1
|
Shu C, Zhang S, Wu S, Liu S, Xu J, Zhao J, Li B. Microorganism-mediated production of anthocyanins: Current progress and future prospects. Food Res Int 2025; 201:115550. [PMID: 39849703 DOI: 10.1016/j.foodres.2024.115550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/26/2024] [Accepted: 12/28/2024] [Indexed: 01/25/2025]
Abstract
Anthocyanins are a type of water-soluble pigments widely distributed in colorful plants, which have been extensively used in food and cosmetics industry. The current production of anthocyanins heavily depends on extraction from plant materials, which leads to low purity and inconsistency among batches. Compared with conventional extraction, microorganism-mediated production of anthocyanins has advantages such as a short production cycle, high purity, low waste production, low energy requirements, and consistency between different batches. However, issues such as poor gene availability, instable engineered strains, and low yield limit the microorganism-mediated production of anthocyanins. Therefore, we would like to review the current progress regarding the generation of anthocyanins using microorganisms. Compared with previous studies focusing on this topic, the current review comprehensively summarizes different microbial systems capable of synthesizing anthocyanins, and provides information that can demonstrate the selection and engineering of microbial strains, and optimization of substrates, enzymes, and fermentation technologies. In addition, the review for the first time discusses the microorganisms that can naturally produce and secret anthocyanins. The review will motivate researchers interested in microorganism-mediated production of anthocyanins, and provide valuable information to facilitate the application of anthocyanins generated by microorganisms as food colorants and nutraceuticals to improve human health and production sensory properties.
Collapse
Affiliation(s)
- Chi Shu
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China
| | - Shan Zhang
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China
| | - Siyu Wu
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China
| | - Shuting Liu
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China
| | - Jianing Xu
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China
| | - Jin Zhao
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China.
| | - Bin Li
- College of Food Science, Shenyang Agricultural of University, No. 120, Dongling Road, Shenhe District, Shenyang 100866, China.
| |
Collapse
|
2
|
Majumder J, Subrahmanyeswari T, Gantait S. Natural biosynthesis, pharmacological applications, and sustainable biotechnological production of ornamental plant-derived anthocyanin: beyond colorants and aesthetics. 3 Biotech 2024; 14:175. [PMID: 38855146 PMCID: PMC11153417 DOI: 10.1007/s13205-024-04016-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/21/2024] [Indexed: 06/11/2024] Open
Abstract
Flowers have long been admired for their aesthetic qualities and have even found their way to be included in the human diet. Among the many chemical compounds found in flowers, anthocyanins stand out for their versatile applications in the food, cosmetic, and nutraceutical industries. The biosynthetic pathway of anthocyanins has been thoroughly studied in certain flower species, leading to the detection of key regulatory genes that can be controlled to enhance the production of anthocyanins via biotechnological methods. Nevertheless, the quantity and form of anthocyanins found in natural sources differ, both qualitatively and quantitatively, depending on the ornamental plant species. For this reason, research on in vitro plant cultures has been conducted for years in an attempt to comprehend how these essential substances are produced. Different biotechnological systems, like in vitro plant cell, organ, and tissue cultures, and transgenic approaches, have been employed to produce anthocyanins under controlled conditions. However, multiple factors influence the production of anthocyanins and create challenges during large-scale production. Metabolic engineering techniques have also been utilized for anthocyanin production in microorganisms and recombinant plants. Although these techniques are primarily tested at lab- and pilot-scale, limited studies have focused on scaling up the production. This review analyses the chemistry and biosynthesis of anthocyanin along with the factors that influence the biosynthetic pathway. Further emphasis has been given on strategies for conventional and non-conventional anthocyanin production along with their quantification, addressing the prevailing challenges, and exploring ways to ameliorate the production using the in vitro plant cell and tissue culture systems and metabolic engineering to open up new possibilities for the cosmetic, pharmaceutical, and food industries.
Collapse
Affiliation(s)
- Jayoti Majumder
- Department of Floriculture and Landscaping, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Tsama Subrahmanyeswari
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| | - Saikat Gantait
- Crop Research Unit (Genetics and Plant Breeding), Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal 741252 India
| |
Collapse
|
3
|
Chen BC, Wu XJ, Dong QJ, Xiao JP. Screening and functional analysis of StMYB transcription factors in pigmented potato under low-temperature treatment. BMC Genomics 2024; 25:283. [PMID: 38500027 PMCID: PMC10946176 DOI: 10.1186/s12864-024-10059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 01/29/2024] [Indexed: 03/20/2024] Open
Abstract
MYB transcription factors play an extremely important regulatory role in plant responses to stress and anthocyanin synthesis. Cloning of potato StMYB-related genes can provide a theoretical basis for the genetic improvement of pigmented potatoes. In this study, two MYB transcription factors, StMYB113 and StMYB308, possibly related to anthocyanin synthesis, were screened under low-temperature conditions based on the low-temperature-responsive potato StMYB genes family analysis obtained by transcriptome sequencing. By analyzed the protein properties and promoters of StMYB113 and StMYB308 and their relative expression levels at different low-temperature treatment periods, it is speculated that StMYB113 and StMYB308 can be expressed in response to low temperature and can promote anthocyanin synthesis. The overexpression vectors of StMYB113 and StMYB308 were constructed for transient transformation tobacco. Color changes were observed, and the expression levels of the structural genes of tobacco anthocyanin synthesis were determined. The results showed that StMYB113 lacking the complete MYB domain could not promote the accumulation of tobacco anthocyanins, while StMYB308 could significantly promote the accumulation involved in tobacco anthocyanins. This study provides a theoretical reference for further study of the mechanism of StMYB113 and StMYB308 transcription factors in potato anthocyanin synthesis.
Collapse
Affiliation(s)
- Bi-Cong Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Xiao-Jie Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, 650201, Yunnan, China.
| |
Collapse
|
4
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
5
|
Xu Z, Wang J, Ma Y, Wang F, Wang J, Zhang Y, Hu X. The bZIP transcription factor SlAREB1 regulates anthocyanin biosynthesis in response to low temperature in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023. [PMID: 36999610 DOI: 10.1111/tpj.16224] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 03/13/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
Low temperature and abscisic acid (ABA) are the two main factors that induce anthocyanin synthesis; however, their potential relationships in governing anthocyanin biosynthesis in Solanum lycopersicum (tomato) seedlings remains unclear. Our study revealed the involvement of the transcription factor SlAREB1 in the low-temperature response of tomato seedlings via the ABA-dependent pathway, for a specific temperature range. The overexpression of SlAREB1 enhanced the expression of anthocyanin-related genes and the accumulation of anthocyanins, especially under low-temperature conditions, whereas silencing SlAREB1 dramatically reduced gene expression and anthocyanin accumulation. There is a direct interaction between SlAREB1 and the promoters of SlDFR and SlF3'5'H, which are structural genes that impact anthocyanin biosynthesis. SlAREB1 can regulate anthocyanins through controlling SlDFR and SlF3'5'H expression. Accordingly, SlAREB1 takes charge of regulating anthocyanin biosynthesis in tomato seedlings via the ABA-dependent pathway at low temperatures.
Collapse
Affiliation(s)
- Zijian Xu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiachun Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Fan Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
6
|
Tan Y, Wen B, Xu L, Zong X, Sun Y, Wei G, Wei H. High temperature inhibited the accumulation of anthocyanin by promoting ABA catabolism in sweet cherry fruits. FRONTIERS IN PLANT SCIENCE 2023; 14:1079292. [PMID: 36860903 PMCID: PMC9968857 DOI: 10.3389/fpls.2023.1079292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/30/2023] [Indexed: 06/01/2023]
Abstract
Color is an essential appearance characteristic of sweet cherry (Prunus avium L.) fruits and mainly determined by anthocyanin. Temperature plays an important role in the regulation of anthocyanin accumulation. In this research, anthocyanin, sugar, plant hormone and related gene expression were analyzed using physiological and transcriptomic methods in order to reveal the effects of high temperature on fruit coloring and the related mechanism. The results showed that high temperature severely inhibited anthocyanin accumulation in fruit peel and slowed the coloring process. The total anthocyanin content in fruit peel increased by 455% and 84% after 4 days of normal temperature treatment (NT, 24°C day/14°C night) and high temperature treatment (HT, 34°C day/24°C night), respectively. Similarly, the contents of 8 anthocyanin monomers were significantly higher in NT than in HT. HT also affected the levels of sugars and plant hormones. The total soluble sugar content increased by 29.49% and 16.81% in NT and HT, respectively, after 4 days of treatment. The levels of ABA, IAA and GA20 also increased in both the two treatments but more slowly in HT. Conversely, the contents of cZ, cZR and JA decreased more rapidly in HT than in NT. The results of the correlation analysis showed that the ABA and GA20 contents were significantly correlated with the total anthocyanin contents. Further transcriptome analysis showed that HT inhibited the activation of structural genes in anthocyanin biosynthesis as well as the repression of CYP707A and AOG, which dominated the catabolism and inactivation of ABA. These results indicate that ABA may be a key regulator in the high-temperature-inhibited fruit coloring of sweet cherry. High temperature induces higher ABA catabolism and inactivation, leading to lower ABA levels and finally resulting in slow coloring.
Collapse
Affiliation(s)
- Yue Tan
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Binbin Wen
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, China
| | - Li Xu
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Xiaojuan Zong
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Yugang Sun
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Guoqin Wei
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| | - Hairong Wei
- Innovation Team of Stone Fruit Breeding and Cultivation, Shandong Institute of Pomology, Tai’an, Shandong, China
| |
Collapse
|
7
|
Zhang S, Ren Y, Zhao Q, Wu Y, Zhuo Y, Li H. Drought-induced CsMYB6 interacts with CsbHLH111 to regulate anthocyanin biosynthesis in Chaenomeles speciosa. PHYSIOLOGIA PLANTARUM 2023; 175:e13859. [PMID: 36688571 DOI: 10.1111/ppl.13859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Chaenomeles speciosa is a plant with high ornamental value, and the color of its petals deepens obviously under drought stress. To understand the mechanism of drought-induced reddening of C. speciosa petal color, the metabolites and transcriptomics of petals from 4% PEG-8000-treated and control cuttings were analyzed. In this study, the analysis of metabolites revealed the accumulation of anthocyanins in petals of PEG-treated cuttings, indicating anthocyanins might be the reason for the deepening of petal color. By using transcriptomics, we identified CsMYB6 as an overexpressed transcription factor in PEG-treated samples. Transient overexpression and suppression of CsMYB6 revealed that it is a key transcription factor for anthocyanin synthesis. We identified genes related to anthocyanin biosynthesis and constructed a network of drought- and anthocyanin-related genes (such as CsMYB6, CsbHLH111, CsANS, CsDFR, and CsUFGT). Further experiments indicated that CsMYB6 directly interacted with CsbHLH111, and this interaction increased the binding ability of CsMYB6 to the promoter regions of three structural genes of anthocyanin biosynthesis: CsANS, CsDFR, and CsUFGT. Our findings provide a molecular basis and new insight into drought-induced anthocyanin biosynthesis in C. speciosa.
