1
|
Deng H, Li Q, Li M, Sun L, Li B, Wang Y, Wu QL, Zeng J. Epiphytic microorganisms of submerged macrophytes effectively contribute to nitrogen removal. ENVIRONMENTAL RESEARCH 2024; 242:117754. [PMID: 38016497 DOI: 10.1016/j.envres.2023.117754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 11/30/2023]
Abstract
Submerged macrophytes play important roles in nutrient cycling and are widely used in ecological restoration to alleviate eutrophication and improve water quality in lakes. Epiphytic microbial communities on leaves of submerged macrophytes might promote nitrogen cycling, but the mechanisms and quantification of their contributions remain unclear. Here, four types of field zones with different nutrient levels and submerged macrophytes, eutrophic + Vallisneria natans (EV), eutrophic + V. natans + Hydrilla verticillata, mesotrophic + V. natans + H. verticillata, and eutrophic without macrophytes were selected to investigate the microbial communities that involved in nitrification and denitrification. The alpha diversity of bacterial community was higher in the phyllosphere than in the water, and that of H. verticillata was higher compared to V. natans. Bacterial community structures differed significantly between the four zones. The highest relative abundance of dominant bacterioplankton genera involved in nitrification and denitrification was observed in the EV zone. Similarly, the alpha diversity of the epiphytic ammonia-oxidizing archaea and nosZI-type denitrifiers were highest in the EV zone. Consist with the diversity patterns, the potential denitrification rates were higher in the phyllosphere than those in the water. Higher potential denitrification rates in the phyllosphere were also found in H. verticillata than those in V. natans. Anammox was not detected in all samples. Nutrient loads, especially nitrogen concentrations were important factors influencing potential nitrification, denitrification rates, and bacterial communities, especially for the epiphytic nosZI-type taxa. Overall, we observed that the phyllosphere harbors more microbes and promotes higher denitrification rates compared to water, and epiphytic bacterial communities are shaped by nitrogen nutrients and macrophyte species, indicating that epiphytic microorganisms of submerged macrophytes can effectively contribute to the N removal in shallow lakes.
Collapse
Affiliation(s)
- Hongyang Deng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qisheng Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyuan Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Lijie Sun
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; College of Hydrology and Water Resources, Hohai University, Nanjing, 210024, China
| | - Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yujing Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China; Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China; Poyang Lake Wetland Research Station, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Jiujiang, 332899, China.
| |
Collapse
|
2
|
Wang X, Liu Y, Qing C, Zeng J, Dong J, Xia P. Analysis of diversity and function of epiphytic bacterial communities associated with macrophytes using a metagenomic approach. MICROBIAL ECOLOGY 2024; 87:37. [PMID: 38286834 PMCID: PMC10824801 DOI: 10.1007/s00248-024-02346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/12/2024] [Indexed: 01/31/2024]
Abstract
Epiphytic bacteria constitute a vital component of aquatic ecosystems, pivotal in regulating elemental cycling. Despite their significance, the diversity and functions of epiphytic bacterial communities adhering to various submerged macrophytes remain largely unexplored. In this study, we employed a metagenomic approach to investigate the diversity and function of epiphytic bacterial communities associated with six submerged macrophytes: Ceratophyllum demersum, Hydrilla verticillata, Myriophyllum verticillatum, Potamogeton lucens, Stuckenia pectinata, and Najas marina. The results revealed that the predominant epiphytic bacterial species for each plant type included Pseudomonas spp., Microbacterium spp., and Stenotrophomonas rhizophila. Multiple comparisons and linear discriminant analysis effect size indicated a significant divergence in the community composition of epiphytic bacteria among the six submerged macrophytes, with 0.3-1% of species uniquely identified. Epiphytic bacterial richness associated with S. pectinata significantly differed from that of both C. demersum and H. verticillata, although no significant differences were observed in diversity and evenness. Functionally, notable variations were observed in the relative abundances of genes associated with carbon, nitrogen, and phosphorus cycling within epiphytic bacterial communities on the submerged macrophyte hosts. Among these communities, H. verticillata exhibited enrichment in genes related to the 3-hydroxypropionate bicycle and nitrogen assimilation, translocation, and denitrification. Conversely, M. verticillatum showcased enrichment in genes linked to the reductive citric acid cycle (Arnon-Buchanan cycle), reductive pentose phosphate cycle (Calvin cycle), polyphosphate degradation, and organic nitrogen metabolism. In summary, our findings offer valuable insights into the diversity and function of epiphytic bacteria on submerged macrophyte leaves, shedding light on their roles in lake ecosystems.
Collapse
Affiliation(s)
- Xin Wang
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Yi Liu
- Guizhou Caohai National Nature Reserve Management Committee, Weining, 55310, China
| | - Chun Qing
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institutie of Geography and Limnology, Chinese Academy of Science, Nanjing, 210008, China
| | - Jixing Dong
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China
| | - Pinhua Xia
- Guizhou Province Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
3
|
Wu Q, Yu C, Liu Y, Xing P, Li H, Li B, Wan S, Wu QL. Microcystis blooms caused the decreasing richness of and interactions between free-living microbial functional genes in Lake Taihu, China. FEMS Microbiol Ecol 2024; 100:fiad166. [PMID: 38148131 PMCID: PMC10795575 DOI: 10.1093/femsec/fiad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 11/17/2023] [Accepted: 12/23/2023] [Indexed: 12/28/2023] Open
Abstract
Microcystis blooms have a marked effect on microbial taxonomical diversity in eutrophic lakes, but their influence on the composition of microbial functional genes is still unclear. In this study, the free-living microbial functional genes (FMFG) composition was investigated in the period before Microcystis blooms (March) and during Microcystis blooms (July) using a comprehensive functional gene array (GeoChip 5.0). The composition and richness of FMFG in the water column was significantly different between these two periods. The FMFG in March was enriched in the functional categories of nitrogen, sulfur, and phosphorus cycling, whereas the FMFG in July was enriched in carbon cycling, organic remediation, and metal homeostasis. Molecular ecological network analysis further demonstrated fewer functional gene interactions and reduced complexity in July than in March. Module hubs of the March network were mediated by functional genes associated with carbon, nitrogen, sulfur, and phosphorus, whereas those in July by a metal homeostasis functional gene. We also observed stronger deterministic processes in the FMFG assembly in July than in March. Collectively, this study demonstrated that Microcystis blooms induced significant changes in FMFG composition and metabolic potential, and abundance-information, which can support the understanding and management of biogeochemical cycling in eutrophic lake ecosystems.
Collapse
Affiliation(s)
- Qiong Wu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunyan Yu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yanru Liu
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Huabing Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- The Fuxianhu Station of Deep Lake Research, Chinese Academy of Sciences, Chengjiang 652500, China
| | - Biao Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Shiqiang Wan
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
- Center for Evolution and Conservation Biology, Southern Marine Sciences and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sino Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Wei L, Zhang Y, Zhang Y, Xu X, Zhu L. Unraveling the response of water quality and microbial community to lake water backflowing in one typical estuary of Lake Taihu, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:642. [PMID: 37145346 DOI: 10.1007/s10661-023-11190-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/01/2023] [Indexed: 05/06/2023]
Abstract
To investigate the effect of lake water backflowing on the aquatic ecosystem in the estuary, surface water samples in the backflowing and unbackflowing areas were collected from one typical estuary of Lake Taihu, Xitiaoxi River. 16S rRNA sequencing and redundancy analysis were conducted to quantitatively elucidate the correlation between microbial community and water quality parameters. Results indicated lake water backflowing would affect the relative distribution of nitrogen species and increase the concentration of total nitrogen (TN) and nitrate, especially in the outlets of municipal sewage and agricultural drainage. For backflowing areas, more frequent water exchange could lower the seasonal fluctuation of the abundance and diversity of microbial community. RDA results showed crucial water quality parameters that greatly influence bacterial community were total organic carbon (TOC), total dissolved solids (TDS), salinity (SAL), ammonia, nitrate, TN for backflowing areas, and TOC, TDS, SAL, ammonia, TN without nitrate for unbackflowing areas. Verrucomicrobia, Proteobacteria, Microcystis, and Arcobacter were dominant with 27.7%, 15.7%, 30.5%, and 25.7% contribution to the overall water quality in backflowing areas. Chloroflexi, Verrucomicrobia, Flavobacterium, and Nostocaceae were dominant with 25.0%, 18.4%, 22.3%, and 11.4% contribution to the overall water quality in unbackflowing areas. And lake water backflowing might mainly affect the amino acid and carbohydrate metabolism based on the metabolism function prediction. A better understanding of the spatiotemporal changes in water quality parameters and microbial community was obtained from this research to comprehensively assess the effect of lake water backflowing on the estuarine ecosystem.
Collapse
Affiliation(s)
- Lecheng Wei
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Yajie Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Ye Zhang
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
| | - Xiangyang Xu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China
| | - Liang Zhu
- Institute of Environmental Pollution Control and Treatment, Zhejiang University, Hangzhou, 310058, China.
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China.
- Zhejiang Provincial Engineering Laboratory of Water Pollution Control, 388 Yuhangtang Road, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Gao Y, Yang H, Li L, Gao X, Li M, Dong J, Zhang M, Zhang J, Li X, Lu Z, Burford MA. Higher resistance of a microcystin (MC)-producing cyanobacterium, Microcystis, to the submerged macrophyte Myriophyllum spicatum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63941-63952. [PMID: 37055695 DOI: 10.1007/s11356-023-26654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/22/2023] [Indexed: 04/15/2023]
Abstract
Outbreaks of Microcystis blooms can affect growth of submerged plants, which in turn can inhibit cyanobacterial growth. Microcystin (MC)-producing and non-MC-producing Microcystis strains typically coexist in Microcystis-dominated blooms. However, the interaction between submerged plants and Microcystis at strain level is not clear. This study was aimed at assessing the effects of a submerged macrophyte Myriophyllum spicatum on one MC-producing versus one non-MC-producing strains of the cyanobacterium Microcystis using plant-Microcystis co-culture experiments. The impacts of Microcystis on M. spicatum were also examined. It showed that the MC-producing Microcystis strain had a higher resistance to negative impacts by the cocultured submerged plant M. spicatum than the non-MC-producing strain. By contrast, the plant M. spicatum was impacted more by the MC-producing Microcystis than the non-MC-producer. The associated bacterioplankton community was affected more by the MC-producing Microcystis than the cocultured M. spicatum. The MC cell quotas were significantly higher in the coculture treatment (the PM + treatment, p < 0.05), indicating that the production and release of MCs might be a key factor responsible for the reduced impact of M. spicatum. The higher concentrations of dissolved organic and reducing inorganic compounds might eventually exacerbate the recovering capacity of coexisting submerged plants. Overall, this study indicated that the capacity to produce MCs, as well as the density of Microcystis, should be taken into account when attempting to reestablish submerged vegetation to undertake remediation works.
Collapse
Affiliation(s)
- Yunni Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Hui Yang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Longfei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Xiaofei Gao
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Mei Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Jing Dong
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Man Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Jingxiao Zhang
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China
| | - Xuejun Li
- Engineering Lab of Henan Province for Aquatic Animal Disease Control, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang, 453007, China.
