1
|
Yadav V, Zohib M, Singh S, Pal RK, Tripathi S, Jain A, Biswal BK, Dasgupta A, Arora A. Structural and biophysical characterization of PadR family protein Rv1176c of Mycobacterium tuberculosis H37Rv. Int J Biol Macromol 2024; 263:130455. [PMID: 38417748 DOI: 10.1016/j.ijbiomac.2024.130455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/01/2024]
Abstract
Rv1176c of Mycobacterium tuberculosis H37Rv belongs to the PadR-s1 subfamily of the PadR family of protein. Rv1176c forms a stable dimer in solution. Its stability is characterized by a thermal melting transition temperature (Tm) of 39.4 °C. The crystal structure of Rv1176c was determined at a resolution of 2.94 Å, with two monomers in the asymmetric unit. Each monomer has a characteristic N-terminal winged-helix-turn-helix DNA-binding domain. Rv1176c C-terminal is a coiled-coil dimerization domain formed of α-helices α5 to α7. In the Rv1176c dimer, there is domain-swapping of the C-terminal domain in comparison to other PadR homologs. In the dimer, there is a long inter-subunit tunnel in which different ligands can bind. Rv1176c was found to bind to the promoter region of its own gene with high specificity. M. smegmatis MC2 155 genome lacks homolog of Rv1176c. Therefore, it was used as a surrogate to characterize the functional role of Rv1176c. Expression of Rv1176c in M. smegmatis MC2 155 cells imparted enhanced tolerance towards oxidative stress. Rv1176c expressing M. smegmatis MC2 155 cells exhibited enhanced intracellular survival in J774A.1 murine macrophage cells. Overall, our studies demonstrate Rv1176c to be a PadR-s1 subfamily transcription factor that can moderate the effect of oxidative stress.
Collapse
Affiliation(s)
- Vikash Yadav
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muhammad Zohib
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravi Kant Pal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Sarita Tripathi
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Anupam Jain
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Bichitra Kumar Biswal
- X-ray Crystallography Facility, National Institute of Immunology, New Delhi 110067, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ashish Arora
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Mukku RP, Poornima K, Yadav S, Raghunand TR. Delineating the functional role of the PPE50 (Rv3135) - PPE51 (Rv3136) gene cluster in the pathophysiology of Mycobacterium tuberculosis. Microbes Infect 2024; 26:105248. [PMID: 37931681 DOI: 10.1016/j.micinf.2023.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
The extraordinary success of Mycobacterium tuberculosis (M. tb) has been attributed to its ability to modulate host immune responses, and its genome encodes multiple immunomodulatory factors, including several proteins of the multigenic PE_PPE family. To understand its role in M. tb pathophysiology we have characterised the PPE50 (Rv3135)-PPE51 (Rv3136) gene cluster, one of nine PPE-PPE clusters in the genome. We demonstrate here that this cluster is operonic, and that PPE50 and PPE51 interact - the first demonstration of PPE-PPE interaction. THP-1 macrophages infected with recombinant Mycobacterium smegmatis strains expressing PPE50 and PPE51 showed lower intracellular viability than the control, which correlated with an increase in transcript levels of iNOS2. Infected macrophages also exhibited an upregulation in levels of IL-10, indicating an immunomodulatory role for these proteins. Using pull-downs and signalling assays, we identified TLR1 to be the cognate receptor for PPE50 - all the phenotypes observed on infection of THP-1 macrophages were reversed on pre-treatment with an anti-TLR1 antibody, validating the functional outcome of PPE50-TLR1 interaction. Our data reveals a TLR1 dependent role for the PPE50-PPE51 cluster in promoting bacillary persistence, via CFU reduction and concomitant upregulation of the anti-inflammatory response - a two-pronged strategy to circumvent host immune surveillance.
Collapse
Affiliation(s)
- Ravi Prasad Mukku
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Kokavalla Poornima
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Sangya Yadav
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India.
| | - Tirumalai R Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Yandrapally S, Agarwal A, Chatterjee A, Sarkar S, Mohareer K, Banerjee S. Mycobacterium tuberculosis EspR modulates Th1-Th2 shift by transcriptionally regulating IL-4, steering increased mycobacterial persistence and HIV propagation during co-infection. Front Immunol 2023; 14:1276817. [PMID: 37928551 PMCID: PMC10621737 DOI: 10.3389/fimmu.2023.1276817] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) and HIV are known to mutually support each other during co-infection by multiple mechanisms. This synergistic influence could be either by direct interactions or indirectly through secreted host or pathogen factors that work in trans. Mtb secretes several virulence factors to modulate the host cellular environment for its persistence and escaping cell-intrinsic immune responses. We hypothesized that secreted Mtb transcription factors that target the host nucleus can directly interact with host DNA element(s) or HIV LTR during co-infection, thereby modulating immune gene expression, or driving HIV transcription, helping the synergistic existence of Mtb and HIV. Here, we show that the Mtb-secreted protein, EspR, a transcription regulator, increased mycobacterial persistence and HIV propagation during co-infection. Mechanistically, EspR localizes to the nucleus of the host cells during infection, binds to its putative cognate motif on the promoter region of the host IL-4 gene, activating IL-4 gene expression, causing high IL-4 titers that induce a Th2-type microenvironment, shifting the macrophage polarization to an M2 state as evident from CD206 dominant population over CD64. This compromised the clearance of the intracellular mycobacteria and enhanced HIV propagation. It was interesting to note that EspR did not bind to HIV LTR, although its transient expression increased viral propagation. This is the first report of an Mtb transcription factor directly regulating a host cytokine gene. This augments our understanding of the evolution of Mtb immune evasion strategies and unveils how Mtb aggravates comorbidities, such as HIV co-infection, by modulating the immune microenvironment.
