1
|
Das PP, Kumar A, Mohammed M, Bhati K, Babu KR, Bhandari KP, Sundaram RM, Ghazi IA. Comparative metabolites analysis of resistant, susceptible and wild rice species in response to bacterial blight disease. BMC PLANT BIOLOGY 2025; 25:178. [PMID: 39930388 PMCID: PMC11812213 DOI: 10.1186/s12870-025-06154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/23/2025] [Indexed: 02/13/2025]
Abstract
Globally, rice bacterial blight disease causes significant yield losses. Metabolomics is a vital tool for understanding this disease by analyzing metabolite levels and pathways involved in resistance and susceptibility. It enables the development of disease-resistant rice varieties and sustainable disease management strategies. This study has focused on the metabolic response to bacterial blight disease in three rice varieties: the near isogenic rice line IRBB27, wild rice (Oryza minuta-CG154:IRGC No. 93259, accession No. EC861737), and the susceptible control IR24. However, detailed metabolomics studies in wild rice remain largely unexplored. So, metabolic analysis with untargeted liquid chromatography mass spectrometry analysis (LC-MS/MS) was performed at various time points, including pre infection and post infection at 12 h and 24 h with Xanthomonas oryzae pv. oryzae (Xoo). In this study, a total of 6067 metabolites were identified. Pre-infection stage of the susceptible, resistant, and wild rice had 675, 660, and 702 identified metabolites, respectively, but these numbers were altered at post-infection stages. Various defense-related metabolites, including amino acids, flavonoids, alkaloids, terpenoids, nucleotide derivatives, organic acids, inorganic compounds, fatty acid and lipid derivatives have been identified. PCA and PLS-DA plots revealed differences in the metabolome among susceptible, resistant, and wild genotypes, suggesting distinct metabolic profiles for each. In this study, we found 149 metabolites were upregulated and 162 downregulated in the wild type (CG154) compared to the susceptible cultivar (IR24). Similarly, 85 metabolites were upregulated and 92 downregulated in the resistant near isogenic line (IRBB27) compared to IR24, while 156 were upregulated and 149 downregulated in CG154 compared to IRBB27. Key metabolites, including flavonoids, terpenoids, and phenolic compounds, showed significantly higher levels (P ≤ 0.01) in resistant varieties. These identified defense metabolites could serve as potential biomarkers for bacterial blight resistance in rice. The findings from this study have important implications for the development of new rice cultivars with tolerance to bacterial blight disease.
Collapse
Affiliation(s)
- Prajna Priyadarshini Das
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Aman Kumar
- Novelgene Technologies Pvt Ltd, Hyderabad, 500046, India
| | - Mujahid Mohammed
- Department of Botany, Bharathidasan Government College for Women, Affiliated to Pondicherry University Muthialpet, Puducherry, UT, 605003, India
| | - Komal Bhati
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Komaragiri Rajesh Babu
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - Kailash Pati Bhandari
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, Rajendranagar, Hyderabad, 500030, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India.
| |
Collapse
|
2
|
Yakkou L, Houida S, El Baaboua A, Bilen S, Chelkha M, Okyay Kaya L, Aasfar A, Ameen F, Ahmad Bhat S, Raouane M, Amghar S, El Harti A. Unveiling resilience: coelomic fluid bacteria's impact on plant metabolism and abiotic stress tolerance. PLANT SIGNALING & BEHAVIOR 2024; 19:2363126. [PMID: 38832593 DOI: 10.1080/15592324.2024.2363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
Earthworms' coelomic fluid (CF) has been discovered to possess properties that promote plant development. In particular, the earthworm's coelomic fluid-associated bacteria (CFB) are the primary factor influencing the plants' response. To investigate this, we used bacteria isolated from the CF and selected based on different plant growth-promoting traits, in a mesocosm ecosystem that includes plants. This experiment aimed to assess their impact on the metabolism of plants growing under abiotic stress environments (alkaline soil and nitrogen (N), phosphate (P), and potassium (K) deficit) and compare the lipid profiles of plants under the various treatments. We used seven different bacterial species isolated from the CF of Aporrectodea molleri and as a plant model Zea mays L. For the metabolomic analysis method, we used gas chromatography-mass spectrometry lipidomic. After observing the metabolomic profiles, we found that a few molecular pathways are involved in how plants react to bacterial biostimulants. The bacterial isolates belonging to Pantoea vagans, Pseudomonas aeruginosa, Bacillus paramycoides, and Bacillus thuringiensis have led to a significant increase in synthesizing several metabolites belonging to various chemical categories. Contrary to predictions, abiotic stress did not cause a drop in the composition and concentration of lipids in plants treated with the CFB, demonstrating the rigidity of the protective mechanisms. The statistical analysis based on the Pearson method revealed a positive significant correlation between plant growth parameters (length of the aerial part, surface of the leaves, and biomass) and some metabolites belonging to fatty acids, carboxylic acids, benzene derivatives, and alkanes. Moreover, the standard metabolic components of all treatments in much higher concentrations during bacterial treatments than the control treatment suggests that the bacteria have stimulated the overexpression of these metabolic components. According to these results, we could assume that plants treated with CFB exhibit an adaptability of abiotic stress defense mechanisms, which may be attributed to the upregulation of genes involved in lipid biosynthesis pathways.
Collapse
Affiliation(s)
- Lamia Yakkou
- Laboratory of Microbial Biotechnologies and Plant Protection (LBVRN), Faculty of Sciences Agadir, University Ibn Zohr, Agadir, Morocco
- Faculty of Applied Sciences- Ait Melloul, University Ibn Zohr, Agadir, Morocco
| | - Sofia Houida
- Laboratory of Mycobacteria and Tuberculosis, Institut Pasteur of Morocco, Casablanca, Morocco
| | - Aicha El Baaboua
- Biotechnology and Applied Microbiology Team, Department of Biology, Faculty of Science, Abdelmalek-Essaadi University, Tetouan, Morocco
| | - Serdar Bilen
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Maryam Chelkha
- Department of Entomology, Cornell University, Cornell AgriTech, Geneva, NY, USA
| | - Leyla Okyay Kaya
- Soil Science and Plant Nutrition Department, Faculty of Agriculture, Ataturk University, Erzurum, Turkey
| | - Abderrahim Aasfar
- Plant and Microbial Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research (MAScIR), Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | | | - Mohammed Raouane
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Souad Amghar
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| | - Abdellatif El Harti
- Research Team «Lumbricidae, Improving Soil Productivity and Environment (LAPSE)», Center "Water, Natural Resources, Environment and Sustainable Development, Ecole Normale Supérieure (ENS), Mohammed V University, Rabat, Morocco
| |
Collapse
|
3
|
Qiu M, Tian M, Sun Y, Li H, Huang W, Ouyang H, Lin S, Zhang C, Wang M, Wang Y. Decoding the biochemical dialogue: metabolomic insights into soybean defense strategies against diverse pathogens. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2234-2250. [PMID: 38965141 DOI: 10.1007/s11427-023-2596-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/15/2024] [Indexed: 07/06/2024]
Abstract
Soybean, a crucial global leguminous crop, confronts persistent threats from diverse pathogens, exerting a profound impact on global yields. While genetic dimensions of soybean-pathogen interactions have garnered attention, the intricate biochemical responses remain poorly elucidated. In this study, we applied targeted and untargeted liquid chromatography coupled to mass spectrometry (LC-MS) metabolite profiling to dissect the complex interplay between soybeans and five distinct pathogens. Our analysis uncovered 627 idMS/MS spectra, leading to the identification of four main modules, encompassing flavonoids, isoflavonoids, triterpenoids, and amino acids and peptides, alongside other compounds such as phenolics. Profound shifts were observed in both primary and secondary metabolism in response to pathogenic infections. Particularly notable were the bidirectional changes in total flavonoids across diverse pathogenic inoculations, while triterpenoids exhibited a general declining trend. Noteworthy among the highly inducible total flavonoids were known representative anti-pathogen compounds (glyceollin I), backbone forms of isoflavonoids (daidzein, genistein, glycitein, formononetin), and newly purified compounds in this study (prunin). Subsequently, we delved into the biological roles of these five compounds, validating their diverse functions against pathogens: prunin significantly inhibited the vegetative growth and virulence of Phytophthora sojae; genistein exhibited a pronounced inhibitory effect on the vegetative growth and virulence of Phomopsis longicolla; daidzein and formononetin displayed significant repressive effects on the virulence of P. longicolla. This study underscores the potent utility of metabolomic tools, providing in-depth insights into plant-pathogen interactions from a biochemical perspective. The findings not only contribute to plant pathology but also offer strategic pathways for bolstering plant resistance against diseases on a broader scale.
Collapse
Affiliation(s)
- Min Qiu
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengjun Tian
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yaru Sun
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huaibo Li
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwen Huang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Haibing Ouyang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoyan Lin
- China State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ming Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yuanchao Wang
- Sanya Institute of Nanjing Agricultural University, Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China.
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, China.
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
4
|
Shamjana U, Vasu DA, Hembrom PS, Nayak K, Grace T. The role of insect gut microbiota in host fitness, detoxification and nutrient supplementation. Antonie Van Leeuwenhoek 2024; 117:71. [PMID: 38668783 DOI: 10.1007/s10482-024-01970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
Insects are incredibly diverse, ubiquitous and have successfully flourished out of the dynamic and often unpredictable nature of evolutionary processes. The resident microbiome has accompanied the physical and biological adaptations that enable their continued survival and proliferation in a wide array of environments. The host insect and microbiome's bidirectional relationship exhibits their capability to influence each other's physiology, behavior and characteristics. Insects are reported to rely directly on the microbial community to break down complex food, adapt to nutrient-deficit environments, protect themselves from natural adversaries and control the expression of social behavior. High-throughput metagenomic approaches have enhanced the potential for determining the abundance, composition, diversity and functional activities of microbial fauna associated with insect hosts, enabling in-depth investigation into insect-microbe interactions. We undertook a review of some of the major advances in the field of metagenomics, focusing on insect-microbe interaction, diversity and composition of resident microbiota, the functional capability of endosymbionts and discussions on different symbiotic relationships. The review aims to be a valuable resource on insect gut symbiotic microbiota by providing a comprehensive understanding of how insect gut symbionts systematically perform a range of functions, viz., insecticide degradation, nutritional support and immune fitness. A thorough understanding of manipulating specific gut symbionts may aid in developing advanced insect-associated research to attain health and design strategies for pest management.
Collapse
Affiliation(s)
- U Shamjana
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Karunakar Nayak
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, 671316, India.
| |
Collapse
|
5
|
Mascellani Bergo A, Leiss K, Havlik J. Twenty Years of 1H NMR Plant Metabolomics: A Way Forward toward Assessment of Plant Metabolites for Constitutive and Inducible Defenses to Biotic Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8332-8346. [PMID: 38501393 DOI: 10.1021/acs.jafc.3c09362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Metabolomics has become an important tool in elucidating the complex relationship between a plant genotype and phenotype. For over 20 years, nuclear magnetic resonance (NMR) spectroscopy has been known for its robustness, quantitative capabilities, simplicity, and cost-efficiency. 1H NMR is the method of choice for analyzing a broad range of relatively abundant metabolites, which can be used for both capturing the plant chemical profile at one point in time and understanding the pathways that underpin plant defense. This systematic Review explores how 1H NMR-based plant metabolomics has contributed to understanding the role of various compounds in plant responses to biotic stress, focusing on both primary and secondary metabolites. It clarifies the challenges and advantages of using 1H NMR in plant metabolomics, interprets common trends observed, and suggests guidelines for method development and establishing standard procedures.
