1
|
Tea M, Pan YK, Lister JGR, Perry SF, Gilmour KM. Effects of serta and sertb knockout on aggression in zebrafish (Danio rerio). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:785-799. [PMID: 38416162 DOI: 10.1007/s00359-024-01693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Zebrafish (Danio rerio) are unusual in having two paralogues of the serotonin re-uptake transporter (Sert), slc6a4a (serta) and slc6a4b (sertb), the transporter that serves in serotonin re-uptake from a synapse into the pre-synaptic cell or in serotonin uptake from the extracellular milieu into cells in the peripheral tissues. To address a knowledge gap concerning the specific roles of these paralogues, we used CRISPR/Cas9 technology to generate zebrafish knockout lines predicted to lack functional expression of Serta or Sertb. The consequences of loss-of-function of Serta or Sertb were assessed at the gene expression level, focusing on the serotonergic signalling pathway, and at the behaviour level, focusing on aggression. Whereas serta mRNA was expressed in all tissues examined, with high expression in the heart, gill and brain, only the brain displayed substantial sertb mRNA expression. In both serta-/- and sertb-/- fish, changes in transcript abundances of multiple components of the serotonin signalling pathway were detected, including proteins involved in serotonin synthesis (tph1a, tph1b, tph2, ddc), packaging (vmat2) and degradation (mao), and serotonin receptors (htr1aa, htr1ab). Using a mirror aggression test, serta-/- male but not female fish exhibited greater aggression than wildtype fish. However, both male and female sertb-/- fish displayed less aggression than their wildtype counterparts. These differences in behaviour between serta-/- and sertb-/- individuals hold promise for increasing our understanding of the neurophysiological basis of aggression in zebrafish.
Collapse
Affiliation(s)
- Michael Tea
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Joshua G R Lister
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada
| | - Kathleen M Gilmour
- Department of Biology, University of Ottawa, 30 Marie Curie Pvt, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
2
|
Bahi A. Serotonin transporter knockdown relieves depression-like behavior and ethanol-induced CPP in mice after chronic social defeat stress. Behav Brain Res 2024; 466:114998. [PMID: 38614210 DOI: 10.1016/j.bbr.2024.114998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
Patients with stress-triggered major depression disorders (MDD) can often seek comfort or temporary relief through alcohol consumption, as they may turn to it as a means of self-medication or coping with overwhelming emotions. The use of alcohol as a coping mechanism for stressful events can escalate, fostering a cycle where the temporary relief it provides from depression can deepen into alcohol dependence, exacerbating both conditions. Although, the specific mechanisms involved in stress-triggered alcohol dependence and MDD comorbidities are not well understood, a large body of literature suggests that the serotonin transporter (SERT) plays a critical role in these abnormalities. To further investigate this hypothesis, we used a lentiviral-mediated knockdown approach to examine the role of hippocampal SERT knockdown in social defeat stress-elicited depression like behavior and ethanol-induced place preference (CPP). The results showed that social defeat stress-pro depressant effects were reversed following SERT knockdown demonstrated by increased sucrose preference, shorter latency to feed in the novelty suppressed feeding test, and decreased immobility time in the tail suspension and forced swim tests. Moreover, and most importantly, social stress-induced ethanol-CPP acquisition and reinstatement were significantly reduced following hippocampal SERT knockdown using short hairpin RNA shRNA-expressing lentiviral vectors. Finally, we confirmed that SERT hippocampal mRNA expression correlated with measures of depression- and ethanol-related behaviors by Pearson's correlation analysis. Taken together, our data suggest that hippocampal serotoninergic system is involved in social stress-triggered mood disorders as well as in the acquisition and retrieval of ethanol contextual memory and that blockade of this transporter can decrease ethanol rewarding properties.
Collapse
Affiliation(s)
- Amine Bahi
- College of Medicine, Ajman University, Ajman, United Arab Emirates; Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Anatomy, CMHS, UAE University, Al Ain, United Arab Emirates.
| |
Collapse
|
3
|
Sun M, Brivio P, Shan L, Docq S, Heltzel LCMW, Smits CAJ, Middelman A, Vrooman R, Spoelder M, Verheij MMM, Buitelaar JK, Boillot M, Calabrese F, Homberg JR, Hanswijk SI. Offspring's own serotonin transporter genotype, independently from the maternal one, increases anxiety- and depression-like behavior and alters neuroplasticity markers in rats. J Affect Disord 2024; 350:89-101. [PMID: 38220097 DOI: 10.1016/j.jad.2024.01.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 01/06/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
INTRODUCTION Developmental changes due to early life variations in the serotonin system affect stress-related behavior and neuroplasticity in adulthood. These outcomes can be caused both by offspring's own and maternal serotonergic genotype. We aimed to dissociate the contribution of the own genotype from the influences of mother genotype. METHODS Sixty-six male homozygous (5-HTT-/-) and heterozygous (5-HTT+/-) serotonin transporter knockout and wild-type rats from constant 5-HTT genotype mothers crossed with varying 5-HTT genotype fathers were subjected to tests assessing anxiety- and depression-like behaviors. Additionally, we measured plasma corticosterone levels and mRNA levels of BDNF, GABA system and HPA-axis components in the prelimbic and infralimbic cortex. Finally, we assessed the effect of paternal 5-HTT genotype on these measurements in 5-HTT+/- offspring receiving their knockout allele from their mother or father. RESULTS 5-HTT-/- offspring exhibited increased anxiety- and depression-like behavior in the elevated plus maze and sucrose preference test. Furthermore, Bdnf isoform VI expression was reduced in the prelimbic cortex. Bdnf isoform IV and GABA related gene expression was also altered but did not survive false discovery rate (FDR) correction. Finally, 5-HTT+/- offspring from 5-HTT-/- fathers displayed higher levels of anxiety- and depression-like behavior and changes in GABA, BDNF and HPA-axis related gene expression not surviving FDR correction. LIMITATIONS Only male offspring was tested. CONCLUSIONS Offspring's own 5-HTT genotype influences stress-related behaviors and Bdnf isoform VI expression, independently of maternal 5-HTT genotype. Paternal 5-HTT genotype separately influenced these outcomes. These findings advance our understanding of the 5-HTT genotype dependent susceptibility to stress-related disorders.
Collapse
Affiliation(s)
- Menghan Sun
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Ling Shan
- Department Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, the Netherlands
| | - Sylvia Docq
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Lisa C M W Heltzel
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Celine A J Smits
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Anthonieke Middelman
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Roel Vrooman
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Marcia Spoelder
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands; Department of Molecular Neurobiology, Radboud University Nijmegen, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands
| | - Morgane Boillot
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands.
| | - Sabrina I Hanswijk
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and Behaviour, the Netherlands
| |
Collapse
|
4
|
Hyun JH, Hannan P, Iwamoto H, Blakely RD, Kwon HB. Serotonin in the orbitofrontal cortex enhances cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531880. [PMID: 36945634 PMCID: PMC10028980 DOI: 10.1101/2023.03.09.531880] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Cognitive flexibility is a brain's ability to switch between different rules or action plans depending on the context. However, cellular level understanding of cognitive flexibility have been largely unexplored. We probed a specific serotonergic pathway from dorsal raphe nuclei (DRN) to the orbitofrontal cortex (OFC) while animals are performing reversal learning task. We found that serotonin release from DRN to the OFC promotes reversal learning. A long-range connection between these two brain regions was confirmed anatomically and functionally. We further show that spatiotemporally precise serotonergic action directly enhances the excitability of OFC neurons and offers enhanced spike probability of OFC network. Serotonergic action facilitated the induction of synaptic plasticity by enhancing Ca2+ influx at dendritic spines in the OFC. Thus, our findings suggest that a key signature of flexibility is the formation of choice specific ensembles via serotonin-dependent synaptic plasticity.
Collapse
Affiliation(s)
- Jung Ho Hyun
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
- Department of Brain Sciences, DGIST, Daegu, Republic of Korea
| | - Patrick Hannan
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| | - Hideki Iwamoto
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Randy D. Blakely
- Department of Biomedical Science and Brain Institute, Charles E. Schmidt College of Medicine, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Hyung-Bae Kwon
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Max Planck Florida Institute for Neuroscience, Jupiter, Florida 33458, USA
| |
Collapse
|
5
|
Brain-inspired meta-reinforcement learning cognitive control in conflictual inhibition decision-making task for artificial agents. Neural Netw 2022; 154:283-302. [DOI: 10.1016/j.neunet.2022.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 06/09/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
|
6
|
Hu J, Johnson TA, Zhang H, Cheng HW. The Microbiota-Gut-Brain Axis: Gut Microbiota Modulates Conspecific Aggression in Diversely Selected Laying Hens. Microorganisms 2022; 10:microorganisms10061081. [PMID: 35744601 PMCID: PMC9230770 DOI: 10.3390/microorganisms10061081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/22/2022] Open
Abstract
The gut microbiota plays an important role in regulating brain function, influencing psychological and emotional stability. The correlations between conspecific aggression, gut microbiota, and physiological homeostasis were further studied in inbred laying chicken lines, 63 and 72, which were diversely selected for Marek’s disease, and they also behave differently in aggression. Ten sixty-week-old hens from each line were sampled for blood, brain, and cecal content. Neurotransmitters, cytokines, corticosterone, and heterophil/lymphocyte ratios were determined. Cecal microbiota compositions were determined by bacterial 16s rRNA sequencing, and functional predictions were performed. Our data showed that the central serotonin and tryptophan levels were higher in line 63 compared to line 72 (p < 0.05). Plasma corticosterone, heterophil/lymphocyte ratios, and central norepinephrine were lower in line 63 (p < 0.05). The level of tumor necrosis factor α tended to be higher in line 63. Faecalibacterium, Oscillibacter, Butyricicoccus, and Bacteriodes were enriched in line 63 birds, while Clostridiales vadin BB60, Alistipes, Mollicutes RF39 were dominated in line 72. From the predicted bacterial functional genes, the kynurenine pathway was upregulated in line 72. These results suggested a functional linkage of the line differences in serotonergic activity, stress response, innate immunity, and gut microbiota populations.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
| | - Timothy A. Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA;
- Correspondence: (T.A.J.); (H.-W.C.)
| | - Huanmin Zhang
- USDA-Agricultural Research Service, Avian Disease and Oncology Laboratory, East Lansing, MI 48823, USA;
| | - Heng-Wei Cheng
- USDA-Agricultural Research Service, Livestock Behavior Research Unit, West Lafayette, IN 47907, USA
- Correspondence: (T.A.J.); (H.-W.C.)