Collapse
|
4
|
Veerapandian R, Ramos EI, Vijayaraghavan M, Sedano MJ, Carmona A, Chacon JA, Gadad SS, Dhandayuthapani S. Mycobacterium smegmatis secreting methionine sulfoxide reductase A (MsrA) modulates cellular processes in mouse macrophages. Biochimie 2023; 211:1-15. [PMID: 36809827 DOI: 10.1016/j.biochi.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) is an antioxidant repair enzyme that reduces the oxidized methionine (Met-O) in proteins to methionine (Met). Its pivotal role in the cellular processes has been well established by overexpressing, silencing, and knocking down MsrA or deleting the gene encoding MsrA in several species. We are specifically interested in understanding the role of secreted MsrA in bacterial pathogens. To elucidate this, we infected mouse bone marrow-derived macrophages (BMDMs) with recombinant Mycobacterium smegmatis strain (MSM), secreting a bacterial MsrA or M. smegmatis strain (MSC) carrying only the control vector. BMDMs infected with MSM induced higher levels of ROS and TNF-α than BMDMs infected with MSC. The increased ROS and TNF-α levels in MSM-infected BMDMs correlated with elevated necrotic cell death in this group. Further, RNA-seq transcriptome analysis of BMDMs infected with MSC and MSM revealed differential expression of protein and RNA coding genes, suggesting that bacterial-delivered MsrA could modulate the host cellular processes. Finally, KEGG pathway enrichment analysis identified the down-regulation of cancer-related signaling genes in MSM-infected cells, indicating that MsrA can potentially regulate the development and progression of cancer.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Enrique I Ramos
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Mahalakshmi Vijayaraghavan
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Melina J Sedano
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Areanna Carmona
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Jessica A Chacon
- Department of Medical Education, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Paul L. Foster School of Medicine, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA; Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX, 78229, USA.
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, TX, 79905, USA; Frederick L. Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, Texas, 79905, USA.
| |
Collapse
|
5
|
Anes E, Pires D, Mandal M, Azevedo-Pereira JM. ESAT-6 a Major Virulence Factor of Mycobacterium tuberculosis. Biomolecules 2023; 13:968. [PMID: 37371548 DOI: 10.3390/biom13060968] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of human tuberculosis (TB), is one of the most successfully adapted human pathogens. Human-to-human transmission occurs at high rates through aerosols containing bacteria, but the pathogen evolved prior to the establishment of crowded populations. Mtb has developed a particular strategy to ensure persistence in the host until an opportunity for transmission arises. It has refined its lifestyle to obviate the need for virulence factors such as capsules, flagella, pili, or toxins to circumvent mucosal barriers. Instead, the pathogen uses host macrophages, where it establishes intracellular niches for its migration into the lung parenchyma and other tissues and for the induction of long-lived latency in granulomas. Finally, at the end of the infection cycle, Mtb induces necrotic cell death in macrophages to escape to the extracellular milieu and instructs a strong inflammatory response that is required for the progression from latency to disease and transmission. Common to all these events is ESAT-6, one of the major virulence factors secreted by the pathogen. This narrative review highlights the recent advances in understanding the role of ESAT-6 in hijacking macrophage function to establish successful infection and transmission and its use as a target for the development of diagnostic tools and vaccines.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed.ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| |
Collapse
|
6
|
Silveiro C, Marques M, Olivença F, Pires D, Mortinho D, Nunes A, Pimentel M, Anes E, Catalão MJ. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival. Front Cell Infect Microbiol 2023; 13:1089911. [PMID: 37009497 PMCID: PMC10050696 DOI: 10.3389/fcimb.2023.1089911] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
The lack of effective therapeutics against emerging multi-drug resistant strains of Mycobacterium tuberculosis (Mtb) prompts the identification of novel anti-tuberculosis targets. The essential nature of the peptidoglycan (PG) layer of the mycobacterial cell wall, which features several distinctive modifications, such as the N-glycolylation of muramic acid and the amidation of D-iso-glutamate, makes it a target of particular interest. To understand their role in susceptibility to beta-lactams and in the modulation of host-pathogen interactions, the genes encoding the enzymes responsible for these PG modifications (namH and murT/gatD, respectively) were silenced in the model organism Mycobacterium smegmatis using CRISPR interference (CRISPRi). Although beta-lactams are not included in TB-therapy, their combination with beta-lactamase inhibitors is a prospective strategy to treat MDR-TB. To uncover synergistic effects between the action of beta-lactams and the depletion of these PG modifications, knockdown mutants were also constructed in strains lacking the major beta-lactamase of M. smegmatis BlaS, PM965 (M. smegmatis ΔblaS1) and PM979 (M. smegmatis ΔblaS1 ΔnamH). The phenotyping assays affirmed the essentiality of the amidation of D-iso-glutamate to the survival of mycobacteria, as opposed to the N-glycolylation of muramic acid. The qRT-PCR assays confirmed the successful repression of the target genes, along with few polar effects and differential knockdown level depending on PAM strength and target site. Both PG modifications were found to contribute to beta-lactam resistance. While the amidation of D-iso-glutamate impacted cefotaxime and isoniazid resistance, the N-glycolylation of muramic acid substantially promoted resistance to the tested beta-lactams. Their simultaneous depletion provoked synergistic reductions in beta-lactam MICs. Moreover, the depletion of these PG modifications promoted a significantly faster bacilli killing by J774 macrophages. Whole-genome sequencing revealed that these PG modifications are highly conserved in a set of 172 clinical strains of Mtb, demonstrating their potential as therapeutic targets against TB. Our results support the development of new therapeutic agents targeting these distinctive mycobacterial PG modifications.
