1
|
Mi L, Liu H, Zhang J, Guo Y, Shi J, Lu Y, Cheng J, Wang H, Cheng D, Valverde BE, Qiang S, Chen S. Low-temperature-induced singlet oxygen adaptation decreases susceptibility to the mycotoxin TeA in invasive plant Ageratina adenophora. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109508. [PMID: 39826341 DOI: 10.1016/j.plaphy.2025.109508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
The mycotoxin tenuazonic acid (TeA) inhibits photosynthesis and is expected to be developed as a bioherbicide to control Ageratina adenophora that is one of the most serious invasive alien plants in China. New leaves sprouting from A. adenophora at low temperatures (LT) in early spring are less sensitive to TeA compared to those growing in summer. However, the molecular mechanism of LT-caused decrease in the susceptibility of A. adenophora to TeA is unclear. In this study, three singlet oxygen-responsive genes (SORGs) and three jasmonic acid responsive genes (JARGs) were cloned to further probe the role of singlet oxygen (1O2) signaling during TeA-induced disease development in A. adenophora leaves exposed to LT. TeA triggered chloroplast-derived 1O2 production as a result of photosystem II (PSII) photoinhibition during leaf lesion formation in A. adenophora. Moreover, TeA indeed induced the expression of SORGs and JARGs as well as a high level of JA generation, activating the 1O2 signaling pathway in A. adenophora. LT (12°C) pretreatment can cause PSII photoinhibition and increase the SORG AaAAA-ATPase expression level in A. adenophora leaves, meaning that 1O2 signaling was activated by LT. Thus TeA led to less increase of the SORGs and JARGs expression and JA level in plants pretreated by LT compared with non-pretreated plants, although both of them had the same level of 1O2 production after TeA treatment. It was concluded that the low susceptibility to TeA of A. adenophora subjected to LT can be attributed to the occurrence of 1O2 acclimation.
Collapse
Affiliation(s)
- Liru Mi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haiou Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, People's Republic of China
| | - Jing Zhang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanjing Guo
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jiale Shi
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuping Lu
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jing Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - He Wang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Dan Cheng
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Bernal E Valverde
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China; Research and Development in Tropical Agriculture, Alajuela, 4050, Costa Rica
| | - Sheng Qiang
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shiguo Chen
- Weed Research Laboratory, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
2
|
Cheaib A, Killiny N. Photosynthesis Responses to the Infection with Plant Pathogens. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2025; 38:9-29. [PMID: 39536275 DOI: 10.1094/mpmi-05-24-0052-cr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Photosynthesis, the remarkable process by which green plants synthesize nutrients using light energy, plays a crucial role in sustaining life on Earth. However, the effects of pathogens on photosynthesis are not widely understood. In general, a reduction of photosynthesis occurs upon the infection with pathogens. Two main scenarios are responsible for the reduction in photosynthetic capacity. In the first scenario, the pathogen attacks green aerial tissues, such as when caused by fungal and bacterial leaf spots and blights, which affect photosynthesis by destroying green leaf tissue or causing defoliation. This leads to a decrease in the photosynthetic area, ultimately reducing photosynthesis. Interestingly, even when the overall chlorophyll content of leaves is significantly reduced due to pathogen invasion, the remaining chlorophyll-containing leaf area may maintain or even enhance its photosynthetic efficiency. This compensatory mechanism helps mitigate the loss of photosynthetic area. However, the overall yield of the plant is still affected. The second scenario is a reduction in chlorophyll content due to chlorosis, which is characterized by yellowing of leaves. It is a common symptom of plant diseases. It refers to a reduction in the amount of chlorophyll per chloroplast rather than a decrease in chloroplast number. Diseases caused by viruses and phytoplasmas often exhibit chlorosis. While pathogens disrupt photosynthesis, plants exhibit significant adaptations to cope with these challenges. Understanding these interactions is essential for sustainable agriculture and ecosystem health. Thus, in this review, we discuss the effect of several pathogens on the photosynthesis processes and efficiency in detail. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Alissar Cheaib
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
- Experimental Sciences Building 2, Texas Tech University, Lubbock, TX 79409, U.S.A
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, U.S.A
| |
Collapse
|
3
|
Groenenberg L, Duhamel M, Bai Y, Aarts MGM, Polder G, van der Lee TAJ. Advances in digital camera-based phenotyping of Botrytis disease development. TRENDS IN PLANT SCIENCE 2025:S1360-1385(24)00310-8. [PMID: 39855998 DOI: 10.1016/j.tplants.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/15/2024] [Accepted: 11/21/2024] [Indexed: 01/27/2025]
Abstract
Botrytis cinerea is an important generalist fungal plant pathogen that causes great economic losses. Conventional detection methods to identify B. cinerea infections rely on visual assessments, which are error prone, subjective, labor intensive, hard to quantify, and unsuitable for artificial intelligence (AI) and machine learning (ML) applications. New, often camera-based, techniques provide objective digital data by remote and proximal sensing. We detail the B. cinerea infection process and link this with conventional and novel detection methods. We evaluate the effectiveness of current digital phenotyping methods to detect, quantify, and classify disease symptoms for disease management and breeding for resistance. Finally, we discuss the needs, prospects, and challenges of digital camera-based phenotyping.
Collapse
Affiliation(s)
- Laura Groenenberg
- Laboratory of Plant Breeding, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Marie Duhamel
- Biointeractions and Plant Health, Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Yuling Bai
- Laboratory of Plant Breeding, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Gerrit Polder
- Greenhouse Horticulture, Wageningen University and Research, 6708PB Wageningen, The Netherlands
| | - Theo A J van der Lee
- Biointeractions and Plant Health, Wageningen University and Research, 6708PB Wageningen, The Netherlands.
| |
Collapse
|
4
|
van Himbeeck R, Binnebösz EL, Amora D, Gottardi M, Willig JJ, Geisen S, Helder J. Noninvasive, Presymptomatic Detection of Potato Cyst Nematode Infection in Tomato Using Chlorophyll Fluorescence Analysis. PHYTOPATHOLOGY 2025; 115:77-84. [PMID: 39283194 DOI: 10.1094/phyto-07-24-0206-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Potato cyst nematodes (PCNs) are notorious pathogens in all major potato production areas worldwide. Mainly due to the low mobility of this soil pathogen, PCN infestations are mostly observed as patches ("foci") that only cover a fraction of the acreage. In-field presymptomatic localization of these pathogens is valuable, as it would allow for the localized application of control measures. Although the mapping of foci is technically feasible, it is unpractical, as it would require the analysis of numerous soil samples. We investigated whether chlorophyll fluorescence (Chl-F) could be suitable as a rapid, nondestructive method for early PCN detection. To this end, the impact of four Globodera pallida densities on the Chl-F of tomato was investigated in a phenotyping greenhouse for 26 days. Furthermore, the classical plant performance indicators of biomass and root surface area were compared with Chl-F. Thermal dissipation (NPQ) and an estimate of the photosynthetic rate (ΦPSII) responded at 1 day postinoculation, and ΦPSII was most sensitive to low PCN infection levels. Chl-F parameters responded more readily to PCN infection than biomass and root surface area. The maximum quantum yield of photosystem II (Fv/Fm) and the potential activity of photosystem II (Fv/F0) initially increased at low PCN infection levels, whereas a sharp decrease was observed at higher infestation levels. Hence, our data suggest that low PCN levels promoted plant performance before becoming detrimental at higher levels. Although Chl-F allowed for early and sensitive PCN detection, it remains to be investigated whether these signals can be distinguished from those produced by other belowground stressors in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Robbert van Himbeeck
- Laboratory of Nematology, Wageningen University, Wageningen 6700 ES, The Netherlands
| | - Eline Laura Binnebösz
- Laboratory of Nematology, Wageningen University, Wageningen 6700 ES, The Netherlands
| | - Deisy Amora
- Plant Biosolutions Applied R&D, Novonesis A/S, Taastrup 2630, Denmark
| | - Michele Gottardi
- Plant Biosolutions Applied R&D, Novonesis A/S, Taastrup 2630, Denmark
| | - Jaap-Jan Willig
- Laboratory of Nematology, Wageningen University, Wageningen 6700 ES, The Netherlands
- Agrosystems Research, Wageningen University & Research, Wageningen 6708 PB, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, Wageningen 6700 ES, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University, Wageningen 6700 ES, The Netherlands
| |
Collapse
|
5
|
Lata-Tenesaca LF, Barbosa Oliveira MJ, Barros AV, Silva LC, Wordell Filho JA, Rodrigues FÁ. A Zinc Polyphenolic Compound Increases Maize Resistance Against Infection by Bipolaris maydis. PLANTS (BASEL, SWITZERLAND) 2024; 14:77. [PMID: 39795339 PMCID: PMC11723224 DOI: 10.3390/plants14010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
Maize leaf blight (MLB), caused by the fungus Bipolaris maydis, is an important disease affecting maize production. In order to minimize the use of fungicides in agriculture, nutrient-based resistance inducers may become a promising alternative to manage MLB. The goal of this study was to investigate the potential of Semia® (zinc (20%) complexed with a plant-derived pool of polyphenols (10%)) to hamper the infection of maize leaves by B. maydis by analyzing their photosynthetic performance and carbohydrate and antioxidative metabolism, as well as the expression of defense-related genes. Plants were sprayed with water (control) or Semia® (referred to as induced resistance (IR) stimulus hereafter) and not inoculated or inoculated with B. maydis. The mycelial growth and conidium germination were significantly reduced by the IR stimulus in vitro. The MLB severity was significantly reduced by 76% for IR-stimulus-sprayed plants compared to plants from the control treatment. For infected and IR-stimulus-sprayed plants, the glucose, fructose, sucrose, and starch concentrations were significantly higher compared to inoculated plants from the control treatment. The activity levels of superoxide dismutase, ascorbate peroxidase, catalase, and glutathione reductase were significantly higher for the IR-stimulus-sprayed plants compared to plants from the control treatment. Less impairment on the photosynthetic apparatus (higher values for leaf gas exchange (rates of net CO2 assimilation, stomatal conductance to water vapor, and transpiration) and chlorophyll a fluorescence (variable-to-maximum Chl a fluorescence ratio, photochemical yield, and yield for dissipation by down-regulation) parameters)) along with a preserved pool of chlorophyll a+b and carotenoids were noticed for infected and IR-stimulus-sprayed plants compared to infected plants from the control treatment. The defense-related genes IGL, CHS02, PR1, PAL3, CHI, and GLU were strongly up-regulated in the leaves of IR-stimulus-sprayed and infected plants compared to infected plants from the control treatment. These findings highlight the potential of using this IR stimulus for MLB management.
Collapse
Affiliation(s)
- Luis Felipe Lata-Tenesaca
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (L.C.S.)
| | - Marcos José Barbosa Oliveira
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (L.C.S.)
| | - Aline Vieira Barros
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (L.C.S.)
| | - Leandro Castro Silva
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (L.C.S.)
| | - João Américo Wordell Filho
- Empresa de Pesquisa Agropecuária e Extensão Rural de Santa Catarina (Epagri/Cepaf), Avenida Servidão Ferdinando Tusset, s/n, Bairro São Cristovão, Caixa Postal 791, Chapecó 89801-970, Santa Catarina, Brazil;
| | - Fabrício Ávila Rodrigues
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, Minas Gerais, Brazil; (L.F.L.-T.); (M.J.B.O.); (A.V.B.); (L.C.S.)
| |
Collapse
|
6
|
Noor A, Little CR. RNA-seq analysis reveals genes associated with Macrophomina phaseolina-induced host senescence in soybean. BMC Genomics 2024; 25:1129. [PMID: 39578728 PMCID: PMC11583662 DOI: 10.1186/s12864-024-11023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Charcoal rot of soybean is caused by the hemibiotrophic fungus Macrophomina phaseolina, a global crop destroyer and an important pathogen in the midwestern USA. The quantitative nature of host resistance and the complexity of the soybean-M. phaseolina interaction at the molecular level have hampered resistance breeding. A previous study showed that L-ascorbic acid (LAA) pre-treatment before M. phaseolina inoculation reduced charcoal rot lesion length in excised soybean stems. This study aimed to elucidate the genetic underpinnings of M. phaseolina-induced senescence and the mitigating effects of ascorbic acid on this physiological process within the same pathosystem. RESULTS RNA was sequenced from M. phaseolina-resistant and -susceptible soybean genotypes following M. phaseolina inoculation, LAA, and hydrogen peroxide (H2O2)-an oxidative stress inducer-application followed by inoculation. More genes were down-regulated in the resistant and susceptible genotypes than up-regulated when the M. phaseolina-inoculated treatments were compared to mock-inoculated control treatments. Gene ontology (GO) term and KEGG pathways analysis detected M. phaseolina-induced up-regulation of receptor-like kinase genes. In contrast, many genes related to antioxidants, defense, and hormonal pathways were down-regulated in both genotypes. LAA pre-treatment induced genes related to photosynthesis and reactive oxygen species responses in both genotypes. H2O2 pre-treatment following inoculation up-regulated many stress-response genes, while hormone signal transduction and photosynthesis-related genes were down-regulated in both genotypes. CONCLUSIONS Results revealed transcriptional variation and genes associated with M. phaseolina-induced senescence in soybean. Ascorbic acid induced many photosynthetic genes, suggesting a complex regulation of defense and immunity in the plant against the hemibiotroph. Soybean plants also exhibited enhanced stress responsiveness when treated with H2O2 followed by inoculation with M. phaseolina. This study will broaden more research avenues related to transcriptional regulation during the M. phaseolina-soybean interaction and the potential role of receptor-like kinases, oxidative stress-responsive genes, ethylene-mediated signaling and enhanced photosynthetic gene expression when mounting host resistance to this important soybean pathogen.
