1
|
Rosenblum Y, Jafarzadeh Esfahani M, Adelhöfer N, Zerr P, Furrer M, Huber R, Roest FF, Steiger A, Zeising M, Horváth CG, Schneider B, Bódizs R, Dresler M. Fractal cycles of sleep, a new aperiodic activity-based definition of sleep cycles. eLife 2025; 13:RP96784. [PMID: 39784706 PMCID: PMC11717360 DOI: 10.7554/elife.96784] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025] Open
Abstract
Sleep cycles are defined as episodes of non-rapid eye movement (non-REM) sleep followed by an episode of REM sleep. Fractal or aperiodic neural activity is a well-established marker of arousal and sleep stages measured using electroencephalography. We introduce a new concept of 'fractal cycles' of sleep, defined as a time interval during which time series of fractal activity descend to their local minimum and ascend to the next local maximum. We assess correlations between fractal and classical (i.e. non-REM - REM) sleep cycle durations and study cycles with skipped REM sleep. The sample comprised 205 healthy adults, 21 children and adolescents and 111 patients with depression. We found that fractal and classical cycle durations (89±34 vs 90±25 min) correlated positively (r=0.5, p<0.001). Children and adolescents had shorter fractal cycles than young adults (76±34 vs 94±32 min). The fractal cycle algorithm detected cycles with skipped REM sleep in 91-98% of cases. Medicated patients with depression showed longer fractal cycles compared to their unmedicated state (107±51 vs 92±38 min) and age-matched controls (104±49 vs 88±31 min). In conclusion, fractal cycles are an objective, quantifiable, continuous and biologically plausible way to display sleep neural activity and its cycles.
Collapse
Affiliation(s)
- Yevgenia Rosenblum
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| | - Mahdad Jafarzadeh Esfahani
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| | - Nico Adelhöfer
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| | - Paul Zerr
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| | - Melanie Furrer
- Child Development Center and Children’s Research Center, University Children's Hospital Zürich, University of ZürichZürichSwitzerland
| | - Reto Huber
- Child Development Center and Children’s Research Center, University Children's Hospital Zürich, University of ZürichZürichSwitzerland
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital ZurichZurichSwitzerland
| | - Famke F Roest
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| | | | - Marcel Zeising
- Klinikum Ingolstadt, Centre of Mental HealthIngolstadtGermany
| | - Csenge G Horváth
- Semmelweis University, Institute of Behavioural SciencesBudapestHungary
| | - Bence Schneider
- Semmelweis University, Institute of Behavioural SciencesBudapestHungary
| | - Róbert Bódizs
- Semmelweis University, Institute of Behavioural SciencesBudapestHungary
| | - Martin Dresler
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviorNijmegenNetherlands
| |
Collapse
|
2
|
Miraglia F, Cacciotti A, Vecchio F, Scarpelli S, Gorgoni M, De Gennaro L, Rossini PM. EEG brain networks modulation during sleep onset: the effects of aging. GeroScience 2024:10.1007/s11357-024-01473-w. [PMID: 39714568 DOI: 10.1007/s11357-024-01473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/10/2024] [Indexed: 12/24/2024] Open
Abstract
The aim of the present study is to investigate differences in brain networks modulation during the pre- and post-sleep onset period, both within and between two groups of young and older individuals. Thirty-six healthy elderly and 40 young subjects participated. EEG signals were recorded during pre- and post-sleep onset periods and functional connectivity analysis, specifically focusing on the small world (SW) index, applied to EEG data (i.e., frequency bands) was examined. Significant differences in SW values were found between the pre-sleep and post-sleep onset phases in both young and older groups, with a reduction in the SW index in the theta band common to both groups. Additionally, an increase in the SW index in the beta band was exclusive to the elderly group during the post-sleep onset period, while an increase in the sigma band was exclusive to the young group. Furthermore, differences between the young and elderly groups were found during both phases, including a decrease in the SW index within the delta band, an increment in the sigma and beta bands in the elderly compared to the young group during the pre-sleep onset period, and a notable absence of sigma band modulation in the elderly group during the post-sleep onset condition. These findings provide insights into age-related changes in sleep-related brain network dynamics and their potential impact on sleep quality and cognitive functions, prompting interventions aimed at supporting healthy aging and addressing age-related cognitive decline.
Collapse
Affiliation(s)
- Francesca Miraglia
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy.
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy.
| | - Alessia Cacciotti
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | - Fabrizio Vecchio
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Como, Italy
| | | | | | | | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele, Via Val Cannuta, 247, 00166, Rome, Italy
| |
Collapse
|
3
|
Zeller CJ, Wunderlin M, Wicki K, Teunissen CE, Nissen C, Züst MA, Klöppel S. Multi-night acoustic stimulation is associated with better sleep, amyloid dynamics, and memory in older adults with cognitive impairment. GeroScience 2024; 46:6157-6172. [PMID: 38744792 PMCID: PMC11493878 DOI: 10.1007/s11357-024-01195-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Sleep is a potential early, modifiable risk factor for cognitive decline and dementia. Impaired slow wave sleep (SWS) is pronounced in individuals with cognitive impairment (CI). Cognitive decline and impairments of SWS are bi-directionally linked in a vicious cycle. SWS can be enhanced non-invasively using phase-locked acoustic stimulation (PLAS), potentially breaking this vicious cycle. Eighteen healthy older adults (HC, agemean±sd, 68.3 ± 5.1) and 16 older adults (agemean±sd, 71.9 ± 3.9) with CI (Montreal Cognitive Assessment ≤ 25) underwent one baseline (sham-PLAS) night and three consecutive stimulation nights (real-PLAS). EEG responses and blood-plasma amyloid beta Aβ42/Aβ40 ratio were measured pre- and post-intervention, as was episodic memory. The latter was again evaluated 1 week and 3 months after the intervention. In both groups, PLAS induced a significant electrophysiological response in both voltage- and time-frequency analyses, and memory performance improved in association with the magnitude of this response. In the CI group, both electrophysiological and associated memory effects were delayed compared to the healthy group. After 3 intervention nights, electrophysiological response to PLAS was no longer different between CI and HC groups. Only in the CI sample, stronger electrophysiological responses were significantly associated with improving post-intervention Aβ42/Aβ40 ratios. PLAS seems to improve SWS electrophysiology, memory, and amyloid dynamics in older adults with CI. However, effects on memory require more time to unfold compared to healthy older adults. This indicates that PLAS may become a potential tool to ameliorate cognitive decline, but longer interventions are necessary to compensate for declining brain integrity. This study was pre-registered (clinicaltrials.gov: NCT04277104).
Collapse
Affiliation(s)
- Céline J Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| | - Korian Wicki
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012, Bern, Switzerland
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, Netherlands
| | - Christoph Nissen
- Division of Psychiatric Specialties, Department of Psychiatry, Geneva University Hospitals (HUG), 1201, Geneva, Switzerland
- Department of Psychiatry, University of Geneva, 1201, Geneva, Switzerland
| | - Marc A Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland.
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000, Bern 60, Switzerland
| |
Collapse
|
4
|
Lupi E, Di Antonio G, Angiolelli M, Sacha M, Kayabas MA, Alboré N, Leone R, El Kanbi K, Destexhe A, Fousek J. A Whole-Brain Model of the Aging Brain During Slow Wave Sleep. eNeuro 2024; 11:ENEURO.0180-24.2024. [PMID: 39406483 PMCID: PMC11540593 DOI: 10.1523/eneuro.0180-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/18/2024] [Accepted: 10/02/2024] [Indexed: 11/08/2024] Open
Abstract
Age-related brain changes affect sleep and are reflected in properties of sleep slow-waves, however, the precise mechanisms behind these changes are still not completely understood. Here, we adapt a previously established whole-brain model relating structural connectivity changes to resting state dynamics, and extend it to a slow-wave sleep brain state. In particular, starting from a representative connectome at the beginning of the aging trajectory, we have gradually reduced the inter-hemispheric connections, and simulated sleep-like slow-wave activity. We show that the main empirically observed trends, namely a decrease in duration and increase in variability of the slow waves are captured by the model. Furthermore, comparing the simulated EEG activity to the source signals, we suggest that the empirically observed decrease in amplitude of the slow waves is caused by the decrease in synchrony between brain regions.
Collapse
Affiliation(s)
- Eleonora Lupi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy
| | - Gabriele Di Antonio
- Research Center "Enrico Fermi", Rome 00184, Italy
- "Roma Tre" University of Rome, Rome 00146, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Marianna Angiolelli
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome 00128, Italy
| | - Maria Sacha
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | | | - Nicola Alboré
- Research Center "Enrico Fermi", Rome 00184, Italy
- Natl. Center for Radiation Protection and Computational Physics, Istituto Superiore di Sanità, Rome 00161, Italy
- "Tor Vergata" University of Rome, Rome 00133, Italy
| | - Riccardo Leone
- Faculty of Medicine, University of Bonn, Bonn 53115, Germany
- Computational Neurology Group, Ruhr University Bochum, Bochum 44801, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn 53127, Germany
| | | | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Saclay 91400, France
| | - Jan Fousek
- Central European Institute of Technology (CEITEC), Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
5
|
Tsai CY, Su CL, Huang HT, Lin HW, Lin JW, Hei NC, Cheng WH, Chen YL, Majumdar A, Kang JH, Lee KY, Chen Z, Lin YC, Wu CJ, Kuan YC, Lin YT, Hsu CR, Lee HC, Liu WT. Mediating role of obstructive sleep apnea in altering slow-wave activity and elevating Alzheimer's disease risk: Pilot study from a northern Taiwan cohort. Sleep Health 2024:S2352-7218(24)00188-8. [PMID: 39419711 DOI: 10.1016/j.sleh.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/31/2024] [Accepted: 08/31/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Obstructive sleep apnea is associated with alterations in slow-wave activity during sleep, potentially increasing the risk of Alzheimer's disease. This study investigated the associations between obstructive sleep apnea manifestations such as respiratory events, hypoxia, arousal, slow-wave patterns, and neurochemical biomarker levels. METHODS Individuals with suspected obstructive sleep apnea underwent polysomnography. Sleep disorder indices, oxygen metrics, and slow-wave activity data were obtained from the polysomnography, and blood samples were taken the following morning to determine the plasma levels of total tau (T-Tau) and amyloid beta-peptide 42 (Aβ42) by using an ultrasensitive immunomagnetic reduction assay. Subsequently, the participants were categorized into groups with low and high Alzheimer's disease risk on the basis of their computed product Aβ42 × T-Tau. Intergroup differences and the associations and mediation effects between sleep-related parameters and neurochemical biomarkers were analyzed. RESULTS Forty-two participants were enrolled, with 21 assigned to each of the low- and high-risk groups. High-risk individuals had a higher apnea-hypopnea index, oxygen desaturation index (≥3%, ODI-3%), fraction of total sleep time with oxygen desaturation (SpO2-90% TST), and arousal index and greater peak-to-peak amplitude and slope in slow-wave activity, with a correspondingly shorter duration, than did low-risk individuals. Furthermore, indices such as the apnea-hypopnea index, ODI-3% and SpO2-90% TST were found to indirectly affect slow-wave activity, thereby raising the Aβ42 × T-Tau level. CONCLUSIONS Obstructive sleep apnea manifestations, such as respiratory events and hypoxia, may influence slow-wave sleep activity (functioning as intermediaries) and may be linked to elevated neurochemical biomarker levels. However, a longitudinal study is necessary to determine causal relationships among these factors. STATEMENT OF SIGNIFICANCE This research aims to bridge gaps in understanding how obstructive sleep apnea is associated with an elevated risk of Alzheimer's disease, providing valuable knowledge for sleep and cognitive health.