Collapse
Affiliation(s)
- Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| | - Kirsten Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, 2665MV Bleiswijk, Netherlands
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 16500 Prague, Czechia
| |
Collapse
|
6
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Kumari M, Yagnik KN, Gupta V, Singh IK, Gupta R, Verma PK, Singh A. Metabolomics-driven investigation of plant defense response against pest and pathogen attack. PHYSIOLOGIA PLANTARUM 2024; 176:e14270. [PMID: 38566280 DOI: 10.1111/ppl.14270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The advancement of metabolomics has assisted in the identification of various bewildering characteristics of the biological system. Metabolomics is a standard approach, facilitating crucial aspects of system biology with absolute quantification of metabolites using minimum samples, based on liquid/gas chromatography, mass spectrometry and nuclear magnetic resonance. The metabolome profiling has narrowed the wide gaps of missing information and has enhanced the understanding of a wide spectrum of plant-environment interactions by highlighting the complex pathways regulating biochemical reactions and cellular physiology under a particular set of conditions. This high throughput technique also plays a prominent role in combined analyses of plant metabolomics and other omics datasets. Plant metabolomics has opened a wide paradigm of opportunities for developing stress-tolerant plants, ensuring better food quality and quantity. However, despite advantageous methods and databases, the technique has a few limitations, such as ineffective 3D capturing of metabolites, low comprehensiveness, and lack of cell-based sampling. In the future, an expansion of plant-pathogen and plant-pest response towards the metabolite architecture is necessary to understand the intricacies of plant defence against invaders, elucidation of metabolic pathway operational during defence and developing a direct correlation between metabolites and biotic stresses. Our aim is to provide an overview of metabolomics and its utilities for the identification of biomarkers or key metabolites associated with biotic stress, devising improved diagnostic methods to efficiently assess pest and pathogen attack and generating improved crop varieties with the help of combined application of analytical and molecular tools.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Kalpesh Nath Yagnik
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Vaishali Gupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Indrakant K Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, New Delhi, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of Korea
| | - Praveen K Verma
- Plant-Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
- Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, India
| |
Collapse
|
8
|
Cañizares E, Acién JM, Gumuş BÖ, Vives-Peris V, González-Guzmán M, Arbona V. Interplay between secondary metabolites and plant hormones in silver nitrate-elicited Arabidopsis thaliana plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108483. [PMID: 38457948 DOI: 10.1016/j.plaphy.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/10/2024]
Abstract
Plants produce a myriad of specialized compounds in response to threats such as pathogens or pests and different abiotic factors. The stress-related induction of specialized metabolites can be mimicked using silver nitrate (AgNO3) as an elicitor, which application in conservation agriculture has gained interest. In Arabidopsis thaliana, AgNO3 triggers the accumulation of indole glucosinolates (IGs) and the phytoalexin camalexin as well as pheylpropanoid-derived defensive metabolites such as coumaroylagmatins and scopoletin through a yet unknown mechanism. In this work, the role of jasmonic (JA) and salicylic acid (SA) signaling in the AgNO3-triggered specialized metabolite production was investigated. To attain this objective, AgNO3, MeJA and SA were applied to A. thaliana lines impaired in JA or SA signaling, or affected in the endogenous levels of IGs and AGs. Metabolomics data indicated that AgNO3 elicitation required an intact JA and SA signaling to elicit the metabolic response, although mutants impaired in hormone signaling retained certain capacity to induce specialized metabolites. In turn, plants overproducing or abolishing IGs production had also an altered hormonal signaling response, both in the accumulation of signaling molecules and the molecular response mechanisms (ORA59, PDF1.2, VSP2 and PR1 gene expression), which pointed out to a crosstalk between defense hormones and specialized metabolites. The present work provides evidence of a crosstalk mechanism between JA and SA underlying AgNO3 defense metabolite elicitation in A. thaliana. In this mechanism, IGs would act as retrograde feedback signals dampening the hormonal response; hence, expanding the signaling molecule concept.
Collapse
Affiliation(s)
- Eva Cañizares
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Juan Manuel Acién
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Berivan Özlem Gumuş
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Vicente Vives-Peris
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain
| | - Miguel González-Guzmán
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain.
| | - Vicent Arbona
- Dept. Biologia, Bioquímica I Ciències Naturals, Universitat Jaume I, Castelló de La Plana, Spain.
| |
Collapse
|
9
|
Akhyani DD, Agarwal P, Mesara S, Agarwal PK. Deciphering the potential of Sargassum tenerrimum extract: metabolic profiling and pathway analysis of groundnut ( Arachis hypogaea) in response to Sargassum extract and Sclerotium rolfsii. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:317-336. [PMID: 38623170 PMCID: PMC11016048 DOI: 10.1007/s12298-024-01418-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/07/2023] [Accepted: 02/20/2024] [Indexed: 04/17/2024]
Abstract
Seaweed extracts have enormous potential as bio-stimulants and demonstrated increased growth and yield in different crops. The presence of physiologically active component stimulate plant stress signaling pathways, enhances growth and productivity, as well as serve as plant defense agents. The seaweed extracts can reduce the use of chemicals that harm the environment for disease management. In the present study, the Sargassum tenerrimum extract treatment was applied, alone and in combination with Sclerotium rolfsii, to Arachis hypogea, to study the differential metabolite expression. The majority of metabolites showed maximum accumulation with Sargassum extract-treated plants compared to fungus-treated plants. The different classes of metabolite compounds like sugars, carboxylic acids, polyols, showed integrated peaks in different treatments of plants. The sugars were higher in Sargassum extract and Sargassum extract + fungus treatments compared to control and fungus treatment, respectively. Interestingly, Sargassum extract + fungus treatment showed maximum accumulation of carboxylic acids. Pathway enrichment analysis showed regulation of different metabolites, highest impact with galactose metabolism pathway, identifying sucrose, myo-inositol, glycerol and fructose. The differential metabolite profiling and pathway analysis of groundnut in response to Sargassum extract and S. rolfsii help in understanding the groundnut- S. rolfsii interactions and the potential role of the Sargassum extract towards these interactions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01418-9.
Collapse
Affiliation(s)
- Dhanvi D. Akhyani
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Parinita Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Sureshkumar Mesara
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
| | - Pradeep K. Agarwal
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Gijubhai Badheka Marg, Bhavnagar, Gujarat 364002 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
10
|
Manickam S, Rajagopalan VR, Kambale R, Rajasekaran R, Kanagarajan S, Muthurajan R. Plant Metabolomics: Current Initiatives and Future Prospects. Curr Issues Mol Biol 2023; 45:8894-8906. [PMID: 37998735 PMCID: PMC10670879 DOI: 10.3390/cimb45110558] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
Plant metabolomics is a rapidly advancing field of plant sciences and systems biology. It involves comprehensive analyses of small molecules (metabolites) in plant tissues and cells. These metabolites include a wide range of compounds, such as sugars, amino acids, organic acids, secondary metabolites (e.g., alkaloids and flavonoids), lipids, and more. Metabolomics allows an understanding of the functional roles of specific metabolites in plants' physiology, development, and responses to biotic and abiotic stresses. It can lead to the identification of metabolites linked with specific traits or functions. Plant metabolic networks and pathways can be better understood with the help of metabolomics. Researchers can determine how plants react to environmental cues or genetic modifications by examining how metabolite profiles change under various crop stages. Metabolomics plays a major role in crop improvement and biotechnology. Integrating metabolomics data with other omics data (genomics, transcriptomics, and proteomics) provides a more comprehensive perspective of plant biology. This systems biology approach enables researchers to understand the complex interactions within organisms.
Collapse
Affiliation(s)
- Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Rohit Kambale
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Raghu Rajasekaran
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 190, 234 22 Lomma, Sweden
| | - Raveendran Muthurajan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641003, India; (S.M.); (V.R.R.); (R.K.); (R.R.)
| |
Collapse
|
11
|
Liang J, Gao G, Zhong R, Liu B, Christensen MJ, Ju Y, Zhang W, Li Y, Li C, Zhang X, Nan Z. Effect of Epichloë gansuensis Endophyte on Seed-Borne Microbes and Seed Metabolites in Achnatherum inebrians. Microbiol Spectr 2023; 11:e0135022. [PMID: 36786621 PMCID: PMC10100691 DOI: 10.1128/spectrum.01350-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/23/2023] [Indexed: 02/15/2023] Open
Abstract
The seed-borne microbiota and seed metabolites of the grass Achnatherum inebrians, either host to Epichloë gansuensis (endophyte infected [EI]) or endophyte free (EF), were investigated. This study determined the microbial communities both within the seed (endophytic) and on the seed surface (epiphytic) and of the protective glumes by using Illumina sequencing technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. In addition, metabolites of seeds and glumes were detected using liquid chromatography-mass spectrometry (LC-MS). Unlike with the seeds of EF plants, the presence of E. gansuensis resulted in significant changes in the content of 108 seed and 31 glume metabolites. A total of 319 significant correlations occurred between seed-borne microbiota and seed metabolites; these correlations comprised 163 (147 bacterial and 16 fungal) positive correlations and 156 (136 bacterial and 20 fungal) negative correlations. Meanwhile, there were 42 significant correlations between glume microbiota and metabolites; these correlations comprised 28 positive (10 bacterial and 18 fungal) and 14 negative (9 bacterial and 5 fungal) correlations. The presence of E. gansuensis endophyte altered the communities and diversities of seed-borne microbes and altered the composition and content of seed metabolites, and there were many close and complex relationships between microbes and metabolites. IMPORTANCE The present study was to investigate seed-borne microbiota and seed metabolites in Achnatherum inebrians using high-throughput sequencing and LC-MS technology. Epichloë gansuensis decreased the richness of the seed-borne microbiota except for the epiphytic fungi of glumes and also decreased the diversity of seed-borne microbiota. Compared with endophyte-free plants, the content of 108 seed and 31 glume metabolites of endophyte-infected plants was significantly changed. There were 319 significant correlations between seed-borne microbiota and seed metabolites and 42 significant correlations between glume microbiota and metabolites.