| |
Collapse
|
7
|
Thorne BN, Ellenbroek BA, Day DJ. The serotonin reuptake transporter modulates mitochondrial copy number and mitochondrial respiratory complex gene expression in the frontal cortex and cerebellum in a sexually dimorphic manner. J Neurosci Res 2022; 100:869-879. [PMID: 35043462 DOI: 10.1002/jnr.25010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 12/27/2022]
Abstract
Neuropsychiatric and neurodevelopmental disorders such as major depressive disorder (MDD) and autism spectrum disorder (ASD) are complex conditions attributed to both genetic and environmental factors. There is a growing body of evidence showing that serotonergic signaling and mitochondrial dysfunction contribute to the pathophysiology of these disorders and are linked as signaling through specific serotonin (5-HT) receptors drives mitochondrial biogenesis. The serotonin transporter (SERT) is important in these disorders as it regulates synaptic serotonin and therapeutically is the target of selective serotonin reuptake inhibitors which are a major class of anti-depressant drug. Human allelic variants of the serotonin transporter-linked polymorphic region (5-HTTLPR) such as the S/S variant, are associated with reduced SERT expression and increased susceptibility for developing neuropsychiatric disorders. Using a rat model that is haploinsufficient for SERT and displays reduced SERT expression similar to the human S/S variant, we demonstrate that reduced SERT expression modulates mitochondrial copy number and expression of respiratory chain electron transfer components in the brain. In the frontal cortex, genotype-related trends were opposing for males and females, such that reduced SERT expression led to increased expression of the Complex I subunit mt-Nd1 in males but reduced expression in females. Our findings suggest that SERT expression and serotonergic signaling have a role in regulating mitochondrial biogenesis and adenosine triphosphate (ATP) production in the brain. We speculate that the sexual dimorphism in mitochondrial abundance and gene expression contributes to the sex bias found in the incidence of neuropsychiatric disorders such as MDD and ASD.
Collapse
Affiliation(s)
- Bryony N Thorne
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Bart A Ellenbroek
- School of Psychology, Victoria University of Wellington Faculty of Science, Wellington, New Zealand
| | - Darren J Day
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
8
|
Piszczek L, Constantinescu A, Kargl D, Lazovic J, Pekcec A, Nicholson JR, Haubensak W. Dissociation of impulsive traits by subthalamic metabotropic glutamate receptor 4. eLife 2022; 11:62123. [PMID: 34982027 PMCID: PMC8803315 DOI: 10.7554/elife.62123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/31/2021] [Indexed: 11/17/2022] Open
Abstract
Behavioral strategies require gating of premature responses to optimize outcomes. Several brain areas control impulsive actions, but the neuronal basis of natural variation in impulsivity between individuals remains largely unknown. Here, by combining a Go/No-Go behavioral assay with resting-state (rs) functional MRI in mice, we identified the subthalamic nucleus (STN), a known gate for motor control in the basal ganglia, as a major hotspot for trait impulsivity. In vivo recorded STN neural activity encoded impulsive action as a separable state from basic motor control, characterized by decoupled STN/substantia nigra pars reticulata (SNr) mesoscale networks. Optogenetic modulation of STN activity bidirectionally controlled impulsive behavior. Pharmacological and genetic manipulations showed that these impulsive actions are modulated by metabotropic glutamate receptor 4 (mGlu4) function in STN and its coupling to SNr in a behavioral trait-dependent manner, and independently of general motor function. In conclusion, STN circuitry multiplexes motor control and trait impulsivity, which are molecularly dissociated by mGlu4. This provides a potential mechanism for the genetic modulation of impulsive behavior, a clinically relevant predictor for developing psychiatric disorders associated with impulsivity.
Collapse
Affiliation(s)
- Lukasz Piszczek
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Andreea Constantinescu
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria
| | - Dominic Kargl
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility, Vienna BioCenter Core Facilities (VBCF), Vienna, Austria
| | - Anton Pekcec
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Janet R Nicholson
- Div Research Germany, Boehringer Ingelheim, Biberach an der Riss, Germany
| | - Wulf Haubensak
- The Research Institute of Molecular Pathology (IMP), Department of Neuroscience, Vienna Biocenter, Vienna, Austria.,Department of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
9
|
Sato A, Kotajima-Murakami H, Tanaka M, Katoh Y, Ikeda K. Influence of Prenatal Drug Exposure, Maternal Inflammation, and Parental Aging on the Development of Autism Spectrum Disorder. Front Psychiatry 2022; 13:821455. [PMID: 35222122 PMCID: PMC8863673 DOI: 10.3389/fpsyt.2022.821455] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/12/2022] [Indexed: 12/17/2022] Open
Abstract
Autism spectrum disorder (ASD) affects reciprocal social interaction and produces abnormal repetitive, restrictive behaviors and interests. The diverse causes of ASD are divided into genetic alterations and environmental risks. The prevalence of ASD has been rising for several decades, which might be related to environmental risks as it is difficult to consider that the prevalence of genetic disorders related to ASD would increase suddenly. The latter includes (1) exposure to medications, such as valproic acid (VPA) and selective serotonin reuptake inhibitors (SSRIs) (2), maternal complications during pregnancy, including infection and hypertensive disorders of pregnancy, and (3) high parental age. Epidemiological studies have indicated a pathogenetic role of prenatal exposure to VPA and maternal inflammation in the development of ASD. VPA is considered to exert its deleterious effects on the fetal brain through several distinct mechanisms, such as alterations of γ-aminobutyric acid signaling, the inhibition of histone deacetylase, the disruption of folic acid metabolism, and the activation of mammalian target of rapamycin. Maternal inflammation that is caused by different stimuli converges on a higher load of proinflammatory cytokines in the fetal brain. Rodent models of maternal exposure to SSRIs generate ASD-like behavior in offspring, but clinical correlations with these preclinical findings are inconclusive. Hypertensive disorders of pregnancy and advanced parental age increase the risk of ASD in humans, but the mechanisms have been poorly investigated in animal models. Evidence of the mechanisms by which environmental factors are related to ASD is discussed, which may contribute to the development of preventive and therapeutic interventions for ASD.
Collapse
Affiliation(s)
- Atsushi Sato
- Department of Pediatrics, The University of Tokyo Hospital, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | - Miho Tanaka
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Psychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshihisa Katoh
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
10
|
Fahrenkopf A, Li G, Wood RI, Wagner CK. Developmental exposure to the synthetic progestin, 17α-hydroxyprogesterone caproate, disrupts the mesocortical serotonin pathway and alters impulsive decision-making in rats. Dev Neurobiol 2021; 81:763-773. [PMID: 34318625 PMCID: PMC8440456 DOI: 10.1002/dneu.22847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/25/2023]
Abstract
The synthetic progestin, 17α-hydroxyprogesterone caproate (17-OHPC), is administered to women at risk for preterm birth during a critical period of fetal development for mesocortical pathways. Yet, little information is available regarding the potential effects of 17-OHPC on the developing fetal brain. In rat models, the mesocortical serotonin pathway is sensitive to progestins. Progesterone receptor (PR) is expressed in layer 3 pyramidal neurons of medial prefrontal cortex (mPFC) and in serotonergic neurons of the dorsal raphe. The present study tested the hypothesis that exposure to 17-OHPC during development disrupts serotonergic innervation of the mPFC in adolescence and impairs behavior mediated by this pathway in adulthood. Administration of 17-OHPC from postnatal days 1-14 decreased the density of SERT-ir fibers within superficial and deep layers and decreased the density of synaptophysin-ir boutons in all layers of prelimbic mPFC at postnatal day 28. In addition, rats exposed to 17-OHPC during development were less likely to make impulsive choices in the Delay Discounting task, choosing the larger, delayed reward more often than controls at moderate delay times. Interestingly, 17-OHPC exposed rats were more likely to fail to make any choice (i.e., increased omissions) compared to controls at longer delays, suggesting disruptions in decision-making. These results suggest that further investigation is warranted in the clinical use of 17-OHPC to better inform a risk/benefit analysis of progestin use in pregnancy.
Collapse
Affiliation(s)
- Allyssa Fahrenkopf
- Psychogenics Inc. Paramus, NJ USA
- Department of Psychology & Center for Neuroscience Research, University at Albany, Albany, NY USA
| | - Grace Li
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ruth I. Wood
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Christine K. Wagner
- Department of Psychology & Center for Neuroscience Research, University at Albany, Albany, NY USA
| |
Collapse
|
11
|
Willadsen M, Uengoer M, Schwarting RKW, Homberg JR, Wöhr M. Reduced emission of alarm 22-kHz ultrasonic vocalizations during fear conditioning in rats lacking the serotonin transporter. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110072. [PMID: 32800867 DOI: 10.1016/j.pnpbp.2020.110072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/02/2020] [Accepted: 08/09/2020] [Indexed: 12/19/2022]
Abstract
Rats display a rich social behavioral repertoire. An important component of this repertoire is the emission of whistle-like calls in the ultrasonic range, so-called ultrasonic vocalizations (USV). Long low-frequency 22-kHz USV occur in aversive situations, including aggressive interactions, predator exposure, and electric shocks during fear conditioning. They are believed to reflect a negative affective state akin to anxiety and fear. A prominent theory suggests that 22-kHz USV function as alarm calls to warn conspecifics. Serotonin (5-hydroxytryptamine, 5-HT) is strongly implicated in the regulation of affective states, particularly anxiety and fear. A key component of the system is the 5-HT transporter (5-HTT, also known as SERT), regulating 5-HT availability in the synaptic cleft. In the present experiment, we studied the effects of SERT deficiency on overt fear-related behavior and alarm 22-kHz USV during fear conditioning in male and female rats. While overt fear-related behavior was not affected by SERT deficiency and sex, the emission of alarm 22-kHz USV was clearly reduced in homozygous SERT-/- but not heterozygous SERT+/- mutants, as compared to their wildtype SERT+/+ littermate controls. Genotype effects were particularly prominent in females. Females in general emitted fewer alarm 22-kHz USV than males. This supports the view that 22-kHz USV are, at least partly, independently regulated from anxiety or fear and as socially mediated alarm calls do not simply express a negative affective state. Reduced 22-kHz USV emission in rats lacking SERT might be due to social deficits in the use of 22-kHz USV as a socio-affective signal to warn conspecifics about threats.