Collapse
Affiliation(s)
- Cheng-Yu Tsai
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan; Sleep Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Chien-Ling Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Research Center of Biomedical Devices, Taipei Medical University, Taipei, Taiwan
| | - Huei-Tyng Huang
- Department of Medical Physics and Bioengineering, University College London, United Kingdom
| | - Hsin-Wei Lin
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jia-Wei Lin
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ng Cheuk Hei
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Wun-Hao Cheng
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Ling Chen
- Institute of Biomedical Informatics of National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arnab Majumdar
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Jiunn-Horng Kang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Department of Physical Medicine and Rehabilitation, Taipei Medical University Hospital, Taiwan
| | - Kang-Yun Lee
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Zhihe Chen
- Department of Civil and Environmental Engineering, Imperial College London, London, United Kingdom
| | - Yi-Chih Lin
- Sleep Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Department of Otolaryngology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Cheng-Jung Wu
- Department of Otolaryngology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yi-Chun Kuan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yin-Tzu Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Chia-Rung Hsu
- Department of Neurology, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan
| | - Hsin-Chien Lee
- Institute of Medical Humanities, Taipei Medical University, Taipei, Taiwan; Department of Psychiatry, Taipei Medical University Hospital, Taipei, Taiwan.
| | - Wen-Te Liu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; Research Center of Artificial Intelligence in Medicine, Taipei Medical University, Taipei, Taiwan; Sleep Center, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, Taiwan.
| |
Collapse
|
6
|
Carvalho DZ, Kremen V, Mivalt F, St. Louis EK, McCarter SJ, Bukartyk J, Przybelski SA, Kamykowski MG, Spychalla AJ, Machulda MM, Boeve BF, Petersen RC, Jack CR, Lowe VJ, Graff-Radford J, Worrell GA, Somers VK, Varga AW, Vemuri P. Non-rapid eye movement sleep slow-wave activity features are associated with amyloid accumulation in older adults with obstructive sleep apnoea. Brain Commun 2024; 6:fcae354. [PMID: 39429245 PMCID: PMC11487750 DOI: 10.1093/braincomms/fcae354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/12/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with an increased risk for cognitive impairment and dementia, which likely involves Alzheimer's disease pathology. Non-rapid eye movement slow-wave activity (SWA) has been implicated in amyloid clearance, but it has not been studied in the context of longitudinal amyloid accumulation in OSA. This longitudinal retrospective study aims to investigate the relationship between polysomnographic and electrophysiological SWA features and amyloid accumulation. From the Mayo Clinic Study of Aging cohort, we identified 71 participants ≥60 years old with OSA (mean baseline age = 72.9 ± 7.5 years, 60.6% male, 93% cognitively unimpaired) who had at least 2 consecutive Amyloid Pittsburgh Compound B (PiB)-PET scans and a polysomnographic study within 5 years of the baseline scan and before the second scan. Annualized PiB-PET accumulation [global ΔPiB(log)/year] was estimated by the difference between the second and first log-transformed global PiB-PET uptake estimations divided by the interval between scans (years). Sixty-four participants were included in SWA analysis. SWA was characterized by the mean relative spectral power density (%) in slow oscillation (SO: 0.5-0.9 Hz) and delta (1-3.9 Hz) frequency bands and by their downslopes (SO-slope and delta-slope, respectively) during the diagnostic portion of polysomnography. We fit linear regression models to test for associations among global ΔPiB(log)/year, SWA features (mean SO% and delta% or mean SO-slope and delta-slope), and OSA severity markers, after adjusting for age at baseline PiB-PET, APOE ɛ4 and baseline amyloid positivity. For 1 SD increase in SO% and SO-slope, global ΔPiB(log)/year increased by 0.0033 (95% CI: 0.0001; 0.0064, P = 0.042) and 0.0069 (95% CI: 0.0009; 0.0129, P = 0.026), which were comparable to 32% and 59% of the effect size associated with baseline amyloid positivity, respectively. Delta-slope was associated with a reduction in global ΔPiB(log)/year by -0.0082 (95% CI: -0.0143; -0.0021, P = 0.009). Sleep apnoea severity was not associated with amyloid accumulation. Regional associations were stronger in the pre-frontal region. Both slow-wave slopes had more significant and widespread regional associations. Annualized PiB-PET accumulation was positively associated with SO and SO-slope, which may reflect altered sleep homeostasis due to increased homeostatic pressure in the setting of unmet sleep needs, increased synaptic strength, and/or hyper-excitability in OSA. Delta-slope was inversely associated with PiB-PET accumulation, suggesting it may represent residual physiological activity. Further investigation of SWA dynamics in the presence of sleep disorders before and after treatment is necessary for understanding the relationship between amyloid accumulation and SWA physiology.
Collapse
Affiliation(s)
- Diego Z Carvalho
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Filip Mivalt
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Erik K St. Louis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Stuart J McCarter
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Jan Bukartyk
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | - Bradley F Boeve
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Center for Sleep Medicine, Rochester, MN 55905, USA
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew W Varga
- Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | |
Collapse
|
7
|
Chen J, Peng G, Sun B. Alzheimer's disease and sleep disorders: A bidirectional relationship. Neuroscience 2024; 557:12-23. [PMID: 39137870 DOI: 10.1016/j.neuroscience.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent dementia, pathologically featuring abnormal accumulation of amyloid-β (Aβ) and hyperphosphorylated tau, while sleep, divided into rapid eye movement sleep (REM) and nonrapid eye movement sleep (NREM), plays a key role in consolidating social and spatial memory. Emerging evidence has revealed that sleep disorders such as circadian disturbances and disruption of neuronal rhythm activity are considered as both candidate risks and consequence of AD, suggesting a bidirectional relationship between sleep and AD. This review will firstly grasp basic knowledge of AD pathogenesis, then highlight macrostructural and microstructural alteration of sleep along with AD progression, explain the interaction between accumulation of Aβ and hyperphosphorylated tau, which are two critical neuropathological processes of AD, as well as neuroinflammation and sleep, and finally introduce several methods of sleep enhancement as strategies to reduce AD-associated neuropathology. Although theories about the bidirectional relationship and relevant therapeutic methods in mice have been well developed in recent years, the knowledge in human is still limited. More studies on how to effectively ameliorate AD pathology in patients by sleep enhancement and what specific roles of sleep play in AD are needed.
Collapse
Affiliation(s)
- Junhua Chen
- Chu Kochen Honors College of Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Guoping Peng
- Department of Neurology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China.
| | - Binggui Sun
- Department of Anesthesiology of the Children's Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine and National Clinical Research Center for Child Health, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, Zhejiang University Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
8
|
Angerbauer R, Stefani A, Zitser J, Ibrahim A, Anselmi V, Süzgün MA, Egger K, Brandauer E, Högl B, Cesari M. Temporal progression of sleep electroencephalography features in isolated rapid eye movement sleep behaviour disorder. J Sleep Res 2024:e14351. [PMID: 39322419 DOI: 10.1111/jsr.14351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/16/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
Previous studies indicated that patients with isolated rapid eye movement (REM) sleep behaviour disorder (iRBD) exhibit alterations in spectral electroencephalographic (EEG), spindle, and slow-wave features. As it is currently unknown how these EEG features evolve over time, this study aimed to evaluate their temporal progression in patients with iRBD in comparison to controls. We included 23 patients with iRBD and 23 controls. Two polysomnographies (baseline and follow-up) were recorded with a mean (standard deviation) interval of 4.0 (2.5) years and were automatically analysed for sleep stages, spectral bandpower, spindles, and slow waves. We used linear models to evaluate differences at each time point, and linear mixed-effects models to analyse differences in temporal progression between the groups. At baseline, patients with iRBD presented EEG slowing both in REM (expressed as significantly reduced α-bandpower and increased δ-bandpower in frontal channels) and in non-REM (NREM) sleep (significantly increased slow-to-fast ratio in central channels). These differences vanished at follow-up. In both REM and NREM sleep, γ-bandpower was increased at follow-up in patients with iRBD, resulting in significantly different temporal progression between groups (in occipital channels during REM sleep and frontal channels during NREM sleep). Relative power of sleep spindles was significantly higher at baseline in patients with iRBD in frontal channels, but we observed a significant reduction over time in central channels. Finally, slow waves were significantly shorter in patients with iRBD at both time-points. Our results underscore the need of considering longitudinal data when analysing sleep EEG features in patients with iRBD. The observed temporal changes as markers of progression of neurodegeneration require further investigations.
Collapse
Affiliation(s)
- Raphael Angerbauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jennifer Zitser
- Sleep Center and Movement Disorders Unit, Neurology Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Abubaker Ibrahim
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Victoria Anselmi
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Merve Aktan Süzgün
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Kristin Egger
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Elisabeth Brandauer
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Matteo Cesari
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
9
|
Kalantari N, Daneault V, Blais H, André C, Sanchez E, Lina JM, Arbour C, Gilbert D, Carrier J, Gosselin N. Cerebral Gray Matter May Not Explain Sleep Slow-Wave Characteristics after Severe Brain Injury. J Neurosci 2024; 44:e1306232024. [PMID: 38844342 PMCID: PMC11308330 DOI: 10.1523/jneurosci.1306-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 08/09/2024] Open
Abstract
Sleep slow waves are the hallmark of deeper non-rapid eye movement sleep. It is generally assumed that gray matter properties predict slow-wave density, morphology, and spectral power in healthy adults. Here, we tested the association between gray matter volume (GMV) and slow-wave characteristics in 27 patients with moderate-to-severe traumatic brain injury (TBI, 32.0 ± 12.2 years old, eight women) and compared that with 32 healthy controls (29.2 ± 11.5 years old, nine women). Participants underwent overnight polysomnography and cerebral MRI with a 3 Tesla scanner. A whole-brain voxel-wise analysis was performed to compare GMV between groups. Slow-wave density, morphology, and spectral power (0.4-6 Hz) were computed, and GMV was extracted from the thalamus, cingulate, insula, precuneus, and orbitofrontal cortex to test the relationship between slow waves and gray matter in regions implicated in the generation and/or propagation of slow waves. Compared with controls, TBI patients had significantly lower frontal and temporal GMV and exhibited a subtle decrease in slow-wave frequency. Moreover, higher GMV in the orbitofrontal cortex, insula, cingulate cortex, and precuneus was associated with higher slow-wave frequency and slope, but only in healthy controls. Higher orbitofrontal GMV was also associated with higher slow-wave density in healthy participants. While we observed the expected associations between GMV and slow-wave characteristics in healthy controls, no such associations were observed in the TBI group despite lower GMV. This finding challenges the presumed role of GMV in slow-wave generation and morphology.
Collapse
Affiliation(s)
- Narges Kalantari
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Cognitive Neurology Research Unit, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Quebec H3C 1K3, Canada
| | - Caroline Arbour
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec H3T 1A8, Canada
| | - Danielle Gilbert
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montreal, Quebec H3T 1A4, Canada
- Department of Radiology, Hôpital du Sacré-Coeur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, Centre intégré universitaire de santé et de services sociaux du Nord-de-l'Île-de Montréal, Montreal, Quebec H4J 1C5, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec H2V 2S9, Canada
| |
Collapse
|
10
|
Deshaies-Rugama AS, Mombelli S, Blais H, Sekerovic Z, Massicotte M, Thompson C, Nigam M, Carrier J, Desautels A, Montplaisir J, Gosselin N. Sleep architecture in idiopathic hypersomnia: the influence of age, sex, and body mass index. Sci Rep 2024; 14:16407. [PMID: 39013985 PMCID: PMC11252996 DOI: 10.1038/s41598-024-67203-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
This study aimed to progress the understanding of idiopathic hypersomnia (IH) by assessing the moderating influence of individual characteristics, such as age, sex, and body mass index (BMI) on sleep architecture. In this retrospective study, 76 IH participants (38.1 ± 11.3 years; 40 women) underwent a clinical interview, an in-laboratory polysomnography with a maximal 9-h time in bed and a multiple sleep latency test (MSLT). They were compared to 106 healthy controls (38.1 ± 14.1 years; 60 women). Multiple regressions were used to assess moderating influence of age, sex, and BMI on sleep variables. We used correlations to assess whether sleep variables were associated with Epworth Sleepiness Scale scores and mean sleep onset latency on the MSLT in IH participants. Compared to controls, IH participants had shorter sleep latency (p = 0.002), longer total sleep time (p < 0.001), more time spent in N2 sleep (p = 0.008), and showed trends for a higher sleep efficiency (p = 0.023) and more time spent in rapid eye movement (REM) sleep (p = 0.022). No significant moderating influence of age, sex, or BMI was found. More severe self-reported sleepiness in IH patients was correlated with shorter REM sleep latency and less N1 sleep in terms of proportion and duration (ps < 0.01). This study shows that, when compared to healthy controls, patients with IH had no anomalies in their sleep architecture that can explain their excessive daytime sleepiness. Moreover, there is no moderating influence of age, sex, and BMI, suggesting that the absence of major group differences is relatively robust.
Collapse
Affiliation(s)
- Anne-Sophie Deshaies-Rugama
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Samantha Mombelli
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montréal, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
| | - Zoran Sekerovic
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
| | - MiaClaude Massicotte
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
| | - Milan Nigam
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Alex Desautels
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada
- Department of Psychiatry and Addictology, Université de Montréal, Montréal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Research Center of the Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montreal, Canada.
- Department of Psychology, Université de Montréal, Montreal, Canada.
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Cœur de Montréal, 5400 Boul. Gouin Ouest, Office J-5135, Montréal, Québec, H4J 1C5, Canada.
| |
Collapse
|
11
|
Baena D, Toor B, van den Berg NH, Ray LB, Fogel SM. Spindle-slow wave coupling and problem-solving skills: impact of age. Sleep 2024; 47:zsae072. [PMID: 38477166 PMCID: PMC11236953 DOI: 10.1093/sleep/zsae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
We examined how aging affects the role of sleep in the consolidation of newly learned cognitive strategies. Forty healthy young adults (20-35 years) and 30 healthy older adults (60-85 years) were included. Participants were trained on the Tower of Hanoi (ToH) task, then, half of each age group were assigned to either the 90-minute nap condition, or stayed awake, before retesting. The temporal co-occurrence between slow waves (SW) and sleep spindles (SP) during non-rapid eye movement sleep was examined as a function of age in relation to memory consolidation of problem-solving skills. We found that despite intact learning, older adults derived a reduced benefit of sleep for problem-solving skills relative to younger adults. As expected, the percentage of coupled spindles was lower in older compared to younger individuals from control to testing sessions. Furthermore, coupled spindles in young adults were more strongly coupled to the SW upstate compared to older individuals. Coupled spindles in older individuals were lower in amplitude (mean area under the curve; μV) compared to the young group. Lastly, there was a significant relationship between offline gains in accuracy on the ToH and percent change of spindles coupled to the upstate of the slow wave in older, but not younger adults. Multiple regression revealed that age accounted for differences in offline gains in accuracy, as did spindle coupling during the upstate. These results suggest that with aging, spindle-slow wave coupling decreases. However, the degree of the preservation of coupling with age correlates with the extent of problem-solving skill consolidation during sleep.