Collapse
Affiliation(s)
- Jinjin Liang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Guoyu Gao
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Rui Zhong
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Bowen Liu
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | | | - Yawen Ju
- Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Jiangsu, China
| | - Wu Zhang
- School of Geographical Science, Lingnan Normal University, Zhanjiang, China
| | - Yanzhong Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Chunjie Li
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xingxu Zhang
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Zhibiao Nan
- State Key Laboratory of Grassland Agro-Ecosystems, Center for Grassland Microbiome, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
12
|
Quan W, Zhao X, Zhao C, Duan H, Ding G. Characterization of 35 Masson pine (Pinus massoniana) half-sib families from two provinces based on metabolite properties. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1107597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Plant metabolism is an important functional trait, and its metabolites have physiological and ecological functions to adapt to the growth environment. However, the physiological and ecological functions of metabolites from different provinces of the same plant species are still unclear. Therefore, this study aimed to determine whether metabolites from different provinces of Masson pine (Pinus massoniana Lamb.) have the corresponding metabolic traits. The gas chromatography–mass spectrometry technique and metabonomic analysis methods were used to characterize 35 Masson pine half-sib families from two provinces. A total of 116 metabolites were putatively identified in 35 families of Masson pine, among which the average content of organic acids was the highest, followed by saccharides and alcohols, and phosphoric acids. Comparative analysis of metabolite groups showed that organic acids, amines, and others were significantly different between the Masson pine families from Guangxi and Guizhou provinces. Six differential metabolites were found between the provinces from Guizhou and Guangxi, namely caffeic acid, L-ascorbic acid, gentiobiose, xylitol, d-pinitol, and β-sitosterol. The most significantly enriched pathways among differentially expressed metabolites between the two provinces were steroid biosynthesis, phenylpropanoid biosynthesis, glutathione metabolism, pentose and glucuronate interconversions. Overall, the results showed that Masson pine half-sib families from different geographical provinces have different metabolite profiles and their metabolites are affected by geographical provenance and growth environment adaptability. This study revealed that the breeding of Masson pine families from different provinces changed the metabolite profiles, providing a reference for the multipurpose breeding of Masson pine.
Collapse
|
13
|
Silva S, Dias MC, Pinto DCGA, Silva AMS. Metabolomics as a Tool to Understand Nano-Plant Interactions: The Case Study of Metal-Based Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2023; 12:491. [PMID: 36771576 PMCID: PMC9921902 DOI: 10.3390/plants12030491] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms against stressors, the biochemical changes and signals during plant development, and the role of specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve and revolutionize the agri-food sector and modernize agriculture. They can drive precision and sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high applicability, an in-depth understanding of NPs' impact on plants and their mechanistic action is crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review gathers the information available concerning the metabolomic tools used in studies focused on NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite reconfiguration, and the reprogramming of metabolic pathways.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
14
|
Singh DP, Bisen MS, Shukla R, Prabha R, Maurya S, Reddy YS, Singh PM, Rai N, Chaubey T, Chaturvedi KK, Srivastava S, Farooqi MS, Gupta VK, Sarma BK, Rai A, Behera TK. Metabolomics-Driven Mining of Metabolite Resources: Applications and Prospects for Improving Vegetable Crops. Int J Mol Sci 2022; 23:ijms232012062. [PMID: 36292920 PMCID: PMC9603451 DOI: 10.3390/ijms232012062] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Vegetable crops possess a prominent nutri-metabolite pool that not only contributes to the crop performance in the fields, but also offers nutritional security for humans. In the pursuit of identifying, quantifying and functionally characterizing the cellular metabolome pool, biomolecule separation technologies, data acquisition platforms, chemical libraries, bioinformatics tools, databases and visualization techniques have come to play significant role. High-throughput metabolomics unravels structurally diverse nutrition-rich metabolites and their entangled interactions in vegetable plants. It has helped to link identified phytometabolites with unique phenotypic traits, nutri-functional characters, defense mechanisms and crop productivity. In this study, we explore mining diverse metabolites, localizing cellular metabolic pathways, classifying functional biomolecules and establishing linkages between metabolic fluxes and genomic regulations, using comprehensive metabolomics deciphers of the plant’s performance in the environment. We discuss exemplary reports covering the implications of metabolomics, addressing metabolic changes in vegetable plants during crop domestication, stage-dependent growth, fruit development, nutri-metabolic capabilities, climatic impacts, plant-microbe-pest interactions and anthropogenic activities. Efforts leading to identify biomarker metabolites, candidate proteins and the genes responsible for plant health, defense mechanisms and nutri-rich crop produce are documented. With the insights on metabolite-QTL (mQTL) driven genetic architecture, molecular breeding in vegetable crops can be revolutionized for developing better nutritional capabilities, improved tolerance against diseases/pests and enhanced climate resilience in plants.
Collapse
Affiliation(s)
- Dhananjaya Pratap Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
- Correspondence:
| | - Mansi Singh Bisen
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Renu Shukla
- Indian Council of Agricultural Research (ICAR), Krishi Bhawan, Dr. Rajendra Prasad Road, New Delhi 110001, India
| | - Ratna Prabha
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudarshan Maurya
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Yesaru S. Reddy
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Prabhakar Mohan Singh
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Nagendra Rai
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Tribhuwan Chaubey
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| | - Krishna Kumar Chaturvedi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Sudhir Srivastava
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Mohammad Samir Farooqi
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland’s Rural College, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Birinchi K. Sarma
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, Centre for Agricultural Bioinformatics, Library Avenue, Pusa, New Delhi 110012, India
| | - Tusar Kanti Behera
- ICAR-Indian Institute of Vegetable Research, Jakhini, Shahanshahpur, Varanasi 221305, India
| |
Collapse
|
15
|
Ncube E, Mohale K, Nogemane N. Metabolomics as a Prospective Tool for Soybean ( Glycine max) Crop Improvement. Curr Issues Mol Biol 2022; 44:4181-4196. [PMID: 36135199 PMCID: PMC9497771 DOI: 10.3390/cimb44090287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/07/2022] [Indexed: 12/03/2022] Open
Abstract
Global demand for soybean and its products has stimulated research into the production of novel genotypes with higher yields, greater drought and disease tolerance, and shorter growth times. Genetic research may be the most effective way to continue developing high-performing cultivars with desirable agronomic features and improved nutritional content and seed performance. Metabolomics, which predicts the metabolic marker for plant performance under stressful conditions, is rapidly gaining interest in plant breeding and has emerged as a powerful tool for driving crop improvement. The development of increasingly sensitive, automated, and high-throughput analytical technologies, paired with improved bioinformatics and other omics techniques, has paved the way for wide characterization of genetic characteristics for crop improvement. The combination of chromatography (liquid and gas-based) with mass spectrometry has also proven to be an indisputable efficient platform for metabolomic studies, notably plant metabolic fingerprinting investigations. Nevertheless, there has been significant progress in the use of nuclear magnetic resonance (NMR), capillary electrophoresis, and Fourier-transform infrared spectroscopy (FTIR), each with its own set of benefits and drawbacks. Furthermore, utilizing multivariate analysis, principal components analysis (PCA), discriminant analysis, and projection to latent structures (PLS), it is possible to identify and differentiate various groups. The researched soybean varieties may be correctly classified by using the PCA and PLS multivariate analyses. As metabolomics is an effective method for evaluating and selecting wild specimens with desirable features for the breeding of improved new cultivars, plant breeders can benefit from the identification of metabolite biomarkers and key metabolic pathways to develop new genotypes with value-added features.
Collapse
Affiliation(s)
- Efficient Ncube
- Department of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Private Bag x 6, Florida, Johannesburg 1710, South Africa
| | | | | |
Collapse
|
16
|
Xu Y, Fu X. Reprogramming of Plant Central Metabolism in Response to Abiotic Stresses: A Metabolomics View. Int J Mol Sci 2022; 23:5716. [PMID: 35628526 PMCID: PMC9143615 DOI: 10.3390/ijms23105716] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 12/15/2022] Open
Abstract
Abiotic stresses rewire plant central metabolism to maintain metabolic and energy homeostasis. Metabolites involved in the plant central metabolic network serve as a hub for regulating carbon and energy metabolism under various stress conditions. In this review, we introduce recent metabolomics techniques used to investigate the dynamics of metabolic responses to abiotic stresses and analyze the trend of publications in this field. We provide an updated overview of the changing patterns in central metabolic pathways related to the metabolic responses to common stresses, including flooding, drought, cold, heat, and salinity. We extensively review the common and unique metabolic changes in central metabolism in response to major abiotic stresses. Finally, we discuss the challenges and some emerging insights in the future application of metabolomics to study plant responses to abiotic stresses.
Collapse
Affiliation(s)
- Yuan Xu
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Xinyu Fu
- Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
17
|
Odieka AE, Obuzor GU, Oyedeji OO, Gondwe M, Hosu YS, Oyedeji AO. The Medicinal Natural Products of Cannabis sativa Linn.: A Review. Molecules 2022; 27:1689. [PMID: 35268790 PMCID: PMC8911748 DOI: 10.3390/molecules27051689] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/27/2023] Open
Abstract
Cannabis sativa is known among many cultures for its medicinal potential. Its complexity contributes to the historical application of various parts of the plant in ethno-medicines and pharmacotherapy. C. sativa has been used for the treatment of rheumatism, epilepsy, asthma, skin burns, pain, the management of sexually transmitted diseases, difficulties during child labor, postpartum hemorrhage, and gastrointestinal activity. However, the use of C. sativa is still limited, and it is illegal in most countries. Thus, this review aims to highlight the biological potential of the plant parts, as well as the techniques for the extraction, isolation, and characterization of C. sativa compounds. The plant produces a unique class of terpenophenolic compounds, called cannabinoids, as well as non-cannabinoid compounds. The exhaustive profiling of bioactive compounds and the chemical characterization and analysis of C. sativa compounds, which modern research has not yet fully achieved, is needed for the consistency, standardization, and the justified application of Cannabis sativa products for therapeutic purposes. Studies on the clinical relevance and applications of cannabinoids and non-cannabinoid phenols in the prevention and treatment of life-threatening diseases is indeed significant. Furthermore, psychoactive cannabinoids, when chemically standardized and administered under medical supervision, can be the legal answer to the use of C. sativa.
Collapse
Affiliation(s)
- Anwuli Endurance Odieka
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Gloria Ukalina Obuzor
- Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt 500004, Rivers State, Nigeria;
| | | | - Mavuto Gondwe
- Department of Human Biology, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Yiseyon Sunday Hosu
- Department of Economics and Business Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| | - Adebola Omowunmi Oyedeji
- Department of Chemical and Physical Sciences, Walter Sisulu University, Mthatha 5099, South Africa;
| |
Collapse
|
18
|
Abstract
BACKGROUND Marine ecosystems are hosts to a vast array of organisms, being among the most richly biodiverse locations on the planet. The study of these ecosystems is very important, as they are not only a significant source of food for the world but also have, in recent years, become a prolific source of compounds with therapeutic potential. Studies of aspects of marine life have involved diverse fields of marine science, and the use of metabolomics as an experimental approach has increased in recent years. As part of the "omics" technologies, metabolomics has been used to deepen the understanding of interactions between marine organisms and their environment at a metabolic level and to discover new metabolites produced by these organisms. AIM OF REVIEW This review provides an overview of the use of metabolomics in the study of marine organisms. It also explores the use of metabolomics tools common to other fields such as plants and human metabolomics that could potentially contribute to marine organism studies. It deals with the entire process of a metabolomic study, from sample collection considerations, metabolite extraction, analytical techniques, and data analysis. It also includes an overview of recent applications of metabolomics in fields such as marine ecology and drug discovery and future perspectives of its use in the study of marine organisms. KEY SCIENTIFIC CONCEPTS OF REVIEW The review covers all the steps involved in metabolomic studies of marine organisms including, collection, extraction methods, analytical tools, statistical analysis, and dereplication. It aims to provide insight into all aspects that a newcomer to the field should consider when undertaking marine metabolomics.
Collapse
Affiliation(s)
- Lina M Bayona
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands
| | - Nicole J de Voogd
- Naturalis Biodiversity Center, Marine Biodiversity, 2333 CR, Leiden, The Netherlands
- Institute of Environmental Sciences, Leiden University, 2333 CC, Leiden, The Netherlands
| | - Young Hae Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2333 BE, Leiden, The Netherlands.