- Observation and Research Station On Water Ecosystem in Danjiangkou Reservoir of Henan Province, Nanyang, 474450, China.
| | - Zhiying Lu
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Michele A Burford
- Australian Rivers Institute, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| |
Collapse
|
6
|
Bacterial community composition of the sediment in Sayram Lake, an alpine lake in the arid northwest of China. BMC Microbiol 2023; 23:47. [PMID: 36823577 PMCID: PMC9948317 DOI: 10.1186/s12866-023-02793-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in alpine lake ecosystems. However, little is known about the sediment microbial communities in these lakes. In this study, the bacterial community composition (BCC) and their relationships with environmental factors of the sediment in Sayram Lake, the largest alpine and cold-water inland lake, China was analyzed using Illumina MiSeq sequencing. In total, we obtained 618,271 high quality sequences. The results showed that the bacterial communities with 30 phyla and 546 genera, were spread out among the 5 furface sediment samples, respectively. The communities were dominated by Proteobacteria, Acidobacteria, Planctomycetes, Gemmatimonadetes, Chloroflexi, Actinobacteria, Verrucomicrobia and Bacteroidetes, accounting for 48.15 ± 8.10%, 11.23 ± 3.10%, 8.42 ± 2.15%, 8.37 ± 2.26%, 7.40 ± 3.05%, 5.62 ± 1.25%, 4.18 ± 2.12% and 2.24 ± 1.10% of the total reads, respectively. At the genus level, the communities were dominated by Aquabacterium, Pseudomonas, Woeseia, MND1, Ignavibacterium and Truepera, accounting for 7.89% ± 8.24%, 2.32% ± 1.05%, 2.14% ± 0.94%, 2% ± 1.22%, 0.94% ± 0.14% and 0.80% ± 0.14% of the total reads, respectively. Statistical analyses showed the similarity of the sediment bacterial communities at our field sites was considerably low, far below 35%, and total organic carbon (TOC) was the dominant environmental factor affecting the spatial changes of BCC in the sediment. Thus, this study greatly improving our understanding of the microbial ecology of alpine lake in the arid and semi-arid ecosystems today so seriously threatened.
Collapse
|
7
|
Humic Lake Exhibits Higher Microbial Functional Gene Diversity and Weaker Gene Interaction Efficiency than a Common Alkaline Lake. BIOLOGY 2022; 11:biology11101448. [PMID: 36290352 PMCID: PMC9598760 DOI: 10.3390/biology11101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/16/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Humic lakes (HLs) are special water bodies (high organic matter content, low pH, and low transparency) that are important sources of major greenhouse gases. The knowledge about microbial functional potentials and the interactions among different genes in HL water has been scarcely understood. In this study, we used 16S rRNA gene sequencing and the GeoChip 5.0 to investigate microbial community compositions and functional gene structures in an HL and a reference weakly alkaline lake (RAL). The HL microbial communities showed distinct compositions and functional gene structures than those in the RAL. The functional gene diversity was significantly higher in the HL than in the RAL. Specifically, higher gene relative intensities in carbon and nitrogen fixations, the degradation of various types of carbon, methane oxidation and methanogenesis, ammonification, denitrification, and assimilatory N reduction were observed in the HL samples. By contrast, the metabolic potentials of microorganisms involved in dissimilatory N reduction, phosphorus degradation, and sulfur oxidation were weaker in the HL than in the RAL. Despite higher functional gene diversity, the interaction efficiency among genes (reflected by network geodesic distance and clustering coefficient) might be reduced in the HL. Different functional microbes may develop less interdependent relationships in acquiring nutrients given the high resource availability in the HL. Overall, the enhanced microbial metabolic potentials and less efficient functional interactions might have great consequences on nutrient cycling and greenhouse gas emissions in the HL ecosystem.
Collapse
|
8
|
Cao X, Zhao D, Li C, Röttjers L, Faust K, Zhang H. Regime transition Shapes the Composition, Assembly Processes, and Co-occurrence Pattern of Bacterioplankton Community in a Large Eutrophic Freshwater Lake. MICROBIAL ECOLOGY 2022; 84:336-350. [PMID: 34585289 DOI: 10.1007/s00248-021-01878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
At certain nutrient concentrations, shallow freshwater lakes are generally characterized by two contrasting ecological regimes with disparate patterns of biodiversity and biogeochemical cycles: a macrophyte-dominated regime (MDR) and a phytoplankton-dominated regime (PDR). To reveal ecological mechanisms that affect bacterioplankton along the regime shift, Illumina MiSeq sequencing of the 16S rRNA gene combined with a novel network clustering tool (Manta) were used to identify patterns of bacterioplankton community composition across the regime shift in Taihu Lake, China. Marked divergence in the composition and ecological assembly processes of bacterioplankton community was observed under the regime shift. The alpha diversity of the bacterioplankton community consistently and continuously decreased with the regime shift from MDR to PDR, while the beta diversity presents differently. Moreover, as the regime shifted from MDR to PDR, the contribution of deterministic processes (such as environmental selection) to the assembly of bacterioplankton community initially decreased and then increased again as regime shift from MDR to PDR, most likely as a consequence of differences in nutrient concentration. The topological properties, including modularity, transitivity and network diameter, of the bacterioplankton co-occurrence networks changed along the regime shift, and the co-occurrences among species changed in structure and were significantly shaped by the environmental variables along the regime transition from MDR to PDR. The divergent environmental state of the regimes with diverse nutritional status may be the most important factor that contributes to the dissimilarity of bacterioplankton community composition along the regime shift.
Collapse
Affiliation(s)
- Xinyi Cao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.
| | - Chaoran Li
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| | - Lisa Röttjers
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Karoline Faust
- Laboratory of Molecular Bacteriology (Rega Institute), Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Hongjie Zhang
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
9
|
Yan H, Yan Z, Wang L, Hao Z, Huang J. Toward understanding submersed macrophyte Vallisneria natans-microbe partnerships to improve remediation potential for PAH-contaminated sediment. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127767. [PMID: 34836685 DOI: 10.1016/j.jhazmat.2021.127767] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 11/09/2021] [Indexed: 06/13/2023]
Abstract
Rhizodegradation using submersed macrophytes Vallisneria natans (V. natans) is a promising biotechnology with the potential to restore polycyclic aromatic hydrocarbon (PAH)-contaminated sediments. However, how different sediment types influence the rhizoremediation outcome and the characterization of microbial community along the sediment-V. natans continuum is poorly understood. Here, we collect V. natans, sediments and overlying water from two types of vegetation zones with different levels of PAHs pollutions and set up sediment microcosms for phytoremediation tests. V. natans presence was particularly useful for PAHs remediation in the highly contaminated sites and had a significant effect on PAHs rhizodegradation and microbial communities, especially rhizosphere sediments. The structural composition of microbial communities along the sediment-plant continuum was shaped predominantly by compartment niche of V. natans. Moreover, selective enrichment of specific microbial taxa like Herbaspirillum (relative abundance = 94.80%) in endosphere of V. natans was observed. Herbaspirillum could use PAH as carbon source and promote the growth of plants. In the highly contaminated sediment, V. natans could recruit these bacteria for toxicant degradation into the root interior. Thus, understanding the complex V. natans-microbe interactions could help set up novel decontamination strategies based on the rhizosphere and root interior interactions between plants and their microbial associates.
Collapse
Affiliation(s)
- Haifeng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Zaisheng Yan
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Luming Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| | - Zheng Hao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Juan Huang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
10
|
Shang Y, Wu X, Wang X, Wei Q, Ma S, Sun G, Zhang H, Wang L, Dou H, Zhang H. Factors affecting seasonal variation of microbial community structure in Hulun Lake, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 805:150294. [PMID: 34536882 DOI: 10.1016/j.scitotenv.2021.150294] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Microbial communities play an important role in water quality regulation and biogeochemical cycling in freshwater ecosystems. However, there is a lack of research on the seasonal variation in lake water microorganisms in cold environments. In this study, 16S rRNA gene high-throughput sequencing was used to explore the microbial community and its influencing factors in Hulun Lake water during different seasons. The results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the most important phyla in the microbial community of Hulun Lake, but they had significant seasonal differences in their distribution. In addition, significant seasonal differences were observed in the α diversity of microorganisms, with bacterial diversity being higher in winter than in summer. Changes in environmental variables were significantly correlated with changes in the microbial community, and the rapid changes in temperature, pH, and dissolved oxygen are potentially the major factors influencing seasonal bacterial diversity trends. The findings of the present study enhance our understanding of the microbial communities in alpine lake ecosystems and are of great significance for the management and protection of lake ecosystems.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Shengchao Ma
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Guolei Sun
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Lidong Wang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China
| | - Huashan Dou
- Hulunbuir Academy of Inland Lakes in Northern Cold & Arid Areas, Hulunbuir, China.
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu, Shandong Province, China.
| |
Collapse
|
11
|
Host Dependence of Zooplankton-Associated Microbes and Their Ecological Implications in Freshwater Lakes. WATER 2021. [DOI: 10.3390/w13212949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Zooplankton is colonized by quite different microbes compared with free-living and particle-associated bacteria, serving as a non-negligible niche of bacteria in aquatic ecosystems. Yet detailed analysis of these bacterial groups is still less known, especially in freshwater lakes. To widen our knowledge of host-microbe interaction and bacterial ecosystem functions, we chose two specific populations of zooplankton, i.e., cladoceran Moina and copepod Calanoids, as hosts from five natural lakes, and illustrated detailed features of their associated bacteria. Through 16S rRNA gene sequencing, we found microbes colonized on Calanoids presented significantly higher α-diversity, stronger bacterial interaction and metabolic function potentials than for Moina. It was also notable that zooplankton-associated bacteria showed a high potential of fatty acid metabolism, which is beneficial for host’s development. Moreover, we found that zooplankton-associated microbes may exert profound effects on biogeochemical cycles in freshwater lakes, since several bacterial members able to participate in carbon and nitrogen cycles were found abundant. Overall, our study expands current understanding of the host-microbe interaction and underlying ecological dynamics in freshwater ecosystem.