Collapse
Affiliation(s)
- Daniel Baena
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Balmeet Toor
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | | | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
- Sleep Unit, The Royal’s Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
12
|
Sharon O, Ben Simon E, Shah VD, Desel T, Walker MP. The new science of sleep: From cells to large-scale societies. PLoS Biol 2024; 22:e3002684. [PMID: 38976664 PMCID: PMC11230563 DOI: 10.1371/journal.pbio.3002684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
In the past 20 years, more remarkable revelations about sleep and its varied functions have arguably been made than in the previous 200. Building on this swell of recent findings, this essay provides a broad sampling of selected research highlights across genetic, molecular, cellular, and physiological systems within the body, networks within the brain, and large-scale social dynamics. Based on this raft of exciting new discoveries, we have come to realize that sleep, in this moment of its evolution, is very much polyfunctional (rather than monofunctional), yet polyfunctional for reasons we had never previously considered. Moreover, these new polyfunctional insights powerfully reaffirm sleep as a critical biological, and thus health-sustaining, requisite. Indeed, perhaps the only thing more impressive than the unanticipated nature of these newly emerging sleep functions is their striking divergence, from operations of molecular mechanisms inside cells to entire group societal dynamics.
Collapse
Affiliation(s)
- Omer Sharon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Eti Ben Simon
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Vyoma D. Shah
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Tenzin Desel
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Matthew P. Walker
- Department of Psychology, University of California, Berkeley, California, United States of America
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| |
Collapse
|
13
|
Gauld C, Hartley S, Micoulaud-Franchi JA, Royant-Parola S. Sleep Health Analysis Through Sleep Symptoms in 35,808 Individuals Across Age and Sex Differences: Comparative Symptom Network Study. JMIR Public Health Surveill 2024; 10:e51585. [PMID: 38861716 PMCID: PMC11200043 DOI: 10.2196/51585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/28/2023] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND Sleep health is a multidimensional construct that includes objective and subjective parameters and is influenced by individual sleep-related behaviors and sleep disorders. Symptom network analysis allows modeling of the interactions between variables, enabling both the visualization of relationships between different factors and the identification of the strength of those relationships. Given the known influence of sex and age on sleep health, network analysis can help explore sets of mutually interacting symptoms relative to these demographic variables. OBJECTIVE This study aimed to study the centrality of symptoms and compare age and sex differences regarding sleep health using a symptom network approach in a large French population that feels concerned about their sleep. METHODS Data were extracted from a questionnaire provided by the Réseau Morphée health network. A network analysis was conducted on 39 clinical variables related to sleep disorders and sleep health. After network estimation, statistical analyses consisted of calculating inferences of centrality, robustness (ie, testifying to a sufficient effect size), predictability, and network comparison. Sleep clinical variable centralities within the networks were analyzed by both sex and age using 4 age groups (18-30, 31-45, 46-55, and >55 years), and local symptom-by-symptom correlations determined. RESULTS Data of 35,808 participants were obtained. The mean age was 42.7 (SD 15.7) years, and 24,964 (69.7%) were women. Overall, there were no significant differences in the structure of the symptom networks between sexes or age groups. The most central symptoms across all groups were nonrestorative sleep and excessive daytime sleepiness. In the youngest group, additional central symptoms were chronic circadian misalignment and chronic sleep deprivation (related to sleep behaviors), particularly among women. In the oldest group, leg sensory discomfort and breath abnormality complaint were among the top 4 central symptoms. Symptoms of sleep disorders thus became more central with age than sleep behaviors. The high predictability of central nodes in one of the networks underlined its importance in influencing other nodes. CONCLUSIONS The absence of structural difference between networks is an important finding, given the known differences in sleep between sexes and across age groups. These similarities suggest comparable interactions between clinical sleep variables across sexes and age groups and highlight the implication of common sleep and wake neural circuits and circadian rhythms in understanding sleep health. More precisely, nonrestorative sleep and excessive daytime sleepiness are central symptoms in all groups. The behavioral component is particularly central in young people and women. Sleep-related respiratory and motor symptoms are prominent in older people. These results underscore the importance of comprehensive sleep promotion and screening strategies tailored to sex and age to impact sleep health.
Collapse
Affiliation(s)
| | - Sarah Hartley
- Sleep Center, APHP Hôpital Raymond Poincaré, Université de Versailles Saint-Quentin en Yvelines, Garches, France
- Réseau Morphée, Garches, France
| | - Jean-Arthur Micoulaud-Franchi
- Services of Functional Exploration of the Nervous System, University Sleep Clinic, University Hospital of Bordeaux, Bordeaux, France
- Unité Sommeil, Addiction, Neuropsychiatrie, Centre national de la recherche scientifique Unité Mixte de Recherche-6033, Bordeaux, France
| | | |
Collapse
|
14
|
Lok R, Qian J, Chellappa SL. Sex differences in sleep, circadian rhythms, and metabolism: Implications for precision medicine. Sleep Med Rev 2024; 75:101926. [PMID: 38564856 DOI: 10.1016/j.smrv.2024.101926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 02/16/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
The number of individuals experiencing sleep loss has exponentially risen over the past decades. Extrapolation of laboratory findings to the real world suggests that females are more affected by extended wakefulness and circadian misalignment than males are. Therefore, long-term effects such as sleep and metabolic disorders are likely to be more prevalent in females than in males. Despite emerging evidence for sex differences in key aspects of sleep-wake and circadian regulation, much remains unknown, as females are often underrepresented in sleep and circadian research. This narrative review aims at highlighting 1) how sex differences systematically impinge on the sleep-wake and circadian regulation in humans, 2) how sex differences in sleep and circadian factors modulate metabolic control, and 3) the relevance of these differences for precision medicine. Ultimately, the findings justify factoring in sex differences when optimizing individually targeted sleep and circadian interventions in humans.
Collapse
Affiliation(s)
- Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
| | - Jingyi Qian
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Females's Hospital, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Sarah L Chellappa
- School of Psychology, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, United Kingdom.
| |
Collapse
|
15
|
Baran B, Lee EE. Age-Related Changes in Sleep and Its Implications for Cognitive Decline in Aging Persons With Schizophrenia: A Critical Review. Schizophr Bull 2024:sbae059. [PMID: 38713085 DOI: 10.1093/schbul/sbae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Cognitive impairment is a core feature of schizophrenia that worsens with aging and interferes with quality of life. Recent work identifies sleep as an actionable target to alleviate cognitive deficits. Cardinal non-rapid eye movement (NREM) sleep oscillations such as sleep spindles and slow oscillations are critical for cognition. People living with schizophrenia (PLWS) and their first-degree relatives have a specific reduction in sleep spindles and an abnormality in their temporal coordination with slow oscillations that predict impaired memory consolidation. While NREM oscillatory activity is reduced in typical aging, it is not known how further disruption in these oscillations contributes to cognitive decline in older PLWS. Another understudied risk factor for cognitive deficits among older PLWS is obstructive sleep apnea (OSA) which may contribute to cognitive decline. STUDY DESIGN We conducted a narrative review to examine the published literature on aging, OSA, and NREM sleep oscillations in PLWS. STUDY RESULTS Spindles are propagated via thalamocortical feedback loops, and this circuitry shows abnormal hyperconnectivity in schizophrenia as revealed by structural and functional MRI studies. While the risk and severity of OSA increase with age, older PLWS are particularly vulnerable to OSA-related cognitive deficits because OSA is often underdiagnosed and undertreated, and OSA adds further damage to the circuitry that generates NREM sleep oscillations. CONCLUSIONS We highlight the critical need to study NREM sleep in older PWLS and propose that identifying and treating OSA in older PLWS will provide an avenue to potentially mitigate and prevent cognitive decline.
Collapse
Affiliation(s)
- Bengi Baran
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Ellen E Lee
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research Education and Clinical Center, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
| |
Collapse
|
16
|
Leduc T, El Alami H, Bougadir K, Bélanger-Nelson E, Mongrain V. Neuroligin-2 shapes individual slow waves during slow-wave sleep and the response to sleep deprivation in mice. Mol Autism 2024; 15:13. [PMID: 38570872 PMCID: PMC10993465 DOI: 10.1186/s13229-024-00594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/18/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Sleep disturbances are a common comorbidity to most neurodevelopmental disorders and tend to worsen disease symptomatology. It is thus crucial to understand mechanisms underlying sleep disturbances to improve patients' quality of life. Neuroligin-2 (NLGN2) is a synaptic adhesion protein regulating GABAergic transmission. It has been linked to autism spectrum disorders and schizophrenia in humans, and deregulations of its expression were shown to cause epileptic-like hypersynchronized cerebral activity in rodents. Importantly, the absence of Nlgn2 (knockout: KO) was previously shown to alter sleep-wake duration and quality in mice, notably increasing slow-wave sleep (SWS) delta activity (1-4 Hz) and altering its 24-h dynamics. This type of brain oscillation is involved in memory consolidation, and is also a marker of homeostatic sleep pressure. Sleep deprivation (SD) is notably known to impair cognition and the physiological response to sleep loss involves GABAergic transmission. METHODS Using electrocorticographic (ECoG) recordings, we here first aimed to verify how individual slow wave (SW; 0.5-4 Hz) density and properties (e.g., amplitude, slope, frequency) contribute to the higher SWS delta activity and altered 24-h dynamics observed in Nlgn2 KO mice. We further investigated the response of these animals to SD. Finally, we tested whether sleep loss affects the gene expression of Nlgn2 and related GABAergic transcripts in the cerebral cortex of wild-type mice using RNA sequencing. RESULTS Our results show that Nlgn2 KO mice have both greater SW amplitude and density, and that SW density is the main property contributing to the altered 24-h dynamics. We also found the absence of Nlgn2 to accelerate paradoxical sleep recovery following SD, together with profound alterations in ECoG activity across vigilance states. Sleep loss, however, did not modify the 24-h distribution of the hypersynchronized ECoG events observed in these mice. Finally, RNA sequencing confirmed an overall decrease in cortical expression of Nlgn2 and related GABAergic transcripts following SD in wild-type mice. CONCLUSIONS This work brings further insight into potential mechanisms of sleep duration and quality deregulation in neurodevelopmental disorders, notably involving NLGN2 and GABAergic neurotransmission.
Collapse
Affiliation(s)
- Tanya Leduc
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
- Centre de recherche du Centre hospitalier de l'Université de Montréal, 900, St-Denis street, Tour Viger Montréal, Montreal, QC, H2X 0A9, Canada
| | - Hiba El Alami
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Khadija Bougadir
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
| | - Erika Bélanger-Nelson
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada
- Pfizer Canada ULC, Montreal, QC, Canada
| | - Valérie Mongrain
- Department of Neuroscience, Université de Montréal, Montreal, QC, Canada.
- Centre d'études avancées en médecine du sommeil (CÉAMS), Recherche - Centre intégré universitaire de santé et services sociaux du Nord-de-l'Île-de-Montréal, Montreal, QC, Canada.
- Centre de recherche du Centre hospitalier de l'Université de Montréal, 900, St-Denis street, Tour Viger Montréal, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
17
|
Jourde HR, Merlo R, Brooks M, Rowe M, Coffey EBJ. The neurophysiology of closed-loop auditory stimulation in sleep: A magnetoencephalography study. Eur J Neurosci 2024; 59:613-640. [PMID: 37675803 DOI: 10.1111/ejn.16132] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 08/01/2023] [Accepted: 08/08/2023] [Indexed: 09/08/2023]
Abstract
Closed-loop auditory stimulation (CLAS) is a brain modulation technique in which sounds are timed to enhance or disrupt endogenous neurophysiological events. CLAS of slow oscillation up-states in sleep is becoming a popular tool to study and enhance sleep's functions, as it increases slow oscillations, evokes sleep spindles and enhances memory consolidation of certain tasks. However, few studies have examined the specific neurophysiological mechanisms involved in CLAS, in part because of practical limitations to available tools. To evaluate evidence for possible models of how sound stimulation during brain up-states alters brain activity, we simultaneously recorded electro- and magnetoencephalography in human participants who received auditory stimulation across sleep stages. We conducted a series of analyses that test different models of pathways through which CLAS of slow oscillations may affect widespread neural activity that have been suggested in literature, using spatial information, timing and phase relationships in the source-localized magnetoencephalography data. The results suggest that auditory information reaches ventral frontal lobe areas via non-lemniscal pathways. From there, a slow oscillation is created and propagated. We demonstrate that while the state of excitability of tissue in auditory cortex and frontal ventral regions shows some synchrony with the electroencephalography (EEG)-recorded up-states that are commonly used for CLAS, it is the state of ventral frontal regions that is most critical for slow oscillation generation. Our findings advance models of how CLAS leads to enhancement of slow oscillations, sleep spindles and associated cognitive benefits and offer insight into how the effectiveness of brain stimulation techniques can be improved.