Collapse
Affiliation(s)
- Afsana Noor
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Christopher R Little
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
7
|
Chen SY, Li X, Duan K, Li ZY, Bai Y, Wang XY, Yang J, Zou XH, Xu ML, Wang Y, Gao QH. Changes in soluble sugars and the expression of sugar transporter protein genes in strawberry crowns responding to Colletotrichum fructicola infection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1777-1793. [PMID: 39687699 PMCID: PMC11646252 DOI: 10.1007/s12298-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Strawberry (Fragaria × ananassa) production has been greatly hampered by anthracnose crown rot caused by Colletotrichum fructicola. Crown, the modified stem of strawberry, is a sink organ involved in sugar allocation. Some Sugar Transport Proteins (STPs) are involved in competition for sugars between pathogen and host. However, the chemical nature and involvement of strawberry STPs (FaSTPs) in crown rot development is largely elusive. To reveal how strawberry alters soluble sugars and upregulates STPs in responses to C. fructicola, high performance liquid chromatograph and FaSTP expression analysis were performed in the crowns of three strawberry varieties, following a genome-wide identification of FaSTPs. Both C. fructicola and mock treatment/control changed glucose, fructose and sucrose accumulation in strawberry crowns. With increasing infection duration, the hexose/sucrose ratio increased in all varieties; no such trend was clearly visible in mock-treated plants. A total of 56 FaSTP loci scattered across four subgenomes were identified in octoploid strawberry, and most of the protein products of these genes had a preferential location on plasma membrane. Putative fungal elicitor responsive cis-elements were identified in the promoters of more than half FaSTPs. At least eight members were upregulated in strawberry crowns during C. fructicola invasion. Of them, FaSTP8 expression was markedly enhanced in three varieties at all time points except for 3 dpi in 'Jiuxiang'. RNAseq data retrieval further validated the expression responses of FaSTPs to Colletotrichum spp. In summary, this work identified several FaSTP candidate genes responsive to Colletotrichum fructicola invasion, demonstrated changes in soluble sugar levels in strawberry crowns as a result of infection, and laid the groundwork for future efforts to engineer strawberry resistance to Colletotrichum spp. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01523-9.
Collapse
Affiliation(s)
- Si-Yu Chen
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Xue Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Zi-Yi Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Yun Bai
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Xin-Yi Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Mei-Ling Xu
- Jiading District Agricultural Technology Extension Service Center, Shanghai, 201800 China
| | - Ying Wang
- Qinghai Xiaomei Agricultural Technology Co. Ltd, Xining, 810000 China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| |
Collapse
|
8
|
Lacrampe N, Lugan R, Dumont D, Nicot PC, Lecompte F, Colombié S. Modelling metabolic fluxes of tomato stems reveals that nitrogen shapes central metabolism for defence against Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4093-4110. [PMID: 38551810 PMCID: PMC11233421 DOI: 10.1093/jxb/erae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 07/11/2024]
Abstract
Among plant pathogens, the necrotrophic fungus Botrytis cinerea is one of the most prevalent, leading to severe crop damage. Studies related to its colonization of different plant species have reported variable host metabolic responses to infection. In tomato, high N availability leads to decreased susceptibility. Metabolic flux analysis can be used as an integrated method to better understand which metabolic adaptations lead to effective host defence and resistance. Here, we investigated the metabolic response of tomato infected by B. cinerea in symptomless stem tissues proximal to the lesions for 7 d post-inoculation, using a reconstructed metabolic model constrained by a large and consistent metabolic dataset acquired under four different N supplies. An overall comparison of 48 flux solution vectors of Botrytis- and mock-inoculated plants showed that fluxes were higher in Botrytis-inoculated plants, and the difference increased with a reduction in available N, accompanying an unexpected increase in radial growth. Despite higher fluxes, such as those involved in cell wall synthesis and other pathways, fluxes related to glycolysis, the tricarboxylic acid cycle, and amino acid and protein synthesis were limited under very low N, which might explain the enhanced susceptibility. Limiting starch synthesis and enhancing fluxes towards redox and specialized metabolism also contributed to defence independent of N supply.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, F-84914 Avignon, France
- UMR Qualisud, Avignon Université, F-84916 Avignon, France
| | | | | | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, F-33883 Villenave d’Ornon, France
| |
Collapse
|
9
|
Wu E, Li X, Ma Q, Wang H, Han X, Feng B. Comparative Multi-Omics Analysis of Broomcorn Millet in Response to Anthracocystis destruens Infection. PHYTOPATHOLOGY 2024; 114:1215-1225. [PMID: 38281141 DOI: 10.1094/phyto-08-23-0269-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Anthracocystis destruens is the causal agent of broomcorn millet (Panicum miliaceum) smut disease, which results in serious yield losses in broomcorn millet production. However, the molecular basis underlying broomcorn millet defense against A. destruens is less understood. In this study, we investigated how broomcorn millet responds to infection by A. destruens by employing a comprehensive multi-omics approach. We examined the responses of broomcorn millet across transcriptome, metabolome, and microbiome levels. Infected leaves exhibited an upregulation of genes related to photosynthesis, accompanied by a higher accumulation of photosynthesis-related compounds and alterations in hormonal levels. However, broomcorn millet genes involved in immune response were downregulated post A. destruens infection, suggesting that A. destruens may suppress broomcorn millet immunity. In addition, we show that the immune suppression and altered host metabolism induced by A. destruens have no significant effect on the microbial community structure of broomcorn millet leaf, thus providing a new perspective for understanding the tripartite interaction between plant, pathogen, and microbiota.
Collapse
Affiliation(s)
- Enguo Wu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuepei Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Ma
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Honglu Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Baili Feng
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
10
|
Chuan J, Nie J, Cooper WR, Chen W, Hale L, Li X. The functional decline of tomato plants infected by Candidatus Liberbacter solanacearum: an RNA-seq transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1325254. [PMID: 38362455 PMCID: PMC10867784 DOI: 10.3389/fpls.2024.1325254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/15/2024] [Indexed: 02/17/2024]
Abstract
Introduction Candidatus Liberibacter solanacearum (CLso) is a regulated plant pathogen in European and some Asian countries, associated with severe diseases in economically important Apiaceous and Solanaceous crops, including potato, tomato, and carrot. Eleven haplotypes of CLso have been identified based on the difference in rRNA and conserved genes and host and pathogenicity. Although it is pathogenic to a wide range of plants, the mechanisms of plant response and functional decline of host plants are not well defined. This study aims to describe the underlying mechanism of the functional decline of tomato plants infected by CLso by analyzing the transcriptomic response of tomato plants to CLso haplotypes A and B. Methods Next-generation sequencing (NGS) data were generated from total RNA of tomato plants infected by CLso haplotypes A and B, and uninfected tomato plants, while qPCR analysis was used to validate the in-silico expression analysis. Gene Ontology and KEGG pathways were enriched using differentially expressed genes. Results Plants infected with CLso haplotype B saw 229 genes upregulated when compared to uninfected plants, while 1,135 were downregulated. Healthy tomato plants and plants infected by haplotype A had similar expression levels, which is consistent with the fact that CLso haplotype A does not show apparent symptoms in tomato plants. Photosynthesis and starch biosynthesis were impaired while starch amylolysis was promoted in plants infected by CLso haplotype B compared with uninfected plants. The changes in pathway gene expression suggest that carbohydrate consumption in infected plants was more extensive than accumulation. In addition, cell-wall-related genes, including steroid biosynthesis pathways, were downregulated in plants infected with CLso haplotype B suggesting a reduction in membrane fluidity, cell signaling, and defense against bacteria. In addition, genes in phenylpropanoid metabolism and DNA replication were generally suppressed by CLso infection, affecting plant growth and defense. Discussion This study provides insights into plants' defense and functional decline due to pathogenic CLso using whole transcriptome sequencing and qPCR validation. Our results show how tomato plants react in metabolic pathways during the deterioration caused by pathogenic CLso. Understanding the underlying mechanisms can enhance disease control and create opportunities for breeding resistant or tolerant varieties.
Collapse
Affiliation(s)
- Jiacheng Chuan
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Jingbai Nie
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| | - William Rodney Cooper
- Temperate Tree Fruit and Vegetable Research Unit, USDA-ARS, Wapato, WA, United States
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Lawrence Hale
- Biology Department, University of Prince Edward Island, Charlottetown, PE, Canada
| | - Xiang Li
- Charlottetown Laboratory, Canadian Food Inspection Agency, Charlottetown, PE, Canada
| |
Collapse
|
11
|
Su F, Zhao B, Dhondt-Cordelier S, Vaillant-Gaveau N. Plant-Growth-Promoting Rhizobacteria Modulate Carbohydrate Metabolism in Connection with Host Plant Defense Mechanism. Int J Mol Sci 2024; 25:1465. [PMID: 38338742 PMCID: PMC10855160 DOI: 10.3390/ijms25031465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/12/2024] Open
Abstract
Plant-growth-promoting rhizobacteria (PGPR) could potentially enhance photosynthesis and benefit plant growth by improving soil nutrient uptake and affecting plant hormone balance. Several recent studies have unveiled a correlation between alterations in photosynthesis and host plant resistance levels. Photosynthesis provides materials and energy for plant growth and immune defense and affects defense-related signaling pathways. Photosynthetic organelles, which could be strengthened by PGPR inoculation, are key centers for defense signal biosynthesis and transmission. Although endophytic PGPRs metabolize plant photosynthates, they can increase soluble sugar levels and alternate sugar type and distribution. Soluble sugars clearly support plant growth and can act as secondary messengers under stressed conditions. Overall, carbohydrate metabolism modifications induced by PGPR may also play a key role in improving plant resistance. We provide a concise overview of current knowledge regarding PGPR-induced modulation in carbohydrate metabolism under both pathogen-infected and pathogen-free conditions. We highlight PGPR application as a cost-saving strategy amidst unpredictable pathogen pressures.
Collapse
Affiliation(s)
- Fan Su
- Institute of Agro-Product Safety and Nutrition, Tianjin Academy of Agricultural Sciences, Tianjin 300071, China;
| | - Bin Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, College of Plant Protection, Hebei Agricultural University, Baoding 071001, China;
| | - Sandrine Dhondt-Cordelier
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| | - Nathalie Vaillant-Gaveau
- Unité de Recherche Résistance Induite et Bioprotection des Plantes—USC INRAE 1488, Université de Reims Champagne Ardenne, 51100 Reims, France;
| |
Collapse
|
12
|
Zhan X, Yang Q, Wang S, Wang Y, Fan X, Bian Z. The Responses of Sucrose Metabolism and Carbon Translocation in Tomato Seedlings under Different Light Spectra. Int J Mol Sci 2023; 24:15054. [PMID: 37894735 PMCID: PMC10606089 DOI: 10.3390/ijms242015054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/15/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Light plays a dominant role in the biosynthesis and accumulation of photosynthetic products. However, the metabolism and translocation of photosynthetic products in plants under different light spectra remain elusive. In this study, tomato (Solanum lycopersicum L.) seedlings were treated with different light spectra delivered by light-emitting diodes (LEDs) with the same photosynthetic photon flux density at 300 μmol m-2 s-1, including monochromatic red (660 nm, R), blue (450 nm, B), sun-like white (W, 380-780 nm), or a combination of R and B lights (R:B = 1:1, RB). Compared with W, the biomass distribution ratio for leaves under R, B, and RB decreased by 5.01-9.53%, while the ratio for stems and roots increased by 3.71-6.92% and 0.14-2.81%, respectively. The photosynthetic carbon distribution expressed as 13C enrichment was higher in stems and roots under RB and R, while B led to more 13C transported from leaves and enriched in stems when compared with W. Meanwhile, RB led to significant increases in the activities of phosphate synthase (SPS), sucrose synthase (SS), vacuolar acid invertase (VI), and neutral invertase (NI). The R was more efficient in increasing the activity of SPS and SS, while B was more effective in promoting the activity of VI and NI. The transcript levels of SPS, SS3, NI6, and VI were upregulated under R, B, and RB. However, the transcript patterns of SPS, SS3, NI6, and VI were not consistent with the changes in their encoded enzymes, especially the transcript patterns of SPS and SS3. Our study suggests that the red- and blue-light-induced long-distance and short-distance transport of photosynthetic products in plants, respectively, might result from different regulation of sucrose-metabolizing enzymes from transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
- Xiaoxu Zhan
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Qichang Yang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Sen Wang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Yu Wang
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| | - Xiaoxue Fan
- Institute of Agricultural Information, Key Laboratory of Intelligent Agricultural Technology (Changjiang Delta), Institute of Agricultural Information, Ministry of Agriculture and Rural Affairs, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhonghua Bian
- Photobiology Research Center, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610000, China (Q.Y.); (Y.W.)
