1
|
Dai X, Fan Y, Zhao X. Systemic lupus erythematosus: updated insights on the pathogenesis, diagnosis, prevention and therapeutics. Signal Transduct Target Ther 2025; 10:102. [PMID: 40097390 PMCID: PMC11914703 DOI: 10.1038/s41392-025-02168-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/26/2025] [Indexed: 03/19/2025] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic inflammatory illness with heterogeneous clinical manifestations covering multiple organs. Diversified types of medications have been shown effective for alleviating SLE syndromes, ranging from cytokines, antibodies, hormones, molecular inhibitors or antagonists, to cell transfusion. Drugs developed for treating other diseases may benefit SLE patients, and agents established as SLE therapeutics may be SLE-inductive. Complexities regarding SLE therapeutics render it essential and urgent to identify the mechanisms-of-action and pivotal signaling axis driving SLE pathogenesis, and to establish innovative SLE-targeting approaches with desirable therapeutic outcome and safety. After introducing the research history of SLE and its epidemiology, we categorized primary determinants driving SLE pathogenesis by their mechanisms; combed through current knowledge on SLE diagnosis and grouped them by disease onset, activity and comorbidity; introduced the genetic, epigenetic, hormonal and environmental factors predisposing SLE; and comprehensively categorized preventive strategies and available SLE therapeutics according to their functioning mechanisms. In summary, we proposed three mechanisms with determinant roles on SLE initiation and progression, i.e., attenuating the immune system, restoring the cytokine microenvironment homeostasis, and rescuing the impaired debris clearance machinery; and provided updated insights on current understandings of SLE regarding its pathogenesis, diagnosis, prevention and therapeutics, which may open an innovative avenue in the fields of SLE management.
Collapse
Affiliation(s)
- Xiaofeng Dai
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China.
| | - Yuting Fan
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China
- Department of Gastroenterology, the Affiliated Hospital of Guizhou Medical University, Guiyang, 550001, P. R. China
| | - Xing Zhao
- Tissue Engineering and Stem Cell Experiment Center, Tumor Immunotherapy Technology Engineering Research Center, Department of Immunology, College of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550004, P. R. China.
| |
Collapse
|
2
|
Nasereddin L, Alnajjar O, Bashar H, Abuarab SF, Al-Adwan R, Chellappan DK, Barakat M. Corticosteroid-Induced Psychiatric Disorders: Mechanisms, Outcomes, and Clinical Implications. Diseases 2024; 12:300. [PMID: 39727630 DOI: 10.3390/diseases12120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Corticosteroids are extensively used in medicine for their powerful anti-inflammatory and immunosuppressive effects. However, their psychiatric side effects-such as mood disturbances, anxiety, and psychosis-are significant yet often underappreciated. This review provides a comprehensive exploration of corticosteroid-induced psychiatric disorders, with a focus on their underlying mechanisms and clinical implications. We examine how corticosteroids influence the hypothalamic-pituitary-adrenal (HPA) axis, leading to the dysregulation of stress responses and alterations in neurotransmitter levels, particularly dopamine, serotonin, and glutamate. These changes are linked to structural abnormalities in key brain areas such as the hippocampus and amygdala, which are implicated in mood and anxiety disorders, psychosis, and conditions like post-traumatic stress disorder (PTSD) and eating disorders. This review highlights the need for healthcare providers to be vigilant in recognizing and managing corticosteroid-induced psychiatric symptoms, especially in vulnerable populations with pre-existing mental health conditions. The complex relationship between corticosteroid type, dose, duration, and mental health outcomes is explored, emphasizing the importance of personalized treatment approaches to mitigate psychiatric risks. Given the widespread use of corticosteroids, there is an urgent need for more focused research on their psychiatric side effects. This review underscores the importance of patient education and careful monitoring to ensure optimal therapeutic outcomes while minimizing mental health risks associated with corticosteroid therapy.
Collapse
Affiliation(s)
- Lara Nasereddin
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Omar Alnajjar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | - Homam Bashar
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| | | | - Rahma Al-Adwan
- Department of Pharmaceutical Sciences and Pharmaceutics, Applied Science Private University, Amman 11937, Jordan
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Muna Barakat
- Department of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan
| |
Collapse
|
3
|
Lee SM, Jang JH, Jeong SH. Exploring gender differences in pharmacokinetics of central nervous system related medicines based on a systematic review approach. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:8311-8347. [PMID: 38850303 DOI: 10.1007/s00210-024-03190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Due to the inevitable differences in physiological and/or genetic factors between genders, the possibility that differences in pharmacokinetics between genders may occur when exposed to the same dose of the same drug is subject to reasonable inference and suspicion. Nevertheless, a significant number of medicines still rely on empirical usage and uniform clinical application without consideration of inter-individual diversity factors. In particular, in the pharmacokinetic diversity of medicines related to central nervous system (CNS) activity, consideration of gender factors and access to comparative analysis are very limited. The purpose of this study was to conduct an integrated analysis and review of differences in pharmacokinetics between genders that have not been specifically reported to date for medicines related to CNS effects, which are a group of drugs with relatively significant concerns about systemic side effects. This study was accessible through extensive data collection and analyzes using a web-based scientific literature search engine of pharmacokinetic results of CNS-related drugs performed on humans, taking gender into account. As a result, significant differences in pharmacokinetics between genders were identified for many drugs related to CNS. And most of the pharmacokinetic differences between genders suggested a higher in vivo exposure in females. This study suggests that consideration of gender factors cannot be ignored and will be an important point of interest in the precision medicine application of CNS-related medicines.
Collapse
Affiliation(s)
- Seung-Min Lee
- Department of Pharmacy, College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, Jeollanam-do, 57922, Republic of Korea
| | - Ji-Hun Jang
- Department of Pharmacy, College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, Jeollanam-do, 57922, Republic of Korea
| | - Seung-Hyun Jeong
- Department of Pharmacy, College of Pharmacy, Sunchon National University, 255 Jungang-ro, Suncheon-Si, Jeollanam-do, 57922, Republic of Korea.
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon-Si, 57922, Republic of Korea.
| |
Collapse
|
4
|
Taylor MA, Kokiko-Cochran ON. Context is key: glucocorticoid receptor and corticosteroid therapeutics in outcomes after traumatic brain injury. Front Cell Neurosci 2024; 18:1351685. [PMID: 38529007 PMCID: PMC10961349 DOI: 10.3389/fncel.2024.1351685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/21/2024] [Indexed: 03/27/2024] Open
Abstract
Traumatic brain injury (TBI) is a global health burden, and survivors suffer functional and psychiatric consequences that can persist long after injury. TBI induces a physiological stress response by activating the hypothalamic-pituitary-adrenal (HPA) axis, but the effects of injury on the stress response become more complex in the long term. Clinical and experimental evidence suggests long lasting dysfunction of the stress response after TBI. Additionally, pre- and post-injury stress both have negative impacts on outcome following TBI. This bidirectional relationship between stress and injury impedes recovery and exacerbates TBI-induced psychiatric and cognitive dysfunction. Previous clinical and experimental studies have explored the use of synthetic glucocorticoids as a therapeutic for stress-related TBI outcomes, but these have yielded mixed results. Furthermore, long-term steroid treatment is associated with multiple negative side effects. There is a pressing need for alternative approaches that improve stress functionality after TBI. Glucocorticoid receptor (GR) has been identified as a fundamental link between stress and immune responses, and preclinical evidence suggests GR plays an important role in microglia-mediated outcomes after TBI and other neuroinflammatory conditions. In this review, we will summarize GR-mediated stress dysfunction after TBI, highlighting the role of microglia. We will discuss recent studies which target microglial GR in the context of stress and injury, and we suggest that cell-specific GR interventions may be a promising strategy for long-term TBI pathophysiology.
Collapse
Affiliation(s)
| | - Olga N. Kokiko-Cochran
- Department of Neuroscience, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, College of Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
5
|
De Alcubierre D, Ferrari D, Mauro G, Isidori AM, Tomlinson JW, Pofi R. Glucocorticoids and cognitive function: a walkthrough in endogenous and exogenous alterations. J Endocrinol Invest 2023; 46:1961-1982. [PMID: 37058223 PMCID: PMC10514174 DOI: 10.1007/s40618-023-02091-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/05/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE The hypothalamic-pituitary-adrenal (HPA) axis exerts many actions on the central nervous system (CNS) aside from stress regulation. Glucocorticoids (GCs) play an important role in affecting several cognitive functions through the effects on both glucocorticoid (GR) and mineralocorticoid receptors (MR). In this review, we aim to unravel the spectrum of cognitive dysfunction secondary to derangement of circulating levels of endogenous and exogenous glucocorticoids. METHODS All relevant human prospective and retrospective studies published up to 2022 in PubMed reporting information on HPA disorders, GCs, and cognition were included. RESULTS Cognitive impairment is commonly found in GC-related disorders. The main brain areas affected are the hippocampus and pre-frontal cortex, with memory being the most affected domain. Disease duration, circadian rhythm disruption, circulating GCs levels, and unbalanced MR/GR activation are all risk factors for cognitive decline in these patients, albeit with conflicting data among different conditions. Lack of normalization of cognitive dysfunction after treatment is potentially attributable to GC-dependent structural brain alterations, which can persist even after long-term remission. CONCLUSION The recognition of cognitive deficits in patients with GC-related disorders is challenging, often delayed, or mistaken. Prompt recognition and treatment of underlying disease may be important to avoid a long-lasting impact on GC-sensitive areas of the brain. However, the resolution of hormonal imbalance is not always followed by complete recovery, suggesting irreversible adverse effects on the CNS, for which there are no specific treatments. Further studies are needed to find the mechanisms involved, which may eventually be targeted for treatment strategies.
Collapse
Affiliation(s)
- D De Alcubierre
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - D Ferrari
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - G Mauro
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - A M Isidori
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - J W Tomlinson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK
| | - R Pofi
- Oxford Centre for Diabetes, Endocrinology and Metabolism, NIHR Oxford Biomedical Research Centre, University of Oxford, Churchill Hospital, Oxford, UK.
| |
Collapse
|
6
|
Lisakovska O, Labudzynskyi D, Khomenko A, Isaev D, Savotchenko A, Kasatkina L, Savosko S, Veliky M, Shymanskyi I. Brain vitamin D3-auto/paracrine system in relation to structural, neurophysiological, and behavioral disturbances associated with glucocorticoid-induced neurotoxicity. Front Cell Neurosci 2023; 17:1133400. [PMID: 37020845 PMCID: PMC10067932 DOI: 10.3389/fncel.2023.1133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/22/2023] Open
Abstract
IntroductionVitamin D3 (VD3) is a potent para/autocrine regulator and neurosteroid that can strongly influence nerve cell function and counteract the negative effects of glucocorticoid (GC) therapy. The aim of the study was to reveal the relationship between VD3 status and behavioral, structural-functional and molecular changes associated with GC-induced neurotoxicity.MethodsFemale Wistar rats received synthetic GC prednisolone (5 mg/kg b.w.) with or without VD3 (1000 IU/kg b.w.) for 30 days. Behavioral, histological, physiological, biochemical, molecular biological (RT-PCR, Western blotting) methods, and ELISA were used.Results and discussionThere was no difference in open field test (OFT), while forced swim test (FST) showed an increase in immobility time and a decrease in active behavior in prednisolone-treated rats, indicative of depressive changes. GC increased the perikaryon area, enlarged the size of the nuclei, and caused a slight reduction of cell density in CA1-CA3 hippocampal sections. We established a GC-induced decrease in the long-term potentiation (LTP) in CA1-CA3 hippocampal synapses, the amplitude of high K+-stimulated exocytosis, and the rate of Ca2+-dependent fusion of synaptic vesicles with synaptic plasma membranes. These changes were accompanied by an increase in nitration and poly(ADP)-ribosylation of cerebral proteins, suggesting the development of oxidative-nitrosative stress. Prednisolone upregulated the expression and phosphorylation of NF-κB p65 subunit at Ser311, whereas downregulating IκB. GC loading depleted the circulating pool of 25OHD3 in serum and CSF, elevated VDR mRNA and protein levels but had an inhibitory effect on CYP24A1 and VDBP expression. Vitamin D3 supplementation had an antidepressant-like effect, decreasing the immobility time and stimulating active behavior. VD3 caused a decrease in the size of the perikaryon and nucleus in CA1 hippocampal area. We found a recovery in depolarization-induced fusion of synaptic vesicles and long-term synaptic plasticity after VD3 treatment. VD3 diminished the intensity of oxidative-nitrosative stress, and suppressed the NF-κB activation. Its ameliorative effect on GC-induced neuroanatomical and behavioral abnormalities was accompanied by the 25OHD3 repletion and partial restoration of the VD3-auto/paracrine system.ConclusionGC-induced neurotoxicity and behavioral disturbances are associated with increased oxidative-nitrosative stress and impairments of VD3 metabolism. Thus, VD3 can be effective in preventing structural and functional abnormalities in the brain and behavior changes caused by long-term GC administration.