Collapse
Affiliation(s)
- Cátia Silveiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Mariana Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Francisco Olivença
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- Universidade Católica Portuguesa, Católica Medical School, Centre for Interdisciplinary Research in Health, Lisbon, Portugal
| | - Diana Mortinho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra Nunes
- Genomics and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
- Faculty of Veterinary Medicine, Universidade Lusófona, Lisbon, Portugal
| | - Madalena Pimentel
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Elsa Anes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Maria João Catalão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
- *Correspondence: Maria João Catalão,
| |
Collapse
|
7
|
Griffiths G, Gruenberg J, Marsh M, Wohlmann J, Jones AT, Parton RG. Nanoparticle entry into cells; the cell biology weak link. Adv Drug Deliv Rev 2022; 188:114403. [PMID: 35777667 DOI: 10.1016/j.addr.2022.114403] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 12/22/2022]
Abstract
Nanoparticles (NP) are attractive options for the therapeutic delivery of active pharmaceutical drugs, proteins and nucleic acids into cells, tissues and organs. Research into the development and application of NP most often starts with a diverse group of scientists, including chemists, bioengineers and material and pharmaceutical scientists, who design, fabricate and characterize NP in vitro (Stage 1). The next step (Stage 2) generally investigates cell toxicity as well as the processes by which NP bind, are internalized and deliver their cargo to appropriate model tissue culture cells. Subsequently, in Stage 3, selected NP are tested in animal systems, mostly mouse. Whereas the chemistry-based development and analysis in Stage 1 is increasingly sophisticated, the investigations in Stage 2 are not what could be regarded as 'state-of-the-art' for the cell biology field and the quality of research into NP interactions with cells is often sub-standard. In this review we describe our current understanding of the mechanisms by which particles gain entry into mammalian cells via endocytosis. We summarize the most important areas for concern, highlight some of the most common mis-conceptions, and identify areas where NP scientists could engage with trained cell biologists. Our survey of the different mechanisms of uptake into cells makes us suspect that claims for roles for caveolae, as well as macropinocytosis, in NP uptake into cells have been exaggerated, whereas phagocytosis has been under-appreciated.
Collapse
Affiliation(s)
- Gareth Griffiths
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway.
| | - Jean Gruenberg
- Department of Biochemistry, University of Geneva, 30 quai E. Ansermet, 1211-Geneva-4, Switzerland
| | - Mark Marsh
- Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jens Wohlmann
- Department Biosciences, University of Oslo, Blindernveien 31, PO Box 1041, 0316 Oslo, Norway
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, Cardiff, Wales CF103NB, UK
| | - Robert G Parton
- Institute for Molecular Bioscience and Centre for Microscopy and Microanalysis, The University of Queensland, Qld 4072, Australia
| |
Collapse
|
8
|
Jiang Z, Zhuang Z, Mi K. Experimental Evolution Reveals Redox State Modulates Mycobacterial Pathogenicity. Front Genet 2022; 13:758304. [PMID: 35368697 PMCID: PMC8965865 DOI: 10.3389/fgene.2022.758304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/10/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding how Mycobacterium tuberculosis has evolved into a professional pathogen is helpful in studying its pathogenesis and for designing vaccines. We investigated how the evolutionary adaptation of M. smegmatis mc251 to an important clinical stressor H2O2 allows bacteria to undergo coordinated genetic mutations, resulting in increased pathogenicity. Whole-genome sequencing identified a mutation site in the fur gene, which caused increased expression of katG. Using a Wayne dormancy model, mc251 showed a growth advantage over its parental strain mc2155 in recovering from dormancy under anaerobic conditions. Meanwhile, the high level of KatG in mc251 was accompanied by a low level of ATP, which meant that mc251 is at a low respiratory level. Additionally, the redox-related protein Rv1996 showed different phenotypes in different specific redox states in M. smegmatis mc2155 and mc251, M. bovis BCG, and M. tuberculosis mc27000. In conclusion, our study shows that the same gene presents different phenotypes under different physiological conditions. This may partly explain why M. smegmatis and M. tuberculosis have similar virulence factors and signaling transduction systems such as two-component systems and sigma factors, but due to the different redox states in the corresponding bacteria, M. smegmatis is a nonpathogen, while M. tuberculosis is a pathogen. As mc251 overcomes its shortcomings of rapid removal, it can potentially be developed as a vaccine vector.