| |
Collapse
|
13
|
Moola N, Jardine A, Audenaert K, Rafudeen MS. 6-deoxy-6-amino chitosan: a preventative treatment in the tomato/ Botrytis cinerea pathosystem. FRONTIERS IN PLANT SCIENCE 2023; 14:1282050. [PMID: 37881612 PMCID: PMC10595175 DOI: 10.3389/fpls.2023.1282050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023]
Abstract
6-deoxy-6-amino chitosan (aminochitosan) is a water-soluble chitosan derivative with an additional amine group at the C-6 position. This modification has improved aqueous solubility, in vitro antifungal activity and is hypothesized to have enhanced in vivo antifungal activity compared to native chitosan. Gray mold disease in tomatoes is caused by the fungus, Botrytis cinerea, and poses a severe threat both pre- and post-harvest. To investigate the optimal concentration of aminochitosan and its lower molecular weight fractions for antifungal and priming properties in the tomato/B. cinerea pathosystem, different concentrations of aminochitosan were tested in vitro on B. cinerea growth and sporulation and in vivo as a foliar pre-treatment in tomato leaves. The leaves were monitored for photosynthetic changes using multispectral imaging and hydrogen peroxide accumulation using DAB. Despite batch-to-batch variations in aminochitosan, it displayed significantly greater inhibition of B. cinerea in vitro than native chitosan at a minimum concentration of 1 mg/mL. A concentration-dependent increase in the in vitro antifungal activities was observed for radial growth, sporulation, and germination with maximum in vitro inhibition for all the biopolymer batches and lower MW fractions at 2.5 and 5 mg/mL, respectively. However, the inhibition threshold for aminochitosan was identified as 1 mg/mL for spores germinating in vivo, compared to the 2.5 mg/mL threshold in vitro. The pre-treatment of leaves displayed efficacy in priming direct and systemic resistance to B. cinerea infection at 4, 6 and 30 days post-inoculation by maintaining elevated Fv/Fm activity and chlorophyll content due to a stronger and more rapid elicitation of the defense systems at earlier time points. Moreover, these defense systems appear to be ROS-independent at higher concentrations (1 and 2.5 mg/mL). In addition, aminochitosan accumulates in the cell membrane and therefore acts to increase the membrane permeability of cells after foliar spray. These observations corroborate the notion that aminochitosan biopolymers can exert their effects through both direct mechanisms of action and indirect immunostimulatory mechanisms. The contrast between in vitro and in vivo efficacy highlights the bimodal mechanisms of action of aminochitosan and the advantageous role of primed plant defense systems.
Collapse
Affiliation(s)
- Naadirah Moola
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Anwar Jardine
- Department of Chemistry, Faculty of Science, University of Cape Town, Cape Town, South Africa
| | - Kris Audenaert
- Laboratory of Applied Mycology and Phenomics, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mohamed Suhail Rafudeen
- Laboratory of Plant Stress, Department of Molecular and Cell Biology, Faculty of Science, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Xiong Y, Zhao D, Chen S, Yuan L, Zhang D, Wang H. Deciphering the underlying immune network of the potato defense response inhibition by Phytophthora infestans nuclear effector Pi07586 through transcriptome analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1269959. [PMID: 37810389 PMCID: PMC10556245 DOI: 10.3389/fpls.2023.1269959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023]
Abstract
Phytophthora infestans, a highly destructive plant oomycete pathogen, is responsible for causing late blight in potatoes worldwide. To successfully infect host cells and evade immunity, P. infestans secretes various effectors into host cells and exclusively targets the host nucleus. However, the precise mechanisms by which these effectors manipulate host gene expression and reprogram defenses remain poorly understood. In this study, we focused on a nuclear-targeted effector, Pi07586, which has been implicated in immune suppression. Quantitative real-time PCR (qRT-PCR) analysis showed Pi07586 was significant up-regulation during the early stages of infection. Agrobacterium-induced transient expression revealed that Pi07586 localized in the nucleus of leaf cells. Overexpression of Pi07586 resulted in increased leaf colonization by P. infestans. RNA-seq analysis revealed that Pi07586 effectively suppressed the expression of PR-1C-like and photosynthetic antenna protein genes. Furthermore, high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) analysis indicated that Pi07586 overexpression led to a substantial decrease in abscisic acid (ABA), jasmonic acid (JA), and jasmonoyl-isoleucine (JA-Ile) levels, while not affecting salicylic acid (SA) and indole-3-acetic acid (IAA) production. These findings shed new light on the modulation of plant immunity by Pi07586 and enhance our understanding of the intricate relationship between P. infestans and host plants.
Collapse
Affiliation(s)
- Yumeng Xiong
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
- School of Life Science, Yunnan Normal University, Kunming, China
| | - Di Zhao
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Shengnan Chen
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Lan Yuan
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Die Zhang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| | - Hongyang Wang
- Yunnan Key Laboratory of Potato Biology, Yunnan Normal University, Kunming, China
| |
Collapse
|
15
|
Tahmasebi A, Roach T, Shin SY, Lee CW. Fusarium solani infection disrupts metabolism during the germination of roselle ( Hibiscus sabdariffa L.) seeds. FRONTIERS IN PLANT SCIENCE 2023; 14:1225426. [PMID: 37615017 PMCID: PMC10442802 DOI: 10.3389/fpls.2023.1225426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023]
Abstract
Fungal infections adversely influence the production and quality of seeds. Previously, Fusarium solani was reported as the causal agent of roselle (Hibiscus sabdariffa L.) seed rot. This study was designed to evaluate the effect of F. solani infection on the germination, biochemical composition, energy reserves, and antioxidant activity of roselle seeds because there is currently a lack of information on the relationship between seed metabolism and infection with F. solani. The results showed that roselle seeds infected with F. solani exhibited a ca. 55% reduction in overall germination. Additionally, the fungal infection decreased antioxidant activity, total phenolic content, protein, sugar (sucrose, fructose, and glucose), and some amino acid (glutamine, serine, and arginine) contents. In contrast, some metabolites were more abundant in infected seeds, including alanine (2.1-fold) and some fatty acids (palmitic acid and heptadecanoic acid by 1.1- and 1.4-fold, respectively). The infection-associated changes in fatty acid profile resulted in the ratio of unsaturated/saturated fatty acids being 2.1-fold higher in infected seeds. Therefore, our results reveal that F. solani infection remarkably altered the biochemical composition of roselle seeds, which may have contributed to the loss of germination and quality of roselle seeds.
Collapse
Affiliation(s)
- Aminallah Tahmasebi
- Department of Agriculture, Minab Higher Education Center, University of Hormozgan, Bandar Abbas, Iran
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| | - Thomas Roach
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | - Song Yub Shin
- Graduate School of Biomedical Science, Department of Cellular & Molecular Medicine, School of Medicine, Chosun University, Gwangju, Republic of Korea
| | - Chul Won Lee
- Department of Chemistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
16
|
Hipsch M, Michael Y, Lampl N, Sapir O, Cohen Y, Helman D, Rosenwasser S. Early detection of late blight in potato by whole-plant redox imaging. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:649-664. [PMID: 36534114 DOI: 10.1111/tpj.16071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Late blight caused by the oomycete Phytophthora infestans is a most devastating disease of potatoes (Solanum tuberosum). Its early detection is crucial for suppressing disease spread. Necrotic lesions are normally seen in leaves at 4 days post-inoculation (dpi) when colonized cells are dead, but early detection of the initial biotrophic growth stage, when the pathogen feeds on living cells, is challenging. Here, the biotrophic growth phase of P. infestans was detected by whole-plant redox imaging of potato plants expressing chloroplast-targeted reduction-oxidation sensitive green fluorescent protein (chl-roGFP2). Clear spots on potato leaves with a lower chl-roGFP2 oxidation state were detected as early as 2 dpi, before any visual symptoms were recorded. These spots were particularly evident during light-to-dark transitions, and reflected the mislocalization of chl-roGFP2 outside the chloroplasts. Image analysis based on machine learning enabled systematic identification and quantification of spots, and unbiased classification of infected and uninfected leaves in inoculated plants. Comparing redox with chlorophyll fluorescence imaging showed that infected leaf areas that exhibit mislocalized chl-roGFP2 also showed reduced non-photochemical quenching and enhanced quantum PSII yield (ΦPSII) compared with the surrounding leaf areas. The data suggest that mislocalization of chloroplast-targeted proteins is an efficient marker of late blight infection, and demonstrate how it can be utilized for non-destructive monitoring of the disease biotrophic stage using whole-plant redox imaging.
Collapse
Affiliation(s)
- Matanel Hipsch
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yaron Michael
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
| | - Nardy Lampl
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Omer Sapir
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| | - Yigal Cohen
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290000, Israel
| | - David Helman
- Department of Soil & Water Sciences, Institute of Environmental Sciences, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 7610001, Israel
- The Advanced School for Environmental Studies, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shilo Rosenwasser
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, 7610000, Israel
| |
Collapse
|
17
|
Wang H, Han Y, Wu C, Zhang B, Zhao Y, Zhu J, Han Y, Wang J. Comparative transcriptome profiling of resistant and susceptible foxtail millet responses to Sclerospora graminicola infection. BMC PLANT BIOLOGY 2022; 22:567. [PMID: 36471245 PMCID: PMC9724433 DOI: 10.1186/s12870-022-03963-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Downy mildew of foxtail millet, which is caused by the biotrophic oomycete Sclerospora graminicola (Sacc.) Schroeter, is one of the most disruptive diseases. The foxtail millet-S. graminicola interaction is largely unexplored. Transcriptome sequencing technology can help to reveal the interaction mechanism between foxtail millet and its pathogens. RESULTS Transmission electron microscopy observations of leaves infected with S. graminicola showed that the structures of organelles in the host cells gradually became deformed and damaged, or even disappeared from the 3- to 7-leaf stages. However, organelles in the leaves of resistant variety were rarely damaged. Moreover, the activities of seven cell wall degrading enzymes in resistant and susceptible varieties were also quite different after pathogen induction and most of enzymes activities were significantly higher in the susceptible variety JG21 than in the resistant variety G1 at all stages. Subsequently, we compared the transcriptional profiles between the G1 and JG21 in response to S. graminicola infection at 3-, 5-, and 7-leaf stages using RNA-Seq technology. A total of 473 and 1433 differentially expressed genes (DEGs) were identified in the resistant and susceptible varieties, respectively. The pathway analysis of the DEGs showed that the highly enriched categories were related to glutathione metabolism, plant hormone signalling, phenylalanine metabolism, and cutin, suberin and wax biosynthesis. Some defence-related genes were also revealed in the DEGs, including leucine-rich protein kinase, Ser/Thr protein kinase, peroxidase, cell wall degrading enzymes, laccases and auxin response genes. Our results also confirmed the linkage of transcriptomic data with qRT-PCR data. In particular, LRR protein kinase encoded by Seita.8G131800, Ser/Thr protein kinase encoded by Seita.2G024900 and Seita. 2G024800, which have played an essential resistant role during the infection by S. graminicola. CONCLUSIONS Transcriptome sequencing revealed that host resistance to S. graminicola was likely due to the activation of defence-related genes, such as leucine-rich protein kinase and Ser/Thr protein kinase. Our study identified pathways and genes that contribute to the understanding of the interaction between foxtail millet and S. graminicola at the transcriptomic level. The results will help us better understand the resistance mechanism of foxtail millet against S. graminicola.
Collapse
Affiliation(s)
- He Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqing Han
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Caijuan Wu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Baojun Zhang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaofei Zhao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Jiao Zhu
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Shanxi Key Laboratory of Germplasm Innovation and Molecular Breeding of Minor Crop, Taiyuan, 030031, China.
| | - Jianming Wang
- College of Plant Protection, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
18
|
Suárez JC, Vanegas JI, Anzola JA, Contreras AT, Urban MO, Beebe SE, Rao IM. Impact of Web Blight on Photosynthetic Performance of an Elite Common Bean Line in the Western Amazon Region of Colombia. PLANTS (BASEL, SWITZERLAND) 2022; 11:3238. [PMID: 36501276 PMCID: PMC9736428 DOI: 10.3390/plants11233238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Disease stress caused by plant pathogens impacts the functioning of the photosynthetic apparatus, and the symptoms caused by the degree of severity of the disease can generally be observed in different plant parts. The accurate assessment of plant symptoms can be used as a proxy indicator for managing disease incidence, estimating yield loss, and developing genotypes with disease resistance. The objective of this work was to determine the response of the photosynthetic apparatus to the increased disease severity caused by web blight Thanatephorus cucumeris (Frank) Donk on the common bean (Phaseolus vulgaris L.) leaves under acidic soil and the humid tropical conditions of the Colombian Amazon. Differences in chlorophyll fluorescence parameters, including Fv/Fm, Y(II), Y(NPQ), Y(NO), ETR, qP, and qN in leaves with different levels of severity of web blight in an elite line (BFS 10) of common bean were evaluated under field conditions. A significant effect of web blight on the photosynthetic apparatus was found. A reduction of up to 50% of energy use dedicated to the photosynthetic machinery was observed, even at the severity scale score of 2 (5% surface incidence). The results from this study indicate that the use of fluorescence imaging not only allows for the quantifying of the impact of web blight on photosynthetic performance, but also for detecting the incidence of disease earlier, before severe symptoms occur on the leaves.