Collapse
Affiliation(s)
- Olha Lisakovska
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
- *Correspondence: Olha Lisakovska,
| | - Dmytro Labudzynskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Anna Khomenko
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Dmytro Isaev
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Alina Savotchenko
- Department of Cellular Membranology, Bogomoletz Institute of Physiology, Kyiv, Ukraine
| | - Ludmila Kasatkina
- Research Laboratory for Young Scientists, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Serhii Savosko
- Department of Histology and Embryology, Bogomolets National Medical University, Kyiv, Ukraine
| | - Mykola Veliky
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| | - Ihor Shymanskyi
- Department of Biochemistry of Vitamins and Coenzymes, Palladin Institute of Biochemistry, Kyiv, Ukraine
| |
Collapse
|
7
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
8
|
Symptoms of Depression and Anxiety in Adults with High-Grade Glioma: A Literature Review and Findings in a Group of Patients before Chemoradiotherapy and One Year Later. Cancers (Basel) 2022; 14:cancers14215192. [PMID: 36358611 PMCID: PMC9659261 DOI: 10.3390/cancers14215192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/03/2022] [Accepted: 10/13/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary High-grade glioma (HGG) is the most severe type of brain cancer. At different stages of the disease, affected persons are at high risk of symptoms of depression and anxiety. If undiagnosed and untreated, these symptoms might become severe and compromise the patient’s quality of life. Improved knowledge on the prevalence, mechanisms and clinical risk factors underlying the etiology of depression and anxiety in this population is required. This may help to increase awareness on the importance of integrating consistent assessment of mood symptoms with the clinical follow-up and provide insights for developing personalized psychosocial interventions. Abstract High-grade glioma (HGG) is associated with several external and internal stressors that may induce mood alterations at all stages of the disease. Symptoms of depression and anxiety in persons with glioma have multifactorial etiology and require active follow-up. We reviewed the literature data on the prevalence, mechanisms likely involved in the etiology of mood alterations in persons with HGG and psychosocial interventions found beneficial in treating these symptoms. We also investigated the prevalence and clinical variables that could increase the risk of depression and anxiety symptoms in a group of patients with HGG at two disease time-points: after surgery, before and 1 year after chemoradiotherapy. Literature findings revealed complex mechanisms underlying these symptoms and highlighted the importance of providing early access to palliative care. Our results show a high rate of anxiety and depression symptoms in the first stage of the disease and increased concomitance of these symptoms at the 1-year follow-up. Depression and anxiety symptoms at 1 year after the end of chemoradiotherapy were associated with the presence of symptoms at the first stage of the disease and tumor progression. Antiepileptic drugs and corticosteroid intake did not increase the risk of depressive and anxious symptoms among patients. Active management of mood alterations is an essential part of the care and contributes to patients’ well-being and quality of life.
Collapse
|
9
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
10
|
Glucocorticoid-Regulated Kinase CAMKIγ in the Central Amygdala Controls Anxiety-like Behavior in Mice. Int J Mol Sci 2022; 23:ijms232012328. [PMID: 36293185 PMCID: PMC9604347 DOI: 10.3390/ijms232012328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/30/2022] [Accepted: 10/04/2022] [Indexed: 11/07/2022] Open
Abstract
The expression of the Calcium/Calmodulin-Dependent Protein Kinase I gamma (encoded by the Camk1g gene) depends on the activation of glucocorticoid receptors (GR) and is strongly regulated by stress. Since Camk1g is primarily expressed in neuronal cells of the limbic system in the brain, we hypothesized that it could be involved in signaling mechanisms that underlie the adaptive or maladaptive responses to stress. Here, we find that restraint-induced stress and the GR agonist dexamethasone robustly increase the expression of Camk1g in neurons of the amygdalar nuclei in the mouse brain. To assess the functional role of Camk1g expression, we performed a virally induced knock-down of the transcript. Mice with bilateral amygdala-specific Camk1g knock-down showed increased anxiety-like behaviors in the light-dark box, and an increase in freezing behavior after fear-conditioning, but normal spatial working memory during exploration of a Y-maze. Thus, we confirm that Camk1g is a neuron-specific GR-regulated transcript, and show that it is specifically involved in behaviors related to anxiety, as well as responses conditioned by aversive stimuli.
Collapse
|
11
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
12
|
Mesoporous Materials as Elements of Modern Drug Delivery Systems for Anti-Inflammatory Agents: A Review of Recent Achievements. Pharmaceutics 2022; 14:pharmaceutics14081542. [PMID: 35893798 PMCID: PMC9331996 DOI: 10.3390/pharmaceutics14081542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/16/2022] [Accepted: 07/22/2022] [Indexed: 12/04/2022] Open
Abstract
Interest in the use of mesoporous materials as carriers of medicinal substances has been steadily increasing in the last two decades. Mesoporous carriers have application in the preparation of delivery systems for drugs from various therapeutic groups; however, their use as the carriers of anti-inflammatory agents is particularly marked. This review article, with about 170 references, summarizes the achievements in the application of mesoporous materials as the carriers of anti-inflammatory agents in recent years. This article will discuss a variety of mesoporous carriers as well as the characteristics of their porous structure that determine further use of these materials in the field of medical applications. Special attention will be paid to the progress observed in the construction of stimuli-responsive drug carriers and systems providing site-specific drug delivery. Subsequently, a review of the literature devoted to the use of mesoporous matrices as the carriers of anti-inflammatory drugs was carried out.
Collapse
|
13
|
Tabarin A, Assié G, Barat P, Bonnet F, Bonneville JF, Borson-Chazot F, Bouligand J, Boulin A, Brue T, Caron P, Castinetti F, Chabre O, Chanson P, Corcuff JB, Cortet C, Coutant R, Dohan A, Drui D, Espiard S, Gaye D, Grunenwald S, Guignat L, Hindie E, Illouz F, Kamenicky P, Lefebvre H, Linglart A, Martinerie L, North MO, Raffin-Samson ML, Raingeard I, Raverot G, Raverot V, Reznik Y, Taieb D, Vezzosi D, Young J, Bertherat J. Consensus statement by the French Society of Endocrinology (SFE) and French Society of Pediatric Endocrinology & Diabetology (SFEDP) on diagnosis of Cushing's syndrome. ANNALES D'ENDOCRINOLOGIE 2022; 83:119-141. [PMID: 35192845 DOI: 10.1016/j.ando.2022.02.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cushing's syndrome is defined by prolonged exposure to glucocorticoids, leading to excess morbidity and mortality. Diagnosis of this rare pathology is difficult due to the low specificity of the clinical signs, the variable severity of the clinical presentation, and the difficulties of interpretation associated with the diagnostic methods. The present consensus paper by 38 experts of the French Society of Endocrinology and the French Society of Pediatric Endocrinology and Diabetology aimed firstly to detail the circumstances suggesting diagnosis and the biologic diagnosis tools and their interpretation for positive diagnosis and for etiologic diagnosis according to ACTH-independent and -dependent mechanisms. Secondly, situations making diagnosis complex (pregnancy, intense hypercortisolism, fluctuating Cushing's syndrome, pediatric forms and genetically determined forms) were detailed. Lastly, methods of surveillance and diagnosis of recurrence were dealt with in the final section.
Collapse
Affiliation(s)
- Antoine Tabarin
- Service Endocrinologie, Diabète et Nutrition, Université, Hôpital Haut-Leveque CHU de Bordeaux, 33604 Pessac, France.
| | - Guillaume Assié
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Pascal Barat
- Unité d'Endocrinologie-Diabétologie-Gynécologie-Obésité Pédiatrique, Hôpital des Enfants CHU Bordeaux, Bordeaux, France
| | - Fidéline Bonnet
- UF d'Hormonologie Hôpital Cochin, Université de Paris, Institut Cochin Inserm U1016, CNRS UMR8104, Paris, France
| | | | - Françoise Borson-Chazot
- Fédération d'Endocrinologie, Hôpital Louis-Pradel, Hospices Civils de Lyon, INSERM U1290, Université Lyon1, 69002 Lyon, France
| | - Jérôme Bouligand
- Faculté de Médecine Paris-Saclay, Unité Inserm UMRS1185 Physiologie et Physiopathologie Endocriniennes, Paris, France
| | - Anne Boulin
- Service de Neuroradiologie, Hôpital Foch, 92151 Suresnes, France
| | - Thierry Brue
- Aix-Marseille Université, Institut National de la Recherche Scientifique (INSERM) U1251, Marseille Medical Genetics, Marseille, France; Assistance publique-Hôpitaux de Marseille, Service d'Endocrinologie, Hôpital de la Conception, Centre de Référence Maladies Rares HYPO, 13005 Marseille, France
| | - Philippe Caron
- Service d'Endocrinologie et Maladies Métaboliques, Pôle Cardiovasculaire et Métabolique, CHU Larrey, 24, chemin de Pouvourville, TSA 30030, 31059 Toulouse cedex, France
| | - Frédéric Castinetti
- Aix-Marseille Université, Institut National de la Recherche Scientifique (INSERM) U1251, Marseille Medical Genetics, Marseille, France; Assistance publique-Hôpitaux de Marseille, Service d'Endocrinologie, Hôpital de la Conception, Centre de Référence Maladies Rares HYPO, 13005 Marseille, France
| | - Olivier Chabre
- Université Grenoble Alpes, UMR 1292 INSERM-CEA-UGA, Endocrinologie, CHU Grenoble Alpes, 38000 Grenoble, France
| | - Philippe Chanson
- Université Paris-Saclay, Inserm, Physiologie et Physiopathologie Endocriniennes, Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse HYPO, Le Kremlin-Bicêtre, France
| | - Jean Benoit Corcuff
- Laboratoire d'Hormonologie, Service de Médecine Nucléaire, CHU Bordeaux, Laboratoire NutriNeuro, UMR 1286 INRAE, Université de Bordeaux, Bordeaux, France
| | - Christine Cortet
- Service d'Endocrinologie, Diabétologie, Métabolisme et Nutrition, CHU de Lille, Lille, France
| | - Régis Coutant
- Service d'Endocrinologie Pédiatrique, CHU Angers, Centre de Référence, Centre Constitutif des Maladies Rares de l'Hypophyse, CHU Angers, Angers, France
| | - Anthony Dohan
- Department of Radiology A, Hôpital Cochin, AP-HP, 75014 Paris, France
| | - Delphine Drui
- Service Endocrinologie-Diabétologie et Nutrition, l'institut du Thorax, CHU Nantes, 44092 Nantes cedex, France
| | - Stéphanie Espiard
- Service d'Endocrinologie, Diabétologie, Métabolisme et Nutrition, INSERM U1190, Laboratoire de Recherche Translationnelle sur le Diabète, 59000 Lille, France
| | - Delphine Gaye
- Service de Radiologie, Hôpital Haut-Lêveque, CHU de Bordeaux, 33604 Pessac, France
| | - Solenge Grunenwald
- Service d'Endocrinologie, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Laurence Guignat
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Elif Hindie
- Service de Médecine Nucléaire, CHU de Bordeaux, Université de Bordeaux, Bordeaux, France
| | - Frédéric Illouz
- Centre de Référence Maladies Rares de la Thyroïde et des Récepteurs Hormonaux, Service Endocrinologie-Diabétologie-Nutrition, CHU Angers, 49933 Angers cedex 9, France
| | - Peter Kamenicky
- Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, 94275 Le Kremlin-Bicêtre, France
| | - Hervé Lefebvre
- Service d'Endocrinologie, Diabète et Maladies Métaboliques, CHU de Rouen, Rouen, France
| | - Agnès Linglart
- Paris-Saclay University, AP-HP, Endocrinology and Diabetes for Children, Reference Center for Rare Disorders of Calcium and Phosphate Metabolism, Filière OSCAR, and Platform of Expertise for Rare Disorders, INSERM, Physiologie et Physiopathologie Endocriniennes, Bicêtre Paris-Saclay Hospital, Le Kremlin-Bicêtre, France
| | - Laetitia Martinerie
- Service d'Endocrinologie Pédiatrique, CHU Robert-Debré, AP-HP, Paris, France; Université de Paris, Paris, France
| | - Marie Odile North
- Service de Génétique et Biologie Moléculaire, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Marie Laure Raffin-Samson
- Service d'Endocrinologie Nutrition, Hôpital Ambroise-Paré, GHU Paris-Saclay, AP-HP Boulogne, EA4340, Université de Versailles-Saint-Quentin, Paris, France
| | - Isabelle Raingeard
- Maladies Endocriniennes, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Gérald Raverot
- Fédération d'Endocrinologie, Centre de Référence Maladies Rares Hypophysaires, "Groupement Hospitalier Est", Hospices Civils de Lyon, Lyon, France
| | - Véronique Raverot
- Hospices Civils de Lyon, LBMMS, Centre de Biologie Est, Service de Biochimie et Biologie Moléculaire, 69677 Bron cedex, France
| | - Yves Reznik
- Department of Endocrinology and Diabetology, CHU Côte-de-Nacre, 14033 Caen cedex, France; University of Caen Basse-Normandie, Medical School, 14032 Caen cedex, France
| | - David Taieb
- Aix-Marseille Université, CHU La Timone, AP-HM, Marseille, France
| | - Delphine Vezzosi
- Service d'Endocrinologie, Hôpital Larrey, CHU Toulouse, Toulouse, France
| | - Jacques Young
- Assistance publique-Hôpitaux de Paris, Hôpital Bicêtre, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse, 94275 Le Kremlin-Bicêtre, France
| | - Jérôme Bertherat
- Centre de Référence Maladies Rares de la Surrénale (CRMRS), Service d'Endocrinologie, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| |
Collapse
|
14
|
Keil MF, Kang JY, Liu A, Wiggs EA, Merke D, Stratakis CA. Younger age and early puberty are associated with cognitive function decline in children with Cushing disease. Clin Endocrinol (Oxf) 2022; 96:569-577. [PMID: 34668209 PMCID: PMC8897227 DOI: 10.1111/cen.14611] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 01/29/2023]
Abstract
OBJECTIVE To investigate the effect of hypercortisolism on the developing brain we performed clinical, cognitive, and psychological evaluation of children with Cushing disease (CD) at diagnosis and 1 year after remission. STUDY DESIGN Prospective study of 41 children with CD. Children completed diverse sets of cognitive measures before and 1 year after remission. Neuropsychological evaluation included the Wechsler Intelligence Scale, California Verbal Learning Test, Trail Making Test, the combined subset scores of Wide Range Achievement Test and Woodcock-Johnson Psychoeducational Battery Test of Achievement, and the Behavioral Assessment System for Children. RESULTS Comprehensive cognitive evaluations at baseline and 1 year following cure revealed significant decline mostly in nonverbal skills. Decrements occurred in most of the various indices that measure all aspects of cognitive function and younger age and early pubertal stage largely contributed to most of this decline. Results indicated that age at baseline was associated with positive regression weights for changes in scores for verbal, performance, and full intelligence quotient (IQ) scores and for subtests arithmetic, picture completion, coding, block design, scores; indicating that older age at baseline was associated with less of a deterioration in cognitive scores from pre- to posttreatment. CONCLUSION Our findings suggest that chronic glucocorticoid excess and accompanying secondary hormonal imbalances followed by eucortisolemia have detrimental effects on cognitive function in the developing brain; younger age and pubertal stage are risk factors for increased vulnerability, while older adolescents have cognitive vulnerabilities like that of adult patients affected with CD.
