1
|
Li L, Su Y, Xiang W, Huang G, Liang Q, Dun B, Zhang H, Xiao Z, Qiu L, Zhang J, Wu D. Transcriptomic network underlying physiological alterations in the stem of Myricaria laxiflora in response to waterlogging stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116991. [PMID: 39236657 DOI: 10.1016/j.ecoenv.2024.116991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Myricaria laxiflora is an endangered shrub plant with remarkable tolerance to waterlogging stress, however, little attention has been paid to understanding the underlying mechanisms. Here, physiological and transcriptomic approaches were applied to uncover the physiological and molecular reconfigurations in the stem of M. laxiflora in response to waterlogging stress. The accumulation of the contents of H2O2 and malonaldehyde (MDA) alongside increased activities of enzymes for scavenging the reactive oxygen species (ROS) in the stem of M. laxiflora were observed under waterlogging stress. The principal component analysis (PCA) of transcriptomes from five different timepoints uncovered PC1 counted for 17.3 % of total variations and separated the treated and non-treated samples. A total of 8714 genes in the stem of M. laxiflora were identified as differentially expressed genes (DEGs) under waterlogging stress, which could be assigned into two different subgroups with distinct gene expression patterns and biological functions. The DEGs involved in glycolysis were generally upregulated, whereas opposite results were observed for nitrogen uptake and the assimilation pathway. The contents of abscisic acid (ABA) and jasmonic acid (JA) were sharply decreased alongside the decreased mRNA levels of the genes involved in corresponding synthesis pathways upon waterlogging stress. A network centered by eight key transcription factors has been constructed, which uncovered the inhibited cell division processes in the stem of M. laxiflora upon waterlogging stress. Taken together, the obtained results showed that glycolysis, nitrogen metabolism and meristem activities played an important role in the stem of M. laxiflora in response to waterlogging stress.
Collapse
Affiliation(s)
- Linbao Li
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Yang Su
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Weibo Xiang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Guiyun Huang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Qianyan Liang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Bicheng Dun
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Haibo Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Zhiqiang Xiao
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Liwen Qiu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Jun Zhang
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China
| | - Di Wu
- Yangtze River Biodiversity Research Centre, China Three Gorges Corporation, Wuhan 443133, China; Hubei Key Laboratory of Rare Resource Plants in Three Gorges Reservoir Area, Yichang 443100, China; National Engineering Research Center of Eco-Environment Protection for Yangtze River Economic Belt, China Three Gorges Corporation, Wuhan 100083, China.
| |
Collapse
|
2
|
Zhu C, Lin Z, Liu Y, Li H, Di X, Li T, Wang J, Gao Z. A Bamboo HD-Zip Transcription Factor PeHDZ72 Conferred Drought Tolerance by Promoting Sugar and Water Transport. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39253960 DOI: 10.1111/pce.15105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/16/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024]
Abstract
Drought drastically affects plant growth, development and productivity. Plants respond to drought stress by enhancing sugar accumulation and water transport. Homeodomain-leucine zipper (HD-Zip) transcription factors (TFs) participate in various aspects of plant growth and stress response. However, the internal regulatory mechanism of HD-Zips in moso bamboo (Phyllostachys edulis) remains largely unknown. In this study, we identified an HD-Zip member, PeHDZ72, which was highly expressed in bamboo shoots and roots and was induced by drought. Furthermore, PeSTP_46019, PeSWEET_23178 and PeTIP4-3 were identified as downstream genes of PeHDZ72 in moso bamboo by DAP-seq. The expressions of these three genes were all induced by drought stress. Y1H, DLR and GUS activity assays demonstrated that PeHDZ72 could bind to three types of HD-motifs in the promoters of these three genes. Overexpression of PeHDZ72 led to a remarkable enhancement in drought tolerance in transgenic rice, with significantly improved soluble sugar and sucrose contents. Meanwhile, the expressions of OsSTPs, OsSWEETs and OsTIP were all upregulated in transgenic rice under drought stress. Overall, our results indicate that drought stress might induce the expression of PeHDZ72, which in turn activated downstream genes PeSTP_46019, PeSWEET_23178 and PeTIP4-3, contributing to the improvement of cellular osmotic potential in moso bamboo in response to drought stress.
Collapse
Affiliation(s)
- Chenglei Zhu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zeming Lin
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Yan Liu
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Hui Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Xiaolin Di
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Tiankuo Li
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Jiangfei Wang
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| | - Zhimin Gao
- Key Laboratory of State Forestry and Grassland Administration/Beijing on Bamboo and Rattan Science and Technology, Beijing, China
- Institute of Gene Science and Industrialization for Bamboo and Rattan Resources, International Center for Bamboo and Rattan, Beijing, China
| |
Collapse
|
3
|
Cerbantez-Bueno VE, Serwatowska J, Rodríguez-Ramos C, Cruz-Valderrama JE, de Folter S. The role of D3-type cyclins is related to cytokinin and the bHLH transcription factor SPATULA in Arabidopsis gynoecium development. PLANTA 2024; 260:48. [PMID: 38980389 PMCID: PMC11233295 DOI: 10.1007/s00425-024-04481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
MAIN CONCLUSION We studied the D3-type cyclin function during gynoecium development in Arabidopsis and how they are related to the hormone cytokinin and the transcription factor SPATULA. Growth throughout the life of plants is sustained by cell division and differentiation processes in meristematic tissues. In Arabidopsis, gynoecium development implies a multiphasic process where the tissues required for pollination, fertilization, and seed development form. The Carpel Margin Meristem (CMM) is a mass of undifferentiated cells that gives rise to the gynoecium internal tissues, such as septum, ovules, placenta, funiculus, transmitting tract, style, and stigma. Different genetic and hormonal factors, including cytokinin, control the CMM function. Cytokinin regulates the cell cycle transitions through the activation of cell cycle regulators as cyclin genes. D3-type cyclins are expressed in proliferative tissues, favoring the mitotic cell cycle over the endoreduplication. Though the role of cytokinin in CMM and gynoecium development is highly studied, its specific role in regulating the cell cycle in this tissue remains unclear. Additionally, despite extensive research on the relationship between CYCD3 genes and cytokinin, the regulatory mechanism that connects them remains elusive. Here, we found that D3-type cyclins are expressed in proliferative medial and lateral tissues. Conversely, the depletion of the three CYCD3 genes showed that they are not essential for gynoecium development. However, the addition of exogenous cytokinin showed that they could control the division/differentiation balance in gynoecium internal tissues and outgrowths. Finally, we found that SPATULA can be a mechanistic link between cytokinin and the D3-type cyclins. The data suggest that the role of D3-type cyclins in gynoecium development is related to the cytokinin response, and they might be activated by the transcription factor SPATULA.
Collapse
Affiliation(s)
- Vincent E Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA, 92521, USA
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - Carolina Rodríguez-Ramos
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
| | - J Erik Cruz-Valderrama
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, 62210, Cuernavaca, Morelos, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, México.
| |
Collapse
|
4
|
Bernal-Gallardo JJ, González-Aguilera KL, de Folter S. EXPANSIN15 is involved in flower and fruit development in Arabidopsis. PLANT REPRODUCTION 2024; 37:259-270. [PMID: 38285171 PMCID: PMC11180156 DOI: 10.1007/s00497-023-00493-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024]
Abstract
KEY MESSAGE EXPANSIN15 is involved in petal cell morphology and size, the fusion of the medial tissues in the gynoecium and expansion of fruit valve cells. It genetically interacts with SPATULA and FRUITFULL. Cell expansion is fundamental for the formation of plant tissues and organs, contributing to their final shape and size during development. To better understand this process in flower and fruit development, we have studied the EXPANSIN15 (EXPA15) gene, which showed expression in petals and in the gynoecium. By analyzing expa15 mutant alleles, we found that EXPA15 is involved in petal shape and size determination, by affecting cell morphology and number. EXPA15 also has a function in fruit size, by affecting cell size and number. Furthermore, EXPA15 promotes fusion of the medial tissues in the gynoecium. In addition, we observed genetic interactions with the transcription factors SPATULA (SPT) and FRUITFULL (FUL) in gynoecium medial tissue fusion, style and stigma development and fruit development in Arabidopsis. These findings contribute to the importance of EXPANSINS in floral and fruit development in Arabidopsis.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico
| | - Karla L González-Aguilera
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), 36824, Irapuato, GTO., Mexico.
| |
Collapse
|
5
|
Sessa G, Carabelli M, Sassi M. The Ins and Outs of Homeodomain-Leucine Zipper/Hormone Networks in the Regulation of Plant Development. Int J Mol Sci 2024; 25:5657. [PMID: 38891845 PMCID: PMC11171833 DOI: 10.3390/ijms25115657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
The generation of complex plant architectures depends on the interactions among different molecular regulatory networks that control the growth of cells within tissues, ultimately shaping the final morphological features of each structure. The regulatory networks underlying tissue growth and overall plant shapes are composed of intricate webs of transcriptional regulators which synergize or compete to regulate the expression of downstream targets. Transcriptional regulation is intimately linked to phytohormone networks as transcription factors (TFs) might act as effectors or regulators of hormone signaling pathways, further enhancing the capacity and flexibility of molecular networks in shaping plant architectures. Here, we focus on homeodomain-leucine zipper (HD-ZIP) proteins, a class of plant-specific transcriptional regulators, and review their molecular connections with hormonal networks in different developmental contexts. We discuss how HD-ZIP proteins emerge as key regulators of hormone action in plants and further highlight the fundamental role that HD-ZIP/hormone networks play in the control of the body plan and plant growth.
Collapse
Affiliation(s)
| | | | - Massimiliano Sassi
- Istituto di Biologia e Patologia Molecolari, Consiglio Nazionale delle Ricerche, 00185 Rome, Italy; (G.S.); (M.C.)
| |
Collapse
|
6
|
Wang Q, Wang Y, Zhang F, Han C, Wang Y, Ren M, Qi K, Xie Z, Zhang S, Tao S, Shiratake K. Genome-wide characterisation of HD-Zip transcription factors and functional analysis of PbHB24 during stone cell formation in Chinese white pear (Pyrus bretschneideri). BMC PLANT BIOLOGY 2024; 24:444. [PMID: 38778247 PMCID: PMC11112822 DOI: 10.1186/s12870-024-05138-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The homodomain-leucine zipper (HD-Zip) is a conserved transcription factor family unique to plants that regulate multiple developmental processes including lignificaion. Stone cell content is a key determinant negatively affecting pear fruit quality, which causes a grainy texture of fruit flesh, because of the lignified cell walls. RESULTS In this study, a comprehensive bioinformatics analysis of HD-Zip genes in Chinese white pear (Pyrus bretschneideri) (PbHBs) was performed. Genome-wide identification of the PbHB gene family revealed 67 genes encoding PbHB proteins, which could be divided into four subgroups (I, II, III, and IV). For some members, similar intron/exon structural patterns support close evolutionary relationships within the same subgroup. The functions of each subgroup of the PbHB family were predicted through comparative analysis with the HB genes in Arabidopsis and other plants. Cis-element analysis indicated that PbHB genes might be involved in plant hormone signalling and external environmental responses, such as light, stress, and temperature. Furthermore, RNA-sequencing data and quantitative real-time PCR (RT-qPCR) verification revealed the regulatory roles of PbHB genes in pear stone cell formation. Further, co-expression network analysis revealed that the eight PbHB genes could be classified into different clusters of co-expression with lignin-related genes. Besides, the biological function of PbHB24 in promoting stone cell formation has been demonstrated by overexpression in fruitlets. CONCLUSIONS This study provided the comprehensive analysis of PbHBs and highlighted the importance of PbHB24 during stone cell development in pear fruits.