Collapse
|
12
|
Cordero RD, Jackson DA. Abiotic factors influence species co-occurrence patterns of lake fishes. J Anim Ecol 2021; 90:2859-2874. [PMID: 34498261 DOI: 10.1111/1365-2656.13587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
Abiotic factors are recognized for their strong influence on community structure. Habitat diversity is related to resource availability that influences species richness and abundance. In lakes, surface area and depth have been used as measures of the size and diversity of habitat, and have strong effects on the structure of entire communities. We tested whether abiotic variables, related to habitat size, influence co-occurrence patterns of species pairs of fishes by analysing groups of lakes within a specific area and depth categories in two regions in Ontario, Canada. We used null models to obtain co-occurrence patterns and standard effect sizes for each species pair within each area and depth category. We estimated standard effect sizes relative to lake area or depth and determined whether species co-occurrence patterns change systematically as these measures of habitat increase. We evaluated groups of species where factors such as predation and habitat filtering have been shown to structure those assemblages, and we tested whether area and depth alter the species associations and our interpretation of these relationships. We found significant differences between the observed and expected distributions of regression slopes relating co-occurrences to area and depth in both regions across all species, which indicated the strong influence of both variables on the overall co-occurrence patterns. We observed a significant negative trend of the co-occurrence patterns across lake area categories for the predator-prey species, indicating that the effect of predation was stronger in smaller lakes, but it was reduced in larger lakes, possibly due to increased habitat and resource availability. We show that pooling results as done in standard community null models can lead to Type II errors due to the 'cancellation' of opposing ecological signals. Our results demonstrate the effect of environmental variables on species co-occurrence patterns, but the divergent results obtained between geographical regions suggest that such patterns are context-dependent. This study emphasizes the importance of considering abiotic factors in null models of species co-occurrence to obtain reliable and detailed information about the association patterns between species.
Collapse
Affiliation(s)
- Ruben D Cordero
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Donald A Jackson
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Lipko IA, Belykh OI. Environmental Features of Freshwater Planktonic Actinobacteria. CONTEMP PROBL ECOL+ 2021. [DOI: 10.1134/s1995425521020074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Du Y, Yang W, Ding X, Zhang J, Zheng Z, Zhu J. High heterogeneity of bacterioplankton community shaped by spatially structured environmental factors in West Lake, a typical urban lake in eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42283-42293. [PMID: 32319051 DOI: 10.1007/s11356-020-08818-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Elucidating the bacterioplankton spatial distribution patterns and its determinants is a central topic in ecological research. However, research on the distribution patterns of bacterioplankton community composition (BCC) within a small-sized, highly dynamic freshwater lake remains unclear. In this study, we collected surface water samples from West Lake to investigate the spatiotemporal variation of BCC by 16S rRNA gene high-throughput sequencing. Clear spatial heterogeneity in BCC was identified both in summer and winter. The relatively high abundant taxa exhibited greater correlations with environmental factors and other abundant species in summer than in winter. Variation partitioning analysis was used to unravel the relative importance of environmental factors and spatial processes and further explore the underlying mechanism of BCC successions. Our results showed the predominant shared effect of environmental and spatial factors on BCC in summer (68.41%) and winter (57.37%), indicating that spatially structured environmental factors were the key determinants of structuring BCC spatial heterogeneity in West Lake in the two seasons. Furthermore, environmental factors alone explained a higher proportion of the variation in summer whereas spatial factors explained a higher proportion in winter. These divergences may be related to seasonal environmental changes and anthropogenic disturbances. Our study provided knowledge on BCC spatial heterogeneity in small freshwater habitats and their underlying determinants in different seasons.
Collapse
Affiliation(s)
- Yi Du
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Wen Yang
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Xiuying Ding
- Hangzhou West Lake Administration, Hangzhou, 310002, China
| | - Jinjie Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315800, China
| | - Zhongming Zheng
- School of Marine Science, Ningbo University, Ningbo, 315800, China
| | - Jinyong Zhu
- School of Marine Science, Ningbo University, Ningbo, 315800, China.
- , Ningbo, China.
| |
Collapse
|
15
|
Chang W, Sun J, Pang Y, Zhang S, Gong L, Lu J, Feng B, Xu R. Effects of different habitats on the bacterial community composition in the water and sediments of Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44983-44994. [PMID: 32772287 DOI: 10.1007/s11356-020-10376-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
Bacterial communities are sensitive to environmental fluctuations, and a better understanding of the relationships between bacterial community distribution and complex environmental conditions is important for the remediation of lake ecosystems. In this study, bacterial communities from 7 water and 7 sediment samples in 3 different regions (east, the hydrophyte-dominated region; north, the transitional region; west, the highly polluted region) of Lake Taihu were investigated via high-throughput sequencing. The physicochemical characterization showed that there were obvious differences in the trophic statuses of the three lake regions, which were mainly due to the differences in pollutant concentration and hydrophyte coverage. The Shannon and Simpson values indicated that the diversity of bacterial communities in water was the highest in the eastern region, followed by the northern and western regions, while there was no significant difference in the bacterial community characteristics in sediments among lake regions. We found that the western lake region had the highest Cyanobacteria concentration (34.71%), suggesting that Cyanobacteria may have competitive advantages over the other bacterioplankton in water columns without plants. The abundances of Chlorobi detected in the water samples in the east (2.69%) and north (6.66%) were higher than those in the west because the high turbidity in the western lake region was unsuitable for the growth of Chlorobi. Nitrospirae (average 6.36%) and Chloroflexi (average 11.62%) were more common in the sediments than in the water of Lake Taihu, suggesting that the nutrient level of Lake Taihu sediment was higher than that of water bodies. Welch's t test revealed that there were significant differences in species abundance (such as Microcystis, Synechococcus, Flavobacterium, and hgcI_clade) among the different regions, except that the east was relatively similar to the north. Canonical correspondence analysis demonstrated that TN, TP, and DO showed significant effects on the relative abundance of the dominant bacterial genera in water, while TOC, TP, and TN were positively correlated with TOC, TP and TN. This study provides useful information for understanding the variation in the diversity of bacterial communities in different habitats of Lake Taihu.
Collapse
Affiliation(s)
- Wenjie Chang
- College of Environment, Hohai University, Nanjing, 210098, China
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Jieli Sun
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Yong Pang
- College of Environment, Hohai University, Nanjing, 210098, China.
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Lixue Gong
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Jiaang Lu
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Bin Feng
- Jiangsu Provincial Academy of Environmental Science, Nanjing, 210036, China
| | - Ruichen Xu
- College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
16
|
Szuróczki S, Szabó A, Korponai K, Felföldi T, Somogyi B, Márialigeti K, Tóth E. Prokaryotic community composition in a great shallow soda lake covered by large reed stands (Neusiedler See/Lake Fertő) as revealed by cultivation- and DNA-based analyses. FEMS Microbiol Ecol 2020; 96:5895321. [PMID: 32821929 DOI: 10.1093/femsec/fiaa159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/11/2020] [Indexed: 11/15/2022] Open
Abstract
Little is known about the detailed community composition of heterotrophic bacterioplankton in macrophyte-dominated littoral systems, where a considerable amount of dissolved organic carbon originates from aquatic macrophytes instead of phytoplankton. The aim of the present study was to reveal the effect of macrophytes on the microbial community and to elucidate their role in a macrophyte-dominated shallow soda lake, which can be characterised by a mosaic of open waters and reed marsh. Therefore, 16S rRNA gene amplicon sequencing, the most probable number method, cultivation of bacterial strains, EcoPlate and cultivation-based substrate utilisation techniques were applied. Differences in the structures of microbial communities were detected between the water and the sediment samples and between vegetated and unvegetated water samples. Planktonic bacterial communities of an inner pond and a reed-covered area showed significant similarities to each other. Woesearchaeia was the dominant archaeal taxon in the water samples, while Bathyarchaeia, 'Marine Benthic Group D' and 'DHVEG-1' were abundant in the sediment samples. The most probable number of heterotrophic bacteria was lower in the open water than in the reed-associated areas. The vast majority (83%) of the isolated bacterial strains from the water samples of the reed-covered area were able to grow on a medium containing reed extract as the sole source of carbon.
Collapse
Affiliation(s)
- Sára Szuróczki
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Kristóf Korponai
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Centre for Ecological Research, Balaton Limnological Institute, Hungarian Academy of Sciences, Klebelsberg Kuno u. 3., 8237 Tihany, Hungary
| | - Károly Márialigeti
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| | - Erika Tóth
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|
17
|
Zhang T, Qin M, Wei C, Li D, Lu X, Zhang L. Suspended particles phoD alkaline phosphatase gene diversity in large shallow eutrophic Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138615. [PMID: 32348945 DOI: 10.1016/j.scitotenv.2020.138615] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The bacterial phoD gene encodes alkaline phosphatase plays an important role in the release of bioavailable inorganic phosphorus (P) from organic P in environmental systems. However, phoD gene diversity in suspended particles in shallow freshwater lakes is poorly understood. In this study, we explored the potential relationship between environmental factors and phoD phosphatase gene in suspended particles in different ecosystem types (lake zones) in Lake Taihu, a large shallow eutrophic lake in China. Quantitative PCR and high-throughput sequencing were used to analyze phoD gene abundance and the phoD-harboring bacterial community composition. Our results indicate that the distribution of phoD gene abundance in suspended particles had a high spatiotemporal heterogeneity. The phoD gene abundance in each lake zone decreased significantly from June to September. The dominant phoD-harboring phylum in all samples was Actinobacteria, followed by Proteobacteria, Cyanobacteria and Gemmatimonadetes. The first predominant phoD-harboring genera varied among samples, but most of them belonged to phylum Actinobacteria. Driven by different environmental factors, the phoD-harboring bacterial community structure varied with sampling month and ecosystem type. Nitrate and ammonia nitrogen were the main environmental drivers of phoD-harboring bacterial community in suspended particles in the river mouth zone, while water pH and dissolved oxygen were important factors for the algae-dominated, macrophyte-dominated and central lake zones.
Collapse
Affiliation(s)
- Tingxi Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China; Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China.
| | - Mengyao Qin
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Chao Wei
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Defang Li
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Xiaoran Lu
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| | - Limin Zhang
- Nanjing Normal University, School of Environment, Wenyuan Road 1, Nanjing 210023, China
| |
Collapse
|
18
|
Cao X, Zhao D, Zeng J, Huang R, He F. Biogeographic patterns of abundant and rare bacterial and microeukaryotic subcommunities in connected freshwater lake zones subjected to different levels of nutrient loading. J Appl Microbiol 2020; 130:123-132. [PMID: 32427406 DOI: 10.1111/jam.14720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 11/26/2022]
Abstract
AIMS To reveal whether the patterns of abundant and rare subcommunity composition of both bacteria and microeukaryotes vary between connected regions with different levels of nutrient loading in freshwater lakes. METHODS AND RESULTS We investigated the abundant and rare subcommunity composition of both bacteria and microeukaryotes in two connected zones (Meiliang Bay (MLB) and Xukou Bay (XKB)) of a large shallow freshwater Lake Taihu via the high-throughput sequencing of bacterial 16S rRNA and microeukaryotic 18S rRNA genes. Even though these two lake zones are connected and share a species bank, they diverge in community composition. Significantly higher alpha diversity was observed for the abundant bacterial subcommunity in the MLB. However, no significant difference in alpha diversity between the rare bacterial subcommunities, as well as both rare and abundant microeukaryotic subcommunities were observed between MLB and XKB. It is demonstrated that both environmental factors and geographic distance play central roles in controlling the rare and abundant microbial subcommunities in the two connected lake zones. CONCLUSIONS The abundant subcommunity composition of bacteria and microeukaryotes vary between connected regions with different levels of nutrient loading. Dispersal limitation plays a vital role in shaping microbial communities even in connected zones of freshwater lakes. SIGNIFICANCE AND IMPACT OF THE STUDY Leading to a comprehensive understanding of the characteristics of microbial community in connected lake regions with different levels of nutrient loading.