- College of Pharmacy, Kyung Hee University, 130-701, Seoul, Republic of Korea.
| |
Collapse
|
19
|
Soil Salinity, a Serious Environmental Issue and Plant Responses: A Metabolomics Perspective. Metabolites 2021; 11:metabo11110724. [PMID: 34822381 PMCID: PMC8620211 DOI: 10.3390/metabo11110724] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/16/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
The effects of global warming have increasingly led to devastating environmental stresses, such as heat, salinity, and drought. Soil salinization is a serious environmental issue and results in detrimental abiotic stress, affecting 7% of land area and 33% of irrigated lands worldwide. The proportion of arable land facing salinity is expected to rise due to increasing climate change fuelled by anthropogenic activities, exacerbating the threat to global food security for the exponentially growing populace. As sessile organisms, plants have evolutionarily developed mechanisms that allow ad hoc responses to salinity stress. The orchestrated mechanisms include signalling cascades involving phytohormones, kinases, reactive oxygen species (ROS), and calcium regulatory networks. As a pillar in a systems biology approach, metabolomics allows for comprehensive interrogation of the biochemistry and a deconvolution of molecular mechanisms involved in plant responses to salinity. Thus, this review highlights soil salinization as a serious environmental issue and points to the negative impacts of salinity on plants. Furthermore, the review summarises mechanisms regulating salinity tolerance on molecular, cellular, and biochemical levels with a focus on metabolomics perspectives. This critical synthesis of current literature is an opportunity to revisit the current models regarding plant responses to salinity, with an invitation to further fundamental research for novel and actionable insights.
Collapse
|
20
|
Differential responses of sorghum genotypes to drought stress revealed by physio-chemical and transcriptional analysis. Mol Biol Rep 2021; 48:2453-2462. [PMID: 33755850 DOI: 10.1007/s11033-021-06279-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
Sorghum is an essential food crop for millions of people in the semi-arid regions of the world, where its production is severely limited by drought stress. Drought in the early stages of crop growth and development irreversibly interferes, which leads to poor yield. The effect of drought stress in sorghum was studied at physiological, biochemical, and molecular levels in a set of two genotypes differing in their tolerance to drought. Drought stress was imposed by restraining water for 10 days on 25 days old seedlings. A significant influence of water stress was observed on the considered morpho-physiological and biochemical traits. The genotype DRT1019 exhibited physiological and biochemical indicators of drought avoidance through delayed leaf rolling, osmotic adjustment, ideal gas-exchange system, solute accumulation, an increased level of enzyme synthesis and root trait expression as compared to the ICSV95022 genotype. Furthermore, differences in the metabolite changes viz. total carbohydrate, total amides, and lipids were found between the two genotypes under drought stress. In addition, transcript profiling of potential candidate drought genes such as SbTIP3-1, SbDHN1, SbTPS, and SbDREB1A revealed up-regulation in DRT1019, which corresponded with other important physiological and biochemical parameters exhibited in the genotype. In conclusion, this study provides an improved understanding of whole plant response to drought stress in sorghum. Additionally, our results provide promising candidate genes for drought tolerance in sorghum that can be used as potential markers for drought tolerance breeding programs.
Collapse
|
21
|
Application of UPLC-QTOF-MS Based Untargeted Metabolomics in Identification of Metabolites Induced in Pathogen-Infected Rice. PLANTS 2021; 10:plants10020213. [PMID: 33499273 PMCID: PMC7910874 DOI: 10.3390/plants10020213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Metabolomics is a useful tool for comparing metabolite changes in plants. Because of its high sensitivity, metabolomics combined with high-resolution mass spectrometry (HR-MS) is the most widely accepted metabolomics tools. In this study, we compared the metabolites of pathogen-infected rice (Oryza sativa) with control rice using an untargeted metabolomics approach. We profiled the mass features of two rice groups using a liquid chromatography quadrupole time-of-flight mass spectrometry (QTOF-MS) system. Twelve of the most differentially induced metabolites in infected rice were selected through multivariate data analysis and identified through a mass spectral database search. The role of these compounds in metabolic pathways was finally investigated using pathway analysis. Our study showed that the most frequently induced secondary metabolites are prostanoids, a subclass of eicosanoids, which are associated with plant defense metabolism against pathogen infection. Herein, we propose a new untargeted metabolomics approach for understanding plant defense system at the metabolic level.
Collapse
|
22
|
Mascellani A, Leiss K, Bac-Molenaar J, Malanik M, Marsik P, Hernandez Olesinski E, Tauchen J, Kloucek P, Smejkal K, Havlik J. Polyketide Derivatives in the Resistance of Gerbera hybrida to Powdery Mildew. FRONTIERS IN PLANT SCIENCE 2021; 12:790907. [PMID: 35069647 PMCID: PMC8770985 DOI: 10.3389/fpls.2021.790907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/06/2023]
Abstract
Powdery mildew is a common disease affecting the commercial production of gerbera flowers (Gerbera hybrida, Asteraceae). Some varieties show a certain degree of resistance to it. Our objective was to identify biomarkers of resistance to powdery mildew using an 1H nuclear magnetic resonance spectroscopy and chemometrics approach in a complex, fully factorial experiment to suggest a target for selection and breeding. Resistant varieties were found to differ from those that were susceptible in the metabolites of the polyketide pathway, such as gerberin, parasorboside, and gerberinside. A new compound probably involved in resistance, 5-hydroxyhexanoic acid 3-O-β-D-glucoside, was described for the first time. A decision tree model was built to distinguish resistant varieties, with an accuracy of 57.7%, sensitivity of 72%, and specificity of 44.44% in an independent test. Our results suggest the mechanism of resistance to powdery mildew in gerbera and provide a potential tool for resistance screening in breeding programs.
Collapse
Affiliation(s)
- Anna Mascellani
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Kirsten Leiss
- Business Unit Greenhouse Horticulture, Wageningen University & Research, Bleiswijk, Netherlands
| | - Johanna Bac-Molenaar
- Business Unit Greenhouse Horticulture, Wageningen University & Research, Bleiswijk, Netherlands
| | - Milan Malanik
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | | | - Jan Tauchen
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Pavel Kloucek
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Karel Smejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czechia
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- *Correspondence: Jaroslav Havlik,
| |
Collapse
|
23
|
Crandall SG, Gold KM, Jiménez-Gasco MDM, Filgueiras CC, Willett DS. A multi-omics approach to solving problems in plant disease ecology. PLoS One 2020; 15:e0237975. [PMID: 32960892 PMCID: PMC7508392 DOI: 10.1371/journal.pone.0237975] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
The swift rise of omics-approaches allows for investigating microbial diversity and plant-microbe interactions across diverse ecological communities and spatio-temporal scales. The environment, however, is rapidly changing. The introduction of invasive species and the effects of climate change have particular impact on emerging plant diseases and managing current epidemics. It is critical, therefore, to take a holistic approach to understand how and why pathogenesis occurs in order to effectively manage for diseases given the synergies of changing environmental conditions. A multi-omics approach allows for a detailed picture of plant-microbial interactions and can ultimately allow us to build predictive models for how microbes and plants will respond to stress under environmental change. This article is designed as a primer for those interested in integrating -omic approaches into their plant disease research. We review -omics technologies salient to pathology including metabolomics, genomics, metagenomics, volatilomics, and spectranomics, and present cases where multi-omics have been successfully used for plant disease ecology. We then discuss additional limitations and pitfalls to be wary of prior to conducting an integrated research project as well as provide information about promising future directions.
Collapse
Affiliation(s)
- Sharifa G. Crandall
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Kaitlin M. Gold
- Plant Pathology & Plant Microbe Biology Section, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - María del Mar Jiménez-Gasco
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, United States of America
| | - Camila C. Filgueiras
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| | - Denis S. Willett
- Applied Chemical Ecology Technology, Cornell AgriTech, Cornell University, Geneva, NY, United States of America
| |
Collapse
|
24
|
Tosi M, Gaiero J, Linton N, Mafa-Attoye T, Castillo A, Dunfield K. Bacterial Endophytes: Diversity, Functional Importance, and Potential for Manipulation. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/978-981-15-6125-2_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Castro-Moretti FR, Gentzel IN, Mackey D, Alonso AP. Metabolomics as an Emerging Tool for the Study of Plant-Pathogen Interactions. Metabolites 2020; 10:E52. [PMID: 32013104 PMCID: PMC7074241 DOI: 10.3390/metabo10020052] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022] Open
Abstract
Plants defend themselves from most microbial attacks via mechanisms including cell wall fortification, production of antimicrobial compounds, and generation of reactive oxygen species. Successful pathogens overcome these host defenses, as well as obtain nutrients from the host. Perturbations of plant metabolism play a central role in determining the outcome of attempted infections. Metabolomic analyses, for example between healthy, newly infected and diseased or resistant plants, have the potential to reveal perturbations to signaling or output pathways with key roles in determining the outcome of a plant-microbe interaction. However, application of this -omic and its tools in plant pathology studies is lagging relative to genomic and transcriptomic methods. Thus, it is imperative to bring the power of metabolomics to bear on the study of plant resistance/susceptibility. This review discusses metabolomics studies that link changes in primary or specialized metabolism to the defense responses of plants against bacterial, fungal, nematode, and viral pathogens. Also examined are cases where metabolomics unveils virulence mechanisms used by pathogens. Finally, how integrating metabolomics with other -omics can advance plant pathology research is discussed.
Collapse
Affiliation(s)
- Fernanda R. Castro-Moretti
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| | - Irene N. Gentzel
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA;
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH 43210, USA;
| | - Ana P. Alonso
- BioDiscovery Institute, University of North Texas, TX 76201, USA;
- Department of Biological Sciences, University of North Texas, TX 76201, USA
| |
Collapse
|
26
|
Razzaq A, Sadia B, Raza A, Khalid Hameed M, Saleem F. Metabolomics: A Way Forward for Crop Improvement. Metabolites 2019; 9:E303. [PMID: 31847393 PMCID: PMC6969922 DOI: 10.3390/metabo9120303] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
Metabolomics is an emerging branch of "omics" and it involves identification and quantification of metabolites and chemical footprints of cellular regulatory processes in different biological species. The metabolome is the total metabolite pool in an organism, which can be measured to characterize genetic or environmental variations. Metabolomics plays a significant role in exploring environment-gene interactions, mutant characterization, phenotyping, identification of biomarkers, and drug discovery. Metabolomics is a promising approach to decipher various metabolic networks that are linked with biotic and abiotic stress tolerance in plants. In this context, metabolomics-assisted breeding enables efficient screening for yield and stress tolerance of crops at the metabolic level. Advanced metabolomics analytical tools, like non-destructive nuclear magnetic resonance spectroscopy (NMR), liquid chromatography mass-spectroscopy (LC-MS), gas chromatography-mass spectrometry (GC-MS), high performance liquid chromatography (HPLC), and direct flow injection (DFI) mass spectrometry, have sped up metabolic profiling. Presently, integrating metabolomics with post-genomics tools has enabled efficient dissection of genetic and phenotypic association in crop plants. This review provides insight into the state-of-the-art plant metabolomics tools for crop improvement. Here, we describe the workflow of plant metabolomics research focusing on the elucidation of biotic and abiotic stress tolerance mechanisms in plants. Furthermore, the potential of metabolomics-assisted breeding for crop improvement and its future applications in speed breeding are also discussed. Mention has also been made of possible bottlenecks and future prospects of plant metabolomics.