Collapse
Affiliation(s)
- Hugo R Jourde
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
| | | | - Mary Brooks
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
| | | | - Emily B J Coffey
- Concordia University, Montreal, Quebec, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS), Montreal, Quebec, Canada
- Centre for Research on Brain, Language and Music (CRBLM), Montreal, Quebec, Canada
- Quebec Bio-Imaging Network (QBIN), Sherbrooke, Quebec, Canada
- McGill University, Montreal, Quebec, Canada
| |
Collapse
|
18
|
Nicolas J, Carrier J, Swinnen SP, Doyon J, Albouy G, King BR. Targeted memory reactivation during post-learning sleep does not enhance motor memory consolidation in older adults. J Sleep Res 2024; 33:e14027. [PMID: 37794602 DOI: 10.1111/jsr.14027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/06/2023]
Abstract
Targeted memory reactivation (TMR) during sleep enhances memory consolidation in young adults by modulating electrophysiological markers of neuroplasticity. Interestingly, older adults exhibit deficits in motor memory consolidation, an impairment that has been linked to age-related degradations in the same sleep features sensitive to TMR. We hypothesised that TMR would enhance consolidation in older adults via the modulation of these markers. A total of 17 older participants were trained on a motor task involving two auditory-cued sequences. During a post-learning nap, two auditory cues were played: one associated to a learned (i.e., reactivated) sequence and one control. Performance during two delayed re-tests did not differ between reactivated and non-reactivated sequences. Moreover, both associated and control sounds modulated brain responses, yet there were no consistent differences between the auditory cue types. Our results collectively demonstrate that older adults do not benefit from specific reactivation of a motor memory trace by an associated auditory cue during post-learning sleep. Based on previous research, it is possible that auditory stimulation during post-learning sleep could have boosted motor memory consolidation in a non-specific manner.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord-de-l'Ile de Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
| | - Julien Doyon
- McConnell Brain Imaging Centre, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Geneviève Albouy
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, Leuven, Belgium
- LBI - KU Leuven Brain Institute, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| | - Bradley R King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake, Utah, USA
| |
Collapse
|
19
|
Weiner OM, O'Byrne J, Cross NE, Giraud J, Tarelli L, Yue V, Homer L, Walker K, Carbone R, Dang-Vu TT. Slow oscillation-spindle cross-frequency coupling predicts overnight declarative memory consolidation in older adults. Eur J Neurosci 2024; 59:662-685. [PMID: 37002805 DOI: 10.1111/ejn.15980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023]
Abstract
Cross-frequency coupling (CFC) between brain oscillations during non-rapid-eye-movement (NREM) sleep (e.g. slow oscillations [SO] and spindles) may be a neural mechanism of overnight memory consolidation. Declines in CFC across the lifespan might accompany coinciding memory problems with ageing. However, there are few reports of CFC changes during sleep after learning in older adults, controlling for baseline effects. Our objective was to examine NREM CFC in healthy older adults, with an emphasis on spindle activity and SOs from frontal electroencephalogram (EEG), during a learning night after a declarative learning task, as compared to a baseline night without learning. Twenty-five older adults (M [SD] age = 69.12 [5.53] years; 64% female) completed a two-night study, with a pre- and post-sleep word-pair associates task completed on the second night. SO-spindle coupling strength and a measure of coupling phase distance from the SO up-state were both examined for between-night differences and associations with memory consolidation. Coupling strength and phase distance from the up-state peak were both stable between nights. Change in coupling strength between nights was not associated with memory consolidation, but a shift in coupling phase towards (vs. away from) the up-state peak after learning predicted better memory consolidation. Also, an exploratory interaction model suggested that associations between coupling phase closer to the up-state peak and memory consolidation may be moderated by higher (vs. lower) coupling strength. This study supports a role for NREM CFC in sleep-related memory consolidation in older adults.
Collapse
Affiliation(s)
- Oren M Weiner
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Jordan O'Byrne
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montréal, Quebec, Canada
| | - Nathan E Cross
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Julia Giraud
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| | - Lukia Tarelli
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
| | - Victoria Yue
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Léa Homer
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Katherine Walker
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Roxanne Carbone
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
| | - Thien Thanh Dang-Vu
- PERFORM Centre and Center for Studies in Behavioural Neurobiology, Department of Psychology and Department of Health, Kinesiology, and Applied Physiology, Concordia University, Montréal, Quebec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, CIUSSS Centre-Sud-de-l'île-de-Montréal, Montréal, Quebec, Canada
- Department of Neurosciences, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
20
|
Cristini J, Potvin-Desrochers A, Seo F, Dagher A, Postuma RB, Rosa-Neto P, Carrier J, Amara AW, Steib S, Paquette C, Roig M. The Effect of Different Types of Exercise on Sleep Quality and Architecture in Parkinson Disease: A Single-Blinded Randomized Clinical Trial Protocol. Phys Ther 2024; 104:pzad073. [PMID: 37354450 PMCID: PMC10776310 DOI: 10.1093/ptj/pzad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 06/26/2023]
Abstract
OBJECTIVES The purpose of this trial is to (1) determine the best exercise modality to improve sleep quality and sleep architecture in people with Parkinson disease (PD); (2) investigate whether exercise-induced improvements in sleep mediate enhancements in motor and cognitive function as well as other non-motor symptoms of PD; and (3) explore if changes in systemic inflammation after exercise mediate improvements in sleep. METHODS This is a multi-site, superiority, single-blinded randomized controlled trial. One hundred fifty persons with PD and sleep problems will be recruited and randomly allocated into 4 intervention arms. Participants will be allocated into 12 weeks of either cardiovascular training, resistance training, multimodal training, or a waiting list control intervention. Assessments will be conducted at baseline, immediately after each intervention, and 8 weeks after each intervention by blinded assessors. Objective sleep quality and sleep architecture will be measured with polysomnography and electroencephalography. Motor and cognitive function will be assessed with the Unified PD Rating Scale and the Scale for Outcomes in PD-Cognition, respectively. Subjective sleep quality, fatigue, psychosocial functioning, and quality of life will be assessed with questionnaires. The concentration of inflammatory biomarkers in blood serum will be assessed with enzyme-linked immunosorbent assays. IMPACT This study will investigate the effect of different types of exercise on sleep quality and architecture in PD, exploring interactions between changes in sleep quality and architecture with motor and cognitive function and other non-motor symptoms of the disease as well as mechanistic interactions between systemic inflammation and sleep. The results will provide important practical information to guide physical therapists and other rehabilitation professionals in the selection of exercise and the design of more personalized exercise-based treatments aimed at optimizing sleep, motor, and cognitive function in people with PD.
Collapse
Affiliation(s)
- Jacopo Cristini
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, Québec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Québec, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Québec, Canada
| | - Alexandra Potvin-Desrochers
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Québec, Canada
- Department of Kinesiology & Physical Education, McGill University, Montreal, Québec, Canada
- Human Brain Control of Locomotion Laboratory, McGill University, Montreal, Québec, Canada
| | - Freddie Seo
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, Québec, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Québec, Canada
| | - Alain Dagher
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Québec, Canada
| | - Ronald B Postuma
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Québec, Canada
| | - Pedro Rosa-Neto
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Québec, Canada
- Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, Montreal, Québec, Canada
| | - Julie Carrier
- Département de Psychologie, Université de Montréal, Montreal, Québec, Canada
- Centre d'Études Avancées en Médecine du Sommeil (CÉAMS), Hôpital du Sacré-Cœur de Montréal, Montreal, Québec, Canada
| | - Amy W Amara
- Department of Neurology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Simon Steib
- Department of Exercise, Training and Active Aging, Institute of Sport and Sport Science, University of Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Caroline Paquette
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Québec, Canada
- Department of Kinesiology & Physical Education, McGill University, Montreal, Québec, Canada
- Human Brain Control of Locomotion Laboratory, McGill University, Montreal, Québec, Canada
| | - Marc Roig
- Memory and Motor Rehabilitation Laboratory (MEMORY-LAB), Jewish Rehabilitation Hospital, Laval, Québec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Québec, Canada
- Feil and Oberfeld Research Centre, Jewish Rehabilitation Hospital, Center for Interdisciplinary Research in Rehabilitation (CRIR), Laval, Québec, Canada
| |
Collapse
|
21
|
Hanert A, Schönfeld R, Weber FD, Nowak A, Döhring J, Philippen S, Granert O, Burgalossi A, Born J, Berg D, Göder R, Häussermann P, Bartsch T. Reduced overnight memory consolidation and associated alterations in sleep spindles and slow oscillations in early Alzheimer's disease. Neurobiol Dis 2024; 190:106378. [PMID: 38103701 DOI: 10.1016/j.nbd.2023.106378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023] Open
Abstract
Spatial navigation critically underlies hippocampal-entorhinal circuit function that is early affected in Alzheimer's disease (AD). There is growing evidence that AD pathophysiology dynamically interacts with the sleep/wake cycle impairing hippocampal memory. To elucidate sleep-dependent consolidation in a cohort of symptomatic AD patients (n = 12, 71.25 ± 2.16 years), we tested hippocampal place learning by means of a virtual reality task and verbal memory by a word-pair association task before and after a night of sleep. Our results show an impaired overnight memory retention in AD compared with controls in the verbal task, together with a significant reduction of sleep spindle activity (i.e., lower amplitude of fast sleep spindles, p = 0.016) and increased duration of the slow oscillation (SO; p = 0.019). Higher spindle density, faster down-to-upstate transitions within SOs, and the time delay between SOs and nested spindles predicted better memory performance in healthy controls but not in AD patients. Our results show that mnemonic processing and memory consolidation in AD is slightly impaired as reflected by dysfunctional oscillatory dynamics and spindle-SO coupling during NonREM sleep. In this translational study based on experimental paradigms in animals and extending previous work in healthy aging and preclinical disease stages, our results in symptomatic AD further deepen the understanding of the memory decline within a bidirectional relationship of sleep and AD pathology.
Collapse
Affiliation(s)
- Annika Hanert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robby Schönfeld
- Institute of Psychology, Division of Clinical Psychology, Martin-Luther-University Halle-Wittenberg, 06099 Halle (Saale), Germany
| | - Frederik D Weber
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany; Donders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, the Netherlands; Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands
| | - Alexander Nowak
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Juliane Döhring
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany; Institute for General Medicine, University Hospital of Schleswig-Holstein, 24105 Kiel, Germany
| | - Sarah Philippen
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Oliver Granert
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Andrea Burgalossi
- Institute of Neurobiology, Werner-Reichardt Center for Integrative Neuroscience, University of Tübingen, 72074 Tübingen, Germany
| | - Jan Born
- Institute for Medical Psychology and Behavioral Neurobiology, University of Tübingen, 72074 Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Robert Göder
- Department of Psychiatry and Psychotherapy, Sleep Laboratory, University Hospital of Schleswig Holstein, 24105 Kiel, Germany
| | - Peter Häussermann
- Department of Geriatric Psychiatry, LVR Klinik Köln, Academic Teaching Hospital, University of Cologne, Köln, Germany
| | - Thorsten Bartsch
- Department of Neurology, Memory Disorders and Plasticity Group, University Hospital of Schleswig Holstein, 24105 Kiel, Germany.
| |
Collapse
|
22
|
Johnson CE, Duncan MJ, Murphy MP. Sex and Sleep Disruption as Contributing Factors in Alzheimer's Disease. J Alzheimers Dis 2024; 97:31-74. [PMID: 38007653 PMCID: PMC10842753 DOI: 10.3233/jad-230527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease (AD) affects more women than men, with women throughout the menopausal transition potentially being the most under researched and at-risk group. Sleep disruptions, which are an established risk factor for AD, increase in prevalence with normal aging and are exacerbated in women during menopause. Sex differences showing more disrupted sleep patterns and increased AD pathology in women and female animal models have been established in literature, with much emphasis placed on loss of circulating gonadal hormones with age. Interestingly, increases in gonadotropins such as follicle stimulating hormone are emerging to be a major contributor to AD pathogenesis and may also play a role in sleep disruption, perhaps in combination with other lesser studied hormones. Several sleep influencing regions of the brain appear to be affected early in AD progression and some may exhibit sexual dimorphisms that may contribute to increased sleep disruptions in women with age. Additionally, some of the most common sleep disorders, as well as multiple health conditions that impair sleep quality, are more prevalent and more severe in women. These conditions are often comorbid with AD and have bi-directional relationships that contribute synergistically to cognitive decline and neuropathology. The association during aging of increased sleep disruption and sleep disorders, dramatic hormonal changes during and after menopause, and increased AD pathology may be interacting and contributing factors that lead to the increased number of women living with AD.
Collapse
Affiliation(s)
- Carrie E. Johnson
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
| | - Marilyn J. Duncan
- University of Kentucky, College of Medicine, Department of Neuroscience, Lexington, KY, USA
| | - M. Paul Murphy
- University of Kentucky, College of Medicine, Department of Molecular and Cellular Biochemistry, Lexington, KY, USA
- University of Kentucky, Sanders-Brown Center on Aging, Lexington, KY, USA
| |
Collapse
|
23
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
24
|
Wunderlin M, Zeller CJ, Senti SR, Fehér KD, Suppiger D, Wyss P, Koenig T, Teunissen CE, Nissen C, Klöppel S, Züst MA. Acoustic stimulation during sleep predicts long-lasting increases in memory performance and beneficial amyloid response in older adults. Age Ageing 2023; 52:afad228. [PMID: 38163288 PMCID: PMC10758173 DOI: 10.1093/ageing/afad228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Sleep and neurodegeneration are assumed to be locked in a bi-directional vicious cycle. Improving sleep could break this cycle and help to prevent neurodegeneration. We tested multi-night phase-locked acoustic stimulation (PLAS) during slow wave sleep (SWS) as a non-invasive method to improve SWS, memory performance and plasma amyloid levels. METHODS 32 healthy older adults (agemean: 68.9) completed a between-subject sham-controlled three-night intervention, preceded by a sham-PLAS baseline night. RESULTS PLAS induced increases in sleep-associated spectral-power bands as well as a 24% increase in slow wave-coupled spindles, known to support memory consolidation. There was no significant group-difference in memory performance or amyloid-beta between the intervention and control group. However, the magnitude of PLAS-induced physiological responses were associated with memory performance up to 3 months post intervention and beneficial changes in plasma amyloid. Results were exclusive to the intervention group. DISCUSSION Multi-night PLAS is associated with long-lasting benefits in memory and metabolite clearance in older adults, rendering PLAS a promising tool to build upon and develop long-term protocols for the prevention of cognitive decline.
