1
|
Rodriguez-Zaccaro FD, Lieberman M, Groover A. A systems genetic analysis identifies putative mechanisms and candidate genes regulating vessel traits in poplar wood. FRONTIERS IN PLANT SCIENCE 2024; 15:1375506. [PMID: 38867883 PMCID: PMC11167656 DOI: 10.3389/fpls.2024.1375506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Wood is the water conducting tissue of tree stems. Like most angiosperm trees, poplar wood contains water-conducting vessel elements whose functional properties affect water transport and growth rates, as well as susceptibility to embolism and hydraulic failure during water stress and drought. Here we used a unique hybrid poplar pedigree carrying genomically characterized chromosomal insertions and deletions to undertake a systems genomics analysis of vessel traits. We assayed gene expression in wood forming tissues from clonal replicates of genotypes covering dosage quantitative trait loci with insertions and deletions, genotypes with extreme vessel trait phenotypes, and control genotypes. A gene co-expression analysis was used to assign genes to modules, which were then used in integrative analyses to identify modules associated with traits, to identify putative molecular and cellular processes associated with each module, and finally to identify candidate genes using multiple criteria including dosage responsiveness. These analyses identified known processes associated with vessel traits including stress response, abscisic acid and cell wall biosynthesis, and in addition identified previously unexplored processes including cell cycle and protein ubiquitination. We discuss our findings relative to component processes contributing to vessel trait variation including signaling, cell cycle, cell expansion, and cell differentiation.
Collapse
Affiliation(s)
| | - Meric Lieberman
- University of California Davis, Genome Center, Davis, CA, United States
| | - Andrew Groover
- USDA Forest Service, Pacific Southwest Research Station, Davis, CA, United States
- USDA Forest Service, Northern Research Station, Burlington, VT, United States
| |
Collapse
|
2
|
Waite PA, Leuschner C, Delzon S, Triadiati T, Saad A, Schuldt B. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis). TREE PHYSIOLOGY 2023; 43:2131-2149. [PMID: 37707940 DOI: 10.1093/treephys/tpad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The predicted increase of drought intensity in South-East Asia has raised concern about the sustainability of rubber (Hevea brasiliensis Müll. Arg.) cultivation. In order to quantify the degree of phenotypic plasticity in this important tree crop species, we analysed a set of wood and leaf traits related to the hydraulic safety and efficiency in PB260 clones from eight small-holder plantations in Jambi province, Indonesia, representing a gradient in local microclimatic and edaphic conditions. Across plots, branch embolism resistance (P50) ranged from -2.14 to -2.58 MPa. The P50 and P88 values declined, and the hydraulic safety margin increased, with an increase in the mean annual vapour pressure deficit (VPD). Among leaf traits, only the changes in specific leaf area were related to the differences in evaporative demand. These variations of hydraulic trait values were not related to soil moisture levels. We did not find a trade-off between hydraulic safety and efficiency, but vessel density (VD) emerged as a major trait associated with both safety and efficiency. The VD, and not vessel diameter, was closely related to P50 and P88 as well as to specific hydraulic conductivity, the lumen-to-sapwood area ratio and the vessel grouping index. In conclusion, our results demonstrate some degree of phenotypic plasticity in wood traits related to hydraulic safety in this tropical tree species, but this is only in response to the local changes in evaporative demand and not soil moisture. Given that VPD may increasingly limit plant growth in a warmer world, our results provide evidence of hydraulic trait changes in response to a rising evaporative demand.
Collapse
Affiliation(s)
- Pierre-André Waite
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Sylvain Delzon
- Department of Biodiversity, Genes, and Communities (BIOGECO), Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Université Bordeaux, Bat. 2 Allée Geoffroy St-Hilaire, Pessac 33615, France
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor IPB University, Darmaga Campus, Bogor 16680, Indonesia
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Indah, Jambi, Sumatra 36361, Indonesia
| | - Bernhard Schuldt
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| |
Collapse
|
3
|
Gori A, Moura BB, Sillo F, Alderotti F, Pasquini D, Balestrini R, Ferrini F, Centritto M, Brunetti C. Unveiling resilience mechanisms of Quercus ilex seedlings to severe water stress: Changes in non-structural carbohydrates, xylem hydraulic functionality and wood anatomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163124. [PMID: 37001665 DOI: 10.1016/j.scitotenv.2023.163124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Over the last few decades, extensive dieback and mortality episodes of Quercus ilex L. have been documented after severe drought events in many Mediterranean forests. However, the underlying physiological, anatomical, and biochemical mechanisms remain poorly understood. We investigated the physiological and biochemical processes linked to embolism formation and non-structural carbohydrates (NSCs) dynamics in Q. ilex seedlings exposed to severe water stress and rewatering. Measurements of leaf gas exchange, water relations, non-structural carbohydrates, drought-related gene expression, and anatomical changes in wood parenchyma were assessed. Under water stress, the midday stem water potential dropped below - 4.5 MPa corresponding to a ~ 50 % loss of hydraulic conductivity. A 70 % reduction in stomatal conductance led to a strong depletion of wood NSCs. Starch consumption, resulting from the upregulation of the β-amylase gene BAM3, together with the downregulation of glucose (GPT1) and sucrose (SUC27) transport genes, suggests glucose utilization to sustain cellular metabolism in the wood parenchyma. After rewatering, the presence of residual xylem embolism led to an incomplete recovery of leaf gas exchanges. However, the partial restoration of photosynthesis allowed the accumulation of new starch reserves in the wood parenchyma and the production of new narrower vessels. In addition, changes in the cell wall composition of the wood parenchyma fibers were observed. Our findings indicate that thirty days of rewatering were sufficient to restore the NSCs reserves and growth rates of Q. ilex seedlings and that the carryover effects of water stress were primarily caused by hydraulic dysfunction.