Collapse
Affiliation(s)
- Qi Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan
| | - Yueyang Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fanhang Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chengyang Han
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yanling Wang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mei Ren
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shutian Tao
- Sanya Institute, College of Horticulture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Katsuhiro Shiratake
- Laboratory of Horticultural Science, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| |
Collapse
|
7
|
Luna-García V, Bernal Gallardo JJ, Rethoret-Pasty M, Pasha A, Provart NJ, de Folter S. A high-resolution gene expression map of the medial and lateral domains of the gynoecium of Arabidopsis. PLANT PHYSIOLOGY 2024; 195:410-429. [PMID: 38088205 DOI: 10.1093/plphys/kiad658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 11/14/2023] [Indexed: 05/02/2024]
Abstract
Angiosperms are characterized by the formation of flowers, and in their inner floral whorl, one or various gynoecia are produced. These female reproductive structures are responsible for fruit and seed production, thus ensuring the reproductive competence of angiosperms. In Arabidopsis (Arabidopsis thaliana), the gynoecium is composed of two fused carpels with different tissues that need to develop and differentiate to form a mature gynoecium and thus the reproductive competence of Arabidopsis. For these reasons, they have become the object of study for floral and fruit development. However, due to the complexity of the gynoecium, specific spatio-temporal tissue expression patterns are still scarce. In this study, we used precise laser-assisted microdissection and high-throughput RNA sequencing to describe the transcriptional profiles of the medial and lateral domain tissues of the Arabidopsis gynoecium. We provide evidence that the method used is reliable and that, in addition to corroborating gene expression patterns of previously reported regulators of these tissues, we found genes whose expression dynamics point to being involved in cytokinin and auxin homeostasis and in cell cycle progression. Furthermore, based on differential gene expression analyses, we functionally characterized several genes and found that they are involved in gynoecium development. This resource is available via the Arabidopsis eFP browser and will serve the community in future studies on developmental and reproductive biology.
Collapse
Affiliation(s)
- Valentín Luna-García
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Judith Jazmin Bernal Gallardo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| | - Martin Rethoret-Pasty
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
- Polytech Nice Sophia, Université Côte d'Azur, 930 Rte des Colles, 06410 Biot, France
| | - Asher Pasha
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Nicholas J Provart
- Department of Cell & Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, 25 Willcocks St., Toronto, ON M5S 3B2, Canada
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato CP 36824, Guanajuato, México
| |
Collapse
|
8
|
Han H, Dong L, Zhang W, Liao Y, Wang L, Wang Q, Ye J, Xu F. Ginkgo biloba GbbZIP08 transcription factor is involved in the regulation of flavonoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154054. [PMID: 37487356 DOI: 10.1016/j.jplph.2023.154054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/26/2023]
Abstract
Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.
Collapse
Affiliation(s)
- Huan Han
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Liwei Dong
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lina Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Qijian Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Jiabao Ye
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| |
Collapse
|
9
|
Santos AM, González AM, De Dios Alche J, Santalla M. Microscopical Analysis of Autofluorescence as a Complementary and Useful Method to Assess Differences in Anatomy and Structural Distribution Underlying Evolutive Variation in Loss of Seed Dispersal in Common Bean. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112212. [PMID: 37299191 DOI: 10.3390/plants12112212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
The common bean has received attention as a model plant for legume studies, but little information is available about the morphology of its pods and the relation of this morphology to the loss of seed dispersal and/or the pod string, which are key agronomic traits of legume domestication. Dehiscence is related to the pod morphology and anatomy of pod tissues because of the weakening of the dorsal and ventral dehiscence zones and the tensions of the pod walls. These tensions are produced by the differential mechanical properties of lignified and non-lignified tissues and changes in turgor associated with fruit maturation. In this research, we histologically studied the dehiscence zone of the ventral and dorsal sutures of the pod in two contrasting genotypes for the dehiscence and string, by comparing different histochemical methods with autofluorescence. We found that the secondary cell wall modifications of the ventral suture of the pod were clearly different between the dehiscence-susceptible and stringy PHA1037 and the dehiscence-resistant and stringless PHA0595 genotypes. The susceptible genotype had cells of bundle caps arranged in a more easily breakable bowtie knot shape. The resistant genotype had a larger vascular bundle area and larger fibre cap cells (FCCs), and due to their thickness, the external valve margin cells were significantly stronger than those from PHA1037. Our findings suggest that the FCC area, and the cell arrangement in the bundle cap, might be partial structures involved in the pod dehiscence of the common bean. The autofluorescence pattern at the ventral suture allowed us to quickly identify the dehiscent phenotype and gain a better understanding of cell wall tissue modifications that took place along the bean's evolution, which had an impact on crop improvement. We report a simple autofluorescence protocol to reliably identify secondary cell wall organization and its relationship to the dehiscence and string in the common bean.
Collapse
Affiliation(s)
- Ana M Santos
- Centro de Instrumentación Científica, University of Granada, 18003 Granada, Spain
| | - Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-Consejo Superior de Investigaciones Científicas (MBG-CSIC), 36080 Pontevedra, Spain
| | - Juan De Dios Alche
- Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
- Instituto Universitario de Investigación en Olivar y Aceites de Oliva (INUO), Universidad de Jaén, 23071 Jaén, Spain
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-Consejo Superior de Investigaciones Científicas (MBG-CSIC), 36080 Pontevedra, Spain
| |
Collapse
|
10
|
Xing B, Wan S, Su L, Riaz MW, Li L, Ju Y, Zhang W, Zheng Y, Shao Q. Two polyamines -responsive WRKY transcription factors from Anoectochilus roxburghii play opposite functions on flower development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111566. [PMID: 36513314 DOI: 10.1016/j.plantsci.2022.111566] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Anoectochilus roxburghii is a rare and precious plant with medicinal and healthcare functions. Embryo abortion caused the lack of resources. Polyamine promoted its flowering and stress resistance in our previous study. But the mechanism remains unclear. The WRKY transcription factor family has been linked to a variety of biological processes in plants. In this study, two WRKY TFs (ArWRKY5 and ArWRKY20) of A. roxburghii, which showed significant response to Spd treatment, were identified and functionally analyzed. Tissue specific expression analyzation showed both of them mostly present in the flower. And ArWRKY5 expressed highest in the flower bud stage (-1 Flowering), while ArWRKY20 showed the highest expression in earlier flower bud stage (-2 Flowering) and the expression gradually decreased with flowering. The transcriptional activation activity assay and subcellular localization revealed that ArWRKY5 and ArWRKY20 were located in the nucleus and ArWRKY20 showed transcriptional activity. The heterologous expression of ArWRKY5 in Arabidopsis thaliana showed earlier flowering, while overexpression of ArWRKY20 delayed flowering. But the OE-ArWRKY20 lines had a robust body shape and a very significant increase in the number of rosette leaves. Furthermore, stamens and seed development were positively regulated by these two ArWRKYs. These results indicated that ArWRKY5 and ArWRKY20 not only play opposite roles in the floral development, but also regulate the plant growth and seed development in A. thaliana. But their specific biological functions and mechanism in A. roxburghii need to be investigated further.
Collapse
Affiliation(s)
- Bingcong Xing
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Siqi Wan
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Liyang Su
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Muhammad Waheed Riaz
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Lihong Li
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Yulin Ju
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China
| | - Wangshu Zhang
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Ying Zheng
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Qingsong Shao
- Zhejiang Provincial Key Laboratory of Resources Protection and Innovation of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou 311300, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
11
|
Seok HY, Tran HT, Lee SY, Moon YH. AtERF71/ HRE2, an Arabidopsis AP2/ERF Transcription Factor Gene, Contains Both Positive and Negative Cis-Regulatory Elements in Its Promoter Region Involved in Hypoxia and Salt Stress Responses. Int J Mol Sci 2022; 23:ijms23105310. [PMID: 35628120 PMCID: PMC9140466 DOI: 10.3390/ijms23105310] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 02/01/2023] Open
Abstract
In the signal transduction network, from the perception of stress signals to stress-responsive gene expression, various transcription factors and cis-regulatory elements in stress-responsive promoters coordinate plant adaptation to abiotic stresses. Among the AP2/ERF transcription factor family, group VII ERF (ERF-VII) genes, such as RAP2.12, RAP2.2, RAP2.3, AtERF73/HRE1, and AtERF71/HRE2, are known to be involved in the response to hypoxia in Arabidopsis. Notably, HRE2 has been reported to be involved in responses to hypoxia and osmotic stress. In this study, we dissected HRE2 promoter to identify hypoxia- and salt stress-responsive region(s). The analysis of the promoter deletion series of HRE2 using firefly luciferase and GUS as reporter genes indicated that the −116 to −2 region is responsible for both hypoxia and salt stress responses. Using yeast one-hybrid screening, we isolated HAT22/ABIG1, a member of the HD-Zip II subfamily, which binds to the −116 to −2 region of HRE2 promoter. Interestingly, HAT22/ABIG1 repressed the transcription of HRE2 via the EAR motif located in the N-terminal region of HAT22/ABIG1. HAT22/ABIG1 bound to the 5′-AATGATA-3′ sequence, HD-Zip II-binding-like cis-regulatory element, in the −116 to −2 region of HRE2 promoter. Our findings demonstrate that the −116 to −2 region of HRE2 promoter contains both positive and negative cis-regulatory elements, which may regulate the expression of HRE2 in responses to hypoxia and salt stress and that HAT22/ABIG1 negatively regulates HRE2 transcription by binding to the HD-Zip II-binding-like element in the promoter region.
Collapse
Affiliation(s)
- Hye-Yeon Seok
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Huong Thi Tran
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
| | - Sun-Young Lee
- Korea Nanobiotechnology Center, Pusan National University, Busan 46241, Korea; (H.-Y.S.); (S.-Y.L.)
| | - Yong-Hwan Moon
- Department of Integrated Biological Science, Pusan National University, Busan 46241, Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Korea
- Institute of Systems Biology, Pusan National University, Busan 46241, Korea
- Correspondence: ; Tel.: +82-51-510-2592
| |
Collapse
|
12
|
Preciado J, Begcy K, Liu T. The Arabidopsis HDZIP class II transcription factor ABA INSENSITIVE TO GROWTH 1 functions in leaf development. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1978-1991. [PMID: 34849741 DOI: 10.1093/jxb/erab523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Leaf laminar growth and adaxial-abaxial boundary formation are fundamental outcomes of plant development. Boundary and laminar growth coordinate the further patterning and growth of the leaf, directing the differentiation of cell types within the top and bottom domains and promoting initiation of lateral organs along their adaxial or abaxial axis. Leaf adaxial-abaxial polarity specification and laminar outgrowth are regulated by two transcription factors, REVOLUTA (REV) and KANADI (KAN). ABA INSENSITIVE TO GROWTH 1 (ABIG1) encodes a HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) class II transcription factor and is a direct target of the adaxial-abaxial regulators REV and KAN. To investigate the role of ABIG1 in leaf development and in the establishment of polarity, we examined the phenotypes of both gain-of-function and loss-of-function mutants. Through genetic interaction analysis with REV and KAN mutants, we determined that ABIG1 plays a role in leaf laminar growth as well as in adaxial-abaxial polarity establishment. Genetic and physical interaction assays showed that ABIG1 interacts with the transcriptional TOPLESS corepressor. This study provides new evidence that ABIG1, another HD-ZIP II, facilitates growth through the corepressor TOPLESS.
