1
|
Dultz S, Speth M, Kaiser K, Mikutta R, Guggenberger G. Size, shape, and stability of organic particles formed during freeze-thaw cycles: Model experiments with tannic acid. J Colloid Interface Sci 2024; 667:563-574. [PMID: 38657540 DOI: 10.1016/j.jcis.2024.04.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
HYPOTHESIS Freeze-thaw cycles (FTC) in soils can cause the aggregation of dissolved organic matter but controlling factors are little understood. EXPERIMENTS In freeze-thaw experiments with tannic acid (TA) as model substance, we studied the effect of TA concentration, pH, electrolytes (NaCl, CaCl2, AlCl3), and number of FTC on particle formation. Tannic acid (0.005 to 10 g L-1) was exposed to 1-20 FTC at pH 3 and 6. The size and shape of particles was determined by confocal laser scanning microscopy. Particle stability was deduced from the equivalent circle diameter (ECD) obtained in dry state and the hydrodynamic diameter measured in thawing solutions. FINDINGS Tannic acid particles occurred as plates and veins, resembling the morphology of ice grain boundaries. Low pH and presence of electrolytes favored the formation of large particles. The freeze-concentration effect was most intense at low TA concentrations and increased with the number of FTC. While ECD of particles formed at low TA concentrations were smaller than at high concentrations, it was vice versa in the thawed state. At low TA concentrations, higher crystallization pressure of ice caused enhanced stability of large particles. We conclude that FTC can strongly alter the physical state of dissolved organic matter, with likely consequences for its bioavailability.
Collapse
Affiliation(s)
- Stefan Dultz
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Myriam Speth
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany; Department of Soil Science and Soil Conservation, Justus Liebig Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Klaus Kaiser
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany
| | - Georg Guggenberger
- Institute of Earth System Sciences, Section Soil Science, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| |
Collapse
|
2
|
Kang L, Song Y, Mackelprang R, Zhang D, Qin S, Chen L, Wu L, Peng Y, Yang Y. Metagenomic insights into microbial community structure and metabolism in alpine permafrost on the Tibetan Plateau. Nat Commun 2024; 15:5920. [PMID: 39004662 PMCID: PMC11247091 DOI: 10.1038/s41467-024-50276-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Permafrost, characterized by its frozen soil, serves as a unique habitat for diverse microorganisms. Understanding these microbial communities is crucial for predicting the response of permafrost ecosystems to climate change. However, large-scale evidence regarding stratigraphic variations in microbial profiles remains limited. Here, we analyze microbial community structure and functional potential based on 16S rRNA gene amplicon sequencing and metagenomic data obtained from an ∼1000 km permafrost transect on the Tibetan Plateau. We find that microbial alpha diversity declines but beta diversity increases down the soil profile. Microbial assemblages are primarily governed by dispersal limitation and drift, with the importance of drift decreasing but that of dispersal limitation increasing with soil depth. Moreover, genes related to reduction reactions (e.g., ferric iron reduction, dissimilatory nitrate reduction, and denitrification) are enriched in the subsurface and permafrost layers. In addition, microbial groups involved in alternative electron accepting processes are more diverse and contribute highly to community-level metabolic profiles in the subsurface and permafrost layers, likely reflecting the lower redox potential and more complicated trophic strategies for microorganisms in deeper soils. Overall, these findings provide comprehensive insights into large-scale stratigraphic profiles of microbial community structure and functional potentials in permafrost regions.
Collapse
Affiliation(s)
- Luyao Kang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yutong Song
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | | | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Leiyi Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Linwei Wu
- Institute of Ecology, Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
- China National Botanical Garden, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
3
|
Yu Y, Guo Q, Zhang S, Guan Y, Jiang N, Zhang Y, Mao R, Bai K, Buriyev S, Samatov N, Zhang X, Yang W. Maize residue retention shapes soil microbial communities and co-occurrence networks upon freeze-thawing cycles. PeerJ 2024; 12:e17543. [PMID: 38887621 PMCID: PMC11182024 DOI: 10.7717/peerj.17543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/19/2024] [Indexed: 06/20/2024] Open
Abstract
Maize residue retention is an effective agricultural practice for improving soil fertility in black soil region, where suffered from long freezing-thawing periods and intense freeze-thawing (FT) cycles. However, very few studies have examined the influence of maize residue retention on soil microbial communities under FT cycles. We investigated the response of soil microbial communities and co-occurrence networks to maize residue retention at different FT intensities over 12 cycles using a microcosm experiment conditioned in a temperature incubator. Our results indicated that maize residue retention induced dramatic shifts in soil archaeal, bacterial and fungal communities towards copiotroph-dominated communities. Maize residue retention consistently reduced soil fungal richness across all cycles, but this effect was weaker for archaea and bacteria. Normalized stochastic ratio analysis revealed that maize residue retention significantly enhanced the deterministic process of archaeal, bacterial and fungal communities. Although FT intensity significantly impacted soil respiration, it did not induce profound changes in soil microbial diversity and community composition. Co-occurrence network analysis revealed that maize residue retention simplified prokaryotic network, while did not impact fungal network complexity. The network robustness index suggested that maize residue retention enhanced the fungal network stability, but reduced prokaryotic network stability. Moreover, the fungal network in severe FT treatment harbored the most abundant keystone taxa, mainly being cold-adapted fungi. By identifying modules in networks, we observed that prokaryotic Module #1 and fungal Module #3 were enhanced by maize residue retention and contributed greatly to soil quality. Together, our results showed that maize residue retention exerted stronger influence on soil microbial communities and co-occurrence network patterns than FT intensity and highlighted the potential of microbial interactions in improving soil functionality.
Collapse
Affiliation(s)
- Yang Yu
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Quankuan Guo
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Shuhan Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yupeng Guan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nana Jiang
- College of Resources and Environment, Northeast Agricultural University, Harbin, China
| | - Yang Zhang
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Rong Mao
- College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Keyu Bai
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Salimjan Buriyev
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Nuriddin Samatov
- Institute of Environment and Nature Conservation Technologies of the Ministry of Ecology, Environmental Protection, and Climate Change of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Ximei Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Yang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Zucconi L, Cavallini G, Canini F. Trends in Antarctic soil fungal research in the context of environmental changes. Braz J Microbiol 2024; 55:1625-1634. [PMID: 38652442 PMCID: PMC11153391 DOI: 10.1007/s42770-024-01333-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Antarctic soils represent one of the most pristine environments on Earth, where highly adapted and often endemic microbial species withstand multiple extremes. Specifically, fungal diversity is extremely low in Antarctic soils and species distribution and diversity are still not fully characterized in the continent. Despite the unique features of this environment and the international interest in its preservation, several factors pose severe threats to the conservation of inhabiting ecosystems. In this light, we aimed to provide an overview of the effects on fungal communities of the main changes endangering the soils of the continent. Among these, the increasing human presence, both for touristic and scientific purposes, has led to increased use of fuels for transport and energy supply, which has been linked to an increase in unintentional environmental contamination. It has been reported that several fungal species have evolved cellular processes in response to these soil contamination episodes, which may be exploited for restoring contaminated areas at low temperatures. Additionally, the effects of climate change are another significant threat to Antarctic ecosystems, with the expected merging of previously isolated ecosystems and their homogenization. A possible reduction of biodiversity due to the disappearance of well-adapted, often endemic species, as well as an increase of biodiversity, due to the spreading of non-native, more competitive species have been suggested. Despite some studies describing the specialization of fungal communities and their correlation with environmental parameters, our comprehension of how soil communities may respond to these changes remains limited. The majority of studies attempting to precisely define the effects of climate change, including in situ and laboratory simulations, have mainly focused on the bacterial components of these soils, and further studies are necessary, including the other biotic components.
Collapse
Affiliation(s)
- Laura Zucconi
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy.
- National Research Council, Institute of Polar Sciences, Messina, Italy.
| | - Giorgia Cavallini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Fabiana Canini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| |
Collapse
|
5
|
Nair GR, Kooverjee BB, de Scally S, Cowan DA, Makhalanyane TP. Changes in nutrient availability substantially alter bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2024; 100:fiae071. [PMID: 38697936 PMCID: PMC11107947 DOI: 10.1093/femsec/fiae071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/07/2024] [Accepted: 05/01/2024] [Indexed: 05/05/2024] Open
Abstract
In polar regions, global warming has accelerated the melting of glacial and buried ice, resulting in meltwater run-off and the mobilization of surface nutrients. Yet, the short-term effects of altered nutrient regimes on the diversity and function of soil microbiota in polyextreme environments such as Antarctica, remains poorly understood. We studied these effects by constructing soil microcosms simulating augmented carbon, nitrogen, and moisture. Addition of nitrogen significantly decreased the diversity of Antarctic soil microbial assemblages, compared with other treatments. Other treatments led to a shift in the relative abundances of these microbial assemblages although the distributional patterns were random. Only nitrogen treatment appeared to lead to distinct community structural patterns, with increases in abundance of Proteobacteria (Gammaproteobateria) and a decrease in Verrucomicrobiota (Chlamydiae and Verrucomicrobiae).The effects of extracellular enzyme activities and soil parameters on changes in microbial taxa were also significant following nitrogen addition. Structural equation modeling revealed that nutrient source and extracellular enzyme activities were positive predictors of microbial diversity. Our study highlights the effect of nitrogen addition on Antarctic soil microorganisms, supporting evidence of microbial resilience to nutrient increases. In contrast with studies suggesting that these communities may be resistant to change, Antarctic soil microbiota responded rapidly to augmented nutrient regimes.
Collapse
Affiliation(s)
- Girish R Nair
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Bhaveni B Kooverjee
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Storme de Scally
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Hatfield, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch 7600, South Africa
- Centre for Epidemic Response and Innovation, School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
6
|
Liu Y, Wang X, Wen Y, Cai H, Song X, Zhang Z. Effects of freeze-thaw cycles on soil greenhouse gas emissions: A systematic review. ENVIRONMENTAL RESEARCH 2024; 248:118386. [PMID: 38316387 DOI: 10.1016/j.envres.2024.118386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/20/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.
Collapse
Affiliation(s)
- Yuqing Liu
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaochu Wang
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110000, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110000, China.
| | - Haoxuan Cai
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan, 610000, China.
| |
Collapse
|
7
|
Prekrasna-Kviatkovska Y, Parnikoza I, Yerkhova A, Stelmakh O, Pavlovska M, Dzyndra M, Yarovyi O, Dykyi E. From acidophilic to ornithogenic: microbial community dynamics in moss banks altered by gentoo penguins. Front Microbiol 2024; 15:1362975. [PMID: 38525081 PMCID: PMC10959021 DOI: 10.3389/fmicb.2024.1362975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction The study explores the indirect impact of climate change driven by gentoo's penguin colonization pressure on the microbial communities of moss banks formed by Tall moss turf subformation in central maritime Antarctica. Methods Microbial communities and chemical composition of the differently affected moss banks (Unaffected, Impacted and Desolated) located on Galindez Island and Сape Tuxen on the mainland of Kyiv Peninsula were analyzed. Results The native microbiota of the moss banks' peat was analyzed for the first time, revealing a predominant presence of Acidobacteria (32.2 ± 14.4%), followed by Actinobacteria (15.1 ± 4.0%) and Alphaproteobacteria (9.7 ± 4.1%). Penguin colonization and subsequent desolation of moss banks resulted in an increase in peat pH (from 4.7 ± 0.05 to 7.2 ± 0.6) and elevated concentrations of soluble nitrogen (from 1.8 ± 0.4 to 46.9 ± 2.1 DIN, mg/kg) and soluble phosphorus compounds (from 3.6 ± 2.6 to 20.0 ± 1.8 DIP, mg/kg). The contrasting composition of peat and penguin feces led to the elimination of the initial peat microbiota, with an increase in Betaproteobacteria (from 1.3 ± 0.8% to 30.5 ± 23%) and Bacteroidota (from 5.5 ± 3.7% to 19.0 ± 3.7%) proportional to the intensity of penguins' impact, accompanied by a decrease in community diversity. Microbial taxa associated with birds' guts, such as Gottschalkia and Tissierella, emerged in Impacted and Desolated moss banks, along with bacteria likely benefiting from eutrophication. The changes in the functional capacity of the penguin-affected peat microbial communities were also detected. The nitrogen-cycling genes that regulate the conversion of urea into ammonia, nitrite oxide, and nitrate oxide (ureC, amoA, nirS, nosZ, nxrB) had elevated copy numbers in the affected peat. Desolated peat samples exhibit the highest nitrogen-cycle gene numbers, significantly differing from Unaffected peat (p < 0.05). Discussion The expansion of gentoo penguins induced by climate change led to the replacement of acidophilic microbiomes associated with moss banks, shaping a new microbial community influenced by penguin guano's chemical and microbial composition.
