1
|
Voldstedlund CT, Sjøberg KA, Schlabs FL, Sigvardsen CM, Andersen NR, Holst JJ, Hartmann B, Wojtaszewski JFP, Kiens B, McConell GK, Richter EA. Exercise-induced increase in muscle insulin sensitivity in men is amplified when assessed using a meal test. Diabetologia 2024; 67:1386-1398. [PMID: 38662135 PMCID: PMC11153309 DOI: 10.1007/s00125-024-06148-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024]
Abstract
AIMS/HYPOTHESIS Exercise has a profound effect on insulin sensitivity in skeletal muscle. The euglycaemic-hyperinsulinaemic clamp (EHC) is the gold standard for assessment of insulin sensitivity but it does not reflect the hyperglycaemia that occurs after eating a meal. In previous EHC investigations, it has been shown that the interstitial glucose concentration in muscle is decreased to a larger extent in previously exercised muscle than in rested muscle. This suggests that previously exercised muscle may increase its glucose uptake more than rested muscle if glucose supply is increased by hyperglycaemia. Therefore, we hypothesised that the exercise-induced increase in muscle insulin sensitivity would appear greater after eating a meal than previously observed with the EHC. METHODS Ten recreationally active men performed dynamic one-legged knee extensor exercise for 1 h. Following this, both femoral veins and one femoral artery were cannulated. Subsequently, 4 h after exercise, a solid meal followed by two liquid meals were ingested over 1 h and glucose uptake in the two legs was measured for 3 h. Muscle biopsies from both legs were obtained before the meal test and 90 min after the meal test was initiated. Data obtained in previous studies using the EHC (n=106 participants from 13 EHC studies) were used for comparison with the meal-test data obtained in this study. RESULTS Plasma glucose and insulin peaked 45 min after initiation of the meal test. Following the meal test, leg glucose uptake and glucose clearance increased twice as much in the exercised leg than in the rested leg; this difference is twice as big as that observed in previous investigations using EHCs. Glucose uptake in the rested leg plateaued after 15 min, alongside elevated muscle glucose 6-phosphate levels, suggestive of compromised muscle glucose metabolism. In contrast, glucose uptake in the exercised leg plateaued 45 min after initiation of the meal test and there were no signs of compromised glucose metabolism. Phosphorylation of the TBC1 domain family member 4 (TBC1D4; p-TBC1D4Ser704) and glycogen synthase activity were greater in the exercised leg compared with the rested leg. Muscle interstitial glucose concentration increased with ingestion of meals, although it was 16% lower in the exercised leg than in the rested leg. CONCLUSIONS/INTERPRETATION Hyperglycaemia after meal ingestion results in larger differences in muscle glucose uptake between rested and exercised muscle than previously observed during EHCs. These findings indicate that the ability of exercise to increase insulin-stimulated muscle glucose uptake is even greater when evaluated with a meal test than has previously been shown with EHCs.
Collapse
Affiliation(s)
- Christian T Voldstedlund
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Kim A Sjøberg
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Farina L Schlabs
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Casper M Sigvardsen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Nicoline R Andersen
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jørgen F P Wojtaszewski
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Glenn K McConell
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.
| | - Erik A Richter
- August Krogh Section for Molecular Physiology, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
2
|
Zapata Bustos R, Coletta DK, Galons JP, Davidson LB, Langlais PR, Funk JL, Willis WT, Mandarino LJ. Nonequilibrium thermodynamics and mitochondrial protein content predict insulin sensitivity and fuel selection during exercise in human skeletal muscle. Front Physiol 2023; 14:1208186. [PMID: 37485059 PMCID: PMC10361819 DOI: 10.3389/fphys.2023.1208186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Introduction: Many investigators have attempted to define the molecular nature of changes responsible for insulin resistance in muscle, but a molecular approach may not consider the overall physiological context of muscle. Because the energetic state of ATP (ΔGATP) could affect the rate of insulin-stimulated, energy-consuming processes, the present study was undertaken to determine whether the thermodynamic state of skeletal muscle can partially explain insulin sensitivity and fuel selection independently of molecular changes. Methods: 31P-MRS was used with glucose clamps, exercise studies, muscle biopsies and proteomics to measure insulin sensitivity, thermodynamic variables, mitochondrial protein content, and aerobic capacity in 16 volunteers. Results: After showing calibrated 31P-MRS measurements conformed to a linear electrical circuit model of muscle nonequilibrium thermodynamics, we used these measurements in multiple stepwise regression against rates of insulin-stimulated glucose disposal and fuel oxidation. Multiple linear regression analyses showed 53% of the variance in insulin sensitivity was explained by 1) VO2max (p = 0.001) and the 2) slope of the relationship of ΔGATP with the rate of oxidative phosphorylation (p = 0.007). This slope represents conductance in the linear model (functional content of mitochondria). Mitochondrial protein content from proteomics was an independent predictor of fractional fat oxidation during mild exercise (R2 = 0.55, p = 0.001). Conclusion: Higher mitochondrial functional content is related to the ability of skeletal muscle to maintain a greater ΔGATP, which may lead to faster rates of insulin-stimulated processes. Mitochondrial protein content per se can explain fractional fat oxidation during mild exercise.
Collapse
Affiliation(s)
- Rocio Zapata Bustos
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Dawn K. Coletta
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
- Department of Physiology, The University of Arizona, Tucson, AZ, United States
| | - Jean-Philippe Galons
- Department of Medical Imaging, The University of Arizona, Tucson, AZ, United States
| | - Lisa B. Davidson
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Paul R. Langlais
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Janet L. Funk
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
| | - Wayne T. Willis
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| | - Lawrence J. Mandarino
- Division of Endocrinology, Department of Medicine, The University of Arizona, Tucson, AZ, United States
- Center for Disparities in Diabetes, Obesity, and Metabolism, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
3
|
Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int J Obes (Lond) 2023; 47:338-347. [PMID: 36774412 DOI: 10.1038/s41366-023-01270-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/31/2023] [Indexed: 02/13/2023]
Abstract
Exposure to low ambient temperatures has previously been demonstrated to markedly improve glucose homeostasis in both rodents and humans. Although the brown adipose tissue is key in mediating these beneficial effects in rodents, its contribution appears more limited in humans. Hence, the exact tissues and underlying mechanisms that mediate cold-induced improvements in glucose homeostasis in humans remain to be fully established. In this review, we evaluated the response of the main organs involved in glucose metabolism (i.e. pancreas, liver, (white) adipose tissue, and skeletal muscle) to cold exposure and discuss their potential contribution to cold-induced improvements in glucose homeostasis in humans. We here show that cold exposure has widespread effects on metabolic organs involved in glucose regulation. Nevertheless, cold-induced improvements in glucose homeostasis appear primarily mediated via adaptations within the skeletal muscle and (presumably) white adipose tissue. Since the underlying mechanisms remain elusive, future studies should be aimed at pinpointing the exact physiological and molecular mechanisms involved in humans. Nonetheless, cold exposure holds great promise as a novel, additive lifestyle approach to improve glucose homeostasis in insulin resistant individuals. Parts of this graphical abstract were created using (modified) images from Servier Medical Art, licensed under the Creative Commons Attribution 3.0 Unported License. TG = thermogenesis, TAG = triacylglycerol, FFA = free fatty acid, SLN = sarcolipin, UCP3 = uncoupling protein 3, β2-AR = beta-2 adrenergic receptor, SNS = sympathetic nervous system.