Collapse
Affiliation(s)
- Zheng Jiang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Zengfang Zhuang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| | - Kaixia Mi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Kaixia Mi,
| |
Collapse
|
9
|
Mycobacterium tuberculosis Acetyltransferase Suppresses Oxidative Stress by Inducing Peroxisome Formation in Macrophages. Int J Mol Sci 2022; 23:ijms23052584. [PMID: 35269727 PMCID: PMC8909987 DOI: 10.3390/ijms23052584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 02/01/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) inhibits host oxidative stress responses facilitating its survival in macrophages; however, the underlying molecular mechanisms are poorly understood. Here, we identified a Mtb acetyltransferase (Rv3034c) as a novel counter actor of macrophage oxidative stress responses by inducing peroxisome formation. An inducible Rv3034c deletion mutant of Mtb failed to induce peroxisome biogenesis, expression of the peroxisomal β-oxidation pathway intermediates (ACOX1, ACAA1, MFP2) in macrophages, resulting in reduced intracellular survival compared to the parental strain. This reduced virulence phenotype was rescued by repletion of Rv3034c. Peroxisome induction depended on the interaction between Rv3034c and the macrophage mannose receptor (MR). Interaction between Rv3034c and MR induced expression of the peroxisomal biogenesis proteins PEX5p, PEX13p, PEX14p, PEX11β, PEX19p, the peroxisomal membrane lipid transporter ABCD3, and catalase. Expression of PEX14p and ABCD3 was also enhanced in lungs from Mtb aerosol-infected mice. This is the first report that peroxisome-mediated control of ROS balance is essential for innate immune responses to Mtb but can be counteracted by the mycobacterial acetyltransferase Rv3034c. Thus, peroxisomes represent interesting targets for host-directed therapeutics to tuberculosis.
Collapse
|
10
|
Pires D, Calado M, Velez T, Mandal M, Catalão MJ, Neyrolles O, Lugo-Villarino G, Vérollet C, Azevedo-Pereira JM, Anes E. Modulation of Cystatin C in Human Macrophages Improves Anti-Mycobacterial Immune Responses to Mycobacterium tuberculosis Infection and Coinfection With HIV. Front Immunol 2021; 12:742822. [PMID: 34867965 PMCID: PMC8637326 DOI: 10.3389/fimmu.2021.742822] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis owes its resurgence as a major global health threat mostly to the emergence of drug resistance and coinfection with HIV. The synergy between HIV and Mycobacterium tuberculosis (Mtb) modifies the host immune environment to enhance both viral and bacterial replication and spread. In the lung immune context, both pathogens infect macrophages, establishing favorable intracellular niches. Both manipulate the endocytic pathway in order to avoid destruction. Relevant players of the endocytic pathway to control pathogens include endolysosomal proteases, cathepsins, and their natural inhibitors, cystatins. Here, a mapping of the human macrophage transcriptome for type I and II cystatins during Mtb, HIV, or Mtb-HIV infection displayed different profiles of gene expression, revealing cystatin C as a potential target to control mycobacterial infection as well as HIV coinfection. We found that cystatin C silencing in macrophages significantly improves the intracellular killing of Mtb, which was concomitant with an increased general proteolytic activity of cathepsins. In addition, downmodulation of cystatin C led to an improved expression of the human leukocyte antigen (HLA) class II in macrophages and an increased CD4+ T-lymphocyte proliferation along with enhanced IFN-γ secretion. Overall, our results suggest that the targeting of cystatin C in human macrophages represents a promising approach to improve the control of mycobacterial infections including multidrug-resistant (MDR) TB.
Collapse
Affiliation(s)
- David Pires
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Marta Calado
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Tomás Velez
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Manoj Mandal
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Maria João Catalão
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Olivier Neyrolles
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Geanncarlo Lugo-Villarino
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - Christel Vérollet
- Institut de Pharmacologie et Biologie Structurale, IPBS, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Toulouse, France
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Elsa Anes
- Host-Pathogen Interactions, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Anes E, Azevedo-Pereira JM, Pires D. Cathepsins and Their Endogenous Inhibitors in Host Defense During Mycobacterium tuberculosis and HIV Infection. Front Immunol 2021; 12:726984. [PMID: 34421929 PMCID: PMC8371317 DOI: 10.3389/fimmu.2021.726984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The moment a very old bacterial pathogen met a young virus from the 80's defined the beginning of a tragic syndemic for humanity. Such is the case for the causative agent of tuberculosis and the human immunodeficiency virus (HIV). Syndemic is by definition a convergence of more than one disease resulting in magnification of their burden. Both pathogens work synergistically contributing to speed up the replication of each other. Mycobacterium tuberculosis (Mtb) and HIV infections are in the 21st century among the leaders of morbidity and mortality of humankind. There is an urgent need for development of new approaches for prevention, better diagnosis, and new therapies for both infections. Moreover, these approaches should consider Mtb and HIV as a co-infection, rather than just as separate problems, to prevent further aggravation of the HIV-TB syndemic. Both pathogens manipulate the host immune responses to establish chronic infections in intracellular niches of their host cells. This includes manipulation of host relevant antimicrobial proteases such as cathepsins or their endogenous inhibitors. Here we discuss recent understanding on how Mtb and HIV interact with cathepsins and their inhibitors in their multifactorial functions during the pathogenesis of both infections. Particularly we will address the role on pathogen transmission, during establishment of intracellular chronic niches and in granuloma clinical outcome and tuberculosis diagnosis. This area of research will open new avenues for the design of innovative therapies and diagnostic interventions so urgently needed to fight this threat to humanity.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines, iMed-ULisboa, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
de Lima JB, da Silva Fonseca LP, Xavier LP, de Matos Macchi B, Cassoli JS, da Silva EO, da Silva Valadares RB, do Nascimento JLM, Santos AV, de Sena CBC. Culture of Mycobacterium smegmatis in Different Carbon Sources to Induce In Vitro Cholesterol Consumption Leads to Alterations in the Host Cells after Infection: A Macrophage Proteomics Analysis. Pathogens 2021; 10:pathogens10060662. [PMID: 34071265 PMCID: PMC8230116 DOI: 10.3390/pathogens10060662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
During tuberculosis, Mycobacterium uses host macrophage cholesterol as a carbon and energy source. To mimic these conditions, Mycobacterium smegmatis can be cultured in minimal medium (MM) to induce cholesterol consumption in vitro. During cultivation, M. smegmatis consumes MM cholesterol and changes the accumulation of cell wall compounds, such as PIMs, LM, and LAM, which plays an important role in its pathogenicity. These changes lead to cell surface hydrophobicity modifications and H2O2 susceptibility. Furthermore, when M. smegmatis infects J774A.1 macrophages, it induces granuloma-like structure formation. The present study aims to assess macrophage molecular disturbances caused by M. smegmatis after cholesterol consumption, using proteomics analyses. Proteins that showed changes in expression levels were analyzed in silico using OmicsBox and String analysis to investigate the canonical pathways and functional networks involved in infection. Our results demonstrate that, after cholesterol consumption, M. smegmatis can induce deregulation of protein expression in macrophages. Many of these proteins are related to cytoskeleton remodeling, immune response, the ubiquitination pathway, mRNA processing, and immunometabolism. The identification of these proteins sheds light on the biochemical pathways involved in the mechanisms of action of mycobacteria infection, and may suggest novel protein targets for the development of new and improved treatments.