Collapse
Affiliation(s)
- Jesus Preciado
- University of Florida, Horticultural Sciences Department, Gainesville, FL 32611, USA
| | - Kevin Begcy
- University of Florida, Environmental Horticulture Department, Gainesville, FL 32611, USA
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Gainesville, FL 32611, USA
| |
Collapse
|
13
|
Abstract
Flowering plants produce flowers and one of the most complex floral structures is the pistil or the gynoecium. All the floral organs differentiate from the floral meristem. Various reviews exist on molecular mechanisms controlling reproductive development, but most focus on a short time window and there has been no recent review on the complete developmental time frame of gynoecium and fruit formation. Here, we highlight recent discoveries, including the players, interactions and mechanisms that govern gynoecium and fruit development in Arabidopsis. We also present the currently known gene regulatory networks from gynoecium initiation until fruit maturation.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato 36824, Guanajuato, México
| |
Collapse
|
14
|
Yuan TT, Xiang ZX, Li W, Gao X, Lu YT. Osmotic stress represses root growth by modulating the transcriptional regulation of PIN-FORMED3. THE NEW PHYTOLOGIST 2021; 232:1661-1673. [PMID: 34420215 DOI: 10.1111/nph.17687] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
Osmotic stress influences root system architecture, and polar auxin transport (PAT) is well established to regulate root growth and development. However, how PAT responds to osmotic stress at the molecular level remains poorly understood. In this study, we explored whether and how the auxin efflux carrier PIN-FORMED3 (PIN3) participates in osmotic stress-induced root growth inhibition in Arabidopsis (Arabidopsis thaliana). We observed that osmotic stress induces a HD-ZIP II transcription factor-encoding gene HOMEODOMAIN ARABIDOPSIS THALIANA2 (HAT2) expression in roots. The hat2 loss-of-function mutant is less sensitive to osmotic stress in terms of root meristem growth. Consistent with this phenotype, whereas the auxin response is downregulated in wild-type roots under osmotic stress, the inhibition of auxin response by osmotic stress was alleviated in hat2 roots. Conversely, transgenic lines overexpressing HAT2 (Pro35S::HAT2) had shorter roots and reduced auxin accumulation compared with wild-type plants. PIN3 expression was significantly reduced in the Pro35S::HAT2 lines. We determined that osmotic stress-mediated repression of PIN3 was alleviated in the hat2 mutant because HAT2 normally binds to the promoter of PIN3 and inhibits its expression. Taken together, our data revealed that osmotic stress inhibits root growth via HAT2, which regulates auxin activity by directly repressing PIN3 transcription.
Collapse
Affiliation(s)
- Ting-Ting Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Zhi-Xin Xiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Wen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Xiang Gao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
15
|
Wang Z, Wang S, Xiao Y, Li Z, Wu M, Xie X, Li H, Mu W, Li F, Liu P, Wang R, Yang J. Functional characterization of a HD-ZIP IV transcription factor NtHDG2 in regulating flavonols biosynthesis in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:259-268. [PMID: 31778931 DOI: 10.1016/j.plaphy.2019.11.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The HD-ZIP Ⅳ transcription factors have been identified and functional characterized in many plant species. However, no tobacco HD-ZIP IV gene has been isolated, and it is not yet known whether HD-ZIP IV genes are involved in controlling flavonols accumulation in plants. Here, we cloned a HD ZIP gene named NtHDG2 from Nicotiana tabacum, which belongs to the class IV of HD-ZIP family, and the NtHDG2-GFP fusion protein is localized to the nucleus. We further observed that the flavonols contents in the NtHDG2 overexpression leaves increase to 1.9-4.5 folds of that in WT plants, but in the NtHDG2-RNAi plants the flavonols contents reduce to 20.9%-52.7% of that in WT plants. The transcriptions of one regulatory gene NtMYB12, and three structural genes (NtPAL, NtF3'H, NtF3GT), contributing to flavonols biosynthesis, were significantly induced by NtHDG2. However, the transcription level of NtNAC002, a flavonols biosynthesis repressor, was also significantly up-regulated in NtHDG2-overexpression lines, but significantly down-regulated in the RNAi lines, indicating that HDG2 regulates the synthesis of flavonols as a complex regulatory network. Moreover, ectopic expression of NtHDG2 gene promoted the transcription of several AP2/ERF genes, including NtERF1-5, NtERF109, NtDREB1, and NtCIPK11, which participate in regulating root development and resistance to abiotic stresses. Our findings reveal the new function of HD-ZIP IV transcription factors in flavonoids biosynthesis, and indicate that HD-ZIP IV members may play an important role in plant resistance to abiotic stress. The NtHDG2 gene provides a promising target for genetically manipulating to increase the amounts of flavonols in tobacco leaves.
Collapse
Affiliation(s)
- Zhong Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Shanshan Wang
- Xiangyang Cigarette Factory, China Tobacco Hubei Industrial Co., Ltd., Xiangyang, Hubei, 441000, China
| | - Yansong Xiao
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, Hunan, 423000, China
| | - Zefeng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Mingzhu Wu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Hongguang Li
- Chenzhou Tobacco Company of Hunan Province, Chenzhou, Hunan, 423000, China
| | - Wenjun Mu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Feng Li
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Pingping Liu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Ran Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China.
| |
Collapse
|
16
|
Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI, Lozano-Sotomayor P, Herrera-Ubaldo H, Marsch-Martinez N, de Folter S. Redundant and Non-redundant Functions of the AHK Cytokinin Receptors During Gynoecium Development. FRONTIERS IN PLANT SCIENCE 2020; 11:568277. [PMID: 33117412 PMCID: PMC7575793 DOI: 10.3389/fpls.2020.568277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 05/17/2023]
Abstract
The phytohormone cytokinin is crucial for plant growth and development. The site of action of cytokinin in the plant is dependent on the expression of the cytokinin receptors. In Arabidopsis, there are three cytokinin receptors that present some overlap in expression pattern. Functional studies demonstrated that the receptors play highly redundant roles but also have specialized functions. Here, we focus on gynoecium development, which is the female reproductive part of the plant. Cytokinin signaling has been demonstrated to be important for reproductive development, positively affecting seed yield and fruit production. Most of these developmental processes are regulated by cytokinin during early gynoecium development. While some information is available, there is a gap in knowledge on cytokinin function and especially on the cytokinin receptors during early gynoecium development. Therefore, we studied the expression patterns and the role of the cytokinin receptors during gynoecium development. We found that the three receptors are expressed in the gynoecium and that they have redundant and specialized functions.
Collapse
Affiliation(s)
- Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Victor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
- *Correspondence: Stefan de Folter,
| |
Collapse
|
17
|
Lee ZH, Tatsumi Y, Ichihashi Y, Suzuki T, Shibata A, Shirasu K, Yamaguchi N, Ito T. CRABS CLAW and SUPERMAN Coordinate Hormone-, Stress-, and Metabolic-Related Gene Expression During Arabidopsis Stamen Development. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
18
|
Chen W, Cheng Z, Liu L, Wang M, You X, Wang J, Zhang F, Zhou C, Zhang Z, Zhang H, You S, Wang Y, Luo S, Zhang J, Wang J, Wang J, Zhao Z, Guo X, Lei C, Zhang X, Lin Q, Ren Y, Zhu S, Wan J. Small Grain and Dwarf 2, encoding an HD-Zip II family transcription factor, regulates plant development by modulating gibberellin biosynthesis in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110208. [PMID: 31521223 DOI: 10.1016/j.plantsci.2019.110208] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Homeodomain leucine zipper (HD-Zip) proteins are transcription factors that regulate plant development. Bioactive gibberellin (GA) is a key endogenous hormone that participates in plant growth. However, the relationship between HD-Zip genes and modulation of GA biosynthesis in rice remains elusive. Here, we identified a rice mutant, designated as small grain and dwarf 2 (sgd2), which had reduced height and grain size compared with the wild type. Cytological observations indicated that the defective phenotype was mainly due to decreased cell length. Map-based cloning and complementation tests demonstrated that a 9 bp deletion in a homeodomain leucine zipper (HD-Zip) II family transcription factor was responsible for the sgd2 mutant phenotype. Expression of SGD2 was pronounced in developing panicles, and its protein was localized in nucleus. Luciferase reporter system and transactivation assays in yeast suggested that SGD2 functioned as a transcriptional repressor. High performance liquid chromatography assays showed that the endogenous GA1 level in the sgd2 mutant was dramatically decreased, and exogenous GA3 recovered the second leaf sheath to normal length. Results of qRT-PCR showed that the expression levels of genes positively regulating GA-biosynthesis were mostly down-regulated in the mutant. Our data identified the role of an HD-Zip transcription factor that affects rice plant development by modulating gibberellin biosynthesis.
Collapse
Affiliation(s)
- Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Linglong Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Min Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Jian Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Feng Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Chunlei Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Huan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Shimin You
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Sheng Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jinhui Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, PR China.
| |
Collapse
|
19
|
Hugouvieux V, Silva CS, Jourdain A, Stigliani A, Charras Q, Conn V, Conn SJ, Carles CC, Parcy F, Zubieta C. Tetramerization of MADS family transcription factors SEPALLATA3 and AGAMOUS is required for floral meristem determinacy in Arabidopsis. Nucleic Acids Res 2019; 46:4966-4977. [PMID: 29562355 PMCID: PMC6007258 DOI: 10.1093/nar/gky205] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/08/2018] [Indexed: 01/24/2023] Open
Abstract
The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.
Collapse
Affiliation(s)
- Véronique Hugouvieux
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Catarina S Silva
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,European Synchrotron Radiation Facility, Structural Biology Group, 71, Avenue des Martyrs, F-38000 Grenoble, France
| | - Agnès Jourdain
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Arnaud Stigliani
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Quentin Charras
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Vanessa Conn
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Sturt Road, Bedford Park 5042, South Australia, Australia
| | - Simon J Conn
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble.,Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Sturt Road, Bedford Park 5042, South Australia, Australia
| | - Cristel C Carles
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - François Parcy
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire & Végétale, CEA, Univ. Grenoble Alpes, CNRS, INRA, BIG, Grenoble
| |
Collapse
|
20
|
Du C, Ma B, Wu Z, Li N, Zheng L, Wang Y. Reaumuria trigyna transcription factor RtWRKY23 enhances salt stress tolerance and delays flowering in plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 239:38-51. [PMID: 31181407 DOI: 10.1016/j.jplph.2019.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 05/13/2019] [Accepted: 05/13/2019] [Indexed: 05/13/2023]
Abstract
Reaumuria trigyna (Reaumuria Linn genus, family Tamaricaceae), an endangered dicotyledonous shrub with the features of a recretohalophyte, is endemic to the Eastern Alxa-Western Ordos area of China. Based on R. trigyna transcriptome data and expression pattern analysis of RtWRKYs, RtWRKY23, a Group II WRKY transcription factor, was isolated from R. trigyna cDNA. RtWRKY23 was mainly expressed in the stem and was induced by salt, drought, cold, ultraviolet radiation, and ABA treatments, but suppressed by heat treatment. Overexpression of RtWRKY23 in Arabidopsis increased chlorophyll content, root length, and fresh weight of the transgenic lines under salt stress. Real-time quantitative PCR (qPCR) analysis and yeast one-hybrid analysis demonstrated that RtWRKY23 protein directly or indirectly modulated the expression levels of downstream genes, including stress-related genes AtPOD, AtPOD22, AtPOD23, AtP5CS1, AtP5CS2, and AtPRODH2, and reproductive development-related genes AtMAF5, AtHAT1, and AtANT. RtWRKY23 transgenic Arabidopsis had higher proline content, peroxidase activity, and superoxide anion clearance rate, and lower H2O2 and malondialdehyde content than WT plants under salt stress conditions. Moreover, RtWRKY23 transgenic Arabidopsis exhibited later flowering and shorter pods, but little change in seed yield, compared with WT plants under salt stress. Our study demonstrated that RtWRKY23 not only enhanced salt stress tolerance through maintaining the ROS and osmotic balances in plants, but also participated in the regulation of flowering under salt stress.