Collapse
|
4
|
Boschmann M, Klug L, Edelmann F, Sandek A, von Haehling S, Düngen HD, Springer J, Anker SD, Doehner W, Jauert N. Glucose-Induced Hemodynamic and Metabolic Response of Skeletal Muscle in Heart Failure Patients with Reduced vs. Preserved Ejection Fraction-A Pilot Study. J Cardiovasc Dev Dis 2022; 9:jcdd9120456. [PMID: 36547453 PMCID: PMC9785285 DOI: 10.3390/jcdd9120456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Insulin resistance (IR) is a characteristic pathophysiologic feature in heart failure (HF). We tested the hypothesis that skeletal muscle metabolism is differently impaired in patients with reduced (HFrEF) vs. preserved (HFpEF) ejection fraction. (2) Methods: carbohydrate and lipid metabolism was studied in situ by intramuscular microdialysis in patients with HFrEF (59 ± 14y, NYHA I-III) and HFpEF (65 ± 10y, NYHA I-II) vs. healthy subjects of similar age during the oral glucose load (oGL); (3) Results: There were no difference in fasting serum and interstitial parameters between the groups. Blood and dialysate glucose increased significantly in HFpEF vs. HFrEF and controls upon oGT (both p < 0.0001), while insulin increased significantly in HFrEF vs. HFpEF and controls (p < 0.0005). Muscle tissue perfusion tended to be lower in HFrEF vs. HFpEF and controls after the oGL (p = 0.057). There were no differences in postprandial increases in dialysate lactate and pyruvate. Postprandial dialysate glycerol was higher in HFpEF vs. HFrEF and controls upon oGL (p = 0.0016); (4) Conclusion: A pattern of muscle glucose metabolism is distinctly different in patients with HFrEF vs. HFpEF. While postprandial IR was characterized by impaired tissue perfusion and higher compensatory insulin secretion in HFrEF, reduced muscle glucose uptake and a blunted antilipolytic effect of insulin were found in HFpEF.
Collapse
Affiliation(s)
- Michael Boschmann
- Experimental & Clinical Research Center (ECRC), A Joint Cooperation between Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Lars Klug
- Experimental & Clinical Research Center (ECRC), A Joint Cooperation between Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Frank Edelmann
- Department of Cardiology, (Virchow Campus) Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Anja Sandek
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen (UMG), 37075 Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Stephan von Haehling
- Department of Cardiology and Pneumology, Universitätsmedizin Göttingen (UMG), 37075 Göttingen, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Göttingen, 37075 Göttingen, Germany
| | - Hans-Dirk Düngen
- Department of Cardiology, (Virchow Campus) Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Jochen Springer
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Stefan D. Anker
- Department of Cardiology, (Virchow Campus) Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Wolfram Doehner
- Department of Cardiology, (Virchow Campus) Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Correspondence: (W.D.); (N.J.)
| | - Nadja Jauert
- Department of Cardiology, (Virchow Campus) Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- Division of Physiology, Department of Human Medicine, MSB Medical School Berlin, Rüdesheimerstr 50, 14197 Berlin, Germany
- Correspondence: (W.D.); (N.J.)
| |
Collapse
|
5
|
Pellinger TK, Emhoff CAW. Skeletal Muscle Hyperemia: A Potential Bridge Between Post-exercise Hypotension and Glucose Regulation. Front Physiol 2022; 12:821919. [PMID: 35173625 PMCID: PMC8841576 DOI: 10.3389/fphys.2021.821919] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
For both healthy individuals and patients with type 2 diabetes (T2D), the hemodynamic response to regular physical activity is important for regulating blood glucose, protecting vascular function, and reducing the risk of cardiovascular disease. In addition to these benefits of regular physical activity, evidence suggests even a single bout of dynamic exercise promotes increased insulin-mediated glucose uptake and insulin sensitivity during the acute recovery period. Importantly, post-exercise hypotension (PEH), which is defined as a sustained reduction in arterial pressure following a single bout of exercise, appears to be blunted in those with T2D compared to their non-diabetic counterparts. In this short review, we describe research that suggests the sustained post-exercise vasodilation often observed in PEH may sub-serve glycemic regulation following exercise in both healthy individuals and those with T2D. Furthermore, we discuss the interplay of enhanced perfusion, both macrovascular and microvascular, and glucose flux following exercise. Finally, we propose future research directions to enhance our understanding of the relationship between post-exercise hemodynamics and glucose regulation in healthy individuals and in those with T2D.
Collapse
Affiliation(s)
- Thomas K. Pellinger
- Department of Physical Therapy, University of Maryland Eastern Shore, Princess Anne, MD, United States
- *Correspondence: Thomas K. Pellinger,
| | - Chi-An W. Emhoff
- Department of Kinesiology, Saint Mary’s College of California, Moraga, CA, United States
| |
Collapse
|
6
|
Koh HCE, van Vliet S, Meyer GA, Laforest R, Gropler RJ, Klein S, Mittendorfer B. Heterogeneity in insulin-stimulated glucose uptake among different muscle groups in healthy lean people and people with obesity. Diabetologia 2021; 64:1158-1168. [PMID: 33511440 PMCID: PMC8336476 DOI: 10.1007/s00125-021-05383-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/27/2020] [Indexed: 11/24/2022]
Abstract
AIMS/HYPOTHESIS It has been proposed that muscle fibre type composition and perfusion are key determinants of insulin-stimulated muscle glucose uptake, and alterations in muscle fibre type composition and perfusion contribute to muscle, and consequently whole-body, insulin resistance in people with obesity. The goal of the study was to evaluate the relationships among muscle fibre type composition, perfusion and insulin-stimulated glucose uptake rates in healthy, lean people and people with obesity. METHODS We measured insulin-stimulated whole-body glucose disposal and glucose uptake and perfusion rates in five major muscle groups (erector spinae, obliques, rectus abdominis, hamstrings, quadriceps) in 15 healthy lean people and 37 people with obesity by using the hyperinsulinaemic-euglycaemic clamp procedure in conjunction with [2H]glucose tracer infusion (to assess whole-body glucose disposal) and positron emission tomography after injections of [15O]H2O (to assess muscle perfusion) and [18F]fluorodeoxyglucose (to assess muscle glucose uptake). A biopsy from the vastus lateralis was obtained to assess fibre type composition. RESULTS We found: (1) a twofold difference in glucose uptake rates among muscles in both the lean and obese groups (rectus abdominis: 67 [51, 78] and 32 [21, 55] μmol kg-1 min-1 in the lean and obese groups, respectively; erector spinae: 134 [103, 160] and 66 [24, 129] μmol kg-1 min-1, respectively; median [IQR]) that was unrelated to perfusion or fibre type composition (assessed in the vastus only); (2) the impairment in insulin action in the obese compared with the lean group was not different among muscle groups; and (3) insulin-stimulated whole-body glucose disposal expressed per kg fat-free mass was linearly related with muscle glucose uptake rate (r2 = 0.65, p < 0.05). CONCLUSIONS/INTERPRETATION Obesity-associated insulin resistance is generalised across all major muscles, and is not caused by alterations in muscle fibre type composition or perfusion. In addition, insulin-stimulated whole-body glucose disposal relative to fat-free mass provides a reliable index of muscle glucose uptake rate.