Collapse
Affiliation(s)
- Shuangyu Zhang
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yanshen Ren
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Qianyi Zhao
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yang Wu
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Yue Zhuo
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| | - Houhua Li
- Research Institute for Landscape and Ornamental Plant, College of Landscape Architecture and Art, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Liu X, Cai HM, Wang WQ, Lin W, Su ZW, Ma ZH. Why is the beautyberry so colourful? Evolution, biogeography, and diversification of fruit colours in Callicarpa (Lamiaceae). PLANT DIVERSITY 2023; 45:6-19. [PMID: 36876305 PMCID: PMC9975479 DOI: 10.1016/j.pld.2022.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/18/2023]
Abstract
Fruit colour is essential to seed dispersal, speciation, and biological diversity in global ecosystems. The relationship between fruit-colour variation and species diversification has long been of interest in evolutionary biology, but remains poorly understood at the genus level. Here, we used Callicarpa, a typical representative of pantropical angiosperm, to analyse whether fruit colours are correlated with biogeographic distribution, dispersal events, and diversification rate. We estimated a time-calibrated phylogeny for Callicarpa and reconstructed ancestral fruit colour. Utilizing phylogenetic methods, we estimated the major dispersal events across the phylogenetic tree and the most likely fruit colours related to each dispersal event, and tested whether the dispersal frequencies and distances of the four fruit colours between major biogeographical areas were equal. We then tested whether fruit colours are correlated with latitude, elevation, and diversification rate. Biogeographical reconstructions showed that Callicarpa originated in the East Asia and Southeast Asia during the Eocene (∼35.53 Ma) and diverse species diverged mainly in the Miocene and lasted into the Pleistocene. Large-scale dispersal events were significantly associated with violet-fruited lineages. Furthermore, different fruit colours were markedly correlated with different latitudes and elevations (e.g., violet fruits were correlated with higher latitudes and elevations; red fruits and black fruits with lower latitudes; white fruits with higher elevations). Notably, violet fruits were statistically associated with highest diversification rates, driving fruit colour variation among different regions globally. Our results contribute to further understanding why fruit colour is so variable at the genus level of angiosperms in different areas around the world.
Collapse
Affiliation(s)
- Xing Liu
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Hui-Min Cai
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Wen-Qiao Wang
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Wei Lin
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| | - Zhi-Wei Su
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530004, Guangxi, PR China
| | - Zhong-Hui Ma
- Department of Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning 530004, Guangxi, PR China
| |
Collapse
|
9
|
Zheng T, Lv J, Sadeghnezhad E, Cheng J, Jia H. Transcriptomic and metabolomic profiling of strawberry during postharvest cooling and heat storage. FRONTIERS IN PLANT SCIENCE 2022; 13:1009747. [PMID: 36311118 PMCID: PMC9597325 DOI: 10.3389/fpls.2022.1009747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Temperature is one of the most important factors regarding fruit postharvest, however its effects in the strawberry fruits quality in postharvest remains to be evaluated. In this study, the effects of cold and heat storage temperature on fruit quality of 'Benihoppe' strawberry were performed. The results showed that different temperatures could affect the metabolism of hormone, anthocyanin, reactive oxygen species (ROS), and transcription level of responsive factors. The synthesis of terpenoids, amino acids, and phenylpropanoids in strawberries were also changed under different temperatures, which finally changed the quality characteristics of the fruit. We found HSF20 (YZ1)-overexpressed fruits were sensitive to cold and heat conditions but CBF/NF-Y (YZ9)-overexpressed fruits promoted coloring under cold treatment. This study clarified the effect of postharvest cooling and heat treatments on quality and transcriptional mechanism of strawberries fruits. Moreover, these results provided an experimental basis for further research on improving the quality of strawberry berries during postharvest periods.
Collapse
Affiliation(s)
- Ting Zheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jinhua Lv
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianhui Cheng
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Naik J, Misra P, Trivedi PK, Pandey A. Molecular components associated with the regulation of flavonoid biosynthesis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111196. [PMID: 35193745 DOI: 10.1016/j.plantsci.2022.111196] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Flavonoids exhibit amazing structural diversity and play different roles in plants. Besides, these compounds have been associated with several health benefits in humans. Several exogenous and endogenous cues, for example, light, temperature, nutrient status, and phytohormones have been reported as modulators of biosynthesis and accumulation of flavonoids. Thus, multiple hormones and stress-related signaling pathways are involved in the regulation of gene expression associated with this pathway. The transcriptional regulators belonging to the MYB and bHLH family transcription factors are well documented as the direct regulators of the structural genes associated with flavonoid biosynthesis. Recent studies also suggest that some of these factors are regulated by molecular components involved in stress and hormone signaling pathways. Adapter proteins for transcriptional activation or repression via recruitment of co-activators and co-repressors, respectively, E2 ubiquitin ligases, miRNA processing complex, and DNA methylation/demethylation factors have been recently discovered in various plants to play key roles in fine-tuning flavonoids synthesis. In the present review, we aim to provide comprehensive information about the role of different factors in the regulation of flavonoid biosynthesis. Besides, we describe the potential upstream regulators involved in the regulation of flavonoid biosynthesis within the context of available information. To sum up, the present review furnishes an updated account of signal transduction pathways modulating the biosynthesis of flavonoids.
Collapse
Affiliation(s)
- Jogindra Naik
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Prashant Misra
- Plant Science and Agrotechnology Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | | | - Ashutosh Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Metabolic Insight into Cold Stress Response in Two Contrasting Maize Lines. Life (Basel) 2022; 12:life12020282. [PMID: 35207570 PMCID: PMC8875087 DOI: 10.3390/life12020282] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Maize (Zea mays L.) is sensitive to a minor decrease in temperature at early growth stages, resulting in deteriorated growth at later stages. Although there are significant variations in maize germplasm in response to cold stress, the metabolic responses as stress tolerance mechanisms are largely unknown. Therefore, this study aimed at providing insight into the metabolic responses under cold stress at the early growth stages of maize. Two inbred lines, tolerant (B144) and susceptible (Q319), were subjected to cold stress at the seedling stage, and their corresponding metabolic profiles were explored. The study identified differentially accumulated metabolites in both cultivars in response to induced cold stress with nine core conserved cold-responsive metabolites. Guanosine 3′,5′-cyclic monophosphate was detected as a potential biomarker metabolite to differentiate cold tolerant and sensitive maize genotypes. Furthermore, Quercetin-3-O-(2″′-p-coumaroyl)sophoroside-7-O-glucoside, Phloretin, Phloretin-2′-O-glucoside, Naringenin-7-O-Rutinoside, L-Lysine, L-phenylalanine, L-Glutamine, Sinapyl alcohol, and Feruloyltartaric acid were regulated explicitly in B144 and could be important cold-tolerance metabolites. These results increase our understanding of cold-mediated metabolic responses in maize that can be further utilized to enhance cold tolerance in this significant crop.
Collapse
|
12
|
Yu L, Sun Y, Zhang X, Chen M, Wu T, Zhang J, Xing Y, Tian J, Yao Y. ROS1 promotes low temperature-induced anthocyanin accumulation in apple by demethylating the promoter of anthocyanin-associated genes. HORTICULTURE RESEARCH 2022; 9:uhac007. [PMID: 35147161 PMCID: PMC9123231 DOI: 10.1093/hr/uhac007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 12/15/2021] [Indexed: 05/07/2023]
Abstract
Low temperature can affect the growth and development of plants through changes in DNA demethylation patterns. Another known effect of low temperature is the accumulation of anthocyanin pigments. However, it is not known whether the two phenomena are linked, specifically, whether DNA demethylation participates in anthocyanin accumulation in response to low-temperature stress. The ROS1 gene is involved in plant DNA demethylation and influences methylation levels in response to low temperature stress. In this study, using RNA sequencing, we detected that the transcription levels of MdROS1 correlate with the anthocyanin content, as well as with those of anthocyanin biosynthesis-related genes in apple (Malus domestica), at low temperatures. Genomic bisulfite sequencing showed that the methylation levels of the promoters of the anthocyanin related genes MdCHS, MdCHI, MdF3'H, MdANS, MdUFGT, and MdMYB10 decreased in apple leaves after low-temperature treatment. Similar expression and methylation results were also found in apple fruit. Transiently silencing MdROS1 in the leaves and fruit of apple cultivars inhibited the accumulation of anthocyanins and led to decreased expression of anthocyanin biosynthetic genes, and the opposite results were detected in MdROS1-overexpressing leaves and fruit. A promoter binding assay showed that the conserved RRD-DME domains of MdROS1 directly bind to the promoters of MdF3'H and MdUFGT. Taken together, these results suggest that ROS1 affects the anthocyanin biosynthetic pathway by decreasing the methylation level of anthocyanin-related gene promoters, thereby increasing their expression and increasing anthocyanin accumulation.
Collapse
Affiliation(s)
- Lujia Yu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuying Sun
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Mengchen Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
| | - Jie Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yifan Xing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Ji Tian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- Department of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
13
|
Yu ZC, Lin W, Zheng XT, Chow WS, Luo YN, Cai ML, Peng CL. The relationship between anthocyanin accumulation and photoprotection in young leaves of two dominant tree species in subtropical forests in different seasons. PHOTOSYNTHESIS RESEARCH 2021; 149:41-55. [PMID: 32902777 DOI: 10.1007/s11120-020-00781-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Increasing amounts of experimental evidence show that anthocyanins provide physiological protection to plants under stress. However, the difference in photoprotection mediated by anthocyanins and other photoprotective substances in different seasons is still uncertain. To determine the relationship between anthocyanin accumulation and the photoprotective effects in different seasons, Castanopsis chinensis and Acmena acuminatissima, whose anthocyanin accumulation patterns differ in different seasons, were used as materials to explain how plants adapt to different seasons; as such, their physiological and biochemical responses were analyzed. Young leaves of C. chinensis and A. acuminatissima presented different colors in the different seasons. In summer, the young leaves of C. chinensis were purplish red, while those of A. acuminatissima were light green. In winter, the young leaves of C. chinensis were light green, while those of A. acuminatissima were red. Compared with the young red leaves, the young light green leaves that did not accumulate anthocyanins had higher flavonoid and phenolics contents, total antioxidant capacity, non-photochemical quenching (NPQ), and relative membrane leakage, and a slower recovery rate in the maximum photochemical efficiency (Fv/Fm) after high-light treatment. In addition, the net photosynthesis rate (Pn), transpiration rate (Tr), stomatal conductance (gs), and the effective quantum yield of PSII (ΦPSII) of the young leaves in winter were significantly lower than those in summer, while the activities of catalase (CAT, EC 1.11.1.6), peroxidase (POD, EC 1.11.1.7), and superoxide dismutase (SOD, EC 1.15.1.1) were significantly higher than those in summer. These data indicate that to adapt to seasonal changes anthocyanins, other antioxidative substances and antioxidative enzymes, as well as components involved in the safe dissipation of excitation energy as heat need to cooperate with one another.
