is usually an essential member. The three ZaMBF1 genes were respectively located on ZaChr26, ZaChr32, and ZaChr4 of Zanthoxylum chromosomes. The collinearity were occurred between three ZaMBF1 genes, and ZaMBF1c showed the collinearity between Z. armatum and both P. trichocarpa and C. sinensis. Moreover, many cis-elements associated with abiotic stress and phytohormone pathways were detected in the promoter regions of MBF1 of six representative species. The ERF binding sites were the most abundant targets in the sequences of the ZaMBF1 family, and some transcription factor sites related to floral differentiation were also identified in ZaMBF1c, such as MADS, LFY, Dof, and AP2. ZaMBF1a was observed to be very highly expressed in 25 different samples except in the seeds, and ZaMBF1c may be associated with the male and female floral initiation processes. In addition, expression in all the ZaMBF1 genes could be significantly induced by water-logging, cold stress, ethephon, methyl jasmonate, and salicylic acid treatments, especially in ZaMBF1c. Conclusion The present study carried out a comprehensive bioinformatic investigation related to the MBF1 family in six representative species, and the responsiveness of ZaMBF1 genes to various abiotic stresses and phytohormone inductions was also revealed. This work not only lays a solid foundation to uncover the biological roles of the ZaMBF1 family in Z. armatum, but also provides some broad references for conducting the MBF1 research in other plants. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08863-4.
Collapse
|
27
|
Wu Z, Li T, Cao X, Zhang D, Teng N. Lily WRKY factor LlWRKY22 promotes thermotolerance through autoactivation and activation of LlDREB2B. HORTICULTURE RESEARCH 2022; 9:uhac186. [PMID: 36338843 PMCID: PMC9627522 DOI: 10.1093/hr/uhac186] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 08/13/2022] [Indexed: 06/16/2023]
Abstract
Most of WRKY transcription factors play important roles in plant development, protection against disease, and response to abiotic stress; however, their roles in lily are largely unknown. Transcriptome analysis in lily (Lilium longiflorum) led to the identification and isolation of a WRKY-IIe gene, LlWRKY22, which was found to be activated at high temperature and play a positive role in thermotolerance regulation. LlWRKY22 expression was continuously activated by heat stress. We further found that LlWRKY22 protein localized to the nucleus and exhibited transactivation activity in both yeast and plant cells, and that its C terminus contributed to its transactivation activity. Meanwhile, overexpression of LlWRKY22 in lily improved thermotolerance and activated the expression of heat-related LlDREB2B gene; however, silencing of LlWRKY22 exerted the opposite effects. Further analysis revealed that LlWRKY22 directly activated the expression of LlDREB2B by binding to two tandem W-box elements on its promoter. Simultaneously, we also found that LlWRKY22 can directly bind its own promoter, thereby activating its own expression and forming a positive regulatory loop. Combined, our findings demonstrated that LlWRKY22 may be a new regulator of heat stress response and positively participates in the establishment of thermotolerance by activating itself and LlDREB2B.
Collapse
Affiliation(s)
| | | | - Xing Cao
- College of Architecture, Yantai University, Yantai, 264005, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs/Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Graduate Workstation of Nanjing Agricultural University and Nanjing Oriole Island Modern Agricultural Development Co., Ltd, Nanjing 210043, China
| | | |
Collapse
|
28
|
Selinga TI, Maseko ST, Gabier H, Rafudeen MS, Muasya AM, Crespo O, Ogola JBO, Valentine AJ, Ottosen CO, Rosenqvist E, Chimphango SBM. Regulation and physiological function of proteins for heat tolerance in cowpea ( Vigna unguiculata) genotypes under controlled and field conditions. FRONTIERS IN PLANT SCIENCE 2022; 13:954527. [PMID: 36072323 PMCID: PMC9441852 DOI: 10.3389/fpls.2022.954527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 06/01/2023]
Abstract
The expression of heat shock proteins is considered a central adaptive mechanism to heat stress. This study investigated the expression of heat shock proteins (HSPs) and other stress-protective proteins against heat stress in cowpea genotypes under field (IT-96D-610 and IT-16) and controlled (IT-96D-610) conditions. Heat stress response analysis of proteins at 72 h in the controlled environment showed 270 differentially regulated proteins identified using label-free quantitative proteomics in IT-96D-610 plants. These plants expressed HSPs and chaperones [BAG family molecular chaperone 6 (BAG6), Multiprotein bridging factor1c (MBF1C) and cold shock domain protein 1 (CSDP1) in the controlled environment]. However, IT-96D-610 plants expressed a wider variety of small HSPs and more HSPs in the field. IT-96D-610 plants also responded to heat stress by exclusively expressing chaperones [DnaJ chaperones, universal stress protein and heat shock binding protein (HSBP)] and non-HSP proteins (Deg1, EGY3, ROS protective proteins, temperature-induced lipocalin and succinic dehydrogenase). Photosynthesis recovery and induction of proteins related to photosynthesis were better in IT-96D-610 because of the concurrent induction of heat stress response proteins for chaperone functions, protein degradation for repair and ROS scavenging proteins and PSII operating efficiency (Fq'/Fm') than IT-16. This study contributes to identification of thermotolerance mechanisms in cowpea that can be useful in knowledge-based crop improvement.