Collapse
Affiliation(s)
- Han-Chow E Koh
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Stephan van Vliet
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Gretchen A Meyer
- Program in Physical Therapy, Washington University School of Medicine, St Louis, MO, USA
| | - Richard Laforest
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St Louis, MO, USA
| | - Robert J Gropler
- Mallinckrodt Institute of Radiology at Washington University School of Medicine, St Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA
| | - Bettina Mittendorfer
- Center for Human Nutrition, Washington University School of Medicine, St Louis, MO, USA.
| |
Collapse
|
7
|
Morrice N, van Aalten L, McNeilly A, McCrimmon RJ, Pearson ER, Langston R, Sutherland C. Reducing Glut2 throughout the body does not result in cognitive behaviour differences in aged male mice. BMC Res Notes 2020; 13:438. [PMID: 32938474 PMCID: PMC7493158 DOI: 10.1186/s13104-020-05276-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/09/2020] [Indexed: 11/25/2022] Open
Abstract
Objectives GLUT2 is a major facilitative glucose transporter, expressed from the SLC2A2 gene, with essential roles in the liver. Recent work in mice has shown that preventing Glut2 production in specific neuronal populations increases sugar-seeking behaviour, highlighting the importance of Slc2a2 gene expression in the brain. It implies that reduced GLUT2 in the brain, due to genetic polymorphisms or disease, impacts health through behaviour change. Defects in glucose transport in the brain are observed in conditions including type-2 diabetes and dementia. Few studies have directly examined the effect of modulating neuronal glucose transporter expression on cognitive function. The aim of this study was to investigate whether inactivating one Slc2a2 allele throughout the body had major effects on cognition. Cognitive tests to assess recognition memory, spatial working memory and anxiety were performed in Slc2a2 whole-body heterozygous mice (i.e. reduced Glut2 mRNA and protein), alongside littermates expressing normal levels of the transporter. Results No significant effects on neurological functions and cognitive capabilities were observed in mice lacking one Slc2a2 allele when fed a chow diet. This suggests that the minor variations in GLUT2 levels that occur in the human population are unlikely to influence behaviour and basic cognition.
Collapse
Affiliation(s)
- Nicola Morrice
- Division of Cellular Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Lidy van Aalten
- Division of Cellular Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Alison McNeilly
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Ewan R Pearson
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Rosamund Langston
- Division of Systems Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK
| | - Calum Sutherland
- Division of Cellular Medicine, School of Medicine, University of Dundee, Ninewells Hospital and Medical School, James Arnott Drive, Dundee, DD1 9SY, UK.
| |
Collapse
|
8
|
Hosseini Khorami SA, Mutalib MSA, Feili Shiraz M, Abdullah JA, Rejali Z, Ali RM, Khaza'ai H. Genetic determinants of obesity heterogeneity in type II diabetes. Nutr Metab (Lond) 2020; 17:55. [PMID: 32670384 PMCID: PMC7346329 DOI: 10.1186/s12986-020-00476-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/01/2020] [Indexed: 11/23/2022] Open
Abstract
Background Although obesity is considered as the main cause of Type II diabetes (T2DM), non-obese individuals may still develop T2DM and obese individuals may not. Method The mRNA expression of PI3K/AKT axis from 100 non-obese and obese participants with insulin sensitivity and insulin resistance states were compared in this study toward the understanding of obesity heterogeneity molecular mechanism. Result In present study, there was no statistically significant difference in gene expression levels of IRS1 and PTEN between groups, whereas PI3K, AKT2 and GLUT4 genes were expressed at a lower level in obese diabetic group compared to other groups and were statistically significant. PDK1 gene was expressed at a higher level in non-obese diabetic group compared to obese diabetic and non-obese non-diabetics groups. No statistically significant difference was identified in gene expression pattern of PI3K/AKT pathway between obese non-diabetics and non-obese non-diabetics. Conclusion The components of PI3K/AKT pathway which is related to the fasting state, showed reduced expression in obese diabetic group due to the chronic over-nutrition which may induced insensitivity and reduced gene expression. The pathogenesis of insulin resistance in the absence of obesity in non-obese diabetic group could be due to disturbance in another pathway related to the non-fasting state like gluconeogenesis. Therefore, the molecular mechanism of insulin signalling in non-obese diabetic individuals is different from obese diabetics which more investigations are required to study insulin signalling pathways in greater depth, in order to assess nutritional factors, contribute to insulin resistance in obese diabetic and non-obese diabetic individuals.
Collapse
Affiliation(s)
| | - Mohd Sokhini Abd Mutalib
- Department of Nutrition and Dietetic, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Mohammad Feili Shiraz
- Department of Artificial Intelligence and Computer Engineering, Faculty of Electrical Engineering, Computer and IT, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | | | - Zulida Rejali
- Department of Obstetrics and Gynaecology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Razana Mohd Ali
- Department of Pathology, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Huzwah Khaza'ai
- Department of Biomedical Science, University Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
9
|
Sylow L, Møller LLV, Kleinert M, D'Hulst G, De Groote E, Schjerling P, Steinberg GR, Jensen TE, Richter EA. Rac1 and AMPK Account for the Majority of Muscle Glucose Uptake Stimulated by Ex Vivo Contraction but Not In Vivo Exercise. Diabetes 2017; 66:1548-1559. [PMID: 28389470 DOI: 10.2337/db16-1138] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/15/2017] [Indexed: 11/13/2022]
Abstract
Exercise bypasses insulin resistance to increase glucose uptake in skeletal muscle and therefore represents an important alternative to stimulate glucose uptake in insulin-resistant muscle. Both Rac1 and AMPK have been shown to partly regulate contraction-stimulated muscle glucose uptake, but whether those two signaling pathways jointly account for the entire signal to glucose transport is unknown. We therefore studied the ability of contraction and exercise to stimulate glucose transport in isolated muscles with AMPK loss of function combined with either pharmacological inhibition or genetic deletion of Rac1.Muscle-specific knockout (mKO) of Rac1, a kinase-dead α2 AMPK (α2KD), and double knockout (KO) of β1 and β2 AMPK subunits (β1β2 KO) each partially decreased contraction-stimulated glucose transport in mouse soleus and extensor digitorum longus (EDL) muscle. Interestingly, when pharmacological Rac1 inhibition was combined with either AMPK β1β2 KO or α2KD, contraction-stimulated glucose transport was almost completely inhibited. Importantly, α2KD+Rac1 mKO double-transgenic mice also displayed severely impaired contraction-stimulated glucose transport, whereas exercise-stimulated glucose uptake in vivo was only partially reduced by Rac1 mKO with no additive effect of α2KD. It is concluded that Rac1 and AMPK together account for almost the entire ex vivo contraction response in muscle glucose transport, whereas only Rac1, but not α2 AMPK, regulates muscle glucose uptake during submaximal exercise in vivo.
Collapse
Affiliation(s)
- Lykke Sylow
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Lisbeth L V Møller
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Maximilian Kleinert
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Gommaar D'Hulst
- Department of Kinesiology, Exercise Physiology Research Group, Faculty of Kinesiology and Rehabilitation Sciences, KU Leuven, Leuven, Belgium
| | | | - Peter Schjerling
- Institute of Sports Medicine, Department of Orthopedic Surgery, Bispebjerg Hospital, Copenhagen, Denmark
- Center for Healthy Aging, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gregory R Steinberg
- Division of Endocrinology and Metabolism, Department of Medicine and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Thomas E Jensen
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Erik A Richter
- Molecular Physiology Group, Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
10
|
Affiliation(s)
- Frank K Huynh
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC
| | - Deborah M Muoio
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC Sarah W. Stedman Nutrition and Metabolism Center and Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC Sarah W. Stedman Nutrition and Metabolism Center and Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
11
|
Shearer J, Graham TE. Performance effects and metabolic consequences of caffeine and caffeinated energy drink consumption on glucose disposal. Nutr Rev 2015; 72 Suppl 1:121-36. [PMID: 25293551 DOI: 10.1111/nure.12124] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
This review documents two opposing effects of caffeine and caffeine-containing energy drinks, i.e., their positive effects on athletic performance and their negative impacts on glucose tolerance in the sedentary state. Analysis of studies examining caffeine administration prior to performance-based exercise showed caffeine improved completion time by 3.6%. Similar analyses following consumption of caffeine-containing energy drinks yielded positive, but more varied, benefits, which were likely due to the diverse nature of the studies performed, the highly variable composition of the beverages consumed, and the range of caffeine doses administered. Conversely, analyses of studies administering caffeine prior to either an oral glucose tolerance test or insulin clamp showed a decline in whole-body glucose disposal of ~30%. The consequences of this resistance are unknown, but there may be implications for the development of a number of chronic diseases. Both caffeine-induced performance enhancement and insulin resistance converge with the primary actions of caffeine on skeletal muscle.