Collapse
Affiliation(s)
- Zheng-Chao Yu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Wei Lin
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Xiao-Ting Zheng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Wah Soon Chow
- Division of Plant Sciences, Research School of Biology, College of Science, The Australian National University, Acton, ACT, 2601, Australia
| | - Yan-Na Luo
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Min-Ling Cai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Chang-Lian Peng
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China.
| |
Collapse
|
14
|
Naing AH, Kim CK. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. PHYSIOLOGIA PLANTARUM 2021; 172:1711-1723. [PMID: 33605458 DOI: 10.1111/ppl.13373] [Citation(s) in RCA: 188] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 02/01/2021] [Accepted: 02/16/2021] [Indexed: 05/23/2023]
Abstract
Abiotic stresses, such as heat, drought, salinity, low temperature, and heavy metals, inhibit plant growth and reduce crop productivity. Abiotic stresses are becoming increasingly extreme worldwide due to the ongoing deterioration of the global climate and the increase in agrochemical utilization and industrialization. Plants grown in fields are affected by one or more abiotic stresses. The consequent stress response of plants induces reactive oxygen species (ROS), which are then used as signaling molecules to activate stress-tolerance mechanism. However, under extreme stress conditions, ROS are overproduced and cause oxidative damage to plants. In such conditions, plants produce anthocyanins after ROS signaling via the transcription of anthocyanin biosynthesis genes. These anthocyanins are then utilized in antioxidant activities by scavenging excess ROS for their sustainability. In this review, we discuss the physiological, biochemical, and molecular mechanisms underlying abiotic stress-induced anthocyanins in plants and their role in abiotic stress tolerance. In addition, we highlight the current progress in the development of anthocyanin-enriched transgenic plants and their ability to increase abiotic stress tolerance. Overall, this review provides valuable information that increases our understanding of the mechanisms by which anthocyanins respond to abiotic stress and protect plants against it. This review also provides practical guidance for plant biologists who are engineering stress-tolerant crops using anthocyanin biosynthesis or regulatory genes.
Collapse
Affiliation(s)
- Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| | - Chang Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
15
|
Sinnott-Armstrong MA, Donoghue MJ, Jetz WJ. Dispersers and environment drive global variation in fruit colour syndromes. Ecol Lett 2021; 24:1387-1399. [PMID: 33908685 DOI: 10.1111/ele.13753] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 02/06/2023]
Abstract
The colours of fleshy fruits play a critical role in plant dispersal by advertising ripe fruits to consumers. Fruit colours have long been classified into syndromes attributed to selection by animal dispersers, despite weak evidence for this hypothesis. Here, we test the relative importance of biotic (bird and mammal frugivory) and abiotic (wet season temperatures, growing season length and UV-B radiation) factors in determining fruit colour syndrome in 3163 species of fleshy-fruited plants. We find that both dispersers and environment are important, and they interact. In warm areas, contrastive, bird-associated fruit colours increase with relative bird frugivore prevalence, whereas in cold places these colours dominate even where mammalian dispersers are prevalent. We present near-global maps of predicted fruit colour syndrome based on our species-level model and our newly developed characterisations of relative importance of bird and mammal frugivores.
Collapse
Affiliation(s)
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Walter J Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
16
|
Akman M, Carlson JE, Latimer AM. Climate explains population divergence in drought-induced plasticity of functional traits and gene expression in a South African Protea. Mol Ecol 2020; 30:255-273. [PMID: 33098695 DOI: 10.1111/mec.15705] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 12/18/2022]
Abstract
Long-term environmental variation often drives local adaptation and leads to trait differentiation across populations. Additionally, when traits change in an environment-dependent way through phenotypic plasticity, the genetic variation underlying plasticity will also be under selection. These processes could create a landscape of differentiation across populations in traits and their plasticity. Here, we performed a dry-down experiment under controlled conditions to measure responses in seedlings of a shrub species from the Cape Floristic Region, the common sugarbush (Protea repens). We measured morphological and physiological traits, and sequenced whole transcriptomes of leaf tissues from eight populations that represent both the climatic and the geographical distribution of this species. We found that there is substantial variation in how populations respond to drought, but we also observed common patterns such as reduced leaf size and leaf thickness, and up-regulation of stress-related and down-regulation of growth-related gene groups. Both high environmental heterogeneity and milder source site climates were associated with higher plasticity in various traits and co-expression gene networks. Associations between traits, trait plasticity, gene networks and the source site climate suggest that temperature may play a greater role in shaping these patterns when compared to precipitation, in line with recent changes in the region due to climate change. We also found that traits respond to climatic variation in an environment-dependent manner: some associations between traits and climate were apparent only under certain growing conditions. Together, our results uncover common responses of P. repens populations to drought, and climatic drivers of population differentiation in functional traits, gene expression and their plasticity.
Collapse
Affiliation(s)
- Melis Akman
- Department of Plant Sciences, UC Davis, Davis, CA, USA.,Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA, USA
| | - Jane E Carlson
- Department of Biology, Nicholls State University, Thibodaux, LA, USA.,Gulf Coast Network Inventory and Monitoring Program, National Park Services, Washington, DC, USA
| | | |
Collapse
|
17
|
Zhang Z, Shi Y, Ma Y, Yang X, Yin X, Zhang Y, Xiao Y, Liu W, Li Y, Li S, Liu X, Grierson D, Allan AC, Jiang G, Chen K. The strawberry transcription factor FaRAV1 positively regulates anthocyanin accumulation by activation of FaMYB10 and anthocyanin pathway genes. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2267-2279. [PMID: 32216018 PMCID: PMC7589338 DOI: 10.1111/pbi.13382] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 02/27/2020] [Indexed: 05/13/2023]
Abstract
The RAV (related to ABI3/viviparous 1) group of transcription factors (TFs) play multifaceted roles in plant development and stress responses. Here, we show that strawberry (Fragaria × ananassa) FaRAV1 positively regulates anthocyanin accumulation during fruit ripening via a hierarchy of activation processes. Dual-luciferase assay screening of all fruit-expressed AP2/ERFs showed FaRAV1 had the highest transcriptional activation of the promoter of FaMYB10, a key activator of anthocyanin biosynthesis. Yeast one-hybrid and electrophoretic mobility shift assays indicated that FaRAV1 could directly bind to the promoter of FaMYB10. Transient overexpression of FaRAV1 in strawberry fruit increased FaMYB10 expression and anthocyanin production significantly. Correspondingly, transient RNA interference-induced silencing of FaRAV1 led to decreases in FaMYB10 expression and anthocyanin content. Transcriptome analysis of FaRAV1-overexpressing strawberry fruit revealed that transcripts of phenylpropanoid and flavonoid biosynthesis pathway genes were up-regulated. Luciferase assays showed that FaRAV1 could also activate the promoters of strawberry anthocyanin biosynthetic genes directly, revealing a second level of FaRAV1 action in promoting anthocyanin accumulation. These results show that FaRAV1 stimulates anthocyanin accumulation in strawberry both by direct activation of anthocyanin pathway gene promoters and by up-regulation of FaMYB10, which also positively regulates these genes.
Collapse
Affiliation(s)
- Zuying Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yanna Shi
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Yuchen Ma
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Xiaofang Yang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Xueren Yin
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Yuanyuan Zhang
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yuwei Xiao
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Wenli Liu
- College of Mathematical ScienceZhejiang UniversityHangzhouChina
| | - Yunduan Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Shaojia Li
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Xiaofen Liu
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| | - Donald Grierson
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
- Division of Plant and Crop SciencesSchool of BiosciencesUniversity of NottinghamLoughboroughUK
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research LimitedAucklandNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | - Guihua Jiang
- Institute of HorticultureZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Kunsong Chen
- College of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyZhejiang UniversityHangzhouChina
- State Agriculture Ministry Laboratory of Horticultural Plant GrowthDevelopment and Quality ImprovementZhejiang UniversityHangzhouChina
| |
Collapse
|
18
|
Lara MV, Bonghi C, Famiani F, Vizzotto G, Walker RP, Drincovich MF. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. FRONTIERS IN PLANT SCIENCE 2020; 11:562252. [PMID: 32983215 PMCID: PMC7492728 DOI: 10.3389/fpls.2020.562252] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/12/2020] [Indexed: 05/07/2023]
Abstract
Phytochemicals or secondary metabolites present in fruit are key components contributing to sensory attributes like aroma, taste, and color. In addition, these compounds improve human nutrition and health. Stone fruits are an important source of an array of secondary metabolites that may reduce the risk of different diseases. The first part of this review is dedicated to the description of the main secondary organic compounds found in plants which include (a) phenolic compounds, (b) terpenoids/isoprenoids, and (c) nitrogen or sulfur containing compounds, and their principal biosynthetic pathways and their regulation in stone fruit. Then, the type and levels of bioactive compounds in different stone fruits of the Rosaceae family such as peach (Prunus persica), plum (P. domestica, P. salicina and P. cerasifera), sweet cherries (P. avium), almond kernels (P. dulcis, syn. P. amygdalus), and apricot (P. armeniaca) are presented. The last part of this review encompasses pre- and postharvest treatments affecting the phytochemical composition in stone fruit. Appropriate management of these factors during pre- and postharvest handling, along with further characterization of phytochemicals and the regulation of their synthesis in different cultivars, could help to increase the levels of these compounds, leading to the future improvement of stone fruit not only to enhance organoleptic characteristics but also to benefit human health.