Collapse
Affiliation(s)
- Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Fei He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing, China
| |
Collapse
|
19
|
Yao Z, Yang L, Song N, Wang C, Jiang H. Effect of organic matter derived from algae and macrophyte on anaerobic ammonium oxidation coupled to ferric iron reduction in the sediment of a shallow freshwater lake. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:25899-25907. [PMID: 31773539 DOI: 10.1007/s11356-019-06793-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
As a recently discovered process of nitrogen cycling, anaerobic ammonium oxidation coupled to ferric iron reduction (Feammox) has attracted more attentions. This study investigated the spatial variation of Feammox in the sediment of different zones of a shallow freshwater lake and the effect of organic matter derived from algae and macrophyte on Feammox process. The potential Feammox rates showed significant differences among sediments from algae-dominated area (ADA), transitional area in the center of the lake (TDA), and macrophyte-dominated area (MDA), and in a descending order, ADA, MDA, and TDA. The potential Feammox rate ranged from 0.14 to 0.34 mg N kg-1day-1 in the freshwater lake sediment. The potential Feammox rates of the sediment with algae or macrophyte amendment were 12.29% and 15.31% higher than the control test without algae and macrophyte amendment. The addition of algae or macrophyte to the sediment from TDA could improve the amount of HCl-extractable total Fe, Fe(III) reduction rate, and the abundance of FeRB. These results demonstrated that organic matter is one of the key regulators of Feammox process.
Collapse
Affiliation(s)
- Zongbao Yao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Liu Yang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, People's Republic of China.
| |
Collapse
|
20
|
Zhao W, Wang J, Xu S, Lei Y, Yang R, Shi L, Wang X, Huang Z. Bacterioplankton community variation in Bohai Bay (China) is explained by joint effects of environmental and spatial factors. Microbiologyopen 2020; 9:e997. [PMID: 32022464 PMCID: PMC7142376 DOI: 10.1002/mbo3.997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/23/2019] [Accepted: 12/31/2019] [Indexed: 02/01/2023] Open
Abstract
Parsing the relative importance of environmental (recent disturbances) and spatial factors (historical processes) in determining community structure is a core issue in ecology. The Bohai Bay is a typical semi‐enclosed bay located in the north of China, surrounding by the metropolitan area with anthropogenic disturbances made it a complex marine coastal system with pollution gradients, where the distributions and determinants of bacterioplankton communities remain unclear. In this study, we collected surface water samples from 19 sites across Bohai Bay at about 100 km scale to investigate the relative roles of local environments and regional spatial factors in shaping bacterioplankton community composition (BCC). The environmental parameters in the sampling region showed gradient change according to the geographic variation. Several abundant OTUs were significantly correlated with the pollution parameters in the studied area, and 16 OTUs of them showed distinct distribution pattern in different polluted regions with obvious geographic segmentation, which indicated the effects of pollution gradient and dispersal limitation on specific taxon. The BCCs did not show obviously clustering effect between different polluted regions, which indicated the complexity for explaining the BCC variation in the studied region. The partial Mantel test revealed stronger spatial effects on beta diversity than those of local environmental factors, which indicated that dispersal limitation accounted more for the beta diversity than environmental heterogeneity. Furthermore, variation partitioning analysis (VPA) conducted by combining the environmental variables, linear trends, and principal coordinates of the variables from neighbor matrices (PCNM) showed that it was the joint effects of environmental and spatial factors contributed to the explained variation of BCC in the studied area. Considering the special human geography characteristics of Bohai Bay, the unmeasured biotic/abiotic factors, stochastic factors, and anthropogenic disturbances may be responsible for the unexplained variation of the BCC.
Collapse
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Lei
- Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Rong Yang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Liuyang Shi
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xingbiao Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Zhiyong Huang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
21
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 DOI: 10.1101/670067v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/22/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
22
|
Kavagutti VS, Andrei AŞ, Mehrshad M, Salcher MM, Ghai R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. MICROBIOME 2019; 7:135. [PMID: 31630686 PMCID: PMC6802176 DOI: 10.1186/s40168-019-0752-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/24/2019] [Indexed: 05/20/2023]
Abstract
The persistent inertia in the ability to culture environmentally abundant microbes from aquatic ecosystems represents an obstacle in disentangling the complex web of ecological interactions spun by a diverse assortment of participants (pro- and eukaryotes and their viruses). In aquatic microbial communities, the numerically most abundant actors, the viruses, remain the most elusive, and especially in freshwaters their identities and ecology remain unknown. Here, using ultra-deep metagenomic sequencing from pelagic freshwater habitats, we recovered complete genomes of > 2000 phages, including small "miniphages" and large "megaphages" infecting iconic freshwater prokaryotic lineages. For instance, abundant freshwater Actinobacteria support infection by a very broad size range of phages (13-200 Kb). We describe many phages encoding genes that likely afford protection to their host from reactive oxygen species (ROS) in the aquatic environment and in the oxidative burst in protist phagolysosomes (phage-mediated ROS defense). Spatiotemporal abundance analyses of phage genomes revealed evanescence as the primary dynamic in upper water layers, where they displayed short-lived existences. In contrast, persistence was characteristic for the deeper layers where many identical phage genomes were recovered repeatedly. Phage and host abundances corresponded closely, with distinct populations displaying preferential distributions in different seasons and depths, closely mimicking overall stratification and mixis.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Ştefan Andrei
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Maliheh Mehrshad
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Switzerland
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Academy of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
23
|
Zeng J, Lin Y, Zhao D, Huang R, Xu H, Jiao C. Seasonality overwhelms aquacultural activity in determining the composition and assembly of the bacterial community in Lake Taihu, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 683:427-435. [PMID: 31141745 DOI: 10.1016/j.scitotenv.2019.05.256] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Aquaculture accounts for an extremely valuable and rapidly expanding sector of global food production, yet its environmental impacts on aquatic ecosystems have attracted much concern. In this study, we collected water samples from eastern Lake Taihu, China. We targeted sites varying in their intensity of aquacultural activities and sampled them over multiple seasons. For each sample, we measured physicochemical variables, and we sequenced the 16S rRNA gene of the respective bacterial communities using an Illumina second-generation sequencing platform. Marked differences in diversity and bacterial community composition were observed between seasons, whereas we observed relatively weak differences between sites. Remarkable differences in the abundance of the bacterial community were observed at the phylum and genus levels across the different seasons. Stochastic processes dominated the assembly of bacterial communities in the aquaculture-influenced systems, and the assembly processes of bacterial community differed between seasons. Our observations highlight the effect of seasonality on bacterial communities and provide a more complete knowledge base for the proper assessment of the effects of aquacultural activities on freshwater ecosystems.
Collapse
Affiliation(s)
- Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yuqing Lin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Rui Huang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Huimin Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| | - Congcong Jiao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Joint International Research Laboratory of Global Change and Water Cycle, Hohai University, Nanjing 210098, China
| |
Collapse
|
24
|
Zhu C, Zhang J, Nawaz MZ, Mahboob S, Al-Ghanim KA, Khan IA, Lu Z, Chen T. Seasonal succession and spatial distribution of bacterial community structure in a eutrophic freshwater Lake, Lake Taihu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 669:29-40. [PMID: 30877958 DOI: 10.1016/j.scitotenv.2019.03.087] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
In aquatic ecosystems, both phytoplankton and bacteria play pivotal roles. Based on 16S rRNA gene sequencing, considerable research focused on phytoplankton colony attached and free-living bacteria has revealed the close relationship between them, and indicated that the entire bacterial community mediates crucial biogeochemical processes in aquatic ecosystems. However, our understanding of their distribution patterns and response to environmental factors remains poor. Besides, picocyanobacteria, which were omitted from attached bacteria analysis, were reported to be important in cyanobacterial blooms. To explore the spatiotemporal variation of the entire bacterial community with their driving environmental factors and detect the relationships among them, we collected 61 water samples spanning one year and the entire Lake Taihu regions for surveying the entire bacterial community. Our results indicated: 1) seasonal variation of the bacterial community composition was stronger than spatial variation due to the clearly seasonal variation of Microcystis, Synechococcus (pico-cyanobacteria) and other bacteria (Actinomycetales, Pirellulaceae and Sphingobacteriaceae); 2) the spatial distribution of the bacterial community showed that different phyla were dominant in different regions; 3) the bacterial co-occurrence networks varied seasonally and were dominated by Microcystis, ACK-M1, Chthoniobacteraceae, Synechococcus, Pirellulaceae and Pelagibacteraceae; 4) phytoplankton density, chlorophyll a, water temperature and total nitrogen were the major factors that drove the spatiotemporal variation of bacterial community composition. This study revealed the seasonal succession and spatial distribution of the entire bacterial community in Lake Taihu, providing new insights into the relationship between water bloom-forming cyanobacterial species and other bacteria, and their response to environmental factors in eutrophic freshwater ecosystem.
Collapse
Affiliation(s)
- Congmin Zhu
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division and Center for Synthetic & Systems Biology, Beijing; National Research Center for Information Science and Technnology, Department of Automation, Tsinghua University, Beijing 100084, China; Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China
| | - Junyi Zhang
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China; Wuxi Environmental Monitoring Centre, Wuxi 214121, China
| | - Muhammad Zohaib Nawaz
- Department of Computer Science, University of Agriculture, Faisalabad 38040, Pakistan; Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan; Wuxi Metagene Science & Technology Co., Ltd, Wuxi, People's Republic of China
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Khalid A Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Iqrar Ahmad Khan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad 38040, Pakistan
| | - Zuhong Lu
- State Key Lab for Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Ting Chen
- Institute for Artificial Intelligence, State Key Lab of Intelligent Technology and Systems, Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China; Tsinghua-Fuzhou Institute of Digital Technology, Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
Jiang M, Ji X, Zhou Y, Zhang W, Zhang C, Zhang J, Zheng Z. Nutrient limitation and enzymolysis of phosphorus in Meiliang Bay, Lake Taihu, during algal blooms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:369-376. [PMID: 30714277 DOI: 10.1002/wer.1021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/15/2018] [Accepted: 10/19/2018] [Indexed: 06/09/2023]
Abstract
In this study, algal growth potential tests were performed in water samples collected from six sampling sites in Meiliang Bay, Lake Taihu. The potential release of soluble reactive phosphorus (SRP) by enzymatic hydrolysis of enzymatically hydrolyzable phosphorus (EHP) was simultaneously evaluated. Results show that all studied regions were in highly eutrophic states, with additional nitrogen (N) or phosphorus (P) inputs, inducing negligible further increase in algal growth. EHP in water could be rapidly transformed into SRP, further supporting the proliferation of algal blooms. The shortest EHP mineralization time was calculated as 69 minutes; therefore, limiting specific nutrient inputs alone in extremely eutrophic lakes can have a limited effect on suppressing the proliferation of algal blooms. Methods to establish a suitable environmental fate for excessive nitrogen and phosphorus nutrients may be more effective and provide more significant results. PRACTITIONER POINTS: N and P were no longer serving as the limiting factors in Meiliang Bay. Enzymatically hydrolysable phosphorus could be hydrolyzed into soluble reactive phosphorus in a very short period during algal blooms. Both enzymatically hydrolysable phosphorus and soluble reactive phosphorus are required to be curbed in practical eutrophication control.