Collapse
Affiliation(s)
- Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| | - Barbara Baesso Moura
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Fabiano Sillo
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy
| | - Raffaella Balestrini
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry (DAGRI), Sesto Fiorentino, Florence 50019, Italy; National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Mauro Centritto
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy
| | - Cecilia Brunetti
- National Research Council of Italy, Institute for Sustainable Plant Protection (IPSP), Sesto Fiorentino, Florence and Turin 50019 and 10135, Italy.
| |
Collapse
|
4
|
Weithmann G, Paligi SS, Schuldt B, Leuschner C. Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. TREE PHYSIOLOGY 2022; 42:2224-2238. [PMID: 35861677 DOI: 10.1093/treephys/tpac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Crucial for the climate adaptation of trees is a xylem anatomical structure capable of adjusting to changing water regimes. Although species comparisons across climate zones have demonstrated anatomical change in response to altered water availability and tree height, less is known about the adaptability of tree vascular systems to increasing water deficits at the intraspecific level. Information on the between-population and within-population variability of xylem traits helps assessing a species' ability to cope with climate change. We investigated the variability of wood anatomical and related hydraulic traits in terminal branches of European beech (Fagus sylvatica L.) trees across a precipitation gradient (520-890 mm year-1) and examined the influence of climatic water balance (CWB), soil water capacity (AWC), neighborhood competition (CI), tree height and branch age on these traits. Furthermore, the relationship between xylem anatomical traits and embolism resistance (P50) was tested. Within-population trait variation was larger than between-population variation. Vessel diameter, lumen-to-sapwood area ratio and potential conductivity of terminal branches decreased with decreasing CWB, but these traits were not affected by AWC, whereas vessel density increased with an AWC decrease. In contrast, none of the studied anatomical traits were influenced by variation in tree height (21-34 m) or CI. Branch age was highly variable (2-22 years) despite equal diameter and position in the flow path, suggesting different growth trajectories in the past. Vessel diameter decreased, and vessel density increased, with increasing branch age, reflecting negative annual radial growth trends. Although vessel diameter was not related to P50, vessel grouping index and lumen-to-sapwood area ratio showed a weak, though highly significant, positive relationship to P50. We conclude that the xylem anatomy of terminal tree-top branches in European beech is modified in response to increasing climatic aridity and/or decreasing soil water availability, independent of a tree height effect.
Collapse
Affiliation(s)
- Greta Weithmann
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Sharath Shyamappa Paligi
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
| | - Bernhard Schuldt
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute of Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz, 97082 Würzburg, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, 37073 Goettingen, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
5
|
Martínez‐Sancho E, Treydte K, Lehmann MM, Rigling A, Fonti P. Drought impacts on tree carbon sequestration and water use - evidence from intra-annual tree-ring characteristics. THE NEW PHYTOLOGIST 2022; 236:58-70. [PMID: 35576102 PMCID: PMC9542003 DOI: 10.1111/nph.18224] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/04/2022] [Indexed: 05/22/2023]
Abstract
The impact of climate extremes on forest ecosystems is poorly understood but important for predicting carbon and water cycle feedbacks to climate. Some knowledge gaps still remain regarding how drought-related adjustments in intra-annual tree-ring characteristics directly impact tree carbon and water use. In this study we quantified the impact of an extreme summer drought on the water-use efficiency and carbon sequestration of four mature Norway spruce trees. We used detailed observations of wood formation (xylogenesis) and intra-annual tree-ring properties (quantitative wood anatomy and stable carbon isotopes) combined with physiological water-stress monitoring. During 41 d of tree water deficit, we observed an enrichment in 13 C but a reduction in cell enlargement and wall-thickening processes, which impacted the anatomical characteristics. These adjustments diminished carbon sequestration by 67% despite an 11% increase in water-use efficiency during drought. However, with the resumption of a positive hydric state in the stem, we observed a fast recovery of cell formation rates based on the accumulated assimilates produced during drought. Our findings enhance our understanding of carbon and water fluxes between the atmosphere and forest ecosystems, providing observational evidence on the tree intra-annual carbon sequestration and water-use efficiency dynamics to improve future generations of vegetation models.
Collapse
Affiliation(s)
- Elisabet Martínez‐Sancho
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Kerstin Treydte
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Marco M. Lehmann
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| | - Andreas Rigling
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsSwiss Federal Institute of Technology ETHUniversitaetsstrasse 168092ZurichSwitzerland
| | - Patrick Fonti
- Research Unit Forest DynamicsSwiss Federal Institute for Forest Snow and Landscape Research WSLZürcherstrasse 1118903BirmensdorfSwitzerland
| |
Collapse
|
6
|
Experimental Study of Intra-Ring Anatomical Variation in Populus alba L. with Respect to Changes in Temperature and Day-Length Conditions. FORESTS 2022. [DOI: 10.3390/f13071151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
There are various studies on annual ring structural variations in plants grown in the field under varying meteorological statistics. However, related experimental approach is limited, hitherto. In this study, complete artificial conditions with growth chambers were adopted to evaluate the influence of day length and temperature on intra-ring structure formation. The basic artificial growing conditions have been previously reported as “shortened annual cycle system”, which consisted of the following three stages mimicking seasons approximately: Stage 1, spring/summer; Stage 2, autumn; and Stage 3, winter. This system shortens an annual cycle of Populus alba to 5 months. In this study, Stage 2 was modified in two ways: one was a condition in which the temperature was fixed and the day length was gradually shortened, and the other was a condition with a fixed day length and gradually lowered temperature. In the former condition, the cell wall of fibers thickened from the middle of the ring, and the vessel diameter became smaller from the same position. The wood in the latter condition appeared more natural in terms of wall thickness and vessel shape; however, the thickness of the wall reduced in the starting position of Stage 2. It may have been caused by the shortage of material for cell production under a high temperature but a short day length.
Collapse
|
7
|
Arsić J, Stojanović M, Petrovičová L, Noyer E, Milanović S, Světlík J, Horáček P, Krejza J. Increased wood biomass growth is associated with lower wood density in Quercus petraea (Matt.) Liebl. saplings growing under elevated CO2. PLoS One 2021; 16:e0259054. [PMID: 34679119 PMCID: PMC8535391 DOI: 10.1371/journal.pone.0259054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022] Open
Abstract
Atmospheric carbon dioxide (CO2) has increased substantially since the industrial revolution began, and physiological responses to elevated atmospheric CO2 concentrations reportedly alter the biometry and wood structure of trees. Additionally, soil nutrient availability may play an important role in regulating these responses. Therefore, in this study, we grew 288 two-year-old saplings of sessile oak (Quercus petraea (Matt.) Liebl.) in lamellar glass domes for three years to evaluate the effects of CO2 concentrations and nutrient supply on above- and belowground biomass, wood density, and wood structure. Elevated CO2 increased above- and belowground biomass by 44.3% and 46.9%, respectively. However, under elevated CO2 treatment, sapling wood density was markedly lower (approximately 1.7%), and notably wider growth rings-and larger, more efficient conduits leading to increased hydraulic conductance-were observed. Moreover, despite the vessels being larger in saplings under elevated CO2, the vessels were significantly fewer (p = 0.023). No direct effects of nutrient supply were observed on biomass growth, wood density, or wood structure, except for a notable decrease in specific leaf area. These results suggest that, although fewer and larger conduits may render the xylem more vulnerable to embolism formation under drought conditions, the high growth rate in sessile oak saplings under elevated CO2 is supported by an efficient vascular system and may increase biomass production in this tree species. Nevertheless, the decreased mechanical strength, indicated by low density and xylem vulnerability to drought, may lead to earlier mortality, offsetting the positive effects of elevated CO2 levels in the future.