Collapse
Affiliation(s)
- María Valeria Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova Agripolis, Legnaro, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Giannina Vizzotto
- Department of Agricultural, Food, Environmental, and Animal Sciences, University of Udine, Udine, Italy
| | - Robert P. Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - María Fabiana Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
19
|
Wang W, Celton JM, Buck-Sorlin G, Balzergue S, Bucher E, Laurens F. Skin Color in Apple Fruit ( Malus × domestica): Genetic and Epigenetic Insights. EPIGENOMES 2020; 4:epigenomes4030013. [PMID: 34968286 PMCID: PMC8594686 DOI: 10.3390/epigenomes4030013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 11/16/2022] Open
Abstract
Apple skin color is an important trait for organoleptic quality. In fact, it has a major influence on consumer choice. Skin color is, thus, one of the most important criteria taken into account by breeders. For apples, most novel varieties are so-called "mutants" or "sports" that have been identified in clonal populations. Indeed, many "sports" exist that show distinct phenotypic differences compared to the varieties from which they originated. These differences affect a limited number of traits of economic importance, including skin color. Until recently, the detailed genetic or epigenetic changes resulting in heritable phenotypic changes in sports was largely unknown. Recent technological advances and the availability of several high-quality apple genomes now provide the bases to understand the exact nature of the underlying molecular changes that are responsible for the observed phenotypic changes observed in sports. The present review investigates the molecular nature of sports affected in apple skin color giving arguments in favor of the genetic or epigenetic explanatory models.
Collapse
Affiliation(s)
- Wuqian Wang
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Jean-Marc Celton
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Gerhard Buck-Sorlin
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Sandrine Balzergue
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
| | - Etienne Bucher
- Plant Breeding and Genetic Resources, Agroscope, 1260 Nyon, Switzerland;
| | - François Laurens
- IRHS (Institut de Recherche en Horticulture et Semences), UMR 1345, INRAE, Agrocampus-Ouest, Université d’Angers, SFR 4207 QuaSaV, F-49071 Beaucouzé, France; (W.W.); (J.-M.C.); (G.B.-S.); (S.B.)
- Correspondence:
| |
Collapse
|
20
|
Zhu YC, Zhang B, Allan AC, Lin-Wang K, Zhao Y, Wang K, Chen KS, Xu CJ. DNA demethylation is involved in the regulation of temperature-dependent anthocyanin accumulation in peach. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:965-976. [PMID: 31923329 DOI: 10.1111/tpj.14680] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 05/10/2023]
Abstract
Anthocyanin biosynthesis is induced by low temperatures in a number of plants. However, in peach (cv Zhonghuashoutao), anthocyanin accumulation was observed in fruit stored at 16°C but not at or below 12°C. Fruit stored at 16°C showed elevated transcript levels of genes encoding anthocyanin biosynthetic enzymes, the transport protein glutathione S-transferase and key transcription factors. Higher transcript levels of PpPAL1/2, PpC4H, Pp4CL4/5/8, PpF3H, PpF3'H, PpDFR1/2/3 and PpANS, as well as transcription factor gene PpbHLH3, were associated with lower methylation levels in the promoter of these genes. The DNA methylation level was further highly correlated with the expression of the DNA methyltransferase genes and DNA demethylase genes. The application of DNA methylation inhibitor 5-azacytidine induced anthocyanin accumulation in peach flesh, further implicating a critical role for DNA demethylation in regulating anthocyanin accumulation in peach flesh. Our data reveal that temperature-dependent DNA demethylation is a key factor to the post-harvest temperature-dependent anthocyanin accumulation in peach flesh.
Collapse
Affiliation(s)
- Yong-Chao Zhu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Bo Zhang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Andrew C Allan
- Plant and Food Research, Auckland, New Zealand
- School of Biology Science, University of Auckland, Auckland, New Zealand
| | | | - Yun Zhao
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Ke Wang
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kun-Song Chen
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chang-Jie Xu
- College of Agriculture & Biotechnology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
21
|
Zhou D, Li R, Zhang H, Chen S, Tu K. Hot air and UV-C treatments promote anthocyanin accumulation in peach fruit through their regulations of sugars and organic acids. Food Chem 2020; 309:125726. [DOI: 10.1016/j.foodchem.2019.125726] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 01/08/2023]
|
22
|
Huang D, Yuan Y, Tang Z, Huang Y, Kang C, Deng X, Xu Q. Retrotransposon promoter of Ruby1 controls both light- and cold-induced accumulation of anthocyanins in blood orange. PLANT, CELL & ENVIRONMENT 2019; 42:3092-3104. [PMID: 31307119 DOI: 10.1111/pce.13609] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 05/21/2023]
Abstract
Blood orange is generally recognized to accumulate anthocyanins in its fruit pulp in a cold-inducible manner. We observed that the fruit peel of blood orange can also accumulate anthocyanins under ample light conditions. Interestingly, purple pummelo can accumulate anthocyanins only in its fruit peel but not in its pulp. The mechanism underlying the tissue specificity of anthocyanin accumulation in citrus is unknown. Here, we show that the active promoter of Ruby1, a key activator of anthocyanin biosynthesis, is also light inducible in addition to its already known cold inducibility in blood orange. Electrophoretic mobility shift assays and transient expression assays showed that HY5 positively regulated the transcription of Ruby1 by binding to the G-box motif (CACGTC). The tissue specificity of anthocyanin accumulation in the peel of purple pummelo may be due to the lack of a low temperature responsive element and a MYC binding site, which were shown to be involved in cold inducibility of CsRuby1 in blood orange by insertion of a long terminal repeat type retrotransposon in the promoter. These results bring new insights into the regulatory mechanism of anthocyanin biosynthesis in response to environmental stimuli and provide cis-elements for genetic improvement of anthocyanin-stable fruits rich in antioxidant metabolites.
Collapse
Affiliation(s)
- Ding Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Yuan
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhouzhou Tang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Huang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
23
|
Fang H, Dong Y, Yue X, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. The B-box zinc finger protein MdBBX20 integrates anthocyanin accumulation in response to ultraviolet radiation and low temperature. PLANT, CELL & ENVIRONMENT 2019; 42:2090-2104. [PMID: 30919454 DOI: 10.1111/pce.13552] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 05/20/2023]
Abstract
Ultraviolet-B (UV-B) radiation and low temperature promote the accumulation of anthocyanins, which give apple skins their red colour. Although many transcription regulators have been characterized in the UV-B and low-temperature pathways, their interregulation and synergistic effects are not well understood. Here, a B-box transcription factor gene, MdBBX20, was characterized in apple and identified to promote anthocyanin biosynthesis under UV-B conditions in field experiments and when overexpressed in transgenic apple calli. The transcript level of MdBBX20 was significantly induced by UV-B. Specific G-box elements in the promoters of target genes were identified as interaction sites for MdBBX20. Further experimental interrogation of the UV-B signalling pathways showed that MdBBX20 could interact with MdHY5 in vitro and in vivo and that this interaction was required to significantly enhance the promoter activity of MdMYB1. MdBBX20 also responded to low temperature (14°C) with the participation of MdbHLH3, which directly bound a low temperature-response cis elements in the MdBBX20 promoter. These findings demonstrate the molecular mechanism by which MdBBX20 integrates low-temperature- and UV-B-induced anthocyanin accumulation in apple skin.
Collapse
Affiliation(s)
- Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhui Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuanxuan Yue
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiafei Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- College of Horticulture Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
24
|
Fang H, Dong Y, Yue X, Chen X, He N, Hu J, Jiang S, Xu H, Wang Y, Su M, Zhang J, Zhang Z, Wang N, Chen X. MdCOL4 Interaction Mediates Crosstalk Between UV-B and High Temperature to Control Fruit Coloration in Apple. PLANT & CELL PHYSIOLOGY 2019; 60:1055-1066. [PMID: 30715487 DOI: 10.1093/pcp/pcz023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/28/2019] [Indexed: 05/04/2023]
Abstract
In many plants, anthocyanin biosynthesis is affected by environmental conditions. Ultraviolet-B (UV-B) radiation promotes anthocyanin accumulation and fruit coloration in apple skin, whereas high temperature suppresses these processes. In this study, we characterized a B-box transcription factor, MdCOL4, from 'Fuji' apple, and identified its role in anthocyanin biosynthesis by overexpressing its encoding gene in apple red callus. The expression of MdCOL4 was reduced by UV-B, but promoted by high temperature. We explored the regulatory relationship between heat shock transcription factors (HSFs) and MdCOL4, and found that MdHSF3b and MdHSF4a directly bound to the heat shock element cis-element of the MdCOL4 promoter. MdCOL4 interacted with MdHY5 to synergistically inhibit the expression of MdMYB1, and MdCOL4 directly bound to the promoters of MdANS and MdUFGT, which encode genes in the anthocyanin biosynthetic pathway, to suppress their expression. Our findings shed light on the molecular mechanism by which MdCOL4 suppresses anthocyanin accumulation in apple skin under UV-B and high temperature.
Collapse
Affiliation(s)
- Hongcheng Fang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Yuhui Dong
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Xuanxuan Yue
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Xiaoliu Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Naibo He
- National Oceangraphic Center, Qingdao, China
| | - Jiafei Hu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Shenghui Jiang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Haifeng Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Yicheng Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Mengyu Su
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Zongying Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Nan Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| | - Xuesen Chen
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
- College of Horticulture Sciences, Shandong Agricultural University, Daizong Road No.61, Tai'an, Shandong, China
| |
Collapse
|
25
|
Zhang L, Wang L, Zeng X, Chen R, Yang S, Pan S. Comparative transcriptome analysis reveals fruit discoloration mechanisms in postharvest strawberries in response to high ambient temperature. FOOD CHEMISTRY-X 2019; 2:100025. [PMID: 31432012 PMCID: PMC6694852 DOI: 10.1016/j.fochx.2019.100025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 01/04/2023]
Abstract
The aim of this study was to examine both physiological and molecular evidences related to fruit discoloration in postharvest strawberries under high ambient temperature. The results showed the total anthocyanin and their main components in the strawberries under 35 °C were greatly increased due to the significant up-regulations of anthocyanin biosynthetic genes and transportation genes. High ambient temperature greatly improved the activities of peroxidase (POD) and enhanced gene expressions of POD3, POD6 and POD63. At the same time, high storage temperature activated laccase genes expression including laccase-9 and laccase-14, which was closely related to anthocyanin degradation. Levels of reactive oxygen species (ROS) metabolism were also increased under high ambient temperature at transcript levels. Therefore, we concluded that high ambient temperature could enhance anthocyanin accumulation and degradation at the same time, which maybe the main reasons for the fruits discoloration of postharvest strawberries under high ambient temperature.