Collapse
Affiliation(s)
- Chao Du
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; School of Life Sciences and Technology, Inner Mongolia Normal University, Hohhot, 010022, PR China.
| | - Binjie Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Zhigang Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Ningning Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Linlin Zheng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China; Key Laboratory of Herbage and Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010070, PR China.
| |
Collapse
|
21
|
Challa KR, Rath M, Nath U. The CIN-TCP transcription factors promote commitment to differentiation in Arabidopsis leaf pavement cells via both auxin-dependent and independent pathways. PLoS Genet 2019; 15:e1007988. [PMID: 30742619 PMCID: PMC6386416 DOI: 10.1371/journal.pgen.1007988] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 02/22/2019] [Accepted: 01/26/2019] [Indexed: 11/18/2022] Open
Abstract
Cells in organ primordia undergo active proliferation at an early stage to generate sufficient number, before exiting proliferation and entering differentiation. However, how the actively proliferating cells are developmentally reprogrammed to acquire differentiation potential during organ maturation is unclear. Here, we induced a microRNA-resistant form of TCP4 at various developmental stages of Arabidopsis leaf primordium that lacked the activity of TCP4 and its homologues and followed its effect on growth kinematics. By combining this with spatio-temporal gene expression analysis, we show that TCP4 commits leaf cells within the transition zone to exit proliferation and enter differentiation. A 24-hour pulse of TCP4 activity was sufficient to impart irreversible differentiation competence to the actively dividing cells. A combination of biochemical and genetic analyses revealed that TCP4 imparts differentiation competence by promoting auxin response as well as by directly activating HAT2, a HD-ZIP II transcription factor-encoding gene that also acts downstream to auxin response. Our study offers a molecular link between the two major organ maturation factors, CIN-like TCPs and HD-ZIP II transcription factors and explains how TCP activity restricts the cell number and final size in a leaf. Cells in a young organ primordium proliferate to generate sufficient number, before they exit division cycle and enter differentiation programme at later stages. While factors that drive cell cycle progression have been identified and studied in detail in diverse eukaryotic species, developmental factors that promote exit from division and entry into differentiation are less known, especially in the plant kingdom. Here, we show that the class II TCP proteins, notably TCP4, irreversibly reprogram the mitotic cells to exit division and acquire differentiation competence by auxin response as well as direct activation of HAT2 transcription. Our work offers a molecular link between class II TCP and HD-ZIP II genes during the cell differentiation and leaf maturation.
Collapse
Affiliation(s)
- Krishna Reddy Challa
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Monalisha Rath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Utpal Nath
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
- * E-mail:
| |
Collapse
|
22
|
Herrera-Ubaldo H, Lozano-Sotomayor P, Ezquer I, Di Marzo M, Chávez Montes RA, Gómez-Felipe A, Pablo-Villa J, Diaz-Ramirez D, Ballester P, Ferrándiz C, Sagasser M, Colombo L, Marsch-Martínez N, de Folter S. New roles of NO TRANSMITTING TRACT and SEEDSTICK during medial domain development in Arabidopsis fruits. Development 2019; 146:dev.172395. [PMID: 30538100 DOI: 10.1242/dev.172395] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 12/03/2018] [Indexed: 01/11/2023]
Abstract
The gynoecium, the female reproductive part of the flower, is key for plant sexual reproduction. During its development, inner tissues such as the septum and the transmitting tract tissue, important for pollen germination and guidance, are formed. In Arabidopsis, several transcription factors are known to be involved in the development of these tissues. One of them is NO TRANSMITTING TRACT (NTT), essential for transmitting tract formation. We found that the NTT protein can interact with several gynoecium-related transcription factors, including several MADS-box proteins, such as SEEDSTICK (STK), known to specify ovule identity. Evidence suggests that NTT and STK control enzyme and transporter-encoding genes involved in cell wall polysaccharide and lipid distribution in gynoecial medial domain cells. The results indicate that the simultaneous loss of NTT and STK activity affects polysaccharide and lipid deposition and septum fusion, and delays entry of septum cells to their normal degradation program. Furthermore, we identified KAWAK, a direct target of NTT and STK, which is required for the correct formation of fruits in Arabidopsis These findings position NTT and STK as important factors in determining reproductive competence.
Collapse
Affiliation(s)
- Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Maurizio Di Marzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Ricardo Aarón Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Andrea Gómez-Felipe
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Cristina Ferrándiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, 46022, Spain
| | - Martin Sagasser
- Bielefeld University, Faculty of Biology, Chair of Genetics and Genomics of Plants, Bielefeld 33615, Germany
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan 20133, Italy
| | - Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, CINVESTAV-IPN, Irapuato 36824, Guanajuato, México
| | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato 36824, Guanajuato, México
| |
Collapse
|
23
|
Kivivirta K, Herbert D, Lange M, Beuerlein K, Altmüller J, Becker A. A protocol for laser microdissection (LMD) followed by transcriptome analysis of plant reproductive tissue in phylogenetically distant angiosperms. PLANT METHODS 2019; 15:151. [PMID: 31889976 PMCID: PMC6913016 DOI: 10.1186/s13007-019-0536-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/02/2019] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plant development is controlled by the action of many, often connected gene regulatory networks. Differential gene expression controlled by internal and external cues is a major driver of growth and time specific differentiation in plants. Transcriptome analysis is the state-of-the-art method to detect spatio-temporal changes in gene expression during development. Monitoring changes in gene expression at early stages or in small plant organs and tissues requires an accurate technique of tissue isolation, which subsequently results in RNA of sufficient quality and quantity. Laser-microdissection enables such accurate dissection and collection of desired tissue from sectioned material at a microscopic level for RNA extraction and subsequent downstream analyses, such as transcriptome, proteome, genome or miRNA. RESULTS A protocol for laser-microdissection, RNA extraction and RNA-seq was optimized and verified for three distant angiosperm species: Arabidopsis thaliana (Brassicaceae), Oryza sativa (Poaceae) and Eschscholzia californica (Papaveraceae). Previously published protocols were improved in processing speed by reducing the vacuum intensity and incubation time during tissue fixation and incubation time and cryoprotection and by applying adhesive tape. The sample preparation and sectioning of complex and heterogenous flowers produced adequate histological quality and subsequent RNA extraction from micro-dissected gynoecia reliably generated samples of sufficient quality and quantity on all species for RNA-seq. Expression analysis of growth stage specific A. thaliana and O. sativa transcriptomes showed distinct patterns of expression of chromatin remodelers on different time points of gynoecium morphogenesis from the initiation of development to post-meiotic stages. CONCLUSION Here we describe a protocol for plant tissue preparation, cryoprotection, cryo-sectioning, laser microdissection and RNA sample preparation for Illumina sequencing of complex plant organs from three phyletically distant plant species. We are confident that this approach is widely applicable to other plant species to enable transcriptome analysis with high spatial resolution in non-model plant species. The protocol is rapid, produces high quality sections of complex organs and results in RNA of adequate quality well suited for RNA-seq approaches. We provide detailed description of each stage of sample preparation with the quality and quantity measurements as well as an analysis of generated transcriptomes.
Collapse
Affiliation(s)
- Kimmo Kivivirta
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Denise Herbert
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Matthias Lange
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Present Address: Freelance Trial Monitor and Manager for Non-Interventional Studies, Grolmanstr. 22, 10623 Berlin, Germany
| | - Knut Beuerlein
- Rudolph-Buchheim-Institute of Pharmacology, Justus-Liebig-University Gießen, Schubertstraße 81, 35392 Gießen, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Weyertal 115b, 50931 Köln, Germany
| | - Annette Becker
- Institute of Botany, Justus-Liebig-University Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Rudolph-Buchheim-Institute of Pharmacology, Justus-Liebig-University Gießen, Schubertstraße 81, 35392 Gießen, Germany
| |
Collapse
|
24
|
Sessa G, Carabelli M, Possenti M, Morelli G, Ruberti I. Multiple Links between HD-Zip Proteins and Hormone Networks. Int J Mol Sci 2018; 19:ijms19124047. [PMID: 30558150 PMCID: PMC6320839 DOI: 10.3390/ijms19124047] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 01/01/2023] Open
Abstract
HD-Zip proteins are unique to plants, and contain a homeodomain closely linked to a leucine zipper motif, which are involved in dimerization and DNA binding. Based on homology in the HD-Zip domain, gene structure and the presence of additional motifs, HD-Zips are divided into four families, HD-Zip I–IV. Phylogenetic analysis of HD-Zip genes using transcriptomic and genomic datasets from a wide range of plant species indicate that the HD-Zip protein class was already present in green algae. Later, HD-Zips experienced multiple duplication events that promoted neo- and sub-functionalizations. HD-Zip proteins are known to control key developmental and environmental responses, and a growing body of evidence indicates a strict link between members of the HD-Zip II and III families and the auxin machineries. Interactions of HD-Zip proteins with other hormones such as brassinolide and cytokinin have also been described. More recent data indicate that members of different HD-Zip families are directly involved in the regulation of abscisic acid (ABA) homeostasis and signaling. Considering the fundamental role of specific HD-Zip proteins in the control of key developmental pathways and in the cross-talk between auxin and cytokinin, a relevant role of these factors in adjusting plant growth and development to changing environment is emerging.
Collapse
Affiliation(s)
- Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy.
| | - Monica Carabelli
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy.
| | - Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy.
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), Via Ardeatina 546, 00178 Rome, Italy.
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
25
|
Sessa G, Carabelli M, Possenti M, Morelli G, Ruberti I. Multiple Pathways in the Control of the Shade Avoidance Response. PLANTS 2018; 7:plants7040102. [PMID: 30453622 PMCID: PMC6313891 DOI: 10.3390/plants7040102] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/13/2018] [Accepted: 11/14/2018] [Indexed: 01/09/2023]
Abstract
To detect the presence of neighboring vegetation, shade-avoiding plants have evolved the ability to perceive and integrate multiple signals. Among them, changes in light quality and quantity are central to elicit and regulate the shade avoidance response. Here, we describe recent progresses in the comprehension of the signaling mechanisms underlying the shade avoidance response, focusing on Arabidopsis, because most of our knowledge derives from studies conducted on this model plant. Shade avoidance is an adaptive response that results in phenotypes with a high relative fitness in individual plants growing within dense vegetation. However, it affects the growth, development, and yield of crops, and the design of new strategies aimed at attenuating shade avoidance at defined developmental stages and/or in specific organs in high-density crop plantings is a major challenge for the future. For this reason, in this review, we also report on recent advances in the molecular description of the shade avoidance response in crops, such as maize and tomato, and discuss their similarities and differences with Arabidopsis.
Collapse
Affiliation(s)
- Giovanna Sessa
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Monica Carabelli
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| | - Marco Possenti
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Giorgio Morelli
- Research Centre for Genomics and Bioinformatics, Council for Agricultural Research and Economics (CREA), 00178 Rome, Italy.