Collapse
Affiliation(s)
- Maria Willadsen
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany
| | - Metin Uengoer
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Rainer K W Schwarting
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Faculty of Psychology, Philipps-University of Marburg, Gutenberg-Str. 18, D-35032 Marburg, Germany; Center for Mind, Brain and Behavior, Philipps-University of Marburg, Hans-Meerwein-Str. 6, D-35032 Marburg, Germany; Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.
| |
Collapse
|
12
|
Foraita M, Howell T, Bennett P. Environmental influences on development of executive functions in dogs. Anim Cogn 2021; 24:655-675. [PMID: 33611642 DOI: 10.1007/s10071-021-01489-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 02/06/2021] [Indexed: 12/14/2022]
Abstract
Executive functions (EFs) are a set of cognitive processes used for effortful self-regulation of behaviour. They include inhibition, working memory, cognitive flexibility and, in some models, attention. In humans, socioeconomic factors and life experiences shape development of EFs. Domestic dogs (Canis familiaris) must often regulate their behaviour in the human environment (e.g. no jumping up on humans or chasing cats), and life experiences also probably influence the development of EFs in dogs. Research into dog cognition and behaviour has been thriving, and some methods used to explore these concepts (e.g. object-choice task, questionnaires measuring traits like distraction and aggression) are likely to be sensitive to differences in EFs, even if that is not their stated aim. Here we examine relevant studies to identify experiential factors which may influence the development of EFs in dogs living in human care. These are early experience, training, housing and stress. We conclude that the development of dogs' EFs may be negatively affected by hardships, and positively by surmountable challenges, early in life. Training methods appear important, with punishment-based methods leading to poorer dog EFs. Kennel environments seem to affect dog EFs negatively. While mild stressors might enhance the development of EFs, too much stress seems to have negative effects. Regulation of behaviour, a key outcome of EFs, is crucial for dogs' integration into human society. We should, therefore, strive to better understand how the environment shapes dogs' EFs.
Collapse
Affiliation(s)
- Maike Foraita
- Anthrozoology Research Group, School of Psychology and Public Health, La Trobe University, Melbourne, Australia.
| | - Tiffani Howell
- Anthrozoology Research Group, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Pauleen Bennett
- Anthrozoology Research Group, School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
13
|
Cognitive flexibility deficits in rats with dorsomedial striatal 6-hydroxydopamine lesions tested using a three-choice serial reaction time task with reversal learning. Neuroreport 2020; 31:1055-1064. [PMID: 32881776 DOI: 10.1097/wnr.0000000000001509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lesions of the dorsomedial striatum elicit deficits in cognitive flexibility that are an early feature of Parkinson's disease (PD), and presumably reflect alterations in frontostriatal processing. The current study aimed to examine deficits in cognitive flexibility in rats with bilateral 6-hydroxydopamine lesions in the dorsomedial striatum. While deficits in cognitive flexibility have previously been examined in rodent PD models using the cross-maze, T-maze, and a food-digging task, the current study is the first to examine such deficits using a 3-choice serial reaction time task (3-CSRT) with reversal learning (3-CSRT-R). Although the rate of acquisition in 3-CSRT was slower in lesioned compared to control rats, lesioned animals were able to acquire a level of accuracy comparable to that of control animals following 4 weeks of training. In contrast, substantial and persistent deficits were apparent during the reversal learning phase. Our results demonstrate that deficits in cognitive flexibility can be robustly unmasked by reversal learning in the 3-CSRT-R paradigm, which can be a useful test for evaluating effects of dorsomedial striatal deafferentation and interventions.
Collapse
|
14
|
Lucon-Xiccato T, Bertolucci C. Inhibitory control in zebrafish, Danio rerio. JOURNAL OF FISH BIOLOGY 2020; 97:416-423. [PMID: 32402095 DOI: 10.1111/jfb.14380] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
We assessed whether zebrafish, Danio rerio, display inhibitory control using a simple and rapid behavioural test. Zebrafish were exposed to a prey stimulus placed inside a transparent tube, which initially elicited attack behaviour. However, zebrafish showed a rapid reduction in the number of attacks towards the prey, which indicated the ability to inhibit their foraging behaviour. Zebrafish also exhibited mnemonic retention of foraging inhibition, as indicated by a reduced number of attacks in a subsequent exposure to the unreachable prey. The ability to inhibit the foraging behaviour varied across three genetically separated wild-type strains and across different individuals within strains, suggesting that zebrafish show heritable within-species differences in inhibitory control. Our behavioural test might be suitable for screening large zebrafish populations in mutational studies and assessing the effects of pharmacologically active substances on inhibitory control.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
15
|
Affiliation(s)
- Quenten Highgate
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Susan Schenk
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
16
|
Rapid well-plate assays for motor and social behaviors in larval zebrafish. Behav Brain Res 2020; 391:112625. [PMID: 32428631 DOI: 10.1016/j.bbr.2020.112625] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/04/2020] [Accepted: 03/23/2020] [Indexed: 12/27/2022]
Abstract
Behavior phenotypes are a powerful means of uncovering subtle xenobiotic chemical impacts on vertebrate nervous system development. Rodents manifest complex and informative behavior phenotypes but are generally not practical models in which to screen large numbers of chemicals. Zebrafish recapitulate much of the behavioral complexity of higher vertebrates, develop externally and are amenable to assay automation. Short duration automated assays can be leveraged to screen large numbers of chemicals or comprehensive dose-response for fewer chemicals. Here we describe a series of mostly automated assays including larval photomotor response, strobe light response, blue color avoidance, shoaling and mirror stimulus-response performed on the ZebraBox (ViewPoint Behavior Technologies) instrument platform. To explore the sensitivity and uniqueness of each assay endpoint, larval cohorts from 5 to 28 days post fertilization were acutely exposed to several chemicals broadly understood to impact different neuro-activities. We highlight the throughput advantages of using the same instrument platform for multiple assays and the ability of different assays to detect unique phenotypes among different chemicals.
Collapse
|
17
|
Derksen M, Feenstra M, Willuhn I, Denys D. The serotonergic system in obsessive-compulsive disorder. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020. [DOI: 10.1016/b978-0-444-64125-0.00044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Perinatal fluoxetine treatment and dams' early life stress history have opposite effects on aggressive behavior while having little impact on sexual behavior of male rat offspring. Psychopharmacology (Berl) 2020; 237:2589-2600. [PMID: 32676774 PMCID: PMC7501125 DOI: 10.1007/s00213-020-05535-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 04/22/2020] [Indexed: 01/18/2023]
Abstract
RATIONALE Many depressed women continue antidepressant treatment during pregnancy. Selective serotonin reuptake inhibitor (SSRI) treatment during pregnancy increases the risk for abnormal social development of the child, including increased aggressive or defiant behavior, with unknown effects on sexual behavior. OBJECTIVES Our aim was to investigate the effects of perinatal SSRI treatment and maternal depression, both separately and combined, on aggressive and sexual behavior in male rat offspring. METHODS Heterozygous serotonin transporter (SERT± ) knockout dams exposed to early life stress (ELSD) were used as an animal model of maternal depression. Early life stress consisted of separating litters from their mother for 6 h a day on postnatal day (PND)2-15, resulting in a depressive-like phenotype in adulthood. Depressive-like dams were treated with fluoxetine (FLX, 10 mg/kg) or vehicle throughout pregnancy and lactation (gestational day 1 until PND 21). Male offspring were tested for aggressive and sexual behavior in adulthood. As lifelong reductions in SERT expression are known to alter behavioral outcome, offspring with normal (SERT+/+) and reduced (SERT± ) SERT expression were assessed. RESULTS Perinatal FLX treatment reduced offensive behavior and the number of animals attacking and increased the latency to attack, especially in SERT+/+ offspring. Perinatal FLX treatment reduced the mounting frequency in SERT+/+ offspring. ELSD increased offensive behavior, without affecting sexual behavior in SERT± offspring. CONCLUSIONS Overall, our research demonstrates that perinatal FLX treatment and ELSD have opposite effects on aggressive behavior, with little impact on sexual behavior of male offspring.
Collapse
|
19
|
Serotonin transporter deficiency alters socioemotional ultrasonic communication in rats. Sci Rep 2019; 9:20283. [PMID: 31889084 PMCID: PMC6937290 DOI: 10.1038/s41598-019-56629-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
It has been widely established that serotonin plays important role in the regulation of emotional and social behaviour. Rodents with a genetic deletion of the serotonin reuptake transporter (SERT) are used as a model to study lifelong consequences of increased extracellular 5‐HT levels due to its impaired reuptake. SERT knock-out (SERT-KO) mice and rats consistently showed anxiety-like symptoms and social deficits. Nevertheless, the impact of SERT deletion on socioemotional ultrasonic communication has not been addressed. Here we investigated the impact of lifelong serotonin abundance on ultrasonic vocalisation accompanying social interactions and open field exploration in rats. SERT-KO rats displayed reduced overall duration of social contacts, but increased time spent on following the conspecific. The altered pattern of social behaviour in SERT-KO rats was accompanied by the structural changes in ultrasonic vocalisations, as they differed from their controls in distribution of call categories. Moreover, SERT deletion resulted in anxiety-like behaviours assessed in the open field test. Their anxious phenotype resulted in a lower tendency to emit appetitive 50-kHz calls during novelty exploration. The present study demonstrates that genetic deletion of SERT not only leads to the deficits in social interaction and increased anxiety but also affects ultrasonic communication.