Collapse
Affiliation(s)
- Tonny I. Selinga
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Sipho T. Maseko
- Department of Crop Sciences, Tshwane University of Technology, Pretoria, South Africa
| | - Hawwa Gabier
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - Mohammed S. Rafudeen
- Department of Molecular and Cell Biology, University of Cape Town, Rondebosch, South Africa
| | - A. Muthama Muasya
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Olivier Crespo
- Climate System Analysis Group, Department of Environmental and Geographical Science, University of Cape Town, Rondebosch, South Africa
| | - John B. O. Ogola
- Department of Plant and Soil Sciences, University of Venda, Thohoyandou, South Africa
| | - Alex J. Valentine
- Department of Botany and Zoology, University of Stellenbosch, Stellenbosch, South Africa
| | | | - Eva Rosenqvist
- Section for Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
| | | |
Collapse
|
29
|
Zhang X, Lin X, Chen S, Chen S. Overexpression of BpERF1.1 in Betula Platyphylla enhanced tolerance to multiple abiotic stresses. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1159-1172. [PMID: 35910438 PMCID: PMC9334504 DOI: 10.1007/s12298-022-01206-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/28/2022] [Accepted: 06/29/2022] [Indexed: 06/03/2023]
Abstract
Cold, salt and drought are the main environmental stresses affecting plant growth and crop yield. ERF1, a member of the well-studied ERF gene family, has been proven to play an important role in abiotic stress in plants. In this study, an ERF1, BpERF1.1, was overexpressed in birch (Betula Platyphylla Suk.) and 11 transgenic lines were obtained. Effects of cold, salt and drought treatments were checked on the BpERF1.1 overexpressing lines and the corresponding WT line. The transgenic lines showed improved tolerance against these abiotic stresses than the WT line. Further RNA-seq analysis identified 689 differentially expressed genes (DEGs) in the transgenic birch compared with WT, including 228 up-regulated genes and 461 down-regulated genes. The result of gene ontology enrichment analysis showed that among these DEGs, 273 genes were involved in various plant biological process, and 83% of them were involved in cellular process, metabolic process, biological regulation and response to stimulus (11%). All these results demonstrate that BpERF1.1 gene improves the tolerance and resistance of birch against cold, salt and drought stress, probably by interconnecting with other genes involved in plant response to abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01206-3.
Collapse
Affiliation(s)
- Xiang Zhang
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Xin Lin
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Song Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| | - Su Chen
- State Key Laboratory of Tree Genetics and Breeding (Northeast Forestry University), 26 Hexing Road, Harbin, 150040 China
| |
Collapse
|
30
|
Haider S, Iqbal J, Naseer S, Shaukat M, Abbasi BA, Yaseen T, Zahra SA, Mahmood T. Unfolding molecular switches in plant heat stress resistance: A comprehensive review. PLANT CELL REPORTS 2022; 41:775-798. [PMID: 34401950 DOI: 10.1007/s00299-021-02754-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
Plant heat stress response is a multi-factorial trait that is precisely regulated by the complex web of transcription factors from various families that modulate heat stress responsive gene expression. Global warming due to climate change affects plant growth and development throughout its life cycle. Adds to this, the frequent occurrence of heat waves is drastically reducing the global crop yield. Molecular plant scientists can help crop breeders by providing genetic markers associated with stress resistance. Plant heat stress response (HSR), however, is a multi-factorial trait and using a single stress resistance trait might not be ideal to develop thermotolerant crops. Transcription factors participate in regulation of plant biological processes and environmental stress responses. Recent studies have revealed that plant HSR is precisely regulated by the complex web of transcription factors from various families. These transcription factors enhance plant heat stress tolerance by regulating the expression level of several stress-responsive genes independently or in cross talk with different other transcription factors. This review explores how signaling pathways triggered by heat stress are regulated by multiple transcription factor families. To our knowledge, we for the first time analyze the role of major transcription factor families in plant HSR along with their regulatory mechanisms. In the end, we will also discuss the potential of emerging technologies to improve thermotolerance in plants.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muzzafar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Banzeer Ahsan Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Syeda Anber Zahra
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
- Pakistan Academy of Sciences, Islamabad, Pakistan.
| |
Collapse
|
31
|
Tian X, Qin Z, Zhao Y, Wen J, Lan T, Zhang L, Wang F, Qin D, Yu K, Zhao A, Hu Z, Yao Y, Ni Z, Sun Q, De Smet I, Peng H, Xin M. Stress granule-associated TaMBF1c confers thermotolerance through regulating specific mRNA translation in wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2022; 233:1719-1731. [PMID: 34787921 PMCID: PMC9300156 DOI: 10.1111/nph.17865] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/07/2021] [Indexed: 05/19/2023]
Abstract
Heat stress is a major limiting factor for global wheat production and causes dramatic yield loss worldwide. The TaMBF1c gene is upregulated in response to heat stress in wheat. Understanding the molecular mechanisms associated with heat stress responses will pave the way to improve wheat thermotolerance. Through CRISPR/Cas9-based gene editing, polysome profiling coupled with RNA-sequencing analysis, and protein-protein interactions, we show that TaMBF1c conferred heat response via regulating a specific gene translation in wheat. The results showed that TaMBF1c is evolutionarily conserved in diploid, tetraploid and hexaploid wheat species, and its knockdown and knockout lines show increased heat sensitivity. TaMBF1c is colocalized with the stress granule complex and interacts with TaG3BP. TaMBF1c affects the translation efficiency of a subset of heat responsive genes, which are significantly enriched in the 'sequence-specific DNA binding' term. Moreover, gene expression network analysis demonstrated that TaMBF1c is closely associated with the translation of heat shock proteins. Our findings reveal a contribution of TaMBF1c in regulating the heat stress response via the translation process, and provide a new target for improving heat tolerance in wheat breeding programs.