Collapse
Affiliation(s)
- Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, 3012 Bern, Switzerland
| | - Samira Rafaela Senti
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Debora Suppiger
- Department of Neonatology, University Hospital Zurich and University of Zurich, 8006 Zürich, Switzerland
| | - Patric Wyss
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Thomas Koenig
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, Netherlands
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1205 Geneva, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| | - Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
25
|
Talwar P, Deantoni M, Van Egroo M, Muto V, Chylinski D, Koshmanova E, Jaspar M, Meyer C, Degueldre C, Berthomier C, Luxen A, Salmon E, Collette F, Dijk DJ, Schmidt C, Phillips C, Maquet P, Sherif S, Vandewalle G. In vivo marker of brainstem myelin is associated to quantitative sleep parameters in healthy young men. Sci Rep 2023; 13:20873. [PMID: 38012207 PMCID: PMC10682495 DOI: 10.1038/s41598-023-47753-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/17/2023] [Indexed: 11/29/2023] Open
Abstract
The regional integrity of brain subcortical structures has been implicated in sleep-wake regulation, however, their associations with sleep parameters remain largely unexplored. Here, we assessed association between quantitative Magnetic Resonance Imaging (qMRI)-derived marker of the myelin content of the brainstem and the variability in the sleep electrophysiology in a large sample of 18-to-31 years healthy young men (N = 321; ~ 22 years). Separate Generalized Additive Model for Location, Scale and Shape (GAMLSS) revealed that sleep onset latency and slow wave energy were significantly associated with MTsat estimates in the brainstem (pcorrected ≤ 0.03), with overall higher MTsat value associated with values reflecting better sleep quality. The association changed with age, however (MTsat-by-age interaction-pcorrected ≤ 0.03), with higher MTsat value linked to better values in the two sleep metrics in the younger individuals of our sample aged ~ 18 to 20 years. Similar associations were detected across different parts of the brainstem (pcorrected ≤ 0.03), suggesting that the overall maturation and integrity of the brainstem was associated with both sleep metrics. Our results suggest that myelination of the brainstem nuclei essential to regulation of sleep is associated with inter-individual differences in sleep characteristics during early adulthood. They may have implications for sleep disorders or neurological diseases related to myelin.
Collapse
Affiliation(s)
- Puneet Talwar
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Michele Deantoni
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, The Netherlands
| | - Vincenzo Muto
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Ekaterina Koshmanova
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Mathieu Jaspar
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Christelle Meyer
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
| | - Christian Degueldre
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | | | - André Luxen
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Eric Salmon
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, CHU of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - D-J Dijk
- Sleep Research Centre, University of Surrey, Guildford, UK
- UK Dementia Research Institute, University of Surrey, Guildford, UK
| | - Christina Schmidt
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
- Walloon Excellence in Life Sciences and Biotechnology (WELBIO), Wallonia, Belgium
- Department of Neurology, CHU of Liège, Liège, Belgium
| | - Siya Sherif
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Institute, CRC-In Vivo Imaging Unit, Bâtiment B30, Université de Liège, 4000, Liège, Belgium.
| |
Collapse
|
26
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Van Egroo M, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. Locus coeruleus activity while awake is associated with REM sleep quality in older individuals. JCI Insight 2023; 8:e172008. [PMID: 37698926 PMCID: PMC10619502 DOI: 10.1172/jci.insight.172008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/06/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUNDThe locus coeruleus (LC) is the primary source of norepinephrine in the brain and regulates arousal and sleep. Animal research shows that it plays important roles in the transition between sleep and wakefulness, and between slow wave sleep and rapid eye movement sleep (REMS). It is unclear, however, whether the activity of the LC predicts sleep variability in humans.METHODSWe used 7-Tesla functional MRI, sleep electroencephalography (EEG), and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 33 healthy younger (~22 years old; 28 women, 5 men) and 19 older (~61 years old; 14 women, 5 men) individuals.RESULTSWe found that, in older but not in younger participants, higher LC activity, as probed during an auditory attentional task, was associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS. The results remained robust even when accounting for the age-related changes in the integrity of the LC.CONCLUSIONThese findings suggest that LC activity correlates with the perception of the sleep quality and an essential oscillatory mode of REMS, and we found that the LC may be an important target in the treatment of sleep- and age-related diseases.FUNDINGThis work was supported by Fonds National de la Recherche Scientifique (FRS-FNRS, T.0242.19 & J. 0222.20), Action de Recherche Concertée - Fédération Wallonie-Bruxelles (ARC SLEEPDEM 17/27-09), Fondation Recherche Alzheimer (SAO-FRA 2019/0025), ULiège, and European Regional Development Fund (Radiomed & Biomed-Hub).
Collapse
Affiliation(s)
- Ekaterina Koshmanova
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Alexandre Berger
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Institute of Neuroscience (IoNS), Université Catholique de Louvain (UCLouvain), Brussels, Belgium
- Synergia Medical SA, Mont-Saint-Guibert, Belgium
| | - Elise Beckers
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Islay Campbell
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Nasrin Mortazavi
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Roya Sharifpour
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Ilenia Paparella
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Fermin Balda
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | | | - Christian Degueldre
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Eric Salmon
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
- PsyNCog and
| | - Laurent Lamalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Christine Bastin
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Maxime Van Egroo
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Christophe Phillips
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- In Silico Medicine Unit, GIGA-Institute, ULiège, Liège, Belgium
| | - Pierre Maquet
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- Neurology Department, Centre Hospitalier Universitaire de Liège, Liège, Belgium
| | - Fabienne Collette
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
- PsyNCog and
| | - Vincenzo Muto
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Daphne Chylinski
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Heidi I.L. Jacobs
- Alzheimer Centre Limburg, School for Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Puneet Talwar
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Siya Sherif
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| | - Gilles Vandewalle
- Sleep and Chronobiology Lab, GIGA-Institute, CRC-In Vivo Imaging Unit, University of Liège (ULiège), Liège, Belgium
| |
Collapse
|
27
|
Gu Y, Gagnon JF, Kaminska M. Sleep electroencephalography biomarkers of cognition in obstructive sleep apnea. J Sleep Res 2023; 32:e13831. [PMID: 36941194 DOI: 10.1111/jsr.13831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 03/23/2023]
Abstract
Obstructive sleep apnea has been associated with cognitive impairment and may be linked to disorders of cognitive function. These associations may be a result of intermittent hypoxaemia, sleep fragmentation and changes in sleep microstructure in obstructive sleep apnea. Current clinical metrics of obstructive sleep apnea, such as the apnea-hypopnea index, are poor predictors of cognitive outcomes in obstructive sleep apnea. Sleep microstructure features, which can be identified on sleep electroencephalography of traditional overnight polysomnography, are increasingly being characterized in obstructive sleep apnea and may better predict cognitive outcomes. Here, we summarize the literature on several major sleep electroencephalography features (slow-wave activity, sleep spindles, K-complexes, cyclic alternating patterns, rapid eye movement sleep quantitative electroencephalography, odds ratio product) identified in obstructive sleep apnea. We will review the associations between these sleep electroencephalography features and cognition in obstructive sleep apnea, and examine how treatment of obstructive sleep apnea affects these associations. Lastly, evolving technologies in sleep electroencephalography analyses will also be discussed (e.g. high-density electroencephalography, machine learning) as potential predictors of cognitive function in obstructive sleep apnea.
Collapse
Affiliation(s)
- Yusing Gu
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jean-François Gagnon
- Department of Psychology, Université du Québec à Montréal, Montréal, Québec, Canada
- Center for Advanced Research in Sleep Medicine, CIUSSS-NÎM - Hôpital du Sacré-Coeur de Montréal, Montreal, Quebec, Canada
| | - Marta Kaminska
- Respiratory Epidemiology and Clinical Research Unit, Research Institute of the McGill University Health Centre, Montreal, Québec, Canada
- Respiratory Division & Sleep Laboratory, McGill University Health Centre, Montreal, Québec, Canada
| |
Collapse
|
28
|
Züst MA, Mikutta C, Omlin X, DeStefani T, Wunderlin M, Zeller CJ, Fehér KD, Hertenstein E, Schneider CL, Teunissen CE, Tarokh L, Klöppel S, Feige B, Riemann D, Nissen C. The Hierarchy of Coupled Sleep Oscillations Reverses with Aging in Humans. J Neurosci 2023; 43:6268-6279. [PMID: 37586871 PMCID: PMC10490476 DOI: 10.1523/jneurosci.0586-23.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/11/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023] Open
Abstract
A well orchestrated coupling hierarchy of slow waves and spindles during slow-wave sleep supports memory consolidation. In old age, the duration of slow-wave sleep and the number of coupling events decrease. The coupling hierarchy deteriorates, predicting memory loss and brain atrophy. Here, we investigate the dynamics of this physiological change in slow wave-spindle coupling in a frontocentral electroencephalography position in a large sample (N = 340; 237 females, 103 males) spanning most of the human life span (age range, 15-83 years). We find that, instead of changing abruptly, spindles gradually shift from being driven by slow waves to driving slow waves with age, reversing the coupling hierarchy typically seen in younger brains. Reversal was stronger the lower the slow-wave frequency, and starts around midlife (age range, ∼40-48 years), with an established reversed hierarchy between 56 and 83 years of age. Notably, coupling strength remains unaffected by age. In older adults, deteriorating slow wave-spindle coupling, measured using the phase slope index (PSI) and the number of coupling events, is associated with blood plasma glial fibrillary acidic protein levels, a marker for astrocyte activation. Data-driven models suggest that decreased sleep time and higher age lead to fewer coupling events, paralleled by increased astrocyte activation. Counterintuitively, astrocyte activation is associated with a backshift of the coupling hierarchy (PSI) toward a "younger" status along with increased coupling occurrence and strength, potentially suggesting compensatory processes. As the changes in coupling hierarchy occur gradually starting at midlife, we suggest there exists a sizable window of opportunity for early interventions to counteract undesirable trajectories associated with neurodegeneration.SIGNIFICANCE STATEMENT Evidence accumulates that sleep disturbances and cognitive decline are bidirectionally and causally linked, forming a vicious cycle. Improving sleep quality could break this cycle. One marker for sleep quality is a clear hierarchical structure of sleep oscillations. Previous studies showed that sleep oscillations decouple in old age. Here, we show that, rather, the hierarchical structure gradually shifts across the human life span and reverses in old age, while coupling strength remains unchanged. This shift is associated with markers for astrocyte activation in old age. The shifting hierarchy resembles brain maturation, plateau, and wear processes. This study furthers our comprehension of this important neurophysiological process and its dynamic evolution across the human life span.
Collapse
Affiliation(s)
- Marc Alain Züst
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Christian Mikutta
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Private Clinic Meiringen, 3860 Meiringen, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Ximena Omlin
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Tatjana DeStefani
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Marina Wunderlin
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Céline Jacqueline Zeller
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Kristoffer Daniel Fehér
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| | - Elisabeth Hertenstein
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Carlotta L Schneider
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Charlotte Elisabeth Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Neurodegeneration, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Leila Tarokh
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Stefan Klöppel
- University Hospital of Old Age Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
| | - Bernd Feige
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, University of Freiburg Medical Center, 79104 Freiburg, Germany
| | - Christoph Nissen
- University Hospital of Psychiatry and Psychotherapy, University of Bern, 3000 Bern 60, Switzerland
- Division of Psychiatric Specialties, Geneva University Hospitals (HUG), 1201 Geneva, Switzerland
| |
Collapse
|
29
|
Vallat R, Shah VD, Walker MP. Coordinated human sleeping brainwaves map peripheral body glucose homeostasis. Cell Rep Med 2023:101100. [PMID: 37421946 PMCID: PMC10394167 DOI: 10.1016/j.xcrm.2023.101100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/21/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
Insufficient sleep impairs glucose regulation, increasing the risk of diabetes. However, what it is about the human sleeping brain that regulates blood sugar remains unknown. In an examination of over 600 humans, we demonstrate that the coupling of non-rapid eye movement (NREM) sleep spindles and slow oscillations the night before is associated with improved next-day peripheral glucose control. We further show that this sleep-associated glucose pathway may influence glycemic status through altered insulin sensitivity, rather than through altered pancreatic beta cell function. Moreover, we replicate these associations in an independent dataset of over 1,900 adults. Of therapeutic significance, the coupling between slow oscillations and spindles was the most significant sleep predictor of next-day fasting glucose, even more so than traditional sleep markers, relevant to the possibility of an electroencephalogram (EEG) index of hyperglycemia. Taken together, these findings describe a sleeping-brain-body framework of optimal human glucose homeostasis, offering a potential prognostic sleep signature of glycemic control.