Collapse
Affiliation(s)
- Juan Carlos Suárez
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Iván Vanegas
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - José Alexander Anzola
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
| | - Amara Tatiana Contreras
- Programa de Ingeniería Agroecológica, Facultad de Ingeniería, Universidad de la Amazonia, Florencia 180001, Colombia
- Centro de Investigaciones Amazónicas CIMAZ Macagual César Augusto Estrada González, Grupo de Investigaciones Agroecosistemas y Conservación en Bosques Amazónicos-GAIA, Universidad de la Amazonia, Florencia 180001, Colombia
| | - Milan O. Urban
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Stephen E. Beebe
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Km 17 Recta Cali-Palmira, Cali 763537, Colombia
| |
Collapse
|
19
|
Transcriptome Analysis Reveals a Comprehensive Virus Resistance Response Mechanism in Pecan Infected by a Novel Badnavirus Pecan Virus. Int J Mol Sci 2022; 23:ijms232113576. [PMID: 36362365 PMCID: PMC9655656 DOI: 10.3390/ijms232113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pecan leaf-variegated plant, which was infected with a novel badnavirus named pecan mosaic virus (PMV) detected by small RNA deep sequencing, is a vital model plant for studying the molecular mechanism of retaining green or chlorosis of virus-infected leaves. In this report, PMV infection in pecan leaves induced PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). PMV infection suppressed the expressions of key genes of fatty acid, oleic acid (C18:1), and very-long-chain fatty acids (VLCFA) biosynthesis, indicating that fatty acids-derived signaling was one of the important defense pathways in response to PMV infection in pecan. PMV infection in pecans enhanced the expressions of pathogenesis-related protein 1 (PR1). However, the transcripts of phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) were downregulated, indicating that salicylic acid (SA) biosynthesis was blocked in pecan infected with PMV. Meanwhile, disruption of auxin signaling affected the activation of the jasmonic acid (JA) pathway. Thus, C18:1 and JA signals are involved in response to PMV infection in pecan. In PMV-infected yellow leaves, damaged chloroplast structure and activation of mitogen-activated protein kinase 3 (MPK3) inhibited photosynthesis. Cytokinin and SA biosynthesis was blocked, leading to plants losing immune responses and systemic acquired resistance (SAR). The repression of photosynthesis and the induction of sink metabolism in the infected tissue led to dramatic changes in carbohydrate partitioning. On the contrary, the green leaves of PMV infection in pecan plants had whole cell tissue structure and chloroplast clustering, establishing a strong antiviral immunity system. Cytokinin biosynthesis and signaling transductions were remarkably strengthened, activating plant immune responses. Meanwhile, cytokinin accumulation in green leaves induced partial SA biosynthesis and gained comparatively higher SAR compared to that of yellow leaves. Disturbance of the ribosome biogenesis might enhance the resistance to PMV infection in pecan and lead to leaves staying green.
Collapse
|
20
|
Yang F, Zhang X, Xue H, Tian T, Tong H, Hu J, Zhang R, Tang J, Su Q. (Z)-3-hexenol primes callose deposition against whitefly-mediated begomovirus infection in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:694-708. [PMID: 36086899 DOI: 10.1111/tpj.15973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/04/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Rapid callose accumulation has been shown to mediate defense in certain plant-virus interactions. Exposure to the green leaf volatile (Z)-3-hexenol (Z-3-HOL) can prime tomato (Solanum lycopersicum) for an enhanced defense against subsequent infection by whitefly-transmitted Tomato yellow leaf curl virus (TYLCV). However, the molecular mechanisms affecting Z-3-HOL-induced resistance are poorly understood. Here, we explored the mechanisms underlying Z-3-HOL-induced resistance against whitefly-transmitted TYLCV infection and the role of callose accumulation during this process. Tomato plants pre-treated with Z-3-HOL displayed callose priming upon whitefly infestation. The callose inhibitor 2-deoxy-d-glucose abolished Z-3-HOL-induced resistance, confirming the importance of callose in this induced resistance. We also found that Z-3-HOL pre-treatment enhanced salicylic acid levels and activated sugar signaling in tomato upon whitefly infestation, which increased the expression of the cell wall invertase gene Lin6 to trigger augmented callose deposition against TYLCV infection resulting from whitefly transmission. Using virus-induced gene silencing, we demonstrated the Lin6 expression is relevant for sugar accumulation mediated callose priming in restricting whitefly-transmitted TYLCV infection in plants that have been pre-treated with Z-3-HOL. Moreover, Lin6 induced the expression of the callose synthase gene Cals12, which is also required for Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. These findings highlight the importance of sugar signaling in the priming of callose as a defense mechanism in Z-3-HOL-induced resistance of tomato against whitefly-transmitted TYLCV infection. The results will also increase our understanding of defense priming can be useful for the biological control of viral diseases.
Collapse
Affiliation(s)
- Fengbo Yang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Xinyi Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hu Xue
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Tian Tian
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hong Tong
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Jinyu Hu
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Rong Zhang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Juan Tang
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Qi Su
- Ministry of Agriculture and Rural Affairs Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), Hubei Engineering Technology Center for Pest Forewarning and Management, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| |
Collapse
|
21
|
Correia C, Magnani F, Pastore C, Cellini A, Donati I, Pennisi G, Paucek I, Orsini F, Vandelle E, Santos C, Spinelli F. Red and Blue Light Differently Influence Actinidia chinensis Performance and Its Interaction with Pseudomonas syringae pv. Actinidiae. Int J Mol Sci 2022; 23:13145. [PMID: 36361938 PMCID: PMC9658526 DOI: 10.3390/ijms232113145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 03/08/2024] Open
Abstract
Light composition modulates plant growth and defenses, thus influencing plant-pathogen interactions. We investigated the effects of different light-emitting diode (LED) red (R) (665 nm) and blue (B) (470 nm) light combinations on Actinidia chinensis performance by evaluating biometric parameters, chlorophyll a fluorescence, gas exchange and photosynthesis-related gene expression. Moreover, the influence of light on the infection by Pseudomonas syringae pv. actinidiae (Psa), the etiological agent of bacterial canker of kiwifruit, was investigated. Our study shows that 50%R-50%B (50R) and 25%R-75%B (25R) lead to the highest PSII efficiency and photosynthetic rate, but are the least effective in controlling the endophytic colonization of the host by Psa. Monochromatic red light severely reduced ΦPSII, ETR, Pn, TSS and photosynthesis-related genes expression, and both monochromatic lights lead to a reduction of DW and pigments content. Monochromatic blue light was the only treatment significantly reducing disease symptoms but did not reduce bacterial endophytic population. Our results suggest that monochromatic blue light reduces infection primarily by modulating Psa virulence more than host plant defenses.
Collapse
Affiliation(s)
- Cristiana Correia
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Federico Magnani
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Chiara Pastore
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Antonio Cellini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Irene Donati
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Giuseppina Pennisi
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Ivan Paucek
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Francesco Orsini
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| | - Elodie Vandelle
- Department of Biotechnology, University of Verona, 37134 Verona, Italy
| | - Conceição Santos
- IB2Lab, LAQV-Requimte, Department of Biology, Faculty of Sciences, University of Porto, Rua Campo Alegre, 4169-007 Porto, Portugal
| | - Francesco Spinelli
- Department of Agricultural Sciences, Alma Mater Studiorum University of Bologna, Viale Fanin 46, 40127 Bologna, Italy
| |
Collapse
|
22
|
Kopczewski T, Kuźniak E, Ciereszko I, Kornaś A. Alterations in Primary Carbon Metabolism in Cucumber Infected with Pseudomonas syringae pv lachrymans: Local and Systemic Responses. Int J Mol Sci 2022; 23:ijms232012418. [PMID: 36293272 PMCID: PMC9603868 DOI: 10.3390/ijms232012418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
The reconfiguration of the primary metabolism is essential in plant–pathogen interactions. We compared the local metabolic responses of cucumber leaves inoculated with Pseudomonas syringae pv lachrymans (Psl) with those in non-inoculated systemic leaves, by examining the changes in the nicotinamide adenine dinucleotides pools, the concentration of soluble carbohydrates and activities/gene expression of carbohydrate metabolism-related enzymes, the expression of photosynthesis-related genes, and the tricarboxylic acid cycle-linked metabolite contents and enzyme activities. In the infected leaves, Psl induced a metabolic signature with an altered [NAD(P)H]/[NAD(P)+] ratio; decreased glucose and sucrose contents, along with a changed invertase gene expression; and increased glucose turnover and accumulation of raffinose, trehalose, and myo-inositol. The accumulation of oxaloacetic and malic acids, enhanced activities, and gene expression of fumarase and l-malate dehydrogenase, as well as the increased respiration rate in the infected leaves, indicated that Psl induced the tricarboxylic acid cycle. The changes in gene expression of ribulose-l,5-bis-phosphate carboxylase/oxygenase large unit, phosphoenolpyruvate carboxylase and chloroplast glyceraldehyde-3-phosphate dehydrogenase were compatible with a net photosynthesis decline described earlier. Psl triggered metabolic changes common to the infected and non-infected leaves, the dynamics of which differed quantitatively (e.g., malic acid content and metabolism, glucose-6-phosphate accumulation, and glucose-6-phosphate dehydrogenase activity) and those specifically related to the local or systemic response (e.g., changes in the sugar content and turnover). Therefore, metabolic changes in the systemic leaves may be part of the global effects of local infection on the whole-plant metabolism and also represent a specific acclimation response contributing to balancing growth and defense.
Collapse
Affiliation(s)
- Tomasz Kopczewski
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Kuźniak
- Department of Plant Physiology and Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
- Correspondence:
| | - Iwona Ciereszko
- Department of Plant Biology and Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, 30-084 Kraków, Poland
| |
Collapse
|
23
|
De Rocchis V, Jammer A, Camehl I, Franken P, Roitsch T. Tomato growth promotion by the fungal endophytes Serendipita indica and Serendipita herbamans is associated with sucrose de-novo synthesis in roots and differential local and systemic effects on carbohydrate metabolisms and gene expression. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153755. [PMID: 35961165 DOI: 10.1016/j.jplph.2022.153755] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 05/28/2023]
Abstract
Plant growth-promoting and stress resilience-inducing root endophytic fungi represent an additional carbohydrate sink. This study aims to test if such root endophytes affect the sugar metabolism of the host plant to divert the flow of resources for their purposes. Fresh and dry weights of roots and shoots of tomato (Solanum lycopersicum) colonised by the closely related Serendipita indica and Serendipita herbamans were recorded. Plant carbohydrate metabolism was analysed by measuring sugar levels, by determining activity signatures of key enzymes of carbohydrate metabolism, and by quantifying mRNA levels of genes involved in sugar transport and turnover. During the interaction with the tomato plants, both fungi promoted root growth and shifted shoot biomass from stem to leaf tissues, resulting in increased leaf size. A common effect induced by both fungi was the inhibition of phosphofructokinase (PFK) in roots and leaves. This glycolytic-pacing enzyme shows how the glycolysis rate is reduced in plants and, eventually, how sugars are allocated to different tissues. Sucrose phosphate synthase (SPS) activity was strongly induced in colonised roots. This was accompanied by increased SPS-A1 gene expression in S. herbamans-colonised roots and by increased sucrose amounts in roots colonised by S. indica. Other enzyme activities were barely affected by S. indica, but mainly induced in leaves of S. herbamans-colonised plants and decreased in roots. This study suggests that two closely related root endophytic fungi differentially influence plant carbohydrate metabolism locally and systemically, but both induce a similar increase in plant biomass. Notably, both fungal endophytes induce an increase in SPS activity and, in the case of S. indica, sucrose resynthesis in roots. In leaves of S. indica-colonised plants, SWEET11b expression was enhanced, thus we assume that excess sucrose was exported by this transporter to the roots. .
Collapse
Affiliation(s)
- Vincenzo De Rocchis
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Alexandra Jammer
- Institute of Biology, University of Graz, NAWI Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Iris Camehl
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Philipp Franken
- Leibniz Institute of Vegetable and Ornamental Crops, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic.
| |
Collapse
|
24
|
Liu Y, Huang Y, Liu J, Liu J. A temperature-responsive selenium nanohydrogel for strawberry grey mould management. J Mater Chem B 2022; 10:5231-5241. [PMID: 35748407 DOI: 10.1039/d2tb00345g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Grey mould is a fungal disease caused by Botrytis cinerea (B. cinerea), which can cause serious damage to a variety of crops. Herein, we developed iprodione (Ipr) reagent-loaded mesoporous selenium nanoparticles (MSe NPs), combined them with low-melting agarose (LA), and obtained a temperature-responsive selenium particle nanogel (Ipr@MSe@LA NPs) using a simple method. Importantly, Ipr@MSe@LA could capture B. cinerea and quickly be softened to realize the controlled release of Ipr, and effectively inhibit and kill B. cinerea. Plate-based antibacterial tests showed that the colony area of the Ipr@MSe@LA NPs was 4.27 cm-2, which was much smaller than that of the control (25 cm-2). In addition, the Ipr@MSe@LA NPs showed good biocompatibility, and they could improve the photosynthetic efficiency of plants and promote plant growth. Measurement of the fluorescence parameters showed that the maximum photochemical efficiency (Fv/Fm) of the plant leaves of the inoculated group (B. cinerea) is 0.58, but the Fv/Fm value of the Ipr@MSe@LA group is higher than 0.8. In particular, Ipr@MSe@LA NPs could prolong the storage time of strawberries, thereby preserving their freshness. Overall, Ipr@MSe@LA NPs exhibit excellent effects in terms of controlling strawberry gray mould and prolonging the fruit storage time, and this is expected to become a promising strategy for developing intelligent pesticide formulations.