Collapse
Affiliation(s)
- Xuejun Tian
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhen Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yue Zhao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Jingjing Wen
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Tianyu Lan
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Liyuan Zhang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Fei Wang
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Dandan Qin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Kuohai Yu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Aiju Zhao
- Hebei Academy of Agriculture and Forest SciencesShijiazhuang050035China
| | - Zhaorong Hu
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Ive De Smet
- Department of Plant Biotechnology and BioinformaticsGhent UniversityGhentB‐9052Belgium
- VIB Center for Plant Systems BiologyGhentB‐9052Belgium
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| | - Mingming Xin
- State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE)Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijing100193China
| |
Collapse
|
32
|
Haider S, Iqbal J, Naseer S, Yaseen T, Shaukat M, Bibi H, Ahmad Y, Daud H, Abbasi NL, Mahmood T. Molecular mechanisms of plant tolerance to heat stress: current landscape and future perspectives. PLANT CELL REPORTS 2021; 40:2247-2271. [PMID: 33890138 DOI: 10.1007/s00299-021-02696-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
We summarize recent studies focusing on the molecular basis of plant heat stress response (HSR), how HSR leads to thermotolerance, and promote plant adaptation to recurring heat stress events. The global crop productivity is facing unprecedented threats due to climate change as high temperature negatively influences plant growth and metabolism. Owing to their sessile nature, plants have developed complex signaling networks which enable them to perceive changes in ambient temperature. This in turn activates a suite of molecular changes that promote plant survival and reproduction under adverse conditions. Deciphering these mechanisms is an important task, as this could facilitate development of molecular markers, which could be ultimately used to breed thermotolerant crop cultivars. In current article, we summarize mechanisms involve in plant heat stress acclimation with special emphasis on advances related to heat stress perception, heat-induced signaling, heat stress-responsive gene expression and thermomemory that promote plant adaptation to short- and long-term-recurring heat-stress events. In the end, we will discuss impact of emerging technologies that could facilitate the development of heat stress-tolerant crop cultivars.
Collapse
Affiliation(s)
- Saqlain Haider
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Javed Iqbal
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
- Center for Plant Sciences and Biodiversity, University of Swat, Kanju, 19201, Pakistan.
| | - Sana Naseer
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tabassum Yaseen
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Muzaffar Shaukat
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Haleema Bibi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Yumna Ahmad
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Hina Daud
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nayyab Laiba Abbasi
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Tariq Mahmood
- Plant Biochemistry and Molecular Biology Laboratory, Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
33
|
An Integrative Transcriptomic and Metabolomic Analysis of Red Pitaya ( Hylocereus polyrhizus) Seedlings in Response to Heat Stress. Genes (Basel) 2021; 12:genes12111714. [PMID: 34828320 PMCID: PMC8625689 DOI: 10.3390/genes12111714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/20/2021] [Accepted: 10/23/2021] [Indexed: 12/13/2022] Open
Abstract
Red pitaya (Hylocereus polyrhizus) is a significant functional food that is largely planted in Southeast Asia. Heat stress (HS) induced by high temperatures is likely to restrict the growth and survival of red pitaya. Although pitaya can tolerate temperatures as high as 40 °C, little is known of how it can withstand HS. In this study, the transcriptomic and metabolomic responses of red pitaya seedlings to HS were analyzed. A total of 198 transcripts (122 upregulated and 76 downregulated) were significantly differentially expressed after 24 h and 72 h of exposure to 42 °C compared with a control grown at 28 °C. We also identified 64 differentially accumulated metabolites in pitaya under HS (37 increased and 27 decreased). These differential metabolites, especially amino acids, organic acids, and sugars, are involved in metabolic pathways and the biosynthesis of amino acids. Interaction network analysis of the heat-responsive genes and metabolites suggested that similar pathways and complex response mechanisms are involved in the response of pitaya to HS. Overexpression of one of the upregulated genes (contig10820) in Arabidopsis, which is a homolog of PR-1 and named HuPR-1, significantly increased tolerance to HS. This is the first study showing that HuPR-1 plays a role in the response of pitaya to abiotic stress. These findings provide valuable insights that will aid future studies examining adaptation to HS in pitaya.
Collapse
|
34
|
Salgado-Blanco D, López-Urías F, Ovando-Vázquez C, Jaimes-Miranda F. DNA-MBF1 study using molecular dynamics simulations : On the road to understanding the heat stress response in DNA-protein interactions in plants. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1055-1067. [PMID: 34387715 DOI: 10.1007/s00249-021-01565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
Regulatory factor MBF1 is highly conserved between species and has been described as a cofactor and transcription factor. In plants, several reports associate MBF1 with heat stress response. Nevertheless, the specific physical processes involved in the MBF1-DNA interaction are still far from clearly understood. We thus performed extensive molecular dynamics simulations of DNA with a homology-based modethel of the MBF1 protein. Based on recent experimental data, we proposed two B-DNA sequences, analyzing their interaction with our model of the Arabidopsis MBF1c protein (AtMBF1c) at three different temperatures: 293, 300, and 320 K, maintaining a constant pressure of 1 bar. The simulations suggest that MBF1 binds directly to the DNA, supporting the idea of its role as a transcription factor. We identified two different conformations of the MBF1 protein when bound, and characterized the specific groups of amino acids involved in the formation of the DNA-MBF1 complex. These regions of amino acids are bound mostly to the minor groove of DNA by the attraction of positively charged residues and the negatively charged backbone, but subject to the compatibility of shapes, much in the sense of a lock-and-key mechanism. We found that only with a sequence rich in CTAGA motifs at 300 K does MBF1 bind to DNA in the DNA-binding domain Cro/C1-type HTH predicted. In the rest of the systems tested, we observed non-specific DNA-MBF1 interactions. This study complements findings previously reported by others on the role of CTAGA as a DNA-binding element for MBF1c at a heat stress temperature.