Collapse
Affiliation(s)
- Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Bushra Sadia
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| | - Ali Raza
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Muhammad Khalid Hameed
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fozia Saleem
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan; (A.R.); (B.S.)
| |
Collapse
|
27
|
Perincherry L, Lalak-Kańczugowska J, Stępień Ł. Fusarium-Produced Mycotoxins in Plant-Pathogen Interactions. Toxins (Basel) 2019; 11:toxins11110664. [PMID: 31739566 PMCID: PMC6891594 DOI: 10.3390/toxins11110664] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/12/2019] [Indexed: 12/19/2022] Open
Abstract
Pathogens belonging to the Fusarium genus are causal agents of the most significant crop diseases worldwide. Virtually all Fusarium species synthesize toxic secondary metabolites, known as mycotoxins; however, the roles of mycotoxins are not yet fully understood. To understand how a fungal partner alters its lifestyle to assimilate with the plant host remains a challenge. The review presented the mechanisms of mycotoxin biosynthesis in the Fusarium genus under various environmental conditions, such as pH, temperature, moisture content, and nitrogen source. It also concentrated on plant metabolic pathways and cytogenetic changes that are influenced as a consequence of mycotoxin confrontations. Moreover, we looked through special secondary metabolite production and mycotoxins specific for some significant fungal pathogens-plant host models. Plant strategies of avoiding the Fusarium mycotoxins were also discussed. Finally, we outlined the studies on the potential of plant secondary metabolites in defense reaction to Fusarium infection.
Collapse
|
28
|
UHPLC-HRMS n Analysis Reveals the Dynamic Metabonomic Responses of Salvia miltiorrhiza Hairy Roots to Polysaccharide Fraction from Trichoderma atroviride. Biomolecules 2019; 9:biom9100541. [PMID: 31569805 PMCID: PMC6843243 DOI: 10.3390/biom9100541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/04/2022] Open
Abstract
We have previously reported that Trichoderma atroviride, an endophytic fungus isolated from S. miltiorrhiza, promotes S. miltiorrhiza hairy root growth and significantly stimulates the biosynthesis of tanshinones specifically the polysaccharide fraction (PSF). However, this study only focused exclusively on six metabolites whilst ignoring changes to the whole metabolite composition of the S. miltiorrhiza hairy roots. In the present study, the dynamic metabonomic responses of S. miltiorrhiza hairy roots were investigated using ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMSn). UHPLC-HRMS typical total ions chromatograms (TICs) of PSF-treated hairy root samples were different from the control. Moreover, the results of principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA) indicated that PSF-treated samples were significantly different from the control. Through the analysis of PLS-DA, a total of 114 and 99 differential metabolites were found from the positive and negative models respectively and a total of 33 differential metabolites were identified. Thus, S. miltiorrhiza hairy roots had been induced to regulate the metabolic profiling in response to PSF and the changes of the metabolic profiling contributed to promoting the biosynthesis of tanshinones notably whilst the biosynthesis of phenolic acids were slightly inhibited.
Collapse
|
29
|
Ali A, Khan M, Sharif R, Mujtaba M, Gao SJ. Sugarcane Omics: An Update on the Current Status of Research and Crop Improvement. PLANTS (BASEL, SWITZERLAND) 2019; 8:E344. [PMID: 31547331 PMCID: PMC6784093 DOI: 10.3390/plants8090344] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/20/2019] [Indexed: 12/20/2022]
Abstract
Sugarcane is an important crop from Poaceae family, contributing about 80% of the total world's sucrose with an annual value of around US$150 billion. In addition, sugarcane is utilized as a raw material for the production of bioethanol, which is an alternate source of renewable energy. Moving towards sugarcane omics, a remarkable success has been achieved in gene transfer from a wide variety of plant and non-plant sources to sugarcane, with the accessibility of efficient transformation systems, selectable marker genes, and genetic engineering gears. Genetic engineering techniques make possible to clone and characterize useful genes and also to improve commercially important traits in elite sugarcane clones that subsequently lead to the development of an ideal cultivar. Sugarcane is a complex polyploidy crop, and hence no single technique has been found to be the best for the confirmation of polygenic and phenotypic characteristics. To better understand the application of basic omics in sugarcane regarding agronomic characters and industrial quality traits as well as responses to diverse biotic and abiotic stresses, it is important to explore the physiology, genome structure, functional integrity, and collinearity of sugarcane with other more or less similar crops/plants. Genetic improvements in this crop are hampered by its complex genome, low fertility ratio, longer production cycle, and susceptibility to several biotic and abiotic stresses. Biotechnology interventions are expected to pave the way for addressing these obstacles and improving sugarcane crop. Thus, this review article highlights up to date information with respect to how advanced data of omics (genomics, transcriptomic, proteomics and metabolomics) can be employed to improve sugarcane crops.
Collapse
Affiliation(s)
- Ahmad Ali
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mehran Khan
- Department of Plant Protection, Faculty of Agricultural Sciences, Ghazi University, Dera Ghazi Khan, Punjab 32200, Pakistan
| | - Rahat Sharif
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Mujtaba
- Institute of Biotechnology, Ankara University, Ankara 06110, Turkey
| | - San-Ji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
30
|
Chen F, Ma R, Chen XL. Advances of Metabolomics in Fungal Pathogen-Plant Interactions. Metabolites 2019; 9:metabo9080169. [PMID: 31443304 PMCID: PMC6724083 DOI: 10.3390/metabo9080169] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 01/02/2023] Open
Abstract
Plant disease caused by fungus is one of the major threats to global food security, and understanding fungus-plant interactions is important for plant disease control. Research devoted to revealing the mechanisms of fungal pathogen-plant interactions has been conducted using genomics, transcriptomics, proteomics, and metabolomics. Metabolomics research based on mass spectrometric techniques is an important part of systems biology. In the past decade, the emerging field of metabolomics in plant pathogenic fungi has received wide attention. It not only provides a qualitative and quantitative approach for determining the pathogenesis of pathogenic fungi but also helps to elucidate the defense mechanisms of their host plants. This review focuses on the methods and progress of metabolomics research in fungal pathogen-plant interactions. In addition, the prospects and challenges of metabolomics research in plant pathogenic fungi and their hosts are addressed.
Collapse
Affiliation(s)
- Fangfang Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ruijing Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiao-Lin Chen
- The Provincial Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
31
|
Metabolomic Profiling of the Host Response of Tomato ( Solanum lycopersicum) Following Infection by Ralstonia solanacearum. Int J Mol Sci 2019; 20:ijms20163945. [PMID: 31416118 PMCID: PMC6720392 DOI: 10.3390/ijms20163945] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/07/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022] Open
Abstract
Tomato (Solanum lycopersicum) is an important dietary source of bioactive phytochemicals and active breeding programs constantly produce new cultivars possessing superior and desirable traits. The phytopathogenic Ralstonia solanacearum, the causal agent of bacterial wilt, is a highly destructive bacterial disease with a high economic impact on tomato production. This study followed an untargeted metabolomic approach involving four tomato cultivars and aimed at the identification of secondary metabolites involved in plant defense after infection with R. solanacearum. Liquid chromatography coupled to mass spectrometry (LC-MS) in combination with multivariate data analysis and chemometric modelling were utilized for the identification of discriminant secondary metabolites. The total of 81 statistically selected features were annotated belonging to the metabolite classes of amino acids, organic acids, fatty acids, various derivatives of cinnamic acid and benzoic acids, flavonoids and steroidal glycoalkaloids. The results indicate that the phenylpropanoid pathway, represented by flavonoids and hydroxycinnamic acids, is of prime importance in the tomato defense response. The hydroxycinnamic acids esters of quinic acid, hexoses and glucaric acids were identified as signatory biomarkers, as well as the hydroxycinnamic acid amides to polyamines and tyramine. Interestingly, the rapid and differential accumulation of putrescine, dopamine, and tyramine derivatives, along with the presence of a newly documented metabolite, feruloyl serotonin, were documented in the infected plants. Metabolite concentration variability in the different cultivar tissues point to cultivar-specific variation in the speed and manner of resource redistribution between the host tissues. These metabolic phenotypes provide insights into the differential metabolic signatures underlying the defense metabolism of the four cultivars, defining their defensive capabilities to R. solanacearum.
Collapse
|
32
|
Kooke R, Morgado L, Becker F, van Eekelen H, Hazarika R, Zheng Q, de Vos RCH, Johannes F, Keurentjes JJB. Epigenetic mapping of the Arabidopsis metabolome reveals mediators of the epigenotype-phenotype map. Genome Res 2018; 29:96-106. [PMID: 30504416 PMCID: PMC6314165 DOI: 10.1101/gr.232371.117] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 11/27/2018] [Indexed: 11/24/2022]
Abstract
Identifying the sources of natural variation underlying metabolic differences between plants will enable a better understanding of plant metabolism and provide insights into the regulatory networks that govern plant growth and morphology. So far, however, the contribution of epigenetic variation to metabolic diversity has been largely ignored. In the present study, we utilized a panel of Arabidopsis thaliana epigenetic recombinant inbred lines (epiRILs) to assess the impact of epigenetic variation on the metabolic composition. Thirty epigenetic QTL (QTLepi) were detected, which partly overlap with QTLepi linked to growth and morphology. In an effort to identify causal candidate genes in the QTLepi regions and their putative trans-targets, we performed in silico small RNA and qPCR analyses. Differentially expressed genes were further studied by phenotypic and metabolic analyses of knockout mutants. Three genes were detected that recapitulated the detected QTLepi effects, providing evidence for epigenetic regulation in cis and in trans. These results indicate that epigenetic mechanisms impact metabolic diversity, possibly via small RNAs, and thus aid in further disentangling the complex epigenotype-phenotype map.
Collapse
Affiliation(s)
- Rik Kooke
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Laboratory of Biometris, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands
| | - Lionel Morgado
- Groningen Bioinformatics Centre, University of Groningen, 9747 AG Groningen, The Netherlands
| | - Frank Becker
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| | - Henriëtte van Eekelen
- Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands
| | - Rashmi Hazarika
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany
| | - Qunfeng Zheng
- Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands.,Tea Research Institute, Chinese Academy of Agricultural Sciences, 310008 Hangzhou, P.R. China
| | - Ric C H de Vos
- Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands.,Business Unit Bioscience, Wageningen Plant Research, 6708 PB Wageningen, The Netherlands.,Netherlands Metabolomics Centre, 2333 CC Leiden, The Netherlands
| | - Frank Johannes
- Institute for Advanced Study, Technical University of Munich, 85748 Garching, Germany.,Population Epigenetics and Epigenomics, Department of Plant Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University and Research, 6708 PB Wageningen, The Netherlands.,Centre for Biosystems Genomics, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
33
|
Beale DJ, Pinu FR, Kouremenos KA, Poojary MM, Narayana VK, Boughton BA, Kanojia K, Dayalan S, Jones OAH, Dias DA. Review of recent developments in GC-MS approaches to metabolomics-based research. Metabolomics 2018; 14:152. [PMID: 30830421 DOI: 10.1007/s11306-018-1449-2] [Citation(s) in RCA: 254] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Metabolomics aims to identify the changes in endogenous metabolites of biological systems in response to intrinsic and extrinsic factors. This is accomplished through untargeted, semi-targeted and targeted based approaches. Untargeted and semi-targeted methods are typically applied in hypothesis-generating investigations (aimed at measuring as many metabolites as possible), while targeted approaches analyze a relatively smaller subset of biochemically important and relevant metabolites. Regardless of approach, it is well recognized amongst the metabolomics community that gas chromatography-mass spectrometry (GC-MS) is one of the most efficient, reproducible and well used analytical platforms for metabolomics research. This is due to the robust, reproducible and selective nature of the technique, as well as the large number of well-established libraries of both commercial and 'in house' metabolite databases available. AIM OF REVIEW This review provides an overview of developments in GC-MS based metabolomics applications, with a focus on sample preparation and preservation techniques. A number of chemical derivatization (in-time, in-liner, offline and microwave assisted) techniques are also discussed. Electron impact ionization and a summary of alternate mass analyzers are highlighted, along with a number of recently reported new GC columns suited for metabolomics. Lastly, multidimensional GC-MS and its application in environmental and biomedical research is presented, along with the importance of bioinformatics. KEY SCIENTIFIC CONCEPTS OF REVIEW The purpose of this review is to both highlight and provide an update on GC-MS analytical techniques that are common in metabolomics studies. Specific emphasis is given to the key steps within the GC-MS workflow that those new to this field need to be aware of and the common pitfalls that should be looked out for when starting in this area.