Collapse
Affiliation(s)
- Liping Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lu Wang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xiangguo Zeng
- Economic Crop Research Institute, Hubei Academy of Agricultural Sciences, PR China
| | - Ruixu Chen
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Shuzhen Yang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| |
Collapse
|
26
|
Takshak S, Agrawal SB. Defense potential of secondary metabolites in medicinal plants under UV-B stress. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 193:51-88. [PMID: 30818154 DOI: 10.1016/j.jphotobiol.2019.02.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 01/13/2023]
Abstract
Ultraviolet-B (UV-B) radiation has, for many decades now, been widely studied with respect to its consequences on plant and animal health. Though according to NASA, the ozone hole is on its way to recovery, it will still be a considerable time before UV-B levels reach pre-industrial limits. Thus, for the present, excessive UV-B reaching the Earth is a cause for concern, and UV-B related human ailments are on the rise. Plants produce various secondary metabolites as one of the defense strategies under UV-B. They provide photoprotection via their UV-B screening effects and by quenching the reactive oxygen- and nitrogen species produced under UV-B influence. These properties of plant secondary metabolites (PSMs) are being increasingly recognized and made use of in sunscreens and cosmetics, and pharma- and nutraceuticals are gradually becoming a part of the regular diet. Secondary metabolites derived from medicinal plants (alkaloids, terpenoids, and phenolics) are a source of pharmaceuticals, nutraceuticals, as well as more rigorously tested and regulated drugs. These metabolites have been implicated in providing protection not only to plants under the influence of UV-B, but also to animals/animal cell lines, when the innate defenses in the latter are not adequate under UV-B-induced damage. The present review focuses on the defense potential of secondary metabolites derived from medicinal plants in both plants and animals. In plants, the concentrations of the alkaloids, terpenes/terpenoids, and phenolics have been discussed under UV-B irradiation as well as the fate of the genes and enzymes involved in their biosynthetic pathways. Their role in providing protection to animal models subjected to UV-B has been subsequently elucidated. Finally, we discuss the possible futuristic scenarios and implications for plant, animal, and human health pertaining to the defense potential of these secondary metabolites under UV-B radiation-mediated damages.
Collapse
Affiliation(s)
- Swabha Takshak
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India
| | - S B Agrawal
- Laboratory of Air Pollution and Global Climate Change, Department of Botany, Banaras Hindu University, Varanasi 221 005, India.
| |
Collapse
|
27
|
Song T, Li K, Wu T, Wang Y, Zhang X, Xu X, Yao Y, Han Z. Identification of new regulators through transcriptome analysis that regulate anthocyanin biosynthesis in apple leaves at low temperatures. PLoS One 2019; 14:e0210672. [PMID: 30695036 PMCID: PMC6350969 DOI: 10.1371/journal.pone.0210672] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022] Open
Abstract
Anthocyanin pigments play many roles in plants, including providing protection against biotic and abiotic stresses. To identify new regulatory genes in apple (Malus domestica) that may be involved in regulating low temperature induced anthocyanin biosynthesis, we performed RNA-seq analysis of leaves from the ‘Gala’ apple cultivar following exposure to a low temperature (16 °C). A visible red color appeared on the upper leaves and the anthocyanin content increased significantly after the low temperature treatment. Genes from the flavonoid biosynthesis pathway were significantly enriched among the differentially expressed genes, and the expression of several transcription factors was shown by WGCNA (weighted gene co-expression network analysis) to correlate with anthocyanin accumulation, including members of the MYB, MADS, WRKY, WD40, Zinc Finger and HB-ZIP families. Three MYB transcription factors (MdMYB12, MdMYB22 and MdMYB114), which had several CBF/DREB response elements in their promoters, were significantly induced by low temperature exposure and their expression also correlated highly with anthocyanin accumulation. We hypothesize that they may act as regulators of anthocyanin biosynthesis and be regulated by CBF/DREB transcription factors in apple leaves under low temperature conditions. The analyses presented here provide insights into the molecular mechanisms underlying anthocyanin accumulation during low temperature exposure.
Collapse
Affiliation(s)
- Tingting Song
- College of Horticulture, China Agricultural University, Beijing, China
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Yuncong Yao
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, China
- Beijing Collaborative Innovation Center for Eco-Environmental Improvement with Forestry and Fruit Trees, Beijing, China
- * E-mail:
| |
Collapse
|
28
|
Allan AC, Espley RV. MYBs Drive Novel Consumer Traits in Fruits and Vegetables. TRENDS IN PLANT SCIENCE 2018; 23:693-705. [PMID: 30033210 DOI: 10.1016/j.tplants.2018.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/01/2018] [Accepted: 06/05/2018] [Indexed: 05/27/2023]
Abstract
Eating plant-derived compounds can lead to a longer and healthier life and also benefits the environment. Innovation in the fresh food sector, as well as new cultivars, can improve consumption of fruit and vegetables, with MYB transcription factors being a target to drive this novelty. Plant MYB transcription factors are implicated in diverse roles including development, hormone signalling, and metabolite biosynthesis. The reds and blues of fruit and vegetables provided by anthocyanins, phlobaphenes, and betalains are controlled by specific R2R3 MYBs. New studies are now revealing that MYBs also control carotenoid biosynthesis and other quality traits, such as flavour and texture. Future breeding techniques may manipulate or create alleles of key MYB transcription factors.
Collapse
Affiliation(s)
- Andrew C Allan
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | - Richard V Espley
- New Zealand Institute for Plant and Food Research, Mt Albert, Auckland, New Zealand
| |
Collapse
|
29
|
Li P, Du C, Zhang Y, Yin S, Zhang E, Fang H, Lin D, Xu C, Yang Z. Combined bulked segregant sequencing and traditional linkage analysis for identification of candidate gene for purple leaf sheath in maize. PLoS One 2018; 13:e0190670. [PMID: 29304111 PMCID: PMC5755806 DOI: 10.1371/journal.pone.0190670] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 12/19/2017] [Indexed: 01/22/2023] Open
Abstract
Anthocyanin accumulation in various maize tissues plays important roles in plant growth and development. In addition, some color-related traits can be used as morphological markers in conventional maize breeding processes and purity identification of hybrid seeds. Here, we noticed that the leaf sheath color was controlled by a dominant gene, because purple (PSH) and green leaf sheaths (GSH) were separated at a ratio of 3:1 in an F2 population. To map the gene, an F2 and a recombinant inbred line (RIL) population were derived from a cross between inbred line T877 (PSH) and DH1M (GSH). The PSH locus was mapped to the genomic region within 128.8 to 138.4 Mb using a bulked segregant sequencing approach. This position was further validated by linkage mapping using 190 F2 plants with GSH. Subsequently, the PSH locus was fine-mapped into an interval of 304.2 kb. A maize gene, GRMZM5G822829, was identified in this region, encoding a bHLH transcription factor. The expression level of this gene in T877 was found to be 9-fold higher than that of DH1M. In conclusion, our results suggest that GRMZM5G822829 is the putative candidate gene conferring leaf sheath color in maize.
Collapse
Affiliation(s)
- Pengcheng Li
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Cancan Du
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Yingying Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Shuangyi Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Enying Zhang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, China
| | - Huimin Fang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Dezhou Lin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Chenwu Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| | - Zefeng Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
An JP, Liu X, Li HH, You CX, Wang XF, Hao YJ. Apple RING E3 ligase MdMIEL1 inhibits anthocyanin accumulation by ubiquitinating and degrading MdMYB1 protein. PLANT & CELL PHYSIOLOGY 2017; 58:1953-1962. [PMID: 29016961 DOI: 10.1093/pcp/pcx129] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 08/23/2017] [Indexed: 05/08/2023]
Abstract
MdMYB1 is an important regulator for anthocyanin accumulation in apple (Malus × domestica). Here, an apple RING E3 ligase, MdMIEL1, was screened out as a partner of MdMYB1 with a yeast two-hybrid approach. Pull-down, bimolecular fluorescence complementation and coimmunoprecipitation assays further verified the interaction between MdMIEL1 and MdMYB1 proteins. Subsequently, in vitro and in vivo experiments indicated that MdMIEL1 functioned as a ubiquitin E3 ligase to ubiquitinate MdMYB1 protein, followed by degradation through a 26S proteasome pathway. Furthermore, transgenic studies in apple calli and Arabidopsis demonstrated that MdMIEL1 negatively regulated anthocyanin accumulation by modulating the degradation of MdMYB1 protein. Taken together, our findings provide a new insight into the molecular mechanism by which MdMIEL1 negatively regulates anthocyanin biosynthesis by ubiquitinating and degrading MdMYB1 protein.
Collapse
Affiliation(s)
- Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xin Liu
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hao-Hao Li
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
31
|
Zhu H, Li X, Zhai W, Liu Y, Gao Q, Liu J, Ren L, Chen H, Zhu Y. Effects of low light on photosynthetic properties, antioxidant enzyme activity, and anthocyanin accumulation in purple pak-choi (Brassica campestris ssp. Chinensis Makino). PLoS One 2017; 12:e0179305. [PMID: 28609452 PMCID: PMC5469474 DOI: 10.1371/journal.pone.0179305] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 05/26/2017] [Indexed: 01/05/2023] Open
Abstract
Anthocyanins are secondary metabolites that contribute to red, blue, and purple colors in plants and are affected by light, but the effects of low light on the physiological responses of purple pak-choi plant leaves are still unclear. In this study, purple pak-choi seedlings were exposed to low light by shading with white gauze and black shading in a phytotron. The responses in terms of photosynthetic properties, carbohydrate metabolism, antioxidant enzyme activity, anthocyanin biosynthetic enzyme activity, and the relative chlorophyll and anthocyanin content of leaves were measured. The results showed that chlorophyll b, intracellular CO2 content, stomatal conductance and antioxidant activities of guaiacol peroxidase, catalase and superoxide dismutase transiently increased in the shade treatments at 5 d. The malondialdehyde content also increased under low light stress, which damages plant cells. With the extension of shading time (at 15 d), the relative chlorophyll a, anthocyanin and soluble protein contents, net photosynthetic rate, transpiration rate, stomata conductance, antioxidant enzyme activities, and activities of four anthocyanin biosynthetic enzymes decreased significantly. Thus, at the early stage of low light treatment, the chlorophyll b content increased to improve photosynthesis. When the low light treatment was extended, antioxidant enzyme activity and the activity of anthocyanin biosynthesis enzymes were inhibited, causing the purple pak-choi seedlings to fade from purple to green. This study provides valuable information for further deciphering genetic mechanisms and improving agronomic traits in purple pak-choi under optimal light requirements.