Collapse
Affiliation(s)
- Margaret F Keil
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Joo Y Kang
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Aiyi Liu
- Biostatistics and Bioinformatics Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| | - Edythe A Wiggs
- National Institute of Neurological Disorders (NINDS) (Ret), National Institutes of Health, Bethesda, Maryland, USA
| | - Deborah Merke
- National Institutes of Health Clinical Center and The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, Maryland, USA
| | - Constantine A Stratakis
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Louis E, Paridaens K, Al Awadhi S, Begun J, Cheon JH, Dignass AU, Magro F, Márquez JR, Moschen AR, Narula N, Rydzewska G, Freddi MJ, Travis SP. Modelling the benefits of an optimised treatment strategy for 5-ASA in mild-to-moderate ulcerative colitis. BMJ Open Gastroenterol 2022; 9:bmjgast-2021-000853. [PMID: 35165124 PMCID: PMC8845184 DOI: 10.1136/bmjgast-2021-000853] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/25/2022] [Indexed: 12/18/2022] Open
Abstract
Objectives 5-aminosalicylate (mesalazine; 5-ASA) is an established first-line treatment for mild-to-moderate ulcerative colitis (UC). This study aimed to model the benefits of optimising 5-ASA therapy. Methods A decision tree model followed 10 000 newly diagnosed patients with mild-to-moderately active UC through induction and 1 year of maintenance treatment. Optimised treatment (maximising dose of 5-ASA and use of combined oral and rectal therapy before treatment escalation) was compared with standard treatment (standard doses of 5-ASA without optimisation). Modelled data were derived from published meta-analyses. The primary outcomes were patient numbers achieving and maintaining remission, with an analysis of treatment costs for each strategy conducted as a secondary outcome (using UK reference costs). Results During induction, there was a 39% increase in patients achieving remission through the optimised pathway without requiring systemic steroids and/or biologics (6565 vs 4725 for standard). Potential steroidal/biological adverse events avoided included: seven venous thromboembolisms and eight serious infections. Out of the 6565 patients entering maintenance following successful induction on 5-ASA, there was a 21% reduction in relapses when optimised (1830 vs 2311 for standard). This translated into 297 patients avoiding further systemic steroids and 214 biologics. Optimisation led to an average net saving of £272 per patient entering the model for the induction and maintenance of remission over 1 year. Conclusion Modelling suggests that optimising 5-ASA therapy (both the inclusion of rectal 5-ASA into a combined oral and rectal regimen and maximisation of 5-ASA dose) has clinical and cost benefits that supports wider adoption in clinical practice.
Collapse
Affiliation(s)
- Edouard Louis
- Hepato-Gastroenterology and Digestive Oncology Department, University and Centre Hospitalier Univestitaire (CHU) Liège, Liège, Belgium
| | | | | | - Jakob Begun
- Department of Gastroenterology, Mater Hospital Brisbane, Brisbane, Queensland, Australia
| | - Jae Hee Cheon
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Axel U Dignass
- Department of Medicine I, Agaplesion Markus Hospital, Goethe-University, Frankfurt am Main, Germany
| | - Fernando Magro
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, University of Porto, Porto, Portugal
- Department of Gastroenterology, São João University Hospital, Porto, Portugal
| | - Juan Ricardo Márquez
- Colorectal Surgery Department, Instituto de Coloproctologia ICO Clinica Las Americas, Medellin, Colombia
| | - Alexander R Moschen
- University Clinic for Internal Medicine, Johannes Kepler University, Linz, Austria
| | - Neeraj Narula
- Division of Gastroenterology, Department of Medicine and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Rydzewska
- Clinical Department of Internal Medicine and Gastroenterology with Inflammatory Bowel Disease Subdivision, The Central Clinical Hospital of the Ministry of the Interior Affairs and Administration, Warsaw, Poland
- Collegium Medicum, Jan Kochanowski University of Kielce, Kielce, Poland
| | | | - Simon Pl Travis
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
16
|
Viho EMG, Buurstede JC, Berkhout JB, Mahfouz A, Meijer OC. Cell type specificity of glucocorticoid signaling in the adult mouse hippocampus. J Neuroendocrinol 2022; 34:e13072. [PMID: 34939259 PMCID: PMC9286676 DOI: 10.1111/jne.13072] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/14/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Glucocorticoid stress hormones are powerful modulators of brain function and can affect mood and cognitive processes. The hippocampus is a prominent glucocorticoid target and expresses both the glucocorticoid receptor (GR: Nr3c1) and the mineralocorticoid receptor (MR: Nr3c2). These nuclear steroid receptors act as ligand-dependent transcription factors. Transcriptional effects of glucocorticoids have often been deduced from bulk mRNA measurements or spatially informed individual gene expression. However, only sparse data exists allowing insights on glucocorticoid-driven gene transcription at the cell type level. Here, we used publicly available single-cell RNA sequencing data to assess the cell-type specificity of GR and MR signaling in the adult mouse hippocampus. The data confirmed that Nr3c1 and Nr3c2 expression differs across neuronal and non-neuronal cell populations. We analyzed co-expression with sex hormones receptors, transcriptional coregulators, and receptors for neurotransmitters and neuropeptides. Our results provide insights in the cellular basis of previous bulk mRNA results and allow the formulation of more defined hypotheses on the effects of glucocorticoids on hippocampal function.
Collapse
Affiliation(s)
- Eva M. G. Viho
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jacobus C. Buurstede
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Jari B. Berkhout
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
| | - Ahmed Mahfouz
- Department of Human GeneticsLeiden University Medical CenterLeidenThe Netherlands
- Delft Bioinformatics LaboratoryDelft University of TechnologyDelftThe Netherlands
- Leiden Computational Biology CenterLeiden University Medical CenterLeidenThe Netherlands
| | - Onno C. Meijer
- Division of EndocrinologyDepartment of MedicineLeiden University Medical CenterLeidenThe Netherlands
- Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
17
|
Cortisol as a Biomarker of Mental Disorder Severity. J Clin Med 2021; 10:jcm10215204. [PMID: 34768724 PMCID: PMC8584322 DOI: 10.3390/jcm10215204] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023] Open
Abstract
Cortisol—the most important steroid hormone with a significant effect on body metabolism—strongly affects peripheral tissues and the central nervous system. Fluctuations in cortisol secretion often accompany psychiatric disorders, and normalization of its levels correlates with improvement in the patient’s health. This indicates that cortisol may be useful as a biological marker that can help determine the likelihood of mental illness, its impending onset, and the severity of symptoms, which is especially important in the face of the increasing prevalence of mental disorders, including those associated with social isolation and anxiety during the COVID-19 pandemic. This publication reviews recent reports on cortisol levels in healthy participants and shows the current state of knowledge on changes in the levels of this hormone in people at risk for depression, bipolar disorder, and psychosis. It shows how people with psychiatric disorders react to stressful situations and how the applied therapies affect cortisol secretion. The influence of antidepressants and antipsychotics on cortisol levels in healthy people and those with mental disorders is also described. Finally, it reviews publications on the patterns of cortisol secretion in patients in remission.
Collapse
|
18
|
Landolf KM, Lemieux SM, Rose C, Johnston JP, Adams CD, Altshuler J, Berger K, Dixit D, Effendi MK, Heavner MS, Lemieux D, Littlefield AJ, Nei AM, Owusu KA, Rinehart M, Robbins B, Rouse GE, Thompson Bastin ML. Corticosteroid use in ARDS and its application to evolving therapeutics for coronavirus disease 2019 (COVID-19): A systematic review. Pharmacotherapy 2021; 42:71-90. [PMID: 34662448 PMCID: PMC8662062 DOI: 10.1002/phar.2637] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 10/08/2021] [Accepted: 10/13/2021] [Indexed: 01/08/2023]
Abstract
Data regarding the use of corticosteroids for treatment of acute respiratory distress syndrome (ARDS) are conflicting. As the coronavirus disease 2019 (COVID‐19) pandemic progresses, more literature supporting the use of corticosteroids for COVID‐19 and non‐COVID‐19 ARDS have emerged. Glucocorticoids are proposed to attenuate the inflammatory response and prevent progression to the fibroproliferative phase of ARDS through their multiple mechanisms and anti‐inflammatory properties. The purpose of this systematic review was to comprehensively evaluate the literature surrounding corticosteroid use in ARDS (non‐COVID‐19 and COVID‐19) in addition to a narrative review of clinical considerations of corticosteroid use in these patient populations. OVID Medline and EMBASE were searched. Randomized controlled trials evaluating the use of corticosteroids for COVID‐19 and non‐COVID‐19 ARDS in adult patients on mortality outcomes were included. Risk of bias was assessed with the Risk of Bias 2.0 tool. There were 388 studies identified, 15 of which met the inclusion criteria that included a total of 8877 patients. The studies included in our review reported a mortality benefit in 6/15 (40%) studies with benefit being seen at varying time points of mortality follow‐up (ICU survival, hospital, and 28 and 60 days) in the COVID‐19 and non‐COVID‐19 ARDS studies. The two non‐COVID19 trials assessing lung injury score improvements found that corticosteroids led to significant improvements with corticosteroid use. The number of mechanical ventilation‐free days significantly were found to be increased with the use of corticosteroids in all four studies that assessed this outcome. Corticosteroids are associated with improvements in mortality and ventilator‐free days in critically ill patients with both COVID‐19 and non‐COVID‐19 ARDS, and evidence suggests their use should be encouraged in these settings. However, due to substantial differences in the corticosteroid regimens utilized in these trials, questions still remain regarding the optimal corticosteroid agent, dose, and duration in patients with ARDS.