Collapse
Affiliation(s)
| | - Ivan Parnikoza
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Department of Cell Population Genetics, Institute of Molecular Biology and Genetics, Kyiv, Ukraine
- Faculty of Natural Science, National University of “Kyiv-Mohyla Academy”, Kyiv, Ukraine
| | - Anna Yerkhova
- Biomedical Institute, Open International University of Human Development Ukraine, Kyiv, Ukraine
| | - Olesia Stelmakh
- Faculty of Molecular Biology and Biotechnology, Kyiv Academic University, Kyiv, Ukraine
| | - Mariia Pavlovska
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
- Faculty of Plant Protection, Biotechnology and Ecology, National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine
| | - Marta Dzyndra
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Oleksandr Yarovyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| | - Evgen Dykyi
- Biology and Ecology Department, State Institution National Antarctic Scientific Center, Kyiv, Ukraine
| |
Collapse
|
8
|
de Melo Carlos L, Camacho KF, Duarte AW, de Oliveira VM, Boroski M, Rosa LH, Vieira R, Neto AA, Ottoni JR, Passarini MRZ. Bioprospecting the potential of the microbial community associated to Antarctic marine sediments for hydrocarbon bioremediation. Braz J Microbiol 2024; 55:471-485. [PMID: 38052770 PMCID: PMC10920520 DOI: 10.1007/s42770-023-01199-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Microorganisms that inhabit the cold Antarctic environment can produce ligninolytic enzymes potentially useful in bioremediation. Our study focused on characterizing Antarctic bacteria and fungi from marine sediment samples of King George and Deception Islands, maritime Antarctica, potentially affected by hydrocarbon influence, able to produce enzymes for use in bioremediation processes in environments impacted with petroleum derivatives. A total of 168 microorganism isolates were obtained: 56 from sediments of King George Island and 112 from Deception Island. Among them, five bacterial isolates were tolerant to cell growth in the presence of diesel oil and gasoline and seven fungal were able to discolor RBBR dye. In addition, 16 isolates (15 bacterial and one fungal) displayed enzymatic emulsifying activities. Two isolates were characterized taxonomically by showing better biotechnological results. Psychrobacter sp. BAD17 and Cladosporium sp. FAR18 showed pyrene tolerance (cell growth of 0.03 g mL-1 and 0.2 g mL-1) and laccase enzymatic activity (0.006 UL-1 and 0.10 UL-1), respectively. Our results indicate that bacteria and fungi living in sediments under potential effect of hydrocarbon pollution may represent a promising alternative to bioremediate cold environments contaminated with polluting compounds derived from petroleum such as polycyclic aromatic hydrocarbons and dyes.
Collapse
Affiliation(s)
- Layssa de Melo Carlos
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Karine Fernandes Camacho
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | | | | | - Marcela Boroski
- Programa de Pós-Graduação Em Energia & Sustentabilidade, Universidade Federal da Integração Latino-Americana - UNILA, Foz Do Iguaçu, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rosemary Vieira
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Arthur A Neto
- Instituto de Geociências, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Júlia Ronzella Ottoni
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil
| | - Michel R Z Passarini
- Laboratório de Biotecnologia Ambiental, Universidade Federal da Integração Latino-Americana - UNILA, Av. Tarquínio Joslin dos Santos, 1000 - Jd Universitário, Foz do Iguaçu, PR, 85870-650, Brazil.
| |
Collapse
|
9
|
Silva JPD, Veloso TGR, Costa MD, Souza JJLLD, Soares EMB, Gomes LC, Schaefer CEGR. Microbial successional pattern along a glacier retreat gradient from Byers Peninsula, Maritime Antarctica. ENVIRONMENTAL RESEARCH 2024; 241:117548. [PMID: 37939803 DOI: 10.1016/j.envres.2023.117548] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
The retreat of glaciers in Antarctica has increased in the last decades due to global climate change, influencing vegetation expansion, and soil physico-chemical and biological attributes. However, little is known about soil microbiology diversity in these periglacial landscapes. This study characterized and compared bacterial and fungal diversity using metabarcoding of soil samples from the Byers Peninsula, Maritime Antarctica. We identified bacterial and fungal communities by amplification of bacterial 16 S rRNA region V3-V4 and fungal internal transcribed spacer 1 (ITS1). We also applied 14C dating on soil organic matter (SOM) from six profiles. Physico-chemical analyses and attributes associated with SOM were evaluated. A total of 14,048 bacterial ASVs were obtained, and almost all samples had 50% of their sequences assigned to Actinobacteriota and Proteobacteria. Regarding the fungal community, Mortierellomycota, Ascomycota and Basidiomycota were the main phyla from 1619 ASVs. We found that soil age was more relevant than the distance from the glacier, with the oldest soil profile (late Holocene soil profile) hosting the highest bacterial and fungal diversity. The microbial indices of the fungal community were correlated with nutrient availability, soil reactivity and SOM composition, whereas the bacterial community was not correlated with any soil attribute. The bacterial diversity, richness, and evenness varied according to presence of permafrost and moisture regime. The fungal community richness in the surface horizon was not related to altitude, permafrost, or moisture regime. The soil moisture regime was crucial for the structure, high diversity and richness of the microbial community, specially to the bacterial community. Further studies should examine the relationship between microbial communities and environmental factors to better predict changes in this terrestrial ecosystem.
Collapse
Affiliation(s)
- Jônatas Pedro da Silva
- Graduate Program in Soils and Plant Nutrition, Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil
| | | | - Maurício Dutra Costa
- Microbiology Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | - José João Lelis Leal de Souza
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| | | | | | - Carlos Ernesto G R Schaefer
- Soil Science Department, Universidade Federal de Viçosa - UFV, Viçosa, MG, Brazil; Bolsista Pesquisador Do Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, Brasília, DF, Brazil
| |
Collapse
|
10
|
Purcell AM, Dijkstra P, Hungate BA, McMillen K, Schwartz E, van Gestel N. Rapid growth rate responses of terrestrial bacteria to field warming on the Antarctic Peninsula. THE ISME JOURNAL 2023; 17:2290-2302. [PMID: 37872274 PMCID: PMC10689830 DOI: 10.1038/s41396-023-01536-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023]
Abstract
Ice-free terrestrial environments of the western Antarctic Peninsula are expanding and subject to colonization by new microorganisms and plants, which control biogeochemical cycling. Measuring growth rates of microbial populations and ecosystem carbon flux is critical for understanding how terrestrial ecosystems in Antarctica will respond to future warming. We implemented a field warming experiment in early (bare soil; +2 °C) and late (peat moss-dominated; +1.2 °C) successional glacier forefield sites on the western Antarctica Peninsula. We used quantitative stable isotope probing with H218O using intact cores in situ to determine growth rate responses of bacterial taxa to short-term (1 month) warming. Warming increased the growth rates of bacterial communities at both sites, even doubling the number of taxa exhibiting significant growth at the early site. Growth responses varied among taxa. Despite that warming induced a similar response for bacterial relative growth rates overall, the warming effect on ecosystem carbon fluxes was stronger at the early successional site-likely driven by increased activity of autotrophs which switched the ecosystem from a carbon source to a carbon sink. At the late-successional site, warming caused a significant increase in growth rate of many Alphaproteobacteria, but a weaker and opposite gross ecosystem productivity response that decreased the carbon sink-indicating that the carbon flux rates were driven more strongly by the plant communities. Such changes to bacterial growth and ecosystem carbon cycling suggest that the terrestrial Antarctic Peninsula can respond fast to increases in temperature, which can have repercussions for long-term elemental cycling and carbon storage.
Collapse
Affiliation(s)
- Alicia M Purcell
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA.
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA.
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA.
| | - Paul Dijkstra
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Bruce A Hungate
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Kelly McMillen
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Egbert Schwartz
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
- Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Natasja van Gestel
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
- TTU Climate Center, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
11
|
Singha NA, Neihsial R, Kipgen L, Lyngdoh WJ, Nongdhar J, Chettri B, Singh P, Singh AK. Taxonomic and Predictive Functional Profile of Hydrocarbonoclastic Bacterial Consortia Developed at Three Different Temperatures. Curr Microbiol 2023; 81:22. [PMID: 38017305 DOI: 10.1007/s00284-023-03529-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/19/2023] [Indexed: 11/30/2023]
Abstract
Microbial community exhibit shift in composition in response to temperature variation. We report crude oil-degrading activity and high-throughput 16S rRNA gene sequencing (metagenome) profiles of four bacterial consortia enriched at three different temperatures in crude oil-amended Bushnell-Hass Medium from an oily sludge sediment. The consortia were referred to as O (4 ± 2 ℃ in 3% w/v crude oil), A (25 ± 2 ℃ in 1% w/v crude oil), H (25 ± 2 ℃ in 3% w/v crude oil), and X (45 ± 2 ℃ in 3% w/v crude oil). The hydrocarbon-degrading activity was highest for consortium A and H and lowest for consortium O. The metagenome profile revealed the predominance of Proteobacteria (62.12-1.25%) in each consortium, followed by Bacteroidota (18.94-37.77%) in the consortium O, A, and H. Contrarily, consortium X comprised 7.38% Actinomycetota, which was essentially low (< 0.09%) in other consortia, and only 0.41% Bacteroidota. The PICRUSt-based functional analysis predicted major functions associated with the metabolism and 5060 common KEGG Orthology (KOs). A total of 296 KOs were predicted exclusively in consortium X. Additionally, 247 KOs were predicted from xenobiotic biodegradation pathways. This study found that temperature had a stronger influence on the composition and function of the bacterial community than crude oil concentration.
Collapse
Affiliation(s)
- Ningombam A Singha
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Roselin Neihsial
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Lhinglamkim Kipgen
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Waniabha J Lyngdoh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Jopthiaw Nongdhar
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Bobby Chettri
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Prabhakar Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| | - Arvind K Singh
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| |
Collapse
|
12
|
Sannino C, Qi W, Rüthi J, Stierli B, Frey B. Distinct taxonomic and functional profiles of high Arctic and alpine permafrost-affected soil microbiomes. ENVIRONMENTAL MICROBIOME 2023; 18:54. [PMID: 37328770 PMCID: PMC10276392 DOI: 10.1186/s40793-023-00509-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Global warming is affecting all cold environments, including the European Alps and Arctic regions. Here, permafrost may be considered a unique ecosystem harboring a distinct microbiome. The frequent freeze-thaw cycles occurring in permafrost-affected soils, and mainly in the seasonally active top layers, modify microbial communities and consequently ecosystem processes. Although taxonomic responses of the microbiomes in permafrost-affected soils have been widely documented, studies about how the microbial genetic potential, especially pathways involved in C and N cycling, changes between active-layer soils and permafrost soils are rare. Here, we used shotgun metagenomics to analyze the microbial and functional diversity and the metabolic potential of permafrost-affected soil collected from an alpine site (Val Lavirun, Engadin area, Switzerland) and a High Arctic site (Station Nord, Villum Research Station, Greenland). The main goal was to discover the key genes abundant in the active-layer and permafrost soils, with the purpose to highlight the potential role of the functional genes found. RESULTS We observed differences between the alpine and High Arctic sites in alpha- and beta-diversity, and in EggNOG, CAZy, and NCyc datasets. In the High Arctic site, the metagenome in permafrost soil had an overrepresentation (relative to that in active-layer soil) of genes involved in lipid transport by fatty acid desaturate and ABC transporters, i.e. genes that are useful in preventing microorganisms from freezing by increasing membrane fluidity, and genes involved in cell defense mechanisms. The majority of CAZy and NCyc genes were overrepresented in permafrost soils relative to active-layer soils in both localities, with genes involved in the degradation of carbon substrates and in the degradation of N compounds indicating high microbial activity in permafrost in response to climate warming. CONCLUSIONS Our study on the functional characteristics of permafrost microbiomes underlines the remarkably high functional gene diversity of the High Arctic and temperate mountain permafrost, including a broad range of C- and N-cycling genes, and multiple survival and energetic metabolisms. Their metabolic versatility in using organic materials from ancient soils undergoing microbial degradation determine organic matter decomposition and greenhouse gas emissions upon permafrost thawing. Attention to their functional genes is therefore essential to predict potential soil-climate feedbacks to the future warmer climate.