Collapse
Affiliation(s)
- Jane Shearer
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
12
|
DiPietro L, Gribok A, Stevens MS, Hamm LF, Rumpler W. Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care 2013; 36:3262-8. [PMID: 23761134 PMCID: PMC3781561 DOI: 10.2337/dc13-0084] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The purpose of this study was to compare the effectiveness of three 15-min bouts of postmeal walking with 45 min of sustained walking on 24-h glycemic control in older persons at risk for glucose intolerance. RESEARCH DESIGN AND METHODS Inactive older (≥60 years of age) participants (N=10) were recruited from the community and were nonsmoking, with a BMI<35 kg/m2 and a fasting blood glucose concentration between 105 and 125 mg dL(-1). Participants completed three randomly ordered exercise protocols spaced 4 weeks apart. Each protocol comprised a 48-h stay in a whole-room calorimeter, with the first day serving as the control day. On the second day, participants engaged in either 1) postmeal walking for 15 min or 45 min of sustained walking performed at 2) 10:30 a.m. or 3) 4:30 p.m. All walking was on a treadmill at an absolute intensity of 3 METs. Interstitial glucose concentrations were determined over 48 h with a continuous glucose monitor. Substrate utilization was measured continuously by respiratory exchange (VCO2/VO2). RESULTS Both sustained morning walking (127±23 vs. 118±14 mg dL(-1)) and postmeal walking (129±24 vs. 116±13 mg dL(-1)) significantly improved 24-h glycemic control relative to the control day (P<0.05). Moreover, postmeal walking was significantly (P<0.01) more effective than 45 min of sustained morning or afternoon walking in lowering 3-h postdinner glucose between the control and experimental day. CONCLUSIONS Short, intermittent bouts of postmeal walking appear to be an effective way to control postprandial hyperglycemia in older people.
Collapse
|
13
|
Broholm C, Mathur N, Hvid T, Grøndahl TS, Frøsig C, Pedersen BK, Lindegaard B. Insulin signaling in skeletal muscle of HIV-infected patients in response to endurance and strength training. Physiol Rep 2013; 1:e00060. [PMID: 24303139 PMCID: PMC3835015 DOI: 10.1002/phy2.60] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 07/12/2013] [Accepted: 07/15/2013] [Indexed: 12/14/2022] Open
Abstract
Human immunodeficiency virus (HIV)-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake. Both endurance and resistance training improve insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients, but the mechanisms are unknown. This study aims to identify the molecular pathways involved in the beneficial effects of training on insulin-stimulated glucose uptake in skeletal muscle of HIV-infected patients. Eighteen sedentary male HIV-infected patients underwent a 16 week supervised training intervention, either resistance or strength training. Euglycemic-hyperinsulinemic clamps with muscle biopsies were performed before and after the training interventions. Fifteen age- and body mass index (BMI)-matched HIV-negative men served as a sedentary baseline group. Phosphorylation and total protein expression of insulin signaling molecules as well as glycogen synthase (GS) activity were analyzed in skeletal muscle biopsies in relation to insulin stimulation before and after training. HIV-infected patients had reduced basal and insulin-stimulated GS activity (%fractional velocity, [FV]) as well as impaired insulin-stimulated Akt(thr308) phosphorylation. Despite improving insulin-stimulated glucose uptake, neither endurance nor strength training changed the phosphorylation status of insulin signaling proteins or affected GS activity. However; endurance training markedly increased the total Akt protein expression, and both training modalities increased hexokinase II (HKII) protein. HIV-infected patients with lipodystrophy have decreased insulin-stimulated glucose uptake in skeletal muscle and defects in insulin-stimulated phosphorylation of Akt(thr308). Endurance and strength training increase insulin-stimulated glucose uptake in these patients, and the muscular training adaptation is associated with improved capacity for phosphorylation of glucose by HKII, rather than changes in markers of insulin signaling to glucose uptake or glycogen synthesis.
Collapse
Affiliation(s)
- Christa Broholm
- Department of Infectious Diseases, Centre of Inflammation and Metabolism, Rigshospitalet Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
The specific cellular underpinnings or mechanisms of insulin resistance (IR) are not clear. Here I present evidence to support a causal association between mitochondrial energetics and IR. A large body of literature indicates that mitochondrial capacity for oxidative metabolism is lower in human obesity and type 2 diabetes. Whether or not mitochondria play a causal role in IR is hotly debated. First, IR can be caused by many factors, many of which may or may not involve mitochondria. These include lipid overload, oxidative stress, and inflammation. Thus the first tenet of an argument supporting a role for mitochondria in IR is that mitochondria derangements can cause IR, but IR does not have to involve mitochondria. The second tenet of this argument is that animal models in which oxidative metabolism are completely abolished are not always physiologically or pathologically relevant to human IR, in which small metabolic perturbations can have profound effects over a prolonged period. Lastly, mitochondria are complex organelles, with diverse functions, including links with cell signaling, oxidative stress, and inflammation, which in turn can be connected with IR. In summary, mitochondrial "deficiency" is not merely a reduced energy generation or low fatty acid oxidation; this concept should be expanded to numerous additional important functions, many of which can cause IR if perturbed.
Collapse
Affiliation(s)
- Bret H Goodpaster
- Division of Endocrinology and Metabolism, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
15
|
Normal glucose uptake in the brain and heart requires an endothelial cell-specific HIF-1α-dependent function. Proc Natl Acad Sci U S A 2012; 109:17478-83. [PMID: 23047702 DOI: 10.1073/pnas.1209281109] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although intimately positioned between metabolic substrates in the bloodstream and the tissue parenchymal cells that require these substrates, a major role of the vascular endothelium in the regulation of tissue metabolism has not been widely appreciated. We hypothesized that via control of transendothelial glucose transport and contributing paracrine mechanisms the endothelium plays a major role in regulating organ and tissue glucose metabolism. We further hypothesized that the hypoxia-inducible factor -1α (HIF-1α) plays an important role in coordinating these endothelial functions. To test these hypotheses, we generated mice with endothelial cell-specific deletion of HIF-1α. Loss of HIF in the endothelium resulted in significantly increased fasting blood glucose levels, a blunted insulin response with delayed glucose clearance from the blood after i.v. loading, and significantly decreased glucose uptake into the brain and heart. Endothelial HIF-1α knockout mice also exhibited a reduced cerebrospinal fluid/blood glucose ratio, a finding consistent with reduced transendothelial glucose transport and a diagnostic criterion for the Glut1 deficiency genetic syndrome. Endothelial cells from these mice demonstrated decreased Glut1 levels and reduced glucose uptake that was reversed by forced expression of Glut1. These data strongly support an important role of the vascular endothelium in determining whole-organ glucose metabolism and indicate that HIF-1α is a critical mediator of this function.