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, 00185 Rome, Italy.
| |
Collapse
|
26
|
Herrera-Ubaldo H, de Folter S. Exploring Cell Wall Composition and Modifications During the Development of the Gynoecium Medial Domain in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:454. [PMID: 29706978 PMCID: PMC5906702 DOI: 10.3389/fpls.2018.00454] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/22/2018] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the gynoecium, the inner whorl of the flower, is the female reproductive part. Many tissues important for fertilization such as the stigma, style, transmitting tract, placenta, ovules, and septum, comprising the medial domain, arise from the carpel margin meristem. During gynoecium development, septum fusion occurs and tissues form continuously to prepare for a successful pollination and fertilization. During gynoecium development, cell wall modifications take place and one of the most important is the formation of the transmitting tract, having a great impact on reproductive competence because it facilitates pollen tube growth and movement through the ovary. In this study, using a combination of classical staining methods, fluorescent dyes, and indirect immunolocalization, we analyzed cell wall composition and modifications accompanying medial domain formation during gynoecium development. We detected coordinated changes in polysaccharide distribution through time, cell wall modifications preceding the formation of the transmitting tract, mucosubstances increase during transmitting tract formation, and a decrease of mannan distribution. Furthermore, we also detected changes in lipid distribution during septum fusion. Proper cell wall composition and modifications are important for postgenital fusion of the carpel (septum fusion) and transmitting tract formation, because these tissues affect plant reproductive competence.
Collapse
Affiliation(s)
| | - Stefan de Folter
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Mexico
| |
Collapse
|
27
|
Roy R, Schmitt AJ, Thomas JB, Carter CJ. Review: Nectar biology: From molecules to ecosystems. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 262:148-164. [PMID: 28716410 DOI: 10.1016/j.plantsci.2017.04.012] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 05/06/2023]
Abstract
Plants attract mutualistic animals by offering a reward of nectar. Specifically, floral nectar (FN) is produced to attract pollinators, whereas extrafloral nectar (EFN) mediates indirect defenses through the attraction of mutualist predatory insects to limit herbivory. Nearly 90% of all plant species, including 75% of domesticated crops, benefit from animal-mediated pollination, which is largely facilitated by FN. Moreover, EFN represents one of the few defense mechanisms for which stable effects on plant health and fitness have been demonstrated in multiple systems, and thus plays a crucial role in the resistance phenotype of plants producing it. In spite of its central role in plant-animal interactions, the molecular events involved in the development of both floral and extrafloral nectaries (the glands that produce nectar), as well as the synthesis and secretion of the nectar itself, have been poorly understood until recently. This review will cover major recent developments in the understanding of (1) nectar chemistry and its role in plant-mutualist interactions, (2) the structure and development of nectaries, (3) nectar production, and (4) its regulation by phytohormones.
Collapse
Affiliation(s)
- Rahul Roy
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Anthony J Schmitt
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jason B Thomas
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA
| | - Clay J Carter
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, USA.
| |
Collapse
|
28
|
Reyes-Olalde JI, Zúñiga-Mayo VM, Serwatowska J, Chavez Montes RA, Lozano-Sotomayor P, Herrera-Ubaldo H, Gonzalez-Aguilera KL, Ballester P, Ripoll JJ, Ezquer I, Paolo D, Heyl A, Colombo L, Yanofsky MF, Ferrandiz C, Marsch-Martínez N, de Folter S. The bHLH transcription factor SPATULA enables cytokinin signaling, and both activate auxin biosynthesis and transport genes at the medial domain of the gynoecium. PLoS Genet 2017; 13:e1006726. [PMID: 28388635 PMCID: PMC5400277 DOI: 10.1371/journal.pgen.1006726] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 04/21/2017] [Accepted: 03/30/2017] [Indexed: 11/18/2022] Open
Abstract
Fruits and seeds are the major food source on earth. Both derive from the gynoecium and, therefore, it is crucial to understand the mechanisms that guide the development of this organ of angiosperm species. In Arabidopsis, the gynoecium is composed of two congenitally fused carpels, where two domains: medial and lateral, can be distinguished. The medial domain includes the carpel margin meristem (CMM) that is key for the production of the internal tissues involved in fertilization, such as septum, ovules, and transmitting tract. Interestingly, the medial domain shows a high cytokinin signaling output, in contrast to the lateral domain, where it is hardly detected. While it is known that cytokinin provides meristematic properties, understanding on the mechanisms that underlie the cytokinin signaling pattern in the young gynoecium is lacking. Moreover, in other tissues, the cytokinin pathway is often connected to the auxin pathway, but we also lack knowledge about these connections in the young gynoecium. Our results reveal that cytokinin signaling, that can provide meristematic properties required for CMM activity and growth, is enabled by the transcription factor SPATULA (SPT) in the medial domain. Meanwhile, cytokinin signaling is confined to the medial domain by the cytokinin response repressor ARABIDOPSIS HISTIDINE PHOSPHOTRANSFERASE 6 (AHP6), and perhaps by ARR16 (a type-A ARR) as well, both present in the lateral domains (presumptive valves) of the developing gynoecia. Moreover, SPT and cytokinin, probably together, promote the expression of the auxin biosynthetic gene TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS 1 (TAA1) and the gene encoding the auxin efflux transporter PIN-FORMED 3 (PIN3), likely creating auxin drainage important for gynoecium growth. This study provides novel insights in the spatiotemporal determination of the cytokinin signaling pattern and its connection to the auxin pathway in the young gynoecium.
Collapse
Affiliation(s)
- J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Víctor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Joanna Serwatowska
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Ricardo A. Chavez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Karla L. Gonzalez-Aguilera
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
| | - Patricia Ballester
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, Spain
| | - Juan José Ripoll
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Ignacio Ezquer
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Dario Paolo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Alexander Heyl
- Biology Department, Adelphi University, Garden City, New York, United States of America
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Martin F. Yanofsky
- Division of Biological Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Cristina Ferrandiz
- Instituto de Biología Molecular y Celular de Plantas, CSIC-UPV Universidad Politécnica de Valencia, Valencia, Spain
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, México
- * E-mail:
| |
Collapse
|
29
|
Roodbarkelari F, Groot EP. Regulatory function of homeodomain-leucine zipper (HD-ZIP) family proteins during embryogenesis. THE NEW PHYTOLOGIST 2017; 213:95-104. [PMID: 27523393 DOI: 10.1111/nph.14132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/04/2016] [Indexed: 05/26/2023]
Abstract
Homeodomain-leucine zipper proteins (HD-ZIPs) form a plant-specific family of transcription factors functioning as homo- or heterodimers. Certain members of all four classes of this family are involved in embryogenesis, the focus of this review. They support auxin biosynthesis, transport and response, which are in turn essential for the apical-basal patterning of the embryo, radicle formation and outgrowth of the cotyledons. They transcriptionally regulate meristem regulators to maintain the shoot apical meristem once it is initiated. Some members are specific to the protoderm, the outermost layer of the embryo, and play a role in shoot apical meristem function. Within classes, homeodomain-leucine zippers tend to act redundantly during embryo development, and there are many examples of regulation within and between classes of homeodomain-leucine zippers. This indicates a complex network of regulation that awaits future experiments to uncover.
Collapse
Affiliation(s)
| | - Edwin P Groot
- Institute of Biology III, Albert-Ludwigs-Universität, Freiburg 79104, Germany
| |
Collapse
|
30
|
Lozano-Sotomayor P, Chávez Montes RA, Silvestre-Vañó M, Herrera-Ubaldo H, Greco R, Pablo-Villa J, Galliani BM, Diaz-Ramirez D, Weemen M, Boutilier K, Pereira A, Colombo L, Madueño F, Marsch-Martínez N, de Folter S. Altered expression of the bZIP transcription factor DRINK ME affects growth and reproductive development in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:437-451. [PMID: 27402171 DOI: 10.1111/tpj.13264] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Revised: 06/24/2016] [Accepted: 07/06/2016] [Indexed: 05/05/2023]
Abstract
Here we describe an uncharacterized gene that negatively influences Arabidopsis growth and reproductive development. DRINK ME (DKM; bZIP30) is a member of the bZIP transcription factor family, and is expressed in meristematic tissues such as the inflorescence meristem (IM), floral meristem (FM), and carpel margin meristem (CMM). Altered DKM expression affects meristematic tissues and reproductive organ development, including the gynoecium, which is the female reproductive structure and is determinant for fertility and sexual reproduction. A microarray analysis indicates that DKM overexpression affects the expression of cell cycle, cell wall, organ initiation, cell elongation, hormone homeostasis, and meristem activity genes. Furthermore, DKM can interact in yeast and in planta with proteins involved in shoot apical meristem maintenance such as WUSCHEL, KNAT1/BP, KNAT2 and JAIBA, and with proteins involved in medial tissue development in the gynoecium such as HECATE, BELL1 and NGATHA1. Taken together, our results highlight the relevance of DKM as a negative modulator of Arabidopsis growth and reproductive development.
Collapse
Affiliation(s)
- Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Ricardo A Chávez Montes
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Marina Silvestre-Vañó
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus de la Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | | | - Jeanneth Pablo-Villa
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| | - Bianca M Galliani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - David Diaz-Ramirez
- Departamento de Biotecnología y Bioquímica, CINVESTAV-IPN, Irapuato, Gto., México
| | - Mieke Weemen
- Wageningen University and Research Centre, Bioscience, P.O. Box 619, 6700 AP, Wageningen, The Netherlands
| | - Kim Boutilier
- Wageningen University and Research Centre, Bioscience, P.O. Box 619, 6700 AP, Wageningen, The Netherlands
| | - Andy Pereira
- Crop, Soil and Environmental Sciences, University of Arkansas, 115 Plant Science Building, Fayetteville, AR, 72701, USA
| | - Lucia Colombo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | - Francisco Madueño
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Campus de la Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Gto., México
| |
Collapse
|
31
|
Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:95-105. [PMID: 27487457 DOI: 10.1016/j.bbagrm.2016.07.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/21/2016] [Accepted: 07/22/2016] [Indexed: 11/23/2022]
Abstract
Reproductive development in plants is controlled by complex and intricate gene-regulatory networks of transcription factors. These networks integrate the information from endogenous, hormonal and environmental regulatory pathways. Many of the key players have been identified in Arabidopsis and other flowering plant species, and their interactions and molecular modes of action are being elucidated. An emerging theme is that there is extensive crosstalk between different pathways, which can be accomplished at the molecular level by modulation of transcription factor activity or of their downstream targets. In this review, we aim to summarize current knowledge on transcription factors and epigenetic regulators that control basic developmental programs during inflorescence and flower morphogenesis in the model plant Arabidopsis thaliana. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
|
32
|
Turchi L, Baima S, Morelli G, Ruberti I. Interplay of HD-Zip II and III transcription factors in auxin-regulated plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:5043-53. [PMID: 25911742 DOI: 10.1093/jxb/erv174] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The homeodomain-leucine zipper (HD-Zip) class of transcription factors is unique to plants. HD-Zip proteins bind to DNA exclusively as dimers recognizing dyad symmetric sequences and act as positive or negative regulators of gene expression. On the basis of sequence homology in the HD-Zip DNA-binding domain, HD-Zip proteins have been grouped into four families (HD-Zip I-IV). Each HD-Zip family can be further divided into subfamilies containing paralogous genes that have arisen through genome duplication. Remarkably, all the members of the HD-Zip IIγ and -δ clades are regulated by light quality changes that induce in the majority of the angiosperms the shade-avoidance response, a process regulated at multiple levels by auxin. Intriguingly, it has recently emerged that, apart from their function in shade avoidance, the HD-Zip IIγ and -δ transcription factors control several auxin-regulated developmental processes, including apical embryo patterning, lateral organ polarity, and gynoecium development, in a white-light environment. This review presents recent advances in our understanding of HD-Zip II protein function in plant development, with particular emphasis on the impact of loss-of-function HD-Zip II mutations on auxin distribution and response. The review also describes evidence demonstrating that HD-Zip IIγ and -δ genes are directly and positively regulated by HD-Zip III transcription factors, primary determinants of apical shoot development, known to control the expression of several auxin biosynthesis, transport, and response genes. Finally, the interplay between HD-Zip II and III transcription factors in embryo apical patterning and organ polarity is discussed.