Collapse
Affiliation(s)
- Janko Arsić
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Marko Stojanović
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Lucia Petrovičová
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Estelle Noyer
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Belgrade, Serbia
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Jan Světlík
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Petr Horáček
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Wood Science and Technology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Jan Krejza
- Global Change Research Institute of the Czech Academy of Sciences, Brno, Czech Republic
- Department of Forest Ecology, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Kara F, Keleş SÖ, Loewenstein EF. Development and anatomical traits of black pine on an abandoned agricultural land compared to forested areas. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:621. [PMID: 34476631 DOI: 10.1007/s10661-021-09403-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Global acreage of forested lands has increased in some countries. At least some of this increase is due to the natural conversion of abandoned agricultural lands into forests. However, little is known about how these new stands develop on abandoned agricultural lands in comparison with natural regeneration of existing forests. Specifically, knowledge of how black pine (Pinus nigra Arnold) naturally establishes and develops on abandoned agricultural lands is limited. In this study, we examined the density and growth of black pine saplings as well as some morphological and anatomical characteristics on an abandoned agricultural land (AAS). These data were compared with those observed in a naturally regenerated stand (NRS), and in a forest opening (FOS). The greatest sapling density was observed in the NRS site, while sapling growth and stem biomass were higher in AAS followed by NRS and FOS. Moreover, each study site exhibited site-specific morphological and anatomical traits in their saplings. Our findings showed that site treatments and overstory openness would both play crucial role for establishment and development of black pine.
Collapse
Affiliation(s)
- Ferhat Kara
- Faculty of Forestry, Kastamonu University, 37100, Kastamonu, Turkey.
| | | | | |
Collapse
|
9
|
Gessler A, Bottero A, Marshall J, Arend M. The way back: recovery of trees from drought and its implication for acclimation. THE NEW PHYTOLOGIST 2020; 228:1704-1709. [PMID: 32452535 DOI: 10.1111/nph.16703] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Affiliation(s)
- Arthur Gessler
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, Universitätsstrasse 16, Zurich, 8092, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - Alessandra Bottero
- Forest Dynamics, Swiss Federal Research Institute WSL, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
- SwissForestLab, Birmensdorf, Zürcherstrasse 111, Birmensdorf, 8903, Switzerland
| | - John Marshall
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Skogens ekologi och skötsel, Umeå, 901 83, Sweden
| | - Matthias Arend
- Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel, 4056, Switzerland
| |
Collapse
|
10
|
Agustí J, Blázquez MA. Plant vascular development: mechanisms and environmental regulation. Cell Mol Life Sci 2020; 77:3711-3728. [PMID: 32193607 PMCID: PMC11105054 DOI: 10.1007/s00018-020-03496-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/12/2022]
Abstract
Plant vascular development is a complex process culminating in the generation of xylem and phloem, the plant transporting conduits. Xylem and phloem arise from specialized stem cells collectively termed (pro)cambium. Once developed, xylem transports mainly water and mineral nutrients and phloem transports photoassimilates and signaling molecules. In the past few years, major advances have been made to characterize the molecular, genetic and physiological aspects that govern vascular development. However, less is known about how the environment re-shapes the process, which molecular mechanisms link environmental inputs with developmental outputs, which gene regulatory networks facilitate the genetic adaptation of vascular development to environmental niches, or how the first vascular cells appeared as an evolutionary innovation. In this review, we (1) summarize the current knowledge of the mechanisms involved in vascular development, focusing on the model species Arabidopsis thaliana, (2) describe the anatomical effect of specific environmental factors on the process, (3) speculate about the main entry points through which the molecular mechanisms controlling of the process might be altered by specific environmental factors, and (4) discuss future research which could identify the genetic factors underlying phenotypic plasticity of vascular development.
Collapse
Affiliation(s)
- Javier Agustí
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| | - Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022, Valencia, Spain.
| |
Collapse
|
11
|
Leroy T, Rougemont Q, Dupouey JL, Bodénès C, Lalanne C, Belser C, Labadie K, Le Provost G, Aury JM, Kremer A, Plomion C. Massive postglacial gene flow between European white oaks uncovered genes underlying species barriers. THE NEW PHYTOLOGIST 2020; 226:1183-1197. [PMID: 31264219 PMCID: PMC7166129 DOI: 10.1111/nph.16039] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 06/23/2019] [Indexed: 05/10/2023]
Abstract
Oaks are dominant forest tree species widely distributed across the Northern Hemisphere, where they constitute natural resources of economic, ecological, social and historical value. Hybridisation and adaptive introgression have long been thought to be major drivers of their ecological success. Therefore, the maintenance of species barriers remains a key question, given the extent of interspecific gene flow. In this study, we made use of the tremendous genetic variation among four European white oak species (31 million single nucleotide polymorphisms (SNPs)) to infer the evolutionary history of these species, study patterns of genetic differentiation and identify reproductive barriers. We first analysed the ecological and historical relationships among these species and inferred a long-term strict isolation followed by a recent and extensive postglacial contact using approximate Bayesian computation. Assuming this demographic scenario, we then performed backward simulations to generate the expected distributions of differentiation under neutrality to scan their genomes for reproductive barriers. We finally identified important intrinsic and ecological functions driving the reproductive isolation. We discussed the importance of identifying the genetic basis for the ecological preferences between these oak species and its implications for the renewal of European forests under global warming.