Collapse
Affiliation(s)
- Ciro Sannino
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - Weihong Qi
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Swiss Institute of Bioinformatics SIB, Geneva, Switzerland
| | - Joel Rüthi
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Stierli
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Beat Frey
- Rhizosphere Processes Group, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland.
| |
Collapse
|
13
|
Nikitin DA. Ecological Characteristics of Antarctic Fungi. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 508:32-54. [PMID: 37186046 DOI: 10.1134/s0012496622700120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 05/17/2023]
Abstract
In view of the high responsiveness of polar ecosystems to the global climate change, the research of Antarctic microorganisms has become a topical issue. The unique ecosystems that have developed under the severe climate conditions of the continent lack flowering plants but are dominated by soil mycobiota. In addition to performing their classical ecological functions, Antarctic fungi form the basis of local communities, e.g., endoliths and microbial mats. Furthermore, Antarctic fungi are a major force that mediates transformation of rock minerals in situ and makes biologically significant elements available for other organisms. For these reasons, mycobiota plays a central role in the maintenance of ecological equilibrium in Antarctica. The dominant fungal division on the continent is Ascomycota (77.1%), and not Basidiomycota (9.1%), as it is the case on other continents. For a number of reasons, yeasts and yeast-like micromycetes (mainly basidiomycetes) are more tolerant to extreme conditions in various Antarctic biotopes than filamentous fungi. Substantial evidence suggests that filamentous fungi and yeasts are better adapted to existence in ecosystems with extremely low temperatures than other microorganisms. Due to the long-term isolation of Antarctica from other continents, local biota has been evolving largely independently, which led to emergence of multiple endemic fungal taxa. The presence of eurytopes on the continent is presumably related to the global warming and growing anthropogenic pressure. This review discusses the current state of research on the structure of fungal communities of Antarctic subaerial and subaquatic biotopes, the ecological role of yeast-mycelial dimorphism in Antarctic fungi, the problem of endemism of Antarctic mycobiota, as well as the ecological and physiological adaptations of fungi to low temperatures; it also justifies the relevance of research into secondary metabolites of psychrophilic micromycetes.
Collapse
Affiliation(s)
- D A Nikitin
- Dokuchaev Soil Science Institute, 119017, Moscow, Russia.
- Institute of Geography, Russian Academy of Sciences, 119017, Moscow, Russia.
| |
Collapse
|
14
|
Pastore MA, Classen AT, English ME, Frey SD, Knorr MA, Rand K, Adair EC. Soil microbial legacies influence freeze–thaw responses of soil. Funct Ecol 2023. [DOI: 10.1111/1365-2435.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Melissa A. Pastore
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
- Gund Institute for Environment University of Vermont Burlington Vermont USA
| | - Aimée T. Classen
- Gund Institute for Environment University of Vermont Burlington Vermont USA
- Ecology and Evolutionary Biology Department University of Michigan Ann Arbor Michigan USA
- University of Michigan Biological Station Pellston Michigan USA
| | - Marie E. English
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - Serita D. Frey
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Melissa A. Knorr
- Department of Natural Resources and the Environment University of New Hampshire Durham New Hampshire USA
| | - Karin Rand
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
| | - E. Carol Adair
- Rubenstein School of Environment and Natural Resources University of Vermont Burlington Vermont USA
- Gund Institute for Environment University of Vermont Burlington Vermont USA
| |
Collapse
|
15
|
Soil Geochemical Properties Influencing the Diversity of Bacteria and Archaea in Soils of the Kitezh Lake Area, Antarctica. BIOLOGY 2022; 11:biology11121855. [PMID: 36552364 PMCID: PMC9775965 DOI: 10.3390/biology11121855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
It is believed that polar regions are influenced by global warming more significantly, and because polar regions are less affected by human activities, they have certain reference values for future predictions. This study aimed to investigate the effects of climate warming on soil microbial communities in lake areas, taking Kitezh Lake, Antarctica as the research area. Below-peak soil, intertidal soil, and sediment were taken at the sampling sites, and we hypothesized that the diversity and composition of the bacterial and archaeal communities were different among the three sampling sites. Through 16S rDNA sequencing and analysis, bacteria and archaea with high abundance were obtained. Based on canonical correspondence analysis and redundancy analysis, pH and phosphate had a great influence on the bacterial community whereas pH and nitrite had a great influence on the archaeal community. Weighted gene coexpression network analysis was used to find the hub bacteria and archaea related to geochemical factors. The results showed that in addition to pH, phosphate, and nitrite, moisture content, ammonium, nitrate, and total carbon content also play important roles in microbial diversity and structure at different sites by changing the abundance of some key microbiota.
Collapse
|
16
|
Centurion VB, Campanaro S, Basile A, Treu L, Oliveira VM. Microbiome structure in biofilms from a volcanic island in Maritime Antarctica investigated by genome-centric metagenomics and metatranscriptomics. Microbiol Res 2022; 265:127197. [PMID: 36174355 DOI: 10.1016/j.micres.2022.127197] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Abstract
Antarctica is the coldest and driest continent on Earth, characterized by polyextreme environmental conditions, where species adapted form complex networks of interactions. Microbial communities growing in these harsh environments can form biofilms that help the associated species to survive and thrive. A rich body of knowledge describes environmental biofilm communities; however, most studies have focused on dominant community members rather than functional complexity and metabolic potential. To overcome these limitations, the present study used genome-centric metagenomics to describe two biofilm samples subjected to different temperature collected in Deception Island, Maritime Antarctica. The results unraveled a complex biofilm microbiome represented by 180 metagenome-assembled genomes. The potential metabolic interactions were investigated using metabolic flux balance analysis and revealed that purple bacteria are the community members with the highest correlations with other bacteria. Due to their predicted mixotrophic behavior, they may play a crucial role in the microbiome, likely supporting the heterotrophic species in biofilms. Metatranscriptomics results revealed that the chaperone system and proteins counteracting ROS and toxic compounds have a major role in maintaining bacterial cell homeostasis in sediments of volcanic origin.
Collapse
Affiliation(s)
- V B Centurion
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil; Biology Institute, State University of Campinas - UNICAMP, Campinas, SP CEP 13083-862, Brazil.
| | - S Campanaro
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy; CRIBI Biotechnology Center, University of Padova, 35131 Padua, Italy.
| | - A Basile
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - L Treu
- Department of Biology, University of Padova, Via U. Bassi 58/b, 35121 Padua, Italy.
| | - V M Oliveira
- Microbial Resources Division, Research Center for Chemistry, Biology, and Agriculture (CPQBA), State University of Campinas - UNICAMP, Paulínia, SP CEP 13081-970, Brazil.
| |
Collapse
|
17
|
McCarthy JS, Wallace SMN, Brown KE, King CK, Nielsen UN, Allinson G, Reichman SM. Preliminary investigation of effects of copper on a terrestrial population of the antarctic rotifer Philodina sp. CHEMOSPHERE 2022; 300:134413. [PMID: 35385763 DOI: 10.1016/j.chemosphere.2022.134413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Terrestrial microinvertebrates in Antarctica are potentially exposed to contaminants due to the concentration of human activity on ice-free areas of the continent. As such, knowledge of the response of Antarctic microinvertebrates to contaminants is important to determine the extent of anthropogenic impacts. Antarctic Philodina sp. were extracted from soils and mosses at Casey station, East Antarctica and exposed to aqueous Cu for 96 h. The Philodina sp. was sensitive to excess Cu, with concentrations of 36 μg L-1 Cu (48 h) and 24 μg L-1 Cu (96 h) inhibiting activity by 50%. This is the first study to be published describing the ecotoxicologically derived sensitivity of a rotifer from a terrestrial population to metals, and an Antarctic rotifer to contaminants. It is also the first study to utilise bdelloid rotifer cryptobiosis (chemobiosis) as a sublethal ecotoxicological endpoint. This preliminary investigation highlights the need for further research into the responses of terrestrial Antarctic microinvertebrates to contaminants.
Collapse
Affiliation(s)
- Jordan S McCarthy
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville VIC, 3010, Australia; School of BioSciences, University of Melbourne, Parkville VIC, 3010, Australia.
| | - Stephanie M N Wallace
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville VIC, 3010, Australia; School of BioSciences, University of Melbourne, Parkville VIC, 3010, Australia.
| | - Kathryn E Brown
- Environmental Protection Program, Australian Antarctic Division, Kingston TAS, 7050, Australia.
| | - Catherine K King
- Environmental Protection Program, Australian Antarctic Division, Kingston TAS, 7050, Australia.
| | - Uffe N Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith NSW, 2751, Australia.
| | - Graeme Allinson
- School of Science, RMIT University, Melbourne VIC, 3000, Australia.
| | - Suzie M Reichman
- Centre for Anthropogenic Pollution Impact and Management (CAPIM), University of Melbourne, Parkville VIC, 3010, Australia; School of BioSciences, University of Melbourne, Parkville VIC, 3010, Australia.
| |
Collapse
|
18
|
Sun Y, Tao C, Deng X, Liu H, Shen Z, Liu Y, Li R, Shen Q, Geisen S. Organic fertilization enhances the resistance and resilience of soil microbial communities under extreme drought. J Adv Res 2022; 47:1-12. [PMID: 35907631 PMCID: PMC10173193 DOI: 10.1016/j.jare.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/10/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION The soil bacterial microbiome plays a crucial role in ecosystem functioning. The composition and functioning of the microbiome are tightly controlled by the physicochemical surrounding. Therefore, the microbiome is responsive to management, such as fertilization, and to climate change, such as extreme drought. It remains a challenge to retain microbiome functioning under drought. OBJECTIVES This work aims to reveal if fertilization with organic fertilizer, can enhance resistance and resilience of bacterial communities and their function in extreme drought and subsequent rewetting compared with conventional fertilizers. METHODS In soil mesocosms, we induced a long-term drought for 80 days with subsequent rewetting for 170 days to follow bacterial community dynamics in organic (NOF) and chemical (NCF) fertilization regimes. RESULTS Our results showed that bacterial diversity was higher with NOF than with NCF during drought. In particular, the ecological resilience and recovery of bacterial communities under NOF were higher than in NCF. We found these bacterial community features to enhance pathogen-inhibiting functions in NOF compared to NCF during late recovery. The other soil ecology functional analyses revealed that bacterial biomass recovered in the early stage after rewetting, while soil respiration increased continuously following prolonged time after rewetting. CONCLUSION Together, our study indicates that organic fertilization can enhance the stability of the soil microbiome and ensures that specific bacterial-driven ecosystem functions recover after rewetting. This may provide the basis for more sustainable agricultural practices to counterbalance negative climate change-induced effects on soil functioning.