Collapse
Affiliation(s)
- L Turchi
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - S Baima
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, 00178 Rome, Italy
| | - G Morelli
- Food and Nutrition Research Centre, Agricultural Research Council, Via Ardeatina 546, 00178 Rome, Italy
| | - I Ruberti
- Institute of Molecular Biology and Pathology, National Research Council, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
33
|
Sehra B, Franks RG. Auxin and cytokinin act during gynoecial patterning and the development of ovules from the meristematic medial domain. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:555-71. [PMID: 25951007 DOI: 10.1002/wdev.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/22/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
The gynoecium is the female reproductive structure of flowering plants, and is the site of ovule and seed development. The gynoecium is critical for reproductive competence and for agricultural productivity in many crop plants. In this review we focus on molecular aspects of the development of the Arabidopsis thaliana gynoecium. We briefly introduce gynoecium structure and development and then focus on important research advances published within the last year. We highlight what has been learned recently with respect to: (1) the role of auxin in the differential development of the medial and lateral domains of the Arabidopsis gynoecium; (2) the interaction between cytokinin and auxin during gynoecial development; (3) the role of auxin in the termination of the floral meristem and in the transition of floral meristem to gynoecium; and (4) recent studies that suggest a degree of evolutionary conservation of auxin mechanisms during gynoecial development in other eudicots.
Collapse
Affiliation(s)
- Bhupinder Sehra
- Interdepartmental Program in Genetics, North Carolina State University, Raleigh, NC, USA
| | - Robert G Franks
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
34
|
Sun B, Ito T. Regulation of floral stem cell termination in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:17. [PMID: 25699061 PMCID: PMC4313600 DOI: 10.3389/fpls.2015.00017] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 01/08/2015] [Indexed: 05/06/2023]
Abstract
In Arabidopsis, floral stem cells are maintained only at the initial stages of flower development, and they are terminated at a specific time to ensure proper development of the reproductive organs. Floral stem cell termination is a dynamic and multi-step process involving many transcription factors, chromatin remodeling factors and signaling pathways. In this review, we discuss the mechanisms involved in floral stem cell maintenance and termination, highlighting the interplay between transcriptional regulation and epigenetic machinery in the control of specific floral developmental genes. In addition, we discuss additional factors involved in floral stem cell regulation, with the goal of untangling the complexity of the floral stem cell regulatory network.
Collapse
Affiliation(s)
- Bo Sun
- Temasek Life Sciences Laboratory, 1 Research Link, National University of SingaporeSingapore
| | - Toshiro Ito
- Temasek Life Sciences Laboratory, 1 Research Link, National University of SingaporeSingapore
- Department of Biological Sciences, National University of SingaporeSingapore
- *Correspondence: Toshiro Ito, Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Republic of Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore e-mail:
| |
Collapse
|
35
|
Marsch-Martínez N, Zúñiga-Mayo VM, Herrera-Ubaldo H, Ouwerkerk PBF, Pablo-Villa J, Lozano-Sotomayor P, Greco R, Ballester P, Balanzá V, Kuijt SJH, Meijer AH, Pereira A, Ferrándiz C, de Folter S. The NTT transcription factor promotes replum development in Arabidopsis fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:69-81. [PMID: 25039392 DOI: 10.1111/tpj.12617] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/03/2014] [Accepted: 07/09/2014] [Indexed: 05/21/2023]
Abstract
Fruits are complex plant structures that nurture seeds and facilitate their dispersal. The Arabidopsis fruit is termed silique. It develops from the gynoecium, which has a stigma, a style, an ovary containing the ovules, and a gynophore. Externally, the ovary consists of two valves, and their margins lay adjacent to the replum, which is connected to the septum that internally divides the ovary. In this work we describe the role for the zinc-finger transcription factor NO TRANSMITTING TRACT (NTT) in replum development. NTT loss of function leads to reduced replum width and cell number, whereas increased expression promotes replum enlargement. NTT activates the homeobox gene BP, which, together with RPL, is important for replum development. In addition, the NTT protein is able to bind the BP promoter in yeast, and when this binding region is not present, NTT fails to activate BP in the replum. Furthermore, NTT interacts with itself and different proteins involved in fruit development: RPL, STM, FUL, SHP1 and SHP2 in yeast and in planta. Moreover, its genetic interactions provide further evidence about its biological relevance in replum development.
Collapse
Affiliation(s)
- Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, A.P. 629, CP 36821 Irapuato, Guanajuato, Mexico
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Dwivedi KK, Roche DJ, Clemente TE, Ge Z, Carman JG. The OCL3 promoter from Sorghum bicolor directs gene expression to abscission and nutrient-transfer zones at the bases of floral organs. ANNALS OF BOTANY 2014; 114:489-98. [PMID: 25081518 PMCID: PMC4204675 DOI: 10.1093/aob/mcu148] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 06/11/2014] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS During seed fill in cereals, nutrients are symplasmically unloaded to vascular parenchyma in ovules, but thereafter nutrient transport is less certain. In Zea mays, two mechanisms of nutrient passage through the chalaza and nucellus have been hypothesized, apoplasmic and symplasmic. In a recent study, nutrients first passed non-selectively to the chalazal apoplasm and were then selectively absorbed by the nucellus before being released to the endosperm apoplasm. This study reports that the promoter of OUTER CELL LAYER3 (PSbOCL3) from Sorghum bicolor (sorghum) directs gene expression to chalazal cells where the apoplasmic barrier is thought to form. The aims were to elucidate PSbOCL3 expression patterns in sorghum and relate them to processes of nutrient pathway development in kernels and to recognized functions of the homeodomain-leucine zipper (HD-Zip) IV transcription factor family to which the promoter belongs. METHODS PSbOCL3 was cloned and transformed into sorghum as a promoter-GUS (β-glucuronidase) construct. Plant tissues from control and transformed plants were then stained for GUS, and kernels were cleared and characterized using differential interference contrast microscopy. KEY RESULTS A symplasmic disconnect between the chalaza and nucellus during seed fill is inferred by the combination of two phenomena: differentiation of a distinct nucellar epidermis adjacent to the chalaza, and lysis of GUS-stained chalazal cells immediately proximal to the nucellar epidermis. Compression of the GUS-stained chalazal cells during kernel maturation produced the kernel abscission zone (closing layer). CONCLUSIONS The results suggest that the HD-Zip IV transcription factor SbOCL3 regulates kernel nutrition and abscission. The latter is consistent with evidence that members of this transcription factor group regulate silique abscission and dehiscence in Arabidopsis thaliana. Collectively, the findings suggest that processes of floral organ abscission are conserved among angiosperms and may in some respects differ from processes of leaf abscission.
Collapse
Affiliation(s)
- Krishna K Dwivedi
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Crop Improvement Division, Indian Grassland and Fodder Research Institute, Jhansi (UP) 284003, India Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| | - Dominique J Roche
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA PhytoGen Seed Co. LLC, Western Research Station, 850 Plymouth Avenue, Corcoran, CA 93212, USA
| | - Tom E Clemente
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - Zhengxiang Ge
- Department of Agronomy and Horticulture, Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
| | - John G Carman
- Caisson Laboratories, Inc., 1740 Research Park Way, North Logan, UT 84341, USA Plants, Soils and Climate Department, Utah State University, Logan, UT 84322-4820, USA
| |
Collapse
|
37
|
Rice EA, Khandelwal A, Creelman RA, Griffith C, Ahrens JE, Taylor JP, Murphy LR, Manjunath S, Thompson RL, Lingard MJ, Back SL, Larue H, Brayton BR, Burek AJ, Tiwari S, Adam L, Morrell JA, Caldo RA, Huai Q, Kouadio JLK, Kuehn R, Sant AM, Wingbermuehle WJ, Sala R, Foster M, Kinser JD, Mohanty R, Jiang D, Ziegler TE, Huang MG, Kuriakose SV, Skottke K, Repetti PP, Reuber TL, Ruff TG, Petracek ME, Loida PJ. Expression of a truncated ATHB17 protein in maize increases ear weight at silking. PLoS One 2014; 9:e94238. [PMID: 24736658 PMCID: PMC3988052 DOI: 10.1371/journal.pone.0094238] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/12/2014] [Indexed: 12/11/2022] Open
Abstract
ATHB17 (AT2G01430) is an Arabidopsis gene encoding a member of the α-subclass of the homeodomain leucine zipper class II (HD-Zip II) family of transcription factors. The ATHB17 monomer contains four domains common to all class II HD-Zip proteins: a putative repression domain adjacent to a homeodomain, leucine zipper, and carboxy terminal domain. However, it also possesses a unique N-terminus not present in other members of the family. In this study we demonstrate that the unique 73 amino acid N-terminus is involved in regulation of cellular localization of ATHB17. The ATHB17 protein is shown to function as a transcriptional repressor and an EAR-like motif is identified within the putative repression domain of ATHB17. Transformation of maize with an ATHB17 expression construct leads to the expression of ATHB17Δ113, a truncated protein lacking the first 113 amino acids which encodes a significant portion of the repression domain. Because ATHB17Δ113 lacks the repression domain, the protein cannot directly affect the transcription of its target genes. ATHB17Δ113 can homodimerize, form heterodimers with maize endogenous HD-Zip II proteins, and bind to target DNA sequences; thus, ATHB17Δ113 may interfere with HD-Zip II mediated transcriptional activity via a dominant negative mechanism. We provide evidence that maize HD-Zip II proteins function as transcriptional repressors and that ATHB17Δ113 relieves this HD-Zip II mediated transcriptional repression activity. Expression of ATHB17Δ113 in maize leads to increased ear size at silking and, therefore, may enhance sink potential. We hypothesize that this phenotype could be a result of modulation of endogenous HD-Zip II pathways in maize.