Collapse
Affiliation(s)
- Hongfang Zhu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Xiaofeng Li
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Wen Zhai
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Qianqian Gao
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jinping Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Li Ren
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiaotong University, Shanghai, China
| | - Yuying Zhu
- Shanghai Key Lab of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
32
|
Li P, Li YJ, Zhang FJ, Zhang GZ, Jiang XY, Yu HM, Hou BK. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 89:85-103. [PMID: 27599367 DOI: 10.1111/tpj.13324] [Citation(s) in RCA: 289] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 08/28/2016] [Accepted: 08/31/2016] [Indexed: 05/18/2023]
Abstract
The plant family 1 UDP-glycosyltransferases (UGTs) are the biggest GT family in plants, which are responsible for transferring sugar moieties onto a variety of small molecules, and control many metabolic processes; however, their physiological significance in planta is largely unknown. Here, we revealed that two Arabidopsis glycosyltransferase genes, UGT79B2 and UGT79B3, could be strongly induced by various abiotic stresses, including cold, salt and drought stresses. Overexpression of UGT79B2/B3 significantly enhanced plant tolerance to low temperatures as well as drought and salt stresses, whereas the ugt79b2/b3 double mutants generated by RNAi (RNA interference) and CRISPR-Cas9 strategies were more susceptible to adverse conditions. Interestingly, the expression of UGT79B2 and UGT79B3 is directly controlled by CBF1 (CRT/DRE-binding factor 1, also named DREB1B) in response to low temperatures. Furthermore, we identified the enzyme activities of UGT79B2/B3 in adding UDP-rhamnose to cyanidin and cyanidin 3-O-glucoside. Ectopic expression of UGT79B2/B3 significantly increased the anthocyanin accumulation, and enhanced the antioxidant activity in coping with abiotic stresses, whereas the ugt79b2/b3 double mutants showed reduced anthocyanin levels. When overexpressing UGT79B2/B3 in tt18 (transparent testa 18), a mutant that cannot synthesize anthocyanins, both genes fail to improve plant adaptation to stress. Taken together, we demonstrate that UGT79B2 and UGT79B3, identified as anthocyanin rhamnosyltransferases, are regulated by CBF1 and confer abiotic stress tolerance via modulating anthocyanin accumulation.
Collapse
Affiliation(s)
- Pan Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Yan-Jie Li
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Feng-Ju Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Gui-Zhi Zhang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Xiao-Yi Jiang
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| | - Hui-Min Yu
- School of Life Sciences, QiLu Normal University, Jinan, Shandong, 250013, China
| | - Bing-Kai Hou
- The Key Lab of Plant Cell Engineering and Germplasm Innovation, Ministry of Education of China, School of Life Sciences, Shandong University, Jinan, Shandong, 250100, China
| |
Collapse
|
33
|
Hydrogen peroxide, nitric oxide and UV RESISTANCE LOCUS8 interact to mediate UV-B-induced anthocyanin biosynthesis in radish sprouts. Sci Rep 2016; 6:29164. [PMID: 27404993 PMCID: PMC4941517 DOI: 10.1038/srep29164] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 06/16/2016] [Indexed: 01/19/2023] Open
Abstract
The cross talk among hydrogen peroxide (H2O2), nitric oxide (NO) and UV RESISTANCE LOCUS8 (UVR8) in UV-B-induced anthocyanin accumulation in the hypocotyls of radish sprouts was investigated. The results showed that UV-B irradiation significantly increased the anthocyanin accumulation and the expression of UVR8, and a similar trend appeared in radish sprouts subjected to cadmium, chilling and salt stresses regardless of light source. However, these responses disappeared under dark exposure. These results suggest that abiotic stress-induced anthocyanin accumulation and UVR8 expression were light-dependent. Moreover, abiotic stresses all enhanced the production of H2O2 and exogenous H2O2 addition significantly increased the anthocyanin concentration and UVR8 transcription, while these increases were severely inhibited by addition of dimethylthiourea (DMTU, a chemical trap for H2O2). It seems to suggest that H2O2 played an important role in the anthocyanin biosynthesis. Furthermore, addition of 0.5 mM sodium nitroprusside (SNP, a NO-releasing compound) substantially induced the anthocyanin accumulation, and H2O2-induced anthocyanin accumulation and UVR8 expression were significantly suppressed by co-treatment with 2-phenyl-4,4,5,5-tetramethylimidazoline-3-oxide-1-oxyl (PTIO, a NO scavenger), which was parallel with the expression of anthocyanin biosynthesis-related transcription factors and structural genes. All these results demonstrate that both H2O2 and NO are involved in UV-B-induced anthocyanin accumulation, and there is a crosstalk between them as well as a classical UVR8 pathway.
Collapse
|
34
|
Passeri V, Koes R, Quattrocchio FM. New Challenges for the Design of High Value Plant Products: Stabilization of Anthocyanins in Plant Vacuoles. FRONTIERS IN PLANT SCIENCE 2016; 7:153. [PMID: 26909096 PMCID: PMC4754442 DOI: 10.3389/fpls.2016.00153] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 05/18/2023]
Abstract
In the last decade plant biotechnologists and breeders have made several attempt to improve the antioxidant content of plant-derived food. Most efforts concentrated on increasing the synthesis of antioxidants, in particular anthocyanins, by inducing the transcription of genes encoding the synthesizing enzymes. We present here an overview of economically interesting plant species, both food crops and ornamentals, in which anthocyanin content was improved by traditional breeding or transgenesis. Old genetic studies in petunia and more recent biochemical work in brunfelsia, have shown that after synthesis and compartmentalization in the vacuole, anthocyanins need to be stabilized to preserve the color of the plant tissue over time. The final yield of antioxidant molecules is the result of the balance between synthesis and degradation. Therefore the understanding of the mechanism that determine molecule stabilization in the vacuolar lumen is the next step that needs to be taken to further improve the anthocyanin content in food. In several species a phenomenon known as fading is responsible for the disappearance of pigmentation which in some case can be nearly complete. We discuss the present knowledge about the genetic and biochemical factors involved in pigment preservation/destabilization in plant cells. The improvement of our understanding of the fading process will supply new tools for both biotechnological approaches and marker-assisted breeding.
Collapse
Affiliation(s)
| | | | - Francesca M. Quattrocchio
- Plant Development and (Epi)Genetics, Swammerdam Institute of Life Sciences, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
35
|
Goh HH, Khairudin K, Sukiran NA, Normah MN, Baharum SN. Metabolite profiling reveals temperature effects on the VOCs and flavonoids of different plant populations. PLANT BIOLOGY (STUTTGART, GERMANY) 2016; 18 Suppl 1:130-9. [PMID: 26417881 DOI: 10.1111/plb.12403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 09/21/2015] [Indexed: 05/23/2023]
Abstract
Temperature is one of the key factors in limiting the distribution of plants and controlling major metabolic processes. A series of simulated reciprocal transplant experiments were performed to investigate the effect of temperature on plant chemical composition. Polygonum minus of different lowland and highland origin were grown under a controlled environment with different temperature regimes to study the effects on secondary metabolites. We applied gas chromatography-mass spectrometry and liquid chromatography time-of-flight mass spectrometry to identify the chemical compounds. A total of 37 volatile organic compounds and 85 flavonoids were detected, with the largest response observed in the compositional changes of aldehydes and terpenes in highland plants under higher temperature treatment. Significantly less anthocyanidin compounds and larger amounts of flavonols were detected under higher temperature treatment. We also studied natural variation in the different plant populations growing under the same environment and identified compounds unique to each population through metabolite fingerprinting. This study shows that the origin of different plant populations influences the effects of temperature on chemical composition.
Collapse
Affiliation(s)
- H-H Goh
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - K Khairudin
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - N A Sukiran
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - M N Normah
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - S N Baharum
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
36
|
de Camargo MGG, Schaefer HM, Habermann G, Cazetta E, Soares NC, Morellato LPC. Bicolored display of Miconia albicans fruits: Evaluating visual and physiological functions of fruit colors. AMERICAN JOURNAL OF BOTANY 2015; 102:1453-1461. [PMID: 26391709 DOI: 10.3732/ajb.1500138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/07/2015] [Indexed: 06/05/2023]
Abstract
PREMISE OF THE STUDY Most bird-dispersed fruits are green when unripe and become colored and conspicuous when ripe, signaling that fruits are ready to be consumed and dispersed. The color pattern for fruits of Miconia albicans (Melastomataceae), however, is the opposite, with reddish unripe and green ripe fruits. We (1) verified the maintenance over time of its bicolored display, (2) tested the communicative function of unripe fruits, (3) tested the photoprotective role of anthocyanins in unripe fruits, and (4) verified whether green ripe fruits can assimilate carbon. METHODS Using a paired experiment, we tested whether detection of ripe fruits was higher on infructescences with unripe and ripe fruits compared with infructescences with only ripe fruits. We also measured and compared gas exchange, chlorophyll a fluorescence, and heat dissipation of covered (to prevent anthocyanin synthesis) and uncovered ripe and unripe fruits. KEY RESULTS Although the bicolored display was maintained over time, unripe fruits had no influence on bird detection and removal of ripe fruits. Ripe and unripe fruits did not assimilate CO2, but they respired instead. CONCLUSIONS Since the communicative function of unripe fruits was not confirmed, seed dispersers are unlikely to select the display with bicolored fruits. Because of the absence of photosynthetic activity in ripe and unripe fruits and enhanced photoprotective mechanisms in ripe fruits rather than in unripe fruits, we could not confirm the photoprotective role of anthocyanins in unripe fruits. As an alternative hypothesis, we suggest that the bicolored fruit display could be an adaptation to diversify seed dispersal vectors instead of restricting dispersal to birds and that anthocyanins in unripe fruits may have a defense role against pathogens.