Collapse
Affiliation(s)
- Daniel Salgado-Blanco
- Cátedras CONACyT-Centro Nacional de Supercómputo, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico. .,División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, Mexico.
| | - Florentino López-Urías
- División de Materiales Avanzados, IPICYT, Camino a la Presa San José 2055, Col. Lomas 4a Sección, San Luis Potosí, SLP, 78216, Mexico
| | - Cesaré Ovando-Vázquez
- Cátedras CONACyT-Centro Nacional de Supercómputo, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico
| | - Fabiola Jaimes-Miranda
- Cátedras CONACyT-División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216, San Luis Potosí, SLP, 78216, Mexico.
| |
Collapse
|
35
|
Bourgine B, Guihur A. Heat Shock Signaling in Land Plants: From Plasma Membrane Sensing to the Transcription of Small Heat Shock Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:710801. [PMID: 34434209 PMCID: PMC8381196 DOI: 10.3389/fpls.2021.710801] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/06/2021] [Indexed: 05/08/2023]
Abstract
Heat stress events are major factors limiting crop productivity. During summer days, land plants must anticipate in a timely manner upcoming mild and severe temperature. They respond by accumulating protective heat-shock proteins (HSPs), conferring acquired thermotolerance. All organisms synthetize HSPs; many of which are members of the conserved chaperones families. This review describes recent advances in plant temperature sensing, signaling, and response. We highlight the pathway from heat perception by the plasma membrane through calcium channels, such as cyclic nucleotide-gated channels, to the activation of the heat-shock transcription factors (HSFs). An unclear cellular signal activates HSFs, which act as essential regulators. In particular, the HSFA subfamily can bind heat shock elements in HSP promoters and could mediate the dissociation of bound histones, leading to HSPs transcription. Although plants can modulate their transcriptome, proteome, and metabolome to protect the cellular machinery, HSP chaperones prevent, use, and revert the formation of misfolded proteins, thereby avoiding heat-induced cell death. Remarkably, the HSP20 family is mostly tightly repressed at low temperature, suggesting that a costly mechanism can become detrimental under unnecessary conditions. Here, the role of HSP20s in response to HS and their possible deleterious expression at non-HS temperatures is discussed.
Collapse
Affiliation(s)
| | - Anthony Guihur
- Department of Plant Molecular Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
36
|
Han SH, Kim JY, Lee JH, Park CM. Safeguarding genome integrity under heat stress in plants. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab355. [PMID: 34343307 DOI: 10.1093/jxb/erab355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Indexed: 06/13/2023]
Abstract
Heat stress adversely affects an array of molecular and cellular events in plant cells, such as denaturation of protein and lipid molecules and malformation of cellular membranes and cytoskeleton networks. Genome organization and DNA integrity are also disturbed under heat stress, and accordingly, plants have evolved sophisticated adaptive mechanisms that either protect their genomes from deleterious heat-induced damages or stimulate genome restoration responses. In particular, it is emerging that DNA damage responses are a critical defense process that underlies the acquirement of thermotolerance in plants, during which molecular players constituting the DNA repair machinery are rapidly activated. In recent years, thermotolerance genes that mediate the maintenance of genome integrity or trigger DNA repair responses have been functionally characterized in various plant species. Furthermore, accumulating evidence supports that genome integrity is safeguarded through multiple layers of thermoinduced protection routes in plant cells, including transcriptome adjustment, orchestration of RNA metabolism, protein homeostasis, and chromatin reorganization. In this review, we summarize topical progresses and research trends in understanding how plants cope with heat stress to secure genome intactness. We focus on molecular regulatory mechanisms by which plant genomes are secured against the DNA-damaging effects of heat stress and DNA damages are effectively repaired. We will also explore the practical interface between heat stress response and securing genome integrity in view of developing biotechnological ways of improving thermotolerance in crop species under global climate changes, a worldwide ecological concern in agriculture.
Collapse
Affiliation(s)
- Shin-Hee Han
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Jae Young Kim
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - June-Hee Lee
- Department of Chemistry, Seoul National University, Seoul, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
37
|
Browne RG, Li SF, Iacuone S, Dolferus R, Parish RW. Differential responses of anthers of stress tolerant and sensitive wheat cultivars to high temperature stress. PLANTA 2021; 254:4. [PMID: 34131818 DOI: 10.1007/s00425-021-03656-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 06/03/2021] [Indexed: 05/27/2023]
Abstract
Transcriptomic analyses identified anther-expressed genes in wheat likely to contribute to heat tolerance and hence provide useful genetic markers. The genes included those involved in hormone biosynthesis, signal transduction, the heat shock response and anther development. Pollen development is particularly sensitive to high temperature heat stress. In wheat, heat-tolerant and heat-sensitive cultivars have been identified, although the underlying genetic causes for these differences are largely unknown. The effects of heat stress on the developing anthers of two heat-tolerant and two heat-sensitive wheat cultivars were examined in this study. Heat stress (35 °C) was found to disrupt pollen development in the two heat-sensitive wheat cultivars but had no visible effect on pollen or anther development in the two heat-tolerant cultivars. The sensitive anthers exhibited a range of developmental abnormalities including an increase in unfilled and clumped pollen grains, abnormal pollen walls and a decrease in pollen viability. This subsequently led to a greater reduction in grain yield in the sensitive cultivars following heat stress. Transcriptomic analyses of heat-stressed developing wheat anthers of the four cultivars identified a number of key genes which may contribute to heat stress tolerance during pollen development. Orthologs of some of these genes in Arabidopsis and rice are involved in regulation of the heat stress response and the synthesis of auxin, ethylene and gibberellin. These genes constitute candidate molecular markers for the breeding of heat-tolerant wheat lines.