Collapse
Affiliation(s)
- Jaqueline Batista de Lima
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | | | - Luciana Pereira Xavier
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (B.d.M.M.); (J.L.M.d.N.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
| | - Juliana Silva Cassoli
- Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil;
| | - Edilene Oliveira da Silva
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- National Institute of Science and Technology in Structural Biology and Bioimaging, Rio de Janeiro 21941-901, RJ, Brazil
| | | | - José Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (B.d.M.M.); (J.L.M.d.N.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
| | - Agenor Valadares Santos
- Laboratory of Biotechnology of Enzymes and Biotransformations, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (L.P.X.); (A.V.S.)
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (J.B.d.L.); (E.O.d.S.)
- National Institute of Science and Technology in Neuroimmunomodulation (INCT-NIM), Rio de Janeiro 21040-900, RJ, Brazil
- Correspondence:
| |
Collapse
|
13
|
Kumari B, Kaur J, Maan P, Kumar A, Kaur J. The lipolytic activity of LipJ, a stress-induced enzyme, is regulated by its C-terminal adenylate cyclase domain. Future Microbiol 2021; 16:487-507. [PMID: 33960821 DOI: 10.2217/fmb-2020-0223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The confirmation of lipolytic activity and role of Rv1900c in the Mycobacterium physiology Methods: rv1900c/N-terminus domain (rv1900NT) were cloned in pET28a/Escherichia coli, purified by affinity chromatography and characterized. Results: A zone of clearance on tributyrin-agar and activity with pNP-decanoate confirmed the lipolytic activity of Rv1900c. The Rv1900NT demonstrated higher enzyme specific activity, Vmax and kcat, but Rv1900c was more thermostable. The lipolytic activity of Rv1900c decreased in presence of ATP. Mycobacterium smegmatis expressed rv1900c/rv1900NT-altered colony morphology, growth, cell surface properties and survival under stress conditions. The effect was more prominent with Rv1900NT as compared with Rv1900c. Conclusion: The study confirmed the lipolytic activity of Rv1900c and suggested its regulation by the adenylate cyclase domain and role in the intracellular survival of bacteria.
Collapse
Affiliation(s)
- Bandana Kumari
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Jashandeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| | - Pratibha Maan
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India.,Department of Experimental Medicine and Biotechnology PGIMER, Chandigarh, India
| | - Arbind Kumar
- COVID Testing Facility, CSIR-Institute of Himalayan Bioresources & Technology, Palampur, Himachal Pradesh, India
| | - Jagdeep Kaur
- Department of Biotechnology, BMS Block-1, South Campus, Panjab University, Chandigarh, India
| |
Collapse
|
14
|
Mycobacterium tuberculosis Small RNA MTS1338 Confers Pathogenic Properties to Non-Pathogenic Mycobacterium smegmatis. Microorganisms 2021; 9:microorganisms9020414. [PMID: 33671144 PMCID: PMC7921967 DOI: 10.3390/microorganisms9020414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 11/16/2022] Open
Abstract
Small non-coding RNAs play a key role in bacterial adaptation to various stresses. Mycobacterium tuberculosis small RNA MTS1338 is upregulated during mycobacteria infection of macrophages, suggesting its involvement in the interaction of the pathogen with the host. In this study, we explored the functional effects of MTS1338 by expressing it in non-pathogenic Mycobacterium smegmatis that lacks the MTS1338 gene. The results indicated that MTS1338 slowed the growth of the recombinant mycobacteria in culture and increased their survival in RAW 264.7 macrophages, where the MTS1338-expressing strain significantly (p < 0.05) reduced the number of mature phagolysosomes and changed the production of cytokines IL-1β, IL-6, IL-10, IL-12, TGF-β, and TNF-α compared to those of the control strain. Proteomic and secretomic profiling of recombinant and control strains revealed differential expression of proteins involved in the synthesis of main cell wall components and in the regulation of iron metabolism (ESX-3 secretion system) and response to hypoxia (furA, whiB4, phoP). These effects of MTS1338 expression are characteristic for M. tuberculosis during infection, suggesting that in pathogenic mycobacteria MTS1338 plays the role of a virulence factor supporting the residence of M. tuberculosis in the host.