Collapse
Affiliation(s)
- Elena A. Rice
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Abha Khandelwal
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Robert A. Creelman
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Cara Griffith
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | | - Siva Manjunath
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | | | | | - Huachun Larue
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Bonnie R. Brayton
- Dupont-Pioneer Hi-Bred International, Waipahu, Hawaii, United States of America
| | - Amanda J. Burek
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Shiv Tiwari
- Dupont-Pioneer Hi-Bred International, Hayward, California, United States of America
| | - Luc Adam
- ABCAM, Burlingame, California, United States of America
| | | | - Rico A. Caldo
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Qing Huai
- Monsanto Company, Cambridge, Massachusetts, United States of America
| | | | - Rosemarie Kuehn
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Anagha M. Sant
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Rodrigo Sala
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Matt Foster
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Josh D. Kinser
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Radha Mohanty
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Dongming Jiang
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Todd E. Ziegler
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Mingya G. Huang
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Kyle Skottke
- Monsanto Company, St. Louis, Missouri, United States of America
| | - Peter P. Repetti
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - T. Lynne Reuber
- Mendel Biotechnology Inc., Hayward, California, United States of America
| | - Thomas G. Ruff
- Monsanto Company, St. Louis, Missouri, United States of America
| | | | - Paul J. Loida
- Monsanto Company, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
38
|
Fu WQ, Zhao ZG, Ge XH, Ding L, Li ZY. Anatomy and transcript profiling of gynoecium development in female sterile Brassica napus mediated by one alien chromosome from Orychophragmus violaceus. BMC Genomics 2014; 15:61. [PMID: 24456102 PMCID: PMC3930543 DOI: 10.1186/1471-2164-15-61] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/21/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The gynoecium is one of the most complex organs of angiosperms specialized for seed production and dispersal, but only several genes important for ovule or embryo sac development were identified by using female sterile mutants. The female sterility in oilseed rape (Brassica napus) was before found to be related with one alien chromosome from another crucifer Orychophragmus violaceus. Herein, the developmental anatomy and comparative transcript profiling (RNA-seq) for the female sterility were performed to reveal the genes and possible metabolic pathways behind the formation of the damaged gynoecium. RESULTS The ovules in the female sterile Brassica napus with two copies of the alien chromosomes (S1) initiated only one short integument primordium which underwent no further development and the female gametophyte development was blocked after the tetrad stage but before megagametogenesis initiation. Using Brassica_ 95k_ unigene as the reference genome, a total of 28,065 and 27,653 unigenes were identified to be transcribed in S1 and donor B. napus (H3), respectively. Further comparison of the transcript abundance between S1 and H3 revealed that 4540 unigenes showed more than two fold expression differences. Gene ontology and pathway enrichment analysis of the Differentially Expressed Genes (DEGs) showed that a number of important genes and metabolism pathways were involved in the development of gynoecium, embryo sac, ovule, integuments as well as the interactions between pollen and pistil. CONCLUSIONS DEGs for the ovule development were detected to function in the metabolism pathways regulating brassinosteroid (BR) biosynthesis, adaxial/abaxial axis specification, auxin transport and signaling. A model was proposed to show the possible roles and interactions of these pathways for the sterile gynoecium development. The results provided new information for the molecular mechanisms behind the gynoecium development at early stage in B. napus.
Collapse
Affiliation(s)
| | | | | | | | - Zai-yun Li
- National Key Lab of Crop Genetic Improvement, National Center of Crop Molecular Breeding Technology, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, P, R, China.
| |
Collapse
|
39
|
Wynn AN, Seaman AA, Jones AL, Franks RG. Novel functional roles for PERIANTHIA and SEUSS during floral organ identity specification, floral meristem termination, and gynoecial development. FRONTIERS IN PLANT SCIENCE 2014; 5:130. [PMID: 24778638 PMCID: PMC3985007 DOI: 10.3389/fpls.2014.00130] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/19/2014] [Indexed: 05/07/2023]
Abstract
The gynoecium is the female reproductive structure of angiosperm flowers. In Arabidopsis thaliana the gynoecium is composed of two carpels that are fused into a tube-like structure. As the gynoecial primordium arises from the floral meristem, a specialized meristematic structure, the carpel margin meristem (CMM), develops from portions of the medial gynoecial domain. The CMM is critical for reproductive competence because it gives rise to the ovules, the precursors of the seeds. Here we report a functional role for the transcription factor PERIANTHIA (PAN) in the development of the gynoecial medial domain and the formation of ovule primordia. This function of PAN is revealed in pan aintegumenta (ant) as well as seuss (seu) pan double mutants that form reduced numbers of ovules. Previously, PAN was identified as a regulator of perianth organ number and as a direct activator of AGAMOUS (AG) expression in floral whorl four. However, the seu pan double mutants display enhanced ectopic AG expression in developing sepals and the partial transformation of sepals to petals indicating a novel role for PAN in the repression of AG in floral whorl one. These results indicate that PAN functions as an activator or repressor of AG expression in a whorl-specific fashion. The seu pan double mutants also display enhanced floral indeterminacy, resulting in the formation of "fifth whorl" structures and disruption of WUSCHEL (WUS) expression patterns revealing a novel role for SEU in floral meristem termination.
Collapse
Affiliation(s)
- April N. Wynn
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
- Department of Biology, Saint Mary's College of MarylandSt. Mary's City, MD, USA
| | - Andrew A. Seaman
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
| | - Ashley L. Jones
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
- Department of Plant Biology, University of TexasAustin, TX, USA
| | - Robert G. Franks
- Department of Plant and Microbial Biology, North Carolina State UniversityRaleigh, NC, USA
- *Correspondence: Robert G. Franks, Department of Plant and Microbial Biology, North Carolina State University, 2548 Thomas Hall, Campus Box 7614, Raleigh, NC 27695-7614, USA e-mail:
| |
Collapse
|
40
|
Prunet N, Jack TP. Flower development in Arabidopsis: there is more to it than learning your ABCs. Methods Mol Biol 2014; 1110:3-33. [PMID: 24395250 DOI: 10.1007/978-1-4614-9408-9_1] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of Arabidopsis flower development began in the early 1980s with the initial description of several mutants including apetala1, apetala2, and agamous that altered floral organ identity (Koornneef and van der Veen, Theor Appl Genet 58:257-263, 1980; Koornneef et al., J Hered 74:265-272, 1983). By the end of the 1980s, these mutants were receiving more focused attention to determine precisely how they affected flower development (Komaki et al., Development 104:195-203, 1988; Bowman et al., Plant Cell 1:37-52, 1989). In the last quarter century, impressive progress has been made in characterizing the gene products and molecular mechanisms that control the key events in flower development. In this review, we briefly summarize the highlights of work from the past 25 years but focus on advances in the field in the last several years.
Collapse
Affiliation(s)
- Nathanaël Prunet
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | | |
Collapse
|
41
|
Reyes-Olalde JI, Zuñiga-Mayo VM, Chávez Montes RA, Marsch-Martínez N, de Folter S. Inside the gynoecium: at the carpel margin. TRENDS IN PLANT SCIENCE 2013; 18:644-55. [PMID: 24008116 DOI: 10.1016/j.tplants.2013.08.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 07/09/2013] [Accepted: 08/07/2013] [Indexed: 05/05/2023]
Abstract
The gynoecium, which is produced at the center of most flowers, is the female reproductive organ and consists of one or more carpels. The Arabidopsis gynoecium consists of two fused carpels. Its inner tissues possess meristematic characteristics and are called the carpel margin meristem (CMM), because they are located at the margins of the carpels and generate the 'marginal' tissues of the gynoecium (placenta, ovules, septum, transmitting tract, style, and stigma). A key question is which factors are guiding the correct development of all these tissues, many of which are essential for reproduction. Besides regulatory genes, hormones play an important part in the development of the marginal tissues, and recent reports have highlighted the role of cytokinins, as discussed in this review.
Collapse
Affiliation(s)
- J Irepan Reyes-Olalde
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Km. 9.6 Libramiento Norte, Carretera Irapuato-León, CP 36821 Irapuato, Gto., México
| | | | | | | | | |
Collapse
|
42
|
Carabelli M, Turchi L, Ruzza V, Morelli G, Ruberti I. Homeodomain-Leucine Zipper II family of transcription factors to the limelight: central regulators of plant development. PLANT SIGNALING & BEHAVIOR 2013; 8:25447. [PMID: 23838958 PMCID: PMC4002598 DOI: 10.4161/psb.25447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 06/18/2013] [Indexed: 05/20/2023]
Abstract
The Arabidopsis genome encodes 10 Homeodomain-Leucine Zipper (HD-Zip) II transcription factors that can be subdivided into 4 clades (α-δ). All the γ (ARABIDOPSIS THALIANA HOMEOBOX 2 [ATHB2], HOMEOBOX ARABIDOPSIS THALIANA 1 [HAT1], HAT2) and δ (HAT3, ATHB4) genes are regulated by light quality changes (Low Red [R]/Far-Red [FR]) that induce the shade avoidance response in most of the angiosperms. HD-Zip IIγ and HD-Zip IIδ transcription factors function as positive regulators of shade avoidance, and there is evidence that at least ATHB2 is directly positively regulated by the basic Helix-Loop-Helix (bHLH) proteins PHYTOCHROME INTERACTING FACTOR 4 (PIF4) and PIF5. Recent evidence demonstrate that, in addition to their function in shade avoidance, HD-Zip IIγ and HD-Zip IIδ proteins play an essential role in plant development from embryogenesis onwards in a white light environment.
Collapse
Affiliation(s)
- Monica Carabelli
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Luana Turchi
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Valentino Ruzza
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
| | - Giorgio Morelli
- Food and Nutrition Research Centre; Agricultural Research Council (CRA); Rome, Italy
| | - Ida Ruberti
- Institute of Molecular Biology and Pathology; National Research Council; Rome, Italy
- Correspondence to: Ida Ruberti,
| |
Collapse
|
43
|
De Smet I, Lau S, Ehrismann JS, Axiotis I, Kolb M, Kientz M, Weijers D, Jürgens G. Transcriptional repression of BODENLOS by HD-ZIP transcription factor HB5 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3009-19. [PMID: 23682118 PMCID: PMC3697942 DOI: 10.1093/jxb/ert137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In Arabidopsis thaliana, the phytohormone auxin is an important patterning agent during embryogenesis and post-embryonic development, exerting effects through transcriptional regulation. The main determinants of the transcriptional auxin response machinery are AUXIN RESPONSE FACTOR (ARF) transcription factors and AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) inhibitors. Although members of these two protein families are major developmental regulators, the transcriptional regulation of the genes encoding them has not been well explored. For example, apart from auxin-linked regulatory inputs, factors regulating the expression of the AUX/IAA BODENLOS (BDL)/IAA12 are not known. Here, it was shown that the HOMEODOMAIN-LEUCINE ZIPPER (HD-ZIP) transcription factor HOMEOBOX PROTEIN 5 (HB5) negatively regulates BDL expression, which may contribute to the spatial control of BDL expression. As such, HB5 and probably other class I HD-ZIP proteins, appear to modulate BDL-dependent auxin response.
Collapse
Affiliation(s)
- Ive De Smet
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
- * These authors contributed equally to this work
| | - Steffen Lau
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Jasmin S. Ehrismann
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- * These authors contributed equally to this work
| | - Ioannis Axiotis
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Martina Kolb
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Marika Kientz
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
| | - Dolf Weijers
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- Present address: Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, 6703 HA Wageningen, The Netherlands
| | - Gerd Jürgens
- Department of Cell Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
- Center for Plant Molecular Biology, University of Tübingen, D-72076 Tübingen, Germany
- To whom correspondence should be addressed.
| |
Collapse
|
44
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Turchi L, Carabelli M, Ruzza V, Possenti M, Sassi M, Peñalosa A, Sessa G, Salvi S, Forte V, Morelli G, Ruberti I. Arabidopsis HD-Zip II transcription factors control apical embryo development and meristem function. Development 2013; 140:2118-29. [PMID: 23578926 DOI: 10.1242/dev.092833] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Arabidopsis genome encodes ten Homeodomain-Leucine zipper (HD-Zip) II proteins. ARABIDOPSIS THALIANA HOMEOBOX 2 (ATHB2), HOMEOBOX ARABIDOPSIS THALIANA 1 (HAT1), HAT2, HAT3 and ATHB4 are regulated by changes in the red/far red light ratio that induce shade avoidance in most of the angiosperms. Here, we show that progressive loss of HAT3, ATHB4 and ATHB2 activity causes developmental defects from embryogenesis onwards in white light. Cotyledon development and number are altered in hat3 athb4 embryos, and these defects correlate with changes in auxin distribution and response. athb2 gain-of-function mutation and ATHB2 expression driven by its promoter in hat3 athb4 result in significant attenuation of phenotypes, thus demonstrating that ATHB2 is functionally redundant to HAT3 and ATHB4. In analogy to loss-of-function mutations in HD-Zip III genes, loss of HAT3 and ATHB4 results in organ polarity defects, whereas triple hat3 athb4 athb2 mutants develop one or two radialized cotyledons and lack an active shoot apical meristem (SAM). Consistent with overlapping expression pattern of HD-Zip II and HD-Zip III gene family members, bilateral symmetry and SAM defects are enhanced when hat3 athb4 is combined with mutations in PHABULOSA (PHB), PHAVOLUTA (PHV) or REVOLUTA (REV). Finally, we show that ATHB2 is part of a complex regulatory circuit directly involving both HD-Zip II and HD-Zip III proteins. Taken together, our study provides evidence that a genetic system consisting of HD-Zip II and HD-Zip III genes cooperates in establishing bilateral symmetry and patterning along the adaxial-abaxial axis in the embryo as well as in controlling SAM activity.