Collapse
Affiliation(s)
- Richard G Browne
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Song F Li
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
| | - Sylvana Iacuone
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia
- Melbourne Polytechnic, Epping, VIC, Australia
| | - Rudy Dolferus
- CSIRO Agriculture and Food, Canberra, ACT, Australia
| | - Roger W Parish
- AgriBio, Centre for Agribioscience, Department of Animal, Plant and Soil Sciences, La Trobe University, Bundoora, VIC, Australia.
| |
Collapse
|
38
|
Zhao H, Jan A, Ohama N, Kidokoro S, Soma F, Koizumi S, Mogami J, Todaka D, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. Cytosolic HSC70s repress heat stress tolerance and enhance seed germination under salt stress conditions. PLANT, CELL & ENVIRONMENT 2021; 44:1788-1801. [PMID: 33506954 DOI: 10.1111/pce.14009] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Heat shock factor A1 (HsfA1) family proteins are the master regulators of the heat stress-responsive transcriptional cascade in Arabidopsis. Although 70 kDa heat shock proteins (HSP70s) are known to participate in repressing HsfA1 activity, the mechanisms by which they regulate HsfA1 activity have not been clarified. Here, we report the physiological functions of three cytosolic HSP70s, HSC70-1, HSC70-2 and HSC70-3, under normal and stress conditions. Expression of the HSC70 genes was observed in whole seedlings, and the HSC70 proteins were observed in the cytoplasm and nucleus under normal and stress conditions, as were the HsfA1s. hsc70-1/2 double and hsc70-1/2/3 triple mutants showed higher thermotolerance than the wild-type (WT) plants. Transcriptomic analysis revealed the upregulation of heat stress-responsive HsfA1-downstream genes in hsc70-1/2/3 mutants under normal growth conditions, demonstrating that these HSC70s redundantly function as repressors of HsfA1 activity. Furthermore, hsc70-1/2/3 plants showed a more severe growth delay during the germination stage than the WT plants under high-salt stress conditions, and many seed-specific cluster 2 genes that exhibited suppressed expression during germination were expressed in hsc70-1/2/3 plants, suggesting that these HSC70s also function in the developmental transition from seed to seedling under high-salt conditions by suppressing the expression of cluster 2 genes.
Collapse
Affiliation(s)
- Huimei Zhao
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Asad Jan
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Naohiko Ohama
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Kidokoro
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumiyuki Soma
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shinya Koizumi
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junro Mogami
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Todaka
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Junya Mizoi
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, Tsukuba, Ibaraki, Japan
| | - Kazuko Yamaguchi-Shinozaki
- Laboratory of Plant Molecular Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Research Institute for Agricultural and Life Sciences, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
39
|
Zandalinas SI, Sengupta S, Fritschi FB, Azad RK, Nechushtai R, Mittler R. The impact of multifactorial stress combination on plant growth and survival. THE NEW PHYTOLOGIST 2021; 230:1034-1048. [PMID: 33496342 PMCID: PMC8048544 DOI: 10.1111/nph.17232] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/17/2021] [Indexed: 05/08/2023]
Abstract
Climate change-driven extreme weather events, combined with increasing temperatures, harsh soil conditions, low water availability and quality, and the introduction of many man-made pollutants, pose a unique challenge to plants. Although our knowledge of the response of plants to each of these individual conditions is vast, we know very little about how a combination of many of these factors, occurring simultaneously, that is multifactorial stress combination, impacts plants. Seedlings of wild-type and different mutants of Arabidopsis thaliana plants were subjected to a multifactorial stress combination of six different stresses, each applied at a low level, and their survival, physiological and molecular responses determined. Our findings reveal that, while each of the different stresses, applied individually, had a negligible effect on plant growth and survival, the accumulated impact of multifactorial stress combination on plants was detrimental. We further show that the response of plants to multifactorial stress combination is unique and that specific pathways and processes play a critical role in the acclimation of plants to multifactorial stress combination. Taken together our findings reveal that further polluting our environment could result in higher complexities of multifactorial stress combinations that in turn could drive a critical decline in plant growth and survival.
Collapse
Affiliation(s)
- Sara I. Zandalinas
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Soham Sengupta
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
| | - Felix B. Fritschi
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
| | - Rajeev K. Azad
- Department of Biological Sciences and BioDiscovery InstituteCollege of ScienceUniversity of North Texas1155 Union Circle #305220DentonTX76203‐5017USA
- Department of MathematicsUniversity of North TexasDentonTX76203USA
| | - Rachel Nechushtai
- The Alexander Silberman Institute of Life ScienceThe Hebrew University of JerusalemEdmond J. Safra Campus at Givat RamJerusalem91904Israel
| | - Ron Mittler
- Division of Plant SciencesCollege of Agriculture Food and Natural Resources and Interdisciplinary Plant GroupChristopher S. Bond Life Sciences CenterUniversity of Missouri1201 Rollins StColumbiaMO65211USA
- Department of SurgeryUniversity of Missouri School of MedicineChristopher S. Bond Life Sciences Center University of Missouri1201 Rollins StColumbiaMO65211USA
| |
Collapse
|
40
|
Mo S, Qian Y, Zhang W, Qian L, Wang Y, Cailin G, Ding H. Mitogen-activated protein kinase action in plant response to high-temperature stress: a mini review. PROTOPLASMA 2021; 258:477-482. [PMID: 33392739 DOI: 10.1007/s00709-020-01603-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
In recent years, extreme weather events such as high temperature (HT) are becoming more frequent. HT has become one of the main environmental factors affecting crop growth and development. In nature, plant cells initiate corresponding tolerant mechanisms by sensing and transducing HT signals. The mitogen-activated protein kinase (MAPK) cascade is widely involved in the signal transduction of plants to various environmental stresses. MAPK-mediated HT responses have attracted more and more attention. We herein focus on the current state of knowledge of MAPK in the plant under HT stress and summarize the mechanisms of MAPK in HT response from Ca2+ signal, reactive oxygen species (ROS) signal, heat shock transcription factor and heat shock protein, antioxidant system, and the direct downstream targets of MAPK. This review encapsulates the known plant MAPK cascade and provides prospects for ongoing research on HT response.