Collapse
|
15
|
Kadir NA, Acosta A, Sarmiento ME, Norazmi MN. Immunomodulatory Effects of Recombinant Mycobacterium smegmatis Expressing Antigen-85B Epitopes in Infected J774A.1 Murine Macrophages. Pathogens 2020; 9:pathogens9121000. [PMID: 33260418 PMCID: PMC7761112 DOI: 10.3390/pathogens9121000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Tuberculosis (TB) causes more than 1.5 million deaths each year, remaining a significant global health problem. Mycobacterium smegmatis (M. smegmatis) and Mycobacterium tuberculosis (M. tuberculosis) share features, which support the use of the former use in new generation TB vaccine development. In a previous study, the specific humoral and cellular immunogenicity of a recombinant M. smegmatis strain expressing epitopes from M. tuberculosis Ag85B protein (rMs064), was demonstrated in mice. In the current study, the immunomodulatory capacity of rMs064 was determined in a J774A.1 murine macrophage cell line. To determine the immunomodulatory effect of rMs064 in J774A.1 macrophages, the expression of inducible nitric oxide synthase (iNOS) and production of nitric oxide (NO) was evaluated. The expression of activation surface markers (MHC-II, CD40, CD80 and CD86) and the production of cytokines (IL-1β, TNF-α, IL-12p70 and IL-6) was also determined in rMs064 infected J774A.1 macrophages. Our findings showed the ability of rMs064 to induce substantial increases in macrophage activation markers expression; MHC class II and CD40, compared with M. smegmatis transformed with the empty vector (rMs012) and uninfected cells. rMs064 induced significant increases in IL-12p70 compared to uninfected cells. The expression of iNOS and CD86, and the production of IL-1β, and TNF-α were increased in rMs064 and rMs012, compared to uninfected cells. rMs064 demonstrated its immunomodulatory ability by stimulating the innate immune response, which supports its further evaluation as a TB vaccine candidate.
Collapse
Affiliation(s)
- Nur-Ayuni Kadir
- School of Biomedicine, Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Terengganu, Malaysia
- Correspondence: (N.-A.K.); (A.A.)
| | - Armando Acosta
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
- Correspondence: (N.-A.K.); (A.A.)
| | - Maria E. Sarmiento
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
| | - Mohd-Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (M.E.S.); (M.-N.N.)
| |
Collapse
|
16
|
Abstract
Innate immune cells destroy pathogens within a transient organelle called the phagosome. When pathogen-associated molecular patterns (PAMPs) displayed on the pathogen are recognized by Toll-like receptors (TLRs) on the host cell, it activates inducible nitric oxide synthase (NOS2) which instantly fills the phagosome with nitric oxide (NO) to clear the pathogen. Selected pathogens avoid activating NOS2 by concealing key PAMPs from their cognate TLRs. Thus, the ability to map NOS2 activity triggered by PAMPs can reveal critical mechanisms underlying pathogen susceptibility. Here, we describe DNA-based probes that ratiometrically report phagosomal and endosomal NO, and can be molecularly programmed to display precise stoichiometries of any desired PAMP. By mapping phagosomal NO produced in microglia of live zebrafish brains, we found that single-stranded RNA of bacterial origin acts as a PAMP and activates NOS2 by engaging TLR-7. This technology can be applied to study PAMP-TLR interactions in diverse organisms.
Collapse
|
17
|
Ganguli G, Pattanaik KP, Jagadeb M, Sonawane A. Mycobacterium tuberculosis Rv3034c regulates mTORC1 and PPAR-γ dependant pexophagy mechanism to control redox levels in macrophages. Cell Microbiol 2020; 22:e13214. [PMID: 32388919 DOI: 10.1111/cmi.13214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
Mycobacterium tuberculosis survives inside the macrophages by employing several host immune evasion strategies. Here, we reported a novel mechanism in which M. tuberculosis acetyltransferase, encoded by Rv3034c, induces peroxisome homeostasis to regulate host oxidative stress levels to facilitate intracellular mycobacterial infection. Presence of M. tuberculosis Rv3034c induces the expression of peroxisome biogenesis and proliferation factors such as Pex3, Pex5, Pex19, Pex11b, Fis-1 and DLP-1; while depletion of Rv3034c decreased the expression of these molecules, thereby selective degradation of peroxisomes via pexophagy. Further studies revealed that M. tuberculosis Rv3034c inhibit induction of pexophagy mechanism by down-regulating the expression of pexophagy associated proteins (p-AMPKα, p-ULK-1, Atg5, Atg7, Beclin-1, LC3-II, TFEB and Keap-1) and adaptor molecules (NBR1 and p62). Inhibition was found to be dependent on the phosphorylation of mTORC1 and activation of peroxisome proliferator activated receptor-γ. In order to maintain intracellular homeostasis during oxidative stress, M. tuberculosis Rv3034c was found to induce degradation of dysfunctional and damaged peroxisomes through activation of Pex14 in infected macrophages. In conclusion, this is the first report which demonstrated that M. tuberculosis acetyltransferase regulate peroxisome homeostasis in response to intracellular redox levels to favour mycobacterial infection in macrophage.