Collapse
Affiliation(s)
- Mengqi Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Xiyan Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Yanping Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Weizhen Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Chengjin Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, China
| |
Collapse
|
26
|
Jiang M, Zhou Y, Ji X, Li H, Zheng Z, Zhang J. Responses of leaf-associated biofilms on the submerged macrophyte Vallisneria natans during harmful algal blooms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:819-826. [PMID: 30623838 DOI: 10.1016/j.envpol.2018.12.081] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/26/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
The present study investigated the physiological responses, photosynthetic activity, and microbial community structure of leaf-associated biofilms on the microphyte Vallisneria natans during a harmful algal bloom. Results of the physiological and photosynthetic indices (Fv/Fm ratios [maximum quantum yield of photosystem II (PSII)]; malondialdehyde content; total chlorophyll; and activities of superoxide dismutase, catalase and peroxidase) indicated that algal blooms could cause inhibition of photosynthesis, oxidative stress and an antioxidant system stress response in Vallisneria natans leaf-associated biofilms. Multifractal analysis suggested that allelochemicals or algal organic matter released by cyanobacteria could reduce the surface roughness of the leaf. Microbial diversity analysis of the biofilms showed that algal blooms slightly altered the microbial community structure while the richness and evenness of the microbial composition remained stable. This study provided useful information to better understand the adverse effects of algal blooms on submerged macrophytes.
Collapse
Affiliation(s)
- Mengqi Jiang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Center for Ecological Research (CER), Kyoto University, Otsu, Shiga, 520-2113, Japan
| | - Yanping Zhou
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiyan Ji
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Huimin Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
27
|
Kong Z, Kou W, Ma Y, Yu H, Ge G, Wu L. Seasonal dynamics of the bacterioplankton community in a large, shallow, highly dynamic freshwater lake. Can J Microbiol 2018; 64:786-797. [DOI: 10.1139/cjm-2018-0126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The spatiotemporal shifts of the bacterioplankton community can mirror their transition of functional traits in an aquatic ecosystem. However, the spatiotemporal variation of the bacterioplankton community composition structure (BCCS) within a large, shallow, highly dynamic freshwater lake is still poorly understood. Here, we examined the seasonal and spatial variability of the BCCs within Poyang Lake by sequencing the 16S rRNA gene amplicon to explore how hydrological changes affect the BCCs. Principal coordinate analysis showed that the BCCs varied significantly among four sampling seasons, but not spatially. The seasonal changes of the BCCs were mainly attributed to the differences between autumn and spring–winter. Higher α diversity indices were observed in autumn. Redundancy analysis indicated that the BCCs co-variated with water level, pH, temperature, total phosphorus, ammoniacal nitrogen, electrical conductivity, total nitrogen, and turbidity. Among them, water level was the key determinant separating autumn BCCs from the BCCs in other seasons. A significantly lower relative abundance of Burkholderiales (betI and betVII) and a higher relative abundance of Actinomycetales (acI, acTH1, and acTH2) were found in autumn than in other seasons. Overall, our results suggest that water level changes associated with pH, temperature, and nutrient status shaped the seasonal patterns of the BCCs within Poyang Lake.
Collapse
Affiliation(s)
- Zhaoyu Kong
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330022, China
| | - Wenbo Kou
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Yantian Ma
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Haotian Yu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Gang Ge
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Lan Wu
- School of Life Science, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, China
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi, Nanchang University, Nanchang 330022, China
| |
Collapse
|
28
|
Dynamics of phosphorus and bacterial phoX genes during the decomposition of Microcystis blooms in a mesocosm. PLoS One 2018; 13:e0195205. [PMID: 29723219 PMCID: PMC5933731 DOI: 10.1371/journal.pone.0195205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/19/2018] [Indexed: 11/20/2022] Open
Abstract
Cyanobacterial blooms are a worldwide environmental problem and frequently occur in eutrophic lakes. Organophosphorus mineralization regulated by microbial alkaline phosphatase provides available nutrients for bloom regeneration. To uncover the dynamics of bacterial alkaline phosphatase activity and microbial backgrounds in relation to organophosphorus mineralization during the decomposition process of cyanobacterial blooms, the response of alkaline phosphatase PhoX-producing bacteria were explored using a 23-day mesocosm experiment with three varying densities of Microcystis biomass from eutrophic Lake Taihu. Our study found large amounts of soluble reactive phosphorus and dissolved organophosphorus were released into the lake water during the decomposition process. Bacterial alkaline phosphatase activity showed the peak values during days 5~7 in groups with different chlorophyll-a densities, and then all decreased dramatically to their initial experimental levels during the last stage of decomposition. Bacterial phoX abundances in the three experimental groups increased significantly along with the decomposition process, positively related to the dissolved organic carbon and organophosphorus released by the Microcystis blooms. The genotypes similar to the phoX genes of Alphaproteobacteria were dominant in all groups, whereas the genotypes most similar to the phoX genes of Betaproteobacteria and Cyanobacteria were also abundant in the low density (~15 μg L-1 chlorophyll-a) group. At the end of the decomposition process, the number of genotypes most similar to the phoX of Betaproteobacteria and Cyanobacteria increased in the medium (~150 μg L-1 chlorophyll-a) and high (~1500 μg L-1 chlorophyll-a) density groups. The released organophosphorus and increased bacterial phoX abundance after decomposition of Microcystis aggregates could potentially provide sufficient nutrients and biological conditions for algal proliferation and are probably related to the regeneration of Microcystis blooms in eutrophic lakes.
Collapse
|
29
|
Mentes A, Szabó A, Somogyi B, Vajna B, Tugyi N, Csitári B, Vörös L, Felföldi T. Differences in planktonic microbial communities associated with three types of macrophyte stands in a shallow lake. FEMS Microbiol Ecol 2018; 94:4675209. [PMID: 29206918 DOI: 10.1093/femsec/fix164] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 11/27/2017] [Indexed: 11/13/2022] Open
Abstract
Little is known about how various substances from living and decomposing aquatic macrophytes affect the horizontal patterns of planktonic bacterial communities. Study sites were located within Lake Kolon, which is a freshwater marsh and can be characterised by open-water sites and small ponds with different macrovegetation (Phragmites australis, Nymphea alba and Utricularia vulgaris). Our aim was to reveal the impact of these macrophytes on the composition of the planktonic microbial communities using comparative analysis of environmental parameters, microscopy and pyrosequencing data. Bacterial 16S rRNA gene sequences were dominated by members of phyla Proteobacteria (36%-72%), Bacteroidetes (12%-33%) and Actinobacteria (5%-26%), but in the anoxic sample the ratio of Chlorobi (54%) was also remarkable. In the phytoplankton community, Cryptomonas sp., Dinobryon divergens, Euglena acus and chrysoflagellates had the highest proportion. Despite the similarities in most of the measured environmental parameters, the inner ponds had different bacterial and algal communities, suggesting that the presence and quality of macrophytes directly and indirectly controlled the composition of microbial plankton.
Collapse
Affiliation(s)
- Anikó Mentes
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Attila Szabó
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Boglárka Somogyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Balázs Vajna
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Nóra Tugyi
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Bianka Csitári
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| | - Lajos Vörös
- Balaton Limnological Institute, MTA Centre for Ecological Research, Klebelsberg Kuno u. 3., H-8237 Tihany, Hungary
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány Péter stny. 1/c., H-1117 Budapest, Hungary
| |
Collapse
|
30
|
Peng Y, Liu L, Jiang L, Xiao L. The roles of cyanobacterial bloom in nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:297-303. [PMID: 28753504 DOI: 10.1016/j.scitotenv.2017.03.149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 06/07/2023]
Abstract
Annually occurred cyanobacterial bloom aggravated eutrophication situation and changed the lacustrine ecosystem components. Recently, high concentration of bloom cyanobacteria had been found to accelerate total nitrogen (TN) removal. However, the contribution of cyanobacterial bloom to TN removal remained unclear. In this study, microcosms with different density of bloom cyanobacteria were constructed and quantitative PCR and structural equation modelling (SEM) were used to analyze the microbes, environmental variables and the causal relationship to TN removal. Total bacteria, ammonia-oxidizing archaea and nirS gene abundances were indirectly influenced by cyanobacteria biomass and all of them had a direct effect on TN removal. SEM confirmed that cyanobacteria made a direct contribution to ammonium‑nitrogen (NH4+-N) level in water and induced nitrification activity, which favored the process of denitrification by supplying substrate and aggravating the anoxic status. These results strongly suggested that an increased cyanobacteria biomass had strong impacts on mineralization, nitrification and denitrification by mediating TN, dissolved organic carbon and dissolved oxygen directly and subsequently influenced the nitrifiers and denitrifiers.
Collapse
Affiliation(s)
- Yuke Peng
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lu Liu
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lijuan Jiang
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China
| | - Lin Xiao
- School of the Environment, Nanjing University, State Key Laboratory for Pollution Control and Resource Reuse (SKL-PCRR), Nanjing University Xianlin Campus, Xianlin Avenue 163, Nanjing 210023, China.
| |
Collapse
|
31
|
Jiang X, Wu Y, Liu G, Liu W, Lu B. The effects of climate, catchment land use and local factors on the abundance and community structure of sediment ammonia-oxidizing microorganisms in Yangtze lakes. AMB Express 2017; 7:173. [PMID: 28905318 PMCID: PMC5597559 DOI: 10.1186/s13568-017-0479-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 09/05/2017] [Indexed: 11/30/2022] Open
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in regulating the nitrification process in lake ecosystems. However, the relative effects of climate, catchment land use and local conditions on the sediment ammonia-oxidizing communities in lakes remain unclear. In this study, the diversity and abundance of AOA and AOB communities were investigated in ten Yangtze lakes by polymerase chain reaction (PCR), clone library and quantitative PCR techniques. The results showed that the abundances of both AOA and AOB in bare sediments were considerably but not significantly higher than those in vegetated sediments. Interestingly, AOB communities were more sensitive to changes in local environmental factors and vegetation characteristics than were AOA communities. Amongst climate and land use variables, mean annual precipitation, percentage of agriculture and percentage of vegetation were the key determinants of AOB abundance and diversity. Additionally, total organic carbon and chlorophyll-a concentrations in lake water were significantly related to AOB abundance and diversity. The results of the ordination analysis indicated that 81.2 and 84.3% of the cumulative variance for the species composition of AOA and AOB communities could be explained by the climate, land use and local factors. The climate and local environments played important roles in shaping AOA communities, whereas catchment agriculture and water chlorophyll-a concentration were key influencing factors of AOB communities. Our findings suggest that the composition and structure of sediment ammonia-oxidizing communities in Yangtze lakes are strongly influenced by different spatial scale factors.