Collapse
Affiliation(s)
- Yanan Liu
- Shenzhen Longhua Maternity and Child Healthcare Hospital, Shenzhen, 518110, China.
| | - Yuqin Huang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jiawei Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| | - Jie Liu
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 511436, China.
| |
Collapse
|
25
|
Paschoal D, Costa JL, da Silva EM, da Silva FB, Capelin D, Ometto V, Aricetti JA, Carvalho GG, Pimpinato RF, de Oliveira RF, Carrera E, López-Díaz I, Rossi ML, Tornisielo V, Caldana C, Riano-Pachon DM, Cesarino I, Teixeira PJPL, Figueira A. Infection by Moniliophthora perniciosa reprograms tomato Micro-Tom physiology, establishes a sink, and increases secondary cell wall synthesis. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3651-3670. [PMID: 35176760 DOI: 10.1093/jxb/erac057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Witches' broom disease of cacao is caused by the pathogenic fungus Moniliophthora perniciosa. By using tomato (Solanum lycopersicum) cultivar Micro-Tom (MT) as a model system, we investigated the physiological and metabolic consequences of M. perniciosa infection to determine whether symptoms result from sink establishment during infection. Infection of MT by M. perniciosa caused reductions in root biomass and fruit yield, a decrease in leaf gas exchange, and down-regulation of photosynthesis-related genes. The total leaf area and water potential decreased, while ABA levels, water conductance/conductivity, and ABA-related gene expression increased. Genes related to sugar metabolism and those involved in secondary cell wall deposition were up-regulated upon infection, and the concentrations of sugars, fumarate, and amino acids increased. 14C-glucose was mobilized towards infected MT stems, but not in inoculated stems of the MT line overexpressing CYTOKININ OXIDASE-2 (35S::AtCKX2), suggesting a role for cytokinin in establishing a sugar sink. The up-regulation of genes involved in cell wall deposition and phenylpropanoid metabolism in infected MT, but not in 35S::AtCKX2 plants, suggests establishment of a cytokinin-mediated sink that promotes tissue overgrowth with an increase in lignin. Possibly, M. perniciosa could benefit from the accumulation of secondary cell walls during its saprotrophic phase of infection.
Collapse
Affiliation(s)
- Daniele Paschoal
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Juliana L Costa
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Eder M da Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Fábia B da Silva
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Diogo Capelin
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Vitor Ometto
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Juliana A Aricetti
- Laboratório Nacional de Biorrenováveis, Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP, 13083-100, Brazil
| | - Gabriel G Carvalho
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Rodrigo F Pimpinato
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Ricardo F de Oliveira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Esther Carrera
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Isabel López-Díaz
- Universitat Politècnica de València (UPV), Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Mônica L Rossi
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Valdemar Tornisielo
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Camila Caldana
- Max Planck Institute for Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Diego M Riano-Pachon
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| | - Igor Cesarino
- Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Paulo J P L Teixeira
- Escola Superior de Agricultura "Luiz de Queiroz", Universidade de São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
26
|
De Pascali M, Vergine M, Negro C, Greco D, Vita F, Sabella E, De Bellis L, Luvisi A. Xylella fastidiosa and Drought Stress in Olive Trees: A Complex Relationship Mediated by Soluble Sugars. BIOLOGY 2022; 11:biology11010112. [PMID: 35053110 PMCID: PMC8773346 DOI: 10.3390/biology11010112] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/02/2022] [Accepted: 01/07/2022] [Indexed: 12/19/2022]
Abstract
Simple Summary Carbohydrates play important roles in tolerance to both biotic and abiotic stressors. Xylella fastidiosa, the causal agent of “Olive Quick Decline Syndrome”, is a quarantine pathogen that induces drought stress in the host, aggravated by eventual water shortage, which is a frequent environmental condition in Mediterranean olive groves. At present, the resistance mechanisms shown by few resistant olive cultivars (e.g., cv Leccino) are not completely known; therefore, the aim of this research is to understand whether sugar metabolism is involved in the cross-talk mechanisms of biotic and abiotic responses. The results show that drought stress response induces effects beneficial to resistance of Xylella fastidiosa in cv Leccino. In the current context of global climate change, this study supports the importance of investigating the complex drought–disease interaction to detect resistance traits and thus find ways to counter the threat of this pathogen in the future. Abstract Xylella fastidiosa (Xf) subsp. pauca “De Donno” is the etiological agent of “Olive Quick Decline Syndrome” (OQDS) on olive trees (Olea europaea L.); the presence of the bacterium causes xylem vessel occlusions inducing a drought stress and the development of leaf scorch symptoms, which may be worsened by water shortage in summer. In order to evaluate how the two stress factors overlap each other, the carbohydrate content and the expression patterns of genes related to carbohydrate metabolism have been evaluated in two olive cvs trees (Cellina di Nardò, susceptible to Xf, and Leccino, resistant to Xf) reporting transcriptional dynamics elicited by Xf infection, drought, or combined stress (drought/Xf). In the Xf-susceptible Cellina di Nardò plants, Xf and its combination with drought significantly decrease total sugars compared to control (−27.0% and −25.7%, respectively). In contrast, the Xf-resistant Leccino plants show a more limited reduction in sugar content in Xf-positive conditions (−20.1%) and combined stresses (−11.1%). Furthermore, while the amount of glucose decreases significantly in stressed Cellina di Nardò plants (≈18%), an increase was observed in Leccino plants under drought/Xf combined stresses (+11.2%). An opposite behavior among cvs was also observed for sucrose, as an accumulation of the disaccharide was recorded in stressed Leccino plants (≈37%). The different response to combined stress by Xf-resistant plants was confirmed considering genes coding for the sucrose or monosaccharide transporter (OeSUT1, OeMST2), the cell wall or vacuolar invertase (OeINV-CW, OeINV-V), the granule-bound starch synthase I (OeGBSSI) and sucrose synthase (OeSUSY), with a higher expression than at least one single stress (e.g., ≈1-fold higher or more than Xf for OeMST2, OeINV-CW, OeINV-V, OeGBSSI). It is probable that the pathways involved in drought stress response induce positive effects useful for pathogen resistance in cv Leccino, confirming the importance of investigating the mechanisms of cross-talk of biotic and abiotic responses.
Collapse
Affiliation(s)
- Mariarosaria De Pascali
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Marzia Vergine
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
- Correspondence:
| | - Carmine Negro
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Davide Greco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Federico Vita
- Department of Biology, University of Bari Aldo Moro, 70121 Bari, Italy;
| | - Erika Sabella
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Luigi De Bellis
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| | - Andrea Luvisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy; (M.D.P.); (C.N.); (D.G.); (E.S.); (L.D.B.); (A.L.)
| |
Collapse
|
27
|
Characteristics of chlorophyll fluorescence in ten garden shrub species under flooding stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Pandey C, Großkinsky DK, Westergaard JC, Jørgensen HJL, Svensgaard J, Christensen S, Schulz A, Roitsch T. Identification of a bio-signature for barley resistance against Pyrenophora teres infection based on physiological, molecular and sensor-based phenotyping. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111072. [PMID: 34763864 DOI: 10.1016/j.plantsci.2021.111072] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Necrotic and chlorotic symptoms induced during Pyrenophora teres infection in barley leaves indicate a compatible interaction that allows the hemi-biotrophic fungus Pyrenophora teres to colonise the host. However, it is unexplored how this fungus affects the physiological responses of resistant and susceptible cultivars during infection. To assess the degree of resistance in four different cultivars, we quantified visible symptoms and fungal DNA and performed expression analyses of genes involved in plant defence and ROS scavenging. To obtain insight into the interaction between fungus and host, we determined the activity of 19 key enzymes of carbohydrate and antioxidant metabolism. The pathogen impact was also phenotyped non-invasively by sensor-based multireflectance and -fluorescence imaging. Symptoms, regulation of stress-related genes and pathogen DNA content distinguished the cultivar Guld as being resistant. Severity of net blotch symptoms was also strongly correlated with the dynamics of enzyme activities already within the first day of infection. In contrast to the resistant cultivar, the three susceptible cultivars showed a higher reflectance over seven spectral bands and higher fluorescence intensities at specific excitation wavelengths. The combination of semi high-throughput physiological and molecular analyses with non-invasive phenotyping enabled the identification of bio-signatures that discriminates the resistant from susceptible cultivars.
Collapse
Affiliation(s)
- Chandana Pandey
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Dominik K Großkinsky
- AIT Austrian Institute of Technology GmbH, Center for Health and Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430, Tulln, Austria
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Hans J L Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Jesper Svensgaard
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Svend Christensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark
| | - Alexander Schulz
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark.
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Denmark; Department of Adaptive Biotechnologies, Global Change Research Institute, CAS, Brno, Czechia
| |
Collapse
|
29
|
Long-Term Potato Virus X (PVX)-Based Transient Expression of Recombinant GFP Protein in Nicotiana benthamiana Culture In Vitro. PLANTS 2021; 10:plants10102187. [PMID: 34685995 PMCID: PMC8537016 DOI: 10.3390/plants10102187] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 11/17/2022]
Abstract
Plant molecular farming has a great potential to produce valuable proteins. Transient expression technology provides high yields of recombinant proteins in greenhouse-grown plants, but every plant must be artificially agroinfiltrated, and open greenhouse systems are less controlled. Here, we propose to propagate agrobacteria-free plants with high-efficient long-term self-replicated transient gene expression in a well-controlled closed in vitro system. Nicotiana benthamiana plant tissue culture in vitro, with transient expression of recombinant GFP, was obtained through shoot induction from leaf explants infected by a PVX-based vector. The transient expression occurs in new tissues and regenerants due to the natural systemic distribution of viral RNA carrying the target gene. Gene silencing was delayed in plants grown in vitro, and GFP was detected in plants for five to six months. Agrobacteria-free, GFP-expressing plants can be micropropagated in vitro (avoiding an agroinfiltration step), "rejuvenated" through regeneration (maintaining culture for years), or transferred in soil. The mean GFP in the regenerants was 18% of the total soluble proteins (TSP) (0.52 mg/g of fresh leaf weight (FW). The highest value reached 47% TSP (2 mg/g FW). This study proposes a new method for recombinant protein production combining the advantages of transient expression technology and closed cultural systems.
Collapse
|
30
|
Mantz GM, Rossi FR, Viretto PE, Noelting MC, Maiale SJ. Stem canker caused by Phomopsis spp. Induces changes in polyamine levels and chlorophyll fluorescence parameters in pecan leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:761-769. [PMID: 34217132 DOI: 10.1016/j.plaphy.2021.06.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/18/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
Pecan plants are attacked by the fungus Phomopsis spp. that causes stem canker, a serious and emerging disease in commercial orchards. Stem canker, which has been reported in several countries, negatively affects tree canopy health, eventually leading to production losses. The purpose of this study was to inquire into the physiology of pecan plants under stem canker attack by Phomopsis spp. To this end, pecan plants were inoculated with an isolate of Phomopsis spp. and several parameters, such as polyamines, proline, sugars, starch, chlorophyll fluorescence and canopy temperature were analysed. Under artificial inoculation, a high disease incidence was observed with symptoms similar to those in plants showing stem canker under field conditions. Furthermore, the infected stem showed dead tissue with brown necrotic discolouration in the xylem tissue. The free polyamines putrescine, spermidine, and spermine were detected and their levels decreased as leaves aged in the infected plants with respect to the controls. Chlorophyll fluorescence parameters, such as Sm, ψEO, and QbRC decreased under plant infection and therefore the K-band increased. Canopy temperature and proline content increased in the infected plants with respect to the controls while sugar content decreased. These data suggest that stem canker caused by Phomopsis spp. induces physiological changes that are similar to those observed in plants under drought stress. To our knowledge, this is the first study that documents the physiological and biochemical effects derived from pecan-Phomopsis interaction.
Collapse
Affiliation(s)
- Guillermo Martin Mantz
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina
| | - Franco Ruben Rossi
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina
| | - Pablo Esteban Viretto
- Estación Experimental Agropecuaria Valle Inferior del Río Negro (EEA)-Instituto Nacional de Tecnología Agropecuaria (INTA), Valle inferior Río Negro, RN 3 Km 971, Pcia. RN, Argentina
| | - María Cristina Noelting
- Instituto Fitotécnico de Santa Catalina (IFSC), Universidad Nacional de La Plata (UNLP), Garibaldi, 3400, Lavallol, Provincia de Buenos Aires, Argentina
| | - Santiago Javier Maiale
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad Nacional de San Martín (UNSAM), Int. Marino Km 8, Chascomús, Provincia de Buenos Aires, Argentina.
| |
Collapse
|
31
|
Sun M, Zhang Z, Ren Z, Wang X, Sun W, Feng H, Zhao J, Zhang F, Li W, Ma X, Yang D. The GhSWEET42 Glucose Transporter Participates in Verticillium dahliae Infection in Cotton. FRONTIERS IN PLANT SCIENCE 2021; 12:690754. [PMID: 34386026 PMCID: PMC8353158 DOI: 10.3389/fpls.2021.690754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The SWEET (sugars will eventually be exported transporter) proteins, a family of sugar transporters, mediate sugar diffusion across cell membranes. Pathogenic fungi can acquire sugars from plant cells to satisfy their nutritional demands for growth and infection by exploiting plant SWEET sugar transporters. However, the mechanism underlying the sugar allocation in cotton plants infected by Verticillium dahliae, the causative agent of Verticillium wilt, remains unclear. In this study, observations of the colonization of cotton roots by V. dahliae revealed that a large number of conidia had germinated at 48-hour post-inoculation (hpi) and massive hyphae had appeared at 96 hpi. The glucose content in the infected roots was significantly increased at 48 hpi. On the basis of an evolutionary analysis, an association analysis, and qRT-PCR assays, GhSWEET42 was found to be closely associated with V. dahliae infection in cotton. Furthermore, GhSWEET42 was shown to encode a glucose transporter localized to the plasma membrane. The overexpression of GhSWEET42 in Arabidopsis thaliana plants led to increased glucose content, and compromised their resistance to V. dahliae. In contrast, knockdown of GhSWEET42 expression in cotton plants by virus-induced gene silencing (VIGS) led to a decrease in glucose content, and enhanced their resistance to V. dahliae. Together, these results suggest that GhSWEET42 plays a key role in V. dahliae infection in cotton through glucose translocation, and that manipulation of GhSWEET42 expression to control the glucose level at the infected site is a useful method for inhibiting V. dahliae infection.