Collapse
Affiliation(s)
- Kaitlin M Landolf
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Steven M Lemieux
- Department of Pharmacy, VA Connecticut Healthcare System, West Haven, Connecticut, USA
| | - Christina Rose
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | - Jackie P Johnston
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Christopher D Adams
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Jerry Altshuler
- Department of Pharmacy, Hackensack Meridian Health JFK University Medical Center, Edison, New Jersey, USA
| | - Karen Berger
- Department of Pharmacy, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Deepali Dixit
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Muhammad K Effendi
- Department of Pharmacy Practice and Administration, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA
| | - Mojdeh S Heavner
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Diana Lemieux
- Department of Pharmacy Services, Yale New Haven Hospital, New Haven, Connecticut, USA
| | - Audrey J Littlefield
- Department of Pharmacy, New York-Presbyterian Hospital/Weill Cornell Medical Center, New York, New York, USA
| | - Andrea M Nei
- Department of Pharmacy, Mayo Clinic Hospital - Rochester, Rochester, Minnesota, USA
| | - Kent A Owusu
- Department of Pharmacy Services, Yale New Haven Hospital, New Haven, Connecticut, USA.,Care Signature, Yale New Haven Health, New Haven, Connecticut, USA
| | - Marisa Rinehart
- Department of Pharmacy Practice and Science, University of Maryland School of Pharmacy, Baltimore, Maryland, USA
| | - Blake Robbins
- Department of Pharmacy Services, University of Kentucky HealthCare, Lexington, Kentucky, USA
| | - Ginger E Rouse
- Department of Pharmacy Services, Yale New Haven Hospital, New Haven, Connecticut, USA
| | | |
Collapse
|
19
|
Alemany M. Estrogens and the regulation of glucose metabolism. World J Diabetes 2021; 12:1622-1654. [PMID: 34754368 PMCID: PMC8554369 DOI: 10.4239/wjd.v12.i10.1622] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/10/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied essentially related to their classical estrogenic and pharmacologic functions. However, their main effect in the body is probably the sustained control of core energy metabolism. Estrogen nuclear and membrane receptors show an extraordinary flexibility in the modulation of metabolic responses, and largely explain gender and age differences in energy metabolism: part of these mechanisms is already sufficiently known to justify both. With regard to energy, the estrogen molecular species act essentially through four key functions: (1) Facilitation of insulin secretion and control of glucose availability; (2) Modulation of energy partition, favoring the use of lipid as the main energy substrate when more available than carbohydrates; (3) Functional protection through antioxidant mechanisms; and (4) Central effects (largely through neural modulation) on whole body energy management. Analyzing the different actions of estrone, estradiol and their acyl esters, a tentative classification based on structure/effects has been postulated. Either separately or as a group, estrogens provide a comprehensive explanation that not all their quite diverse actions are related solely to specific molecules. As a group, they constitute a powerful synergic action complex. In consequence, estrogens may be considered wardens of energy homeostasis.
Collapse
Affiliation(s)
- Marià Alemany
- Faculty of Biology, University of Barcelona, Barcelona 08028, Catalonia, Spain
| |
Collapse
|
20
|
Seet D, Allameen NA, Tay SH, Cho J, Mak A. Cognitive Dysfunction in Systemic Lupus Erythematosus: Immunopathology, Clinical Manifestations, Neuroimaging and Management. Rheumatol Ther 2021; 8:651-679. [PMID: 33993432 PMCID: PMC8217391 DOI: 10.1007/s40744-021-00312-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 04/22/2021] [Indexed: 12/23/2022] Open
Abstract
Cognitive dysfunction (CD) is a common yet often clinically subtle manifestation that considerably impacts the health-related quality of life in patients with systemic lupus erythaematosus (SLE). Given the inconsistencies in CD assessment and challenges in its attribution to SLE, the reported prevalence of CD differs widely, ranging from 3 to 88%. The clinical presentation of CD in SLE is non-specific and may manifest concurrently with overt neuropsychiatric illness such as psychosis or mood disorders or as isolated impairment of attention, working memory, executive dysfunction or processing speed. Despite the lack of standardized and sensitive neuropsychological tests and validated diagnostic biomarkers of CD in SLE, significant progress has been made in identifying pathogenic neural pathways and neuroimaging. Furthermore, several autoantibodies, cytokines, pro-inflammatory mediators and metabolic factors have been implicated in the pathogenesis of CD in SLE. Abrogation of the integrity of the blood-brain barrier (BBB) and ensuing autoantibody-mediated neurotoxicity, complement and microglial activation remains the widely accepted mechanism of SLE-related CD. Although several functional neuroimaging modalities have consistently demonstrated abnormalities that correlate with CD in SLE patients, a consensus remains to be reached as to their clinical utility in diagnosing CD. Given the multifactorial aetiology of CD, a multi-domain interventional approach that addresses the risk factors and disease mechanisms of CD in a concurrent fashion is the favourable therapeutic direction. While cognitive rehabilitation and exercise training remain important, specific pharmacological agents that target microglial activation and maintain the BBB integrity are potential candidates for the treatment of SLE-related CD.
Collapse
Affiliation(s)
- Dominic Seet
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Nur Azizah Allameen
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
| | - Sen Hee Tay
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jiacai Cho
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Anselm Mak
- Division of Rheumatology, Department of Medicine, University Medicine Cluster, National University Health System, 1E Kent Ridge Road, Level 10, NUHS Tower Block, Singapore, 119228 Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
21
|
Diaz-Jimenez D, Kolb JP, Cidlowski JA. Glucocorticoids as Regulators of Macrophage-Mediated Tissue Homeostasis. Front Immunol 2021; 12:669891. [PMID: 34079551 PMCID: PMC8165320 DOI: 10.3389/fimmu.2021.669891] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Our immune system has evolved as a complex network of cells and tissues tasked with maintaining host homeostasis. This is evident during the inflammatory responses elicited during a microbial infection or traumatic tissue damage. These responses seek to eliminate foreign material or restore tissue integrity. Even during periods without explicit disturbances, the immune system plays prominent roles in tissue homeostasis. Perhaps one of the most studied cells in this regard is the macrophage. Tissue-resident macrophages are a heterogenous group of sensory cells that respond to a variety of environmental cues and are essential for organ function. Endogenously produced glucocorticoid hormones connect external environmental stress signals with the function of many cell types, producing profound changes in immune cells, including macrophages. Here, we review the current literature which demonstrates specific effects of glucocorticoids in several organ systems. We propose that tissue-resident macrophages, through glucocorticoid signaling, may play an underappreciated role as regulators of organ homeostasis.
Collapse
Affiliation(s)
- David Diaz-Jimenez
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - Joseph P Kolb
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| | - John A Cidlowski
- Molecular Endocrinology Group, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, United States
| |
Collapse
|
22
|
Lv H, Dai L, Lu J, Cheng L, Geng Y, Chen M, Chen Q, Wang X. Efficacy and safety of methylprednisolone against acute respiratory distress syndrome: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25408. [PMID: 33832136 PMCID: PMC8036107 DOI: 10.1097/md.0000000000025408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/12/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Acute respiratory distress syndrome (ARDS) is caused by an inflammatory injury to the lung. Dysregulated inflammation is the cardinal feature of ARDS. Methylprednisolone is an option for treating ARDS. However, the benefits and adverse effects of methylprednisolone have not been well assessed in patients with ARDS. This study aimed to evaluate the efficacy and safety of methylprednisolone against ARDS. MATERIAL AND METHODS The electronic database of Embase, PubMed, the Cochrane Library, CNKI, and Wanfang were searched, and randomized controlled trials (RCTs) reporting the efficacy and safety of methylprednisolone for ARDS were included. Revman 5.3 and Stata 15.0 were used to conduct the analysis. The fixed-effects model was used to calculate summary odds ratios (ORs) and 95% confidence interval (CIs). RESULTS Ten RCTs studies involving 692 patients with ARDS. The summary results demonstrated that, compared with placebo, methylprednisolone had a statistically significant effect on mortality (OR = 0.64; 95% CI: 0.43-0.95, I2 = 42%); the time of mechanical ventilation (MD) = -2.70, 95% CI: -3.31 to -2.10; I2 = 0%) in patients with ARDS, but it was not associated with increased rates of adverse events (OR = 0.80; 95% CI: 0.34-1.86; I2 = 58%). CONCLUSIONS This systematic review and meta-analysis demonstrated that Methylprednisolone is safe against ARDS. It may reduce mortality and shorten the time of mechanical ventilation. However, well-designed and large-sample studies were required to fully characterize the efficacy and safety of methylprednisolone against ARDS.
Collapse
|
23
|
Bartlett R, Sarnyai Z, Momartin S, Ooi L, Schwab SG, Matosin N. Understanding the pathology of psychiatric disorders in refugees. Psychiatry Res 2021; 296:113661. [PMID: 33373807 DOI: 10.1016/j.psychres.2020.113661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
Abstract
Displacement of people from their homes, families and countries is a current global crisis, with over 70 million people forcibly on the move. A substantial proportion of these people will end up in regions with a different language and culture, where they are registered as refugees or asylum seekers. Due to the underlying reasons for displacement (including conflicts, persecution or violation of human rights), displaced people are severely stress-exposed, which continues into their post-migration life and increases risk for developing psychiatric disorders such as post-traumatic stress disorder and other anxiety disorders and mood disorders. While landmark studies have illustrated the increased prevalence of psychopathology in asylum seeker and refugee populations following pre-/post-displacement stress, few studies add to our understanding of the basic biological mechanisms underpinning risk to psychiatric disorders in these populations. Additionally, the mechanisms underlying resilience despite significant adversity remain unclear. Understanding the molecular mechanisms underpinning the development of psychiatric disorders in refugees can propel treatments (both drug and non-drug) that are capable of influencing biology at the molecular level, and the design of interventions. In the following review, we summarise the status quo of research investigating the pathophysiology of psychiatric disorders in refugees, and propose new ways to address gaps in knowledge with multidisciplinary research.
Collapse
Affiliation(s)
- Rachael Bartlett
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Zoltan Sarnyai
- Laboratory of Psychiatric Neuroscience, Centre for Molecular Discovery, Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Shakeh Momartin
- NSW Service for the Treatment and Rehabilitation of Torture and Trauma Survivors (STARTTS), 152-168 The Horsley Drive, Carramar, NSW 2163, Australia
| | - Lezanne Ooi
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Sibylle G Schwab
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Natalie Matosin
- Illawarra Health and Medical Research Institute, Northfields Ave, Wollongong, NSW 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia; Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany.
| |
Collapse
|
24
|
Giannoccaro MP, Liguori R, Plazzi G, Pizza F. Reviewing the Clinical Implications of Treating Narcolepsy as an Autoimmune Disorder. Nat Sci Sleep 2021; 13:557-577. [PMID: 34007229 PMCID: PMC8123964 DOI: 10.2147/nss.s275931] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/19/2021] [Indexed: 11/23/2022] Open
Abstract
Narcolepsy type 1 (NT1) is a lifelong sleep disorder, primarily characterized clinically by excessive daytime sleepiness and cataplexy and pathologically by the loss of hypocretinergic neurons in the lateral hypothalamus. Despite being a rare disorder, the NT1-related burden for patients and society is relevant due to the early onset and chronic nature of this condition. Although the etiology of narcolepsy is still unknown, mounting evidence supports a central role of autoimmunity. To date, no cure is available for this disorder and current treatment is symptomatic. Based on the hypothesis of the autoimmune etiology of this disease, immunotherapy could possibly represent a valid therapeutic option. However, contrasting and limited results have been provided so far. This review discusses the evidence supporting the use of immunotherapy in narcolepsy, the outcomes obtained so far, current issues and future directions.