Collapse
|
20
|
Peeters DG, de Boer SF, Terneusen A, Newman-Tancredi A, Varney MA, Verkes RJ, Homberg JR. Enhanced aggressive phenotype of Tph2 knockout rats is associated with diminished 5-HT1A receptor sensitivity. Neuropharmacology 2019; 153:134-141. [DOI: 10.1016/j.neuropharm.2019.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 05/05/2019] [Indexed: 11/28/2022]
|
21
|
Kroes MCW, Henckens MJAG, Homberg JR. How serotonin transporter gene variance affects defensive behaviours along the threat imminence continuum. Curr Opin Behav Sci 2019. [DOI: 10.1016/j.cobeha.2018.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Houwing DJ, Staal L, Swart JM, Ramsteijn AS, Wöhr M, de Boer SF, Olivier JDA. Subjecting Dams to Early Life Stress and Perinatal Fluoxetine Treatment Differentially Alters Social Behavior in Young and Adult Rat Offspring. Front Neurosci 2019; 13:229. [PMID: 30914920 PMCID: PMC6423179 DOI: 10.3389/fnins.2019.00229] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 01/10/2023] Open
Abstract
Recently, the putative association between selective serotonin reuptake inhibitor (SSRI) exposure during pregnancy and the development of social disorders in children has gained increased attention. However, clinical studies struggle with the confounding effects of maternal depression typically co-occurring with antidepressant treatment. Furthermore, preclinical studies using an animal model of maternal depression to study effects of perinatal SSRI exposure on offspring social behavior are limited. Therefore, the aim of this study was to investigate effects of perinatal fluoxetine exposure on juvenile and adult social behavior in male and female rat offspring, using an animal model of maternal vulnerability. We exposed heterozygous serotonin transporter (SERT) deficient female rats to early life maternal separation stress, and used this as a model for maternal vulnerability. Control and early life stressed heterozygous serotonin transporter knockout (SERT) dams were treated with the SSRI fluoxetine or vehicle throughout gestation and lactation. Subsequently, both male and female wildtype (SERT+/+) and heterozygous (SERT+/-) rat offspring were tested for pup ultrasonic vocalizations (USVs), juvenile social play behavior and adult social interaction. Fluoxetine treatment of the dams resulted in a reduced total USV duration in pups at postnatal day 6, especially in SERT+/+ males. Perinatal fluoxetine exposure lowered social play behavior in male offspring from both control and early life stressed dams. However, in females a fluoxetine-induced reduction in juvenile play behavior was only present in offspring from control dams. Offspring genotype did not affect juvenile play behavior. Despite fluoxetine-induced behavioral effects at juvenile age, fluoxetine reduced male adult social behavior in offspring from control dams only. Effects of fluoxetine on female adult social behavior were virtually absent. Interestingly, early life stress in dams increased adult social exploration in vehicle exposed SERT+/+ female offspring and total social behavior in fluoxetine exposed adult SERT+/- male offspring. Furthermore, SERT+/- males appeared less social during adulthood compared to SERT+/+ males. Overall, the present study shows that chronic blockade of the serotonin transporter by fluoxetine during early development has a considerable impact on pup USVs, juvenile social play behavior in both male and female offspring, and to a lesser extent on male social interaction in adulthood.
Collapse
Affiliation(s)
- Danielle J. Houwing
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Laura Staal
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Judith M. Swart
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Anouschka S. Ramsteijn
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Markus Wöhr
- Experimental and Biological Psychology Department, University of Marburg, Marburg, Germany
| | - Sietse F. de Boer
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Jocelien D. A. Olivier
- Behavioural Neuroscience Unit, Neurobiology Department, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
23
|
D'Souza MS. Brain and Cognition for Addiction Medicine: From Prevention to Recovery Neural Substrates for Treatment of Psychostimulant-Induced Cognitive Deficits. Front Psychiatry 2019; 10:509. [PMID: 31396113 PMCID: PMC6667748 DOI: 10.3389/fpsyt.2019.00509] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/28/2019] [Indexed: 01/10/2023] Open
Abstract
Addiction to psychostimulants like cocaine, methamphetamine, and nicotine poses a continuing medical and social challenge both in the United States and all over the world. Despite a desire to quit drug use, return to drug use after a period of abstinence is a common problem among individuals dependent on psychostimulants. Recovery for psychostimulant drug-dependent individuals is particularly challenging because psychostimulant drugs induce significant changes in brain regions associated with cognitive functions leading to cognitive deficits. These cognitive deficits include impairments in learning/memory, poor decision making, and impaired control of behavioral output. Importantly, these drug-induced cognitive deficits often impact adherence to addiction treatment programs and predispose abstinent addicts to drug use relapse. Additionally, these cognitive deficits impact effective social and professional rehabilitation of abstinent addicts. The goal of this paper is to review neural substrates based on animal studies that could be pharmacologically targeted to reverse psychostimulant-induced cognitive deficits such as impulsivity and impairment in learning and memory. Further, the review will discuss neural substrates that could be used to facilitate extinction learning and thus reduce emotional and behavioral responses to drug-associated cues. Moreover, the review will discuss some non-pharmacological approaches that could be used either alone or in combination with pharmacological compounds to treat the above-mentioned cognitive deficits. Psychostimulant addiction treatment, which includes treatment for cognitive deficits, will help promote abstinence and allow for better rehabilitation and integration of abstinent individuals into society.
Collapse
Affiliation(s)
- Manoranjan S D'Souza
- Department of Pharmaceutical and Biomedical Sciences, The Raabe College of Pharmacy, Ohio Northern University, Ada, OH, United States
| |
Collapse
|
24
|
Filip P, Linhartová P, Hlavatá P, Šumec R, Baláž M, Bareš M, Kašpárek T. Disruption of Multiple Distinctive Neural Networks Associated With Impulse Control Disorder in Parkinson's Disease. Front Hum Neurosci 2018; 12:462. [PMID: 30519167 PMCID: PMC6258801 DOI: 10.3389/fnhum.2018.00462] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/01/2018] [Indexed: 01/02/2023] Open
Abstract
The phenomenon of impulsivity in Parkinson's disease appears as an arduous side effect of dopaminergic therapy with potentially detrimental consequences for the life of the patients. Although conceptualized as a result of non-physiologic chronic dopaminergic stimulation, recent advances speculate on combined disruption of other networks as well. In the search for neuroanatomical correlates of this multifaceted disturbance, this study employs two distinct, well-defined tasks of close association to motor inhibition and decision-making impulsivity, Go/No Go and Delay discounting. The fMRI and functional connectivity analysis in 21 Parkinson's disease patients, including 8 patients suffering from severe impulse control disorder, and 28 healthy controls, revealed in impulsive Parkinson's disease patients not only decreased fMRI activation in the dorsolateral prefrontal cortex and bilateral striatum, but also vast functional connectivity changes of both caudate nuclei as decreased connectivity to the superior parietal cortex and increased connectivity to the insular area, clearly beyond the commonly stated areas, which indicates that orbitofronto-striatal and mesolimbic functional disruptions are not the sole mechanisms underlying impulse control disorder in Parkinson's disease. Ergo, our results present a refinement and synthesis of gradually developing ideas about the nature of impulsive control disorder in Parkinson's disease—an umbrella term encompassing various behavioral deviations related to distinct neuronal networks and presumably neurotransmitter systems, which greatly exceed the previously envisioned dopaminergic pathways as the only culprit.
Collapse
Affiliation(s)
- Pavel Filip
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czechia.,Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, United States
| | - Pavla Linhartová
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Pavlína Hlavatá
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| | - Rastislav Šumec
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czechia
| | - Marek Baláž
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czechia
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and University Hospital of St. Anne, Brno, Czechia.,Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Tomáš Kašpárek
- Department of Psychiatry, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czechia
| |
Collapse
|
25
|
Davidson GL, Cooke AC, Johnson CN, Quinn JL. The gut microbiome as a driver of individual variation in cognition and functional behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170286. [PMID: 30104431 PMCID: PMC6107574 DOI: 10.1098/rstb.2017.0286] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2018] [Indexed: 12/30/2022] Open
Abstract
Research into proximate and ultimate mechanisms of individual cognitive variation in animal populations is a rapidly growing field that incorporates physiological, behavioural and evolutionary investigations. Recent studies in humans and laboratory animals have shown that the enteric microbial community plays a central role in brain function and development. The 'gut-brain axis' represents a multi-directional signalling system that encompasses neurological, immunological and hormonal pathways. In particular it is tightly linked with the hypothalamic-pituitary-adrenal axis (HPA), a system that regulates stress hormone release and influences brain development and function. Experimental examination of the microbiome through manipulation of diet, infection, stress and exercise, suggests direct effects on cognition, including learning and memory. However, our understanding of these processes in natural populations is extremely limited. Here, we outline how recent advances in predominantly laboratory-based microbiome research can be applied to understanding individual differences in cognition. Experimental manipulation of the microbiome across natal and adult environments will help to unravel the interplay between cognitive variation and the gut microbial community. Focus on individual variation in the gut microbiome and cognition in natural populations will reveal new insight into the environmental and evolutionary constraints that drive individual cognitive variation.This article is part of the theme issue 'Causes and consequences of individual differences in cognitive abilities'.
Collapse
Affiliation(s)
- Gabrielle L Davidson
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| | - Amy C Cooke
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| | - Crystal N Johnson
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Ireland P61 C996
| | - John L Quinn
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, North Mall, Cork, Ireland T12 XF62
| |
Collapse
|
26
|
Peeters D, Rietdijk J, Gerrits D, Rijpkema M, de Boer SF, Verkes RJ, Homberg JR. Searching for neural and behavioral parameters that predict anti-aggressive effects of chronic SSRI treatment in rats. Neuropharmacology 2018; 143:339-348. [PMID: 30217738 DOI: 10.1016/j.neuropharm.2018.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 01/05/2023]
Abstract
RATIONALE Only a subset of impulsive aggressive patients benefits from selective serotonin reuptake inhibitor (SSRI) treatment, confirming contradictory results about the association between serotonin (5-hydroxytryptamine, 5-HT) and aggression. This shows the need to define behavioral characteristics within this subgroup to move towards individualized pharmacological treatment of impulsive aggression. METHODS Here we submitted an outbred strain of Long Evans rats to a crossover design treatment regimen with the SSRI citalopram, to test its anti-aggressive effect. Behavioral characteristics were baseline aggression, anxiety parameters as measured in the elevated plus maze and open field and cue responsivity as indicated by sign vs. goal tracking behavior. 5-HT1A receptor densities as measured by ex vivo [18F]MPPF binding were determined in the dorsal raphe nucleus, dentate gyrus, orbitofrontal cortex, infralimbic cortex and prelimbic cortex, because of the receptors' involvement in the therapeutic delay of SSRIs and aggression. RESULTS We found statistically significant increased variance in aggressive behavior after citalopram treatment. However, none of the selected parameters predicted the citalopram treatment effect. CONCLUSION Since aggression after citalopram treatment decreased in a subgroup of animals and increased in the other, future research should focus on other possible predictors to support treatment strategies in aggressive patients.