Collapse
Affiliation(s)
- Raphael Vallat
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| | - Vyoma D Shah
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA
| | - Matthew P Walker
- Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, Berkeley, CA 94720-1650, USA.
| |
Collapse
|
30
|
Martinez Villar G, Daneault V, Martineau-Dussault MÈ, Baril AA, Gagnon K, Lafond C, Gilbert D, Thompson C, Marchi NA, Lina JM, Montplaisir J, Carrier J, Gosselin N, André C. Altered resting-state functional connectivity patterns in late middle-aged and older adults with obstructive sleep apnea. Front Neurol 2023; 14:1215882. [PMID: 37470008 PMCID: PMC10353887 DOI: 10.3389/fneur.2023.1215882] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/05/2023] [Indexed: 07/21/2023] Open
Abstract
Introduction Obstructive sleep apnea (OSA) is increasingly recognized as a risk factor for cognitive decline, and has been associated with structural brain alterations in regions relevant to memory processes and Alzheimer's disease. However, it is unclear whether OSA is associated with disrupted functional connectivity (FC) patterns between these regions in late middle-aged and older populations. Thus, we characterized the associations between OSA severity and resting-state FC between the default mode network (DMN) and medial temporal lobe (MTL) regions. Second, we explored whether significant FC changes differed depending on cognitive status and were associated with cognitive performance. Methods Ninety-four participants [24 women, 65.7 ± 6.9 years old, 41% with Mild Cognitive Impairment (MCI)] underwent a polysomnography, a comprehensive neuropsychological assessment and a resting-state functional magnetic resonance imaging (MRI). General linear models were conducted between OSA severity markers (i.e., the apnea-hypopnea, oxygen desaturation and microarousal indices) and FC values between DMN and MTL regions using CONN toolbox. Partial correlations were then performed between OSA-related FC patterns and (i) OSA severity markers in subgroups stratified by cognitive status (i.e., cognitively unimpaired versus MCI) and (ii) cognitive scores in the whole sample. All analyzes were controlled for age, sex and education, and considered significant at a p < 0.05 threshold corrected for false discovery rate. Results In the whole sample, a higher apnea-hypopnea index was significantly associated with lower FC between (i) the medial prefrontal cortex and bilateral hippocampi, and (ii) the left hippocampus and both the posterior cingulate cortex and precuneus. FC patterns were not associated with the oxygen desaturation index, or micro-arousal index. When stratifying the sample according to cognitive status, all associations remained significant in cognitively unimpaired individuals but not in the MCI group. No significant associations were observed between cognition and OSA severity or OSA-related FC patterns. Discussion OSA severity was associated with patterns of lower FC in regions relevant to memory processes and Alzheimer's disease. Since no associations were found with cognitive performance, these FC changes could precede detectable cognitive deficits. Whether these FC patterns predict future cognitive decline over the long-term needs to be investigated.
Collapse
Affiliation(s)
- Guillermo Martinez Villar
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Véronique Daneault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Marie-Ève Martineau-Dussault
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health Institute, McGill University, Montréal, QC, Canada
| | - Katia Gagnon
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Laboratory and Sleep Clinic, Hôpital en Santé Mentale Rivière-des-Prairies, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Chantal Lafond
- Department of Pulmonology, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Danielle Gilbert
- Department of Radiology, Radio-Oncology and Nuclear Medicine, Université de Montréal, QC, Canada
- Department of Radiology, Hopital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l'Ile-de, Montréal, QC, Canada
| | - Cynthia Thompson
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
| | - Nicola Andrea Marchi
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
- Center for Investigation and Research in Sleep, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Laboratory for Research in Neuroimaging, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Département de Génie Electrique, École de Technologie Supérieure, Montréal, QC, Canada
| | - Jacques Montplaisir
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychiatry, Université de Montréal, Montréal, QC, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| | - Claire André
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Centre Intégré Universitaire de Santé et de Services Sociaux du Nord de l'Île-de-Montréal, Montréal, QC, Canada
- Department of Psychology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
31
|
Chaves-Coira I, García-Magro N, Zegarra-Valdivia J, Torres-Alemán I, Núñez Á. Cognitive Deficits in Aging Related to Changes in Basal Forebrain Neuronal Activity. Cells 2023; 12:1477. [PMID: 37296598 PMCID: PMC10252596 DOI: 10.3390/cells12111477] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Aging is a physiological process accompanied by a decline in cognitive performance. The cholinergic neurons of the basal forebrain provide projections to the cortex that are directly engaged in many cognitive processes in mammals. In addition, basal forebrain neurons contribute to the generation of different rhythms in the EEG along the sleep/wakefulness cycle. The aim of this review is to provide an overview of recent advances grouped around the changes in basal forebrain activity during healthy aging. Elucidating the underlying mechanisms of brain function and their decline is especially relevant in today's society as an increasingly aged population faces higher risks of developing neurodegenerative diseases such as Alzheimer's disease. The profound age-related cognitive deficits and neurodegenerative diseases associated with basal forebrain dysfunction highlight the importance of investigating the aging of this brain region.
Collapse
Affiliation(s)
- Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| | - Nuria García-Magro
- Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Jonathan Zegarra-Valdivia
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Facultad de Ciencias de la Salud, Universidad Señor de Sipán, Chiclayo 02001, Peru
| | - Ignacio Torres-Alemán
- Achucarro Basque Center for Neuroscience, 48940 Leioa, Spain; (J.Z.-V.); (I.T.-A.)
- Ikerbasque Science Foundation, 48009 Bilbao, Spain
| | - Ángel Núñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, 28029 Madrid, Spain;
| |
Collapse
|
32
|
Koshmanova E, Berger A, Beckers E, Campbell I, Mortazavi N, Sharifpour R, Paparella I, Balda F, Berthomier C, Degueldre C, Salmon E, Lamalle L, Bastin C, Egroo MV, Phillips C, Maquet P, Collette F, Muto V, Chylinski D, Jacobs HI, Talwar P, Sherif S, Vandewalle G. In vivo Locus Coeruleus activity while awake is associated with REM sleep quality in healthy older individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.10.527974. [PMID: 36993680 PMCID: PMC10054994 DOI: 10.1101/2023.02.10.527974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The locus coeruleus (LC) is the primary source of norepinephrine (NE) in the brain, and the LC-NE system is involved in regulating arousal and sleep. It plays key roles in the transition between sleep and wakefulness, and between slow wave sleep (SWS) and rapid eye movement sleep (REMS). However, it is not clear whether the LC activity during the day predicts sleep quality and sleep properties during the night, and how this varies as a function of age. Here, we used 7 Tesla functional Magnetic Resonance Imaging (7T fMRI), sleep electroencephalography (EEG) and a sleep questionnaire to test whether the LC activity during wakefulness was associated with sleep quality in 52 healthy younger (N=33; ~22y; 28 women) and older (N=19; ~61y; 14 women) individuals. We find that, in older, but not in younger participants, higher LC activity, as probed during an auditory mismatch negativity task, is associated with worse subjective sleep quality and with lower power over the EEG theta band during REMS (4-8Hz), which are two sleep parameters significantly correlated in our sample of older individuals. The results remain robust even when accounting for the age-related changes in the integrity of the LC. These findings suggest that the activity of the LC may contribute to the perception of the sleep quality and to an essential oscillatory mode of REMS, and that the LC may be an important target in the treatment of sleep disorders and age-related diseases.
Collapse
|
33
|
Lafrenière A, Lina JM, Hernandez J, Bouchard M, Gosselin N, Carrier J. Sleep slow waves' negative-to-positive-phase transition: a marker of cognitive and apneic status in aging. Sleep 2023; 46:zsac246. [PMID: 36219687 PMCID: PMC9832517 DOI: 10.1093/sleep/zsac246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/12/2022] [Indexed: 11/07/2022] Open
Abstract
The sleep slow-wave (SW) transition between negative and positive phases is thought to mirror synaptic strength and likely depends on brain health. This transition shows significant age-related changes but has not been investigated in pathological aging. The present study aimed at comparing the transition speed and other characteristics of SW between older adults with amnestic mild cognitive impairment (aMCI) and cognitively normal (CN) controls with and without obstructive sleep apnea (OSA). We also examined the association of SW characteristics with the longitudinal changes of episodic memory and executive functions and the degree of subjective cognitive complaints. aMCI (no/mild OSA = 17; OSA = 15) and CN (no/mild OSA = 20; OSA = 17) participants underwent a night of polysomnography and a neuropsychological evaluation at baseline and 18 months later. Participants with aMCI had a significantly slower SW negative-to-positive-phase transition speed and a higher proportion of SW that are "slow-switchers" than CN participants. These SW measures in the frontal region were significantly correlated with memory decline and cognitive complaints in aMCI and cognitive improvements in CN participants. The transition speed of the SW that are "fast-switchers" was significantly slower in OSA compared to no or mild obstructive sleep apnea participants. The SW transition-related metrics showed opposite correlations with the longitudinal episodic memory changes depending on the participants' cognitive status. These relationships were particularly strong in participants with aMCI. As the changes of the SW transition-related metrics in pathological aging might reflect synaptic alterations, future studies should investigate whether these new metrics covary with biomarker levels of synaptic integrity in this population.
Collapse
Affiliation(s)
- Alexandre Lafrenière
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Electrical Engineering, École de Technologie Supérieure, Montreal, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, Canada
| | - Jimmy Hernandez
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Neurosciences, Université de Montréal, Montreal, Canada
| | - Maude Bouchard
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, Université de Montréal, Montreal, Canada
| |
Collapse
|
34
|
Toor B, van den Berg N, Ray LB, Fogel SM. Sleep spindles and slow waves are physiological markers for age-related changes in gray matter in brain regions supporting problem-solving skills. Learn Mem 2023; 30:12-24. [PMID: 36564151 PMCID: PMC9872192 DOI: 10.1101/lm.053649.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/29/2022] [Indexed: 12/25/2022]
Abstract
As we age, the added benefit of sleep for memory consolidation is lost. One of the hallmark age-related changes in sleep is the reduction of sleep spindles and slow waves. Gray matter neurodegeneration is related to both age-related changes in sleep and age-related changes in memory, including memory for problem-solving skills. Here, we investigated whether spindles and slow waves might serve as biological markers for neurodegeneration of gray matter and for the related memory consolidation deficits in older adults. Forty healthy young adults (20-35 yr) and 30 healthy older adults (60-85 yr) were assigned to either nap or wake conditions. Participants were trained on the Tower of Hanoi in the morning, followed by either a 90-min nap opportunity or period of wakefulness, and were retested afterward. We found that age-related changes in sleep spindles and slow waves were differentially related to gray matter intensity in young and older adults in brain regions that support sleep-dependent memory consolidation for problem-solving skills. Specifically, we found that spindles were related to gray matter in neocortical areas (e.g., somatosensory and parietal cortex), and slow waves were related to gray matter in the anterior cingulate, hippocampus, and caudate, all areas known to support problem-solving skills. These results suggest that both sleep spindles and slow waves may serve as biological markers of age-related neurodegeneration of gray matter and the associated reduced benefit of sleep for memory consolidation in older adults.
Collapse
Affiliation(s)
- Balmeet Toor
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | | | - Laura B Ray
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Stuart M Fogel
- School of Psychology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- Sleep Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
- University of Ottawa Brain and Mind Institute, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
35
|
Gao C, Scullin MK. Longitudinal trajectories of spectral power during sleep in middle-aged and older adults. AGING BRAIN 2023; 3:100058. [PMID: 36911257 PMCID: PMC9997163 DOI: 10.1016/j.nbas.2022.100058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Age-related changes in sleep appear to contribute to cognitive aging and dementia. However, most of the current understanding of sleep across the lifespan is based on cross-sectional evidence. Using data from the Sleep Heart Health Study, we investigated longitudinal changes in sleep micro-architecture, focusing on whether such age-related changes are experienced uniformly across individuals. Participants were 2,202 adults (ageBaseline = 62.40 ± 10.38, 55.36 % female, 87.92 % White) who completed home polysomnography assessment at two study visits, which were 5.23 years apart (range: 4-7 years). We analyzed NREM and REM spectral power density for each 0.5 Hz frequency bin, including slow oscillation (0.5-1 Hz), delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma (12-15 Hz), and beta-1 (15-20 Hz) bands. Longitudinal comparisons showed a 5-year decline in NREM delta (p <.001) and NREM sigma power density (p <.001) as well as a 5-year increase in theta power density during NREM (p =.001) and power density for all frequency bands during REM sleep (ps < 0.05). In contrast to the notion that sleep declines linearly with advancing age, longitudinal trajectories varied considerably across individuals. Within individuals, the 5-year changes in NREM and REM power density were strongly correlated (slow oscillation: r = 0.46; delta: r = 0.67; theta r = 0.78; alpha r = 0.66; sigma: r = 0.71; beta-1: r = 0.73; ps < 0.001). The convergence in the longitudinal trajectories of NREM and REM activity may reflect age-related neural de-differentiation and/or compensation processes. Future research should investigate the neurocognitive implications of longitudinal changes in sleep micro-architecture and test whether interventions for improving key sleep micro-architecture features (such as NREM delta and sigma activity) also benefit cognition over time.
Collapse
Affiliation(s)
- Chenlu Gao
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.,Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, MA, USA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael K Scullin
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA
| |
Collapse
|
36
|
Reverberi S, Dolfen N, Van Roy A, Albouy G, King BR. Sleep does not influence schema-facilitated motor memory consolidation. PLoS One 2023; 18:e0280591. [PMID: 36656898 PMCID: PMC9851548 DOI: 10.1371/journal.pone.0280591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/03/2023] [Indexed: 01/20/2023] Open
Abstract
STUDY OBJECTIVES Novel information is rapidly learned when it is compatible with previous knowledge. This "schema" effect, initially described for declarative memories, was recently extended to the motor memory domain. Importantly, this beneficial effect was only observed 24 hours-but not immediately-following motor schema acquisition. Given the established role of sleep in memory consolidation, we hypothesized that sleep following the initial learning of a schema is necessary for the subsequent rapid integration of novel motor information. METHODS Two experiments were conducted to investigate the effect of diurnal and nocturnal sleep on schema-mediated motor sequence memory consolidation. In Experiment 1, participants first learned an 8-element motor sequence through repeated practice (Session 1). They were then afforded a 90-minute nap opportunity (N = 25) or remained awake (N = 25) before learning a second motor sequence (Session 2) which was highly compatible with that learned prior to the sleep/wake interval. Experiment 2 was similar; however, Sessions 1 and 2 were separated by a 12-hour interval that included nocturnal sleep (N = 28) or only wakefulness (N = 29). RESULTS For both experiments, we found no group differences in motor sequence performance (reaction time and accuracy) following the sleep/wake interval. Furthermore, in Experiment 1, we found no correlation between sleep features (non-REM sleep duration, spindle and slow wave activity) and post-sleep behavioral performance. CONCLUSIONS The results of this research suggest that integration of novel motor information into a cognitive-motor schema does not specifically benefit from post-learning sleep.