Collapse
Affiliation(s)
- Geetanjali Ganguli
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | | | - Manaswini Jagadeb
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India
| | - Avinash Sonawane
- School of Biotechnology, KIIT (Deemed to be University), Bhubaneswar, India.,Discipline of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, India
| |
Collapse
|
18
|
Rv2037c, a stress induced conserved hypothetical protein of Mycobacterium tuberculosis, is a phospholipase: Role in cell wall modulation and intracellular survival. Int J Biol Macromol 2020; 153:817-835. [DOI: 10.1016/j.ijbiomac.2020.03.037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/08/2023]
|
19
|
Sheffield DA, Jepsen MR, Feeney SJ, Bertucci MC, Sriratana A, Naughtin MJ, Dyson JM, Coppel RL, Mitchell CA. The myotubularin MTMR4 regulates phagosomal phosphatidylinositol 3-phosphate turnover and phagocytosis. J Biol Chem 2019; 294:16684-16697. [PMID: 31543504 DOI: 10.1074/jbc.ra119.009133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/11/2019] [Indexed: 01/31/2023] Open
Abstract
Macrophage phagocytosis is required for effective clearance of invading bacteria and other microbes. Coordinated phosphoinositide signaling is critical both for phagocytic particle engulfment and subsequent phagosomal maturation to a degradative organelle. Phosphatidylinositol 3-phosphate (PtdIns(3)P) is a phosphoinositide that is rapidly synthesized and degraded on phagosomal membranes, where it recruits FYVE domain- and PX motif-containing proteins that promote phagosomal maturation. However, the molecular mechanisms that regulate PtdIns(3)P removal from the phagosome have remained unclear. We report here that a myotubularin PtdIns(3)P 3-phosphatase, myotubularin-related protein-4 (MTMR4), regulates macrophage phagocytosis. MTMR4 overexpression reduced and siRNA-mediated Mtmr4 silencing increased levels of cell-surface immunoglobulin receptors (i.e. Fcγ receptors (FcγRs)) on RAW 264.7 macrophages, associated with altered pseudopodal F-actin. Furthermore, MTMR4 negatively regulated the phagocytosis of IgG-opsonized particles, indicating that MTMR4 inhibits FcγR-mediated phagocytosis, and was dynamically recruited to phagosomes of macrophages during phagocytosis. MTMR4 overexpression decreased and Mtmr4-specific siRNA expression increased the duration of PtdIns(3)P on phagosomal membranes. Macrophages treated with Mtmr4-specific siRNA were more resistant to Mycobacterium marinum-induced phagosome arrest, associated with increased maturation of mycobacterial phagosomes, indicating that extended PtdIns(3)P signaling on phagosomes in the Mtmr4-knockdown cells permitted trafficking of phagosomes to acidic late endosomal and lysosomal compartments. In conclusion, our findings indicate that MTMR4 regulates PtdIns(3)P degradation in macrophages and thereby controls phagocytosis and phagosomal maturation.
Collapse
Affiliation(s)
- David A Sheffield
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia.,Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Malene R Jepsen
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Sandra J Feeney
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Micka C Bertucci
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Absorn Sriratana
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Monica J Naughtin
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Jennifer M Dyson
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Ross L Coppel
- Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| | - Christina A Mitchell
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, Victoria 3800, Australia
| |
Collapse
|
20
|
Maan P, Kaur J. Rv2223c, an acid inducible carboxyl-esterase of Mycobacterium tuberculosis enhanced the growth and survival of Mycobacterium smegmatis. Future Microbiol 2019; 14:1397-1415. [DOI: 10.2217/fmb-2019-0162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To elucidate the role of Rv2223c in Mycobacterium tuberculosis. Methods: Purified recombinant Rv2223c protein was characterized. Expression of rv2223c in the presence of different stress environment and subcellular localization were performed in M. tuberculosis H37Ra and Mycobacterium smegmatis ( MS_2223c). Effect of its overexpression on growth rate, infection and intracellular survival in THP-1/PBMC cells were studied. Results: rRv2223c demonstrated esterase activity with preference for pNP-octanoate and hydrolyzed trioctanoate to di- and mono-octanoate. Expression of rv2223c was upregulated in acidic and nutritive stress conditions. rRv2223c was identified in extracellular and cell wall fractions. MS_2223c exhibited enhanced growth, survival during in vitro stress, infection and intracellular survival. Conclusions: Rv2223c is a secretary, carboxyl-esterase, with enhanced expression under acidic and nutritive stress condition and might help in intracellular survival of bacteria.
Collapse
Affiliation(s)
- Pratibha Maan
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Jagdeep Kaur
- Department of Biotechnology, Panjab University, Chandigarh, India
| |
Collapse
|
21
|
TLR-2 mediated cytosolic-Ca 2+ surge activates ER-stress-superoxide-NO signalosome augmenting TNF-α production leading to apoptosis of Mycobacterium smegmatis-infected fish macrophages. Sci Rep 2019; 9:12330. [PMID: 31444398 PMCID: PMC6707155 DOI: 10.1038/s41598-019-48847-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
The implications of TLR-2 mediated alterations in cytosolic-Ca2+((Ca2+)c) levels in M. smegmatis infections is not well known. Using headkidney macrophages (HKM) from Clarias gariepinus, we observed TLR-2 signalling is required in the phagocytosis of M. smegmatis. M. smegmatis induced caspase-dependent HKM apoptosis in MOI, time and growth-phase dependent manner. RNAi and inhibitor studies demonstrated critical role of TLR-2 in eliciting (Ca2+)c-surge and c-Src-PI3K-PLC axis playing an intermediary role in the process. The (Ca2+)c-surge triggered downstream ER-stress and superoxide (O2−) generation. The cross-talk between ER-stress and O2− amplified TNF-α production, which led to HKM apoptosis and bacterial clearance. Release of nitric oxide (NO) was also observed and silencing the NOS2-NO axis enhanced intracellular bacterial survival and attenuated caspase activity. Pre-treatment with diphenyleneidonium chloride inhibited NO production implicating O2−–NO axis imperative in M. smegmatis-induced HKM apoptosis. NO positively impacted CHOP expression and TNF-α production in infected HKM. We conclude that, TLR-2 induced (Ca2+)c-surge and ensuing cross-talk between ER-stress and O2− potentiates HKM pathology by amplifying pro-inflammatory TNF-α production. Moreover, the pro-oxidant environment triggers NO release which prolonged ER-stress and TNF-α production, culminating in HKM apoptosis and bacterial clearance. Together, our study suggests HKM an alternate model to study macrophage-mycobacteria interactions.