Collapse
|
32
|
Wu Y, Tang J, Liu J, Graham B, Kerr PG, Chen H. Sustained High Nutrient Supply As an Allelopathic Trigger between Periphytic Biofilm and Microcystis aeruginosa. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:9614-9623. [PMID: 28738143 DOI: 10.1021/acs.est.7b01027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Allelopathy among aquatic organisms, especially microorganisms, has received growing attention in recent years for its role in shaping interactions with bloom-forming algae. Many studies have shown that allelopathy occurs and increases under nutrient limiting conditions. However, to date there is no reported direct evidence to indicate that allelopathy occurs under the condition of constant high nutrient supply. Here we report the allelopathic action of periphytic biofilm on bloom-forming cyanobacteria (Microcystis aeruginosa), which was triggered by the stress of high nutrient conditions, and continues while nutrients are maintained at high levels (trophic state index at 159 and 171). The experimental evidence indicates that the electron transport from photosystem II (PS II) to photosystem I (PS I) in M. aeruginosa is interrupted by the identified allelochemicals, (9Z)-Octadec-9-enoic acid and (9Z)-Hexadec-9-enoic acid, leading to the failure of photosynthesis and the subsequent death of M. aeruginosa. Our findings indicate that the nutrient stress of constant high nutrient supply may be a newly recognized trigger causing allelopathy between microbial competitors, and therefore opening a new direction for the better management of ecological processes in cyanobacteria-dominated and hyper-eutrophic waters.
Collapse
Affiliation(s)
- Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Jun Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
| | - Bruce Graham
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University , Boorooma St, Wagga Wagga, 2678, New South Wales, Australia
| | - Hong Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences No.71 , East Beijing Road, Nanjing 210008, China
- College of Resource and Environment, University of Chinese Academy of Sciences , Beijing 100049, China
| |
Collapse
|
33
|
Su X, Steinman AD, Tang X, Xue Q, Zhao Y, Xie L. Response of bacterial communities to cyanobacterial harmful algal blooms in Lake Taihu, China. HARMFUL ALGAE 2017; 68:168-177. [PMID: 28962977 DOI: 10.1016/j.hal.2017.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Cyanobacterial harmful algal blooms are prevalent around the world, influencing aquatic organisms and altering the physico-chemical properties in freshwater systems. However, the response of bacterial communities to toxic cyanobacterial blooms and associated microcystins (MC) remain poorly understood even though global concentrations of MC have increased dramatically in the past few decades. To address this issue, the dynamics of bacterial community composition (BCC) in the water column and how BCC is influenced by both harmful cyanobacterial blooms and environmental factors were investigated on a monthly basis from August 2013 to July 2014 in Lake Taihu, China. Non-metric multidimensional scaling (NMDS) revealed that seasonal variation in BCC was significant, and that the succession of BCC greatly depends on changes in environmental conditions. Redundancy analysis (RDA) results showed that the overall variation of BCC was explained mainly by dissolved oxygen (DO), nitrate nitrogen (NO3--N), and Microcystis. The alpha biodiversity of the bacterial community was different among months with the highest diversity in February and the lowest diversity in October. Furthermore, significant negative relationships were found between alpha biodiversity indices and Microcystis abundance as well as with intracellular MC concentrations, indicating that Microcystis and associated MC may influence the bacterial community structure by reducing its biodiversity. This study shows that potential associations exist between toxic cyanobacterial blooms and bacterial communities but more investigations are needed to obtain a mechanistic understanding of their complex relationships.
Collapse
Affiliation(s)
- Xiaomei Su
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, Muskegon, MI 49441, USA
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
34
|
Zhou X, Zhang J, Wen C. Community Composition and Abundance of Anammox Bacteria in Cattail Rhizosphere Sediments at Three Phenological Stages. Curr Microbiol 2017; 74:1349-1357. [DOI: 10.1007/s00284-017-1324-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
35
|
Zhao D, Cao X, Huang R, Zeng J, Shen F, Xu H, Wang S, He X, Yu Z. The heterogeneity of composition and assembly processes of the microbial community between different nutrient loading lake zones in Taihu Lake. Appl Microbiol Biotechnol 2017; 101:5913-5923. [PMID: 28523397 DOI: 10.1007/s00253-017-8327-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 11/29/2022]
Abstract
To investigate the differences in the microbial community composition and assembly process in two lake zones (Meiliang Bay (MLB) and Xukou Bay (XKB) in Taihu Lake, China) with different nutrient loadings, water samples were collected. Both the 16S ribosomal RNA (rRNA) gene for the bacterial community and the 18S rRNA gene for the microeukaryote community were investigated using the Illumina second-generation sequencing platform (2 × 250 paired-end). The results indicated that both the bacterioplankton and microeukaryote community composition derived from the two lake zones were significantly different. Significantly higher operational taxonomic unit (OTU) richness (P < 0.01) and phylogenetic diversity (P < 0.05) were found for the bacterioplankton community of MLB. However, a comparable alpha diversity was found between the microeukaryote communities of MLB and XKB (P > 0.05). Environmental factors significantly affected the community compositions in XKB for both the bacterioplankton and microeukaryotes. However, they did not significantly influence the microbial community composition in MLB, except for a weak correlation between dissolved organic carbon (DOC) and the microeukaryote community. The microbial communities tended to be more phylogenetically clustered than expected by chance in the two lake zones. Moreover, the results of the phylogenetic structure suggest that deterministic processes played overwhelming roles in driving the assembly of both the bacterioplankton and microeukaryote community in XKB.
Collapse
Affiliation(s)
- Dayong Zhao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China. .,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China. .,Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, USA.
| | - Xinyi Cao
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Rui Huang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Feng Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huimin Xu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Sichen Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xiaowei He
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China.,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhongbo Yu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, China. .,College of Hydrology and Water Resources, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
36
|
The effect of reconstruction works on planktonic bacterial diversity of a unique thermal lake revealed by cultivation, molecular cloning and next generation sequencing. Arch Microbiol 2017; 199:1077-1089. [PMID: 28417144 DOI: 10.1007/s00203-017-1379-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 03/01/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
The aim of this study was to gain detailed information about the diversity of planktonic bacterial communities of a worldwide special peat bedded natural thermal spa lake, and to reveal the effect of a lake wall reconstruction work. To compare the efficiency of different methods used for analyzing bacterial diversity, cultivation, molecular cloning and pyrosequencing were applied simultaneously. Despite the almost unchanged physical-chemical parameters and cell count values of lake water, remarkable differences were observed in the planktonic bacterial community structures during and after the reconstruction by all applied microbiological approaches. Rhodobacter sp. was found to be one of the most abundant community members during the works probably due to the sediment stirring effect of the reconstruction. Following the reconstruction higher diversity was detected than during the works by all approaches. Bacterial strains related to species Chryseobacterium and Exiguobacterium, furthermore sequences related to Arcobacter, Gemmobacter and MWH-UniP1 aquatic group were identified in the highest proportion at that time. Although the differences revealed by cultivation based and independent community structures were significant, only minor disparities were found by molecular cloning and next generation sequencing techniques.
Collapse
|
37
|
Li W, Zhang F, Ye Q, Wu D, Wang L, Yu Y, Deng B, Du J. Composition and copper binding properties of aquatic fulvic acids in eutrophic Taihu Lake, China. CHEMOSPHERE 2017; 172:496-504. [PMID: 28104558 DOI: 10.1016/j.chemosphere.2017.01.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 06/06/2023]
Abstract
Fulvic acid (FA) plays a significant role in biogenic-elemental cycling in aquatic ecosystems which is highly dependent on their organic composition. In this study, the aquatic FA contents and binding properties during bloom and non-bloom periods in Taihu Lake were investigated by two-dimensional correlation spectroscopy Fourier transform infrared spectroscopy (2D-COS-FTIR), nuclear magnetic resonance (NMR) and elemental analysis. Compared with non-bloom FA, bloom FA was of lower nitrogen content and higher C/N ratio. It contained more carboxylic and aliphatic groups while less amide groups. 2D-COS-FTIR spectra evidenced the carboxyl groups in bloom FA had the fastest response to Cu(II) binding. Also, polysaccharide in bloom FA was more susceptive to Cu(II) concentrations than that in non-bloom FA. While comparing with bloom FA, the N-rich organic compounds in non-bloom FA exhibited faster binding sequence with Cu(II). A comprehensive scheme about the interaction process of FA-Cu(II) showed that both nitrogenous and oxygenic groups in FAs were active in binding to Cu(II). The alteration in binding behaviors of organic groups in FAs to Cu(II) may have been driven by algal products and microbial community variety in Taihu Lake. Our results here have the potential to contribute significantly to future studies of dissolved organic matter dynamic biogeochemistry processes and trace metal cycling processes in eutrophic lakes.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Fenfen Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China.
| | - Qi Ye
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Dan Wu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Liying Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, West No.30 Xiao Hong Shan, Wuhan, China
| | - Yihua Yu
- Shanghai Key Laboratory of Magnetic Resonance, College of Physics and Materials Science, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Bing Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| | - Jinzhou Du
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, 3663 North Zhongshan Road, Shanghai, China
| |
Collapse
|
38
|
Ren L, He D, Chen Z, Jeppesen E, Lauridsen TL, Søndergaard M, Liu Z, Wu QL. Warming and nutrient enrichment in combination increase stochasticity and beta diversity of bacterioplankton assemblages across freshwater mesocosms. ISME JOURNAL 2016; 11:613-625. [PMID: 27935593 DOI: 10.1038/ismej.2016.159] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 01/09/2023]
Abstract
The current climate warming and eutrophication are known to interactively threaten freshwater biodiversity; however, the interactive effects on lacustrine bacterioplankton diversity remain to be determined. Here, we analyzed the spring bacterioplankton community composition (BCC) in 24 outdoor, flow-through mesocosms (mimicking shallow lake environments) under 3 temperature scenarios and 2 nutrient regimes. Our results revealed that neither long-term warming (8.5 years) nor nutrient enrichment had significant effects on bacterioplankton alpha diversity, whereas long-term enhanced warming (elevated 50% above the IPCC A2 climate scenario) and nutrient enrichment in combination increased bacterioplankton beta diversity. We also found that BCC shifted significantly under enhanced warming and nutrient-enriched conditions towards decreased relative abundances of Actinobacteria, Bacteroidetes and Betaproteobacteria, whereas the percentages of Cyanobacteria, total rare phyla and unclassified phyla significantly increased. Null-model tests indicated that deterministic processes played a more important role than stochastic processes in determining BCC. However, the relative importance of stochasticity, primarily ecological drift, was enhanced and contributed to the increased beta diversity of BCC under enhanced warming and nutrient-enriched conditions. Overall, our study suggests that the synergetic effects of warming and nutrient enrichment may result in high variability in the composition of bacterioplankton communities in lacustrine water bodies.