Collapse
|
16
|
Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a novel myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem 2012; 287:11968-80. [PMID: 22351773 DOI: 10.1074/jbc.m111.336834] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle plays important roles in whole-body glucose and fatty acid metabolism. However, muscle also secretes cytokines and growth factors (collectively termed myokines) that can potentially act in an autocrine, a paracrine, and/or an endocrine manner to modulate metabolic, inflammatory, and other processes. Here, we report the identification and characterization of myonectin, a novel myokine belonging to the C1q/TNF-related protein (CTRP) family. Myonectin transcript was highly induced in differentiated myotubes and predominantly expressed by skeletal muscle. Circulating levels of myonectin were tightly regulated by the metabolic state; fasting suppressed, but refeeding dramatically increased, its mRNA and serum levels. Although mRNA and circulating levels of myonectin were reduced in a diet-induced obese state, voluntary exercise increased its expression and circulating levels. Accordingly, myonectin transcript was up-regulated by compounds (forskolin, epinephrine, ionomycin) that raise cellular cAMP or calcium levels. In vitro, secreted myonectin forms disulfide-linked oligomers, and when co-expressed, forms heteromeric complexes with other members of the C1q/TNF-related protein family. In mice, recombinant myonectin administration reduced circulating levels of free fatty acids without altering adipose tissue lipolysis. Consistent with this, myonectin promoted fatty acid uptake in cultured adipocytes and hepatocytes, in part by up-regulating the expression of genes (CD36, FATP1, Fabp1, and Fabp4) that promote lipid uptake. Collectively, these results suggest that myonectin links skeletal muscle to lipid homeostasis in liver and adipose tissue in response to alterations in energy state, revealing a novel myonectin-mediated metabolic circuit.
Collapse
Affiliation(s)
- Marcus M Seldin
- Department of Physiology and Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | |
Collapse
|
17
|
Yeo WK, Carey AL, Burke L, Spriet LL, Hawley JA. Fat adaptation in well-trained athletes: effects on cell metabolism. Appl Physiol Nutr Metab 2011; 36:12-22. [PMID: 21326374 DOI: 10.1139/h10-089] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The performance of prolonged (>90 min), continuous, endurance exercise is limited by endogenous carbohydrate (CHO) stores. Accordingly, for many decades, sports nutritionists and exercise physiologists have proposed a number of diet-training strategies that have the potential to increase fatty acid availability and rates of lipid oxidation and thereby attenuate the rate of glycogen utilization during exercise. Because the acute ingestion of exogenous substrates (primarily CHO) during exercise has little effect on the rates of muscle glycogenolysis, recent studies have focused on short-term (<1-2 weeks) diet-training interventions that increase endogenous substrate stores (i.e., muscle glycogen and lipids) and alter patterns of substrate utilization during exercise. One such strategy is "fat adaptation", an intervention in which well-trained endurance athletes consume a high-fat, low-CHO diet for up to 2 weeks while undertaking their normal training and then immediately follow this by CHO restoration (consuming a high-CHO diet and tapering for 1-3 days before a major endurance event). Compared with an isoenergetic CHO diet for the same intervention period, this "dietary periodization" protocol increases the rate of whole-body and muscle fat oxidation while attenuating the rate of muscle glycogenolysis during submaximal exercise. Of note is that these metabolic perturbations favouring the oxidation of fat persist even in the face of restored endogenous CHO stores and increased exogenous CHO availability. Here we review the current knowledge of some of the potential mechanisms by which skeletal muscle sustains high rates of fat oxidation in the face of high exogenous and endogenous CHO availability.
Collapse
Affiliation(s)
- Wee Kian Yeo
- Health Innovations Research Institute, School of Medical Sciences, RMIT University, P.O. Box 71, Bundoora, Victoria 3083, Australia
| | | | | | | | | |
Collapse
|
18
|
Brandon AE, Hoy AJ, Wright LE, Turner N, Hegarty BD, Iseli TJ, Julia Xu X, Cooney GJ, Saha AK, Ruderman NB, Kraegen EW. The evolution of insulin resistance in muscle of the glucose infused rat. Arch Biochem Biophys 2011; 509:133-41. [PMID: 21420928 DOI: 10.1016/j.abb.2011.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Revised: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 11/17/2022]
Abstract
Glucose infusion into rats causes skeletal muscle insulin resistance that initially occurs without changes in insulin signaling. The aim of the current study was to prolong glucose infusion and evaluate other events associated with the transition to muscle insulin resistance. Hyperglycemia was produced in rats by glucose infusion for 3, 5 and 8 h. The rate of infusion required to maintain hyperglycemia was reduced at 5 and 8 h. Glucose uptake into red quadriceps (RQ) and its incorporation into glycogen decreased between 3 and 5 h, further decreasing at 8 h. The earliest observed change in RQ was decreased AMPKα2 activity associated with large increases in muscle glycogen content at 3 h. Activation of the mTOR pathway occurred at 5 h. Akt phosphorylation (Ser(473)) was decreased at 8 h compared to 3 and 5, although no decrease in phosphorylation of downstream GSK-3β (Ser(9)) and AS160 (Thr(642)) was observed. White quadriceps showed a similar but delayed pattern, with insulin resistance developing by 8 h and decreased AMPKα2 activity at 5 h. These results indicate that, in the presence of a nutrient overload, alterations in muscle insulin signaling occur, but after insulin resistance develops and appropriate changes in energy/nutrient sensing pathways occur.
Collapse
Affiliation(s)
- Amanda E Brandon
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Pellinger TK, Simmons GH, Maclean DA, Halliwill JR. Local histamine H(1-) and H(2)-receptor blockade reduces postexercise skeletal muscle interstitial glucose concentrations in humans. Appl Physiol Nutr Metab 2010; 35:617-26. [PMID: 20962917 DOI: 10.1139/h10-055] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated blood flow can potentially influence skeletal muscle glucose uptake, but the impact of postexercise hyperemia on glucose availability to skeletal muscle remains unknown. Because postexercise hyperemia is mediated by histamine H(1)- and H(2)-receptors, we tested the hypothesis that postexercise interstitial glucose concentrations would be lower in the presence of combined H1- and H2-receptor blockade. To this end, 4 microdialysis probes were inserted into the vastus lateralis muscle of 14 healthy subjects (21-27 years old) immediately after 60 min of either upright cycling at 60% peak oxygen uptake (exercise, n = 7) or quiet rest (sham, n = 7). Microdialysis probes were perfused with a modified Ringer's solution containing 3 mmol L(-1) glucose, 5 mmol L(-1) ethanol, and [6-3H] glucose (200 disintegrations·min-1 microL(-1)). Two sites (blockade) received both H1- and H2-receptor antagonists (1 mmol L(-1) pyrilamine and 3 mmol L-1 cimetidine) and 2 sites (control) did not receive antagonists. Ethanol outflow/inflow ratios (an inverse surrogate of local blood flow) were higher in blockade sites than in control sites following exercise (p < 0.05), whereas blockade had no effect on ethanol outflow/inflow ratios following sham (p = 0.80). Consistent with our hypothesis, during 3 of the 5 dialysate collection periods, interstitial glucose concentrations were lower in blockade sites vs. control sites following exercise (p < 0.05), whereas blockade had no effect on interstitial glucose concentrations following sham (p = 0.79). These findings indicate that local H1- and H2-receptor activation modulates skeletal muscle interstitial glucose levels during recovery from exercise in humans and suggest that the availability of glucose to skeletal muscle is enhanced by postexercise hyperemia.