Collapse
Affiliation(s)
- Deborah Peeters
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Jonne Rietdijk
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Danny Gerrits
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sietse F de Boer
- Department of Behavioural Neuroscience, Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| | - Robbert-Jan Verkes
- Department of Psychiatry, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
27
|
Esquivel-Franco DC, Olivier B, Waldinger MD, Gutiérrez-Ospina G, Olivier JDA. Tramadol's Inhibitory Effects on Sexual Behavior: Pharmacological Studies in Serotonin Transporter Knockout Rats. Front Pharmacol 2018; 9:676. [PMID: 29997507 PMCID: PMC6030355 DOI: 10.3389/fphar.2018.00676] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022] Open
Abstract
Tramadol is an effective pharmacological intervention in human premature ejaculation (PE). To investigate whether the inhibitory action of tramadol is primarily caused by its selective serotonin reuptake inhibitory (SSRI) effects we tested the dose–response effects of tramadol on sexual behavior in serotonin transporter wild type (SERT+/+), heterozygous (SERT+/-), and knockout (SERT-/-) rats. To investigate whether other mechanisms contribute to the inhibitory effects, WAY100,635, a 5-HT1A receptor antagonist and naloxone, a μ-opioid receptor antagonist, were tested on sexual behavior together with tramadol. Tramadol dose-dependently decreases sexual activity in all genotypes. In all studies, SERT+/- rats did not respond differently from SERT+/+ rats. WAY100,635 did not affect sexual activity in SERT+/+, but dose-dependently reduced sexual activity in SERT-/- rats. WAY100,635 (0.3 mg/kg) combined with tramadol (20 mg/kg) significantly reduced sexual activity in SERT+/+ and even stronger in SERT-/- rats. Naloxone did not affect sexual behavior consistently in SERT+/+ rats, while in SERT-/- rats all doses reduced ejaculation frequency mildly. Combining naloxone (20 mg/kg) and tramadol (20 mg/kg) decreased ejaculation frequencies in both genotypes. Interestingly, combining tramadol (20 mg/kg), WAY100,635 (0.3 mg/kg) and naloxone (20 mg/kg) led to complete elimination of all sexual activity in both SERT+/+ and SERT-/- rats. These findings suggest that the inhibitory effects of tramadol on male sexual behavior in SERT+/+ rats is mainly, if not exclusively, due to SERT inhibition, with an important role for 5-HT1A receptors, although influence of other systems (e.g., noradrenergic) cannot be excluded. As SSRIs exert their sexual inhibition after chronic administration, tramadol may be therapeutically attractive as “on demand” therapy for PE.
Collapse
Affiliation(s)
- Diana C Esquivel-Franco
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Berend Olivier
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands.,Department of Psychopharmacology, Utrecht Institute for Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht, Netherlands.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Marcel D Waldinger
- Department of Pharmacology & Physiology, College of Medicine, Drexel University, Philadelphia, PA, United States
| | - Gabriel Gutiérrez-Ospina
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Coordinación de Psicobiología y Neurociencias, Facultad de Psicología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Jocelien D A Olivier
- Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
28
|
The neurobiology of impulse control disorders in Parkinson's disease: from neurotransmitters to neural networks. Cell Tissue Res 2018; 373:327-336. [PMID: 29383446 PMCID: PMC6015621 DOI: 10.1007/s00441-017-2771-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 12/14/2017] [Indexed: 01/08/2023]
Abstract
Impulse control disorders (ICD) are common neuropsychiatric disorders that can arise in Parkinson’s disease (PD) patients after commencing dopamine replacement therapy. Approximately 15% of all patients develop these disorders and many more exhibit subclinical symptoms of impulsivity. ICD is thought to develop due to an interaction between the use of dopaminergic medication and an as yet unknown neurobiological vulnerability that either pre-existed before PD onset (possibly genetic) or is associated with neural alterations due to the PD pathology. This review discusses genes, neurotransmitters and neural networks that have been implicated in the pathophysiology of ICD in PD. Although dopamine and the related reward system have been the main focus of research, recently, studies have started to look beyond those systems to find new clues to the neurobiological underpinnings of ICD and come up with possible new targets for treatment. Studies on the whole-brain connectome to investigate the global alterations due to ICD development are currently lacking. In addition, there is a dire need for longitudinal studies that are able to disentangle the contributions of individual (genetic) traits and secondary effects of the PD pathology and chronic dopamine replacement therapy to the development of ICD in PD.
Collapse
|
29
|
Kavoor AR, Mitra S, Kumar S, Sisodia AK, Jain R. Lipids, aggression, suicidality and impulsivity in drug-naïve/drug-free patients of schizophrenia. Asian J Psychiatr 2017; 27:129-136. [PMID: 28558886 DOI: 10.1016/j.ajp.2017.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/13/2017] [Accepted: 03/01/2017] [Indexed: 12/25/2022]
Abstract
AIM Present study aimed at determining lipid profiles in acutely symptomatic drug-naïve/drug-free patients of schizophrenia, comparing them with healthy controls and exploring relationships between various lipid fractions, aggression, suicidality and impulsivity in this population. MATERIALS AND METHODS This was a cross-sectional hospital-based study, comparing patients with schizophrenia (M=46, F=14; mean age 32.40±6.6 years; 48 drug-free for 10.50±9.2 weeks) with 60 age-sex matched healthy controls. Upon recruitment, fasting venous blood samples of all subjects were analysed for total cholesterol, HDL, LDL, VLDL and TG levels, and patients were rated on PANSS for symptom severity, Modified Overt Aggression Scale for aggression, Impulsivity Rating Scale for impulsivity and Scale for Suicide Ideation for suicidality. RESULTS The socio-demographic characteristics of the patients were comparable to controls. In patients, total cholesterol, HDL and LDL levels were found to be significantly lower (p<0.01) than the control group. When explored further in patients, lower total cholesterol and LDL levels showed significant negative correlations with scores on impulsivity (p<0.01) and suicidality (p<0.05); and TG level showed a negative correlation with impulsivity (p<0.05). CONCLUSIONS This study adds to a growing literature on a complex relationship between lipid fractions and impulsivity, suicidality and aggression in schizophrenia; providing interesting insights into the biochemical basis of human behaviour and confirming these in a developing-world population. The implications are many, including a need to review judiciously the promotion of weight loss and cholesterol reduction programmes in constitutionally vulnerable population, at least during their acutely-symptomatic states.
Collapse
Affiliation(s)
| | | | - Sudhir Kumar
- Institute of Mental Health and Hospital, Agra, Uttar Pradesh, India
| | - Anil Kr Sisodia
- Institute of Mental Health and Hospital, Agra, Uttar Pradesh, India
| | - Rakesh Jain
- Institute of Mental Health and Hospital, Agra, Uttar Pradesh, India
| |
Collapse
|
30
|
Schipper P, Henckens MJAG, Borghans B, Hiemstra M, Kozicz T, Homberg JR. Prior fear conditioning does not impede enhanced active avoidance in serotonin transporter knockout rats. Behav Brain Res 2017; 326:77-86. [PMID: 28286283 DOI: 10.1016/j.bbr.2017.02.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/21/2017] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Stressors can be actively or passively coped with, and adequate adaption of the coping response to environmental conditions can reduce their potential deleterious effects. One major factor influencing stress coping behaviour is serotonin transporter (5-HTT) availability. Abolishment of 5-HTT is known to impair fear extinction but facilitates acquisition of signalled active avoidance (AA), a behavioural task in which an animal learns to avoid an aversive stimulus that is predicted by a cue. Flexibility in adapting coping behaviour to the nature of the stressor shapes resilience to stress-related disorders. Therefore, we investigated the relation between 5-HTT expression and ability to adapt a learned coping response to changing environmental conditions. To this end, we first established and consolidated a cue-conditioned passive fear response in 5-HTT-/- and wildtype rats. Next, we used the conditioned stimulus (CS) to signal oncoming shocks during signalled AA training in 5-HTT-/- and wildtype rats to study their capability to acquire an active coping response to the CS following fear conditioning. Finally, we investigated the behavioural response to the CS in a novel environment and measured freezing, exploration and self-grooming, behaviours reflective of stress coping strategy. We found that fear conditioned and sham conditioned 5-HTT-/- animals acquired the signalled AA response faster than wildtypes, while prior conditioning briefly delayed AA learning similarly in both genotypes. Subsequent exposure to the CS in the novel context reduced freezing and increased locomotion in 5-HTT-/- compared to wildtype rats. This indicates that improved AA performance in 5-HTT-/- rats resulted in a weaker residual passive fear response to the CS in a novel context. Fear conditioning prior to AA training did not affect freezing upon re-encountering the CS, although it did reduce locomotion in 5-HTT-/- rats. We conclude that independent of 5-HTT signalling, prior fear conditioning does not greatly impair the acquisition of subsequent active coping behaviour when the situation allows for it. Abolishment of 5-HTT results in a more active coping style in case of novelty-induced fear and upon CS encounter in a novel context after AA learning.
Collapse
Affiliation(s)
- Pieter Schipper
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Marloes J A G Henckens
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands; Anatomy Department, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 109), 6525 EZ Nijmegen, The Netherlands
| | - Bart Borghans
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Marlies Hiemstra
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands
| | - Tamas Kozicz
- Anatomy Department, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 109), 6525 EZ Nijmegen, The Netherlands
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboudumc, Geert Grooteplein 21 (route 126), 6525 EZ Nijmegen, The Netherlands.
| |
Collapse
|
31
|
Houwing DJ, Buwalda B, van der Zee EA, de Boer SF, Olivier JDA. The Serotonin Transporter and Early Life Stress: Translational Perspectives. Front Cell Neurosci 2017; 11:117. [PMID: 28491024 PMCID: PMC5405142 DOI: 10.3389/fncel.2017.00117] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 04/07/2017] [Indexed: 01/04/2023] Open
Abstract
The interaction between the serotonin transporter (SERT) linked polymorphic region (5-HTTLPR) and adverse early life stressing (ELS) events is associated with enhanced stress susceptibility and risk to develop mental disorders like major depression, anxiety, and aggressiveness. In particular, human short allele carriers are at increased risk. This 5-HTTLPR polymorphism is absent in the rodent SERT gene, but heterozygous SERT knockout rodents (SERT+/−) show several similarities to the human S-allele carrier, therefore creating an animal model of the human situation. Many rodent studies investigated ELS interactions in SERT knockout rodents combined with ELS. However, underlying neuromolecular mechanisms of the (mal)adaptive responses to adversity displayed by SERT rodents remain to be elucidated. Here, we provide a comprehensive review including studies describing mechanisms underlying SERT variation × ELS interactions in rodents. Alterations at the level of translation and transcription but also epigenetic alterations considerably contribute to underlying mechanisms of SERT variation × ELS interactions. In particular, SERT+/− rodents exposed to adverse early rearing environment may be of high translational and predictive value to the more stress sensitive human short-allele carrier, considering the similarity in neurochemical alterations. Therefore, SERT+/− rodents are highly relevant in research that aims to unravel the complex psychopathology of mental disorders. So far, most studies fail to show solid evidence for increased vulnerability to develop affective-like behavior after ELS in SERT+/− rodents. Several reasons may underlie these failures, e.g., (1) stressors used might not be optimal or severe enough to induce maladaptations, (2) effects in females are not sufficiently studied, and (3) few studies include both behavioral manifestations and molecular correlates of ELS-induced effects in SERT+/− rodents. Of course, one should not exclude the (although unlikely) possibility of SERT+/− rodents not being sensitive to ELS. In conclusion, future studies addressing ELS-induced effects in the SERT+/− rodents should extensively study both long-term behavioral and (epi)genetic aspects in both sexes. Finally, further research is warranted using more severe stressors in animal models. From there on, we should be able to draw solid conclusions whether the SERT+/− exposed to ELS is a suitable translational animal model for studying 5-HTTLPR polymorphism and stress interactions.