Collapse
Affiliation(s)
- Serena Reverberi
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nina Dolfen
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Anke Van Roy
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
| | - Genevieve Albouy
- Department of Movement Sciences, Motor Control and Neural Plasticity Research Group, KU Leuven, Leuven, Belgium
- LBI—KU Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
- * E-mail:
| | - Bradley R. King
- Department of Health and Kinesiology, College of Health, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
37
|
Chylinski D, Narbutas J, Balteau E, Collette F, Bastin C, Berthomier C, Salmon E, Maquet P, Carrier J, Phillips C, Lina JM, Vandewalle G, Van Egroo M. Frontal grey matter microstructure is associated with sleep slow waves characteristics in late midlife. Sleep 2022; 45:zsac178. [PMID: 35869626 PMCID: PMC9644125 DOI: 10.1093/sleep/zsac178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/13/2022] [Indexed: 07/25/2023] Open
Abstract
STUDY OBJECTIVES The ability to generate slow waves (SW) during non-rapid eye movement (NREM) sleep decreases as early as the 5th decade of life, predominantly over frontal regions. This decrease may concern prominently SW characterized by a fast switch from hyperpolarized to depolarized, or down-to-up, state. Yet, the relationship between these fast and slow switcher SW and cerebral microstructure in ageing is not established. METHODS We recorded habitual sleep under EEG in 99 healthy late midlife individuals (mean age = 59.3 ± 5.3 years; 68 women) and extracted SW parameters (density, amplitude, frequency) for all SW as well as according to their switcher type (slow vs. fast). We further used neurite orientation dispersion and density imaging (NODDI) to assess microstructural integrity over a frontal grey matter region of interest (ROI). RESULTS In statistical models adjusted for age, sex, and sleep duration, we found that a lower SW density, particularly for fast switcher SW, was associated with a reduced orientation dispersion of neurites in the frontal ROI (p = 0.018, R2β* = 0.06). In addition, overall SW frequency was positively associated with neurite density (p = 0.03, R2β* = 0.05). By contrast, we found no significant relationships between SW amplitude and NODDI metrics. CONCLUSIONS Our findings suggest that the complexity of neurite organization contributes specifically to the rate of fast switcher SW occurrence in healthy middle-aged individuals, corroborating slow and fast switcher SW as distinct types of SW. They further suggest that the density of frontal neurites plays a key role for neural synchronization during sleep. TRIAL REGISTRATION NUMBER EudraCT 2016-001436-35.
Collapse
Affiliation(s)
- Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Julie Carrier
- CARSM, CIUSSS of Nord-de l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, University of Montreal, Canada
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
- GIGA-In Silico Medicine, University of Liège, Liège, Belgium
| | - Jean-Marc Lina
- CARSM, CIUSSS of Nord-de l’Île-de-Montréal, Montreal, Canada
- Department of Psychology, University of Montreal, Canada
| | - Gilles Vandewalle
- Corresponding authors. Gilles Vandewalle, GIGA-Cyclotron Research Centre-In Vivo Imaging, Bâtiment B30, Université de Liège, Allée du Six Août, 8, 4000 Liège, Belgium.
| | - Maxime Van Egroo
- Maxime Van Egroo, Faculty of Health, Medicine and Life Sciences, School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, Maastricht, The Netherlands.
| |
Collapse
|
38
|
Abstract
Over the past few decades, the importance of sleep has become increasingly recognized for many physiologic functions, including cognition. Many studies have reported the deleterious effect of sleep loss or sleep disruption on cognitive performance. Beyond ensuring adequate sleep quality and duration, discovering methods to enhance sleep to augment its restorative effects is important to improve learning in many populations, such as the military, students, age-related cognitive decline, and cognitive disorders.
Collapse
Affiliation(s)
- Roneil G Malkani
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 525, Chicago, IL 60611, USA; Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, USA.
| | - Phyllis C Zee
- Division of Sleep Medicine, Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, 710 North Lake Shore Drive, Suite 520, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Gudberg C, Stevelink R, Douaud G, Wulff K, Lazari A, Fleming MK, Johansen-Berg H. Individual differences in slow wave sleep architecture relate to variation in white matter microstructure across adulthood. Front Aging Neurosci 2022; 14:745014. [PMID: 36092806 PMCID: PMC9453235 DOI: 10.3389/fnagi.2022.745014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 08/08/2022] [Indexed: 11/18/2022] Open
Abstract
Sleep plays a key role in supporting brain function and resilience to brain decline. It is well known that sleep changes substantially with aging and that aging is associated with deterioration of brain structure. In this study, we sought to characterize the relationship between slow wave slope (SWslope)—a key marker of sleep architecture and an indirect proxy of sleep quality—and microstructure of white matter pathways in healthy adults with no sleep complaints. Participants were 12 young (24–27 years) and 12 older (50–79 years) adults. Sleep was assessed with nocturnal electroencephalography (EEG) and the Pittsburgh Sleep Quality Index (PSQI). White matter integrity was assessed using tract-based spatial statistics (TBSS) on tensor-based metrics such as Fractional Anisotropy (FA) and Mean Diffusivity (MD). Global PSQI score did not differ between younger (n = 11) and older (n = 11) adults (U = 50, p = 0.505), but EEG revealed that younger adults had a steeper SWslope at both frontal electrode sites (F3: U = 2, p < 0.001, F4: U = 4, p < 0.001, n = 12 younger, 10 older). There were widespread correlations between various diffusion tensor-based metrics of white matter integrity and sleep SWslope, over and above effects of age (n = 11 younger, 9 older). This was particularly evident for the corpus callosum, corona radiata, superior longitudinal fasciculus, internal and external capsule. This indicates that reduced sleep slow waves may be associated with widespread white matter deterioration. Future studies should investigate whether interventions targeted at improving sleep architecture also impact on decline in white matter microstructure in older adults.
Collapse
Affiliation(s)
- Christel Gudberg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Remi Stevelink
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Gwenaëlle Douaud
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Katharina Wulff
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Department of Radiation Sciences and Molecular Biology, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Alberto Lazari
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Melanie K. Fleming
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Melanie K. Fleming,
| | - Heidi Johansen-Berg
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
40
|
Sanchez E, Blais H, Duclos C, Arbour C, Van Der Maren S, El-Khatib H, Baril AA, Bernard F, Carrier J, Gosselin N. Sleep from acute to chronic traumatic brain injury and cognitive outcomes. Sleep 2022; 45:zsac123. [PMID: 35640250 PMCID: PMC9366647 DOI: 10.1093/sleep/zsac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/13/2022] [Indexed: 09/29/2023] Open
Abstract
STUDY OBJECTIVES Traumatic brain injuries (TBIs) cause persistent cerebral damage and cognitive deficits. Because sleep may be a critical factor for brain recovery, we characterized the sleep of patients with TBI from early hospitalization to years post-injury and explored the hypothesis that better sleep during hospitalization predicts more favorable long-term cognitive outcomes. METHODS We tested patients with moderate-to-severe TBI in the hospitalized (n = 11) and chronic (n = 43) stages using full-night polysomnography, with 82% of the hospitalized group being retested years post-injury. Hospitalized patients with severe orthopedic and/or spinal cord injury (n = 14) and healthy participants (n = 36) were tested as controls for the hospitalized and chronic TBI groups, respectively. Groups had similar age and sex and were compared for sleep characteristics, including slow waves and spindles. For patients with TBI, associations between sleep during hospitalization and long-term memory and executive function were assessed. RESULTS Hospitalized patients with TBI or orthopedic injuries had lower sleep efficiency, higher wake after sleep onset, and lower spindle density than the chronic TBI and healthy control groups, but only hospitalized patients with brain injury had an increased proportion of slow-wave sleep. During hospitalization for TBI, less fragmented sleep, more slow-wave sleep, and higher spindle density were associated to more favorable cognitive outcomes years post-injury, while injury severity markers were not associated with these outcomes. CONCLUSION These findings highlight the importance of sleep following TBI, as it could be a strong predictor of neurological recovery, either as a promoter or an early marker of cognitive outcomes.
Collapse
Affiliation(s)
- Erlan Sanchez
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Hélène Blais
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
| | - Catherine Duclos
- Montreal General Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Caroline Arbour
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Faculty of Nursing, Université de Montréal, Montreal, Quebec, Canada
| | - Solenne Van Der Maren
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Héjar El-Khatib
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Andrée-Ann Baril
- Douglas Mental Health University Institute, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Francis Bernard
- Centre Intégré de Traumatologie, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Julie Carrier
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| | - Nadia Gosselin
- Center for Advanced Research in Sleep Medicine, Centre Intégré Universitaire de Santé et Services Sociaux du Nord de l’Île-de-Montréal, Montreal, Quebec, Canada
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Grigg-Damberger MM, Foldvary-Schaefer N. Sleep Biomarkers Help Predict the Development of Alzheimer Disease. J Clin Neurophysiol 2022; 39:327-334. [PMID: 35239558 DOI: 10.1097/wnp.0000000000000818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY Middle-aged or older adults who self-report sleep-wake disorders are at an increased risk for incident dementia, mild cognitive impairment, and Alzheimer disease. Dementia in people with mild cognitive impairment and Alzheimer disease who complain of sleep-wake disorders progress faster than those without sleep-wake disorders. Removal of amyloid-beta and tau tangles occurs preferentially in non-rapid eye movement 3 sleep and fragmented or insufficient sleep may lead to accumulation of these neurotoxins even in preclinical stages. Selective atrophy in the medial temporal lobe on brain MRI has been shown to predict impaired coupling of slow oscillations and sleep spindles. Impaired slow wave-spindle coupling has been shown to correlate with impaired overnight memory consolidation. Whereas, a decrease in the amplitude of 0.6 to 1 Hz slow wave activity predicts higher cortical Aβ burden on amyloid PET scans. Overexpression of the wake-promoting neurotransmitter orexin may predispose patients with mild cognitive impairment and Alzheimer disease to increased wakefulness, decreasing time they need to clear from the brain the neurotoxic accumulation of amyloid-beta and especially tau. More research exploring these relationships is needed and continuing.
Collapse
|
42
|
Nicolas J, King BR, Levesque D, Lazzouni L, Coffey EBJ, Swinnen S, Doyon J, Carrier J, Albouy G. Sigma oscillations protect or reinstate motor memory depending on their temporal coordination with slow waves. eLife 2022; 11:73930. [PMID: 35726850 PMCID: PMC9259015 DOI: 10.7554/elife.73930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Targeted memory reactivation (TMR) during post-learning sleep is known to enhance motor memory consolidation but the underlying neurophysiological processes remain unclear. Here, we confirm the beneficial effect of auditory TMR on motor performance. At the neural level, TMR enhanced slow wave (SW) characteristics. Additionally, greater TMR-related phase-amplitude coupling between slow (0.5–2 Hz) and sigma (12–16 Hz) oscillations after the SW peak was related to higher TMR effect on performance. Importantly, sounds that were not associated to learning strengthened SW-sigma coupling at the SW trough. Moreover, the increase in sigma power nested in the trough of the potential evoked by the unassociated sounds was related to the TMR benefit. Altogether, our data suggest that, depending on their precise temporal coordination during post learning sleep, slow and sigma oscillations play a crucial role in either memory reinstatement or protection against irrelevant information; two processes that critically contribute to motor memory consolidation.
Collapse
Affiliation(s)
- Judith Nicolas
- Department of Movement Sciences, KU Leuven, Leuven, Belgium
| | - Bradley R King
- Department of Health and Kinesiology, Unversity of Utah, Salt Lake City, United States
| | - David Levesque
- Center for Advanced Research in Sleep Medicine, Universite de Montreal, Montreal, Canada
| | - Latifa Lazzouni
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | | | | | - Julien Doyon
- Department of Neurology and Neurosurgery, McGill University, Montréal, Canada
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
43
|
Autonomic Central Coupling during Daytime Sleep Differs between Older and Younger People. Neurobiol Learn Mem 2022; 193:107646. [PMID: 35671980 DOI: 10.1016/j.nlm.2022.107646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 04/12/2022] [Accepted: 05/28/2022] [Indexed: 11/24/2022]
Abstract
Decreased functioning in the elderly is mirrored by independent changes in central and autonomic nervous systems. Additionally, recent work suggests that the coupling of these systems may also serve an important role. In young adults, Autonomic and Central Events (ACEs), measured in the temporal coincidence of heart rate bursts (HRBs) and increased slow-wave-activity (SWA, 0.5-1Hz) and sigma activity (12-15Hz), followed by parasympathetic surge (RRHF) during non-rapid eye movement (NREM) sleep, predicted cognitive improvements. However, ACEs have not been examined in the elderly. Thus, the current study compared ACEs during wake and daytime sleep in older and younger adults and examined associations with working memory improvement before and after a nap. Compared to youngers, older adults showed lower amplitude of ACEs during NREM sleep, but not during wake. Furthermore, while younger adults demonstrated a parasympathetic surge after HRBs, older adults showed an earlier rise and longer maintenance of the RRHF. Taken together, our results demonstrate that autonomic-central coupling declines with age. Pathological aging implicates independent roles for decreased autonomic and central nervous system functioning, the current findings suggest that the coupling of these systems may also deserve attention.