Collapse
Affiliation(s)
- Thomas K Pellinger
- Department of Human Physiology, University of Oregon, Eugene, OR 97403-1240, USA
| | | | | | | |
Collapse
|
20
|
Stephens FB, Norton L, Jewell K, Chokkalingam K, Parr T, Tsintzas K. Basal and insulin-stimulated pyruvate dehydrogenase complex activation, glycogen synthesis and metabolic gene expression in human skeletal muscle the day after a single bout of exercise. Exp Physiol 2010; 95:808-18. [DOI: 10.1113/expphysiol.2009.051367] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Pugliese G, Zanuso S, Alessi E, Simonelli P, Fallucca S, Fallucca F, Balducci S. Self glucose monitoring and physical exercise in diabetes. Diabetes Metab Res Rev 2009; 25 Suppl 1:S11-7. [PMID: 19662620 DOI: 10.1002/dmrr.982] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiorespiratory fitness, which is determined mainly by the level of physical activity, is inversely related to mortality in the general population as well as in subjects with diabetes, the incidence of which is also increased by low exercise capacity. Exercise is capable of promoting glucose utilization in normal subjects as well as in insulin-deficient or insulin-resistant diabetic individuals. In diabetic subjects treated with insulin or insulin secretagogues, exercise may also result in complications, with too much insulin causing hypoglycaemia and not enough insulin leading to hyperglycaemia and possibly ketoacidosis; both complications may also occur several hours after exercise. Therefore, self-monitoring of blood glucose before, during (for exercise duration of more than 1 h) and after physical exercise is highly recommended, and also carbohydrate supplementation may be required. In the Italian Diabetes Exercise Study (IDES), measurement of blood glucose and systolic and diastolic blood pressure levels before and after supervised sessions of combined (aerobic + resistance) exercise in type 2 diabetic subjects with the metabolic syndrome showed significant reductions of these parameters, though no major hypoglycaemic or hypotensive episode was detected. The extent of reduction of blood glucose was related to baseline values but not to energy expenditure and was higher in subjects treated with insulin than in those on diet or oral hypoglycaemic agents (OHA). Thus, supervised exercise training associated with blood glucose monitoring is an effective and safe intervention to decrease blood glucose levels in type 2 diabetic subjects.
Collapse
Affiliation(s)
- G Pugliese
- Diabetes Division, S. Andrea Hospital and Department of Clinical Sciences, 2nd Medical School, La Sapienza University, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
22
|
Baus D, Heermeier K, De Hoop M, Metz-Weidmann C, Gassenhuber J, Dittrich W, Welte S, Tennagels N. Identification of a novel AS160 splice variant that regulates GLUT4 translocation and glucose-uptake in rat muscle cells. Cell Signal 2008; 20:2237-46. [DOI: 10.1016/j.cellsig.2008.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 08/05/2008] [Accepted: 08/11/2008] [Indexed: 01/11/2023]
|
23
|
Murdolo G, Sjöstrand M, Strindberg L, Gudbjörnsdóttir S, Lind L, Lönnroth P, Jansson PA. Effects of Intrabrachial metacholine infusion on muscle capillary recruitment and forearm glucose uptake during physiological hyperinsulinemia in obese, insulin-resistant individuals. J Clin Endocrinol Metab 2008; 93:2764-73. [PMID: 18460559 DOI: 10.1210/jc.2007-2737] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Impairment of insulin-mediated capillary recruitment in skeletal muscle contributes to a hampered glucose uptake in obesity. OBJECTIVE The objective of this study was to evaluate whether metacholine (MCh), a nitric oxide vasodilator, potentiates muscle capillary recruitment and forearm glucose uptake (FGU) during physiological hyperinsulinemia. DESIGN The double-forearm technique [i.e. infused vs. control (Ctrl) forearm] was combined with im microdialysis during an oral glucose tolerance test in 15 nondiabetic, obese subjects divided into a group of insulin-resistant (IR) (n = 7) and insulin-sensitive (n = 8) individuals. RESULTS After the oral glucose tolerance test, forearm blood flow in the Ctrl forearm was unchanged, whereas it increased about 3-fold (P < 0.0001 vs. baseline) in response to MCh. Capillary permeability surface area product for glucose (PS(glu)) (capillary recruitment), FGU, and interstitial insulin concentrations increased significantly over time (P < 0.001) in both forearms. Compared with insulin-sensitive, the IR subjects exhibited lower PS(glu) (P < 0.001) and FGU (P < 0.01) in the Ctrl arm, whereas this difference was insignificant in the MCh arm despite the blunted forearm blood flow increase. Moreover, in IR individuals MCh significantly (P < 0.05) ameliorated the delayed onset of insulin action, i.e. the FGU response to hyperinsulinemia. Finally, we found PS(glu) to be a strong and independent predictor of FGU response (adjusted R(2) 0.72; P < 0.0001). CONCLUSIONS MCh-induced vasodilation may improve the microvascular and metabolic responses to physiological hyperinsulinemia in obese, IR individuals. Further studies are required to unravel whether stimulation of nitric oxide production in skeletal muscle may represent an attractive therapeutic approach to bypassing cellular resistance to glucose disposal.
Collapse
Affiliation(s)
- Giuseppe Murdolo
- Department of Internal Medicine, Section of Internal Medicine, Endocrine and Metabolic Sciences, Perugia University, Via Enrico Dal Pozzo I, Perugia, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Shehata MF. Important genetic checkpoints for insulin resistance in salt-sensitive (S) Dahl rats. Cardiovasc Diabetol 2008; 7:19. [PMID: 18570670 PMCID: PMC2459151 DOI: 10.1186/1475-2840-7-19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/21/2008] [Indexed: 12/30/2022] Open
Abstract
Despite the marked advances in research on insulin resistance (IR) in humans and animal models of insulin resistance, the mechanisms underlying high salt-induced insulin resistance remain unclear. Insulin resistance is a multifactorial disease with both genetic and environmental factors (such as high salt) involved in its pathogenesis. High salt triggers insulin resistance in genetically susceptible patients and animal models of insulin resistance. One of the mechanisms by which high salt might precipitate insulin resistance is through its ability to enhance an oxidative stress-induced inflammatory response that disrupts the insulin signaling pathway. The aim of this hypothesis is to discuss two complementary approaches to find out how high salt might interact with genetic defects along the insulin signaling and inflammatory pathways to predispose to insulin resistance in a genetically susceptible model of insulin resistance. The first approach will consist of examining variations in genes involved in the insulin signaling pathway in the Dahl S rat (an animal model of insulin resistance and salt-sensitivity) and the Dahl R rat (an animal model of insulin sensitivity and salt-resistance), and the putative cellular mechanisms responsible for the development of insulin resistance. The second approach will consist of studying the over-expressed genes along the inflammatory pathway whose respective activation might be predictive of high salt-induced insulin resistance in Dahl S rats. Variations in genes encoding the insulin receptor substrates -1 and/or -2 (IRS-1, -2) and/or genes encoding the glucose transporter (GLUTs) proteins have been found in patients with insulin resistance. To better understand the combined contribution of excessive salt and genetic defects to the etiology of the disease, it is essential to investigate the following question: Question 1: Do variations in genes encoding the IRS -1 and -2 and/or genes encoding the GLUTs proteins predict high salt-induced insulin resistance in Dahl S rats? A significant amount of evidence suggested that salt-induced oxidative stress might predict an inflammatory response that upregulates mediators of inflammation such as the nuclear factor- kappa B (NF-kappa B), the tumor necrosis factor-alpha (TNF-α) and the c-Jun Terminal Kinase (JNK). These inflammatory mediators disrupt the insulin signaling pathway and predispose to insulin resistance. Therefore, the following question will be thoroughly investigated: Question 2: Do variations in genes encoding the NF-kappa B, the TNF-α and the JNK, independently or in synergy, predict an enhanced inflammatory response and subsequent insulin resistance in Dahl S rats in excessive salt environment? Finally, to better understand the combined role of these variations on glucose metabolism, the following question will be addressed: Question 3: What are the functional consequences of gene variations on the rate of glucose delivery, the rate of glucose transport and the rate of glucose phosphorylation in Dahl S rats? The general hypothesis is that "high-salt diet in combination with defects in candidate genes along the insulin signaling and inflammatory pathways predicts susceptibility to high salt-induced insulin resistance in Dahl S rats".