Collapse
Affiliation(s)
- Yifei Sun
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Xuhui Deng
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Hongjun Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Yaxuan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China; Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University, 6700 AA Wageningen, The Netherlands; Netherlands Department of Terrestrial Ecology, Netherlands Institute for Ecology, (NIOO-KNAW), 6708 PB Wageningen, The Netherlands
| |
Collapse
|
19
|
A Drying-Rewetting Cycle Imposes More Important Shifts on Soil Microbial Communities than Does Reduced Precipitation. mSystems 2022; 7:e0024722. [PMID: 35762785 PMCID: PMC9426475 DOI: 10.1128/msystems.00247-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Global changes will result in altered precipitation patterns, among which the increasing frequency of drought events has the highest deleterious potential for agriculture. Soil microbes have shown some promise to help crops adapt to drought events, but it is uncertain how crop-associated microorganisms will respond to altered precipitation patterns. To investigate this matter, we conducted a field experiment where we seeded two wheat cultivars (one resistant to water stress and the other sensitive) that were subjected to four precipitation exclusion (PE) regimes (0%, 25%, 50%, and 75% exclusion). These cultivars were sampled seven times (every 2 weeks, from May to August) within one growing season to investigate short-term microbiome responses to altered precipitation regimes and seasonality using 16S rRNA gene and internal transcribed spacer (ITS) region amplicon sequencing. One of the most striking features of the data set was the dramatic shift in microbial community diversity, structure, and composition together with a doubling of the relative abundance of the archaeal ammonia oxidizer genus Nitrososphaera following an important drying-rewetting event. Comparatively small but significant effects of PE and wheat cultivar on microbial community diversity, composition, and structure were observed. Taken together, our results demonstrate an uneven response of microbial taxa to decreasing soil water content, which was dwarfed by drying-rewetting events, to which soil bacteria and archaea were more sensitive than fungi. Importantly, our study showed that an increase in drying-rewetting cycles will cause larger shifts in soil microbial communities than a decrease in total precipitation, suggesting that under climate changes, the distribution of precipitation will be more important than small variations in the total quantity of precipitation. IMPORTANCE Climate change will have a profound effect on the precipitation patterns of global terrestrial ecosystems. Seasonal and interannual uneven distributions of precipitation will lead to increasing frequencies and intensities of extreme drought and rainfall events, which will affect crop productivity and nutrient contents in various agroecosystems. However, we still lack knowledge about the responses of soil microbial communities to reduced precipitation and drying-rewetting events in agroecosystems. Our results demonstrated an uneven response of the soil microbiome and a dramatic shift in microbial community diversity and structure to a significant drying-rewetting event with a large increase in the relative abundance of archaeal ammonia oxidizers. These findings highlight the larger importance of rewetting of dry soils on microbial communities, as compared to decreased precipitation, with potential for changes in the soil nitrogen cycling.
Collapse
|
20
|
Xie L, Timonen S, Gange AC, Kuoppamäki K, Hagner M, Lehvävirta S. Effect of weather conditions, substrate pH, biochar amendment and plant species on two plant growth-promoting microbes on vegetated roofs and facades. Heliyon 2022; 8:e09560. [PMID: 35677418 PMCID: PMC9167976 DOI: 10.1016/j.heliyon.2022.e09560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/19/2022] [Accepted: 05/24/2022] [Indexed: 11/27/2022] Open
Abstract
Background Vegetated building envelopes (VBEs), such as vegetated roofs and facades, are becoming more frequent in urban planning nowadays. However, harsh growing conditions restrain the application of VBEs. Plant growth-promoting microbes (PGPMs) might help ease the stresses, but first, it is necessary to investigate how to ensure their survival and growth under VBE conditions. Methods We conducted three experiments to test the impact of various factors on the microbial populations of inoculated PGPMs in VBEs, a mycorrhizal fungus Rhizophagus irregularis and a bacterium Bacillus amyloliquefaciens. The first experiment was conducted by inoculating the two PGPMs separately in Sedum roof plots, and the microbial populations associated with Poa alpina was monitored for two consecutive years under local weather conditions. The second experiment was conducted in a laboratory testing the effect of substrate pH (substrates collected from balcony gardens) on R. irregularis population associated with Trifolium repens and Viola tricolor. The third experiment was conducted on a meadow roof testing the effect of biochar amendment on R. irregularis population associated with Thymus serpyllum and Fragaria vesca. Results In the first experiment, Bacillus was found to associate with P. alpina, but Rhizophagus wasn't. Yet, the fungus induced high Bacillus population density in the Rhizophagus treated plots in the first year. In the second experiment, Rhizophagus abundance in T. repens was higher in the neutral substrate (6–6.5), while V. tricolor was more colonized in acidic substrate (5–5.5), suggesting an important interactive effect of substrate pH and plant species on Rhizophagus abundance. The third experiment suggested a negligible impact of biochar amendment on Rhizophagus abundance for both host plants. Conclusion Three experiments demonstrate that PGPM inoculation on VBEs is feasible, and various factors and interactions affect the PGPM populations. This paper provides reference and inspiration for other VBE research involving substrate microbial manipulation.
Collapse
Affiliation(s)
- Long Xie
- Department of Agricultural Sciences, University of Helsinki, PO Box 27, FI-00014, Finland
| | - Sari Timonen
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014, Finland
| | - Alan C Gange
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Kirsi Kuoppamäki
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, FI-15140, Lahti, Finland
| | - Marleena Hagner
- Natural Resources Institute Finland (Luke), FI-31600, Jokioinen, Finland
| | - Susanna Lehvävirta
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, PO Box 65, FI-00014, Finland
| |
Collapse
|
21
|
Abstract
Temperature impacts biological systems across all length and timescales. Cells and the enzymes that comprise them respond to temperature fluctuations on short timescales, and temperature can affect protein folding, the molecular composition of cells, and volume expansion. Entire ecosystems exhibit temperature-dependent behaviors, and global warming threatens to disrupt thermal homeostasis in microbes that are important for human and planetary health. Intriguingly, the growth rate of most species follows the Arrhenius law of equilibrium thermodynamics, with an activation energy similar to that of individual enzymes but with maximal growth rates and over temperature ranges that are species specific. In this review, we discuss how the temperature dependence of critical cellular processes, such as the central dogma and membrane fluidity, contributes to the temperature dependence of growth. We conclude with a discussion of adaptation to temperature shifts and the effects of temperature on evolution and on the properties of microbial ecosystems.
Collapse
Affiliation(s)
- Benjamin D Knapp
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA;
| | - Kerwyn Casey Huang
- Biophysics Program, Stanford University School of Medicine, Stanford, California, USA; .,Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA.,Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
22
|
Dacal M, García‐Palacios P, Asensio S, Wang J, Singh BK, Maestre FT. Climate change legacies contrastingly affect the resistance and resilience of soil microbial communities and multifunctionality to extreme drought. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Marina Dacal
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramon Margalef’ Universidad de Alicante San Vicente del Raspeig Spain
- Departamento de Biología y Geología Física y Química Inorgánica Universidad Rey Juan Carlos Móstoles Spain
| | - Pablo García‐Palacios
- Departamento de Biología y Geología Física y Química Inorgánica Universidad Rey Juan Carlos Móstoles Spain
- Instituto de Ciencias Agrarias Consejo Superior de Investigaciones Científicas Madrid Spain
| | - Sergio Asensio
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramon Margalef’ Universidad de Alicante San Vicente del Raspeig Spain
| | - Juntao Wang
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
- Global Centre for Land‐Based Innovation Western Sydney University Penrith South DC NSW Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment Western Sydney University Penrith NSW Australia
- Global Centre for Land‐Based Innovation Western Sydney University Penrith South DC NSW Australia
| | - Fernando T. Maestre
- Instituto Multidisciplinar para el Estudio del Medio ‘Ramon Margalef’ Universidad de Alicante San Vicente del Raspeig Spain
- Departamento de Ecología Universidad de Alicante San Vicente del Raspeig Spain
| |
Collapse
|
23
|
KITA DANIELAM, GIOVANELLA PATRICIA, YOSHINAGA THAÍST, PELLIZZER ELISAP, SETTE LARAD. Antarctic fungi applied to textile dye bioremediation. AN ACAD BRAS CIENC 2022; 94:e20210234. [DOI: 10.1590/0001-3765202220210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/13/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- DANIELA M. KITA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | - PATRICIA GIOVANELLA
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| | | | | | - LARA D. SETTE
- Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil; Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Brazil
| |
Collapse
|
24
|
Farooq S, Nazir R, Ganai BA, Mushtaq H, Dar GJ. Psychrophilic and psychrotrophic bacterial diversity of Himalayan Thajwas glacial soil, India. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00915-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Meisner A, Snoek BL, Nesme J, Dent E, Jacquiod S, Classen AT, Priemé A. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles. THE ISME JOURNAL 2021; 15:1207-1221. [PMID: 33408369 PMCID: PMC8115648 DOI: 10.1038/s41396-020-00844-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Climate change alters frequencies and intensities of soil drying-rewetting and freezing-thawing cycles. These fluctuations affect soil water availability, a crucial driver of soil microbial activity. While these fluctuations are leaving imprints on soil microbiome structures, the question remains if the legacy of one type of weather fluctuation (e.g., drying-rewetting) affects the community response to the other (e.g., freezing-thawing). As both phenomenons give similar water availability fluctuations, we hypothesized that freezing-thawing and drying-rewetting cycles have similar effects on the soil microbiome. We tested this hypothesis by establishing targeted microcosm experiments. We created a legacy by exposing soil samples to a freezing-thawing or drying-rewetting cycle (phase 1), followed by an additional drying-rewetting or freezing-thawing cycle (phase 2). We measured soil respiration and analyzed soil microbiome structures. Across experiments, larger CO2 pulses and changes in microbiome structures were observed after rewetting than thawing. Drying-rewetting legacy affected the microbiome and CO2 emissions upon the following freezing-thawing cycle. Conversely, freezing-thawing legacy did not affect the microbial response to the drying-rewetting cycle. Our results suggest that drying-rewetting cycles have stronger effects on soil microbial communities and CO2 production than freezing-thawing cycles and that this pattern is mediated by sustained changes in soil microbiome structures.
Collapse
Affiliation(s)
- Annelein Meisner
- grid.4514.40000 0001 0930 2361Microbial Ecology, Department of Biology, Lund University, Ecology Building, SE-223 62 Lund, Sweden ,grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark ,grid.418375.c0000 0001 1013 0288Department of Microbial Ecology, Netherlands Institute of Ecology, Droevendaalsesteeg 10, Wageningen, The Netherlands ,grid.4818.50000 0001 0791 5666Present Address: Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, The Netherlands
| | - Basten L. Snoek
- grid.5477.10000000120346234Theoretical Biology and Bioinformatics, Utrecht University, 3584 CH Utrecht, The Netherlands
| | - Joseph Nesme
- grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Elizabeth Dent
- grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Samuel Jacquiod
- grid.5613.10000 0001 2298 9313Agroécologie, AgroSup Dijon, INRAE Centre Dijon, Université de Bourgogne Franche-Comté, Dijon, France
| | - Aimée T. Classen
- grid.214458.e0000000086837370Ecology and Evolutionary Biology Department, University of Michigan, Ann Arbor, MI 48109 USA ,grid.59062.380000 0004 1936 7689The Gund Institute for Environment, University of Vermont, Burlington, VT USA ,grid.5254.60000 0001 0674 042XThe Center for Macroecology, Evolution and Climate, The University of Copenhagen, Copenhagen Ø, Denmark
| | - Anders Priemé
- grid.5254.60000 0001 0674 042XDepartment of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Geosciences and Natural Resource Management, Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, 1350 Copenhagen, Denmark
| |
Collapse
|
26
|
Microbial Succession under Freeze-Thaw Events and Its Potential for Hydrocarbon Degradation in Nutrient-Amended Antarctic Soil. Microorganisms 2021; 9:microorganisms9030609. [PMID: 33809442 PMCID: PMC8000410 DOI: 10.3390/microorganisms9030609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 12/24/2022] Open
Abstract
The polar regions have relatively low richness and diversity of plants and animals, and the basis of the entire ecological chain is supported by microbial diversity. In these regions, understanding the microbial response against environmental factors and anthropogenic disturbances is essential to understand patterns better, prevent isolated events, and apply biotechnology strategies. The Antarctic continent has been increasingly affected by anthropogenic contamination, and its constant temperature fluctuations limit the application of clean recovery strategies, such as bioremediation. We evaluated the bacterial response in oil-contaminated soil through a nutrient-amended microcosm experiment using two temperature regimes: (i) 4 °C and (ii) a freeze–thaw cycle (FTC) alternating between −20 and 4 °C. Bacterial taxa, such as Myxococcales, Chitinophagaceae, and Acidimicrobiales, were strongly related to the FTC. Rhodococcus was positively related to contaminated soils and further stimulated under FTC conditions. Additionally, the nutrient-amended treatment under the FTC regime enhanced bacterial groups with known biodegradation potential and was efficient in removing hydrocarbons of diesel oil. The experimental design, rates of bacterial succession, and level of hydrocarbon transformation can be considered as a baseline for further studies aimed at improving bioremediation strategies in environments affected by FTC regimes.