Collapse
Affiliation(s)
| | - Quentin Rougemont
- Département de biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V 0A6, Québec, Canada
| | - Jean-Luc Dupouey
- INRA Université de Lorraine UMR 1137 ‘Ecologie et Ecophysiologie Forestières’, route d’Amance, 54280 Champenoux, France
| | | | | | - Caroline Belser
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Karine Labadie
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | | | - Jean-Marc Aury
- CEA - Institut de Biologie François Jacob, Genoscope, 2 rue Gaston Crémieux, 91057 Evry, France
| | - Antoine Kremer
- BIOGECO, INRA, Univ. Bordeaux, 33610 Cestas, France
- Corresponding author: Antoine Kremer, INRA, UMR1202 BIOGECO, F-33610 Cestas, France, Phone number: +33(0)5 57 12 28 32,
| | | |
Collapse
|
12
|
Ciceu A, Popa I, Leca S, Pitar D, Chivulescu S, Badea O. Climate change effects on tree growth from Romanian forest monitoring Level II plots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134129. [PMID: 31499344 DOI: 10.1016/j.scitotenv.2019.134129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/20/2019] [Accepted: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Forest health status is negatively influenced by climate change, air pollution and other disturbances. Extreme droughts reduce stand productivity, increase vulnerability to pests, and can even provoke mortality. Growth dynamics at tree and forest stand levels are considered the main indicators of stability and productivity in forest ecosystem structures. The main climate drivers for tree growth were identified using basal area increment (BAI) as a synthetic indicator. BAI chronologies were obtained from increment cores for 1960-2012 period. Six species were analysed in an attempt to identify their growth limiting factors. For the most important oak species in Romania, resilience components were computed in order to analyse their response to drought events. Moreover, growth dynamics were analysed for two species in mixed and monoculture forests. The results suggest that - in comparison to Picea abies and Fagus sylvatica, the sensitivity of Quercus spp. is much higher (0.3-0.47). Oakspecies situated in the most drought-affected areas are sensitive to rainfall values from the previous autumn, current spring, and early summer, with April monthly values having the most significant effect on BAI increment (r = 0.47*) The most sensitive species to drought is Q. cerris and Q. frainetto. Their BAI reduction during drought is >50% compared with the BAI values before the drought period. The recovery capacity of tree growth following drought events is lower for Q. robur and Q. petraea and higher for Q. cerris and Q. frainetto. The mixed forest stands have not showed a constant higher resistance to drought.
Collapse
Affiliation(s)
- Albert Ciceu
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania.
| | - Ionel Popa
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania
| | - Stefan Leca
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania.
| | - Diana Pitar
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania.
| | - Serban Chivulescu
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania.
| | - Ovidiu Badea
- National Institute for Research and Development in Forestry "Marin Drăcea" - INCDS, 128 Eroilor Bvd., 077030 Voluntari, Romania; Transilvania University of Brașov, 29 Eroilor Bvd, 500036 Brașov, Romania.
| |
Collapse
|
13
|
Berzaghi F, Wright IJ, Kramer K, Oddou-Muratorio S, Bohn FJ, Reyer CPO, Sabaté S, Sanders TGM, Hartig F. Towards a New Generation of Trait-Flexible Vegetation Models. Trends Ecol Evol 2019; 35:191-205. [PMID: 31882280 DOI: 10.1016/j.tree.2019.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/17/2022]
Abstract
Plant trait variability, emerging from eco-evolutionary dynamics that range from alleles to macroecological scales, is one of the most elusive, but possibly most consequential, aspects of biodiversity. Plasticity, epigenetics, and genetic diversity are major determinants of how plants will respond to climate change, yet these processes are rarely represented in current vegetation models. Here, we provide an overview of the challenges associated with understanding the causes and consequences of plant trait variability, and review current developments to include plasticity and evolutionary mechanisms in vegetation models. We also present a roadmap of research priorities to develop a next generation of vegetation models with flexible traits. Including trait variability in vegetation models is necessary to better represent biosphere responses to global change.
Collapse
Affiliation(s)
- Fabio Berzaghi
- Laboratory for Sciences of Climate and Environment (LSCE) - UMR CEA/CNRS/UVSQ, Gif-sur-Yvette 91191, France; Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia; Dipartimento per la Innovazione nei sistemi Biologici, Agroalimentari e Forestali, University of Tuscia, Viterbo 01100, Italy.
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2022, Australia
| | - Koen Kramer
- Wageningen University and Research, Droevendaalse steeg 4, 6700AA Wageningen, The Netherlands
| | | | - Friedrich J Bohn
- Karlsruhe Institute of Technology, Institute for Meteorology and Climate Research, Atmospheric Environmental Research (IMK-IFU), Kreuzeckbahnstrasse 19, Garmisch-Partenkirchen 82467, Germany; Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Christopher P O Reyer
- Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, PO Box 60 12 03, D-14412 Potsdam, Germany
| | - Santiago Sabaté
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona (UB), Barcelona 08028, Spain; CREAF (Center for Ecological Research and Forestry Applications), Cerdanyola del Vallès 08193, Spain
| | - Tanja G M Sanders
- Thuenen Institut of Forest Ecosystems, Alfred-Moeller-Str. 1, Haus 41/42, 16225 Eberswalde, Germany
| | - Florian Hartig
- Theoretical Ecology, Faculty of Biology and Preclinical Medicine, University of Regensburg, Universitätsstraße 3, 93053, Regensburg, Germany
| |
Collapse
|
14
|
What Makes the Wood? Exploring the Molecular Mechanisms of Xylem Acclimation in Hardwoods to an Ever-Changing Environment. FORESTS 2019. [DOI: 10.3390/f10040358] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Wood, also designated as secondary xylem, is the major structure that gives trees and other woody plants stability for upright growth and maintains the water supply from the roots to all other plant tissues. Over recent decades, our understanding of the cellular processes of wood formation (xylogenesis) has substantially increased. Plants as sessile organisms face a multitude of abiotic stresses, e.g., heat, drought, salinity and limiting nutrient availability that require them to adjust their wood structure to maintain stability and water conductivity. Because of global climate change, more drastic and sudden changes in temperature and longer periods without precipitation are expected to impact tree productivity in the near future. Thus, it is essential to understand the process of wood formation in trees under stress. Many traits, such as vessel frequency and size, fiber thickness and density change in response to different environmental stimuli. Here, we provide an overview of our current understanding of how abiotic stress factors affect wood formation on the molecular level focussing on the genes that have been identified in these processes.
Collapse
|
15
|
Annual Variations in Norway Spruce Xylem Studied Using Infrared Micro-spectroscopy. FORESTS 2019. [DOI: 10.3390/f10020164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In temperate environments, ring width, cell size and cell wall thickness within the xylem of trees are known to be affected by climate conditions. Less is known about the effect of climate conditions on the chemical characteristics of the xylem, which are important for the susceptibility of the tissue towards fungal infections as well as for the degradability of the material within the forest ecosystem. We explored the use of infrared microspectroscopy to investigate the possible effects of temperature and drought on the relative amount of cell wall biopolymers, i.e. the ratios between cellulose, hemicellulose and lignin in the earlywood xylem cell walls of Norway spruce (Picea abies (L.) Karst.) in temperate forests. Drought and warm temperatures were significantly correlated to the hemicellulose to lignin ratio of the earlywood formed the following year, perhaps due to a reduced amount of stored resources being available for xylem formation.