Collapse
Affiliation(s)
- David J Beale
- Land and Water, Commonwealth Scientific & Industrial Research Organization (CSIRO), P.O. Box 2583, Brisbane, QLD, 4001, Australia.
| | - Farhana R Pinu
- The New Zealand Institute for Plant & Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Konstantinos A Kouremenos
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
- Trajan Scientific and Medical, 7 Argent Pl, Ringwood, 3134, Australia
| | - Mahesha M Poojary
- Chemistry Section, School of Science and Technology, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
- Department of Food Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg C, Denmark
| | - Vinod K Narayana
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Berin A Boughton
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, 3010, Australia
| | - Komal Kanojia
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Saravanan Dayalan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, 3010, Australia
| | - Oliver A H Jones
- Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, 3001, Australia
| | - Daniel A Dias
- School of Health and Biomedical Sciences, Discipline of Laboratory Medicine, RMIT University, PO Box 71, Bundoora, 3083, Australia.
| |
Collapse
|
34
|
Gunasekaran D, Bunawan H, Ismail I, Noor NM. Data on Fourier transform-infrared of Cosmos caudatus Kunth. tissues analyzed with chemometric analysis. Data Brief 2018; 19:1423-1427. [PMID: 30229014 PMCID: PMC6141152 DOI: 10.1016/j.dib.2018.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 05/21/2018] [Accepted: 06/14/2018] [Indexed: 11/04/2022] Open
Abstract
In this dataset, we differentiate four different tissues of Cosmos caudatus Kunth (leaves, flowers, stem and root) obtained from UKM Bangi plot, based on Fourier transform-infrared spectroscopy. Different tissues of C. caudatus demonstrated the position and intensity of characteristic peaks at 4000–450 cm−1. Principal component analysis (PCA) shows three main groups were formed. The samples from leaves and flowers were found to be clustered together in one group, while the samples from stems and roots were clustered into two separate groups, respectively. This data provides an insight into the fingerprint identification and distribution of metabolites in the different organs of this species.
Collapse
Affiliation(s)
- Darvien Gunasekaran
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| |
Collapse
|
35
|
Population authentication of the traditional medicinal plant Cassia tora L. based on ISSR markers and FTIR analysis. Sci Rep 2018; 8:10714. [PMID: 30013159 PMCID: PMC6048050 DOI: 10.1038/s41598-018-29114-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 06/20/2018] [Indexed: 01/05/2023] Open
Abstract
Cassia tora is a plant of medicinal importance. Medicinal plants from different localities are believed to differ in their therapeutic potency. In this study, six populations of C. tora with different eco-geographical origins were investigated genotypically (ISSR) and phytochemically (FTIR) to establish an integrated approach for population discrimination and authentication of the origin of this medicinal herb. CHS gene expression analysis and determination of flavonoid content were carried out to substantiate the study. A total of 19 population-specific authentication bands were observed in 11 ISSR fingerprints. Authentication codes were generated using six highly polymorphic bands, including three authentication bands. FTIR spectra revealed that the peaks at wavenumber 1623 cm−1 (carbonyl group) and 1034 cm−1 (>CO- group) were powerful in separating the populations. These peaks are assigned to flavonoids and carbohydrates, respectively, were more intense for Ranchi (highland) population. Variation in the transcript level of CHS gene was observed. The findings of FTIR and RT-PCR analyses were in agreement with the TFC analysis, where, the lowest amount of flavonoids observed for Lucknow (lowland) population. All the populations of C. tora have been authenticated accurately by ISSR analyses and FTIR fingerprinting, and the Ranchi site was observed to be more suitable for the potential harvesting of therapeutic bioactive compounds.
Collapse
|
36
|
Tugizimana F, Mhlongo MI, Piater LA, Dubery IA. Metabolomics in Plant Priming Research: The Way Forward? Int J Mol Sci 2018; 19:ijms19061759. [PMID: 29899301 PMCID: PMC6032392 DOI: 10.3390/ijms19061759] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022] Open
Abstract
A new era of plant biochemistry at the systems level is emerging, providing detailed descriptions of biochemical phenomena at the cellular and organismal level. This new era is marked by the advent of metabolomics—the qualitative and quantitative investigation of the entire metabolome (in a dynamic equilibrium) of a biological system. This field has developed as an indispensable methodological approach to study cellular biochemistry at a global level. For protection and survival in a constantly-changing environment, plants rely on a complex and multi-layered innate immune system. This involves surveillance of ‘self’ and ‘non-self,’ molecule-based systemic signalling and metabolic adaptations involving primary and secondary metabolites as well as epigenetic modulation mechanisms. Establishment of a pre-conditioned or primed state can sensitise or enhance aspects of innate immunity for faster and stronger responses. Comprehensive elucidation of the molecular and biochemical processes associated with the phenotypic defence state is vital for a better understanding of the molecular mechanisms that define the metabolism of plant–pathogen interactions. Such insights are essential for translational research and applications. Thus, this review highlights the prospects of metabolomics and addresses current challenges that hinder the realisation of the full potential of the field. Such limitations include partial coverage of the metabolome and maximising the value of metabolomics data (extraction of information and interpretation). Furthermore, the review points out key features that characterise both the plant innate immune system and enhancement of the latter, thus underlining insights from metabolomic studies in plant priming. Future perspectives in this inspiring area are included, with the aim of stimulating further studies leading to a better understanding of plant immunity at the metabolome level.
Collapse
Affiliation(s)
- Fidele Tugizimana
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Msizi I Mhlongo
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
37
|
Rácz A, Andrić F, Bajusz D, Héberger K. Binary similarity measures for fingerprint analysis of qualitative metabolomic profiles. Metabolomics 2018; 14:29. [PMID: 29568246 PMCID: PMC5846857 DOI: 10.1007/s11306-018-1327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 01/18/2018] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Contemporary metabolomic fingerprinting is based on multiple spectrometric and chromatographic signals, used either alone or combined with structural and chemical information of metabolic markers at the qualitative and semiquantitative level. However, signal shifting, convolution, and matrix effects may compromise metabolomic patterns. Recent increase in the use of qualitative metabolomic data, described by the presence (1) or absence (0) of particular metabolites, demonstrates great potential in the field of metabolomic profiling and fingerprint analysis. OBJECTIVES The aim of this study is a comprehensive evaluation of binary similarity measures for the elucidation of patterns among samples of different botanical origin and various metabolomic profiles. METHODS Nine qualitative metabolomic data sets covering a wide range of natural products and metabolomic profiles were applied to assess 44 binary similarity measures for the fingerprinting of plant extracts and natural products. The measures were analyzed by the novel sum of ranking differences method (SRD), searching for the most promising candidates. RESULTS Baroni-Urbani-Buser (BUB) and Hawkins-Dotson (HD) similarity coefficients were selected as the best measures by SRD and analysis of variance (ANOVA), while Dice (Di1), Yule, Russel-Rao, and Consonni-Todeschini 3 ranked the worst. ANOVA revealed that concordantly and intermediately symmetric similarity coefficients are better candidates for metabolomic fingerprinting than the asymmetric and correlation based ones. The fingerprint analysis based on the BUB and HD coefficients and qualitative metabolomic data performed equally well as the quantitative metabolomic profile analysis. CONCLUSION Fingerprint analysis based on the qualitative metabolomic profiles and binary similarity measures proved to be a reliable way in finding the same/similar patterns in metabolomic data as that extracted from quantitative data.
Collapse
Affiliation(s)
- Anita Rácz
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Filip Andrić
- Department of Analytical Chemistry, University of Belgrade - Faculty of Chemistry, Studentski trg. 12-16, 11000, Belgrade, Serbia.
| | - Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| | - Károly Héberger
- Plasma Chemistry Research Group, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, Budapest, 1117, Hungary
| |
Collapse
|
38
|
Shinde BA, Dholakia BB, Hussain K, Panda S, Meir S, Rogachev I, Aharoni A, Giri AP, Kamble AC. Dynamic metabolic reprogramming of steroidal glycol-alkaloid and phenylpropanoid biosynthesis may impart early blight resistance in wild tomato (Solanum arcanum Peralta). PLANT MOLECULAR BIOLOGY 2017; 95:411-423. [PMID: 28980117 DOI: 10.1007/s11103-017-0660-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/12/2017] [Indexed: 05/22/2023]
Abstract
Exploration with high throughput leaf metabolomics along with functional genomics in wild tomato unreveal potential role of steroidal glyco-alkaloids and phenylpropanoids during early blight resistance. Alternaria solani severely affects tomato (Solanum lycopersicum L.) yield causing early blight (EB) disease in tropical environment. Wild relative, Solanum arcanum Peralta could be a potential source of EB resistance; however, its underlying molecular mechanism largely remains unexplored. Hence, non-targeted metabolomics was applied on resistant and susceptible S. arcanum accessions upon A. solani inoculation to unravel metabolic dynamics during different stages of disease progression. Total 2047 potential metabolite peaks (mass signals) were detected of which 681 and 684 metabolites revealed significant modulation and clear differentiation in resistant and susceptible accessions, respectively. Majority of the EB-triggered metabolic changes were active from steroidal glycol-alkaloid (SGA), lignin and flavonoid biosynthetic pathways. Further, biochemical and gene expression analyses of key enzymes from these pathways positively correlated with phenotypic variation in the S. arcanum accessions indicating their potential role in EB. Additionally, transcription factors regulating lignin biosynthesis were also up-regulated in resistant plants and electrophoretic mobility shift assay revealed sequence-specific binding of rSaWRKY1 with MYB20 promoter. Moreover, transcript accumulation of key genes from phenylpropanoid and SGA pathways along with WRKY and MYB in WRKY1 transgenic tomato lines supported above findings. Overall, this study highlights vital roles of SGAs as phytoalexins and phenylpropanoids along with lignin accumulation unrevealing possible mechanistic basis of EB resistance in wild tomato.