Collapse
Affiliation(s)
- Lijuan Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Dan He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Zhen Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Torben L Lauridsen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Silkeborg, Denmark.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengwen Liu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China.,Department of Ecology, Jinan University, Guangzhou, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, China.,Department of Ecology, Jinan University, Guangzhou, China
| |
Collapse
|
39
|
Lee CS, Kim M, Lee C, Yu Z, Lee J. The Microbiota of Recreational Freshwaters and the Implications for Environmental and Public Health. Front Microbiol 2016; 7:1826. [PMID: 27909431 PMCID: PMC5112438 DOI: 10.3389/fmicb.2016.01826] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 10/31/2016] [Indexed: 12/03/2022] Open
Abstract
The microbial communities in recreational freshwaters play important roles in both environmental and public health perspectives. In this study, the bacterial community structure and its associations with freshwater environments were investigated by analyzing the summertime microbiomes of three beach waters in Ohio (East Fork, Delaware, and Madison lakes) together with environmental and microbial water quality parameters. From the swimming season of 2009, 21 water samples were collected from the three freshwater beaches. From the samples, 110,000 quality-checked bacterial 16S rRNA gene sequences were obtained and analyzed, resulting in an observation of 4500 bacterial operational taxonomic units (OTUs). The most abundant bacteria were Mycobacterium and Arthrobacter of the Actinobacteria (33.2%), Exiguobacterium and Paenisporosarcina of the Firmicutes (23.4%), Planktothrix and Synechococcus of the Cyanobacteria (20.8%), and Methylocystis and Polynucleobacter of the Proteobacteria (16.3%). Considerable spatial and temporal variations were observed in the bacterial community of Actinobacteria, Cyanobacteria, and Firmicutes, where the bacterial community structure was greatly influenced by hydrological and weather conditions. The most influential factors were (1) water inflow for Bacteroidia and Clostridia, (2) turbidity for Gammaproteobacteria, (3) precipitation for Bacilli, and (4) temperature and pH for Cyanobacteria. One noticeable microbial interaction in the bacterial community was a significant negative relationship between Cyanobacteria and Bacilli (P < 0.05). Concerning beach water quality, the level of the genetic markers for cyanobacterial toxin (mcyA) was linked to the abundance of Cyanobacteria. In addition, unique distributions of the genera Enterococcus, Staphylococcus, Streptococcus, Bacteroides, Clostridium, Finegoldia, Burkholderia, and Klebsiella, together with a high density of fecal indicator Escherichia coli, were markedly observed in the sample from Madison Lake on July 13, suggesting a distinctly different source of bacterial loading into the lake, possibly fecal contamination. In conclusion, deep sequencing-based microbial community analysis can provide detailed profiles of bacterial communities and information on potential public health risks at freshwater beaches.
Collapse
Affiliation(s)
- Chang Soo Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
| | - Minseok Kim
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| | - Cheonghoon Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
| | - Zhongtang Yu
- Department of Animal Sciences, The Ohio State UniversityColumbus, OH, USA
| | - Jiyoung Lee
- Division of Environmental Health Sciences, College of Public Health, The Ohio State UniversityColumbus, OH, USA
- Department of Food Science and Technology, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
40
|
Fan Z, Han RM, Ma J, Wang GX. Submerged macrophytes shape the abundance and diversity of bacterial denitrifiers in bacterioplankton and epiphyton in the Shallow Fresh Lake Taihu, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14102-14114. [PMID: 27048324 DOI: 10.1007/s11356-016-6390-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 02/29/2016] [Indexed: 06/05/2023]
Abstract
nirK and nirS genes are important functional genes involved in the denitrification pathway. Recent studies about these two denitrifying genes are focusing on sediment and wastewater microbe. In this study, we conducted a comparative analysis of the abundance and diversity of denitrifiers in the epiphyton of submerged macrophytes Potamogeton malaianus and Ceratophyllum demersum as well as in bacterioplankton in the shallow fresh lake Taihu, China. Results showed that nirK and nirS genes had significant different niches in epiphyton and bacterioplankton. Bacterioplankton showed greater abundance of nirK gene in terms of copy numbers and lower abundance of nirS gene. Significant difference in the abundance of nirK and nirS genes also existed between the epiphyton from different submerged macrophytes. Similar community diversity yet different community abundance was observed between epiphytic bacteria and bacterioplankton. No apparent seasonal variation was found either in epiphytic bacteria or bacterioplankton; however, environmental parameters seemed to have direct relevancy with nirK and nirS genes. Our study suggested that submerged macrophytes have greater influence than seasonal parameters in shaping the presence and abundance of bacterial denitrifiers. Further investigation needs to focus on the potential contact and relative contribution between denitrifiers and environmental factors.
Collapse
Affiliation(s)
- Zhou Fan
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Rui-Ming Han
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Jie Ma
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China
| | - Guo-Xiang Wang
- Jiangsu Key Laboratory of Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, School of Geography Science, Nanjing Normal University, Nanjing, 210023, China.
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing, 210023, China.
- Nanjing Normal University, School of Geography Science, Wenyuan Road 1, Nanjing, 210023, China.
| |
Collapse
|
41
|
Qiu L, Cui H, Wu J, Wang B, Zhao Y, Li J, Jia L, Wei Z. Snowmelt-driven changes in dissolved organic matter and bacterioplankton communities in the Heilongjiang watershed of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 556:242-251. [PMID: 26974572 DOI: 10.1016/j.scitotenv.2016.02.199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 02/27/2016] [Accepted: 02/28/2016] [Indexed: 06/05/2023]
Abstract
Bacterioplankton plays a significant role in the circulation of materials and ecosystem function in the biosphere. Dissolved organic matter (DOM) from dead plant material and surface soil leaches into water bodies when snow melts. In our study, water samples from nine sampling sites along the Heilongjiang watershed were collected in February and June 2014 during which period snowmelt occurred. The goal of this study was to characterize changes in DOM and bacterioplankton community composition (BCC) associated with snowmelt, the effects of DOM, environmental and geographical factors on the distribution of BCC and interactions of aquatic bacterioplankton populations with different sources of DOM in the Heilongjiang watershed. BCC was measured by denaturing gradient gel electrophoresis (DGGE). DOM was measured by excitation-emission matrix (EEM) fluorescence spectroscopy. Bacterioplankton exhibited a distinct seasonal change in community composition due to snowmelt at all sampling points except for EG. Redundancy analysis (RDA) indicated that BCC was more closely related to DOM (Components 1 and 4, dissolved organic carbon, biochemical oxygen demand and chlorophyll a) and environmental factors (water temperature and nitrate nitrogen) than geographical factors. Furthermore, DOM had a greater impact on BCC than environmental factors (29.80 vs. 15.90% of the variation). Overall, spring snowmelt played an important role in altering the quality and quantity of DOM and BCC in the Heilongjiang watershed.
Collapse
Affiliation(s)
- Linlin Qiu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Hongyang Cui
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Junqiu Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Baijie Wang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yue Zhao
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Jiming Li
- Heilongjiang Province Environmental Monitoring Centre, Harbin 150056, China
| | - Liming Jia
- Heilongjiang Province Environmental Monitoring Centre, Harbin 150056, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
Zhang L, Gao G, Tang X, Shao K, Gong Y. Pyrosequencing analysis of bacterial communities in Lake Bosten, a large brackish inland lake in the arid northwest of China. Can J Microbiol 2016; 62:455-63. [DOI: 10.1139/cjm-2015-0494] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The bacteria inhabiting brackish lake environments are poorly known, and there are few studies on the microbial diversity of these environments. Lake Bosten, a large brackish inland lake, is the largest lake in Xinjiang Province in northwestern China. Because sediments record past limnic changes, the analysis of sedimentary bacteria in Lake Bosten may help elucidate bacterial responses to environmental change. We employed 454 pyrosequencing to investigate the diversity and bacterial community composition in Lake Bosten. A total of 48 230 high-quality sequence reads with 16 314 operational taxonomic units were successfully obtained from the 4 selected samples, and they were numerically dominated by members of the Deltaproteobacteria (17.1%), Chloroflexi (16.1%), Betaproteobacteria (12.6%), Bacteroidetes (6.6%), and Firmicutes (5.7%) groups, accounting for more than 58.1% of the bacterial sequences. The sediment bacterial communities and diversity were consistently different along the 2 geographic environmental gradients: (i) freshwater–brackish water gradient and (ii) oligotrophic–mesotrophic habitat gradient. Deltaproteobacteria, Chloroflexi, and Betaproteobacteria were amplified throughout all of the sampling sites. More Bacteroidetes and Firmicutes were found near the Kaidu River estuary (site 14). Our investigation showed that Proteobacteria did not display any systematic change along the salinity gradient, and numerous 16S rRNA sequences could not be identified at the genus level. Our data will provide a better understanding of the diversity and distribution of bacteria in arid region brackish lakes.
Collapse
Affiliation(s)
- Lei Zhang
- School of Biology and Food Engineering, Chuzhou University, Chuzhou 239000, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Yi Gong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
43
|
Eichhornia azurea decomposition and the bacterial dynamic: an experimental research. Braz J Microbiol 2016; 47:279-86. [PMID: 26991303 PMCID: PMC4874586 DOI: 10.1016/j.bjm.2015.08.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 08/19/2015] [Indexed: 11/24/2022] Open
Abstract
Organic decomposition is a complex interaction between chemical, physical and biological processes, where the variety of aquatic vascular plants is essential for the trophic dynamics of freshwater ecosystems. The goal of this study was to determine the aquatic macrophyte Eichhornia azurea (Sw.) Kunth decomposition rate, the time relation with the limnological parameters, and whether this relationship is a result of decomposition processes. To that end, we collected water and leaves of E. azurea in Surf Leopoldo, PR. The experiment consisted of two treatments: 25 containers with 450 mL of water and 0.8 g of biomass dry weight were used with or without the addition of macrophytes. Samples were collected in triplicate at times 0, 3 h, 6 h, 12 h, 24 h, 72 h, 120 h, 168 h and 240 h. When the container was removed, the plant material was dried in an oven. After 48 h, the material was measured to obtain the final dry weight. Analyses of pH, conductivity, dissolved oxygen, total phosphorus N-ammonia (NH4), soluble reactive phosphorus (PO4) and dissolved organic carbon were performed, and the decomposition rate was calculated. The results showed significant temporal variation of limnological parameters in the study. Additionally, dissolved oxygen, conductivity, dissolved organic carbon and total phosphorus were correlated with the dry weight of the biomass, suggesting that E. azurea decomposition significantly interferes with the dynamics of these variables.