Collapse
Affiliation(s)
- Danielle J Houwing
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Bauke Buwalda
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Eddy A van der Zee
- Unit Molecular Neurobiology, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Sietse F de Boer
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| | - Jocelien D A Olivier
- Unit Behavioral Neuroscience, Department of Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of GroningenGroningen, Netherlands
| |
Collapse
|
32
|
de Boer SF, Buwalda B, Koolhaas JM. Untangling the neurobiology of coping styles in rodents: Towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 2017; 74:401-422. [DOI: 10.1016/j.neubiorev.2016.07.008] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 01/23/2023]
|
33
|
Sensory processing sensitivity and serotonin gene variance: Insights into mechanisms shaping environmental sensitivity. Neurosci Biobehav Rev 2016; 71:472-483. [PMID: 27697602 DOI: 10.1016/j.neubiorev.2016.09.029] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 09/26/2016] [Accepted: 09/28/2016] [Indexed: 11/23/2022]
Abstract
Current research supports the notion that the apparently innate trait Sensory Processing Sensitivity (SPS) may act as a modulator of development as function of the environment. Interestingly, the common serotonin transporter linked polymorphic region (5-HTTLPR) does the same. While neural mechanisms underlying SPS are largely unknown, those associated with the 5-HTTLPR have been extensively investigated. We perform a comparative analysis of research findings on sensory processing facets associated with the trait and polymorphism to: 1. detect shared phenotypes and frame a hypothesis towards neural mechanisms underlying SPS; 2. increase the understanding of 5-HTTLPR-associated behavioral patterns. Trait and polymorphism are both associated with differential susceptibility to environmental stimuli; additionally, both involve 1. having stronger emotional reactions, 2. processing of sensory information more deeply, 3. being more aware of environmental subtleties, and 4. being easily overstimulated. We discuss neural mechanisms and environmental conditions that may underlie these four facets. Besides urging the actual assessment of the link between the two, the conclusions of our analyses may guide and focus future research strategies.
Collapse
|
34
|
Zimmer P, Stritt C, Bloch W, Schmidt FP, Hübner ST, Binnebößel S, Schenk A, Oberste M. The effects of different aerobic exercise intensities on serum serotonin concentrations and their association with Stroop task performance: a randomized controlled trial. Eur J Appl Physiol 2016; 116:2025-34. [PMID: 27562067 DOI: 10.1007/s00421-016-3456-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/18/2016] [Indexed: 12/14/2022]
Abstract
PURPOSE Acute exercise improves selective aspects of cognition such as executive functioning. Animal studies suggest that some effects are based on exercise-induced alterations in serotonin (5-HT) secretion. This study evaluates the impact of different aerobic exercise intensities on 5-HT serum levels as well as on executive functioning considering 5-HT as a potential mediator. METHODS 121 young adults (23.8 ± 3.6 years) were examined in a randomized controlled trial including three exercise intervention (35 min) groups (low intensity, 45 % of the maximal heart rate (HRmax); moderate intensity, 65 % HRmax; high intensity, 85 % HRmax) and one control group. 5-HT levels and response inhibition (measured by a computerized Stroop test) were assessed pre- and post-intervention. RESULTS There was a significant (p = 0.022) difference between groups regarding serum Δ5-HT levels. Post hoc tests indicated significant (p = 0.013) higher 5-HT serum levels for the high-intensity group compared to the control group while other groups did not differ significantly from each other. Serum Δ5-HT levels and exercise intensity were shown to be linearly associated through polynomial contrast analysis (p = 0.003). Furthermore, ANOVA revealed a significant difference for Stroop parameter reading (p = 0.030) and a tendency for reverse Stroop effect (p = 0.061). Correlation analysis showed that augmented 5-HT levels were associated with improved results in response inhibition. CONCLUSIONS This study indicates that intensive acute exercise increases serum 5-HT levels compared to a control group. These findings might be relevant for many other related research fields in exercise science, since 5-HT receptors are expressed on many different cell types including endothelia and immune cells.
Collapse
Affiliation(s)
- Philipp Zimmer
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Christian Stritt
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Frank-Peter Schmidt
- Hemostasiology and Pharmacology in the Hämostaseologicum Steglitz GmbH, Siemensstraße 27, 12247, Berlin, Germany
| | - Sven Thorsten Hübner
- Department of Preventive and Rehabilitative Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Stephan Binnebößel
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Alexander Schenk
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Max Oberste
- Department of Molecular and Cellular Sport Medicine, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
35
|
Johnson PL, Molosh A, Fitz SD, Arendt D, Deehan GA, Federici LM, Bernabe C, Engleman EA, Rodd ZA, Lowry CA, Shekhar A. Pharmacological depletion of serotonin in the basolateral amygdala complex reduces anxiety and disrupts fear conditioning. Pharmacol Biochem Behav 2016; 138:174-9. [PMID: 26476009 DOI: 10.1016/j.pbb.2015.09.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 01/12/2023]
Abstract
The basolateral and lateral amygdala nuclei complex (BLC) is implicated in a number of emotional responses including conditioned fear and social anxiety. Based on previous studies demonstrating that enhanced serotonin release in the BLC leads to increased anxiety and fear responses, we hypothesized that pharmacologically depleting serotonin in the BLC using 5,7-dihydroxytryptamine (5,7-DHT) injections would lead to diminished anxiety and disrupted fear conditioning. To test this hypothesis, 5,7-DHT(a serotonin-depleting agent) was bilaterally injected into the BLC. Desipramine (a norepinephrine reuptake inhibitor) was systemically administered to prevent non-selective effects on norepinephrine. After 5days, 5-7-DHT-treated rats showed increases in the duration of social interaction (SI) time, suggestive of reduced anxiety-like behavior. We then used a cue-induced fear conditioning protocol with shock as the unconditioned stimulus and tone as the conditioned stimulus for rats pretreated with bilateral 5,7-DHT, or vehicle, injections into the BLC. Compared to vehicle-treated rats, 5,7-DHT rats had reduced acquisition of fear during conditioning (measured by freezing time during tone), also had reduced fear retrieval/recall on subsequent testing days. Ex vivo analyses revealed that 5,7-DHT reduced local 5-HT concentrations in the BLC by ~40% without altering local norepinephrine or dopamine concentrations. These data provide additional support for 5-HT playing a critical role in modulating anxiety-like behavior and fear-associated memories through its actions within the BLC.
Collapse
Affiliation(s)
- Philip L Johnson
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA,.
| | - Andrei Molosh
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Stephanie D Fitz
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dave Arendt
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Gerald A Deehan
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lauren M Federici
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Cristian Bernabe
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eric A Engleman
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Zachary A Rodd
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher A Lowry
- Department of Integrative Physiology and Center for Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Anantha Shekhar
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
36
|
Logan CJ. Behavioral flexibility in an invasive bird is independent of other behaviors. PeerJ 2016; 4:e2215. [PMID: 27478705 PMCID: PMC4950539 DOI: 10.7717/peerj.2215] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 06/14/2016] [Indexed: 12/02/2022] Open
Abstract
Behavioral flexibility is considered important for a species to adapt to environmental change. However, it is unclear how behavioral flexibility works: it relates to problem solving ability and speed in unpredictable ways, which leaves an open question of whether behavioral flexibility varies with differences in other behaviors. If present, such correlations would mask which behavior causes individuals to vary. I investigated whether behavioral flexibility (reversal learning) performances were linked with other behaviors in great-tailed grackles, an invasive bird. I found that behavioral flexibility did not significantly correlate with neophobia, exploration, risk aversion, persistence, or motor diversity. This suggests that great-tailed grackle performance in behavioral flexibility tasks reflects a distinct source of individual variation. Maintaining multiple distinct sources of individual variation, and particularly variation in behavioral flexibility, may be a mechanism for coping with the diversity of novel elements in their environments and facilitate this species’ invasion success.
Collapse
Affiliation(s)
- Corina J Logan
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom; SAGE Center for the Study of the Mind, University of California, Santa Barbara, CA, United States
| |
Collapse
|
37
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
38
|
Logan CJ. Behavioral flexibility and problem solving in an invasive bird. PeerJ 2016; 4:e1975. [PMID: 27168984 PMCID: PMC4860340 DOI: 10.7717/peerj.1975] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Accepted: 04/05/2016] [Indexed: 11/20/2022] Open
Abstract
Behavioral flexibility is considered an important trait for adapting to environmental change, but it is unclear what it is, how it works, and whether it is a problem solving ability. I investigated behavioral flexibility and problem solving experimentally in great-tailed grackles, an invasive bird species and thus a likely candidate for possessing behavioral flexibility. Grackles demonstrated behavioral flexibility in two contexts, the Aesop's Fable paradigm and a color association test. Contrary to predictions, behavioral flexibility did not correlate across contexts. Four out of 6 grackles exhibited efficient problem solving abilities, but problem solving efficiency did not appear to be directly linked with behavioral flexibility. Problem solving speed also did not significantly correlate with reversal learning scores, indicating that faster learners were not the most flexible. These results reveal how little we know about behavioral flexibility, and provide an immense opportunity for future research to explore how individuals and species can use behavior to react to changing environments.