Collapse
Affiliation(s)
- Maria Pia Giannoccaro
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Rocco Liguori
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giuseppe Plazzi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fabio Pizza
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Ospedale Bellaria, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
25
|
Orabi SH, Allam TS, Shawky SM, Tahoun EAEA, Khalifa HK, Almeer R, Abdel-Daim MM, El-Borai NB, Mousa AA. The Antioxidant, Anti-Apoptotic, and Proliferative Potency of Argan Oil against Betamethasone-Induced Oxidative Renal Damage in Rats. BIOLOGY 2020; 9:E352. [PMID: 33114212 PMCID: PMC7690873 DOI: 10.3390/biology9110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The present study aimed to investigate the protective effect of argan oil (AO) against nephrotoxic effects following overdose and long-term administration of betamethasone (BM). The phytochemical compositions of AO were assessed using GC/MS. Forty eight male Wister albino rats were divided into six groups and treated for 3 successive weeks. The control group was orally administrated distilled water daily, the BM group received BM (1 mg/kg, IM, day after day), AO/0.5 and AO/1 groups received AO (0.5 mL/kg, 1 mL/kg, orally, daily, respectively), BM + AO/0.5 group and BM + AO/1 group. The results revealed that BM induced hematological changes, including reduction of red blood cells with leukocytosis, neutrophilia, monocytosis, lymphocytopenia, and thrombocytopenia. Moreover, BM caused a significant increase of serum urea and creatinine levels, and renal malondialdehyde and nitric oxide contents with significant decrease of reduced glutathione content. BM also caused vascular, degenerative, and inflammatory histopathological alterations in kidney, along with an increase in the Bax/Bcl-2 ratio, activation of caspase-3, and decrease of proliferating cell nuclear antigen expression. Conversely, the concomitant administration of AO (0.5, 1 mL/kg) with BM ameliorated the aforementioned hematological, biochemical, pathological, and histochemical BM adverse effects. In conclusion, AO has protective effects against BM-induced renal damage, possibly via its antioxidant, anti-apoptotic, and proliferative properties.
Collapse
Affiliation(s)
- Sahar Hassan Orabi
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Tamer S. Allam
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; or
| | - Sherif Mohamed Shawky
- Department of Physiology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Enas Abd El-aziz Tahoun
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt;
| | - Hanem K. Khalifa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| | - Rafa Almeer
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Nermeen Borai El-Borai
- Department of Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt
| | - Ahmed Abdelmoniem Mousa
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, Menofia 32897, Egypt; (H.K.K.); (A.A.M.)
| |
Collapse
|
26
|
Borgi M, Collacchi B, Ortona E, Cirulli F. Stress and coping in women with breast cancer:unravelling the mechanisms to improve resilience. Neurosci Biobehav Rev 2020; 119:406-421. [PMID: 33086128 DOI: 10.1016/j.neubiorev.2020.10.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 10/01/2020] [Accepted: 10/13/2020] [Indexed: 12/15/2022]
Abstract
Breast cancer diagnosis, surgery, adjuvant therapies and survivorship can all be extremely stressful. In women, concerns about body image are common as a result of the disease and can affect interpersonal relationships, possibly leading to social isolation, increasing the likelihood for mood disorders. This is particularly relevant as women are at greater risk to develop anxiety and depressive symptoms in response to highly stressful situations. Here we address the mechanisms and the pathways activated as a result of stress and contributing to changes in the pathophysiology of breast cancer, as well as the potential of stress management factors and interventions in buffering the deleterious effects of chronic stress in a gender perspective. An improved understanding of the biological mechanisms linking stress-management resources to health-relevant biological processes in breast cancer patients could reveal novel therapeutic targets and help clarifying which psychosocial interventions can improve cancer outcomes, ultimately offering a unique opportunity to improve contemporary cancer treatments.
Collapse
Affiliation(s)
- Marta Borgi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Elena Ortona
- Center for Gender Specific Medicine, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
27
|
Teo R, Dhanasekaran P, Tay SH, Mak A. Mathematical processing is affected by daily but not cumulative glucocorticoid dose in patients with systemic lupus erythematosus. Rheumatology (Oxford) 2020; 59:2534-2543. [PMID: 31990339 DOI: 10.1093/rheumatology/keaa002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/19/2019] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES The impact of glucocorticoids on neurocognitive performance in patients with SLE is not fully addressed. We aimed to study the effect of daily and cumulative glucocorticoid dose on neurocognitive performance in SLE patients. METHODS Consecutive SLE patients and gender- and age-matched healthy controls (HCs) underwent the computer-based Automated Neuropsychological Assessment Matric (ANAM), which evaluates eight neurocognitive domains including learning, recall, visual perception, mental rotation, short-term memory, attention, sustained attention and working memory. The total and individual-domain throughput scores (TPSs) and the presence of cognitive dysfunction (total TPS <1.5 s.d. below the mean TPS of HCs) were compared between SLE patients and HCs. Within the SLE group, univariate and independent associations between prednisolone dose (daily and cumulative) and individual-domain TPS were studied by univariate and multivariable linear regression, respectively. RESULTS A total of 96 SLE patients and 96 HCs were studied. SLE patients scored significantly worse across all the neurocognitive domains and had a significantly lower mean total TPS (P < 0.001) and a higher prevalence of cognitive dysfunction compared with HCs (25.0 vs 7.3%, P = 0.001). In SLE patients, daily prednisolone dose was significantly and negatively correlated with mathematical-processing TPS, which probes working memory (P = 0.018). No significant correlation between cumulative prednisolone dose and any of the individual-domain TPSs was found. In multivariable regression, higher daily prednisolone dose and doses >9 mg daily remained independently associated with lower mathematical-processing TPSs (P = 0.031). CONCLUSION Daily prednisolone dose ≥9 mg, but not cumulative glucocorticoid dose, had an independent negative impact on mathematical processing in SLE patients.
Collapse
Affiliation(s)
- Rachel Teo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Preeti Dhanasekaran
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| | - Sen Hee Tay
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| | - Anselm Mak
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Division of Rheumatology, University Medicine Cluster, National University Health System, Singapore
| |
Collapse
|
28
|
The short-term impact of methylprednisolone on patient-reported sleep in patients with advanced cancer in a randomized, placebo-controlled, double-blind trial. Support Care Cancer 2020; 29:2047-2055. [PMID: 32856209 PMCID: PMC7892512 DOI: 10.1007/s00520-020-05693-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/19/2020] [Indexed: 11/13/2022]
Abstract
Purpose Although corticosteroids are frequently used in patients with advanced cancer, few studies have examined the impact of these drugs on patient-reported sleep. We aimed to examine the short-term impact of methylprednisolone on patient-reported sleep in patients with advanced cancer. Methods Patient-reported sleep was a predefined secondary outcome in a prospective, randomized, placebo-controlled, double-blind trial that evaluated the analgesic efficacy of corticosteroids in advanced cancer patients (18+), using opioids, and having pain ≥ 4 past 24 h (NRS 0–10). Patients were randomized to the methylprednisolone group with methylprednisolone 16 mg × 2/day or placebo for 7 days. The EORTC QLQ-C30 (0–100) and the Pittsburgh Sleep Quality Index questionnaire (PSQI) (0–21) were used to assess the impact of corticosteroids on sleep at baseline and at day 7. Results Fifty patients were randomized of which 25 were analyzed in the intervention group and 22 in the control group. Mean age was 64 years, mean Karnofsky performance status was 67 (SD 13.3), 51% were female, and the mean oral daily morphine equivalent dose was 223 mg (SD 222.77). Mean QLQ-C30 sleep score at baseline was 29.0 (SD 36.7) in the methylprednisolone group and 24.2 (SD 27.6) in the placebo group. At day 7, there was no difference between the groups on QLQ-C30 sleep score (methylprednisolone 20.3 (SD 32.9); placebo 28.8 (SD 33.0), p = 0.173). PSQI showed similar results. Conclusions Methylprednisolone 16 mg twice daily for 7 days had no impact on patient-reported sleep in this cohort of patients with advanced cancer. Trial registration Clinical trial information NCT00676936 (13.05.2008)
Collapse
|
29
|
Scherholz ML, Rao RT, Androulakis IP. Modeling inter-sex and inter-individual variability in response to chronopharmacological administration of synthetic glucocorticoids. Chronobiol Int 2019; 37:281-296. [PMID: 31797700 DOI: 10.1080/07420528.2019.1660357] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Endogenous glucocorticoids have diverse physiological effects and are important regulators of metabolism, immunity, cardiovascular function, musculoskeletal health and central nervous system activity. Synthetic glucocorticoids have received widespread attention for their potent anti-inflammatory activity and have become an important class of drugs used to augment endogenous glucocorticoid activity for the treatment of a host of chronic inflammatory conditions. Chronic use of synthetic glucocorticoids is associated with a number of adverse effects as a result of the persistent dysregulation of glucocorticoid sensitive pathways. A failure to consider the pronounced circadian rhythmicity of endogenous glucocorticoids can result in either supraphysiological glucocorticoid exposure or severe suppression of endogenous glucocorticoid secretion, and is thought be a causal factor in the incidence of adverse effects during chronic glucocorticoid therapy. Furthermore, given that synthetic glucocorticoids have potent feedback effects on the hypothalamic-pituitary-adrenal (HPA) axis, physiological factors which can give rise to individual variability in HPA axis activity such as sex, age, and disease state might also have substantial implications for therapy. We use a semi-mechanistic mathematical model of the rodent HPA axis to study how putative sex differences and individual variability in HPA axis regulation can influence the effects of long-term synthetic exposure on endogenous glucocorticoid circadian rhythms. Model simulations suggest that for the same drug exposure, simulated females exhibit less endogenous suppression than males considering differences in adrenal sensitivity and negative feedback to the hypothalamus and pituitary. Simulations reveal that homeostatic regulatory variability and chronic stress-induced regulatory adaptations in the HPA axis network can result in substantial differences in the effects of synthetic exposure on the circadian rhythm of endogenous glucocorticoids. In general, our results provide insight into how the dosage and exposure profile of synthetic glucocorticoids could be manipulated in a personalized manner to preserve the circadian dynamics of endogenous glucocorticoids during chronic therapy, thus potentially minimizing the incidence of adverse effects associated with long-term use of glucocorticoids.
Collapse
Affiliation(s)
- Megerle L Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ
| | - Ioannis P Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ.,Department of Biomedical Engineering, Rutgers The State University of New Jersey, Piscataway, NJ.,Department of Surgery, Rutgers - Robert Wood Johnson Medical School, New Brusnwick, NJ
| |
Collapse
|
30
|
Scherholz ML, Schlesinger N, Androulakis IP. Chronopharmacology of glucocorticoids. Adv Drug Deliv Rev 2019; 151-152:245-261. [PMID: 30797955 DOI: 10.1016/j.addr.2019.02.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/24/2018] [Accepted: 02/13/2019] [Indexed: 12/30/2022]
Abstract
Glucocorticoids influence a wide array of metabolic, anti-inflammatory, immunosuppressive, and cognitive signaling processes, playing an important role in homeostasis and preservation of normal organ function. Synthesis is regulated by the hypothalamic-pituitary-adrenal (HPA) axis of which cortisol is the primary glucocorticoid in humans. Synthetic glucocorticoids are important pharmacological agents that augment the anti-inflammatory and immunosuppressive properties of endogenous cortisol and are widely used for the treatment of asthma, Crohn's disease, and rheumatoid arthritis, amongst other chronic conditions. The homeostatic activity of cortisol is disrupted by the administration of synthetic glucocorticoids and so there is interest in developing treatment options that minimize HPA axis disturbance while maintaining the pharmacological effects. Studies suggest that optimizing drug administration time can achieve this goal. The present review provides an overview of endogenous glucocorticoid activity and recent advances in treatment options that have further improved patient safety and efficacy with an emphasis on chronopharmacology.
Collapse
|
31
|
Rampino A, Torretta S, Rizzo G, Viscanti G, Quarto T, Gelao B, Fazio L, Attrotto MT, Masellis R, Pergola G, Bertolino A, Blasi G. Emotional Stability Interacts with Cortisol Levels Before fMRI on Brain Processing of Fearful Faces. Neuroscience 2019; 416:190-197. [PMID: 31400483 DOI: 10.1016/j.neuroscience.2019.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 11/19/2022]
Abstract
Functional-Magnetic-Imaging (fMRI) is widely adopted to investigate neurophysiological correlates of emotion processing (EP). However, studies have reported that scanning procedures in neuroimaging protocols may increase or cause anxiety and psychological distress related with the scanning, thus inducing peripheral cortisol release. These phenomena may in turn impact on brain EP. Additionally, previous findings have indicated that inter-individual differences in stress-response intensity are mediated by levels of Emotional Stability (ES), a personality trait that has been associated with brain activity during EP, especially in amygdala and prefrontal cortex (PFC). The aim of this study was to investigate the interaction between indices of stress related to anticipation of fMRI scanning and levels of ES on amygdala and PFC activity during EP. With this aim, 55 healthy volunteers were characterized for trait ES. Furthermore, salivary cortisol levels at baseline and soon before fMRI scanning were measured as an index of stress related to scanning anticipation. During fMRI, participants performed an explicit EP task. We found that variation in salivary cortisol (Δc) interacts with ES on left amygdala and PFC activity during EP. More in details, in the context of a higher ES, the greater the Δc, the lower the activity in left amygdala and PFC. In the context of lower ES, the opposite Δc-brain activity relationship was found. Our results suggest that the stressful potential of fMRI interacts with personality traits in modulating brain activity during EP. These findings should be taken into account when interpreting neuroimaging studies especially exploring brain physiology during EP.