Collapse
|
27
|
Oses-Pedraza R, Torres-Díaz C, Lavín P, Retamales-Molina P, Atala C, Gallardo-Cerda J, Acuña-Rodríguez IS, Molina-Montenegro MA. Root endophytic Penicillium promotes growth of Antarctic vascular plants by enhancing nitrogen mineralization. Extremophiles 2020; 24:721-732. [PMID: 32699913 DOI: 10.1007/s00792-020-01189-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Abstract
Fungal endophyte associations have been suggested as a possible strategy of Antarctic vascular plants for surviving the extreme environmental conditions of Antarctica. However, the mechanisms by which this occurs are still poorly understood. The role of root fungal endophytes in nitrogen mineralization and nutrient uptake, as well as their impact on the performance of Antarctic plants, were studied. We tested root endophytes, isolated from Colobanthus quitensis and Deschampsia antarctica, for lignocellulolytic enzyme production, nitrogen mineralization, and growth enhancement of their host plants. Penicillium chrysogenum and Penicillium brevicompactum were identified using a molecular approach as the main root endophytes inhabiting C. quitensis and D. antarctica, respectively. Both root endophytes were characterized as psychrophilic fungi displaying amylase, esterase, protease, cellulase, hemicellulase, phosphatase and urease enzymatic activities, mainly at 4 °C. Moreover, the rates and percentages of nitrogen mineralization, as well as the final total biomass, were significantly higher in symbiotic C. quitensis and D. antarctica individuals. Our findings suggest that root endophytes exert a pivotal ecological role based not only to breakdown different nutrient sources but also on accelerating nitrogen mineralization, improving nutrient acquisition, and therefore promoting plant growth in Antarctic terrestrial ecosystems.
Collapse
Affiliation(s)
- Rómulo Oses-Pedraza
- Vicerrectoría de Investigación y Postgrado (VRIP), Centro Regional de Investigación y Desarrollo Sustentable de Atacama (CRIDESAT), Universidad de Atacama (UDA), Avenida Copayapu N° 485, Copiapó, Chile. .,Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo N°1281, Coquimbo, Chile.
| | - Cristian Torres-Díaz
- Laboratorio de Genómica y Biodiversidad (LGB), Departamento de Ciencias Naturales, Universidad del Bío-Bío, Chillan, Chile
| | - Paris Lavín
- Facultad de Ciencias del Mar y Recursos Biológicos, Departamento de Biotecnología; Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| | - Patricio Retamales-Molina
- Laboratorio de Bacteriología Molecular, Facultad de Medicina, Universidad Diego Portales (UDP), República # 239, Santiago, Chile
| | - Cristian Atala
- Laboratorio de Anatomía y Ecología Funcional de Plantas (AEF), Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Campus Curauma, Valparaíso, Chile
| | - Jorge Gallardo-Cerda
- Centro de Ecología Molecular y Aplicaciones Evolutivas en Agroecosistemas (CEM), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Ian S Acuña-Rodríguez
- Centro de Ecología Molecular y Aplicaciones Evolutivas en Agroecosistemas (CEM), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile
| | - Marco A Molina-Montenegro
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Facultad de Ciencias del Mar, Universidad Católica del Norte, Larrondo N°1281, Coquimbo, Chile.,Centro de Ecología Molecular y Aplicaciones Evolutivas en Agroecosistemas (CEM), Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avda. Lircay s/n, Talca, Chile.,Research Program "Adaptation of Agriculture To Climate Change" PIEI A2C2, Universidad de Talca, Región del Maule, Talca, Chile.,Centro de Investigaciones y Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
28
|
Vimercati L, Bueno de Mesquita CP, Schmidt SK. Limited Response of Indigenous Microbes to Water and Nutrient Pulses in High-Elevation Atacama Soils: Implications for the Cold-Dry Limits of Life on Earth. Microorganisms 2020; 8:E1061. [PMID: 32708721 PMCID: PMC7409055 DOI: 10.3390/microorganisms8071061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/07/2020] [Accepted: 07/09/2020] [Indexed: 01/05/2023] Open
Abstract
Soils on the world's highest volcanoes in the Atacama region represent some of the harshest ecosystems yet discovered on Earth. Life in these environments must cope with high UV flux, extreme diurnal freeze-thaw cycles, low atmospheric pressure and extremely low nutrient and water availability. Only a limited spectrum of bacterial and fungal lineages seems to have overcome the harshness of this environment and may have evolved the ability to function in situ. However, these communities may lay dormant for most of the time and spring to life only when enough water and nutrients become available during occasional snowfalls and aeolian depositions. We applied water and nutrients to high-elevation soils (5100 meters above sea level) from Volcán Llullaillaco, both in lab microcosms and in the field, to investigate how microbial communities respond when resource limitations are alleviated. The dominant taxon in these soils, the extremophilic yeast Naganishia sp., increased in relative sequence abundance and colony-forming unit counts after water + nutrient additions in microcosms, and marginally in the field after only 6 days. Among bacteria, only a Noviherbaspirillum sp. (Oxalobacteraceae) significantly increased in relative abundance both in the lab and field in response to water addition but not in response to water and nutrients together, indicating that it might be an oligotroph uniquely suited to this extreme environment. The community structure of both bacteria and eukaryotes changed significantly with water and water + nutrient additions in the microcosms and taxonomic richness declined with amendments to water and nutrients. These results indicate that only a fraction of the detected community is able to become active when water and nutrients limitations are alleviated in lab microcosms, and that water alone can dramatically change community structure. Our study sheds light on which extremophilic organisms are likely to respond when favorable conditions occur in extreme earthly environments and perhaps in extraterrestrial environments as well.
Collapse
Affiliation(s)
- Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| | - Clifton P. Bueno de Mesquita
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
- Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309-0450, USA
| | - Steven K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (L.V.); (C.P.B.d.M.)
| |
Collapse
|
29
|
Jia T, Guo T, Yao Y, Wang R, Chai B. Seasonal Microbial Community Characteristic and Its Driving Factors in a Copper Tailings Dam in the Chinese Loess Plateau. Front Microbiol 2020; 11:1574. [PMID: 32754138 PMCID: PMC7366875 DOI: 10.3389/fmicb.2020.01574] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/17/2020] [Indexed: 11/13/2022] Open
Abstract
A combined soil bacterial and fungal community survey was conducted for a copper tailings dam in the Chinese Loess Plateau. We investigated the seasonal differences in the composition and function of soil microbial community to examine the key environmental factors influencing soil microorganisms during restorative ecological processes. Significant seasonal differences were found in the community structure of both bacterial and fungal communities. Bacterial community abundance and fungal community (Shannon index) measurements were highest in summer. Soil nitrite nitrogen (NO2 --N) was the dominant factor influencing both bacterial and fungal communities. The bacterial community composition was significantly affected by NO2 --N and ammonium nitrogen (NH4 +-N) in spring, and fungal community structure was significantly affected by soil water content in autumn. Moreover, the fungal community exhibited significant functional feature differences among seasons, whereas bacterial community functional groups remained similar. This study aimed to clarify the adaptation response of microbes applying different approaches used in ecological restoration approaches specific to mining areas, and to identify the natural biofertility capacity of the microbial communities that colonize soil ecosystems.
Collapse
Affiliation(s)
- Tong Jia
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Tingyan Guo
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Yushan Yao
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Ruihong Wang
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| | - Baofeng Chai
- Shanxi Key Laboratory of Ecological Restoration on Loess Plateau, Institute of Loess Plateau, Shanxi University, Taiyuan, China
| |
Collapse
|
30
|
Malard LA, Anwar MZ, Jacobsen CS, Pearce DA. Biogeographical patterns in soil bacterial communities across the Arctic region. FEMS Microbiol Ecol 2020; 95:5552140. [PMID: 31429869 PMCID: PMC6736398 DOI: 10.1093/femsec/fiz128] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
The considerable microbial diversity of soils and key role in biogeochemical cycling have led to growing interest in their global distribution and the impact that environmental change might have at the regional level. In the broadest study of Arctic soil bacterial communities to date, we used high-throughput DNA sequencing to investigate the bacterial diversity from 200 independent Arctic soil samples from 43 sites. We quantified the impact of spatial and environmental factors on bacterial community structure using variation partitioning analysis, illustrating a nonrandom distribution across the region. pH was confirmed as the key environmental driver structuring Arctic soil bacterial communities, while total organic carbon (TOC), moisture and conductivity were shown to have little effect. Specialist taxa were more abundant in acidic and alkaline soils while generalist taxa were more abundant in acidoneutral soils. Of the 48 147 bacterial taxa, a core microbiome composed of only 13 taxa that were ubiquitously distributed and present within 95% of samples was identified, illustrating the high potential for endemism in the region. Overall, our results demonstrate the importance of spatial and edaphic factors on the structure of Arctic soil bacterial communities.
Collapse
Affiliation(s)
- Lucie A Malard
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK
| | - Muhammad Z Anwar
- Department of Environmental Sciences, Aarhus University, 4000 Roskilde, Denmark
| | - Carsten S Jacobsen
- Department of Environmental Sciences, Aarhus University, 4000 Roskilde, Denmark
| | - David A Pearce
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK.,British Antarctic Survey, High Cross Madingley Road, Cambridge CB3 0ET, United Kingdom
| |
Collapse
|
31
|
Perez-Mon C, Frey B, Frossard A. Functional and Structural Responses of Arctic and Alpine Soil Prokaryotic and Fungal Communities Under Freeze-Thaw Cycles of Different Frequencies. Front Microbiol 2020; 11:982. [PMID: 32523565 PMCID: PMC7261861 DOI: 10.3389/fmicb.2020.00982] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Ongoing climate change involves increasing snow scarcity, which results in more frequent freeze-thaw cycles (FTCs) in polar and alpine soils. Although repeated FTCs have been shown to alter the structure and functions of soil microbial communities, a thorough understanding on the influence of FTCs frequency on polar and especially alpine soil microbiomes is still elusive. Here, we investigated the impact of repeated weekly vs. daily FTC frequencies on the structure and functions of prokaryotic and fungal communities from north- and south-exposed soils from two mountain ridges, one in the Arctic and one in the High-Alps. FTCs affected prokaryotic communities more strongly than fungal communities, where mainly cold-tolerant and opportunistic fungi (e.g., Mrakia, Mortierella) were responsive. Prokaryotic communities were more affected by weekly FTCs than by daily FTCs. Daily FTCs favored fast-growing bacteria (e.g., Arthrobacter), while oligotrophic and largely uncultured taxa (e.g., Verrucomicrobia) benefited from weekly FTCs. FTCs negatively affected microbial respiration but had minor impacts on C-, N- and P-acquiring enzymatic activities. Plausible pre-adaptation of the microbial communities to naturally occurring frequent FTCs at their site of origin did not show a clear influence on the microbial responses to the tested FTCs. Altogether, our study provides an integrative overview on potential structural and functional changes of soil microbial communities in polar and alpine regions in response to the projected increase in FTCs; therefore advancing our understanding on the impact of climate change in these rapidly changing ecosystems.