Collapse
Affiliation(s)
- Corina J Logan
- SAGE Center for the Study of the Mind, University of California, Santa Barbara , CA , United States
| |
Collapse
|
39
|
Izquierdo A, Brigman JL, Radke AK, Rudebeck PH, Holmes A. The neural basis of reversal learning: An updated perspective. Neuroscience 2016; 345:12-26. [PMID: 26979052 DOI: 10.1016/j.neuroscience.2016.03.021] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/21/2023]
Abstract
Reversal learning paradigms are among the most widely used tests of cognitive flexibility and have been used as assays, across species, for altered cognitive processes in a host of neuropsychiatric conditions. Based on recent studies in humans, non-human primates, and rodents, the notion that reversal learning tasks primarily measure response inhibition, has been revised. In this review, we describe how cognitive flexibility is measured by reversal learning and discuss new definitions of the construct validity of the task that are serving as a heuristic to guide future research in this field. We also provide an update on the available evidence implicating certain cortical and subcortical brain regions in the mediation of reversal learning, and an overview of the principal neurotransmitter systems involved.
Collapse
Affiliation(s)
- A Izquierdo
- Department of Psychology, The Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - J L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - A K Radke
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - P H Rudebeck
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10014, USA
| | - A Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| |
Collapse
|
40
|
Lifelong disturbance of serotonin transporter functioning results in fear learning deficits: Reversal by blockade of CRF1 receptors. Eur Neuropsychopharmacol 2015; 25:1733-43. [PMID: 26302762 DOI: 10.1016/j.euroneuro.2015.07.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 05/28/2015] [Accepted: 07/14/2015] [Indexed: 12/28/2022]
Abstract
The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear.
Collapse
|
41
|
Schipper P, Lopresto D, Reintjes RJ, Joosten J, Henckens MJAG, Kozicz T, Homberg JR. Improved Stress Control in Serotonin Transporter Knockout Rats: Involvement of the Prefrontal Cortex and Dorsal Raphe Nucleus. ACS Chem Neurosci 2015; 6:1143-50. [PMID: 26132384 DOI: 10.1021/acschemneuro.5b00126] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Variations in serotonin transporter (5-HTT) expression have been associated with altered sensitivity to stress. Since controllability is known to alter the impact of a stressor through differential activation of the medial prefrontal cortex (mPFC) and dorsal raphe nucleus (DRN), and that these regions are functionally affected by genetic 5-HTT down-regulation, we hypothesized that 5-HTT expression modulates the effect of controllability on stressor impact and coping. Here, we investigated the effects of a signaled stress controllability task or a yoked uncontrollable stressor on behavioral responding and mPFC and DRN activation. 5-HTT(-/-) rats proved better capable of acquiring the active avoidance task than 5-HTT(+/+) animals. Controllability determined DRN activation in 5-HTT(+/+), but not 5-HTT(-/-), rats, whereas controllability-related activation of the mPFC was independent of genotype. These findings suggest that serotonergic activation in the DRN is involved in stress coping in a 5-HTT expression dependent manner, whereas mPFC activation seems to be implicated in control over stress independently of 5-HTT expression. We speculate that alterations in serotonergic feedback in the DRN might be a potential mechanism driving this differential stress coping.
Collapse
Affiliation(s)
- Pieter Schipper
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Dora Lopresto
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Roy J. Reintjes
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Joep Joosten
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Marloes J. A. G. Henckens
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Tamas Kozicz
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| | - Judith R. Homberg
- Donders Institute for Brain, Cognition and Behaviour,
Centre for Neuroscience, Department of Cognitive Neuroscience, and ‡Donders
Institute for Brain, Cognition and Behaviour, Centre for Neuroscience,
Department of Anatomy, Radboud University Medical Centre, Geert
Grooteplein 21, 6525 EZ Nijmegen, The Netherlands
| |
Collapse
|
42
|
Ochoa JG, Stolyarova A, Kaur A, Hart EE, Bugarin A, Izquierdo A. Post-training depletions of basolateral amygdala serotonin fail to disrupt discrimination, retention, or reversal learning. Front Neurosci 2015; 9:155. [PMID: 26029036 PMCID: PMC4426727 DOI: 10.3389/fnins.2015.00155] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/15/2015] [Indexed: 02/01/2023] Open
Abstract
In goal-directed pursuits, the basolateral amygdala (BLA) is critical in learning about changes in the value of rewards. BLA-lesioned rats show enhanced reversal learning, a task employed to measure the flexibility of response to changes in reward. Similarly, there is a trend for enhanced discrimination learning, suggesting that BLA may modulate formation of stimulus-reward associations. There is a parallel literature on the importance of serotonin (5HT) in new stimulus-reward and reversal learning. Recent postulations implicate 5HT in learning from punishment. Whereas, dopaminergic involvement is critical in behavioral activation and reinforcement, 5HT may be most critical for aversive processing and behavioral inhibition, complementary cognitive processes. Given these findings, a 5HT-mediated mechanism in BLA may mediate the facilitated learning observed previously. The present study investigated the effects of selective 5HT lesions in BLA using 5,7-dihydroxytryptamine (5,7-DHT) vs. infusions of saline (Sham) on discrimination, retention, and deterministic reversal learning. Rats were required to reach an 85% correct pairwise discrimination and single reversal criterion prior to surgery. Postoperatively, rats were then tested on the (1) retention of the pretreatment discrimination pair, (2) discrimination of a novel pair, and (3) reversal learning performance. We found statistically comparable preoperative learning rates between groups, intact postoperative retention, and unaltered novel discrimination and reversal learning in 5,7-DHT rats. These findings suggest that 5HT in BLA is not required for formation and flexible adjustment of new stimulus-reward associations when the strategy to efficiently solve the task has already been learned. Given the complementary role of orbitofrontal cortex in reward learning and its interconnectivity with BLA, these findings add to the list of dissociable mechanisms for BLA and orbitofrontal cortex in reward learning.
Collapse
Affiliation(s)
- Jesus G Ochoa
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Alexandra Stolyarova
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Amandeep Kaur
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Evan E Hart
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Amador Bugarin
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| | - Alicia Izquierdo
- Department of Psychology, University of California, Los Angeles Los Angeles, CA, USA ; Brain Research Institute, University of California, Los Angeles Los Angeles, CA, USA
| |
Collapse
|
43
|
Pattij T, Schoffelmeer AN. Serotonin and inhibitory response control: Focusing on the role of 5-HT1A receptors. Eur J Pharmacol 2015; 753:140-5. [DOI: 10.1016/j.ejphar.2014.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 12/11/2022]
|
44
|
Napier TC, Corvol JC, Grace AA, Roitman JD, Rowe J, Voon V, Strafella AP. Linking neuroscience with modern concepts of impulse control disorders in Parkinson's disease. Mov Disord 2015; 30:141-9. [PMID: 25476402 PMCID: PMC4318759 DOI: 10.1002/mds.26068] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/01/2014] [Accepted: 08/25/2014] [Indexed: 12/27/2022] Open
Abstract
Patients with Parkinson's disease (PD) may experience impulse control disorders (ICDs) when on dopamine agonist therapy for their motor symptoms. In the last few years, a rapid growth of interest for the recognition of these aberrant behaviors and their neurobiological correlates has occurred. Recent advances in neuroimaging are helping to identify the neuroanatomical networks responsible for these ICDs, and together with psychopharmacological assessments are providing new insights into the brain status of impulsive behavior. The genetic associations that may be unique to ICDs in PD are also being identified. Complementing human studies, electrophysiological and biochemical studies in animal models are providing insights into neuropathological mechanisms associated with these disorders. New animal models of ICDs in PD patients are being implemented that should provide critical means to identify efficacious therapies for PD-related motor deficits while avoiding ICD side effects. Here, we provide an overview of these recent advances, with a particular emphasis on the neurobiological correlates reported in animal models and patients along with their genetic underpinnings.
Collapse
Affiliation(s)
- T. Celeste Napier
- Departments of Pharmacology and Psychiatry, Center for Compulsive Behavior and Addiction, Rush University Medical Center, Chicago, IL, USA
| | - Jean-Christophe Corvol
- UPMC, APHP, ICM, INSERM CIC-1422 and UMRS 1027, Department of Neurology, Pitié-Salpêtrière Hospital, Paris, France
| | - Anthony A. Grace
- Departments of Neuroscience, Psychiatry and Psychology, Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jamie D. Roitman
- Department of Psychology and Laboratory of Integrative Neuroscience, University of Illinois at Chicago, Chicago, IL USA
| | - James Rowe
- Department of Clinical Neurosciences; Behavioural and Clinical Neuroscience Institute; and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Valerie Voon
- Department of Clinical Neurosciences; University of Cambridge, Cambridge, UK
| | - Antonio P. Strafella
- Morton and Gloria Shulman Movement Disorder Unit - E.J. Safra Parkinson Disease Program, Toronto Western Hospital and Research Institute, UHN & Research Imaging Centre, Centre for Addiction and Mental Health, University of Toronto, Ontario, Canada
| |
Collapse
|
45
|
Fischer AG, Jocham G, Ullsperger M. Dual serotonergic signals: a key to understanding paradoxical effects? Trends Cogn Sci 2014; 19:S1364-6613(14)00237-X. [PMID: 25532701 DOI: 10.1016/j.tics.2014.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 01/07/2023]
Abstract
Neuroscientists have been puzzled by the fact that acute administration of a selective serotonin reuptake inhibitor (SSRI) produces results that are, at times, compatible with either decreases or increases in serotonergic neurotransmission. Furthermore, the underlying cause of the delayed onset of antidepressant effects of SSRI treatment has remained obscure. It has recently been reported that serotonergic raphe neurons co-release glutamate and that serotonergic and glutamatergic components constitute a dual signal with behaviorally distinct effects. We discuss the consequences of these novel findings and propose a framework for understanding the controversial effects of acute SSRI administration. Furthermore, we suggest that the delayed remedial onset of SSRI treatment could be explained by an initial reduction of the glutamatergic component of the dual serotonergic signal.