Collapse
Affiliation(s)
- Balkrishna A Shinde
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
- Division of Biochemical Sciences, Plant Molecular Biology Unit, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Bhushan B Dholakia
- Division of Biochemical Sciences, Plant Molecular Biology Unit, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Khalid Hussain
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
| | - Sayantan Panda
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, 7610001, Rehovot, Israel
| | - Ashok P Giri
- Division of Biochemical Sciences, Plant Molecular Biology Unit, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India.
| | - Avinash C Kamble
- Department of Botany, Savitribai Phule Pune University, Pune, Maharashtra, 411007, India.
| |
Collapse
|
39
|
López-Gresa MP, Lisón P, Campos L, Rodrigo I, Rambla JL, Granell A, Conejero V, Bellés JM. A Non-targeted Metabolomics Approach Unravels the VOCs Associated with the Tomato Immune Response against Pseudomonas syringae. FRONTIERS IN PLANT SCIENCE 2017; 8:1188. [PMID: 28725238 PMCID: PMC5495837 DOI: 10.3389/fpls.2017.01188] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/21/2017] [Indexed: 05/08/2023]
Abstract
Volatile organic compounds (VOCs) emitted by plants are secondary metabolites that mediate the plant interaction with pathogens and herbivores. These compounds may perform direct defensive functions, i.e., acting as antioxidant, antibacterial, or antifungal agents, or indirectly by signaling the activation of the plant's defensive responses. Using a non-targeted GC-MS metabolomics approach, we identified the profile of the VOCs associated with the differential immune response of the Rio Grande tomato leaves infected with either virulent or avirulent strains of Pseudomonas syringae DC3000 pv. tomato. The VOC profile of the tomato leaves infected with avirulent bacteria is characterized by esters of (Z)-3-hexenol with acetic, propionic, isobutyric or butyric acids, and several hydroxylated monoterpenes, e.g., linalool, α-terpineol, and 4-terpineol, which defines the profile of an immunized plant response. In contrast, the same tomato cultivar infected with the virulent bacteria strain produced a VOC profile characterized by monoterpenes and SA derivatives. Interestingly, the differential VOCs emission correlated statistically with the induction of the genes involved in their biosynthetic pathway. Our results extend plant defense system knowledge and suggest the possibility for generating plants engineered to over-produce these VOCs as a complementary strategy for resistance.
Collapse
|
40
|
Farag MA, Al-Mahdy DA, Meyer A, Westphal H, Wessjohann LA. Metabolomics reveals biotic and abiotic elicitor effects on the soft coral Sarcophyton ehrenbergi terpenoid content. Sci Rep 2017; 7:648. [PMID: 28381824 PMCID: PMC5428729 DOI: 10.1038/s41598-017-00527-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 03/01/2017] [Indexed: 01/06/2023] Open
Abstract
The effects of six biotic and abiotic elicitors, i.e. MeJA (methyl jasmonate), SA (salicylic acid), ZnCl2, glutathione and β-glucan BG (fungal elicitor), and wounding, on the secondary metabolite accumulation in the soft coral Sarcophyton ehrenbergi were assessed. Upon elicitation, metabolites were extracted and analysed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). Except for MeJA, no differences in photosynthetic efficiency were observed after treatments, suggesting the absence of a remarkable stress on primary production. Chemometric analyses of UPLC-MS data showed clear segregation of SA and ZnCl2 elicited samples at 24 and 48 h post elicitation. Levels of acetylated diterpene and sterol viz., sarcophytonolide I and cholesteryl acetate, was increased in ZnCl2 and SA groups, respectively, suggesting an activation of specific acetyl transferases. Post elicitation, sarcophytonolide I level increased 132 and 17-folds at 48 h in 0.1 mM SA and 1 mM ZnCl2 groups, respectively. Interestingly, decrease in sarcophine, a major diterpene was observed only in response to ZnCl2, whereas no change was observed in sesquiterpene content following treatments. To the best of our knowledge, this study provides the first documentation for elicitation effects on a soft corals secondary metabolome and suggests that SA could be applied to increase diterpenoid levels in corals.
Collapse
Affiliation(s)
- Mohamed A Farag
- Pharmacognosy department, College of Pharmacy, Cairo University, Cairo, Kasr El Aini st., P.B. 11562, Egypt.
| | - Dalia A Al-Mahdy
- Pharmacognosy department, College of Pharmacy, Cairo University, Cairo, Kasr El Aini st., P.B. 11562, Egypt
| | - Achim Meyer
- Leibniz Centre for Tropical Marine Research, Fahrenheit Str.6, D-28359, Bremen, Germany
| | - Hildegard Westphal
- Leibniz Centre for Tropical Marine Research, Fahrenheit Str.6, D-28359, Bremen, Germany
- Bremen University, Bremen, Germany
| | - Ludger A Wessjohann
- Leibniz Institute of Plant Biochemistry, Dept. Bioorganic Chemistry, Weinberg 3, D-06120, Halle (Saale), Germany.
| |
Collapse
|
41
|
Schaker PDC, Peters LP, Cataldi TR, Labate CA, Caldana C, Monteiro-Vitorello CB. Metabolome Dynamics of Smutted Sugarcane Reveals Mechanisms Involved in Disease Progression and Whip Emission. FRONTIERS IN PLANT SCIENCE 2017; 8:882. [PMID: 28620397 PMCID: PMC5450380 DOI: 10.3389/fpls.2017.00882] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/10/2017] [Indexed: 05/02/2023]
Abstract
Sugarcane smut disease, caused by the biotrophic fungus Sporisorium scitamineum, is characterized by the development of a whip-like structure from the plant meristem. The disease causes negative effects on sucrose accumulation, fiber content and juice quality. The aim of this study was to exam whether the transcriptomic changes already described during the infection of sugarcane by S. scitamineum result in changes at the metabolomic level. To address this question, an analysis was conducted during the initial stage of the interaction and through disease progression in a susceptible sugarcane genotype. GC-TOF-MS allowed the identification of 73 primary metabolites. A set of these compounds was quantitatively altered at each analyzed point as compared with healthy plants. The results revealed that energetic pathways and amino acid pools were affected throughout the interaction. Raffinose levels increased shortly after infection but decreased remarkably after whip emission. Changes related to cell wall biosynthesis were characteristic of disease progression and suggested a loosening of its structure to allow whip growth. Lignin biosynthesis related to whip formation may rely on Tyr metabolism through the overexpression of a bifunctional PTAL. The altered levels of Met residues along with overexpression of SAM synthetase and ACC synthase genes suggested a role for ethylene in whip emission. Moreover, unique secondary metabolites antifungal-related were identified using LC-ESI-MS approach, which may have potential biomarker applications. Lastly, a putative toxin was the most important fungal metabolite identified whose role during infection remains to be established.
Collapse
Affiliation(s)
- Patricia D. C. Schaker
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Leila P. Peters
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Thais R. Cataldi
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Carlos A. Labate
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
| | - Camila Caldana
- Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
- Max Planck Partner Group at Brazilian Bioethanol Science and Technology LaboratorySão Paulo, Brazil
| | - Claudia B. Monteiro-Vitorello
- Department of Genetics, “Luiz de Queiroz”' College of Agriculture, University of São PauloSão Paulo, Brazil
- *Correspondence: Claudia B. Monteiro-Vitorello
| |
Collapse
|
42
|
A Conversation on Data Mining Strategies in LC-MS Untargeted Metabolomics: Pre-Processing and Pre-Treatment Steps. Metabolites 2016; 6:metabo6040040. [PMID: 27827887 PMCID: PMC5192446 DOI: 10.3390/metabo6040040] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/27/2016] [Accepted: 10/27/2016] [Indexed: 12/24/2022] Open
Abstract
Untargeted metabolomic studies generate information-rich, high-dimensional, and complex datasets that remain challenging to handle and fully exploit. Despite the remarkable progress in the development of tools and algorithms, the "exhaustive" extraction of information from these metabolomic datasets is still a non-trivial undertaking. A conversation on data mining strategies for a maximal information extraction from metabolomic data is needed. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomic dataset, this study explored the influence of collection parameters in the data pre-processing step, scaling and data transformation on the statistical models generated, and feature selection, thereafter. Data obtained in positive mode generated from a LC-MS-based untargeted metabolomic study (sorghum plants responding dynamically to infection by a fungal pathogen) were used. Raw data were pre-processed with MarkerLynxTM software (Waters Corporation, Manchester, UK). Here, two parameters were varied: the intensity threshold (50-100 counts) and the mass tolerance (0.005-0.01 Da). After the pre-processing, the datasets were imported into SIMCA (Umetrics, Umea, Sweden) for more data cleaning and statistical modeling. In addition, different scaling (unit variance, Pareto, etc.) and data transformation (log and power) methods were explored. The results showed that the pre-processing parameters (or algorithms) influence the output dataset with regard to the number of defined features. Furthermore, the study demonstrates that the pre-treatment of data prior to statistical modeling affects the subspace approximation outcome: e.g., the amount of variation in X-data that the model can explain and predict. The pre-processing and pre-treatment steps subsequently influence the number of statistically significant extracted/selected features (variables). Thus, as informed by the results, to maximize the value of untargeted metabolomic data, understanding of the data structures and exploration of different algorithms and methods (at different steps of the data analysis pipeline) might be the best trade-off, currently, and possibly an epistemological imperative.
Collapse
|
43
|
Samsir SA, Bunawan H, Yen CC, Noor NM. Dataset of Fourier transform-infrared coupled with chemometric analysis used to distinguish accessions of Garcinia mangostana L. in Peninsular Malaysia. Data Brief 2016; 8:1-5. [PMID: 27257614 PMCID: PMC4878845 DOI: 10.1016/j.dib.2016.04.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 11/26/2022] Open
Abstract
In this dataset, we distinguish 15 accessions of Garcinia mangostana from Peninsular Malaysia using Fourier transform-infrared spectroscopy coupled with chemometric analysis. We found that the position and intensity of characteristic peaks at 3600–3100 cm−1 in IR spectra allowed discrimination of G. mangostana from different locations. Further principal component analysis (PCA) of all the accessions suggests the two main clusters were formed: samples from Johor, Melaka, and Negeri Sembilan (South) were clustered together in one group while samples from Perak, Kedah, Penang, Selangor, Kelantan, and Terengganu (North and East Coast) were in another clustered group.
Collapse
Affiliation(s)
- Sri A'jilah Samsir
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Hamidun Bunawan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Choong Chee Yen
- School of Environment and Nature Resource Science, Faculty Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Normah Mohd Noor
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| |
Collapse
|
44
|
Ogbaga CC, Stepien P, Dyson BC, Rattray NJW, Ellis DI, Goodacre R, Johnson GN. Biochemical Analyses of Sorghum Varieties Reveal Differential Responses to Drought. PLoS One 2016; 11:e0154423. [PMID: 27153323 PMCID: PMC4859509 DOI: 10.1371/journal.pone.0154423] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 04/13/2016] [Indexed: 12/17/2022] Open
Abstract
We have examined the biochemical responses of two sorghum cultivars of differing drought tolerance, Samsorg 17 (more drought tolerant) and Samsorg 40 (less drought tolerant), to sustained drought. Plants were exposed to different degrees of drought and then maintained at that level for five days. Responses were examined in terms of metabolic changes and the expression of drought induced proteins-Heat Shock Proteins (HSPs) and dehydrins (DHNs). Generalised phenotypic changes were studied using Fourier transform infrared (FT-IR) Spectroscopy and non-targeted Gas Chromatography Mass Spectrometry (GC-MS) was employed to detect changes in metabolites, while changes in protein expression were examined using Western blot analysis. Different response profiles of metabolites, HSPs and DHNs were observed in the two cultivars. Metabolic changes involved variation in amino acids, polysaccharides and their derivatives. A total of 188 compounds, with 142 known metabolites and 46 unknown small molecules, were detected in the two sorghum varieties. Under water deficit conditions, Samsorg 17 accumulated sugars and sugar alcohols, while in Samsorg 40 amino acids increased in concentration. This study suggest that the two Sorghum varieties adopt distinct approaches in response to drought, with Samsorg 17 being better able to maintain leaf function under severe drought conditions.