Collapse
|
44
|
Guo X, Liu X, Pan J, Yang H. Synergistic algicidal effect and mechanism of two diketopiperazines produced by Chryseobacterium sp. strain GLY-1106 on the harmful bloom-forming Microcystis aeruginosa. Sci Rep 2015; 5:14720. [PMID: 26423356 PMCID: PMC4589682 DOI: 10.1038/srep14720] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
A potent algicidal bacterium isolated from Lake Taihu, Chryseobacterium sp. strain GLY-1106, produces two algicidal compounds: 1106-A (cyclo(4-OH-Pro-Leu)) and 1106-B (cyclo(Pro-Leu)). Both diketopiperazines showed strong algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. Interestingly, these two algicidal compounds functioned synergistically. Compared with individual treatment, combined treatment with cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) significantly enhanced algicidal activity, accelerated the increase in intracellular reactive oxygen species (ROS) levels in M. aeruginosa, and further decreased the activities of antioxidases, effective quantum yield and maximal electron transport rate of M. aeruginosa. The results also showed that the algicidal characteristics of cyclo(4-OH-Pro-Leu) are distinct from those of cyclo(Pro-Leu). Cyclo(4-OH-Pro-Leu) mainly interrupted the flux of electron transport in the cyanobacterial photosynthetic system, whereas cyclo(Pro-Leu) mainly inhibited the activity of cyanobacterial intracellular antioxidases. A possible algicidal mechanism for the synergism between cyclo(4-OH-Pro-Leu) and cyclo(Pro-Leu) is proposed, which is in accordance with their distinct algicidal characteristics in individual and combined treatment. These findings suggest that synergism between algicidal compounds might be used as an effective strategy for the future control of Microcystis blooms.
Collapse
Affiliation(s)
- Xingliang Guo
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xianglong Liu
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jianliang Pan
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, and School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
45
|
Within-lake heterogeneity of environmental factors structuring bacterial community composition in Lake Dongting, China. World J Microbiol Biotechnol 2015; 31:1683-9. [PMID: 26250547 DOI: 10.1007/s11274-015-1917-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/30/2015] [Indexed: 10/23/2022]
Abstract
Within-lake heterogeneity of bacterial community composition (BCC) was investigated in the large and shallow regulating Lake Dongting. Samples were collected at 13 sites located in different areas of the lake. PCR-denaturing gradient gel electrophoresis (DGGE) and redundancy analysis (RDA) were used for revealing spatial distribution of BCC and the relationships between BCC and environmental variables. The DGGE banding patterns revealed a remarkable spatial heterogeneity which was closely related to their geographical positions. RDA result demonstrated that TP and TN, as well as Secchi depth, were the three most influential factors, responsible for a major part of the observed variation in BCC. Total bacterial abundances were significantly higher in Eastern Dongting due to high TP and suspended solids. In conclusion, bacterial community diversity in Lake Dongting was mainly shaped by within-lake heterogeneity of nutrient and transparency.
Collapse
|
46
|
Ren L, Jeppesen E, He D, Wang J, Liboriussen L, Xing P, Wu QL. pH influences the importance of niche-related and neutral processes in lacustrine bacterioplankton assembly. Appl Environ Microbiol 2015; 81:3104-14. [PMID: 25724952 PMCID: PMC4393436 DOI: 10.1128/aem.04042-14] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/17/2015] [Indexed: 11/20/2022] Open
Abstract
pH is an important factor that shapes the structure of bacterial communities. However, we have very limited information about the patterns and processes by which overall bacterioplankton communities assemble across wide pH gradients in natural freshwater lakes. Here, we used pyrosequencing to analyze the bacterioplankton communities in 25 discrete freshwater lakes in Denmark with pH levels ranging from 3.8 to 8.8. We found that pH was the key factor impacting lacustrine bacterioplankton community assembly. More acidic lakes imposed stronger environmental filtering, which decreased the richness and evenness of bacterioplankton operational taxonomic units (OTUs) and largely shifted community composition. Although environmental filtering was determined to be the most important determinant of bacterioplankton community assembly, the importance of neutral assembly processes must also be considered, notably in acidic lakes, where the species (OTU) diversity was low. We observed that the strong effect of environmental filtering in more acidic lakes was weakened by the enhanced relative importance of neutral community assembly, and bacterioplankton communities tended to be less phylogenetically clustered in more acidic lakes. In summary, we propose that pH is a major environmental determinant in freshwater lakes, regulating the relative importance and interplay between niche-related and neutral processes and shaping the patterns of freshwater lake bacterioplankton biodiversity.
Collapse
Affiliation(s)
- Lijuan Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Silkeborg, Denmark Sino-Danish Centre for Education and Research, Beijing, China
| | - Dan He
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | | | - Peng Xing
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China Sino-Danish Centre for Education and Research, Beijing, China
| |
Collapse
|
47
|
Dai J, Chen D, Wu S, Wu X, Zhou J, Tang X, Shao K, Gao G. Comparative analysis of alkaline phosphatase-encoding genes (phoX) in two contrasting zones of Lake Taihu. Can J Microbiol 2015; 61:227-36. [DOI: 10.1139/cjm-2014-0446] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Limnetic habitats that are dominated by either algae or macrophytes represent the 2 dominant ecosystems in shallow lakes. We assessed seasonal variations in the diversity and abundance of alkaline phosphate-encoding genes (phoX) in these 2 zones of Lake Taihu, which is a large, shallow, eutrophic lake in China. There was no significant difference in seasonal mean phoX diversity between the 2 zones, whereas the seasonal mean phoX abundance in the macrophyte-dominated region was higher than that in the algae-dominated region. The bulk of the genotypes in the 2 regions were most similar to the alphaproteobacterial and betaproteobacterial phoX. Genotypes most similar to phoX affiliated with Betaproteobacteria were present with greater diversity in the macrophyte-dominated zone than in the algae-dominated zone. In the algae-dominated zone, the relative proportion of genotypes most similar to cyanobacterial phoX was highest (38.8%) in summer. In addition to the different genotype structures and environmental factors between the 2 stable states, the lower gene abundances and higher alkaline phosphatase activities in Meiliang Bay in summer than those in Xukou Bay reveals different organophosphate-mineralizing modes in these 2 contrasting habitats.
Collapse
Affiliation(s)
- Jiangyu Dai
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Dan Chen
- Nanjing Institute of Environmental Sciences, MEP, Nanjing 210042, People’s Republic of China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Jie Zhou
- State Key Laboratory of Hydrology – Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, People’s Republic of China
| | - Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
48
|
Souffreau C, Van der Gucht K, van Gremberghe I, Kosten S, Lacerot G, Lobão LM, de Moraes Huszar VL, Roland F, Jeppesen E, Vyverman W, De Meester L. Environmental rather than spatial factors structure bacterioplankton communities in shallow lakes along a > 6000 km latitudinal gradient in South America. Environ Microbiol 2015; 17:2336-51. [DOI: 10.1111/1462-2920.12692] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/24/2014] [Accepted: 10/24/2014] [Indexed: 12/01/2022]
Affiliation(s)
- Caroline Souffreau
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| | | | | | - Sarian Kosten
- Department of Aquatic Ecology and Environmental Biology; Institute for Water and Wetland Research; Radboud University Nijmegen; Nijmegen The Netherlands
- Aquatic Ecology and Water Quality Management Group; Wageningen University; Wageningen The Netherlands
| | - Gissell Lacerot
- Functional Ecology of Aquatic Systems; CURE; Universidad de la República; Rocha Uruguay
| | - Lúcia Meirelles Lobão
- Laboratory of Aquatic Ecology; Universidade Federal de Juiz de Fora; Juiz de Fora Brazil
| | | | - Fabio Roland
- Laboratory of Aquatic Ecology; Universidade Federal de Juiz de Fora; Juiz de Fora Brazil
| | - Erik Jeppesen
- Department of Bioscience and the Arctic Centre; Aarhus University; Silkeborg Denmark
- Sino-Danish Centre for Education and Research; Beijing China
| | - Wim Vyverman
- Laboratory of Protistology and Aquatic Ecology; Ghent University; Gent Belgium
| | - Luc De Meester
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| |
Collapse
|
49
|
Tang X, Li L, Shao K, Wang B, Cai X, Zhang L, Chao J, Gao G. Pyrosequencing analysis of free-living and attached bacterial communities in Meiliang Bay, Lake Taihu, a large eutrophic shallow lake in China. Can J Microbiol 2015; 61:22-31. [DOI: 10.1139/cjm-2014-0503] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the relationship between particle-attached (PA, ≥5.0 μm) and free-living (FL, 0.2–5.0 μm) bacterial communities, samplings were collected seasonally from November 2011 to August 2012 in Meiliang Bay, Lake Taihu, China. We used 454 pyrosequencing of 16S rRNA genes to study bacterial diversity and structure of PA and FL communities. The analysis rendered 37 985 highly qualified reads, subsequently assigned to 1755 operational taxonomic units (97% similarity) for the 8 samples. Although 27 high-level taxonomic groups were obtained, the 3 dominant phyla (Proteobacteria, Actinobacteria, and Bacteroidetes) comprised about 75.9% and 82.4% of the PA and FL fractions, respectively. Overall, we found no significant differences between community types, as indicated by ANOSIM R statistics (R = 0.063, P > 0.05) and the Parsimony test (P = 0.222). Dynamics of bacterial communities were correlated with changes in concentrations of total suspended solids (TSS) and total phosphorus (TP). In summer, a significant taxonomic overlap in the 2 size fractions was observed when Cyanobacteria, a major contributor of TSS and TP, dominated in the water, highlighting the potential rapid exchange between PA and FL bacterial populations in large shallow eutrophic lakes.
Collapse
Affiliation(s)
- Xiangming Tang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Linlin Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Keqiang Shao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Boweng Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Xianlei Cai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
- School of Environmental Science and Public Health, Wenzhou Medical University, Wenzhou 325035, People’s Republic of China
| | - Lei Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| | - Jianying Chao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
- Nanjing Institute of Environmental Science, Ministry of Environmental Protection, Nanjing 210042, People’s Republic of China
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, People’s Republic of China
| |
Collapse
|
50
|
Chi J, Gao J. Effects of Potamogeton crispus L.-bacteria interactions on the removal of phthalate acid esters from surface water. CHEMOSPHERE 2015; 119:59-64. [PMID: 24968306 DOI: 10.1016/j.chemosphere.2014.05.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 06/03/2023]
Abstract
To investigate the mechanism of submerged macrophyte-bacteria interactions on the removal of phthalic acid esters from surface water, experiments with and without Potamogeton crispus L. were performed. A two-compartment (i.e., water and plant) kinetic model was developed. The model adequately described the variation of dibutyl phthalate (DBP) and di-2-ethylhexyl phthalate (DEHP) in the plant-water system by providing the first-order rate constants of plant uptake (k1) and release (k2), microbial degradation in water (k3) and plant degradation (k4). During 10-d incubation, the presence of P. crispus enhanced the removal of DBP and DEHP from water by 6.3% and 22.4%. Compared with the experiment without P. crispus, biodegradation of DBP in water with P. crispus decreased by 8.3% because of plant uptake even though k3 increased by 30%. 21.4% of DBP transferred from water to plants, of which only small amount (5.1%) retained in the plant and the rest (94.9%) was degraded. Different from DBP, biodegradation of DEHP in water with P. crispus was a slightly higher than that without P. crispus. 25.5% of DEHP transferred from water to plants, of which a large portion (73.3%) retained in the plant and the rest (26.7%) was degraded. This finding reveals that the enhancement of DBP removal from surface water is mainly related to faster degradation in the plant, whereas it is mainly related to higher plant accumulation for DEHP.
Collapse
Affiliation(s)
- Jie Chi
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| | - Jing Gao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|