Collapse
Affiliation(s)
- Maria Gabriela G de Camargo
- Departamento de Botânica, Laboratório de Fenologia, Grupo de Fenologia e Dispersão de Sementes, Universidade Estadual Paulista, Avenida 24A 1515, CEP 13506-900, Rio Claro, SP, Brazil; fax: 55 19 3526-4201
| | - H Martin Schaefer
- Department of Evolutionary Biology and Animal Ecology, Faculty of Biology, University of Freiburg, Hauptstr. 1 79104 Freiburg, Germany
| | - Gustavo Habermann
- Departamento de Botânica, Instituto de Biociências, Universidade Estadual Paulista, Av. 24-A 1515, CEP 13506-900, Rio Claro, SP, Brazil; fax: 55 19 3526-4201
| | - Eliana Cazetta
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado km 16, CEP 45662-900, Ilhéus, BA, Brazil; fax: 55 73 3680 5226
| | - Natalia Costa Soares
- Departamento de Botânica, Laboratório de Fenologia, Grupo de Fenologia e Dispersão de Sementes, Universidade Estadual Paulista, Avenida 24A 1515, CEP 13506-900, Rio Claro, SP, Brazil; fax: 55 19 3526-4201
| | - Leonor Patrícia C Morellato
- Departamento de Botânica, Laboratório de Fenologia, Grupo de Fenologia e Dispersão de Sementes, Universidade Estadual Paulista, Avenida 24A 1515, CEP 13506-900, Rio Claro, SP, Brazil; fax: 55 19 3526-4201
| |
Collapse
|
37
|
Zhang X, Luo H, Xu Z, Zhu Y, Ji A, Song J, Chen S. Genome-wide characterisation and analysis of bHLH transcription factors related to tanshinone biosynthesis in Salvia miltiorrhiza. Sci Rep 2015; 5:11244. [PMID: 26174967 PMCID: PMC4502395 DOI: 10.1038/srep11244] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/19/2015] [Indexed: 11/17/2022] Open
Abstract
Salvia miltiorrhiza Bunge (Labiatae) is an emerging model plant for traditional medicine, and tanshinones are among the pharmacologically active constituents of this plant. Although extensive chemical and pharmaceutical studies of these compounds have been performed, studies on the basic helix-loop-helix (bHLH) transcription factors that regulate tanshinone biosynthesis are limited. In our study, 127 bHLH transcription factor genes were identified in the genome of S. miltiorrhiza, and phylogenetic analysis indicated that these SmbHLHs could be classified into 25 subfamilies. A total of 19 sequencing libraries were constructed for expression pattern analyses using RNA-Seq. Based on gene-specific expression patterns and up-regulated expression patterns in response to MeJA treatment, 7 bHLH genes were revealed as potentially involved in the regulation of tanshinone biosynthesis. Among them, the gene expression of SmbHLH37, SmbHLH74 and SmbHLH92 perfectly matches the accumulation pattern of tanshinone biosynthesis in S. miltiorrhiza. Our results provide a foundation for understanding the molecular basis and regulatory mechanisms of bHLH transcription factors in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xin Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Hongmei Luo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Zhichao Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Yingjie Zhu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Aijia Ji
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China
| | - Jingyuan Song
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Chongqing Institute of Medicinal Plant Cultivation, Chongqing 408435, China
| | - Shilin Chen
- 1] Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences &Peking Union Medical College, Beijing 100193, China [2] Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
38
|
Logan BA, Stafstrom WC, Walsh MJL, Reblin JS, Gould KS. Examining the photoprotection hypothesis for adaxial foliar anthocyanin accumulation by revisiting comparisons of green- and red-leafed varieties of coleus (Solenostemon scutellarioides). PHOTOSYNTHESIS RESEARCH 2015; 124:267-74. [PMID: 25862643 DOI: 10.1007/s11120-015-0130-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/23/2015] [Indexed: 05/11/2023]
Abstract
Although plants rely on light to drive energy production via photosynthesis, excess light can be harmful. Plants have evolved photoprotective mechanisms to mitigate this threat, including thermal energy dissipation, the most common form of which involves de-epoxidized constituents of the xanthophyll cycle facilitating the conversion of excess excitation energy to heat. A role in photoprotection has also been proposed for red anthocyanins when they accumulate near the adaxial leaf surface. Here, we compared the response to experimental light stress of a red-leafed (anthocyanin rich) and a green-leafed variety of coleus [Solenostemon scutellarioides (L.) Codd], examining chlorophyll fluorescence emission and pigment composition. After experimentally imposed intense white light, red- and green-leafed coleus exhibited manifestations of light stress (decreased photosystem II quantum efficiency) of a similar magnitude. This, considered alone, could be interpreted as evidence that anthocyanins do not serve a photoprotective role. However, during excess light exposure, the green-leafed variety employed a greater level of thermal energy dissipation and possessed correspondingly higher xanthophyll cycle pool sizes and de-epoxidation states. During exposure to red light, which anthocyanins absorb very poorly, levels of thermal energy dissipation did not differ between coleus varieties. Taken together, our findings suggest that adaxial anthocyanins minimize stress associated with excess light absorption and that the green-leafed variety of coleus compensated for its much lower levels of adaxial anthocyanins by invoking higher levels of energy dissipation. Thus, anthocyanin accumulation should be considered alongside the suite of photoprotective mechanisms employed by photosynthetic tissues.
Collapse
Affiliation(s)
- Barry A Logan
- Biology Department, Bowdoin College, Brunswick, ME, 04011, USA,
| | | | | | | | | |
Collapse
|
39
|
Bai S, Saito T, Honda C, Hatsuyama Y, Ito A, Moriguchi T. An apple B-box protein, MdCOL11, is involved in UV-B- and temperature-induced anthocyanin biosynthesis. PLANTA 2014; 240:1051-62. [PMID: 25074586 DOI: 10.1007/s00425-014-2129-8] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 07/14/2014] [Indexed: 05/03/2023]
Abstract
Our studies showed that an apple B-box protein, MdCOL11, the homolog of AtBBX22, is involved in UV-B- and temperature-induced anthocyanin biosynthesis in apple peel. Anthocyanin is responsible for the red pigmentation in apple peel and a R2R3 MYB gene, MdMYBA/1/10, a homolog of MdMYBA, controls its accumulation. Arabidopsis PAP1 is under the control of a series of upstream factors involved in light signal transduction and photomorphogenesis, such as ELONGATED HYPOCOTYL 5 (HY5) and B-box family (BBX) proteins. In this study, we identified and characterized the homolog of Arabidopsis BBX22 in apple, designated as MdCOL11. Overexpression of MdCOL11 in Arabidopsis enhanced the accumulation of anthocyanin. In apples, MdCOL11 was differentially expressed in all tissues, with the highest expression in petals and the lowest expression in the xylem. Transcripts of MdCOL11 noticeably accumulated at the ripening stage, concomitant with increases in the expressions of anthocyanin biosynthesis-related genes. In an in vitro treatment experiment, MdCOL11 was upregulated in an ultra-violet (UV)-B- and temperature-dependent manner, together with the inductions of anthocyanin biosynthesis-related genes and anthocyanin accumulation in apple peel. Furthermore, a dual-luciferase assay indicated that (1) MdCOL11 regulated the expression of MdMYBA and (2) MdCOL11 was a target of MdHY5. Taken together, our results suggest that MdCOL11 is involved in MdHY5-mediated signal transduction and regulates anthocyanin accumulation in apple peel, which sheds new light on anthocyanin accumulation in apples.
Collapse
Affiliation(s)
- Songling Bai
- NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki, 305-8605, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Nordey T, Léchaudel M, Saudreau M, Joas J, Génard M. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development. PLoS One 2014; 9:e92532. [PMID: 24663687 PMCID: PMC3963907 DOI: 10.1371/journal.pone.0092532] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 02/23/2014] [Indexed: 11/19/2022] Open
Abstract
Fruit physiology is strongly affected by both fruit temperature and water losses through transpiration. Fruit temperature and its transpiration vary with environmental factors and fruit characteristics. In line with previous studies, measurements of physical and thermal fruit properties were found to significantly vary between fruit tissues and maturity stages. To study the impact of these variations on fruit temperature and transpiration, a modelling approach was used. A physical model was developed to predict the spatial and temporal variations of fruit temperature and transpiration according to the spatial and temporal variations of environmental factors and thermal and physical fruit properties. Model predictions compared well to temperature measurements on mango fruits, making it possible to accurately simulate the daily temperature variations of the sunny and shaded sides of fruits. Model simulations indicated that fruit development induced an increase in both the temperature gradient within the fruit and fruit water losses, mainly due to fruit expansion. However, the evolution of fruit characteristics has only a very slight impact on the average temperature and the transpiration per surface unit. The importance of temperature and transpiration gradients highlighted in this study made it necessary to take spatial and temporal variations of environmental factors and fruit characteristics into account to model fruit physiology.
Collapse
Affiliation(s)
| | | | - Marc Saudreau
- INRA, UMR 547 PIAF, BP 10448, Clermont-Ferrand, France
| | | | - Michel Génard
- INRA, UR 1115, Plantes et Systèmes de Culture Horticoles, Avignon, France
| |
Collapse
|
41
|
Jaakola L. New insights into the regulation of anthocyanin biosynthesis in fruits. TRENDS IN PLANT SCIENCE 2013; 18:477-83. [PMID: 23870661 DOI: 10.1016/j.tplants.2013.06.003] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 05/18/2023]
Abstract
Anthocyanins are important health-promoting pigments that make a major contribution to the quality of fruits. The biosynthetic pathway leading to anthocyanins is well known and the key regulatory genes controlling the pathway have been isolated in many species. Recently, a considerable amount of new information has been gathered on the developmental and environmental regulation of anthocyanin biosynthesis in fruits, specifically the impact of regulation through light. New discoveries have begun to reveal links between the developmental regulatory network and the specific regulators of anthocyanin biosynthesis during fruit ripening. In this opinion article, a simplified model for the different regulatory networks involved with anthocyanin production in fruit is proposed.
Collapse
Affiliation(s)
- Laura Jaakola
- Climate Laboratory, Department of Arctic and Marine Biology, University of Tromsø, Norway.
| |
Collapse
|
42
|
Xie XB, Li S, Zhang RF, Zhao J, Chen YC, Zhao Q, Yao YX, You CX, Zhang XS, Hao YJ. The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. PLANT, CELL & ENVIRONMENT 2012; 35:1884-97. [PMID: 22519753 DOI: 10.1111/j.1365-3040.2012.02523.x] [Citation(s) in RCA: 413] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Low environmental temperatures promote anthocyanin accumulation and fruit colouration by up-regulating the expression of genes involved in anthocyanin biosynthesis and regulation in many fruit trees. However, the molecular mechanism by which fruit trees regulate this process in response to low temperature (LT) remains largely unknown. In this study, the cold-induced bHLH transcription factor gene MdbHLH3 was isolated from an apple tree and was found to interact physically and specifically through two regions (amino acids 1-23 and 186-228) at the N terminus with the MYB partner MdMYB1 (allelic to MdMYB10). Subsequently, MdbHLH3 bound to the promoters of the anthocyanin biosynthesis genes MdDFR and MdUFGT and the regulatory gene MdMYB1 to activate their expression. Furthermore, the MdbHLH3 protein was post-translationally modified, possibly involving phosphorylation following exposure to LTs, which enhanced its promoter-binding capacity and transcription activity. Our results demonstrate the molecular mechanism by which MdbHLH3 regulates LT-induced anthocyanin accumulation and fruit colouration in apple.