Collapse
Affiliation(s)
- Marlene F Shehata
- Department of Cellular and Molecular Medicine, University of Ottawa Heart Institute, K1Y 4W7, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Hoy AJ, Bruce CR, Cederberg A, Turner N, James DE, Cooney GJ, Kraegen EW. Glucose infusion causes insulin resistance in skeletal muscle of rats without changes in Akt and AS160 phosphorylation. Am J Physiol Endocrinol Metab 2007; 293:E1358-64. [PMID: 17785505 DOI: 10.1152/ajpendo.00133.2007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hyperglycemia is a defining feature of Type 1 and 2 diabetes. Hyperglycemia also causes insulin resistance, and our group (Kraegen EW, Saha AK, Preston E, Wilks D, Hoy AJ, Cooney GJ, Ruderman NB. Am J Physiol Endocrinol Metab Endocrinol Metab 290: E471-E479, 2006) has recently demonstrated that hyperglycemia generated by glucose infusion results in insulin resistance after 5 h but not after 3 h. The aim of this study was to investigate possible mechanism(s) by which glucose infusion causes insulin resistance in skeletal muscle and in particular to examine whether this was associated with changes in insulin signaling. Hyperglycemia (~10 mM) was produced in cannulated male Wistar rats for up to 5 h. The glucose infusion rate required to maintain this hyperglycemia progressively lessened over 5 h (by 25%, P < 0.0001 at 5 h) without any alteration in plasma insulin levels consistent with the development of insulin resistance. Muscle glucose uptake in vivo (44%; P < 0.05) and glycogen synthesis rate (52%; P < 0.001) were reduced after 5 h compared with after 3 h of infusion. Despite these changes, there was no decrease in the phosphorylation state of multiple insulin signaling intermediates [insulin receptor, Akt, AS160 (Akt substrate of 160 kDa), glycogen synthase kinase-3beta] over the same time course. In isolated soleus strips taken from control or 1- or 5-h glucose-infused animals, insulin-stimulated 2-deoxyglucose transport was similar, but glycogen synthesis was significantly reduced in the 5-h muscle sample (68% vs. 1-h sample; P < 0.001). These results suggest that the reduced muscle glucose uptake in rats after 5 h of acute hyperglycemia is due more to the metabolic effects of excess glycogen storage than to a defect in insulin signaling or glucose transport.
Collapse
Affiliation(s)
- Andrew J Hoy
- Diabetes and Obesity Research Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Tomiyama H, Yambe M, Yamada J, Motobe K, Koji Y, Yoshida M, Shiina K, Yamashina A. Discrepancy between improvement of insulin sensitivity and that of arterial endothelial function in patients receiving antihypertensive medication. J Hypertens 2007; 25:883-9. [PMID: 17351383 DOI: 10.1097/hjh.0b013e3280149518] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES We evaluated whether the changes in the insulin sensitivity observed in hypertensive patients following treatment with an angiotensin II receptor blocker (candesartan) or calcium-channel antagonist (amlodipine) might be related to improvement of the endothelial function (END) and/or plasma level of high-sensitive C-reactive protein (CRP) following such treatment. METHODS AND RESULTS Seventy-one hypertensive patients (age: 58 +/- 10 years) without obvious target organ damage were allocated randomly to treatment with either candesartan at the dose of 8 mg/day or amlodipine at the dose of 5 mg/day. At the start and end of the 8-month treatment period, the homeostasis model assessment index of insulin resistance (HOMA-IR index), plasma CRP and END, as assessed by changes in the forearm blood flow in reactive hyperemia, were determined. While significant improvement of END was observed in patients receiving either drug, only candesartan, but not amlodipine, also reduced the plasma CRP and HOMA-IR index (2.13 +/- 1.92 --> 1.53 +/- 1.47, P < 0.05). In the patients receiving treatment with candesartan, stepwise multivariate linear regression analysis revealed that the percent change in the HOMA-IR index was significantly and independently correlated with that in the plasma CRP (beta = 0.38, P < 0.05), but not with that in END: CONCLUSION Improvement of the END alone by the antihypertensive medication might not entirely explain the improvement of the insulin sensitivity observed in these patients. Additional mechanisms may be involved, and the anti-inflammatory effects of the medication observed in patients treated with candesartan may also be related, at least in part, to the observed improvement of insulin sensitivity.
Collapse
Affiliation(s)
- Hirofumi Tomiyama
- Second Department of Internal Medicine, Tokyo Medical University, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Fueger PT, Li CY, Ayala JE, Shearer J, Bracy DP, Charron MJ, Rottman JN, Wasserman DH. Glucose kinetics and exercise tolerance in mice lacking the GLUT4 glucose transporter. J Physiol 2007; 582:801-12. [PMID: 17495042 PMCID: PMC2075340 DOI: 10.1113/jphysiol.2007.132902] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The absence of GLUT4 severely impairs basal glucose uptake in vivo, but does not alter glucose homeostasis or circulating insulin. Glucose uptake in isolated contracting skeletal muscle (MGU) is also impaired by the absence of GLUT4, and onset of muscle fatigue is hastened. Whether the body can compensate and preserve glucose homeostasis during exercise, as it does in the basal state, is unknown. One aim was to test the effectiveness of glucoregulatory compensation for the absence of GLUT4 in vivo. The absence of GLUT4 was also used to further define the role of hexokinase (HK) II, which catalyses glucose phosphorylation after it is transported in the cell. HK II increases MGU during exercise, as well as exercise endurance. In the absence of GLUT4, HK II expression will not affect MGU. A second aim was to test whether, in the absence of GLUT4, HK II retains its ability to increase exercise endurance. Wild-type (WT), GLUT4 null (GLUT4(-/-)), and GLUT4 null overexpressing HK II (GLUT4(-/-)HK(Tg)) mice were studied using a catheterized mouse model that allows blood sampling and isotope infusions during treadmill exercise. The impaired capacity of working muscle to take up glucose in GLUT4(-/-) is partially offset by an exaggerated increase in the glucagon: insulin ratio, increased liver glucose production, hyperglycaemia, and a greater capillary density in order to increase the delivery of glucose to the exercising muscle of GLUT4(-/-). Hearts of GLUT4(-/-) also exhibited a compensatory increase in HK II expression and a paradoxical increase in glucose uptake. Exercise tolerance was reduced in GLUT4(-/-) compared to WT. As expected, MGU in GLUT4(-/-)HK(Tg) was the same as in GLUT4(-/-). However, HK II overexpression retained its ability to increase exercise endurance. In conclusion, unlike the basal state where glucose homeostasis is preserved, hyperglycaemia results during exercise in GLUT4(-/-) due to a robust stimulation of liver glucose release in the face of severe impairments in MGU. Finally, studies in GLUT4(-/-)HK(Tg) show that HK II improves exercise tolerance, independent of its effects on MGU.