Collapse
Affiliation(s)
- Shuangrong Mo
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ying Qian
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Wenjuan Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Lu Qian
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yan Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Ge Cailin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| | - Haidong Ding
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
41
|
Priming by High Temperature Stress Induces MicroRNA Regulated Heat Shock Modules Indicating Their Involvement in Thermopriming Response in Rice. Life (Basel) 2021; 11:life11040291. [PMID: 33805566 PMCID: PMC8067039 DOI: 10.3390/life11040291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/09/2023] Open
Abstract
Rice plants often encounter high temperature stress, but the associated coping strategies are poorly understood. It is known that a prior shorter exposure to high temperature, called thermo-priming, generally results in better adaptation of the plants to subsequent exposure to high temperature stress. High throughput sequencing of transcript and small RNA libraries of rice seedlings primed with short exposure to high temperature followed by high temperature stress and from plants exposed to high temperature without priming was performed. This identified a number of transcripts and microRNAs (miRs) that are induced or down regulated. Among them osa-miR531b, osa-miR5149, osa-miR168a-5p, osa-miR1846d-5p, osa-miR5077, osa-miR156b-3p, osa-miR167e-3p and their respective targets, coding for heat shock activators and repressors, showed differential expression between primed and non-primed plants. These findings were further validated by qRT-PCR. The results indicate that the miR-regulated heat shock proteins (HSPs)/heat shock transcription factors (HSFs) may serve as important regulatory nodes which are induced during thermo-priming for plant survival and development under high temperatures.
Collapse
|
42
|
Ding L, Wu Z, Teng R, Xu S, Cao X, Yuan G, Zhang D, Teng N. LlWRKY39 is involved in thermotolerance by activating LlMBF1c and interacting with LlCaM3 in lily (Lilium longiflorum). HORTICULTURE RESEARCH 2021; 8:36. [PMID: 33542226 PMCID: PMC7862462 DOI: 10.1038/s41438-021-00473-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 05/04/2023]
Abstract
WRKY transcription factors (TFs) are of great importance in plant responses to different abiotic stresses. However, research on their roles in the regulation of thermotolerance remains limited. Here, we investigated the function of LlWRKY39 in the thermotolerance of lily (Lilium longiflorum 'white heaven'). According to multiple alignment analyses, LlWRKY39 is in the WRKY IId subclass and contains a potential calmodulin (CaM)-binding domain. Further analysis has shown that LlCaM3 interacts with LlWRKY39 by binding to its CaM-binding domain, and this interaction depends on Ca2+. LlWRKY39 was induced by heat stress (HS), and the LlWRKY39-GFP fusion protein was detected in the nucleus. The thermotolerance of lily and Arabidopsis was increased with the ectopic overexpression of LlWRKY39. The expression of heat-related genes AtHSFA1, AtHSFA2, AtMBF1c, AtGolS1, AtDREB2A, AtWRKY39, and AtHSP101 was significantly elevated in transgenic Arabidopsis lines, which might have promoted an increase in thermotolerance. Then, the promoter of LlMBF1c was isolated from lily, and LlWRKY39 was found to bind to the conserved W-box element in its promoter to activate its activity, suggesting that LlWRKY39 is an upstream regulator of LlMBF1c. In addition, a dual-luciferase reporter assay showed that via protein interaction, LlCaM3 negatively affected LlWRKY39 in the transcriptional activation of LlMBF1c, which might be an important feedback regulation pathway to balance the LlWRKY39-mediated heat stress response (HSR). Collectively, these results imply that LlWRKY39 might participate in the HSR as an important regulator through Ca2+-CaM and multiprotein bridging factor pathways.
Collapse
Affiliation(s)
- Liping Ding
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
- College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Renda Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Xing Cao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
- College of Life Science, Zaozhuang University, Zaozhuang, 277160, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
- Baguazhou Science and Technology Innovation Center of Modern Horticulture Industry, Nanjing, 210043, China.