Collapse
Affiliation(s)
- Luana Turchi
- Institute of Molecular Biology and Pathology, National Research Council, P.le A. Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Yumul RE, Kim YJ, Liu X, Wang R, Ding J, Xiao L, Chen X. POWERDRESS and diversified expression of the MIR172 gene family bolster the floral stem cell network. PLoS Genet 2013; 9:e1003218. [PMID: 23349639 PMCID: PMC3547843 DOI: 10.1371/journal.pgen.1003218] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/19/2012] [Indexed: 12/21/2022] Open
Abstract
Termination of the stem cells in the floral meristem (also known as floral determinacy) is critical for the reproductive success of plants, and the molecular activities regulating floral determinacy are precisely orchestrated during the course of floral development. In Arabidopsis thaliana, regulators of floral determinacy include several transcription factor genes, such as APETALA2 (AP2), AGAMOUS (AG), SUPERMAN (SUP), and CRABSCLAW (CRC), as well as a microRNA (miRNA), miR172, which targets AP2. How the transcription factor and miRNA genes are coordinately regulated to achieve floral determinacy is unknown. A mutation in POWERDRESS (PWR), a previously uncharacterized gene encoding a SANT-domain-containing protein, was isolated in this study as an enhancer of the weakly indeterminate ag-10 allele. PWR was found to promote the transcription of CRC, MIR172a, b, and c and/or enhance Pol II occupancy at their promoters, without affecting MIR172d or e. A mutation in mature miR172d was additionally found to enhance the determinacy defects of ag-10 in an AP2-dependent manner, providing direct evidence that miR172d is functional in repressing AP2 and thereby contributes to floral determinacy. Thus, while PWR promotes floral determinacy by enhancing the expression of three of the five MIR172 members as well as CRC, MIR172d, whose expression is PWR-independent, also functions in floral stem cell termination. Taken together, these findings demonstrate how transcriptional diversification and functional redundancy of a miRNA family along with PWR-mediated co-regulation of miRNA and transcription factor genes contribute to the robustness of the floral determinacy network. microRNAs (miRNAs) are 20–24 nucleotide RNAs that play regulatory roles in many developmental processes in plants and animals. Some miRNAs are encoded by multi-member gene families, and the members may exhibit differential expression patterns. However, the basis of this expression diversification and its developmental impact are poorly understood. By studying miR172, which represses its target APETALA2 (AP2) and thereby promotes the determinate growth of flowers (also known as floral determinacy), we show that the five MIR172 genes undergo differential transcriptional regulation. POWERDRESS (PWR), a previously uncharacterized SANT-domain-containing protein, promotes floral determinacy by enhancing the expression of MIR172a-c. MIR172d, whose expression is PWR-independent, was found to be functional in floral determinacy by repressing AP2. PWR also promotes floral determinacy through a transcription factor previously implicated in this process. Thus, transcriptional diversification of a miRNA family and PWR-mediated co-regulation of miRNA and transcription factor genes involved in floral determinacy contribute to the robustness of this developmental network.
Collapse
Affiliation(s)
- Rae Eden Yumul
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- ChemGen IGERT program, Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Yun Ju Kim
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Xigang Liu
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
| | - Ruozhong Wang
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Junhui Ding
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Langtao Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, China
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California Riverside, Riverside, California, United States of America
- Howard Hughes Medical Institute, University of California Riverside, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Zúñiga-Mayo VM, Marsch-Martínez N, de Folter S. The class II HD-ZIP JAIBA gene is involved in meristematic activity and important for gynoecium and fruit development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1501-3. [PMID: 22951401 PMCID: PMC3548880 DOI: 10.4161/psb.21901] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Development and patterning of the gynoecium - and later the fruit - must be finely regulated to ensure the survival of the species that produces them. The process that leads to successful fruit formation starts at early stages of floral meristem development and follows a series of chronologically successive events. In a recent work we reported the functional characterization of the class II HD-ZIP JAIBA (JAB) gene. Mutant jab plants showed sporophytic defects in male and female reproductive development, and combined with the mutant crabs claw (crc) caused defects in the floral meristem (FM) determination process and gynoecium medial tissue development. Furthermore, the JAB protein interacted with transcription factors known to regulate meristematic activity, fruit development and FM determinacy. Preliminary results presented here suggest a genetic interaction between JAB and the gene SHOOT MERISTEMLESS (STM).
Collapse
Affiliation(s)
- Victor M. Zúñiga-Mayo
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio); Centro de Investigación y de Estudios Avanzadas del Instituto Politécnico Nacional (CINVESTAV-IPN); Guanajuato, México
| | | | - Stefan de Folter
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio); Centro de Investigación y de Estudios Avanzadas del Instituto Politécnico Nacional (CINVESTAV-IPN); Guanajuato, México
- Correspondence to: Stefan de Folter,
| |
Collapse
|
48
|
Bou-Torrent J, Salla-Martret M, Brandt R, Musielak T, Palauqui JC, Martínez-García JF, Wenkel S. ATHB4 and HAT3, two class II HD-ZIP transcription factors, control leaf development in Arabidopsis. PLANT SIGNALING & BEHAVIOR 2012; 7:1382-1387. [PMID: 22918502 PMCID: PMC3548853 DOI: 10.4161/psb.21824] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In response to plant proximity or canopy shade, plants can react by altering elongation growth and development. Several members of the class II homeodomain-leucine zipper (HD-ZIPII) transcription factor family have been shown to play an instrumental role in the responses to shade. HD-ZIP members of the class III (HD-ZIPIII), by contrast, are involved in basic patterning processes. We recently showed that REVOLUTA (REV), a member of the HD-ZIPIII family, directly and positively regulates the expression of several genes involved in shade-induced growth, such as those encoding HD-ZIPII factors HAT2, HAT3, ATHB2/HAT4 and ATHB4, and of the components of the auxin biosynthesis pathway YUCCA5 and TAA1. Furthermore, we could demonstrate a novel role for HD-ZIPIII in shade-induced promotion of growth. Here we show that besides responding to shade, ATHB4 and HAT3 have a critical role in establishing the dorso-ventral axis in cotyledons and developing leaves. Loss-of-function mutations in these two HD-ZIPII genes (athb4 hat3) results in severely abaxialized, entirely radialized leaves. Conversely, overexpression of HAT3 results in adaxialized leaf development. Taken together, our findings unravel a so far unappreciated role for an HD-ZIPII/HD-ZIPIII module required for dorso-ventral patterning of leaves. The finding that HD-ZIPII/HD-ZIPIII also function in shade avoidance suggests that this module is at the nexus of patterning and growth promotion.
Collapse
Affiliation(s)
- Jordi Bou-Torrent
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
| | - Mercè Salla-Martret
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
| | - Ronny Brandt
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| | - Thomas Musielak
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| | - Jean-Christophe Palauqui
- INRA Centre Versailles Grignon; Institut Jean Pierre Bourgin; UMR1318; INRA AgroParisTech; Versailles, France
| | - Jaime F. Martínez-García
- Centre for Research in Agricultural Genomics (CRAG); CSIC-IRTA-UAB-UB; Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA); Barcelona, Spain
| | - Stephan Wenkel
- Center for Plant Molecular Biology (ZMBP); University of Tübingen; Tübingen, Germany
| |
Collapse
|
49
|
García-Giménez JL, Markovic J, Dasí F, Queval G, Schnaubelt D, Foyer CH, Pallardó FV. Nuclear glutathione. Biochim Biophys Acta Gen Subj 2012; 1830:3304-16. [PMID: 23069719 DOI: 10.1016/j.bbagen.2012.10.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/21/2012] [Accepted: 10/08/2012] [Indexed: 12/24/2022]
Abstract
Glutathione (GSH) is a linchpin of cellular defences in plants and animals with physiologically-important roles in the protection of cells from biotic and abiotic stresses. Moreover, glutathione participates in numerous metabolic and cell signalling processes including protein synthesis and amino acid transport, DNA repair and the control of cell division and cell suicide programmes. While it is has long been appreciated that cellular glutathione homeostasis is regulated by factors such as synthesis, degradation, transport, and redox turnover, relatively little attention has been paid to the influence of the intracellular partitioning on glutathione and its implications for the regulation of cell functions and signalling. We focus here on the functions of glutathione in the nucleus, particularly in relation to physiological processes such as the cell cycle and cell death. The sequestration of GSH in the nucleus of proliferating animal and plant cells suggests that common redox mechanisms exist for DNA regulation in G1 and mitosis in all eukaryotes. We propose that glutathione acts as "redox sensor" at the onset of DNA synthesis with roles in maintaining the nuclear architecture by providing the appropriate redox environment for the DNA replication and safeguarding DNA integrity. In addition, nuclear GSH may be involved in epigenetic phenomena and in the control of nuclear protein degradation by nuclear proteasome. Moreover, by increasing the nuclear GSH pool and reducing disulfide bonds on nuclear proteins at the onset of cell proliferation, an appropriate redox environment is generated for the stimulation of chromatin decompaction. This article is part of a Special Issue entitled Cellular functions of glutathione.
Collapse
|
50
|
Marsch-Martínez N, Ramos-Cruz D, Irepan Reyes-Olalde J, Lozano-Sotomayor P, Zúñiga-Mayo VM, de Folter S. The role of cytokinin during Arabidopsis gynoecia and fruit morphogenesis and patterning. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 72:222-34. [PMID: 22640521 DOI: 10.1111/j.1365-313x.2012.05062.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Cytokinins have many essential roles in embryonic and post-embryonic growth and development, but their role in fruit morphogenesis is currently not really known. Moreover, information about the spatio-temporal localization pattern of cytokinin signaling in gynoecia and fruits is lacking. Therefore, the synthetic reporter line TCS::GFP was used to visualize cytokinin signaling during gynoecium and fruit development. Fluorescence was detected at medial regions of developing gynoecia, and, unexpectedly, at the valve margin in developing fruits, and was severely altered in mutants that lack or ectopically acquire valve margin identity. Comparison to developing gynoecia and fruits in a DR5rev::GFP line showed that the transcriptional responses to cytokinin and auxin are frequently present in complementary patterns. Moreover, cytokinin treatments in early gynoecia produced conspicuous changes, and treatment of valve margin mutant fruits restored this tissue. The results suggest that the phytohormone cytokinin is important in gynoecium and fruit patterning and morphogenesis, playing at least two roles: an early proliferation-inducing role at the medial tissues of the developing gynoecia, and a late role in fruit patterning and morphogenesis at the valve margin of developing fruits.
Collapse
Affiliation(s)
- Nayelli Marsch-Martínez
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, km 9.6 Libramiento Norte, Carretera Irapuato-León, Irapuato, Guanajuato, Mexico.
| | | | | | | | | | | |
Collapse
|