Collapse
Affiliation(s)
- Mengxi Sun
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhiqiang Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Wenjie Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Junjie Zhao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Breia R, Conde A, Badim H, Fortes AM, Gerós H, Granell A. Plant SWEETs: from sugar transport to plant-pathogen interaction and more unexpected physiological roles. PLANT PHYSIOLOGY 2021; 186:836-852. [PMID: 33724398 PMCID: PMC8195505 DOI: 10.1093/plphys/kiab127] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 05/19/2023]
Abstract
Sugars Will Eventually be Exported Transporters (SWEETs) have important roles in numerous physiological mechanisms where sugar efflux is critical, including phloem loading, nectar secretion, seed nutrient filling, among other less expected functions. They mediate low affinity and high capacity transport, and in angiosperms this family is composed by 20 paralogs on average. As SWEETs facilitate the efflux of sugars, they are highly susceptible to hijacking by pathogens, making them central players in plant-pathogen interaction. For instance, several species from the Xanthomonas genus are able to upregulate the transcription of SWEET transporters in rice (Oryza sativa), upon the secretion of transcription-activator-like effectors. Other pathogens, such as Botrytis cinerea or Erysiphe necator, are also capable of increasing SWEET expression. However, the opposite behavior has been observed in some cases, as overexpression of the tonoplast AtSWEET2 during Pythium irregulare infection restricted sugar availability to the pathogen, rendering plants more resistant. Therefore, a clear-cut role for SWEET transporters during plant-pathogen interactions has so far been difficult to define, as the metabolic signatures and their regulatory nodes, which decide the susceptibility or resistance responses, remain poorly understood. This fuels the still ongoing scientific question: what roles can SWEETs play during plant-pathogen interaction? Likewise, the roles of SWEET transporters in response to abiotic stresses are little understood. Here, in addition to their relevance in biotic stress, we also provide a small glimpse of SWEETs importance during plant abiotic stress, and briefly debate their importance in the particular case of grapevine (Vitis vinifera) due to its socioeconomic impact.
Collapse
Affiliation(s)
- Richard Breia
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Author for communication:
| | - Hélder Badim
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
| | - Ana Margarida Fortes
- Lisbon Science Faculty, BioISI, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Braga 4710-057, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Vila Real 5001-801, Portugal
- Centre of Biological Engineering (CEB), Department of Engineering, University of Minho, Braga 4710-057, Portugal
| | - Antonio Granell
- Institute of Molecular and Cellular Biology of Plants, Spanish National Research Council (CSIC), Polytechnic University of Valencia, Valencia 46022, Spain
| |
Collapse
|
33
|
A biological agent modulates the physiology of barley infected with Drechslera teres. Sci Rep 2021; 11:8330. [PMID: 33859319 PMCID: PMC8050242 DOI: 10.1038/s41598-021-87853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Recognized as the causal agent of net blotch, Drechslera teres is responsible for major losses of barley crop yield. The consequences of this leaf disease are due to the impact of the infection on the photosynthetic performance of barley leaves. To limit the symptoms of this ascomycete, the use of beneficial bacteria known as "Plant Growth Promoting Rhizobacteria" constitutes an innovative and environmentally friendly strategy. A bacterium named as strain B25 belonging to the genus Burkholderia showed a strong antifungal activity against D. teres. The bacterium was able to limit the development of the fungus by 95% in detached leaves of bacterized plants compared to the non-bacterized control. In this study, in-depth analyses of the photosynthetic performance of young barley leaves infected with D. teres and/or in the presence of the strain B25 were carried out both in and close to the necrotic area. In addition, gas exchange measurements were performed only near the necrotic area. Our results showed that the presence of the beneficial bacterium reduced the negative impact of the fungus on the photosynthetic performance and modified only the net carbon assimilation rate close to the necrotic area. Indeed, the presence of the strain B25 decreased the quantum yield of regulated non-photochemical energy loss in PSII noted as Y(NPQ) and allowed to maintain the values stable of maximum quantum yield of PSII photochemistry known as Fv/Fm and close to those of the control in the presence of D. teres. To the best of our knowledge, these data constitute the first study focusing on the impact of net blotch fungus and a beneficial bacterium on photosynthesis and respiratory parameters in barley leaves.
Collapse
|
34
|
Štambuk P, Šikuten I, Preiner D, Nimac A, Lazarević B, Marković Z, Maletić E, Kontić JK, Tomaz I. Screening of Croatian Native Grapevine Varieties for Susceptibility to Plasmopara viticola Using Leaf Disc Bioassay, Chlorophyll Fluorescence, and Multispectral Imaging. PLANTS 2021; 10:plants10040661. [PMID: 33808401 PMCID: PMC8067117 DOI: 10.3390/plants10040661] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/17/2021] [Accepted: 03/25/2021] [Indexed: 12/31/2022]
Abstract
In the era of sustainable grapevine production, there is a growing demand to define differences between Vitis vinifera varieties in susceptibility to downy mildew. Croatia, as a country with a long tradition of grapevine cultivation, preserves a large number of native grapevine varieties. A leaf disc bioassay has been conducted on 25 of them to define their response to downy mildew, according to the International Organisation of Vine and Wine (OIV) descriptor 452-1, together with the stress response of the leaf discs using chlorophyll fluorescence and multispectral imaging with 11 parameters included. Time points of measurement were as follows: before treatment (T0), one day post-inoculation (dpi) (T1), two dpi (T2), three dpi (T3), four dpi (T4), six dpi (T5), and eight dpi (T6). Visible changes in form of developed Plasmopara viticola (P. viticola) sporulation were evaluated on the seventh day upon inoculation. Results show that methods applied here distinguish varieties of different responses to downy mildew. Based on the results obtained, a phenotyping model in the absence of the pathogen is proposed, which is required to confirm by conducting more extensive research.
Collapse
Affiliation(s)
- Petra Štambuk
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Iva Šikuten
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Darko Preiner
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Correspondence:
| | - Ana Nimac
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Department of Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Boris Lazarević
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
- Department of Plant Nutrition, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia
| | - Zvjezdana Marković
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Edi Maletić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Jasminka Karoglan Kontić
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| | - Ivana Tomaz
- Department of Viticulture and Enology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (P.Š.); (I.Š.); (Z.M.); (E.M.); (J.K.K.); (I.T.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, 10000 Zagreb, Croatia; (A.N.); (B.L.)
| |
Collapse
|
35
|
Stamelou ML, Sperdouli I, Pyrri I, Adamakis IDS, Moustakas M. Hormetic Responses of Photosystem II in Tomato to Botrytis cinerea. PLANTS 2021; 10:plants10030521. [PMID: 33802218 PMCID: PMC8000511 DOI: 10.3390/plants10030521] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/07/2021] [Indexed: 02/07/2023]
Abstract
Botrytis cinerea, a fungal pathogen that causes gray mold, is damaging more than 200 plant species, and especially tomato. Photosystem II (PSII) responses in tomato (Solanum lycopersicum L.) leaves to Botrytis cinerea spore suspension application were evaluated by chlorophyll fluorescence imaging analysis. Hydrogen peroxide (H2O2) that was detected 30 min after Botrytis application with an increasing trend up to 240 min, is possibly convening tolerance against B. cinerea at short-time exposure, but when increasing at relative longer exposure, is becoming a damaging molecule. In accordance, an enhanced photosystem II (PSII) functionality was observed 30 min after application of B. cinerea, with a higher fraction of absorbed light energy to be directed to photochemistry (ΦPSΙΙ). The concomitant increase in the photoprotective mechanism of non-photochemical quenching of photosynthesis (NPQ) resulted in a significant decrease in the dissipated non-regulated energy (ΦNO), indicating a possible decreased singlet oxygen (1O2) formation, thus specifying a modified reactive oxygen species (ROS) homeostasis. Therefore, 30 min after application of Botrytis spore suspension, before any visual symptoms appeared, defense response mechanisms were triggered, with PSII photochemistry to be adjusted by NPQ in a such way that PSII functionality to be enhanced, but being fully inhibited at the application spot and the adjacent area, after longer exposure (240 min). Hence, the response of tomato PSII to B. cinerea, indicates a hormetic temporal response in terms of “stress defense response” and “toxicity”, expanding the features of hormesis to biotic factors also. The enhanced PSII functionality 30 min after Botrytis application can possible be related with the need of an increased sugar production that is associated with a stronger plant defense potential through the induction of defense genes.
Collapse
Affiliation(s)
- Maria-Lavrentia Stamelou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ilektra Sperdouli
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization–Demeter, Thermi, GR-57001 Thessaloniki, Greece;
| | - Ioanna Pyrri
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece;
| | - Ioannis-Dimosthenis S. Adamakis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, GR-15784 Athens, Greece; (M.-L.S.); (I.-D.S.A.)
| | - Michael Moustakas
- Department of Botany, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
36
|
Zhang M, Xu J, Ren R, Liu G, Yao X, Lou L, Xu J, Yang X. Proteomic Analysis of Fusarium oxysporum-Induced Mechanism in Grafted Watermelon Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:632758. [PMID: 33747013 PMCID: PMC7969889 DOI: 10.3389/fpls.2021.632758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Grafting can improve the resistance of watermelon to soil-borne diseases. However, the molecular mechanism of defense response is not completely understood. Herein, we used a proteomic approach to investigate the molecular basis involved in grafted watermelon leaf defense against Fusarium oxysporum f.sp. niveum (FON) infection. The bottle gourd rootstock-grafted (RG) watermelon seedlings were highly resistant to FON compared with self-grafted (SG) watermelon plants, with a disease incidence of 3.4 and 89%, respectively. Meanwhile, grafting significantly induced the activity of pathogenesis-related proteases under FON challenge. Proteins extracted from leaves of RG and SG under FON inoculation were analyzed using two-dimensional gel electrophoresis. Thirty-nine differentially accumulated proteins (DAPs) were identified and classified into 10 functional groups. Accordingly, protein biosynthetic and stress- and defense-related proteins play crucial roles in the enhancement of disease resistance of RG watermelon seedlings, compared with that of SG watermelon seedlings. Proteins involved in signal transduction positively regulated the defense process. Carbohydrate and energy metabolism and photosystem contributed to energy production in RG watermelon seedlings under FON infection. The disease resistance of RG watermelon seedlings may also be related to the improved scavenging capacity of reactive oxygen species (ROS). The expression profile of 10 randomly selected proteins was measured using quantitative real-time PCR, among which, 7 was consistent with the results of the proteomic analysis. The functional implications of these proteins in regulating grafted watermelon response against F. oxysporum are discussed.
Collapse
Affiliation(s)
- Man Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Jinhua Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Runsheng Ren
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Guang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiefeng Yao
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lina Lou
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jian Xu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingping Yang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement/Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
37
|
De Novo Transcriptome Sequencing of Rough Lemon Leaves ( Citrus jambhiri Lush.) in Response to Plenodomus tracheiphilus Infection. Int J Mol Sci 2021; 22:ijms22020882. [PMID: 33477297 PMCID: PMC7830309 DOI: 10.3390/ijms22020882] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022] Open
Abstract
Mal secco is one of the most severe diseases of citrus, caused by the necrotrophic fungus Plenodomus tracheiphilus. With the main aim of identifying candidate genes involved in the response of citrus plants to "Mal secco", we performed a de novo transcriptome analysis of rough lemon seedlings subjected to inoculation of P. tracheiphilus. The analysis of differential expressed genes (DEGs) highlighted a sharp response triggered by the pathogen as a total of 4986 significant DEGs (2865 genes up-regulated and 2121 down-regulated) have been revealed. The analysis of the most significantly enriched KEGG pathways indicated that a crucial role is played by genes involved in "Plant hormone signal transduction", "Phenylpropanoid biosynthesis", and "Carbon metabolism". The main findings of this work are that under fungus challenge, the rough lemon genes involved both in the light harvesting and the photosynthetic electron flow were significantly down-regulated, thus probably inducing a shortage of energy for cellular functions. Moreover, the systemic acquired resistance (SAR) was activated through the induced salicylic acid cascade. Interestingly, RPM1 interacting protein 4, an essential positive regulator of plant defense, and BIR2, which is a negative regulator of basal level of immunity, have been identified thus representing useful targets for molecular breeding.