Collapse
Affiliation(s)
- Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Aline Frossard
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
32
|
Bezuidt OKI, Lebre PH, Pierneef R, León-Sobrino C, Adriaenssens EM, Cowan DA, Van de Peer Y, Makhalanyane TP. Phages Actively Challenge Niche Communities in Antarctic Soils. mSystems 2020; 5:e00234-20. [PMID: 32371471 PMCID: PMC7205518 DOI: 10.1128/msystems.00234-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 04/06/2020] [Indexed: 12/22/2022] Open
Abstract
By modulating the structure, diversity, and trophic outputs of microbial communities, phages play crucial roles in many biomes. In oligotrophic polar deserts, the effects of katabatic winds, constrained nutrients, and low water availability are known to limit microbial activity. Although phages may substantially govern trophic interactions in cold deserts, relatively little is known regarding the precise ecological mechanisms. Here, we provide the first evidence of widespread antiphage innate immunity in Antarctic environments using metagenomic sequence data from hypolith communities as model systems. In particular, immunity systems such as DISARM and BREX are shown to be dominant systems in these communities. Additionally, we show a direct correlation between the CRISPR-Cas adaptive immunity and the metavirome of hypolith communities, suggesting the existence of dynamic host-phage interactions. In addition to providing the first exploration of immune systems in cold deserts, our results suggest that phages actively challenge niche communities in Antarctic polar deserts. We provide evidence suggesting that the regulatory role played by phages in this system is an important determinant of bacterial host interactions in this environment.IMPORTANCE In Antarctic environments, the combination of both abiotic and biotic stressors results in simple trophic levels dominated by microbiomes. Although the past two decades have revealed substantial insights regarding the diversity and structure of microbiomes, we lack mechanistic insights regarding community interactions and how phages may affect these. By providing the first evidence of widespread antiphage innate immunity, we shed light on phage-host dynamics in Antarctic niche communities. Our analyses reveal several antiphage defense systems, including DISARM and BREX, which appear to dominate in cold desert niche communities. In contrast, our analyses revealed that genes which encode antiphage adaptive immunity were underrepresented in these communities, suggesting lower infection frequencies in cold edaphic environments. We propose that by actively challenging niche communities, phages play crucial roles in the diversification of Antarctic communities.
Collapse
Affiliation(s)
- Oliver K I Bezuidt
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Pedro Humberto Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Rian Pierneef
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Biotechnology Platform, Agricultural Research Council, Pretoria, South Africa
| | - Carlos León-Sobrino
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Yves Van de Peer
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
33
|
Li J, Gu X, Gui Y. Prokaryotic Diversity and Composition of Sediments From Prydz Bay, the Antarctic Peninsula Region, and the Ross Sea, Southern Ocean. Front Microbiol 2020; 11:783. [PMID: 32411115 PMCID: PMC7198716 DOI: 10.3389/fmicb.2020.00783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/01/2020] [Indexed: 11/13/2022] Open
Abstract
The V3–V4 hypervariable regions of the 16S ribosomal RNA gene were analyzed to assess prokaryotic diversity and community compositions within 19 surface sediment samples collected from three different regions (depth: 250–3,548 m) of Prydz Bay, the Antarctic Peninsula region, and the Ross Sea. In our results, we characterized 1,079,709 clean tag sequences representing 43,227 operational taxonomic units (OTUs, 97% similarity). The prokaryotic community distribution exhibited obvious geographical differences, and the sequences formed three distinct clusters according to the samples’ origins. In general, the biodiversity of Prydz Bay was higher than those of the Antarctic Peninsula region and the Ross Sea, and there were similar prokaryotic communities in different geographic locations. The most dominant clades in the prokaryotic communities were Proteobacteria, Bacteroidetes, Thaumarchaeota, Oxyphotobacteria, Deinococcus-Thermus, Firmicutes, Acidobacteria, Fusobacteria, and Planctomycetes, but unique prokaryotic community compositions were found in each of the sampling regions. Our results also demonstrated that the prokaryotic diversity and community distribution were mainly influenced by geographical and physicochemical factors, such as Zn, V, Na, K, water depth, and especially geographical distance (longitude variation of sample location) and Ba ion content. Moreover, geochemical factors such as nutrient contents (TC, P, and Ca) also played important roles in prokaryotic diversity and community distribution. This represents the first report that Ba ion content has an obvious effect on prokaryotic diversity and community distribution in Southern Ocean sediments.
Collapse
Affiliation(s)
- Jiang Li
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Xiaoqian Gu
- Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China.,Ministry of Natural Resources (MNR) Key Lab for Science & Technology of Marine Ecosystems, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China
| | - Yuanyuan Gui
- College of Environmental Science and Engineering Qingdao University, Qingdao, China
| |
Collapse
|
34
|
Barnard S, Van Goethem MW, de Scally SZ, Cowan DA, van Rensburg PJ, Claassens S, Makhalanyane TP. Increased temperatures alter viable microbial biomass, ammonia oxidizing bacteria and extracellular enzymatic activities in Antarctic soils. FEMS Microbiol Ecol 2020; 96:5818763. [DOI: 10.1093/femsec/fiaa065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 04/03/2020] [Indexed: 12/13/2022] Open
Abstract
ABSTRACT
The effects of temperature on microorganisms in high latitude regions, and their possible feedbacks in response to change, are unclear. Here, we assess microbial functionality and composition in response to a substantial temperature change. Total soil biomass, amoA gene sequencing, extracellular activity assays and soil physicochemistry were measured to assess a warming scenario. Soil warming to 15°C for 30 days triggered a significant decrease in microbial biomass compared to baseline soils (0°C; P < 0.05) after incubations had induced an initial increase. These changes coincided with increases in extracellular enzymatic activity for peptide hydrolysis and phenolic oxidation at higher temperatures, but not for the degradation of carbon substrates. Shifts in ammonia-oxidising bacteria (AOB) community composition related most significantly to changes in soil carbon content (P < 0.05), which gradually increased in microcosms exposed to a persistently elevated temperature relative to baseline incubations, while temperature did not influence AOBs. The concentration of soil ammonium (NH4+) decreased significantly at higher temperatures subsequent to an initial increase, possibly due to higher conversion rates of NH4+ to nitrate by nitrifying bacteria. We show that higher soil temperatures may reduce viable microbial biomass in cold environments but stimulate their activity over a short period.
Collapse
Affiliation(s)
- Sebastian Barnard
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Marc W Van Goethem
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Storme Z de Scally
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| | - Peet Jansen van Rensburg
- Focus Area Human Metabolomics, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom 2520, South Africa
| | - Thulani P Makhalanyane
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, Natural Sciences 2 Building, University of Pretoria, Pretoria, 0028, South Africa
| |
Collapse
|
35
|
Staebe K, Meiklejohn KI, Singh SM, Matcher GF. Biogeography of soil bacterial populations in the Jutulsessen and Ahlmannryggen of Western Dronning Maud Land, Antarctica. Polar Biol 2019. [DOI: 10.1007/s00300-019-02532-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
36
|
Luláková P, Perez-Mon C, Šantrůčková H, Ruethi J, Frey B. High-Alpine Permafrost and Active-Layer Soil Microbiomes Differ in Their Response to Elevated Temperatures. Front Microbiol 2019; 10:668. [PMID: 31001236 PMCID: PMC6456652 DOI: 10.3389/fmicb.2019.00668] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/18/2019] [Indexed: 02/01/2023] Open
Abstract
The response of microbial communities to the predicted rising temperatures in alpine regions might be an important part of the ability of these ecosystems to deal with climate change. Soil microbial communities might be significantly affected by elevated temperatures, which influence the functioning of soils within high-alpine ecosystems. To evaluate the potential of the permafrost microbiome to adapt to short-term moderate and extreme warming, we set up an incubation experiment with permafrost and active soil layers from northern and southern slopes of a high-alpine mountain ridge on Muot da Barba Peider in the Swiss Alps. Soils were acclimated to increasing temperatures (4–40°C) for 26 days before being exposed to a heat shock treatment of 40°C for 4 days. Alpha-diversity in all soils increased slightly under gradual warming, from 4 to 25°C, but then dropped considerably at 40°C. Similarly, heat shock induced strong changes in microbial community structures and functioning in the active layer of soils from both northern and southern slope aspects. In contrast, permafrost soils showed only minor changes in their microbial community structures and no changes in their functioning, except regarding specific respiration activity. Shifts in microbial community structures with increasing temperature were significantly more pronounced for bacteria than for fungi, regardless of the soil origin, suggesting higher resistance of high-alpine fungi to short-term warming. Firmicutes, mainly represented by Tumebacillus and Alicyclobacillaceae OTUs, increased strongly at 40°C in active layer soils, reaching almost 50% of the total abundance. In contrast, Saccharibacteria decreased significantly with increasing temperature across all soil samples. Overall, our study highlights the divergent responses of fungal and bacterial communities to increased temperature. Fungi were highly resistant to increased temperatures compared to bacteria, and permafrost communities showed surprisingly low response to rising temperature. The unique responses were related to both site aspect and soil origin indicating that distinct differences within high-alpine soils may be driven by substrate limitation and legacy effects of soil temperatures at the field site.
Collapse
Affiliation(s)
- Petra Luláková
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland.,Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Carla Perez-Mon
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Hana Šantrůčková
- Faculty of Science, University of South Bohemia, České Budějovice, Czechia
| | - Joel Ruethi
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
37
|
Soil bacterial diversity is positively associated with air temperature in the maritime Antarctic. Sci Rep 2019; 9:2686. [PMID: 30804443 PMCID: PMC6389919 DOI: 10.1038/s41598-019-39521-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/25/2019] [Indexed: 02/01/2023] Open
Abstract
Terrestrial ecosystems in the maritime Antarctic experienced rapid warming during the latter half of the 20th century. While warming ceased at the turn of the millennium, significant increases in air temperature are expected later this century, with predicted positive effects on soil fungal diversity, plant growth and ecosystem productivity. Here, by sequencing 16S ribosomal RNA genes in 40 soils sampled from along a 1,650 km climatic gradient through the maritime Antarctic, we determine whether rising air temperatures might similarly influence the diversity of soil bacteria. Of 22 environmental factors, mean annual surface air temperature was the strongest and most consistent predictor of soil bacterial diversity. Significant, but weaker, associations between bacterial diversity and soil moisture content, C:N ratio, and Ca, Mg, PO43− and dissolved organic C concentrations were also detected. These findings indicate that further rises in air temperature in the maritime Antarctic may enhance terrestrial ecosystem productivity through positive effects on soil bacterial diversity.
Collapse
|
38
|
Darrouzet‐Nardi A, Steltzer H, Sullivan PF, Segal A, Koltz AM, Livensperger C, Schimel JP, Weintraub MN. Limited effects of early snowmelt on plants, decomposers, and soil nutrients in Arctic tundra soils. Ecol Evol 2019; 9:1820-1844. [PMID: 30847075 PMCID: PMC6392369 DOI: 10.1002/ece3.4870] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/03/2018] [Accepted: 12/04/2018] [Indexed: 11/29/2022] Open
Abstract
In addition to warming temperatures, Arctic ecosystems are responding to climate change with earlier snowmelt and soil thaw. Earlier snowmelt has been examined infrequently in field experiments, and we lack a comprehensive look at belowground responses of the soil biogeochemical system that includes plant roots, decomposers, and soil nutrients. We experimentally advanced the timing of snowmelt in factorial combination with an open-top chamber warming treatment over a 3-year period and evaluated the responses of decomposers and nutrient cycling processes. We tested two alternative hypotheses: (a) Early snowmelt and warming advance the timing of root growth and nutrient uptake, altering the timing of microbial and invertebrate activity and key nutrient cycling events; and (b) loss of insulating snow cover damages plants, leading to reductions in root growth and altered biological activity. During the 3 years of our study (2010-2012), we advanced snowmelt by 4, 15, and 10 days, respectively. Despite advancing aboveground plant phenology, particularly in the year with the warmest early-season temperatures (2012), belowground effects were primarily seen only on the first sampling date of the season or restricted to particular years or soil type. Overall, consistent and substantial responses to early snowmelt were not observed, counter to both of our hypotheses. The data on soil physical conditions, as well interannual comparisons of our results, suggest that this limited response was because of the earlier date of snowmelt that did not coincide with substantially warmer air and soil temperatures as they might in response to a natural climate event. We conclude that the interaction of snowmelt timing with soil temperatures is important to how the ecosystem will respond, but that 1- to 2-week changes in timing of snowmelt alone are not enough to drive season-long changes in soil microbial and nutrient cycling processes.