Collapse
|
44
|
Chylinski D, Van Egroo M, Narbutas J, Muto V, Bahri MA, Berthomier C, Salmon E, Bastin C, Phillips C, Collette F, Maquet P, Carrier J, Lina JM, Vandewalle G. Timely coupling of sleep spindles and slow waves is linked to early amyloid-β burden and predicts memory decline. eLife 2022; 11:78191. [PMID: 35638265 PMCID: PMC9177143 DOI: 10.7554/elife.78191] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/05/2022] Open
Abstract
Sleep alteration is a hallmark of ageing and emerges as a risk factor for Alzheimer’s disease (AD). While the fine-tuned coalescence of sleep microstructure elements may influence age-related cognitive trajectories, its association with AD processes is not fully established. Here, we investigated whether the coupling of spindles and slow waves (SW) is associated with early amyloid-β (Aβ) brain burden, a hallmark of AD neuropathology, and cognitive change over 2 years in 100 healthy individuals in late-midlife (50–70 years; 68 women). We found that, in contrast to other sleep metrics, earlier occurrence of spindles on slow-depolarisation SW is associated with higher medial prefrontal cortex Aβ burden (p=0.014, r²β*=0.06) and is predictive of greater longitudinal memory decline in a large subsample (p=0.032, r²β*=0.07, N=66). These findings unravel early links between sleep, AD-related processes, and cognition and suggest that altered coupling of sleep microstructure elements, key to its mnesic function, contributes to poorer brain and cognitive trajectories in ageing.
Collapse
Affiliation(s)
- Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Vincenzo Muto
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Christophe Phillips
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Julie Carrier
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Jean-Marc Lina
- Centre for Advanced Research in Sleep Medicine, Université de Montréal, Montreal, Canada
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
45
|
Konno D, Ikegaya Y, Sasaki T. Weak representation of awake/sleep states by local field potentials in aged mice. Sci Rep 2022; 12:7766. [PMID: 35545694 PMCID: PMC9095686 DOI: 10.1038/s41598-022-11888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 05/03/2022] [Indexed: 11/19/2022] Open
Abstract
Senescence affects various aspects of sleep, and it remains unclear how sleep-related neuronal network activity is altered by senescence. Here, we recorded local field potential signals from multiple brain regions covering the forebrain in young (10-week-old) and aged (2-year-old) mice. Interregional LFP correlations across these brain regions could not detect pronounced differences between awake and sleep states in both young and aged mice. Multivariate analyses with machine learning algorithms with uniform manifold approximation and projection and robust continuous clustering demonstrated that LFP correlational patterns at multiple frequency bands, ranging from delta to high gamma bands, in aged mice less represented awake/sleep states than those in young mice. By housing aged mice in an enriched environment, the LFP patterns were changed to more precisely represent awake/sleep states. Our results demonstrate senescence-induced changes in neuronal activity at the network level and provide insight into the prevention of pathological symptoms associated with sleep disturbance in senescence.
Collapse
Affiliation(s)
- Daichi Konno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Laboratory of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.,Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan.,Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| | - Takuya Sasaki
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aramaki-Aoba, Aoba-Ku, Sendai, 980-8578, Japan.
| |
Collapse
|
46
|
Weiss JT, Donlea JM. Roles for Sleep in Neural and Behavioral Plasticity: Reviewing Variation in the Consequences of Sleep Loss. Front Behav Neurosci 2022; 15:777799. [PMID: 35126067 PMCID: PMC8810646 DOI: 10.3389/fnbeh.2021.777799] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep is a vital physiological state that has been broadly conserved across the evolution of animal species. While the precise functions of sleep remain poorly understood, a large body of research has examined the negative consequences of sleep loss on neural and behavioral plasticity. While sleep disruption generally results in degraded neural plasticity and cognitive function, the impact of sleep loss can vary widely with age, between individuals, and across physiological contexts. Additionally, several recent studies indicate that sleep loss differentially impacts distinct neuronal populations within memory-encoding circuitry. These findings indicate that the negative consequences of sleep loss are not universally shared, and that identifying conditions that influence the resilience of an organism (or neuron type) to sleep loss might open future opportunities to examine sleep's core functions in the brain. Here, we discuss the functional roles for sleep in adaptive plasticity and review factors that can contribute to individual variations in sleep behavior and responses to sleep loss.
Collapse
Affiliation(s)
- Jacqueline T. Weiss
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- Neuroscience Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeffrey M. Donlea
- Department of Neurobiology, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Jeffrey M. Donlea
| |
Collapse
|
47
|
Fitzroy AB, Jones BJ, Kainec KA, Seo J, Spencer RMC. Aging-Related Changes in Cortical Sources of Sleep Oscillatory Neural Activity Following Motor Learning Reflect Contributions of Cortical Thickness and Pre-sleep Functional Activity. Front Aging Neurosci 2022; 13:787654. [PMID: 35087393 PMCID: PMC8786737 DOI: 10.3389/fnagi.2021.787654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 11/25/2021] [Indexed: 01/01/2023] Open
Abstract
Oscillatory neural activity during sleep, such as that in the delta and sigma bands, is important for motor learning consolidation. This activity is reduced with typical aging, and this reduction may contribute to aging-related declines in motor learning consolidation. Evidence suggests that brain regions involved in motor learning contribute to oscillatory neural activity during subsequent sleep. However, aging-related differences in regional contributions to sleep oscillatory activity following motor learning are unclear. To characterize these differences, we estimated the cortical sources of consolidation-related oscillatory activity using individual anatomical information in young and older adults during non-rapid eye movement sleep after motor learning and analyzed them in light of cortical thickness and pre-sleep functional brain activation. High-density electroencephalogram was recorded from young and older adults during a midday nap, following completion of a functional magnetic resonance imaged serial reaction time task as part of a larger experimental protocol. Sleep delta activity was reduced with age in a left-weighted motor cortical network, including premotor cortex, primary motor cortex, supplementary motor area, and pre-supplementary motor area, as well as non-motor regions in parietal, temporal, occipital, and cingulate cortices. Sleep theta activity was reduced with age in a similar left-weighted motor network, and in non-motor prefrontal and middle cingulate regions. Sleep sigma activity was reduced with age in left primary motor cortex, in a non-motor right-weighted prefrontal-temporal network, and in cingulate regions. Cortical thinning mediated aging-related sigma reductions in lateral orbitofrontal cortex and frontal pole, and partially mediated delta reductions in parahippocampal, fusiform, and lingual gyri. Putamen, caudate, and inferior parietal cortex activation prior to sleep predicted frontal and motor cortical contributions to sleep delta and theta activity in an age-moderated fashion, reflecting negative relationships in young adults and positive or absent relationships in older adults. Overall, these results support the local sleep hypothesis that brain regions active during learning contribute to consolidation-related neural activity during subsequent sleep and demonstrate that sleep oscillatory activity in these regions is reduced with aging.
Collapse
Affiliation(s)
- Ahren B. Fitzroy
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Bethany J. Jones
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Kyle A. Kainec
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Jeehye Seo
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Rebecca M. C. Spencer
- Neuroscience & Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
48
|
Mullins AE, Parekh A, Kam K, Castillo B, Roberts ZJ, Fakhoury A, Valencia DI, Schoenholz R, Tolbert TM, Bronstein JZ, Mooney AM, Burschtin OE, Rapoport DM, Ayappa I, Varga AW. Selective Continuous Positive Airway Pressure Withdrawal With Supplemental Oxygen During Slow-Wave Sleep as a Method of Dissociating Sleep Fragmentation and Intermittent Hypoxemia-Related Sleep Disruption in Obstructive Sleep Apnea. Front Physiol 2021; 12:750516. [PMID: 34880775 PMCID: PMC8646104 DOI: 10.3389/fphys.2021.750516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
Obstructive sleep apnea (OSA) is considered to impair memory processing and increase the expression of amyloid-β (Aβ) and risk for Alzheimer’s disease (AD). Given the evidence that slow-wave sleep (SWS) is important in both memory and Aβ metabolism, a better understanding of the mechanisms by which OSA impacts memory and risk for AD can stem from evaluating the role of disruption of SWS specifically and, when such disruption occurs through OSA, from evaluating the individual contributions of sleep fragmentation (SF) and intermittent hypoxemia (IH). In this study, we used continuous positive airway pressure (CPAP) withdrawal to recapitulate SWS-specific OSA during polysomnography (PSG), creating conditions of both SF and IH in SWS only. During separate PSGs, we created the conditions of SWS fragmentation but used oxygen to attenuate IH. We studied 24 patients (average age of 55 years, 29% female) with moderate-to-severe OSA [Apnea-Hypopnea Index (AHI); AHI4% > 20/h], who were treated and adherent to CPAP. Participants spent three separate nights in the laboratory under three conditions as follows: (1) consolidated sleep with CPAP held at therapeutic pressure (CPAP); (2) CPAP withdrawn exclusively in SWS (OSASWS) breathing room air; and (3) CPAP withdrawn exclusively in SWS with the addition of oxygen during pressure withdrawal (OSASWS + O2). Multiple measures of SF (e.g., arousal index) and IH (e.g., hypoxic burden), during SWS, were compared according to condition. Arousal index in SWS during CPAP withdrawal was significantly greater compared to CPAP but not significantly different with and without oxygen (CPAP = 1.1/h, OSASWS + O2 = 10.7/h, OSASWS = 10.6/h). However, hypoxic burden during SWS was significantly reduced with oxygen compared to without oxygen [OSASWS + O2 = 23 (%min)/h, OSASWS = 37 (%min)/h]. No significant OSA was observed in non-rapid eye movement (REM) stage 1 (NREM 1), non-REM stage 2 (NREM 2), or REM sleep (e.g., non-SWS) in any condition. The SWS-specific CPAP withdrawal induces OSA with SF and IH. The addition of oxygen during CPAP withdrawal results in SF with significantly less severe hypoxemia during the induced respiratory events in SWS. This model of SWS-specific CPAP withdrawal disrupts SWS with a physiologically relevant stimulus and facilitates the differentiation of SF and IH in OSA.
Collapse
Affiliation(s)
- Anna E Mullins
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ankit Parekh
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Korey Kam
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bresne Castillo
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Zachary J Roberts
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ahmad Fakhoury
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Daphne I Valencia
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Reagan Schoenholz
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Thomas M Tolbert
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jason Z Bronstein
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Anne M Mooney
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Omar E Burschtin
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - David M Rapoport
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Indu Ayappa
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Andrew W Varga
- Division of Pulmonary, Critical Care, and Sleep Medicine, Mount Sinai Integrative Sleep Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
49
|
Falter A, Van Den Bossche MJA. How non-rapid eye movement sleep and Alzheimer pathology are linked. World J Psychiatry 2021; 11:1027-1038. [PMID: 34888171 PMCID: PMC8613758 DOI: 10.5498/wjp.v11.i11.1027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by the presence of senile plaques and neurofibrillary tangles. Research attempts to identify characteristic factors that are associated with the presence of the AD pathology on the one hand and that increase the risk of developing AD on the other. Changes in non-rapid eye movement (NREM) sleep may meet both requirements for various reasons. First, NREM-sleep is important for optimal memory function. In addition, studies report that the presence of AD pathology is associated with NREM-sleep changes. Finally, more and more results appear to suggest that sleep problems are not only a symptom of AD but can also increase the risk of AD. Several of these studies suggest that it is primarily a lack of NREM-sleep that is responsible for this increased risk. However, the majority investigated sleep only through subjective reporting, as a result of which NREM-sleep could not be analyzed separately. The aim of this literature study is therefore to present the results of the studies that relate the AD pathology and NREM-sleep (registered by electroencephalography). Furthermore, we try to evaluate whether NREM-sleep analysis could be used to support the diagnosis of AD and whether NREM-sleep deficiency could be a causal factor in the development of AD.
Collapse
Affiliation(s)
- Annelies Falter
- Department of Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
| | - Maarten J A Van Den Bossche
- Department of Geriatric Psychiatry, University Psychiatric Center KU Leuven, Leuven 3000, Belgium
- Center for Neuropsychiatry, Research Group Psychiatry, Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
50
|
Koller DP, Kasanin V, Flynn-Evans EE, Sullivan JP, Dijk DJ, Czeisler CA, Barger LK. Altered sleep spindles and slow waves during space shuttle missions. NPJ Microgravity 2021; 7:48. [PMID: 34795291 PMCID: PMC8602337 DOI: 10.1038/s41526-021-00177-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Sleep deficiencies and associated performance decrements are common among astronauts during spaceflight missions. Previously, sleep in space was analyzed with a focus on global measures while the intricate structure of sleep oscillations remains largely unexplored. This study extends previous findings by analyzing how spaceflight affects characteristics of sleep spindles and slow waves, two sleep oscillations associated with sleep quality and quantity, in four astronauts before, during and after two Space Shuttle missions. Analysis of these oscillations revealed significantly increased fast spindle density, elevated slow spindle frequency, and decreased slow wave amplitude in space compared to on Earth. These results reflect sleep characteristics during spaceflight on a finer electrophysiological scale and provide an opportunity for further research on sleep in space.
Collapse
Affiliation(s)
- Dominik P Koller
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands.
| | - Vida Kasanin
- Advanced Concepts Team, European Space Agency, ESTEC, Noordwijk, The Netherlands
| | - Erin E Flynn-Evans
- Fatigue Countermeasures Laboratory, Human Systems Integration Division, Exploration Technology Directorate, NASA Ames Research Center, Moffett Field, CA, USA
| | - Jason P Sullivan
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Derk-Jan Dijk
- Surrey Sleep Research Centre, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London and the University of Surrey, Guildford, UK
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Laura K Barger
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|