Collapse
Affiliation(s)
- Antonio Rampino
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Silvia Torretta
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giuseppe Rizzo
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giovanna Viscanti
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Tiziana Quarto
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Barbara Gelao
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Leonardo Fazio
- IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo (FG), Italy
| | - Maria Teresa Attrotto
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Rita Masellis
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Giulio Pergola
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Alessandro Bertolino
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Giuseppe Blasi
- University of Bari "Aldo Moro", Department of Basic Medical Science, Neuroscience and Sense Organs, Piazza Giulio Cesare 11, 70124 Bari, Italy; Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Piazza Giulio Cesare 11, 70124, Bari, Italy.
| |
Collapse
|
32
|
Heck SO, Zborowski VA, Quines CB, Nogueira CW. 4,4'-Dichlorodiphenyl diselenide reverses a depressive-like phenotype, modulates prefrontal cortical oxidative stress and dysregulated glutamatergic neurotransmission induced by subchronic dexamethasone exposure to mice. J Psychiatr Res 2019; 116:61-68. [PMID: 31200328 DOI: 10.1016/j.jpsychires.2019.05.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/04/2019] [Accepted: 05/31/2019] [Indexed: 12/26/2022]
Abstract
Dexamethasone (DEX) is a synthetic agonist of glucocorticoid receptors that has been associated with neurotoxicity and neuropsychiatric diseases. (p-ClPhSe)2 is an organoselenium compound reported to have antioxidant, antidepressant-like, and neuroprotective actions. This study investigated whether antioxidant activity and modulation of the glutamatergic system contribute to the antidepressant-like effect of (p-ClPhSe)2 in mice subchronically exposed to DEX. Swiss mice received intraperitoneal injections of DEX (2 mg/kg) or saline (vehicle) once a day for 21 days. After, the mice received (p-ClPhSe)2 (1-10 mg/kg) or mineral oil (vehicle) by the intragastric route (i.g.) for 7 days. The mice exposed to DEX were treated with fluoxetine (20 mg/kg, i.g.) once a day for 7 days. 24 h after the last treatment, the animals performed the locomotor activity (LMA), tail suspension, and forced swimming tests. Ex vivo assays were performed in samples of prefrontal cortex (PFC). The results show that (p-ClPhSe)2 reversed depressive-like behavioral phenotype induced by DEX without affecting LMA. Further, (p-ClPhSe)2 at all doses reduced ROS levels and increased CAT activity in the PFC of DEX-exposed mice. The highest dose of (p-ClPhSe)2 was effective against the decrease of SOD activity in the PFC of mice exposed to DEX. (p-ClPhSe)2 increased the [3H] glutamate uptake/release and decreased the Na+/K+-ATPase activity as well as the EAAT1 and NMDA R2A protein contents in the PFC of DEX-exposed mice. Regarding the NMDA R2B levels, there was no difference among experimental groups. In conclusion, this study reveals the effectiveness of (p-ClPhSe)2 in reversing the depressive-like phenotype of DEX-exposed mice. In addition, (p-ClPhSe)2 modulated oxidative stress and glutamate neurotransmission in the PFC of mice subchronically exposed to DEX.
Collapse
Affiliation(s)
- Suélen Osório Heck
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa Angonesi Zborowski
- Laboratory of Synthesis, Reactivity, Pharmacological and Toxicological Evaluation of Organochalcogen Compounds, Department of Biochemistry and Molecular Biology, Center of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria, RS, 97105-900, Brazil
| | - Caroline Brandão Quines
- Laboratory of Biochemistry and Toxicology of Caenorhabditis Elegans, Department of Biochemistry, Federal University of Pampa, Campus Uruguaiana, RS, Brazil
| | - Cristina Wayne Nogueira
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, RS, Brazil.
| |
Collapse
|
33
|
Azizi N, Roshan-Milani S, MahmoodKhani M, Saboory E, Gholinejad Z, Abdollahzadeh N, Sayyadi H, Chodari L. Parental pre-conception stress status and risk for anxiety in rat offspring: specific and sex-dependent maternal and paternal effects. Stress 2019; 22:619-631. [PMID: 31131701 DOI: 10.1080/10253890.2019.1619075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Prenatal stressful events have long-lasting consequences on behavioral responses of offspring. While the effects of gestational and maternal stress have been extensively studied on psychological alterations in the progeny, little is known about effects of each parent's pre-conception life events on emotional responses in offspring. Here, the effect of maternal and/or paternal pre-conception stress was investigated on anxiogenic responses of offspring. Male and female adult rats were subjected to predatory stress (contactless exposure to a cat for 1 + 1 h per day) for 50 (male, n: 12) and 15 (female, n: 24) consecutive days; controls were not exposed. After the stress procedure, the control and stressed rats were mated to create four types of breeding pairs: control female/control male, stressed female/control male, control female/stressed male, and stressed female/stressed male. On postnatal days 30-31, the offspring were tested on the elevated plus maze and plasma corticosterone concentration was measured. Half of the pups were exposed to acute predatory stress before the elevated plus maze test. In most subgroups, corticosterone and anxiety-like behaviors in the offspring with both or only one parent exposed to pre-gestational stress increased compared to their control counterparts. However, under acute stress conditions, a different sex-dependent pattern of anxiety responses emerged. The combined effects of maternal and paternal stress were not additive. Hence, individual offspring behaviors can be influenced by the former life stress experiences of either parent. Incorporation of genetic and epigenetic aspects in development of neurobehavioral abnormalities and reprograming of the hypothalamic-pituitary-adrenal axis may contribute to this phenomenon. Lay summary Early life stress (including during pregnancy) is known to have long-lasting effects on offspring, including emotional behaviors. Whether individual anxiety behaviors can be influenced by stress experiences of each parent even before a pregnancy is less well-understood. Our findings from this study on rats exposed to predator stress before mating suggest that maternal or paternal adult life events prior to pregnancy can lead to maladaptive behavior in their offspring later in life.
Collapse
Affiliation(s)
- Negar Azizi
- a Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
- b Cellular and Molecular Research Center, Urmia University of Medical Sciences , Urmia , Iran
| | - Shiva Roshan-Milani
- a Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
- c Neurophysiology Research Center, Urmia University of Medical Sciences , Urmia , Iran
| | - Maryam MahmoodKhani
- b Cellular and Molecular Research Center, Urmia University of Medical Sciences , Urmia , Iran
- c Neurophysiology Research Center, Urmia University of Medical Sciences , Urmia , Iran
| | - Ehsan Saboory
- a Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
- c Neurophysiology Research Center, Urmia University of Medical Sciences , Urmia , Iran
| | - Zafar Gholinejad
- d Department of Clinical Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
| | - Naseh Abdollahzadeh
- a Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
| | - Hojjat Sayyadi
- c Neurophysiology Research Center, Urmia University of Medical Sciences , Urmia , Iran
| | - Leila Chodari
- a Department of Physiology, Faculty of Medicine, Urmia University of Medical Sciences , Urmia , Iran
- c Neurophysiology Research Center, Urmia University of Medical Sciences , Urmia , Iran
| |
Collapse
|
34
|
Brzozowska MM, Kepreotis S, Tsang F, Fuentes- Patarroyo SX. Improvement in cognitive impairment following the successful treatment of endogenous Cushing's syndrome-a case report and literature review. BMC Endocr Disord 2019; 19:68. [PMID: 31253144 PMCID: PMC6599300 DOI: 10.1186/s12902-019-0401-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endogenous Cushing's syndrome, a rare endocrine disorder, characterised by chronic cortisol hypersecretion, results in neuropsychiatric disturbances and in cognitive deficits, which are only partially reversible after the biochemical remission of the disease. CASE PRESENTATION We report a case of a woman with a profound cognitive deficit and a gradual functional decline caused by Cushing's disease of at least 10 years duration. The neurosurgical resection of her 2 mm adrenocorticotropic hormone (ACTH) secreting pituitary microadenoma resulted in a successful resolution of the patient's hypercortisolism and a significant recovery of her neurocognitive function. The patient's progress was evaluated using serial clinical observations, functional assessments, Mini-Mental Status exams and through the formal neuropsychological report. Furthermore, the patient's recovery of her neurocognitive function was reflected by a sustained improvement in the patient's specific structural brain abnormalities on radiological imaging. CONCLUSIONS This report illustrates the importance of early detection and treatment of Cushing's syndrome in order to prevent neurocognitive impairment and neuropsychiatric disorders which are associated with an endogenous cortisol hypersecretion. The long term adverse effects of severe hypercortisolaemia on brain function and the pathophysiological mechanisms responsible for the structural and functional changes in brain anatomy due to glucocorticoid excess are reviewed.
Collapse
Affiliation(s)
- Malgorzata Monika Brzozowska
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
- Faculty of Medicine, University of New South Wales, Kensington, NSW Australia
- Garvan institute of Medical Research, Darlinghurst, NSW Australia
| | - Sacha Kepreotis
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | - Fiona Tsang
- Endocrinology Department, Sutherland Hospital, Sydney, NSW Australia
| | | |
Collapse
|
35
|
Hazell G, Horn G, Lightman SL, Spiga F. Dynamics of ACTH-Mediated Regulation of Gene Transcription in ATC1 and ATC7 Adrenal Zona Fasciculata Cell Lines. Endocrinology 2019; 160:587-604. [PMID: 30768667 PMCID: PMC6380881 DOI: 10.1210/en.2018-00840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 01/26/2019] [Indexed: 02/07/2023]
Abstract
We tested the hypothesis that mouse ATC1 and ATC7 cells, the first adrenocortical cell lines to exhibit a complete zona fasciculata (ZF) cell phenotype, respond to dynamic ACTH stimulation in a similar manner as the adrenal gland in vivo. Exploiting our previous in vivo observations that gene transcription within the steroidogenic pathway is dynamically regulated in response to a pulse of ACTH, we exposed ATC1 and ATC7 cells to various patterns of ACTH, including pulsatile and constant, and measured the transcriptional activation of this pathway. We show that pulses of ACTH administered to ATC7 cells can reliably stimulate a pulsatile pattern of transcriptional activity that is comparable to that observed in adrenal ZF cells in vivo. Hourly pulses of ACTH stimulate dynamic increases in CREB phosphorylation (pCREB) and transcription of genes involved in critical steps of steroidogenesis including signal transduction (e.g., MRAP), cholesterol delivery (e.g., StAR), and steroid biosynthesis (e.g., CYP11A1), as well as those relating to transcriptional regulation of steroidogenic factors (e.g., SF-1 and Nur-77). In contrast, constant ACTH stimulation results in a prolonged and exaggerated pCREB and steroidogenic gene transcriptional response. We also show that when a large dose of ACTH (100 nM) is applied after these treatment regimens, a significant increase in steroidogenic transcriptional responsiveness is achieved only in cells that have been exposed to pulsatile, rather than constant, ACTH. Our data support our in vivo observations that pulsatile ACTH is important for the optimal transcriptional responsiveness of the adrenal. Importantly, our data suggest that ATC7 cells respond to dynamic ACTH stimulation.
Collapse
Affiliation(s)
- Georgina Hazell
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - George Horn
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Stafford L Lightman
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Francesca Spiga
- Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
36
|
Oprea A, Bonnet NCG, Pollé O, Lysy PA. Novel insights into glucocorticoid replacement therapy for pediatric and adult adrenal insufficiency. Ther Adv Endocrinol Metab 2019; 10:2042018818821294. [PMID: 30746120 PMCID: PMC6360643 DOI: 10.1177/2042018818821294] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/04/2018] [Indexed: 02/04/2023] Open
Abstract
Adrenal insufficiency is defined as impaired adrenocortical hormone synthesis. According to its source, the deficit is classified as primary (adrenal steroidogenesis impairment), secondary (pituitary adrenocorticotropic hormone deficit) or tertiary (hypothalamic corticotropin-releasing hormone deficit). The management of adrenal insufficiency resides primarily in physiological replacement of glucocorticoid secretion. Standard glucocorticoid therapy is shrouded in several controversies. Along the difficulties arising from the inability to accurately replicate the pulsatile circadian cortisol rhythm, come the uncertainties of dose adjustment and treatment monitoring (absence of reliable biomarkers). Furthermore, side effects of inadequate replacement significantly hinder the quality of life of patients. Therefore, transition to circadian hydrocortisone therapy gains prominence. Recent therapeutic advancements consist of oral hydrocortisone modified-release compounds (immediate, delayed and sustained absorption formulations) or continuous subcutaneous hydrocortisone infusion. In addition to illustrating the current knowledge on conventional glucocorticoid regimens, this review outlines the latest research outcomes. We also describe the management of pediatric patients and suggest a novel strategy for glucocorticoid replacement therapy in adults.