Collapse
Affiliation(s)
- Chukwuma C. Ogbaga
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
| | - Piotr Stepien
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
- Wroclaw University of Environmental and Life Sciences, Department of Plant Nutrition, ul. Grunwaldzka, Wroclaw, Poland
| | - Beth C. Dyson
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Nicholas J. W. Rattray
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - David I. Ellis
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Royston Goodacre
- Manchester Institute of Biotechnology, School of Chemistry, University of Manchester, United Kingdom
| | - Giles N. Johnson
- The University of Manchester, Faculty of Life Sciences, Oxford Road, Manchester, United Kingdom
| |
Collapse
|
45
|
Conrad AO, Bonello P. Application of Infrared and Raman Spectroscopy for the Identification of Disease Resistant Trees. FRONTIERS IN PLANT SCIENCE 2016; 6:1152. [PMID: 26779211 PMCID: PMC4703757 DOI: 10.3389/fpls.2015.01152] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/04/2015] [Indexed: 05/27/2023]
Abstract
New approaches for identifying disease resistant trees are needed as the incidence of diseases caused by non-native and invasive pathogens increases. These approaches must be rapid, reliable, cost-effective, and should have the potential to be adapted for high-throughput screening or phenotyping. Within the context of trees and tree diseases, we summarize vibrational spectroscopic and chemometric methods that have been used to distinguish between groups of trees which vary in disease susceptibility or other important characteristics based on chemical fingerprint data. We also provide specific examples from the literature of where these approaches have been used successfully. Finally, we discuss future application of these approaches for wide-scale screening and phenotyping efforts aimed at identifying disease resistant trees and managing forest diseases.
Collapse
Affiliation(s)
- Anna O. Conrad
- Forest Health Research and Education Center, Department of Forestry, University of KentuckyLexington, KY, USA
| | - Pierluigi Bonello
- Department of Plant Pathology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
46
|
Pusztahelyi T, Holb IJ, Pócsi I. Secondary metabolites in fungus-plant interactions. FRONTIERS IN PLANT SCIENCE 2015; 6:573. [PMID: 26300892 PMCID: PMC4527079 DOI: 10.3389/fpls.2015.00573] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 07/13/2015] [Indexed: 05/18/2023]
Abstract
Fungi and plants are rich sources of thousands of secondary metabolites. The genetically coded possibilities for secondary metabolite production, the stimuli of the production, and the special phytotoxins basically determine the microscopic fungi-host plant interactions and the pathogenic lifestyle of fungi. The review introduces plant secondary metabolites usually with antifungal effect as well as the importance of signaling molecules in induced systemic resistance and systemic acquired resistance processes. The review also concerns the mimicking of plant effector molecules like auxins, gibberellins and abscisic acid by fungal secondary metabolites that modulate plant growth or even can subvert the plant defense responses such as programmed cell death to gain nutrients for fungal growth and colonization. It also looks through the special secondary metabolite production and host selective toxins of some significant fungal pathogens and the plant response in form of phytoalexin production. New results coming from genome and transcriptional analyses in context of selected fungal pathogens and their hosts are also discussed.
Collapse
Affiliation(s)
- Tünde Pusztahelyi
- Central Laboratory, Faculty of Agricultural and Food Sciences and Environmental Management, University of DebrecenDebrecen, Hungary
| | - Imre J. Holb
- Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Horticulture, University of DebrecenDebrecen, Hungary
- Department of Plant Pathology, Centre for Agricultural Research, Plant Protection Institute, Hungarian Academy of SciencesDebrecen, Hungary
| | - István Pócsi
- Department of Biotechnology and Microbiology, Faculty of Science and Technology, University of DebrecenDebrecen, Hungary
| |
Collapse
|
47
|
Snart CJ, Hardy IC, Barrett DA. Entometabolomics: applications of modern analytical techniques to insect studies. ENTOMOLOGIA EXPERIMENTALIS ET APPLICATA 2015; 155:1-17. [PMID: 27478203 PMCID: PMC4949644 DOI: 10.1111/eea.12281] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 06/01/2023]
Abstract
Metabolomic analyses can reveal associations between an organism's metabolome and further aspects of its phenotypic state, an attractive prospect for many life-sciences researchers. The metabolomic approach has been employed in some, but not many, insect study systems, starting in 1990 with the evaluation of the metabolic effects of parasitism on moth larvae. Metabolomics has now been applied to a variety of aspects of insect biology, including behaviour, infection, temperature stress responses, CO 2 sedation, and bacteria-insect symbiosis. From a technical and reporting standpoint, these studies have adopted a range of approaches utilising established experimental methodologies. Here, we review current literature and evaluate the metabolomic approaches typically utilised by entomologists. We suggest that improvements can be made in several areas, including sampling procedures, the reduction in sampling and equipment variation, the use of sample extracts, statistical analyses, confirmation, and metabolite identification. Overall, it is clear that metabolomics can identify correlations between phenotypic states and underlying cellular metabolism that previous, more targeted, approaches are incapable of measuring. The unique combination of untargeted global analyses with high-resolution quantitative analyses results in a tool with great potential for future entomological investigations.
Collapse
Affiliation(s)
- Charles J.P. Snart
- Centre for Analytical BioscienceSchool of PharmacyUniversity of NottinghamUniversity Park CampusNottinghamNG7 2RDUK
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - Ian C.W. Hardy
- School of BiosciencesUniversity of NottinghamSutton Bonington Campus, LoughboroughLeicestershireLE12 5RDUK
| | - David A. Barrett
- Centre for Analytical BioscienceSchool of PharmacyUniversity of NottinghamUniversity Park CampusNottinghamNG7 2RDUK
| |
Collapse
|
48
|
Scognamiglio M, D'Abrosca B, Esposito A, Fiorentino A. Chemical Composition and Seasonality of Aromatic Mediterranean Plant Species by NMR-Based Metabolomics. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2015; 2015:258570. [PMID: 25785229 PMCID: PMC4345260 DOI: 10.1155/2015/258570] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 05/31/2023]
Abstract
An NMR-based metabolomic approach has been applied to analyse seven aromatic Mediterranean plant species used in traditional cuisine. Based on the ethnobotanical use of these plants, the approach has been employed in order to study the metabolic changes during different seasons. Primary and secondary metabolites have been detected and quantified. Flavonoids (apigenin, quercetin, and kaempferol derivatives) and phenylpropanoid derivatives (e.g., chlorogenic and rosmarinic acid) are the main identified polyphenols. The richness in these metabolites could explain the biological properties ascribed to these plant species.
Collapse
Affiliation(s)
- Monica Scognamiglio
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Brigida D'Abrosca
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Assunta Esposito
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| | - Antonio Fiorentino
- Department of Environmental Biological and Pharmaceutical Sciences and Technologies, Second University of Naples, Via Vivaldi 43, 81100 Caserta, Italy
| |
Collapse
|
49
|
González-Fernández R, Valero-Galván J, Gómez-Gálvez FJ, Jorrín-Novo JV. Unraveling the in vitro secretome of the phytopathogen Botrytis cinerea to understand the interaction with its hosts. FRONTIERS IN PLANT SCIENCE 2015; 6:839. [PMID: 26500673 PMCID: PMC4598570 DOI: 10.3389/fpls.2015.00839] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 09/24/2015] [Indexed: 05/09/2023]
Abstract
Botrytis cinerea is a necrotrophic fungus with high adaptability to different environments and hosts. It secretes a large number of extracellular proteins, which favor plant tissue penetration and colonization, thus contributing to virulence. Secretomics is a proteomics sub-discipline which study the secreted proteins and their secretion mechanisms, so-called secretome. By using proteomics as experimental approach, many secreted proteins by B. cinerea have been identified from in vitro experiments, and belonging to different functional categories: (i) cell wall-degrading enzymes such as pectinesterases and endo-polygalacturonases; (ii) proteases involved in host protein degradation such as an aspartic protease; (iii) proteins related to the oxidative burst such as glyoxal oxidase; (iv) proteins which may induce the plant hypersensitive response such as a cerato-platanin domain-containing protein; and (v) proteins related to production and secretion of toxins such as malate dehydrogenase. In this mini-review, we made an overview of the proteomics contribution to the study and knowledge of the B. cinerea extracellular secreted proteins based on our current work carried out from in vitro experiments, and recent published papers both in vitro and in planta studies on this fungi. We hypothesize on the putative functions of these secreted proteins, and their connection to the biology of the B. cinerea interaction with its hosts.
Collapse
Affiliation(s)
- Raquel González-Fernández
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad JuárezCiudad Juárez, México
- *Correspondence: Raquel González-Fernández,
| | - José Valero-Galván
- Department of Chemical and Biological Science, Biomedicine Science Institute, Autonomous University of Ciudad JuárezCiudad Juárez, México
| | - Francisco J. Gómez-Gálvez
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3)Córdoba, Spain
| | - Jesús V. Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba, Agrifood Campus of International Excellence (ceiA3)Córdoba, Spain
| |
Collapse
|
50
|
Aliferis KA, Faubert D, Jabaji S. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 2014; 9:e111930. [PMID: 25369450 PMCID: PMC4219818 DOI: 10.1371/journal.pone.0111930] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Here we present a metabolic profiling strategy employing direct infusion Orbitrap mass spectrometry (MS) and gas chromatography-mass spectrometry (GC/MS) for the monitoring of soybean's (Glycine max L.) global metabolism regulation in response to Rhizoctonia solani infection in a time-course. Key elements in the approach are the construction of a comprehensive metabolite library for soybean, which accelerates the steps of metabolite identification and biological interpretation of results, and bioinformatics tools for the visualization and analysis of its metabolome. The study of metabolic networks revealed that infection results in the mobilization of carbohydrates, disturbance of the amino acid pool, and activation of isoflavonoid, α-linolenate, and phenylpropanoid biosynthetic pathways of the plant. Components of these pathways include phytoalexins, coumarins, flavonoids, signaling molecules, and hormones, many of which exhibit antioxidant properties and bioactivity helping the plant to counterattack the pathogen's invasion. Unraveling the biochemical mechanism operating during soybean-Rhizoctonia interaction, in addition to its significance towards the understanding of the plant's metabolism regulation under biotic stress, provides valuable insights with potential for applications in biotechnology, crop breeding, and agrochemical and food industries.
Collapse
Affiliation(s)
- Konstantinos A. Aliferis
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Denis Faubert
- Institut de Recherches Cliniques de Montréal, Montréal, Quebec, Canada
| | - Suha Jabaji
- Department of Plant Science, Macdonald Campus of McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|