| |
Collapse
|
43
|
A Novel Multiprotein Bridging Factor 1-Like Protein Induces Cyst Wall Protein Gene Expression and Cyst Differentiation in Giardia lamblia. Int J Mol Sci 2021; 22:ijms22031370. [PMID: 33573049 PMCID: PMC7866390 DOI: 10.3390/ijms22031370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/05/2022] Open
Abstract
The capacity to synthesize a protective cyst wall is critical for infectivity of Giardia lamblia. It is of interest to know the mechanism of coordinated synthesis of three cyst wall proteins (CWPs) during encystation, a differentiation process. Multiprotein bridging factor 1 (MBF1) gene family is a group of transcription coactivators that bridge various transcription factors. They are involved in cell growth and differentiation in yeast and animals, or in stress response in fungi and plants. We asked whether Giardia has MBF1-like genes and whether their products influence gene expression. BLAST searches of the Giardia genome database identified one gene encoding a putative MBF1 protein with a helix-turn-helix domain. We found that it can specifically bind to the AT-rich initiator promoters of the encystation-induced cwp1-3 and myb2 genes. MBF1 localized to cell nuclei and cytoplasm with higher expression during encystation. In addition, overexpression of MBF1 induced cwp1-3 and myb2 gene expression and cyst generation. Mutation of the helixes in the helix-turn-helix domain reduced cwp1-3 and myb2 gene expression and cyst generation. Chromatin immunoprecipitation assays confirmed the binding of MBF1 to the promoters with its binding sites in vivo. We also found that MBF1 can interact with E2F1, Pax2, WRKY, and Myb2 transcription factors that coordinately up-regulate the cwp genes during encystation. Using a CRISPR/Cas9 system for targeted disruption of mbf1 gene, we found a downregulation of cwp1-3 and myb2 genes and decrease of cyst generation. Our results suggest that MBF1 is functionally conserved and positively regulates Giardia cyst differentiation.
Collapse
|
44
|
Shao YJ, Zhu QY, Yao ZW, Liu JX. Phosphoproteomic Analysis of Thermomorphogenic Responses in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2021; 12:753148. [PMID: 34603364 PMCID: PMC8481946 DOI: 10.3389/fpls.2021.753148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 05/07/2023]
Abstract
Plants rapidly adapt to elevated ambient temperature by adjusting their growth and developmental programs. To date, a number of experiments have been carried out to understand how plants sense and respond to warm temperatures. However, how warm temperature signals are relayed from thermosensors to transcriptional regulators is largely unknown. To identify new early regulators of plant thermo-responsiveness, we performed phosphoproteomic analysis using TMT (Tandem Mass Tags) labeling and phosphopeptide enrichment with Arabidopsis etiolated seedlings treated with or without 3h of warm temperatures (29°C). In total, we identified 13,160 phosphopeptides in 5,125 proteins with 10,700 quantifiable phosphorylation sites. Among them, 200 sites (180 proteins) were upregulated, while 120 sites (87 proteins) were downregulated by elevated temperature. GO (Gene Ontology) analysis indicated that phosphorelay-related molecular function was enriched among the differentially phosphorylated proteins. We selected ATL6 (ARABIDOPSIS TOXICOS EN LEVADURA 6) from them and expressed its native and phosphorylation-site mutated (S343A S357A) forms in Arabidopsis and found that the mutated form of ATL6 was less stable than that of the native form both in vivo and in cell-free degradation assays. Taken together, our data revealed extensive protein phosphorylation during thermo-responsiveness, providing new candidate proteins/genes for studying plant thermomorphogenesis in the future.
Collapse
|
45
|
Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int J Mol Sci 2020; 22:ijms22010117. [PMID: 33374376 PMCID: PMC7795586 DOI: 10.3390/ijms22010117] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 01/05/2023] Open
Abstract
Global warming has increased the frequency of extreme high temperature events. High temperature is a major abiotic stress that limits the growth and production of plants. Therefore, the plant response to heat stress (HS) has been a focus of research. However, the plant response to HS involves complex physiological traits and molecular or gene networks that are not fully understood. Here, we review recent progress in the physiological (photosynthesis, cell membrane thermostability, oxidative damage, and others), transcriptional, and post-transcriptional (noncoding RNAs) regulation of the plant response to HS. We also summarize advances in understanding of the epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) and epigenetic memory underlying plant–heat interactions. Finally, we discuss the challenges and opportunities of future research in the plant response to HS.
Collapse
|
46
|
Moenga SM, Gai Y, Carrasquilla-Garcia N, Perilla-Henao LM, Cook DR. Gene co-expression analysis reveals transcriptome divergence between wild and cultivated chickpea under drought stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:1195-1214. [PMID: 32920943 DOI: 10.1111/tpj.14988] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Ancestral adaptations in crop wild relatives can provide a genetic reservoir for crop improvement. Here we document physiological changes to mild and severe drought stress, and the associated transcriptome dynamics in both wild and cultivated chickpea. Over 60% of transcriptional changes were related to metabolism, indicating that metabolic plasticity is a core and conserved drought response. In addition, changes in RNA processing and protein turnover were predominant in the data, suggestive of broad restructuring of the chickpea proteome in response to drought. While 12% of the drought-responsive transcripts have similar dynamics in cultivated and wild accessions, numerous transcripts had expression patterns unique to particular genotypes, or that distinguished wild from cultivated genotypes and whose divergence may be a consequence of domestication. These and other comparisons provide a transcriptional correlate of previously described species' genetic diversity, with wild accessions well differentiated from each other and from cultivars, and cultivars essentially indistinguishable at the broad transcriptome level. We identified metabolic pathways such as phenylpropanoid metabolism, and biological processes such as stomatal development, which are differentially regulated across genotypes with potential consequences on drought tolerance. These data indicate that wild Cicer reticulatum may provide both conserved and divergent mechanisms as a resource in breeding for drought tolerance in cultivated chickpea.