Collapse
Affiliation(s)
- Alina Oprea
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Nicolas C. G. Bonnet
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Olivier Pollé
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Brussels, Belgium
| | - Philippe A. Lysy
- Pediatric Endocrinology Unit, Cliniques Universitaires Saint Luc, Pôle PEDI, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Av. Hippocrate 10, B-1200 Brussels, Belgium
| |
Collapse
|
37
|
Carbonara P, Dioguardi M, Cammarata M, Zupa W, Vazzana M, Spedicato MT, Lembo G. Basic knowledge of social hierarchies and physiological profile of reared sea bass Dicentrarchus labrax (L.). PLoS One 2019; 14:e0208688. [PMID: 30625155 PMCID: PMC6326550 DOI: 10.1371/journal.pone.0208688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 11/21/2018] [Indexed: 01/13/2023] Open
Abstract
The effects of social hierarchies (dominant/subordinate individuals), such as aggressiveness, feeding order, and territoriality, are some of the characteristics used for describing fish behaviour. Social hierarchy patterns are still poorly understood in European-reared sea bass (Dicentrarchus labrax). In this work, we examine the social interactions among captive fish integrating behavioural and physiological profiles. Groups of three fish with EMG (electromyogram) radio transmitters were monitored for two weeks via video recording. Plasma levels of cortisol, glucose, lactate and lysozyme as well as haematological parameters such as haemoglobin, haematocrit and RBCC (red blood cell count) were measured at the beginning and end of the experiments. Behaviour and muscle activity were monitored daily. The results highlighted that the social hierarchic order was established after one to two days, and it was maintained throughout the experimental period. Dominant and subordinate fish (ß and γ) showed significant differences in muscle activity, hormonal profile (cortisol), aspecific immunity (lysozyme), carbohydrate metabolism (lactate) and behavioural patterns (food order and aggressiveness). This holistic approach helps to provide insights into the physiological status of the subordinate (ß and γ) and dominant individuals. These data have wide implications for aquaculture practice.
Collapse
Affiliation(s)
- Pierluigi Carbonara
- COISPA Tecnologia & Ricerca Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari–Torre a Mare, Italy
- * E-mail:
| | - Maria Dioguardi
- University of Palermo, Via Archirafi 18, Palermo, Italy
- CoNISMa, Piazzale Flaminio, 9 –Roma, Italy
| | - Matteo Cammarata
- University of Palermo, Via Archirafi 18, Palermo, Italy
- CoNISMa, Piazzale Flaminio, 9 –Roma, Italy
| | - Walter Zupa
- COISPA Tecnologia & Ricerca Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari–Torre a Mare, Italy
| | - Mirella Vazzana
- University of Palermo, Via Archirafi 18, Palermo, Italy
- CoNISMa, Piazzale Flaminio, 9 –Roma, Italy
| | - Maria Teresa Spedicato
- COISPA Tecnologia & Ricerca Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari–Torre a Mare, Italy
| | - Giuseppe Lembo
- COISPA Tecnologia & Ricerca Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari–Torre a Mare, Italy
| |
Collapse
|
38
|
Viho EMG, Buurstede JC, Mahfouz A, Koorneef LL, van Weert LTCM, Houtman R, Hunt HJ, Kroon J, Meijer OC. Corticosteroid Action in the Brain: The Potential of Selective Receptor Modulation. Neuroendocrinology 2019; 109:266-276. [PMID: 30884490 PMCID: PMC6878852 DOI: 10.1159/000499659] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/17/2019] [Indexed: 12/15/2022]
Abstract
Glucocorticoid hormones have important effects on brain function in the context of acute and chronic stress. Many of these are mediated by the glucocorticoid receptor (GR). GR has transcriptional activity which is highly context-specific and differs between tissues and even between cell types. The outcome of GR-mediated transcription depends on the interactome of associated coregulators. Selective GR modulators (SGRMs) are a class of GR ligands that can be used to activate only a subset of GR-coregulator interactions, thereby giving the possibility to induce a unique combination of agonistic and antagonistic GR properties. We describe SGRM action in animal models of brain function and pathology, and argue for their utility as molecular filters, to characterize context-specific GR interactome and transcriptional activity that are responsible for particular glucocorticoid-driven effects in cognitive processes such as memory consolidation. The ultimate objective of this approach is to identify molecular processes that are responsible for adaptive and maladaptive effects of glucocorticoids in the brain.
Collapse
Affiliation(s)
- Eva M G Viho
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacobus C Buurstede
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ahmed Mahfouz
- Delft Bioinformatics Laboratory, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa L Koorneef
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa T C M van Weert
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Hazel J Hunt
- Corcept Therapeutics, Menlo Park, California, USA
| | - Jan Kroon
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Onno C Meijer
- Division of Endocrinology, Department Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands,
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands,
| |
Collapse
|
39
|
Rao RT, Scherholz ML, Androulakis IP. Modeling the influence of chronopharmacological administration of synthetic glucocorticoids on the hypothalamic-pituitary-adrenal axis. Chronobiol Int 2018; 35:1619-1636. [PMID: 30059634 PMCID: PMC6292202 DOI: 10.1080/07420528.2018.1498098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023]
Abstract
Natural glucocorticoids, a class of cholesterol-derived hormones, modulate an array of metabolic, anti-inflammatory, immunosuppressive and cognitive signaling. The synthesis of natural glucocorticoids, largely cortisol in humans, is regulated by the hypothalamic-pituitary-adrenal (HPA) axis and exhibits pronounced circadian variation. Considering the central regulatory function of endogenous glucocorticoids, maintenance of the circadian activity of the HPA axis is essential to host survival and chronic disruption of such activity leads to systemic complications. There is a great deal of interest in synthetic glucocorticoids due to the immunosuppressive and anti-inflammatory properties and the development of novel dosing regimens that can minimize the disruption of endogenous activity, while still maintaining the pharmacological benefits of long-term synthetic glucocorticoid therapy. Synthetic glucocorticoids are associated with an increased risk of developing the pathological disorders related to chronic suppression of cortisol rhythmicity as a result of the potent negative feedback by synthetic glucocorticoids on the HPA axis precursors. In this study, a mathematical model was developed to explore the influence of chronopharmacological dosing of exogenous glucocorticoids on the endogenous cortisol rhythm considering intra-venous and oral dosing. Chronic daily dosing resulted in modification of the circadian rhythmicity of endogenous cortisol with the amplitude and acrophase of the altered rhythm dependent on the administration time. Simulations revealed that the circadian features of the endogenous cortisol rhythm can be preserved by proper timing of administration. The response following a single dose was not indicative of the response following long-term, repeated chronopharmacological dosing of synthetic glucocorticoids. Furthermore, simulations revealed the inductive influence of long-term treatment was only associated with low to moderate doses, while high doses generally led to suppression of endogenous activity regardless of the chronopharmacological dose. Finally, chronic daily dosing was found to alter the responsiveness of the HPA axis, such that a decrease in the amplitude of the cortisol rhythm resulted in a partial loss in the time-of-day dependent response to CRH stimulation, while an increase in the amplitude was associated with a more pronounced time-of-day dependence of the response.
Collapse
Affiliation(s)
- Rohit T. Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Megerle L. Scherholz
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
| | - Ioannis P. Androulakis
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, NJ 08854
- Department of Biomedical Engineering, Rutgers The State University of New Jersey, 599 Taylor Road, Piscataway, NJ 08854
- Correspondence: I.P. Androulakis, 599 Taylor Road, Biomedical Engineering Department, Rutgers University, Piscataway, NJ 08854, , tel: 848-445-6561, fax: 732-445-3753
| |
Collapse
|
40
|
Abstract
OBJECTIVES The aims of this study are to describe two patients whose manic symptoms persisted for several months after the cessation of corticosteroids, to review the literature and to suggest treatment. METHODS The presentation of two elderly patients with persistent manic symptoms following cessation of corticosteroids several months previously afforded the author the opportunity to examine them carefully, investigate and treat them. RESULTS The patients were investigated to rule out other causes and were treated with sodium valproate and quetiapine (in the second patient). When well, the medications were slowly decreased and stopped. Both patients were well at one-year follow-up. CONCLUSIONS Manic symptoms may persist for many months after stopping corticosteroids and active treatment is needed to control them.
Collapse
Affiliation(s)
- Milton G Roxanas
- Asssociate Professor of Psychiatry, Sydney Adventist Medical School, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
41
|
Seo M, Islam SA, Moon SS. Acute anti-obesity effects of intracerebroventricular 11β-HSD1 inhibitor administration in diet-induced obese mice. J Neuroendocrinol 2018; 30:e12580. [PMID: 29418022 DOI: 10.1111/jne.12580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 01/09/2018] [Accepted: 02/01/2018] [Indexed: 11/30/2022]
Abstract
The hypothalamus is the regulatory centre of both appetite and energy balance and endoplasmic reticulum (ER) stress in the hypothalamus is involved in the pathogenesis of obesity. Recently, inhibition of 11 β hydroxysteroid dehydrogenase type1 (11β-HSD1) was reported to have an anti-obesity effect by reducing fat mass. However, the link between the role of 11β-HSD1 in the hypothalamus and obesity has yet to be determined. In the present study, embryonal primary hypothalamic neurones and high-fat diet (HFD) fed mice were used to investigate the anorexigenic effects of 11β-HSD1 inhibitors both in vitro and in vivo. In hypothalamic neurones, carbenoxolone (a non selecitve 11β-HSD inhibitor) alleviated ER stress and ER stress-induced neuropeptide alterations. In HFD mice, i.c.v. administration of carbenoxolone or KR67500 (nonselective and selective 11β-HSD1 inhibitors, respectively) was associated with less weight gain compared to control mice for 24 hours after treatment, presumably by reducing food intake. Furthermore, glucose regulated protein (Grp78), spliced X-box binding protein (Xbp-1s), c/EBP homologous protein (chop) and ER DnaJ homologue protein (Erdj4) expression was decreased in the hypothalami of mice administrated 11β-HSD1 inhibitors compared to controls. Conversely, the phosphorylation of protein kinase B (PKB/Akt), signal transducer and activator of transcription 3 (Stat3), mitogen-activated protein kinase (MAPK/ERK) and S6 kinase1 (S6K1) in the hypothalamus was induced more in mice treated using the same regimes. In conclusion, acute 11β-HSD1 inhibition in the hypothalamus could reduce food intake by decreasing ER stress and increasing insulin, leptin, and mammalian target of rapamycin complex 1 (mTORC1) signalling.
Collapse
Affiliation(s)
- M Seo
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Agricultural Biology, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun, South Korea
| | - S A Islam
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| | - S-S Moon
- Medical Institute of Dongguk University, Gyeongju, South Korea
- Department of Internal Medicine, College of Medicine, Dongguk University, Gyeongju, South Korea
| |
Collapse
|
42
|
Abstract
INTRODUCTION Ulcerative colitis (UC) is a chronic inflammatory bowel disease with a relapsing-remitting course that determines significant morbidity and can associate with local complications and/or extra-intestinal manifestations. Pharmacological therapies are often required for a lifetime with possible risks of toxicity and side effects. Areas covered: Non-biological therapies (i.e. aminosalicylates, corticosteroids and immunosuppressive drugs) are widely used in UC patients for controlling the active phases of the disease and maintaining remission. Expert Opinion: Aminosalycilates have a good safety profile with a low risk of idiosyncrasic reactions. In contrast, the use of corticosteroids and immunosuppressive drugs can associate with unacceptable side effects, some of which are potentially life threatening. Mechanisms underlying the development of these side effects are not fully understood and strategies aimed to prevent them have not yet been standardized. However, clinicians should monitor the patients during therapy to recognize the adverse events at an early stage of the occurrence. New drugs that selectively target molecules involved in the amplification of the ongoing mucosal inflammation are currently under investigation. Preliminary data indicate that such compounds have better overall safety and tolerability than corticosteroids and immunosuppressive drugs.