Collapse
|
38
|
Lacrampe N, Lopez-Lauri F, Lugan R, Colombié S, Olivares J, Nicot PC, Lecompte F. Regulation of sugar metabolism genes in the nitrogen-dependent susceptibility of tomato stems to Botrytis cinerea. ANNALS OF BOTANY 2021; 127:143-154. [PMID: 32853354 PMCID: PMC7750717 DOI: 10.1093/aob/mcaa155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND AIMS The main soluble sugars are important components of plant defence against pathogens, but the underlying mechanisms are unclear. Upon infection by Botrytis cinerea, the activation of several sugar transporters, from both plant and fungus, illustrates the struggle for carbon resources. In sink tissues, the metabolic use of the sugars mobilized in the synthesis of defence compounds or antifungal barriers is not fully understood. METHODS In this study, the nitrogen-dependent variation of tomato stem susceptibility to B. cinerea was used to examine, before and throughout the course of infection, the transcriptional activity of enzymes involved in sugar metabolism. Under different nitrate nutrition regimes, the expression of genes that encode the enzymes of sugar metabolism (invertases, sucrose synthases, hexokinases, fructokinases and phosphofructokinases) was determined and sugar contents were measured before inoculation and in asymptomatic tissues surrounding the lesions after inoculation. KEY RESULTS At high nitrogen availability, decreased susceptibility was associated with the overexpression of several genes 2 d after inoculation: sucrose synthases Sl-SUS1 and Sl-SUS3, cell wall invertases Sl-LIN5 to Sl-LIN9 and some fructokinase and phosphofructokinase genes. By contrast, increased susceptibility corresponded to the early repression of several genes that encode cell wall invertase and sucrose synthase. The course of sugar contents was coherent with gene expression. CONCLUSIONS The activation of specific genes that encode sucrose synthase is required for enhanced defence. Since the overexpression of fructokinase is also associated with reduced susceptibility, it can be hypothesized that supplementary sucrose cleavage by sucrose synthases is dedicated to the production of cell wall components from UDP-glucose, or to the additional implication of fructose in the synthesis of antimicrobial compounds, or both.
Collapse
Affiliation(s)
- Nathalie Lacrampe
- PSH unit, INRAE, Avignon, France
- UMR Qualisud, Avignon Université, Avignon, France
| | | | | | - Sophie Colombié
- UMR 1332 BFP, INRAE, Univ Bordeaux, Villenave d’Ornon, France
| | | | | | | |
Collapse
|
39
|
Sacristán-Pérez-Minayo G, López-Robles DJ, Rad C, Miranda-Barroso L. Microbial Inoculation for Productivity Improvements and Potential Biological Control in Sugar Beet Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:604898. [PMID: 33414799 PMCID: PMC7783361 DOI: 10.3389/fpls.2020.604898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Used mainly for sucrose production, sugar beet is one of the most important crops in Castilla y León (Spain). Several studies have demonstrated the benefits of microorganisms in different crop management programs, among which Plant Growth Promoting Rhizobacteria (PGPR). This research aims to assess the beneficial effects of two PGPRs strains (Pseudomonas fluorescens Pf0-1 and Pseudomonas chlororaphis CECT 462) on sugar beet (Beta vulgaris) production. Three treatments: a PGPRs co-inoculation assay of untreated seeds without any chemical treatment (TB), a conventional treatment with commercial seeds and fungicide application (TT); and a control with seeds without protective coating, bacterial inoculation and chemical treatment (ST). The efficacy of PGPRs inoculation on sugar beet production was determined measuring periodically the photosynthetic status of plants, and the final yield and quality of tubers. Aerial and root plant biomass, maximum beet perimeter, polarization, and sugar values of the sugar beet plants inoculated with PGPRs showed higher values and significant differences to sugar beet subjected to other treatments. We could see that PGPRs inoculation (TB treatment) produced significant differences in the quantum yield of PSII (ΦPSII). TB showed the highest value for ΦPSII and the NPQ (non-photochemical quenching), the lowest value, even though the PSII (maximum quantum yield of photosystem II) was very similar in all treatments. The two assayed PGPR strains triggered a significant increase in sugar beet production yield and quality. PGPRs inoculation techniques could be used in different crops and they could be applied as biofertilizers, improving the agricultural production.
Collapse
Affiliation(s)
| | | | - Carlos Rad
- Edaphology and Agricultural Sciences Section, Faculty of Sciences, University of Burgos, Burgos, Spain
| | | |
Collapse
|
40
|
Srivastava DA, Arya GC, Pandaranayaka EP, Manasherova E, Prusky DB, Elad Y, Frenkel O, Harel A. Transcriptome Profiling Data of Botrytis cinerea Infection on Whole Plant Solanum lycopersicum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1103-1107. [PMID: 32552519 DOI: 10.1094/mpmi-05-20-0109-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Botrytis cinerea is a foliar necrotrophic fungal-pathogen capable of infecting >580 genera of plants, is often used as model organism for studying fungal-host interactions. We used RNAseq to study transcriptome of B. cinerea infection on a major (worldwide) vegetable crop, tomato (Solanum lycopersicum). Most previous works explored only few infection stages, using RNA extracted from entire leaf-organ diluting the expression of studied infected region. Many studied B. cinerea infection, on detached organs assuming that similar defense/physiological reactions occurs in the intact plant. We analyzed transcriptome of the pathogen and host in 5 infection stages of whole-plant leaves at the infection site. We supply high quality, pathogen-enriched gene count that facilitates future research of the molecular processes regulating the infection process.
Collapse
Affiliation(s)
- Dhruv Aditya Srivastava
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Gulab Chand Arya
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Eswari Pj Pandaranayaka
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Ekaterina Manasherova
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Dov B Prusky
- Department of Postharvest Science, Institute of Postharvest and Food Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Yigal Elad
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Omer Frenkel
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| | - Arye Harel
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, 68 HaMaccabim Road, P.O. Box 15159, Rishon LeZion 7505101, Israel
| |
Collapse
|
41
|
Aucique-Pérez CE, Resende RS, Martins AO, Silveira PR, Cavalcanti JHF, Vieira NM, Fernie AR, Araújo WL, DaMatta FM, Rodrigues FÁ. How do wheat plants cope with Pyricularia oryzae infection? A physiological and metabolic approach. PLANTA 2020; 252:24. [PMID: 32676874 DOI: 10.1007/s00425-020-03428-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
The infection of wheat leaves by Pyricularia oryzae induced remarkable reprogramming of the primary metabolism (amino acids, sugars, and organic acids) in favor of a successful fungal infection and certain changes were conserved among cultivars regardless of their level of resistance to blast. Wheat blast, caused by Pyricularia oryzae, has become one of the major threats for food security worldwide. Here, we investigated the behavior of three wheat cultivars (BR-18, Embrapa-16, and BRS-Guamirim), differing in their level of resistance to blast, by analyzing changes in cellular damage, antioxidative metabolism, and defense compounds as well as their photosynthetic performance and metabolite profile. Blast severity was lower by 45 and 33% in Embrapa-16 and BR-18 cultivars (moderately resistant), respectively, at 120 h after inoculation in comparison to BRS-Guamirim cultivar (susceptible). Cellular damage caused by P. oryzae infection was great in BRS-Guamirim compared to BR-18. The photosynthetic performance of infected plants was altered due to diffusional and biochemical limitations for CO2 fixation. At the beginning of the infection process, dramatic changes in both carbohydrate metabolism and on the levels of amino acids, intermediate compounds of the tricarboxylic acid cycle, and polyamines were noticed regardless of cultivar suggesting an extensive metabolic reprogramming of the plants following fungal infection. Nevertheless, Embrapa-16 plants displayed a more robust and efficient antioxidant metabolism, higher phenylalanine ammonia-lyase and polyphenoloxidase activities and higher concentrations of phenolics and lignin, which, altogether, helped them to counteract more efficiently the infection by P. oryzae. Our results demonstrated that P. oryzae infection significantly modified the metabolism of wheat plants and different types of metabolic defence may act both additively and synergistically to provide additional plant protection to blast.
Collapse
Affiliation(s)
- Carlos Eduardo Aucique-Pérez
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brasil
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, UFV, Viçosa, MG, 36570-900, Brasil
| | - Renata Sousa Resende
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, UFV, Viçosa, MG, 36570-900, Brasil
| | | | | | - João Henrique Frota Cavalcanti
- Universidade Federal do Amazonas, Instituto de Educação, Agricultura e Ambiente (IEAA), Rua 29 de Agosto, 786, Divino Pranto, Humaitá, AM, 36570900, Brasil
| | | | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Wagner Luiz Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brasil
| | - Fábio Murilo DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa (UFV), Viçosa, MG, 36570-900, Brasil
| | - Fabrício Ávila Rodrigues
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, UFV, Viçosa, MG, 36570-900, Brasil.
| |
Collapse
|
42
|
Kumari M, Pandey S, Mishra SK, Giri VP, Agarwal L, Dwivedi S, Pandey AK, Nautiyal CS, Mishra A. Omics-Based Mechanistic Insight Into the Role of Bioengineered Nanoparticles for Biotic Stress Amelioration by Modulating Plant Metabolic Pathways. Front Bioeng Biotechnol 2020; 8:242. [PMID: 32363178 PMCID: PMC7180193 DOI: 10.3389/fbioe.2020.00242] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/09/2020] [Indexed: 01/03/2023] Open
Abstract
Bioengineered silver nanoparticles can emerge as a facile approach to combat plant pathogen, reducing the use of pesticides in an eco-friendly manner. The plants' response during tripartite interaction of plant, pathogen, and nanoparticles remains largely unknown. This study demonstrated the use of bioengineered silver nanoparticles in combating black spot disease caused by necrotrophic fungus Alternaria brassicicola in Arabidopsis thaliana via foliar spray. The particles reduced disease severity by 70-80% at 5 μg/ml without showing phytotoxicity. It elicited plant immunity by a significant reduction in reactive oxygen species (ROS), decreases in stress enzymes by 0.6-19.8-fold, and emergence of autophagy. Comparative plant proteomics revealed 599 proteins expressed during the interaction, where 117 differential proteins were identified. Among different categories, proteins involved in bioenergy and metabolism were most abundant (44%), followed by proteins involved in plant defense (20%). Metabolic profiling by gas chromatography-mass spectroscopy yielded 39 metabolite derivatives in non-polar fraction and 25 in the polar fraction of plant extracts. It was observed that proteins involved in protein biogenesis and early plant defense were overexpressed to produce abundant antimicrobial metabolites and minimize ROS production. Bioengineered silver nanoparticles performed dual functions to combat pathogen attack by killing plant pathogen and eliciting immunity by altering plant defense proteome and metabolome.
Collapse
Affiliation(s)
- Madhuree Kumari
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shipra Pandey
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shashank Kumar Mishra
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Ved Prakash Giri
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Botany, Lucknow University, Lucknow, India
| | - Lalit Agarwal
- CSIR-National Botanical Research Institute, Lucknow, India
- Department of Agriculture and Allied Sciences, Doon Business School, Dehradun, India
| | - Sanjay Dwivedi
- CSIR-National Botanical Research Institute, Lucknow, India
| | | | | | - Aradhana Mishra
- CSIR-National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
43
|
Nazar Pour F, Cobos R, Rubio Coque JJ, Serôdio J, Alves A, Félix C, Ferreira V, Esteves AC, Duarte AS. Toxicity of Recombinant Necrosis and Ethylene-Inducing Proteins (NLPs) from Neofusicoccum parvum. Toxins (Basel) 2020; 12:E235. [PMID: 32272814 PMCID: PMC7232490 DOI: 10.3390/toxins12040235] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 11/18/2022] Open
Abstract
Neofusicoccum parvum is a fungal pathogen associated with a wide range of plant hosts. Despite being widely studied, the molecular mechanism of infection of N. parvum is still far from being understood. Analysis of N. parvum genome lead to the identification of six putative genes encoding necrosis and ethylene-inducing proteins (NLPs). The sequence of NLPs genes (NprvNep 1-6) were analyzed and four of the six NLP genes were successfully cloned, expressed in E. coli and purified by affinity chromatography. Pure recombinant proteins were characterized according to their phytotoxic and cytotoxic effects to tomato leaves and to mammalian Vero cells, respectively. These assays revealed that all NprvNeps tested are cytotoxic to Vero cells and also induce cell death in tomato leaves. NprvNep2 was the most toxic to Vero cells, followed by NprvNep1 and 3. NprvNep4 induced weaker, but, nevertheless, still significant toxic effects to Vero cells. A similar trend of toxicity was observed in tomato leaves: the most toxic was NprvNep 2 and the least toxic NprvNep 4. This study describes for the first time an overview of the NLP gene family of N. parvum and provides additional insights into its pathogenicity mechanism.