Collapse
Affiliation(s)
- Xing-Bin Xie
- National Key Laboratory of Crop Biology, Shandong Agricultural University, Tai-An, Shandong 271018 Shandong Grapevine, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Water deficit affected flavonoid accumulation by regulating hormone metabolism in Scutellaria baicalensis Georgi roots. PLoS One 2012; 7:e42946. [PMID: 23077481 PMCID: PMC3471899 DOI: 10.1371/journal.pone.0042946] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 07/16/2012] [Indexed: 11/19/2022] Open
Abstract
The content of flavonoids especially baicalin and baicalein determined the medical quality of Scutellaria baicalensis which is a Chinese traditional medicinal plant. Here, we investigated the mechanism responsible for the content and composition of flavonoids in S. baicalensis under water deficit condition. The transcription levels of several genes which are involved in flavonoid biosynthesis were stimulated by water deficit. Under water deficit condition, fifteen up-regulated proteins, three down-regulated proteins and other six proteins were detected by proteomic analysis. The identified proteins include three gibberellin (GA)- or indoleacetic acid (IAA)-related proteins. Decreased endogenous GAs level and increased IAA level were observed in leaves of S. baicalensis which was treated with water deficit. Exogenous application of GA or α-naphthalene acelic acid (NAA) to plants grown under water deficit conditions led to the increase of endogenous GAs and the decrease of IAA and flavonoids, respectively. When the synthesis pathway of GA or IAA in plants was inhibited by application with the inhibitors, flavonoid levels were recovered. These results indicate that water deficit affected flavonoid accumulation might through regulating hormone metabolism in S. baicalensis Georgi.
Collapse
|
44
|
Li L, Ban ZJ, Li XH, Wu MY, Wang AL, Jiang YQ, Jiang YH. Differential expression of anthocyanin biosynthetic genes and transcription factor PcMYB10 in pears (Pyrus communis L.). PLoS One 2012; 7:e46070. [PMID: 23029391 PMCID: PMC3460990 DOI: 10.1371/journal.pone.0046070] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/27/2012] [Indexed: 12/02/2022] Open
Abstract
Anthocyanin biosynthesis in various plants is affected by environmental conditions and controlled by the transcription level of the corresponding genes. In pears (Pyrus communis cv. ‘Wujiuxiang’), anthocyanin biosynthesis is significantly induced during low temperature storage compared with that at room temperature. We further examined the transcriptional levels of anthocyanin biosynthetic genes in ‘Wujiuxiang’ pears during developmental ripening and temperature-induced storage. The expression of genes that encode flavanone 3-hydroxylase, dihydroflavonol 4-reductase, anthocyanidin synthase, UDP-glucose: flavonoid 3-O-glucosyltransferase, and R2R3 MYB transcription factor (PcMYB10) was strongly positively correlated with anthocyanin accumulation in ‘Wujiuxiang’ pears in response to both developmental and cold-temperature induction. Hierarchical clustering analysis revealed the expression patterns of the set of target genes, of which PcMYB10 and most anthocyanin biosynthetic genes were related to the same cluster. The present work may help explore the molecular mechanism that regulates anthocyanin biosynthesis and its response to abiotic stress at the transcriptional level in plants.
Collapse
Affiliation(s)
- Li Li
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Zhao-Jun Ban
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan, Shandong, People's Republic of China
- College of Forestry and Horticulture, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China
| | - Xi-Hong Li
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin, People's Republic of China
- * E-mail:
| | - Mao-Yu Wu
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Cooperatives, Jinan, Shandong, People's Republic of China
| | - Ai-Li Wang
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Yu-Qian Jiang
- Key Laboratory of Food Nutrition and Safety (Ministry of Education), Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Yun-Hong Jiang
- Institute of Particle Science and Engineering, School of Process, Environmental and Materials Engineering, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
45
|
Zhang L, Luo T, Liu X, Wang Y. Altitudinal variation in leaf construction cost and energy content of Bergenia purpurascens. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2012. [DOI: 10.1016/j.actao.2012.05.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Huang ZA, Zhao T, Fan HJ, Wang N, Zheng SS, Ling HQ. The upregulation of NtAN2 expression at low temperature is required for anthocyanin accumulation in juvenile leaves of Lc-transgenic tobacco (Nicotiana tabacum L.). J Genet Genomics 2012; 39:149-56. [PMID: 22464474 DOI: 10.1016/j.jgg.2012.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Revised: 12/01/2011] [Accepted: 01/23/2012] [Indexed: 11/19/2022]
Abstract
Anthocyanins often accumulate in plants subjected to environmental stress, including low temperature. However, the molecular regulatory mechanism of anthocyanin biosynthesis at low temperature is largely unknown. Here, tobacco was transformed with a maize anthocyanin regulatory gene Lc driven by AtSPX3 promoter to investigate the effect of Lc upon the anthocyanin-biosynthesis pathway. We found that the anthocyanin-biosynthesis pathway could not be activated in wild type, while Lc-transgenic tobacco lines exhibited purple pigmentation in juvenile leaves at low temperature. Accordingly, the total anthocyanin contents increased specifically in juvenile leaves in Lc-transgenic lines. Transcriptional analysis showed that NtCHS and NtCHI were induced by low temperature in leaves of wild type and transgenic lines. NtDFR was uniquely expressed in Lc-transgenic lines, but its transcript was not detected in wild type, implying that NtDFR expression in tobacco leaves was dependent on Lc. Furthermore, the expression of NtAN2 (regulatory gene) and NtANS (anthocyanidin synthase gene) was coordinately upregulated in Lc-transgenic lines under low temperature, suggesting that both Lc and NtAN2 might activate the expression of NtANS. Based on our findings and previous reports, we postulated that Lc interacted with NtAN2 induced by low-temperature stress and consequently stimulated anthocyanin biosynthesis in juvenile leaves of Lc-transgenic tobacco lines.
Collapse
Affiliation(s)
- Zong-An Huang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | |
Collapse
|
47
|
Schaefer HM. Why fruits go to the dark side. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
48
|
Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, Troggio M, Iglesias I, Allan AC. High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. PLANT, CELL & ENVIRONMENT 2011; 34:1176-90. [PMID: 21410713 DOI: 10.1111/j.1365-3040.2011.02316.x] [Citation(s) in RCA: 179] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The biosynthesis of anthocyanin in many plants is affected by environmental conditions. In apple (Malus × domestica Borkh.), concentrations of fruit anthocyanins are lower under hot climatic conditions. We examined the anthocyanin accumulation in the peel of maturing 'Mondial Gala' and 'Royal Gala' apples, grown in both temperate and hot climates, and using artificial heating of on-tree fruit. Heat caused a dramatic reduction of both peel anthocyanin concentration and transcripts of the genes of the anthocyanin biosynthetic pathway. Heating fruit rapidly reduced expression of the R2R3 MYB transcription factor (MYB10) responsible for coordinative regulation for red skin colour, as well as expression of other genes in the transcriptional activation complex. A single night of low temperatures is sufficient to elicit a large increase in transcription of MYB10 and consequently the biosynthetic pathway. Candidate genes that can repress anthocyanin biosynthesis did not appear to be responsible for reductions in anthocyanin content. We propose that temperature-induced regulation of anthocyanin biosynthesis is primarily caused by altered transcript levels of the activating anthocyanin regulatory complex.
Collapse
Affiliation(s)
- Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Private Bag, Auckland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Eyheraguibel B, Richard C, Ledoigt G, Ter Halle A. Inhibition of herbicide photodegradation by plant products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:4868-4873. [PMID: 21425875 DOI: 10.1021/jf1047282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Pesticide reactivity toward light is rarely considered at the leaf surface after crop treatment; regardless, these degradation reactions directly impact the pesticide effectiveness. The use of sunscreen adjuvants to overcome photodegradation has presented some limitations so far. Raw hydroalcoholic plant extracts have been recently proposed to be used as photoprotecting adjuvants; on a model system they significantly decreased the photodegradation of pesticide. Here it is demonstrated that their use makes possible a dose reduction. Sulcotrione, a selective herbicide for use in maize, was tested in a growth chamber equipped with simulated solar light against a typical weed in maize. Sprayed weeds were monitored by biometrical and physiological parameters. Sulcotrione minimum dose required for a good herbicidal efficacy (ED(50), corresponding to 50% of chlorophyll content decay) was estimated to be 55 g ha(-1). In the presence of grape extract added in a 3-fold excess compared to the herbicide, the ED(50) decreased to 34 g ha(-1). The use of grape extract allows extension of sulcotrione herbicidal activity and reduction of the dose by 35% in controlled conditions. This is a promising result for the effective dose field adjustment.
Collapse
Affiliation(s)
- Boris Eyheraguibel
- Laboratoire de Photochimie Moléculaire et Macromoléculaire, Clermont Université, Université Blaise Pascal, Clermont-Ferrand, France
| | | | | | | |
Collapse
|
50
|
Strazzer P, Guzzo F, Levi M. Correlated accumulation of anthocyanins and rosmarinic acid in mechanically stressed red cell suspensions of basil (Ocimum basilicum). JOURNAL OF PLANT PHYSIOLOGY 2011; 168:288-93. [PMID: 20943285 DOI: 10.1016/j.jplph.2010.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 07/12/2010] [Accepted: 07/13/2010] [Indexed: 05/30/2023]
Abstract
A red basil cell line (T2b) rich in rosmarinic acid (RA) was selected for the stable production of anthocyanins (ACs) in the dark. Cell suspension cultures were subjected to mechanical stress through increased agitation (switch from 90 to 150 rpm) to determine the relationship between AC and RA accumulation. Cell extracts were analyzed by HPLC and LC-MS, and the resulting data were processed with multivariate statistical analysis. MS and MS/MS spectra facilitated the putative annotation of several complex cyanidin-based ACs, which were esterified with coumaric acid and, in some cases, also with malonic acid. It was also possible to identify various RA-related molecules, some caffeic and coumaric acid derivatives and some flavanones. Mechanical stress increased the total AC and RA contents, but reduced biomass accumulation. Many metabolites were induced by mechanical stress, including RA and some of its derivatives, most ACs, hydroxycinnamic acids and flavonoids, whereas the abundance of some RA dimers was reduced. Although AC and RA share a common early biosynthetic pathway (from phenylalanine to 4-coumaroyl-CoA) and could have similar or overlapping functions providing antioxidant activity against stress-generated reactive oxygen species, there appeared to be no competition between their individual pathways.
Collapse
Affiliation(s)
- Pamela Strazzer
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134 Verona, Italy
| | | | | |
Collapse
|