Collapse
Affiliation(s)
- Edoardo Troncone
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| | - Giovanni Monteleone
- a Department of Systems Medicine , University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
43
|
Martín-Montañez E, Millon C, Boraldi F, Garcia-Guirado F, Pedraza C, Lara E, Santin LJ, Pavia J, Garcia-Fernandez M. IGF-II promotes neuroprotection and neuroplasticity recovery in a long-lasting model of oxidative damage induced by glucocorticoids. Redox Biol 2017; 13:69-81. [PMID: 28575743 PMCID: PMC5454142 DOI: 10.1016/j.redox.2017.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 05/23/2017] [Indexed: 11/05/2022] Open
Abstract
Insulin-like growth factor-II (IGF-II) is a naturally occurring hormone that exerts neurotrophic and neuroprotective properties in a wide range of neurodegenerative diseases and ageing. Accumulating evidence suggests that the effects of IGF-II in the brain may be explained by its binding to the specific transmembrane receptor, IGFII/M6P receptor (IGF-IIR). However, relatively little is known regarding the role of IGF-II through IGF-IIR in neuroprotection. Here, using adult cortical neuronal cultures, we investigated whether IGF-II exhibits long-term antioxidant effects and neuroprotection at the synaptic level after oxidative damage induced by high and transient levels of corticosterone (CORT). Furthermore, the involvement of the IGF-IIR was also studied to elucidate its role in the neuroprotective actions of IGF-II. We found that neurons treated with IGF-II after CORT incubation showed reduced oxidative stress damage and recovered antioxidant status (normalized total antioxidant status, lipid hydroperoxides and NAD(P) H:quinone oxidoreductase activity). Similar results were obtained when mitochondria function was analysed (cytochrome c oxidase activity, mitochondrial membrane potential and subcellular mitochondrial distribution). Furthermore, neuronal impairment and degeneration were also assessed (synaptophysin and PSD-95 expression, presynaptic function and FluoroJade B® stain). IGF-II was also able to recover the long-lasting neuronal cell damage. Finally, the effects of IGF-II were not blocked by an IGF-IR antagonist, suggesting the involvement of IGF-IIR. Altogether these results suggest that, in or model, IGF-II through IGF-IIR is able to revert the oxidative damage induced by CORT. In accordance with the neuroprotective role of the IGF-II/IGF-IIR reported in our study, pharmacotherapy approaches targeting this pathway may be useful for the treatment of diseases associated with cognitive deficits (i.e., neurodegenerative disorders, depression, etc.). First evidence that IGF-II reverts oxidative synaptic damage produced by corticoids. IGF-II recovers mitochondrial function in synapses after oxidative damage. IGF-II restores mitochondrial distribution in neurons after oxidative damage. Evidence of the involvement of IGF-II receptor in the recovery of synaptic function. IGF-II reverts neurodegeneration induced by oxidative damage produced by corticoids.
Collapse
Affiliation(s)
- E Martín-Montañez
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Millon
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - F Boraldi
- Department of Life Sciences, University of Modena e Reggio Emilia, Modena, Italy
| | - F Garcia-Guirado
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - C Pedraza
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - E Lara
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - L J Santin
- Department of Psychobiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain
| | - J Pavia
- Department of Pharmacology and Paediatrics, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| | - M Garcia-Fernandez
- Department of Human Physiology, Málaga University, Biomedical Research Institute of Málaga (IBIMA), Málaga, Spain.
| |
Collapse
|
44
|
Merkulov VM, Merkulova TI, Bondar NP. Mechanisms of Brain Glucocorticoid Resistance in Stress-Induced Psychopathologies. BIOCHEMISTRY (MOSCOW) 2017; 82:351-365. [PMID: 28320277 DOI: 10.1134/s0006297917030142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Exposure to stress activates the hypothalamic-pituitary-adrenal axis and leads to increased levels of glucocorticoid (GC) hormones. Prolonged elevation of GC levels causes neuronal dysfunction, decreases the density of synapses, and impairs neuronal plasticity. Decreased sensitivity to glucocorticoids (glucocorticoid resistance) that develops as a result of chronic stress is one of the characteristic features of stress-induced psychopathologies. In this article, we reviewed the published data on proposed molecular mechanisms that contribute to the development of glucocorticoid resistance in brain, including changes in the expression of the glucocorticoid receptor (GR) gene, biosynthesis of GR isoforms, and GR posttranslational modifications. We also present data on alterations in the expression of the FKBP5 gene encoding the main component of cell ultra-short negative feedback loop of GC signaling regulation. Recent discoveries on stress- and GR-induced changes in epigenetic modification patterns as well as normalizing action of antidepressants are discussed. GR and FKBP5 gene polymorphisms associated with stress-induced psychopathologies are described, and their role in glucocorticoid resistance is discussed.
Collapse
Affiliation(s)
- V M Merkulov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | | | | |
Collapse
|
45
|
Corbett BA, Bales KL, Swain D, Sanders K, Weinstein TAR, Muglia LJ. Comparing oxytocin and cortisol regulation in a double-blind, placebo-controlled, hydrocortisone challenge pilot study in children with autism and typical development. J Neurodev Disord 2016; 8:32. [PMID: 27540420 PMCID: PMC4989357 DOI: 10.1186/s11689-016-9165-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Children with autism spectrum disorder (ASD) show marked impairment in social functioning and poor adaptation to new and changing contexts, which may be influenced by underlying regulatory processes. Oxytocin (OT) and cortisol are key neuromodulators of biological and behavioral responses, show a synergistic effect, and have been implicated in the neuropathological profile in ASD. However, they are rarely investigated together. The purpose of the pilot study was to evaluate the relationship between cortisol and OT in children with ASD under baseline and physiological stress (hydrocortisone challenge) conditions. Arginine vasopressin (AVP), structurally similar to OT, was also examined. METHODS A double-blind, placebo-controlled, randomly assigned, crossover design was employed in 25 children 8-to-12 years with ASD (N = 14) or typical development (TD, N = 11). A low dose of hydrocortisone and placebo were administered via liquid suspension. Analysis of variance (ANOVA) was used to examine the within-subject factor "Condition" (hydrocortisone/placebo) and "Time" (pre and post) and the between-subject factor "Group" (ASD vs. TD). Pearson correlations examined the relationship between hormone levels and clinical profile. RESULTS There was a significant Time × Condition × Group interaction F (1.23) = 4.18, p = 0.05 showing a rise in OT during the experimental condition (hydrocortisone) and a drop during the placebo condition for the TD group but not the ASD group. There were no group differences for AVP. Hormone levels were associated with social profiles. CONCLUSIONS For the TD group, an inverse relationship was observed. OT increased during physiological challenge suggesting that OT played a stress-buffering role during cortisol administration. In contrast for the ASD group, OT remained unchanged or decreased during both the physiological challenge and the placebo condition, suggesting that OT failed to serve as a stress buffer under conditions of physiological stress. While OT has been tied to the social ability of children with ASD, the diminished moderating effect of OT on cortisol may also play a contributory role in the heightened stress often observed in children with ASD. These results contribute to our understanding of the growing complexity of the effects of OT on social behavior as well as the functional interplay and differential regulation OT may have on stress modulation.
Collapse
Affiliation(s)
- Blythe A. Corbett
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
- Vanderbilt Kennedy Center for Research on Human Development, Nashville, TN USA
- Department of Psychology, Vanderbilt University, Nasvhille, TN USA
| | | | - Deanna Swain
- Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Kevin Sanders
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University, PMB 40, 230 Appleton Place, Nashville, TN 37203 USA
| | | | - Louis J. Muglia
- Department of Pediatrics, Perinatal Institute, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH USA
| |
Collapse
|
46
|
Psychiatric side effects of acute high-dose corticosteroid therapy in neurological conditions. Int Clin Psychopharmacol 2016; 31:224-31. [PMID: 26938038 DOI: 10.1097/yic.0000000000000122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
It has been implied that high-dose corticosteroids (CSs) commonly cause psychiatric side effects. Here, we examined the rate and risk factors of psychiatric side effects during high-dose CS treatment in patients with neurological disorders. Patients treated with high-dose intravenous CSs for neurological disorders were evaluated for depression, mania, and psychosis using the Beck Depression Inventory, the Geriatric Depression Scale, the Young Mania Rating Scale, and the Brief Psychiatric Rating Scale before CS treatment, immediately after, and 1 month following treatment. Forty-nine consecutive patients were monitored. There was a reduction in the Beck Depression Inventory and Geriatric Depression Scale scores as well as in the Brief Psychiatric Rating Scale scores throughout the study period and a transitory increase in the Young Mania Rating Scale score immediately after CS administration. Thus, a tendency to develop transient mild euphoria during high-dose CS treatment exists, but is reversible at 1 month, whereas a reduction in depressive symptoms tended to persist. Overall, our data indicate that high-dose CS treatment for neurological diseases is relatively safe with respect to psychiatric complications.
Collapse
|
47
|
Buades-Rotger M, Serfling G, Harbeck B, Brabant G, Krämer UM. Prednisolone increases neural reactivity to negative socio-emotional stimuli in healthy young men. Eur Neuropsychopharmacol 2016; 26:1176-89. [PMID: 27178366 DOI: 10.1016/j.euroneuro.2016.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/20/2016] [Accepted: 04/27/2016] [Indexed: 12/19/2022]
Abstract
Exogenous glucocorticoids are known to trigger affective changes, but these are highly variable across individuals. A better understanding of how synthetic glucocorticoids impact the processing of negative emotions in the human brain might help to predict such changes. In the present functional magnetic resonance imaging (fMRI) study, we sought to uncover the slow effects of a synthetic glucocorticoid infusion on the neural response to socio-emotional scenes using a within-participant, double-blind, placebo-controlled design. In two separate sessions, 20 young males were given either an intravenous prednisolone dose (250mg) or placebo in a cross-over, randomized order. Four hours later, they were scanned while viewing drawings of persons in a neutral or negative emotional situation. On the next morning participants provided a blood sample for serum cortisol measurement, which served as a manipulation check. Prednisolone strongly suppressed morning cortisol, and heightened brain reactivity to emotional stimuli in left amygdala, left caudate head, right inferior frontal gyrus, bilateral supplementary motor area, and right somatosensory cortex. Amygdala reactivity was related to lower self-reported fatigue and higher irritability in the prednisolone condition. Moreover, prednisolone blunted inferior frontal and amygdala connectivity with other regions of the emotion-processing neural circuitry. Our results suggest specific brain pathways through which exogenous glucocorticoids may labilize affect.
Collapse
Affiliation(s)
- Macià Buades-Rotger
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Georg Serfling
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Birgit Harbeck
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Georg Brabant
- Department of Internal Medicine I, University of Lübeck, Lübeck, Germany
| | - Ulrike M Krämer
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany.
| |
Collapse
|
48
|
Zhao C, Castonguay TW. Effects of free access to sugar solutions on the control of energy intake. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1149863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Changhui Zhao
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| | - Thomas W. Castonguay
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
49
|
Upadhyay A, Mishra OP, Prasad R, Upadhyay SK, Schaefer F. Behavioural abnormalities in children with new-onset nephrotic syndrome receiving corticosteroid therapy: results of a prospective longitudinal study. Pediatr Nephrol 2016; 31:233-8. [PMID: 26416481 DOI: 10.1007/s00467-015-3216-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Corticosteroid therapy can cause behavioural abnormalities in children with nephrotic syndrome. The objective of this study was to explore the timing of the appearance of abnormalities in their first episode. METHODS Forty-five children with a first episode of idiopathic nephrotic syndrome (30 aged 2-5 and 15 aged 6-14 years) were assessed for behavioural problems using the Child Behaviour Checklist (CBCL) before, and after 6 and 12 weeks of oral steroid treatment. Sixty healthy children were included as controls. RESULTS In both age groups, marked abnormalities of externalising behaviour were noticed, specifically in the domains of aggressive behaviour and attention problems. Clinical range or borderline externalising abnormalities were present in 73% of the younger children and 60% of the schoolchildren after 6 weeks of treatment. In the schoolchildren, abnormal internalising behaviour was also noted at 6 weeks, in 40% at borderline level and in 20% within the clinical range. Elevated scores were observed for the anxious/depressed and withdrawn/depressed domains. Most changes persisted at the 12-week observation. CONCLUSIONS Children of both age groups showed significant attention problems and aggressive and abnormal externalising behaviour within 6 weeks of starting treatment. Parents should be informed and counselled about this potential adverse effect of steroid therapy.
Collapse
Affiliation(s)
- Aishvarya Upadhyay
- Division of Pediatric Nephrology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Om P Mishra
- Division of Pediatric Nephrology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Rajniti Prasad
- Division of Pediatric Nephrology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Shashi K Upadhyay
- Division of Pediatric Nephrology, Department of Pediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Franz Schaefer
- Division of Pediatric Nephrology, Centre for Pediatrics and Adolescent Medicine, Heidelberg University Medical Centre, Heidelberg, Germany
| |
Collapse
|
50
|
Schilling LS, Markman JD. Corticosteroids for Pain of Spinal Origin. Rheum Dis Clin North Am 2016; 42:137-55, ix. [DOI: 10.1016/j.rdc.2015.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|