Collapse
Affiliation(s)
- Forough Nazar Pour
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino (IIVV), Escuela de Ingeniería Agraria, Universidad de León, Avda. Portugal, 41, 24009 León, Spain; (R.C.); (J.J.R.C.)
| | - Juan José Rubio Coque
- Instituto de Investigación de la Viña y el Vino (IIVV), Escuela de Ingeniería Agraria, Universidad de León, Avda. Portugal, 41, 24009 León, Spain; (R.C.); (J.J.R.C.)
| | - João Serôdio
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Artur Alves
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Carina Félix
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Vanessa Ferreira
- CESAM-Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (F.N.P.); (J.S.); (A.A.); (C.F.); (V.F.)
| | - Ana Cristina Esteves
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Spain;
| | - Ana Sofia Duarte
- Faculty of Dental Medicine, Center for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Estrada da Circunvalação, 3504-505 Viseu, Spain;
| |
Collapse
|
44
|
Mahawar H, Prasanna R, Gogoi R, Singh SB, Chawla G, Kumar A. Synergistic effects of silver nanoparticles augmented Calothrix elenkinii for enhanced biocontrol efficacy against Alternaria blight challenged tomato plants. 3 Biotech 2020; 10:102. [PMID: 32099743 DOI: 10.1007/s13205-020-2074-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/18/2020] [Indexed: 12/16/2022] Open
Abstract
The biocontrol efficacy of a cyanobacterium Calothrix elenkinii (Ce), silver nanoparticles (AgNPs) and their augmented complex (AgNPs-Ce) was evaluated. Foliar application of AgNPs-Ce reduced the disease severity by 47-58%, along with significant increases of 44-45%, 40-46% and 23-33% in leaf chlorophyll, carotenoid content, and polyphenol oxidase activity in the A. alternata infected tomato plants. A significant reduction in the pathogen load was recorded, both by plate counts and microscopic observations in the AgNPs, Ce and AgNPs-Ce treatments, while AgNPs-Ce also effectively reduced ergosterol content by 63-79%. Amplification using PCR-ITS primers revealed very faint bands or none in the AgNPs-Ce treated leaves, illustrating the inhibition of fungal growth. Significantly higher yield was recorded in the pathogen challenged plants receiving AgNPs-Ce, AgNPs, and Ce treatments. Higher expression of elicited antioxidant enzymes, along with enhanced plant growth attributes and lowered fungal load highlight the biocontrol potential of AgNPs-Ce treatment in A. alternata infected plants. This synergistic association can be explored as a promising biocontrol option against A. alternata challenged tomato plants under various agroclimatic conditions.
Collapse
|
45
|
Pérez-Bueno ML, Pineda M, Barón M. Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. FRONTIERS IN PLANT SCIENCE 2019; 10:1135. [PMID: 31620158 PMCID: PMC6759674 DOI: 10.3389/fpls.2019.01135] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 05/20/2023]
Abstract
Photosynthesis is a pivotal process in plant physiology, and its regulation plays an important role in plant defense against biotic stress. Interactions with pathogens and pests often cause alterations in the metabolism of sugars and sink/source relationships. These changes can be part of the plant defense mechanisms to limit nutrient availability to the pathogens. In other cases, these alterations can be the result of pests manipulating the plant metabolism for their own benefit. The effects of biotic stress on plant physiology are typically heterogeneous, both spatially and temporarily. Chlorophyll fluorescence imaging is a powerful tool to mine the activity of photosynthesis at cellular, leaf, and whole-plant scale, allowing the phenotyping of plants. This review will recapitulate the responses of the photosynthetic machinery to biotic stress factors, from pathogens (viruses, bacteria, and fungi) to pests (herbivory) analyzed by chlorophyll fluorescence imaging both at the lab and field scale. Moreover, chlorophyll fluorescence imagers and alternative techniques to indirectly evaluate photosynthetic traits used at field scale are also revised.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
46
|
H 2O 2 Induces Association of RCA with the Thylakoid Membrane to Enhance Resistance of Oryza meyeriana to Xanthomonas oryzae pv. oryzae. PLANTS 2019; 8:plants8090351. [PMID: 31527548 PMCID: PMC6784163 DOI: 10.3390/plants8090351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 11/17/2022]
Abstract
Oryza meyeriana is a wild species of rice with high resistance to Xanthomonas oryzae pv. oryzae (Xoo), but the detailed resistance mechanism is unclear. Ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) activase (RCA) is an important enzyme that regulates photosynthesis by activating Rubisco. We have previously reported that Xoo infection induced the relocation of RCA from the chloroplast stroma to the thylakoid membrane in O. meyeriana, but the underlying regulating mechanism and physiological significance of this association remains unknown. In this study, "H2O2 burst" with rapid and large increase in the amount of H2O2 was found to be induced by Xoo invasion in the leaves of O. meyeriana. 3, 3-diaminobenzidine (DAB) and oxidative 2, 7-Dichlorodi-hydrofluorescein diacetate (H2DCFDA) staining experiments both showed that H2O2 was generated in the chloroplast of O. meyeriana, and that this H2O2 generation as well as Xoo resistance of the wild rice were dramatically dependent on light. H2O2, methyl viologen with light, and the xanthine-xanthine oxidase system all induced RCA to associate with the thylakoid membrane in vitro, which showed that H2O2 could induce the relocation of RCA. In vitro experiments also showed that H2O2 induced changes in both the RCA and thylakoid membrane that were required for them to associate and that this association only occurred in O. meyeriana and not in the susceptible cultivated rice. These results suggest that the association of RCA with the thylakoid membrane helps to protect the thylakoid membrane against oxidative damage from H2O2. Therefore, in addition to its universal function of activating Rubisco, RCA appears to play a novel role in the resistance of O. meyeriana to Xoo.
Collapse
|
47
|
González B, Vera P. Folate Metabolism Interferes with Plant Immunity through 1C Methionine Synthase-Directed Genome-wide DNA Methylation Enhancement. MOLECULAR PLANT 2019; 12:1227-1242. [PMID: 31077872 DOI: 10.1016/j.molp.2019.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 03/26/2019] [Accepted: 04/23/2019] [Indexed: 05/25/2023]
Abstract
Plants rely on primary metabolism for flexible adaptation to environmental changes. Here, through a combination of chemical genetics and forward genetic studies in Arabidopsis plants, we identified that the essential folate metabolic pathway exerts a salicylic acid-independent negative control on plant immunity. Disruption of the folate pathway promotes enhanced resistance to Pseudomonas syringae DC3000 via activation of a primed immune state in plants, whereas its implementation results in enhanced susceptibility. Comparative proteomics analysis using immune-defective mutants identified a methionine synthase (METS1), in charge of the synthesis of Met through the folate-dependent 1C metabolism, acting as a nexus between the folate pathway and plant immunity. Overexpression of METS1 represses plant immunity and is accompanied by genome-wide global increase in DNA methylation, revealing that imposing a methylation pressure at the genomic level compromises plant immunity. Take together, these results indicate that the folate pathway represents a new layer of complexity in the regulation of plant defense responses.
Collapse
Affiliation(s)
- Beatriz González
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain
| | - Pablo Vera
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-C.S.I.C, Ciudad Politécnica de la Innovación, Edificio 8E, Ingeniero Fausto Elio, s/n, 46022 Valencia, Spain.
| |
Collapse
|
48
|
Araújo MUP, Rios JA, Silva ET, Rodrigues FÁ. Silicon Alleviates Changes in the Source-Sink Relationship of Wheat Plants Infected by Pyricularia oryzae. PHYTOPATHOLOGY 2019; 109:1129-1140. [PMID: 30794486 DOI: 10.1094/phyto-11-18-0428-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Blast, caused by Pyricularia oryzae, has become a devastating disease on wheat in several countries worldwide. Growers need alternative methods for blast management, and silicon (Si) stands out for its potential to decrease the intensity of important diseases in several crops. This study investigated the effect of Si on improving photoassimilate production on flag leaves of wheat plants and their partitioning to spikes in a scenario where blast symptoms decreased as a result of potentiation of defense mechanisms by Si. Wheat plants (cultivar BRS Guamirim) were grown in hydroponic culture with 0 or 2 mM Si and inoculated with P. oryzae at 10 days after anthesis. The Si concentration on flag leaves and spikes of Si-supplied plants increased and resulted in lower blast symptoms. High concentrations of total soluble phenols and lignin-thioglycolic acid derivatives and greater peroxidase, polyphenoloxidase, phenylalanine ammonia-lyase, β-1,3-glucanase, and chitinase activity occurred on flag leaves and spikes of Si-supplied plants and increased their resistance to blast. The concentration of photosynthetic pigments decreased and the photosynthetic performance of infected flag leaves and spikes from plants not supplied with Si was impaired for chlorophyll a fluorescence parameters including maximal photosystem II quantum efficiency, fraction of energy absorbed used in photochemistry, quantum yield of nonregulated energy dissipation, and quantum yield of regulated energy dissipation. The concentration of soluble sugars was lower on infected flag leaves and spikes from plants not supplied with Si, whereas the hexose-to-sucrose ratio increased on infected flag leaves. Sucrose-phosphate synthase activity was lower and acid invertase activity was higher on flag leaves and spikes of plants not supplied with Si, respectively, compared with Si-supplied plants. The starch concentration on spikes of Si-supplied plants increased. In conclusion, Si showed a beneficial effect in improving the source-sink relationship of infected flag leaves and spikes by preserving alterations in assimilate production and partitioning during the grain filling process.
Collapse
Affiliation(s)
- Marcela Uli Peixoto Araújo
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Jonas Alberto Rios
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Ernesto Ticiano Silva
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais State 36570-900, Brazil
| | - Fabrício Ávila Rodrigues
- Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais State 36570-900, Brazil
| |
Collapse
|
49
|
Nascimento R, Maia M, Ferreira AEN, Silva AB, Freire AP, Cordeiro C, Silva MS, Figueiredo A. Early stage metabolic events associated with the establishment of Vitis vinifera - Plasmopara viticola compatible interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 137:1-13. [PMID: 30710794 DOI: 10.1016/j.plaphy.2019.01.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/17/2019] [Accepted: 01/18/2019] [Indexed: 05/25/2023]
Abstract
Grapevine (Vitis vinifera L.) is the most widely cultivated and economically important fruit crop in the world, with 7.5 million of production area in 2017. The domesticated varieties of grapevine are highly susceptible to many fungal infections, of which downy mildew, caused by the biotrophic oomycete Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is one of the most threatening. In V. vinifera, several studies have shown that a weak and transient activation of a defense mechanism occurs, but it is easily overcome by the pathogen leading to the establishment of a compatible interaction. Major transcript, protein and physiologic changes were shown to occur at later infection time-points, but comprehensive data on the first hours of interaction is scarce. In the present work, we investigated the major physiologic and metabolic changes that occur in the first 24 h of interaction between V. vinifera cultivar Trincadeira and P. viticola. Our results show that there was a negative modulation of several metabolic classes associated to pathogen defense such as flavonoids or phenylpropanoids as well as an alteration of carbohydrate content after inoculation with the pathogen. We also found an accumulation of hydrogen peroxide and increase of lipid peroxidation but to a low extent, that seems to be insufficient to restrain pathogen growth during the initial biotrophic phase of the interaction.
Collapse
Affiliation(s)
- Rui Nascimento
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal
| | - Marisa Maia
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal; Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - António E N Ferreira
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Anabela B Silva
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal
| | - Ana Ponces Freire
- Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Carlos Cordeiro
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal
| | - Marta Sousa Silva
- Laboratório de FTICR e Espectrometria de Massa Estrutural, Faculdade de Ciências da Universidade de Lisboa, Portugal; Centro de Química e Bioquímica, Faculdade de Ciências da Universidade de Lisboa, Portugal.
| | - Andreia Figueiredo
- Biosystems & Integrative Sciences Institute (BioISI), Science Faculty of Lisbon University, 1749-016, Lisboa, Portugal.
| |
Collapse
|
50
|
Gong D, Bi Y, Li Y, Zong Y, Han Y, Prusky D. Both Penicillium expansum and Trichothecim roseum Infections Promote the Ripening of Apples and Release Specific Volatile Compounds. FRONTIERS IN PLANT SCIENCE 2019; 10:338. [PMID: 30949192 PMCID: PMC6435981 DOI: 10.3389/fpls.2019.00338] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Blue mold and core rot caused by Penicillium expansum and Trichothecium roseum are major diseases of apple fruit in China; however, their differential aggressiveness in apples and effect on fruit postharvest physiology are unclear. The effects of colonization of apples cv. Red Delicious by both pathogens were compared to physiological parameters of ripening and release of volatile compounds (VOCs). P. expansum colonization showed increased aggressiveness compared to T. roesum colonization of apple fruits. P. expansum enhanced colonization occurred with differential higher ethylene production and respiratory rate evolution, lower membrane integrity and fruit firmness in correspondence with the colonization pattern of inoculated apples. Moreover, P. expansum caused lower contents of total soluble solid and titratable acid, and higher malondialdehyde compared with T. roesum colonization. While both pathogen infections enhanced VOCs release, compared with T. roseum inoculated apples, P. expansum inoculated apple showed a higher total VOCs production including alcohols, aldehydes and esters, being the C6 alcohols, aldehydes and esters amount. PLS-DA analysis indicated that hexanoic acid was the most important factor to distinguish the inoculated fruits from the controls. Interestingly, propyl acetate and hexyl benzoate, and undecylenic acid and hexadecane were only identified in the P. expansum and T. roseum inoculated fruits, respectively. Taken together, our findings indicate that both fungi inoculations promote apple fruit ripening and release specific VOCs; moreover, apple fruits are more susceptible to P. expansum colonization than T. roesum.
Collapse
Affiliation(s)
- Di Gong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yongcai Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|