Collapse
Affiliation(s)
- Susan M Moenga
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Yunpeng Gai
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
- Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Noelia Carrasquilla-Garcia
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Laura M Perilla-Henao
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| | - Douglas R Cook
- Department of Plant Pathology and Plant Biology Graduate Group, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
47
|
Yolcu S, Alavilli H, Lee BH. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants. Int J Mol Sci 2020; 21:ijms21228567. [PMID: 33202909 PMCID: PMC7697984 DOI: 10.3390/ijms21228567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
The current agricultural system is biased for the yield increase at the cost of biodiversity. However, due to the loss of precious genetic diversity during domestication and artificial selection, modern cultivars have lost the adaptability to cope with unfavorable environments. There are many reports on variations such as single nucleotide polymorphisms (SNPs) and indels in the stress-tolerant gene alleles that are associated with higher stress tolerance in wild progenitors, natural accessions, and extremophiles in comparison with domesticated crops or model plants. Therefore, to gain a better understanding of stress-tolerant traits in naturally stress-resistant plants, more comparative studies between the modern crops/model plants and crop progenitors/natural accessions/extremophiles are required. In this review, we discussed and summarized recent progress on natural variations associated with enhanced abiotic stress tolerance in various plants. By applying the recent biotechniques such as the CRISPR/Cas9 gene editing tool, natural genetic resources (i.e., stress-tolerant gene alleles) from diverse plants could be introduced to the modern crop in a non-genetically modified way to improve stress-tolerant traits.
Collapse
Affiliation(s)
- Seher Yolcu
- Department of Life Science, Sogang University, Seoul 04107, Korea;
| | - Hemasundar Alavilli
- Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul 02841, Korea;
| | - Byeong-ha Lee
- Department of Life Science, Sogang University, Seoul 04107, Korea;
- Correspondence:
| |
Collapse
|
48
|
Wang ZQ, Zhao QM, Zhong X, Xiao L, Ma LX, Wu CF, Zhang Z, Zhang LQ, Tian Y, Fan W. Comparative analysis of maca (Lepidium meyenii) proteome profiles reveals insights into response mechanisms of herbal plants to high-temperature stress. BMC PLANT BIOLOGY 2020; 20:431. [PMID: 32938390 PMCID: PMC7493174 DOI: 10.1186/s12870-020-02645-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 09/10/2020] [Indexed: 05/14/2023]
Abstract
BACKGROUND High-temperature stress (HTS) is one of the main environmental stresses that limit plant growth and crop production in agricultural systems. Maca (Lepidium meyenii) is an important high-altitude herbaceous plant adapted to a wide range of environmental stimuli such as cold, strong wind and UV-B exposure. However, it is an extremely HTS-sensitive plant species. Thus far, there is limited information about gene/protein regulation and signaling pathways related to the heat stress responses in maca. In this study, proteome profiles of maca seedlings exposed to HTS for 12 h were investigated using a tandem mass tag (TMT)-based proteomic approach. RESULTS In total, 6966 proteins were identified, of which 300 showed significant alterations in expression following HTS. Bioinformatics analyses indicated that protein processing in endoplasmic reticulum was the most significantly up-regulated metabolic pathway following HTS. Quantitative RT-PCR (qRT-PCR) analysis showed that the expression levels of 19 genes encoding proteins mapped to this pathway were significantly up-regulated under HTS. These results show that protein processing in the endoplasmic reticulum may play a crucial role in the responses of maca to HTS. CONCLUSIONS Our proteomic data can be a good resource for functional proteomics of maca and our results may provide useful insights into the molecular response mechanisms underlying herbal plants to HTS.
Collapse
Affiliation(s)
- Zhan Qi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Qi Ming Zhao
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| | - Xueting Zhong
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Xiao
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Xuan Ma
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Chou Fei Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Zhongshan Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
| | - Li Qin Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou, 313000 China
- Huzhou central hospital, Huzhou University, Huzhou, 313000 China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201 China
| | - Wei Fan
- State Key Laboratory of Conservation and Utilization of Bio-resources in Yunnan, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National & Local Joint Engineering Research Center on Germplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest China, Yunnan Agricultural University, Kunming, 650201 China
| |
Collapse
|
49
|
Ding H, Mo S, Qian Y, Yuan G, Wu X, Ge C. Integrated proteome and transcriptome analyses revealed key factors involved in tomato (
Solanum lycopersicum
) under high temperature stress. Food Energy Secur 2020. [DOI: 10.1002/fes3.239] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Haidong Ding
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Shuangrong Mo
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Ying Qian
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Guibo Yuan
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
| | - Xiaoxia Wu
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| | - Cailin Ge
- Co‐Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology College of Bioscience and Biotechnology Yangzhou University Yangzhou China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safety of Ministry of Education of China Yangzhou University Yangzhou China
| |
Collapse
|
50
|
Ding Y, Shi Y, Yang S. Molecular Regulation of Plant Responses to Environmental Temperatures. MOLECULAR PLANT 2020; 13:544-564. [PMID: 32068158 DOI: 10.1016/j.molp.2020.02.004] [Citation(s) in RCA: 302] [Impact Index Per Article: 60.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 05/19/2023]
Abstract
Temperature is a key factor governing the growth and development, distribution, and seasonal behavior of plants. The entire plant life cycle is affected by environmental temperatures. Plants grow rapidly and exhibit specific changes in morphology under mild average temperature conditions, a response termed thermomorphogenesis. When exposed to chilling or moist chilling low temperatures, flowering or seed germination is accelerated in some plant species; these processes are known as vernalization and cold stratification, respectively. Interestingly, once many temperate plants are exposed to chilling temperatures for some time, they can acquire the ability to resist freezing stress, a process termed cold acclimation. In the face of global climate change, heat stress has emerged as a frequent challenge, which adversely affects plant growth and development. In this review, we summarize and discuss recent progress in dissecting the molecular mechanisms regulating plant thermomorphogenesis, vernalization, and responses to extreme temperatures. We also discuss the remaining issues that are crucial for understanding the interactions between plants and temperature.
Collapse
Affiliation(s)
- Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiting Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|