Collapse
|
16
|
Hudson PJ, Limousin JM, Krofcheck DJ, Boutz AL, Pangle RE, Gehres N, McDowell NG, Pockman WT. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. PLANT, CELL & ENVIRONMENT 2018; 41:421-435. [PMID: 29215745 DOI: 10.1111/pce.13109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/09/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
Hydraulic architecture imposes a fundamental control on water transport, underpinning plant productivity, and survival. The extent to which hydraulic architecture of mature trees acclimates to chronic drought is poorly understood, limiting accuracy in predictions of forest responses to future droughts. We measured seasonal shoot hydraulic performance for multiple years to assess xylem acclimation in mature piñon (Pinus edulis) and juniper (Juniperus monosperma) after 3+ years of precipitation manipulation. Our treatments consisted of water addition (+20% ambient precipitation), partial precipitation-exclusion (-45% ambient precipitation), and exclusion-structure control. Supplemental watering elevated leaf water potential, sapwood-area specific hydraulic conductivity, and leaf-area specific hydraulic conductivity relative to precipitation exclusion. Shifts in allocation of leaf area to sapwood area enhanced differences between irrigated and droughted KL in piñon but not juniper. Piñon and juniper achieved similar KL under ambient conditions, but juniper matched or outperformed piñon in all physiological measurements under both increased and decreased precipitation treatments. Embolism vulnerability and xylem anatomy were unaffected by treatments in either species. Absence of significant acclimation combined with inferior performance for both hydraulic transport and safety suggests piñon has greater risk of local extirpation if aridity increases as predicted in the southwestern USA.
Collapse
Affiliation(s)
- P J Hudson
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - J M Limousin
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE, UMR5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, Montpellier, 34293, France
| | - D J Krofcheck
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - A L Boutz
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - R E Pangle
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - N Gehres
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| | - N G McDowell
- Earth Systems Analysis and Modeling, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - W T Pockman
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131-0001, USA
| |
Collapse
|
17
|
Granda E, Alla AQ, Laskurain NA, Loidi J, Sánchez-Lorenzo A, Camarero JJ. Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments. TREE PHYSIOLOGY 2018; 38:159-172. [PMID: 29300954 DOI: 10.1093/treephys/tpx157] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/17/2017] [Indexed: 05/12/2023]
Abstract
The ability of trees to cope with climate change is a pivotal feature of forest ecosystems, especially for rear-edge populations facing warm and dry conditions. To evaluate current and future forests threats, a multi-proxy focus on the growth, anatomical and physiological responses to climate change is needed. We examined the long-term xylem adjustments to climate variability of the temperate Quercus robur L. at its rear edge and the sub-Mediterranean Quercus pyrenaica Willd. Both species coexist at a mesic (ME, humid and warmer) and a xeric (XE, dry and cooler) site in northern Spain, the latter experiencing increasing temperatures in recent decades. We compared xylem traits at each site and assessed their trends, relationships and responses to climate (1960-2008). Traits included basal area increment, earlywood vessel hydraulic diameter, density and theoretical-specific hydraulic conductivity together with latewood oxygen (δ18O) stable isotopes and δ13C-derived water-use efficiency (iWUE). Quercus robur showed the highest growth at ME, likely through enhanced cambial activity. Quercus pyrenaica had higher iWUE at XE compared with ME, but limited plasticity of anatomical xylem traits was found for the two oak species. Similar physiological performance was found for both species. The iWUE augmented in recent years especially at XE, likely explained by stomatal closure given the increasing δ18O signal in response to drier and sunnier growing seasons. Overall, traits were more correlated at XE than at ME. The iWUE improvements were linked to higher growth up to a threshold (~85 μmol mol-1) after which reduced growth was found at XE. Our results are consistent with Q. pyrenaica and Q. robur coexisting at the central and dry edge of the climatic species distribution, respectively, showing similar responses to buffer warmer conditions. In fact, the observed adjustments found for Q. robur point towards growth stability of similar rear-edge oak populations under warmer climate conditions.
Collapse
Affiliation(s)
- E Granda
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| | - A Q Alla
- Fakulteti i Shkencave Pyjore, Universiteti Bujqësor i Tiranës, Kodër-Kamëz 1029, Tirana, Albania
| | - N A Laskurain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - J Loidi
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - A Sánchez-Lorenzo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| | - J J Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| |
Collapse
|
18
|
Taxon-Independent and Taxon-Dependent Responses to Drought in Seedlings from Quercus robur L., Q. petraea (Matt.) Liebl. and Their Morphological Intermediates. FORESTS 2017. [DOI: 10.3390/f8110407] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Truffaut L, Chancerel E, Ducousso A, Dupouey JL, Badeau V, Ehrenmann F, Kremer A. Fine-scale species distribution changes in a mixed oak stand over two successive generations. THE NEW PHYTOLOGIST 2017; 215:126-139. [PMID: 28444962 PMCID: PMC5624485 DOI: 10.1111/nph.14561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 05/12/2023]
Abstract
Large-scale tree distribution changes have received considerable attention but underlying demo-genetic mechanisms are less well documented. We used a diachronic approach to track species shifts in a mixed oak stand (Quercus petraea-Quercus robur) at a fine spatiotemporal scale. Species assignment was made using single nucleotide polymorphism (SNP) fingerprints employing clustering and parentage analysis. Mating patterns and reproductive success were assessed by parentage analysis. Plot-based inventories of soil parameters and sapling densities provided ecological and demographic information, respectively. Sapling density and reproductive success was higher in Q. petraea than in Q. robur, and were correlated with a spatial expansion of Q. petraea (50% to 67% of the area). Admixed trees resulting from hybridization and backcrossing between the two species were more frequent under the Q. robur canopy. We suspect that species' differential responses to ongoing environmental changes and interspecific competition are the predominant factors accounting for the recruitment success of Q. petraea, while human interference, differential reproduction and hybridization (and backcrossings) are probably of more limited importance. We anticipate in mixed Q. petraea-Q. robur stands, under current ongoing environmental change, that these processes will be enhanced, at least in the western part of the distribution of the two species.