Collapse
Affiliation(s)
- Anthony Darrouzet‐Nardi
- Department of Biological SciencesUniversity of Texas at El PasoEl PasoTexas
- Department of Environmental SciencesUniversity of ToledoToledoOhio
| | | | - Patrick F. Sullivan
- Environment and Natural Resources InstituteUniversity of Alaska AnchorageAnchorageAlaska
| | - Aliza Segal
- Environment and Natural Resources InstituteUniversity of Alaska AnchorageAnchorageAlaska
| | - Amanda M. Koltz
- Department of BiologyWashington University in St. LouisSt. LouisMissouri
| | - Carolyn Livensperger
- Natural Resource Ecology LaboratoryColorado State UniversityFort CollinsColorado
| | - Joshua P. Schimel
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCalifornia
| | | |
Collapse
|
39
|
Wentzel LCP, Inforsato FJ, Montoya QV, Rossin BG, Nascimento NR, Rodrigues A, Sette LD. Fungi from Admiralty Bay (King George Island, Antarctica) Soils and Marine Sediments. MICROBIAL ECOLOGY 2019; 77:12-24. [PMID: 29916010 DOI: 10.1007/s00248-018-1217-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/31/2018] [Indexed: 06/08/2023]
Abstract
Extreme environments such as the Antarctic can lead to the discovery of new microbial taxa, as well as to new microbial-derived natural products. Considering that little is known yet about the diversity and the genetic resources present in these habitats, the main objective of this study was to evaluate the fungal communities from extreme environments collected at Aldmiralty Bay (Antarctica). A total of 891 and 226 isolates was obtained from soil and marine sediment samples, respectively. The most abundant isolates from soil samples were representatives of the genera Leucosporidium, Pseudogymnoascus, and a non-identified Ascomycota NIA6. Metschnikowia sp. was the most abundant taxon from marine samples, followed by isolates from the genera Penicillium and Pseudogymnoascus. Many of the genera were exclusive in marine sediment or terrestrial samples. However, representatives of eight genera were found in both types of samples. Data from non-metric multidimensional scaling showed that each sampling site is unique in their physical-chemical composition and fungal community. Biotechnological potential in relation to enzymatic production at low/moderate temperatures was also investigated. Ligninolytic enzymes were produced by few isolates from root-associated soil. Among the fungi isolated from marine sediments, 16 yeasts and nine fungi showed lipase activity and three yeasts and six filamentous fungi protease activity. The present study permitted increasing our knowledge on the diversity of fungi that inhabit the Antarctic, finding genera that have never been reported in this environment before and discovering putative new species of fungi.
Collapse
Affiliation(s)
- Lia Costa Pinto Wentzel
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Fábio José Inforsato
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Quimi Vidaurre Montoya
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Bruna Gomes Rossin
- Instituto de Geociências e Ciências Exatas, Departamento de Planejamento Territorial e Geoprocessamento, São Paulo State University (UNESP), Avenida 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Nadia Regina Nascimento
- Instituto de Geociências e Ciências Exatas, Departamento de Planejamento Territorial e Geoprocessamento, São Paulo State University (UNESP), Avenida 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - André Rodrigues
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil
| | - Lara Durães Sette
- Instituto de Biociências, Departamento de Bioquímica e Microbiologia, São Paulo State University (UNESP), Av 24A, 1515, Rio Claro, 13506-900, SP, Brazil.
| |
Collapse
|
40
|
Calderón K, Philippot L, Bizouard F, Breuil MC, Bru D, Spor A. Compounded Disturbance Chronology Modulates the Resilience of Soil Microbial Communities and N-Cycle Related Functions. Front Microbiol 2018; 9:2721. [PMID: 30459749 PMCID: PMC6232425 DOI: 10.3389/fmicb.2018.02721] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/24/2018] [Indexed: 11/13/2022] Open
Abstract
There is a growing interest of overcoming the uncertainty related to the cumulative impacts of multiple disturbances of different nature in all ecosystems. With global change leading to acute environmental disturbances, recent studies demonstrated a significant increase in the possible number of interactions between disturbances that can generate complex, non-additive effects on ecosystems functioning. However, how the chronology of disturbances can affect ecosystems functioning is unknown even though there is increasing evidence that community assembly history dictates ecosystems functioning. Here, we experimentally examined the importance of the disturbances chronology in modulating the resilience of soil microbial communities and N-cycle related functions. We studied the impact of 3-way combinations of global change related disturbances on total bacterial diversity and composition, on the abundance of N-cycle related guilds and on N-cycle related activities in soil microcosms. The model pulse disturbances, i.e., short-term ceasing disturbances studied were heat, freeze-thaw and anaerobic cycles. We determined that repeated disturbances of the same nature can either lead to the resilience or to shifts in N-cycle related functions concomitant with diversity loss. When considering disturbances of different nature, we demonstrated that the chronology of compounded disturbances impacting an ecosystem determines the aggregated impact on ecosystem properties and functions. Thus, after 3 weeks the impact of the 'anoxia/heat/freeze-thaw' sequence was almost two times stronger than that of the 'heat/anoxia/freeze-thaw' sequence. Finally, we showed that about 29% of the observed variance in ecosystem aggregated impact caused by series of disturbances could be attributed to changes in the microbial community composition measured by weighted UniFrac distances. This indicates that surveying changes in bacterial community composition can help predict the strength of the impact of compounded disturbances on N-related functions and properties.
Collapse
Affiliation(s)
- Kadiya Calderón
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
- Departamento de Investigaciones Científicas y Tecnológicas Universidad de Sonora, Hermosillo, Mexico
| | - Laurent Philippot
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Florian Bizouard
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | | | - David Bru
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| | - Aymé Spor
- Agroécologie, AgroSup Dijon, INRA, Université Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
41
|
Effect of Freeze-Thaw on a Midtemperate Soil Bacterial Community and the Correlation Network of Its Members. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8412429. [PMID: 30050943 PMCID: PMC6040300 DOI: 10.1155/2018/8412429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 04/17/2018] [Indexed: 11/17/2022]
Abstract
Freeze-thaw (FT) events can influence soil functions. However, the overall impact of FTs on soil bacterial communities, especially in temperate regions, remains unclear. In this study, soil samples were collected from a midtemperate region in the northeast of China, and three incubation tests were then designed with varied FT amplitudes (i.e., at a freezing temperature of −15, −9, and −3°C, respectively), frequencies of FT cycles (i.e., under one, six, and 15 FT cycles, respectively) and soil water content (SWC) values (i.e., at 10 and 30% SWC, respectively). High-throughput sequencing of 16S rRNA gene amplicons was performed and the functional profile was further predicted based on these data, in addition to examinations of bulk microbial properties. Data analyses suggested that, first of all, the FT amplitude significantly influenced the bulk microbial properties and bacterial community (composition and function); certain taxa showed a nonlinear response to the three amplitudes. Next, compared to a single FTC, multiple FT cycles had only minor effects on the bacterial functional capabilities, although the bulk microbial properties changed significantly after multiple FT cycles. In addition, the bacterial response to FTs was influenced by the SWC, characterized by the significantly different bacterial community structures (composition and function) and the opposite trends of enzyme activities. Finally, RDA plots and a correlation network assembled data from all soil samples across the three tests and suggested that bacterial response trajectories changed because some species were influenced mainly by other species (i.e., biotic environment) during FT processes.
Collapse
|
42
|
Ren J, Song C, Hou A, Song Y, Zhu X, Cagle GA. Shifts in soil bacterial and archaeal communities during freeze-thaw cycles in a seasonal frozen marsh, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 625:782-791. [PMID: 29306166 DOI: 10.1016/j.scitotenv.2017.12.309] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Diurnal freeze-thaw cycles (FTCs) occur in the spring and autumn in boreal wetlands as soil temperatures rise above freezing during the day and fall below freezing at night. A surge in methane emissions from these systems is frequently documented during spring FTCs, accounting for a large portion of annual emissions. In boreal wetlands, methane is produced as a result of syntrophic microbial processes, mediated by a consortium of fermenting bacteria and methanogenic archaea. Further research is needed to determine whether FTCs enhance microbial metabolism related to methane production through the cryogenic decomposition of soil organic matter. Previous studies observed large methane emissions during the spring thawed period in the Sanjiang seasonal frozen marsh of Northeast China. To investigate how FTCs impact the soil microbial community and methanogen abundance and activity, we collected soil cores from the Sanjiang marsh during the FTCs of autumn 2014 and spring 2015. Methanogens were investigated based on expression level of the methyl coenzyme reductase (mcrA) gene, and soil bacterial and archaeal community structures were assessed by 16S rRNA gene sequencing. The results show that a decrease in bacteria and methanogens followed autumns FTCs, whereas an increase in bacteria and methanogens was observed following spring FTCs. The bacterial community structure, including Firmicutes and certain Deltaproteobacteria, was changed following autumn FTCs. Temperature and substrate were the primary factors regulating the abundance and composition of the microbial communities during autumn FTCs, whereas no factors significantly contributing to spring FTCs were identified. Acetoclastic methanogens from order Methanosarcinales were the dominant group at the beginning and end of both the autumn and spring FTCs. Active methanogens were significantly more abundant during the diurnal thawed period, indicating that the increasing number of FTCs predicted to occur with global climate change could potentially promote CH4 emissions in seasonal frozen marshes.
Collapse
Affiliation(s)
- Jiusheng Ren
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Aixin Hou
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Xiaoyan Zhu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Xincheng Street, District 5088, Changchun 130118, PR China
| | - Grace Ann Cagle
- Department of Environmental Sciences, College of the Coast and Environment, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
43
|
Mickol RL, Laird SK, Kral TA. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars. Microorganisms 2018; 6:microorganisms6020034. [PMID: 29690617 PMCID: PMC6027200 DOI: 10.3390/microorganisms6020034] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 01/25/2023] Open
Abstract
Although the martian environment is currently cold and dry, geomorphological features on the surface of the planet indicate relatively recent (<4 My) freeze/thaw episodes. Additionally, the recent detections of near-subsurface ice as well as hydrated salts within recurring slope lineae suggest potentially habitable micro-environments within the martian subsurface. On Earth, microbial communities are often active at sub-freezing temperatures within permafrost, especially within the active layer, which experiences large ranges in temperature. With warming global temperatures, the effect of thawing permafrost communities on the release of greenhouse gases such as carbon dioxide and methane becomes increasingly important. Studies examining the community structure and activity of microbial permafrost communities on Earth can also be related to martian permafrost environments, should life have developed on the planet. Here, two non-psychrophilic methanogens, Methanobacterium formicicum and Methanothermobacter wolfeii, were tested for their ability to survive long-term (~4 year) exposure to freeze/thaw cycles varying in both temperature and duration, with implications both for climate change on Earth and possible life on Mars.