Collapse
Affiliation(s)
- Adrian G Fischer
- Otto-von-Guericke University, Institute of Psychology II, Magdeburg, Germany.
| | - Gerhard Jocham
- Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Markus Ullsperger
- Otto-von-Guericke University, Institute of Psychology II, Magdeburg, Germany; Center for Behavioral Brain Sciences, Magdeburg, Germany; Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
46
|
Impaired response inhibition in the rat 5 choice continuous performance task during protracted abstinence from chronic alcohol consumption. PLoS One 2014; 9:e109948. [PMID: 25333392 PMCID: PMC4198178 DOI: 10.1371/journal.pone.0109948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/10/2014] [Indexed: 12/01/2022] Open
Abstract
Impaired cognitive processing is a hallmark of addiction. In particular, deficits in inhibitory control can propel continued drug use despite adverse consequences. Clinical evidence shows that detoxified alcoholics exhibit poor inhibitory control in the Continuous Performance Task (CPT) and related tests of motor impulsivity. Animal models may provide important insight into the neural mechanisms underlying this consequence of chronic alcohol exposure though pre-clinical investigations of behavioral inhibition during alcohol abstinence are sparse. The present study employed the rat 5 Choice-Continuous Performance Task (5C-CPT), a novel pre-clinical variant of the CPT, to evaluate attentional capacity and impulse control over the course of protracted abstinence from chronic intermittent alcohol consumption. In tests conducted with familiar 5C-CPT conditions EtOH-exposed rats exhibited impaired attentional capacity during the first hours of abstinence and impaired behavioral restraint (increased false alarms) during the first 5d of abstinence that dissipated thereafter. Subsequent tests employing visual distractors that increase the cognitive load of the task revealed significant increases in impulsive action (premature responses) at 3 and 5 weeks of abstinence, and the emergence of impaired behavioral restraint (increased false alarms) at 7 weeks of abstinence. Collectively, these findings demonstrate the emergence of increased impulsive action in alcohol-dependent rats during protracted alcohol abstinence and suggest the 5C-CPT with visual distractors may provide a viable behavioral platform for characterizing the neurobiological substrates underlying impaired behavioral inhibition resulting from chronic intermittent alcohol exposure.
Collapse
|
47
|
Line SJ, Barkus C, Rawlings N, Jennings K, McHugh S, Sharp T, Bannerman DM. Reduced sensitivity to both positive and negative reinforcement in mice over-expressing the 5-hydroxytryptamine transporter. Eur J Neurosci 2014; 40:3735-45. [PMID: 25283165 PMCID: PMC4737229 DOI: 10.1111/ejn.12744] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 08/30/2014] [Accepted: 09/02/2014] [Indexed: 11/30/2022]
Abstract
The 5‐hydroxytryptamine (5‐HT) transporter (5‐HTT) is believed to play a key role in both normal and pathological psychological states. Much previous data suggest that the s allele of the polymorphic regulatory region of the 5‐HTT gene promoter is associated with reduced 5‐HTT expression and vulnerability to psychiatric disorders, including anxiety and depression. In comparison, the l allele, which increases 5‐HTT expression, is generally considered protective. However, recent data link this allele to both abnormal 5‐HT signalling and psychopathic traits. Here, we studied the processing of aversive and rewarding cues in transgenic mice that over‐express the 5‐HTT (5‐HTTOE mice). Compared with wild‐type mice, 5‐HTTOE mice froze less in response to both a tone that had previously been paired with footshock, and the conditioning context. In addition, on a decision‐making T‐maze task, 5‐HTTOE mice displayed reduced preference for a larger, delayed reward and increased preference for a smaller, immediate reward, suggesting increased impulsiveness compared with wild‐type mice. However, further inspection of the data revealed that 5‐HTTOE mice displayed a relative insensitivity to reward magnitude, irrespective of delay. In contrast, 5‐HTTOE mice appeared normal on tests of spatial working and reference memory, which required an absolute choice between options associated with either reward or no reward. Overall, the present findings suggest that 5‐HTT over‐expression results in a reduced sensitivity to both positive and negative reinforcers. Thus, these data show that increased 5‐HTT expression has some maladaptive effects, supporting recent suggestions that l allele homozygosity may be a potential risk factor for disabling psychiatric traits.
Collapse
Affiliation(s)
- Samantha J Line
- Department of Experimental Psychology, The University of Oxford, South Parks Road, Oxford, OX1 3UD, UK
| | | | | | | | | | | | | |
Collapse
|
48
|
Developmental alterations in anxiety and cognitive behavior in serotonin transporter mutant mice. Psychopharmacology (Berl) 2014; 231:4119-33. [PMID: 24728652 DOI: 10.1007/s00213-014-3554-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE A promoter variant of the serotonin transporter (SERT) gene is known to affect emotional and cognitive regulation. In particular, the "short" allelic variant is implicated in the etiology of multiple neuropsychiatric disorders. Heterozygous (SERT(+/-)) and homozygous (SERT(-/-)) SERT mutant mice are valuable tools for understanding the mechanisms of altered SERT levels. Although these genetic effects are well investigated in adulthood, the developmental trajectory of altered SERT levels for behavior has not been investigated. OBJECTIVES We assessed anxiety-like and cognitive behaviors in SERT mutant mice in early adolescence and adulthood to examine the developmental consequences of reduced SERT levels. Spine density of pyramidal neurons was also measured in corticolimbic brain regions. RESULTS Adult SERT(-/-) mice exhibited increased anxiety-like behavior, but these differences were not observed in early adolescent SERT(-/-) mice. Conversely, SERT(+/-) and SERT(-/-) mice did display higher spontaneous alternation during early adolescence and adulthood. SERT(+/-) and SERT(-/-) also exhibited greater neuronal spine densities in the orbitofrontal but not the medial prefrontal cortices. Adult SERT(-/-) mice also showed an increased spine density in the basolateral amygdala. CONCLUSIONS Developmental alterations of the serotonergic system caused by genetic inactivation of SERT can have different influences on anxiety-like and cognitive behaviors through early adolescence into adulthood, which may be associated with changes of spine density in the prefrontal cortex and amygdala. The altered maturation of serotonergic systems may lead to specific age-related vulnerabilities to psychopathologies that develop during adolescence.
Collapse
|
49
|
Homberg JR, Karel P, Verheij MMM. Individual differences in cocaine addiction: maladaptive behavioural traits. Addict Biol 2014; 19:517-28. [PMID: 24835358 DOI: 10.1111/adb.12036] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cocaine use leads to addiction in only a subset of individuals. Understanding the mechanisms underlying these individual differences in the transition from cocaine use to cocaine abuse is important to develop treatment strategies. There is agreement that specific behavioural traits increase the risk for addiction. As such, both high impulsivity and high anxiety have been reported to predict (compulsive) cocaine self-administration behaviour. Here, we set out a new view explaining how these two behavioural traits may affect addictive behaviour. According to psychological and psychiatric evolutionary views, organisms flourish well when they fit (match) their environment by trait and genotype. However, under non-fit conditions, the need to compensate the failure to deal with this environment increases, and, as a consequence, the functional use of rewarding drugs like cocaine may also increase. It suggests that neither impulsivity nor anxiety are bad per se, but that the increased risk to develop cocaine addiction is dependent on whether behavioural traits are adaptive or maladaptive in the environment to which the animals are exposed. This 'behavioural (mal)adaptation view' on individual differences in vulnerability to cocaine addiction may help to improve therapies for addiction.
Collapse
Affiliation(s)
- Judith R. Homberg
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Peter Karel
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| | - Michel M. M. Verheij
- Department of Cognitive Neuroscience, Radboud University Nijmegen Medical Centre; Donders Institute for Brain, Cognition, and Behaviour, Centre for Neuroscience; Nijmegen The Netherlands
| |
Collapse
|
50
|
Ye Z, Altena E, Nombela C, Housden CR, Maxwell H, Rittman T, Huddleston C, Rae CL, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Selective serotonin reuptake inhibition modulates response inhibition in Parkinson's disease. Brain 2014; 137:1145-55. [PMID: 24578545 PMCID: PMC3959561 DOI: 10.1093/brain/awu032] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Impulsivity is common in Parkinson's disease even in the absence of impulse control disorders. It is likely to be multifactorial, including a dopaminergic 'overdose' and structural changes in the frontostriatal circuits for motor control. In addition, we proposed that changes in serotonergic projections to the forebrain also contribute to response inhibition in Parkinson's disease, based on preclinical animal and human studies. We therefore examined whether the selective serotonin reuptake inhibitor citalopram improves response inhibition, in terms of both behaviour and the efficiency of underlying neural mechanisms. This multimodal magnetic resonance imaging study used a double-blind randomized placebo-controlled crossover design with an integrated Stop-Signal and NoGo paradigm. Twenty-one patients with idiopathic Parkinson's disease (46-76 years old, 11 male, Hoehn and Yahr stage 1.5-3) received 30 mg citalopram or placebo in addition to their usual dopaminergic medication in two separate sessions. Twenty matched healthy control subjects (54-74 years old, 12 male) were tested without medication. The effects of disease and drug on behavioural performance and regional brain activity were analysed using general linear models. In addition, anatomical connectivity was examined using diffusion tensor imaging and tract-based spatial statistics. We confirmed that Parkinson's disease caused impairment in response inhibition, with longer Stop-Signal Reaction Time and more NoGo errors under placebo compared with controls, without affecting Go reaction times. This was associated with less stop-specific activation in the right inferior frontal cortex, but no significant difference in NoGo-related activation. Although there was no beneficial main effect of citalopram, it reduced Stop-Signal Reaction Time and NoGo errors, and enhanced inferior frontal activation, in patients with relatively more severe disease (higher Unified Parkinson's Disease Rating Scale motor score). The behavioural effect correlated with the citalopram-induced enhancement of prefrontal activation and the strength of preserved structural connectivity between the frontal and striatal regions. In conclusion, the behavioural effect of citalopram on response inhibition depends on individual differences in prefrontal cortical activation and frontostriatal connectivity. The correlation between disease severity and the effect of citalopram on response inhibition may be due to the progressive loss of forebrain serotonergic projections. These results contribute to a broader understanding of the critical roles of serotonin in regulating cognitive and behavioural control, as well as new strategies for patient stratification in clinical trials of serotonergic treatments in Parkinson's disease.
Collapse
Affiliation(s)
- Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ellemarije Altena
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Helen Maxwell
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Chelan Huddleston
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK
| | - Charlotte L. Rae
- 3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
| | - Ralf Regenthal
- 4 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany
| | | | - Roger A. Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Trevor W. Robbins
- 2 Department of Experimental Psychology, University of Cambridge, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| | - James B. Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK,3 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK,5 Behavioural and Clinical Neuroscience Institute, Cambridge, UK
| |
Collapse
|