Collapse
Affiliation(s)
- Laura Truffaut
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Emilie Chancerel
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Alexis Ducousso
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Jean Luc Dupouey
- INRA Université de Lorraine UMR 1137 ‘Ecologie et
Ecophysiologie Forestières’, route d’Amance, F-54280
Champenoux, France
| | - Vincent Badeau
- INRA Université de Lorraine UMR 1137 ‘Ecologie et
Ecophysiologie Forestières’, route d’Amance, F-54280
Champenoux, France
| | - François Ehrenmann
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| | - Antoine Kremer
- INRA, UMR 1202 BIOGECO, F-33610 Cestas, France
- Université de Bordeaux, UMR 1202 BIOGECO, F-33615 Pessac,
France
| |
Collapse
|
20
|
Lübbe T, Schuldt B, Leuschner C. Acclimation of leaf water status and stem hydraulics to drought and tree neighbourhood: alternative strategies among the saplings of five temperate deciduous tree species. TREE PHYSIOLOGY 2017; 37:456-468. [PMID: 27881798 DOI: 10.1093/treephys/tpw095] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 09/04/2016] [Indexed: 06/06/2023]
Abstract
Adjustment in leaf water status parameters and modification in xylem structure and functioning can be important elements of a tree's response to continued water limitation. In a growth trial with saplings of five co-occurring temperate broad-leaved tree species (genera Fraxinus, Acer, Carpinus, Tilia and Fagus) conducted in moist or dry soil, we compared the drought acclimation in several leaf water status and stem hydraulic parameters. Considering the extremes in the species responses, Fraxinus excelsior L. improved its leaf tissue hydration in the dry treatment through osmotic, elastic and apoplastic adjustment while Fagus sylvatica L. solely modified its xylem anatomy, which resulted in increased embolism resistance at the cost of hydraulic efficiency. Our results demonstrate the contrasting response strategies of coexisting tree species and how variable trait plasticity among species can be. The comparison of plants grown either in monoculture or in five-species mixture showed that the neighbouring species diversity can significantly influence a tree's hydraulic architecture and leaf water status regulation. Droughted Carpinus betulus L. (and to a lesser extent, Acer pseudoplatanus L.) plants developed a more efficient stem hydraulic system in heterospecific neighbourhoods, while that of F. sylvatica was generally more efficient in conspecific than heterospecific neighbourhoods. We conclude that co-occurring tree species may develop a high diversity of drought-response strategies, and exploring the full diversity of trait characteristics requires synchronous study of acclimation at the leaf and stem (and possibly also the root) levels, and consideration of physiological as well as morphological and anatomical modifications.
Collapse
Affiliation(s)
- Torben Lübbe
- Department of Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Bernhard Schuldt
- Department of Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| | - Christoph Leuschner
- Department of Plant Ecology and Ecosystems Research, Albrecht von Haller Institute for Plant Sciences, University of Göttingen, Untere Karspüle 2, 37073 Göttingen, Germany
| |
Collapse
|
21
|
Rita A, Borghetti M, Todaro L, Saracino A. Interpreting the Climatic Effects on Xylem Functional Traits in Two Mediterranean Oak Species: The Role of Extreme Climatic Events. FRONTIERS IN PLANT SCIENCE 2016; 7:1126. [PMID: 27532008 PMCID: PMC4970489 DOI: 10.3389/fpls.2016.01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/14/2016] [Indexed: 05/09/2023]
Abstract
In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting in substantial reduction of hydraulic functionality and, hence increased incidence of xylem dysfunctions.
Collapse
Affiliation(s)
- Angelo Rita
- Dipartimento di Agraria, Università di Napoli Federico IIPortici, Italy
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della BasilicataPotenza, Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della BasilicataPotenza, Italy
| | - Luigi Todaro
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali, Università della BasilicataPotenza, Italy
| | - Antonio Saracino
- Dipartimento di Agraria, Università di Napoli Federico IIPortici, Italy
| |
Collapse
|
22
|
Balducci L, Cuny HE, Rathgeber CBK, Deslauriers A, Giovannelli A, Rossi S. Compensatory mechanisms mitigate the effect of warming and drought on wood formation. PLANT, CELL & ENVIRONMENT 2016; 39:1338-52. [PMID: 26662380 DOI: 10.1111/pce.12689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 11/27/2015] [Indexed: 05/09/2023]
Abstract
Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions.
Collapse
Affiliation(s)
- Lorena Balducci
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - Henri E Cuny
- INRA, UMR 1092 LERFOB, F-54280, Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000, Nancy, France
- Swiss Federal Research Institute WSL, CH-8903, Birmensdorf, Switzerland
| | - Cyrille B K Rathgeber
- INRA, UMR 1092 LERFOB, F-54280, Champenoux, France
- AgroParisTech, UMR 1092 LERFOB, F-54000, Nancy, France
| | - Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
23
|
Turcsán A, Steppe K, Sárközi E, Erdélyi É, Missoorten M, Mees G, Mijnsbrugge KV. Early Summer Drought Stress During the First Growing Year Stimulates Extra Shoot Growth in Oak Seedlings (Quercus petraea). FRONTIERS IN PLANT SCIENCE 2016; 7:193. [PMID: 26941760 PMCID: PMC4763100 DOI: 10.3389/fpls.2016.00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 02/04/2016] [Indexed: 05/09/2023]
Abstract
More severe summer droughts are predicted for mid-latitudes in Europe. To evaluate the impact on forest ecosystems and more specifically on forest regeneration, we studied the response to summer drought in oak seedlings (Quercus petraea). Acorns were collected from different mother trees in three stands in Belgium, sown in pots and grown in non-heated greenhouse conditions. We imposed drought on the seedlings in early summer by first watering the pots to saturation and then stopping any watering. Weight of the pots and stomatal conductance were regularly measured. Re-watering followed this drought period of 5 weeks. Height of the seedlings and apical bud development were observed. Stomatal resistance increased toward the end of the experiment in the drought-treated group and was restored after re-watering. The seedlings from the drought treatment displayed a higher probability to produce additional shoot growth after re-watering (p ≤ 0.05). A higher competition for water (two plants per pot) increased this chance. Although this chance was also higher for smaller seedlings, the actual length of the extra growth after re-watering was higher for larger seedlings (p ≤ 0.01). Both in the drought-treated and in the control group the autochthonous provenance growing on a xeric site produced less extra shoots compared to the two other provenances. Finally, stressed plants showed less developed apical buds compared to the control group after re-watering, suggesting a phenological effect on the growth cycle of oaks (p ≤ 0.0001). The higher chance for an extra shoot growth after the drought period can be considered as a compensation for the induced growth arrest during the drought period.