Collapse
Affiliation(s)
- Rebecca L Mickol
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
- American Society for Engineering Education, Washington, DC 20036, USA.
| | - Sarah K Laird
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| | - Timothy A Kral
- Arkansas Center for Space and Planetary Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA.
| |
Collapse
|
44
|
Effect of temperature on bacterial community in petroleum hydrocarbon-contaminated and uncontaminated Antarctic soil. Polar Biol 2018. [DOI: 10.1007/s00300-018-2316-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
45
|
Kim D, Park HJ, Kim JH, Youn UJ, Yang YH, Casanova-Katny A, Vargas CM, Venegas EZ, Park H, Hong SG. Passive warming effect on soil microbial community and humic substance degradation in maritime Antarctic region. J Basic Microbiol 2018; 58:513-522. [PMID: 29570816 DOI: 10.1002/jobm.201700470] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 02/12/2018] [Accepted: 02/21/2018] [Indexed: 11/08/2022]
Abstract
Although the maritime Antarctic has undergone rapid warming, the effects on indigenous soil-inhabiting microorganisms are not well known. Passive warming experiments using open-top chamber (OTC) have been performed on the Fildes Peninsula in the maritime Antarctic since 2008. When the soil temperature was measured at a depth of 2-5 cm during the 2013-2015 summer seasons, the mean temperature inside OTC (OTC-In) increased by approximately 0.8 °C compared with outside OTC (OTC-Out), while soil chemical and physical characteristics did not change. Soils (2015 summer) from OTC-In and OTC-Out were subjected to analysis for change in microbial community and degradation rate of humic substances (HS, the largest pool of recalcitrant organic carbon in soil). Archaeal and bacterial communities in OTC-In were minimally affected by warming compared with those in OTC-Out, with archaeal methanogenic Thermoplasmata slightly increased in abundance. The abundance of heterotrophic fungi Ascomycota was significantly altered in OTC-In. Total bacterial and fungal biomass in OTC-In increased by 20% compared to OTC-Out, indicating that this may be due to increased microbial degradation activity for soil organic matter (SOM) including HS, which would result in the release of more low-molecular-weight growth substrates from SOM. Despite the effects of warming on the microbial community over the 8-years-experiments warming did not induce any detectable change in content or structure of polymeric HS. These results suggest that increased temperature may have significant and direct effects on soil microbial communities inhabiting maritime Antarctic and that soil microbes would subsequently provide more available carbon sources for other indigenous microbes.
Collapse
Affiliation(s)
- Dockyu Kim
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Ha Ju Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Jung Ho Kim
- Department of Microbial Engineering, Konkuk Univerisity, Seoul, South Korea
| | - Ui Joung Youn
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Yung Hun Yang
- Department of Microbial Engineering, Konkuk Univerisity, Seoul, South Korea
| | - Angélica Casanova-Katny
- School of Environmental Science, Catholic University of Temuco, Rudecindo Ortega, Temuco, Chile
| | | | - Erick Zagal Venegas
- Department of Soils and Natural Resources, Concepción University, Chillán, Chile
| | - Hyun Park
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| | - Soon Gyu Hong
- Division of Polar Life Sciences, Korea Polar Research Institute, Incheon, South Korea
| |
Collapse
|
46
|
Yergeau E, Tremblay J, Joly S, Labrecque M, Maynard C, Pitre FE, St-Arnaud M, Greer CW. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root-rhizosphere interactome. THE ISME JOURNAL 2018; 12:869-884. [PMID: 29330533 PMCID: PMC5864237 DOI: 10.1038/s41396-017-0018-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 10/10/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022]
Abstract
Phytoremediation using willows is thought to be a sustainable alternative to traditional remediation techniques involving excavation, transport, and landfilling. However, the complexity of the interaction between the willow and its associated highly diverse microbial communities makes the optimization of phytoremediation very difficult. Here, we have sequenced the rhizosphere metatranscriptome of four willow species and the plant root metatranscriptome for two willow species growing in petroleum hydrocarbon-contaminated and non-contaminated soils on a former petroleum refinery site. Significant differences in the abundance of transcripts related to different bacterial and fungal taxa were observed between willow species, mostly in contaminated soils. When comparing transcript abundance in contaminated vs. non-contaminated soil for each willow species individually, transcripts for many microbial taxa and functions were significantly more abundant in contaminated rhizosphere soil for Salix eriocephala, S. miyabeana and S. purpurea, in contrast to what was observed in the rhizosphere of S. caprea. This agrees with the previously reported sensitivity of S. caprea to contamination, and the superior tolerance of S. miyabeana and S. purpurea to soil contamination at that site. The root metatranscriptomes of two species were compared and revealed that plants transcripts are mainly influenced by willow species, while microbial transcripts mainly responded to contamination. A comparison of the rhizosphere and root metatranscriptomes in the S. purpurea species revealed a complete reorganization of the linkages between root and rhizosphere pathways when comparing willows growing in contaminated and non-contaminated soils, mainly because of large shifts in the rhizosphere metatranscriptome.
Collapse
Affiliation(s)
- Etienne Yergeau
- Centre INRS-Institut Armand-Frappier, Institut National de la Recherche Scientifique, Université du Québec, Laval, QC, Canada.
| | - Julien Tremblay
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| | - Simon Joly
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Michel Labrecque
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Christine Maynard
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| | - Frederic E Pitre
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Marc St-Arnaud
- Institut de recherche en biologie végétale, Jardin botanique de Montréal et Université de Montréal, Montréal, QC, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment, Montréal, QC, Canada
| |
Collapse
|
47
|
Knox MA, Andriuzzi WS, Buelow HN, Takacs-Vesbach C, Adams BJ, Wall DH. Decoupled responses of soil bacteria and their invertebrate consumer to warming, but not freeze-thaw cycles, in the Antarctic Dry Valleys. Ecol Lett 2017; 20:1242-1249. [PMID: 28797136 DOI: 10.1111/ele.12819] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 06/30/2017] [Accepted: 07/09/2017] [Indexed: 11/30/2022]
Abstract
Altered temperature profiles resulting in increased warming and freeze-thaw cycle (FTC) frequency pose great ecological challenges to organisms in alpine and polar ecosystems. We performed a laboratory microcosm experiment to investigate how temperature variability affects soil bacterial cell numbers, and abundance and traits of soil microfauna (the microbivorous nematode Scottnema lindsayae) from McMurdo Dry Valleys, Antarctica. FTCs and constant freezing shifted nematode body size distribution towards large individuals, driven by higher mortality among smaller individuals. FTCs reduced both bacterial and nematode abundance, but bacterial cell numbers also declined under warming, demonstrating decoupled consumer-prey responses. We predict that higher occurrence of FTCs in cold ecosystems will select for large body size within soil microinvertebrates and overall reduce their abundance. In contrast, warm temperatures without FTCs could lead to divergent responses in soil bacteria and their microinvertebrate consumers, potentially affecting energy and nutrient transfer rates in soil food webs of cold ecosystems.
Collapse
Affiliation(s)
- Matthew A Knox
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,Hopkirk Research Institute, IVABS, Massey University, Private Bag 11-222, Palmerston North, 4474, New Zealand
| | - Walter S Andriuzzi
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA
| | - Heather N Buelow
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | | | - Byron J Adams
- Department of Biology, Evolutionary Ecology Laboratories, and Monte L. Bean Museum, Brigham Young University, Provo, UT, 84602, USA
| | - Diana H Wall
- Department of Biology, Colorado State University, Fort Collins, CO, 80523, USA.,School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO, 80523, USA
| |
Collapse
|
48
|
Chaud LC, Lario LD, Bonugli-Santos RC, Sette LD, Pessoa Junior A, Felipe MDGDA. Improvement in extracellular protease production by the marine antarctic yeast Rhodotorula mucilaginosa L7. N Biotechnol 2016; 33:807-814. [DOI: 10.1016/j.nbt.2016.07.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 06/10/2016] [Accepted: 07/24/2016] [Indexed: 11/16/2022]
|
49
|
Duarte AWF, Passarini MRZ, Delforno TP, Pellizzari FM, Cipro CVZ, Montone RC, Petry MV, Putzke J, Rosa LH, Sette LD. Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antarctica. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:874-885. [PMID: 27518570 DOI: 10.1111/1758-2229.12452] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Antarctic terrestrial ecosystems are largely dominated by lichens, while shallow coastal environments are mainly covered by macroalgae. The aim of this study was to isolate and to evaluate the diversity of yeasts in different species of macroalgae and lichens collected in South Shetland Islands, Antarctica. A total of 405 yeasts were recovered (205 from macroalgae and 200 from lichens). The yeast community from macroalgae was most diversity than the yeast community from lichen. The dominance index was similar for both substrates. A total of 24 taxa from macroalgae and 18 from lichens were identified, and only 5 were common to both substrates. Metschnikowia australis, Mrakia sp., Rhodotorula glacialis and Glaciozyma litorale were the most abundant yeasts in macroalgae and Cryptococcus victoriae, Rhodotorula laryngis, Rhodotorula arctica, Trichosporon sp. 1 and Mrakia sp. were the most abundant in lichens. Based on molecular and phylogenetic analyses, four yeast from macroalgae and six from lichens were considered potential new species. This is the first study to report the yeast communities from the Antarctic macroalgae Himantothallus grandifolius and lichen Ramalina terebrata. Results suggest that Antarctic phyco and lichensphere represent a huge substrate for cold-adapted yeasts and enhanced the knowledge of the microbiota from extreme environments.
Collapse
Affiliation(s)
- Alysson Wagner Fernandes Duarte
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
- Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca, Alagoas, Brazil
| | - Michel Rodrigo Zambrano Passarini
- Instituto Latino Americano de Ciências da Vida e da Natureza, Centro Interdisciplinar de Ciências da Vida, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brazil
| | - Tiago Palladino Delforno
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
| | - Franciane Maria Pellizzari
- Campus Paranaguá, Laboratório de Ficologia e Qualidade de Água Marinha, Universidade Estadual do Paraná, Foz do Iguaçu, Paraná, Brazil
| | - Caio Vinicius Zecchin Cipro
- Littoral Environnement et Sociétés (LIENSs), UMR 7266, CNRS - Université de La Rochelle, 2 rue Olympe de Gouges, La Rochelle Cedex 01, 17042, France
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Rosalinda Carmela Montone
- Laboratório de Química Orgânica Marinha, Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Virginia Petry
- Laboratório de Ornitologia e Animais Marinhos, Universidade do Vale do Rio dos Sinos São Leopoldo, UNISINOS - RS, São Leopoldo, Brazil
| | - Jair Putzke
- Universidade de Santa Cruz do Sul, Santa Cruz do Sul, Rio Grande do Sul, Brazil
| | - Luiz Henrique Rosa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lara Durães Sette
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas, Universidade Estadual de Campinas, Paulínia, SP, Brazil
- Laboratório de Micologia Ambiental e Industrial, Departamento de Bioquímica e Microbiologia, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, SP, Brazil
| |
Collapse
|
50
|
Growth of high-elevation Cryptococcus sp. during extreme freeze-thaw cycles. Extremophiles 2016; 20:579-88. [PMID: 27315166 DOI: 10.1007/s00792-016-0844-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/31/2016] [Indexed: 10/21/2022]
Abstract
Soils above 6000 m.a.s.l. are among the most extreme environments on Earth, especially on high, dry volcanoes where soil temperatures cycle between -10 and 30 °C on a typical summer day. Previous studies have shown that such sites are dominated by yeast in the cryophilic Cryptococcus group, but it is unclear if they can actually grow (or are just surviving) under extreme freeze-thaw conditions. We carried out a series of experiments to determine if Cryptococcus could grow during freeze-thaw cycles similar to those measured under field conditions. We found that Cryptococcus phylotypes increased in relative abundance in soils subjected to 48 days of freeze-thaw cycles, becoming the dominant organisms in the soil. In addition, pure cultures of Cryptococcus isolated from these same soils were able to grow in liquid cultures subjected to daily freeze-thaw cycles, despite the fact that the culture medium froze solid every night. Furthermore, we showed that this organism is metabolically versatile and phylogenetically almost identical to strains from Antarctic Dry Valley soils. Taken together these results indicate that this organism has unique metabolic and temperature adaptations that make it able to thrive in one of the harshest and climatically volatile places on Earth.
Collapse
|