Collapse
Affiliation(s)
- Patrick T Fueger
- Department of Molecular Physiology and Biophysics,Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tang JE, Hartman JW, Phillips SM. Increased muscle oxidative potential following resistance training induced fibre hypertrophy in young men. Appl Physiol Nutr Metab 2007; 31:495-501. [PMID: 17111003 DOI: 10.1139/h06-026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Some evidence suggests that resistance training may lower relative muscle mitochondrial content via "dilution" of the organelle in a larger muscle fibre. Such an adaptation would reduce fatigue resistance, as well as compromise oxidative ATP synthesis and the capacity for fatty-acid oxidation. We investigated the effect of resistance training on mitochondrial enzymes of the citric acid cycle (citrate synthase; CS) and beta-oxidation (beta-hydroxyacyl CoA dehydrogenase; beta-HAD), as well as markers of the potential for glucose phosphorylation (hexokinase; HK) and glycolysis (phosphofructokinase; PFK). Twelve untrained men (21.9 +/- 0.5 y; 1.79 +/- 0.03 m; 83.2 +/- 3.2 kg) participated in a 12 week progressive resistance-training program. Muscle biopsies were taken from the vastus lateralis before (PRE) and after (POST) training. Training increased mean muscle fibre cross-sectional area (p < 0.05) and the activities of CS (PRE = 4.53 +/- 0.44 mol.kg protein(-1).h(-1); POST = 5.63 +/- 0.40 mol.kg protein(-1).h(-1); p < 0.001) and beta-HAD (PRE = 2.55 +/- 0.28 mol.kg protein(-1).h(-1); POST = 3.11 +/- 0.21 mol.kg protein(-1).h(-1); p < 0.05). The activity of HK increased 42% (p < 0.05), whereas the activity of PFK remained unchanged. We conclude that resistance training provides a stimulus for improving muscle oxidative potential, as reflected by the increased activities of CS and beta-HAD following resistance training induced hypertrophy.
Collapse
Affiliation(s)
- Jason E Tang
- Department of Kinesiology, Exercise Metabolism Research Group, McMaster University, 1280 Main St. W, Hamilton, ON L8S 4K1, Canada
| | | | | |
Collapse
|
29
|
Kim J, Saidel GM, Cabrera ME. Multi-scale computational model of fuel homeostasis during exercise: effect of hormonal control. Ann Biomed Eng 2006; 35:69-90. [PMID: 17111212 DOI: 10.1007/s10439-006-9201-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Accepted: 09/08/2006] [Indexed: 11/28/2022]
Abstract
A mathematical model of the whole-body metabolism is developed to predict fuel homeostasis during exercise by using hormonal control over cellular metabolic processes. The whole body model is composed of seven tissue compartments: brain, heart, liver, GI (gastrointestinal) tract, skeletal muscle, adipose tissue, and "other tissues". Each tissue compartment is described by dynamic mass balances and major cellular metabolic reactions. The glucagon-insulin controller is incorporated into the whole body model to predict hormonal changes during exercise. Moderate [150 W power output at 60% of peak oxygen consumption (VO(2max))] exercise for 60 min was implemented by increasing ATP utilization rates in heart and skeletal muscle. Arterial epinephrine level was given as an input function, which directly affects heart and skeletal muscle metabolism and indirectly other tissues via glucagon-insulin controller. Model simulations were validated with experimental data from human exercise studies. The exercise induced changes in hormonal signals modulated metabolic flux rates of different tissues in a coordinated way to achieve glucose homeostasis, demonstrating the efficacy of hormonal control over cellular metabolic processes. From experimental measurements of whole body glucose balance and arterial substrate concentrations, this model could predict the dynamic changes of hepatic glycogenolysis and gluconeogenesis, which are not easy to measure experimentally, suggesting the higher contribution of glycogenolysis ( approximately 75%). In addition, it could provide dynamic information on the relative contribution of carbohydrates and lipids for fuel oxidation in skeletal muscle. Model simulations indicate that external fuel supplies from other tissue/organ systems to skeletal muscle become important for prolonged exercise emphasizing the significance of interaction among tissues. In conclusion, this model can be used as a valuable complement to experimental studies due to its ability to predict what is difficult to measure directly, and usefulness to provide information about dynamic behaviors.
Collapse
Affiliation(s)
- Jaeyeon Kim
- Department of Biomedical Engineering, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
30
|
Slimani L, Oikonen V, Hällsten K, Savisto N, Knuuti J, Nuutila P, Iozzo P. Exercise restores skeletal muscle glucose delivery but not insulin-mediated glucose transport and phosphorylation in obese subjects. J Clin Endocrinol Metab 2006; 91:3394-403. [PMID: 16772346 PMCID: PMC2743828 DOI: 10.1210/jc.2006-0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CONTEXT/OBJECTIVE Insulin resistance in obese subjects results in the impaired disposal of glucose by skeletal muscle. The current study examined the effects of insulin and/or exercise on glucose transport and phosphorylation in skeletal muscle and the influence of obesity on these processes. SUBJECTS/METHODS Seven obese and 12 lean men underwent positron emission tomography with 2-deoxy-2-[(18)F]fluoro-d-glucose in resting and isometrically exercising skeletal muscle during normoglycemic hyperinsulinemia. Data were analyzed by two-tissue compartmental modeling. Perfusion and oxidative capacity were measured during insulin stimulation by [15O]H2O and [15O]O2. RESULTS Exercise increased glucose fractional uptake (K), inward transport rate (K(1)), and the k(3) parameter, combining transport and intracellular phosphorylation, in lean and obese subjects. In each group, there was no statistically significant difference between plasma flow and K(1). At rest, a significant defect in K(1) (P = 0.0016), k(3) (P = 0.016), and K (P = 0.022) was found in obese subjects. Exercise restored K(1), improved but did not normalize K (P = 0.03 vs. lean), and did not ameliorate the more than 60% relative impairment in k(3) in obese individuals (P = 0.002 vs. lean). The glucose oxidative potential tended to be reduced by obesity. CONCLUSIONS/INTERPRETATION The study indicates that exercise restores the impairment in insulin-mediated skeletal muscle perfusion and glucose delivery associated with obesity but does not normalize the defect involving the proximal steps regulating glucose disposal in obese individuals. Our data support the use of 2-deoxy-2-[18F]fluoro-d-glucose-positron emission tomography in the dissection between substrate supply and intrinsic tissue metabolism.
Collapse
Affiliation(s)
- Lotfi Slimani
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- * Correspondence should be adressed to: Lotfi Slimani
| | - Vesa Oikonen
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Kirsti Hällsten
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Nina Savisto
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Juhani Knuuti
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
| | - Pirjo Nuutila
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- Department of Medicine
University of TurkuTurku,FI
| | - Patricia Iozzo
- Turku PET Centre
University of TurkuP.O. Box 52 20521 Turku,FI
- Institute of Clinical Physiology
National Research Council56100 Pisa,IT
| |
Collapse
|
31
|
Wiernsperger N, Nivoit P, Bouskela E. Obstructive sleep apnea and insulin resistance: a role for microcirculation? Clinics (Sao Paulo) 2006; 61:253-66. [PMID: 16832559 DOI: 10.1590/s1807-59322006000300011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Obstructive sleep apnea is an increasingly recognized medical problem. The recent attention to its frequency in the general population and its important role in metabolic, vascular, and behavioral aspects have sharply increased the number and nature of investigations, thereby revealing new aspects that open new approaches in research. Whereas obstructive sleep apnea is a well-known phenomenon accompanying obesity and diabetes, new findings strongly suggest that this close relationship may also operate in the opposite direction. Indeed obstructive sleep apnea may be a primary feature inducing or aggravating a series of vascular and metabolic disturbances closely resembling the metabolic syndrome. This review will discuss established and potential mechanisms responsible for these changes. Obstructive sleep apnea indeed appears to gather all the elements necessary to induce insulin resistance, hypertension, and possibly heart failure. After careful analysis of these modifications and considering how they are intertwined, we propose that microcirculation could represent the common denominator mediating the progression of this pathology, as it is eventually the case in the metabolic syndrome and diabetes domain. This plausible hypothesis is discussed in detail and should be verified by appropriate preclinical and clinical protocols, which are now achievable by using noninvasive techniques in humans.
Collapse
Affiliation(s)
- Nicolas Wiernsperger
- Department of Physiological Sciences, State University of Rio de Janeiro, Brazil
| | | | | |
Collapse
|