Collapse
Affiliation(s)
- Arion Turcsán
- Research Institute for Nature and ForestGeraardsbergen, Belgium
- Department of Biometrics and Agricultural Informatics, Corvinus University of BudapestBudapest, Hungary
- Department of Forest Reproductive Material and Plantation Management, Institute of Silviculture and Forest Protection, University of West HungarySopron, Hungary
| | - Kathy Steppe
- Laboratory of Plant Ecology, Department of Applied Ecology and Environmental Biology, Ghent UniversityGhent, Belgium
| | - Edit Sárközi
- Department of Soil Science and Water Management, Corvinus University of BudapestBudapest, Hungary
| | - Éva Erdélyi
- College of Commerce, Catering and Tourism, Budapest Business SchoolBudapest, Hungary
| | | | | | | |
Collapse
|
24
|
von Arx G, Crivellaro A, Prendin AL, Čufar K, Carrer M. Quantitative Wood Anatomy-Practical Guidelines. FRONTIERS IN PLANT SCIENCE 2016; 7:781. [PMID: 27375641 PMCID: PMC4891576 DOI: 10.3389/fpls.2016.00781] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/20/2016] [Indexed: 05/04/2023]
Abstract
Quantitative wood anatomy analyzes the variability of xylem anatomical features in trees, shrubs, and herbaceous species to address research questions related to plant functioning, growth, and environment. Among the more frequently considered anatomical features are lumen dimensions and wall thickness of conducting cells, fibers, and several ray properties. The structural properties of each xylem anatomical feature are mostly fixed once they are formed, and define to a large extent its functionality, including transport and storage of water, nutrients, sugars, and hormones, and providing mechanical support. The anatomical features can often be localized within an annual growth ring, which allows to establish intra-annual past and present structure-function relationships and its sensitivity to environmental variability. However, there are many methodological challenges to handle when aiming at producing (large) data sets of xylem anatomical data. Here we describe the different steps from wood sample collection to xylem anatomical data, provide guidance and identify pitfalls, and present different image-analysis tools for the quantification of anatomical features, in particular conducting cells. We show that each data production step from sample collection in the field, microslide preparation in the lab, image capturing through an optical microscope and image analysis with specific tools can readily introduce measurement errors between 5 and 30% and more, whereby the magnitude usually increases the smaller the anatomical features. Such measurement errors-if not avoided or corrected-may make it impossible to extract meaningful xylem anatomical data in light of the rather small range of variability in many anatomical features as observed, for example, within time series of individual plants. Following a rigid protocol and quality control as proposed in this paper is thus mandatory to use quantitative data of xylem anatomical features as a powerful source for many research topics.
Collapse
Affiliation(s)
- Georg von Arx
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- *Correspondence: Georg von Arx
| | - Alan Crivellaro
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Angela L. Prendin
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| | - Katarina Čufar
- Department of Wood Science and Technology, Biotechnical Faculty, University of LjubljanaLjubljana, Slovenia
| | - Marco Carrer
- Dipartimento Territorio e Sistemi Agro Forestali, Università degli Studi di PadovaPadua, Italy
| |
Collapse
|
25
|
Pflug EE, Siegwolf R, Buchmann N, Dobbertin M, Kuster TM, Günthardt-Goerg MS, Arend M. Growth cessation uncouples isotopic signals in leaves and tree rings of drought-exposed oak trees. TREE PHYSIOLOGY 2015; 35:1095-1105. [PMID: 26377873 DOI: 10.1093/treephys/tpv079] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/15/2015] [Indexed: 06/05/2023]
Abstract
An increase in temperature along with a decrease in summer precipitation in Central Europe will result in an increased frequency of drought events and gradually lead to a change in species composition in forest ecosystems. In the present study, young oaks (Quercus robur L. and Quercus petraea (Matt.) Liebl.) were transplanted into large mesocosms and exposed for 3 years to experimental warming and a drought treatment with yearly increasing intensities. Carbon and oxygen isotopic (δ(13)C and δ(18)O) patterns were analysed in leaf tissue and tree-ring cellulose and linked to leaf physiological measures and tree-ring growth. Warming had no effect on the isotopic patterns in leaves and tree rings, while drought increased δ(18)O and δ(13)C. Under severe drought, an unexpected isotopic pattern, with a decrease in δ(18)O, was observed in tree rings but not in leaves. This decrease in δ(18)O could not be explained by concurrent physiological analyses and is not supported by current physiological knowledge. Analysis of intra-annual tree-ring growth revealed a drought-induced growth cessation that interfered with the record of isotopic signals imprinted on recently formed leaf carbohydrates. This missing record indicates isotopic uncoupling of leaves and tree rings, which may have serious implications for the interpretation of tree-ring isotopes, particularly from trees that experienced growth-limiting stresses.
Collapse
Affiliation(s)
- Ellen E Pflug
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - R Siegwolf
- Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland Laboratory of Atmospheric Chemistry, Paul Scherrer Institute, CH-5232 Villigen, Switzerland
| | - N Buchmann
- Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland
| | - M Dobbertin
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - T M Kuster
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland Department of Environmental Systems Science, ETH Zurich, Universitätsstrasse 2, CH-8092 Zurich, Switzerland Institute for Plant Production Sciences, Agroscope, CH-8820 Wädenswil, Switzerland
| | - M S Günthardt-Goerg
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - M Arend
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| |
Collapse
|
26
|
Atlan A, Hornoy B, Delerue F, Gonzalez M, Pierre JS, Tarayre M. Phenotypic Plasticity in Reproductive Traits of the Perennial Shrub Ulex europaeus in Response to Shading: A Multi-Year Monitoring of Cultivated Clones. PLoS One 2015; 10:e0137500. [PMID: 26383627 PMCID: PMC4575064 DOI: 10.1371/journal.pone.0137500] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 08/18/2015] [Indexed: 11/18/2022] Open
Abstract
Phenotypic plasticity may be advantageous for plants to be able to rapidly cope with new and changing environments associated with climate change or during biological invasions. This is especially true for perennial plants, as they may need a longer period to respond genetically to selective pressures than annuals, and also because they are more likely to experience environmental changes during their lifespan. However, few studies have explored the plasticity of the reproductive life history traits of woody perennial species. This study focuses on a woody shrub, Ulex europaeus (common gorse), and on the response of its reproductive traits to one important environmental factor, shading. The study was performed on clones originating from western France (within the native range of this invasive species) and grown for seven years. We compared traits of plants grown in a shade treatment (with two successive shade levels) vs. full natural light. The traits monitored included flowering onset, pod production and seed predation. All traits studied responded to shading, exhibiting various levels of plasticity. In particular, dense shade induced a radical but reversible decrease in flower and pod production, while moderate shade had little effect on reproductive traits. The magnitude of the response to dense shade depended on the genotype, showing a genetically based polymorphism of plasticity. The level of plasticity also showed substantial variations between years, and the effect of environmental variations was cumulative over time. This suggests that plasticity can influence the lifetime fitness of U. Europaeus and is involved in the capacity of the species to grow under contrasting environmental conditions.
Collapse
Affiliation(s)
- Anne Atlan
- UMR 6553 ECOBIO, CNRS/University of Rennes 1, Rennes, France
| | | | | | | | | | - Michèle Tarayre
- UMR 6553 ECOBIO, CNRS/University of Rennes 1, Rennes, France
| |
Collapse
|
27
|
Brunner I, Herzog C, Dawes MA, Arend M, Sperisen C. How tree roots respond to drought. FRONTIERS IN PLANT SCIENCE 2015; 6:547. [PMID: 26284083 PMCID: PMC4518277 DOI: 10.3389/fpls.2015.00547] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/06/2015] [Indexed: 05/17/2023]
Abstract
The ongoing climate change is characterized by increased temperatures and altered precipitation patterns. In addition, there has been an increase in both the frequency and intensity of extreme climatic events such as drought. Episodes of drought induce a series of interconnected effects, all of which have the potential to alter the carbon balance of forest ecosystems profoundly at different scales of plant organization and ecosystem functioning. During recent years, considerable progress has been made in the understanding of how aboveground parts of trees respond to drought and how these responses affect carbon assimilation. In contrast, processes of belowground parts are relatively underrepresented in research on climate change. In this review, we describe current knowledge about responses of tree roots to drought. Tree roots are capable of responding to drought through a variety of strategies that enable them to avoid and tolerate stress. Responses include root biomass adjustments, anatomical alterations, and physiological acclimations. The molecular mechanisms underlying these responses are characterized to some extent, and involve stress signaling and the induction of numerous genes, leading to the activation of tolerance pathways. In addition, mycorrhizas seem to play important protective roles. The current knowledge compiled in this review supports the view that tree roots are well equipped to withstand drought situations and maintain morphological and physiological functions as long as possible. Further, the reviewed literature demonstrates the important role of tree roots in the functioning of forest ecosystems and highlights the need for more research in this emerging field.
Collapse
Affiliation(s)
- Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Claude Herzog
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
- Swiss Federal Institute of Technology ZürichZürich, Switzerland
| | - Melissa A. Dawes
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Matthias Arend
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| | - Christoph Sperisen
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorf, Switzerland
| |
Collapse
|
28
|
Jasi Ska AK, Alber M, Tullus A, Rahi M, Sellin A. Impact of elevated atmospheric humidity on anatomical and hydraulic traits of xylem in hybrid aspen. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:565-578. [PMID: 32480701 DOI: 10.1071/fp14224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 02/17/2015] [Indexed: 05/23/2023]
Abstract
This study was performed on hybrid aspen saplings growing at the Free Air Humidity Manipulation site in Estonia. We investigated changes in wood anatomy and hydraulic conductivity in response to increased air humidity. Two hydraulic traits (specific conductivity and leaf-specific conductivity) and four anatomical traits of stem wood-relative vessel area (VA), vessel density (VD), pit area and pit aperture area-were influenced by the humidity manipulation. Stem hydraulic traits decreased in the apical direction, whereas branch hydraulic characteristics tended to be greatest in mid-canopy, associated with branch size. A reduction in VD due to increasing humidity was accompanied by a decrease in vessel lumen diameter, hydraulically weighted mean diameter (Dh), xylem vulnerability index and theoretical hydraulic conductivity. VA and Dh combined accounted for 87.4% of the total variation in kt of branches and 85.5% of that in stems across the treatments. Characters of branch vessels were more stable, and only the vessel-grouping index (the ratio of the total number of vessels to the total number of vessel groupings) was dependent on the interactive effect of the treatment and canopy position. Our results indicate that the increasing atmospheric humidity predicted for high latitudes will result in moderate changes in the structure and functioning of the hybrid aspen xylem.
Collapse
Affiliation(s)
| | - Meeli Alber
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Arvo Tullus
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| | - Märt Rahi
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51014 Tartu, Estonia
| | - Arne Sellin
- Institute of Ecology and Earth Sciences, University of Tartu, Lai 40, 51005 Tartu, Estonia
| |
Collapse
|
29
|
Simulation of CO2 Fluxes in European Forest Ecosystems with the Coupled Soil-Vegetation Process Model “LandscapeDNDC”. FORESTS 2015. [DOI: 10.3390/f6061779] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
30
|
Kuster TM, Dobbertin M, Günthardt-Goerg MS, Schaub M, Arend M. A phenological timetable of oak growth under experimental drought and air warming. PLoS One 2014; 9:e89724. [PMID: 24586988 PMCID: PMC3933646 DOI: 10.1371/journal.pone.0089724] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/23/2014] [Indexed: 11/25/2022] Open
Abstract
Climate change is expected to increase temperature and decrease summer precipitation in Central Europe. Little is known about how warming and drought will affect phenological patterns of oaks, which are considered to possess excellent adaptability to these climatic changes. Here, we investigated bud burst and intra-annual shoot growth of Quercus robur, Q. petraea and Q. pubescens grown on two different forest soils and exposed to air warming and drought. Phenological development was assessed over the course of three growing seasons. Warming advanced bud burst by 1-3 days °C⁻¹ and led to an earlier start of intra-annual shoot growth. Despite this phenological shift, total time span of annual growth and shoot biomass were not affected. Drought changed the frequency and intensity of intra-annual shoot growth and advanced bud burst in the subsequent spring of a severe summer drought by 1-2 days. After re-wetting, shoot growth recovered within a few days, demonstrating the superior drought tolerance of this tree genus. Our findings show that phenological patterns of oaks are modified by warming and drought but also suggest that ontogenetic factors and/or limitations of water and nutrients counteract warming effects on the biomass and the entire span of annual shoot growth.
Collapse
Affiliation(s)
- Thomas M. Kuster
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems ITES, ETH Zürich, Zürich, Switzerland
- Soil and Ecosystem Ecology Group, University of Manchester, Manchester, United Kingdom
| | - Matthias Dobbertin
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | | | - Marcus Schaub
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Matthias Arend
- Forest Dynamics, Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| |
Collapse
|
31
|
Günthardt-Goerg MS, Arend M. Woody plant performance in a changing climate. PLANT BIOLOGY (STUTTGART, GERMANY) 2013; 15 Suppl 1:1-4. [PMID: 23279293 DOI: 10.1111/j.1438-8677.2012.00698.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 06/01/2023]
|