Collapse
|
22
|
Metabolomics Studies To Decipher Stress Responses in Mycobacterium smegmatis Point to a Putative Pathway of Methylated Amine Biosynthesis. J Bacteriol 2019; 201:JB.00707-18. [PMID: 31138627 DOI: 10.1128/jb.00707-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 05/15/2019] [Indexed: 01/11/2023] Open
Abstract
Mycobacterium smegmatis, the saprophytic soil mycobacterium, is routinely used as a surrogate system to study the human pathogen Mycobacterium tuberculosis It has also been reported as an opportunistic pathogen in immunocompromised hosts. In addition, it can exist in several ecological setups, thereby suggesting its capacity to adapt to a variety of environmental cues. In this study, we employed untargeted proton nuclear magnetic resonance (1H-NMR)-based metabolomics to identify metabolites and metabolic pathways critical for early adaptive responses to acidic stress, oxidative stress, and nutrient starvation in Mycobacterium smegmatis We identified 31, 20, and 46 metabolites that showed significant changes in levels in response to acidic, oxidative, and nutrient starvation stresses, respectively. Pathway analyses showed significant perturbations in purine-pyrimidine, amino-acid, nicotinate-nicotinamide, and energy metabolism pathways. Besides these, differential levels of intermediary metabolites involved in α-glucan biosynthesis pathway were observed. We also detected high levels of organic osmolytes, methylamine, and betaine during nutrient starvation and oxidative stress. Further, tracing the differential levels of these osmolytes through computational search tools, gene expression studies (using reverse transcription-PCR [RT-PCR]), and enzyme assays, we detected the presence of a putative pathway of biosynthesis of betaine, methylamine, and dimethylamine previously unreported in Mycobacterium smegmatis IMPORTANCE Alterations in metabolite levels provide fast and direct means to regulate enzymatic reactions and, therefore, metabolic pathways. This study documents, for the first time, the metabolic changes that occur in Mycobacterium smegmatis as a response to three stresses, namely, acidic stress, oxidative stress, and nutrient starvation. These stresses are also faced by intracellular mycobacteria during infection and therefore may be extended to frame therapeutic interventions for pathogenic mycobacteria. In addition to the purine-pyrimidine, amino acid, nicotinate-nicotinamide, and energy metabolism pathways that were found to be affected in response to different stresses, a novel putative methylamine biosynthesis pathway was identified to be present in Mycobacterium smegmatis.
Collapse
|
23
|
Gough ME, Graviss EA, Chen TA, Obasi EM, May EE. Compounding effect of vitamin D 3 diet, supplementation, and alcohol exposure on macrophage response to mycobacterium infection. Tuberculosis (Edinb) 2019; 116S:S42-S58. [PMID: 31126718 DOI: 10.1016/j.tube.2019.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 12/14/2022]
Abstract
Vitamin D3 is known to be a key component in the defense against Mycobacterium tuberculosis (Mtb) infection through the regulation of cytokine and effector molecules. Conversely, alcohol exposure has been recognized as an immune dysregulator. Macrophages were extracted from D3 deficient and sufficient diet mice and supplemented with D3 or exposed to ethanol during ex vivo infection using M. bovis BCG, as a surrogate for Mtb. Results of our study indicate that while exogenous supplementation or alcohol exposure did alter immune response, in vivo diet was the greatest determinant of cytokine and effector molecule production. Alcohol exposure was found to profoundly dysregulate primary murine macrophages, with ethanol-exposed cells generally characterized as hyper- or hyporesponsive. Exogenous D3 supplementation had a normative effect for diet deficient host, however supplementation was not sufficient to compensate for the effects of diet deficiency. Vitamin D3 sufficient diet resulted in reduced cell cytotoxicity for the majority of time points. Results provide insight into the ramifications of both the individual and combined health risks of D3 deficiency or alcohol exposure. Given the clinical relevance of D3 deficiency and alcohol use comorbidities, outcomes of this study have implications in therapeutic approaches for the treatment of tuberculosis disease.
Collapse
Affiliation(s)
- Maya E Gough
- Biomedical Engineering Department, University of Houston, USA
| | - Edward A Graviss
- Pathology & Genomic Medicine, Houston Methodist Research Institute, USA
| | - Tzu-An Chen
- HEALTH Research Institute, University of Houston, USA
| | - Ezemenari M Obasi
- HEALTH Research Institute, University of Houston, USA; Psychological, Health, & Learning Sciences Department, University of Houston, USA
| | - Elebeoba E May
- Biomedical Engineering Department, University of Houston, USA; HEALTH Research Institute, University of Houston, USA.
| |
Collapse
|
24
|
Ragusa J, Gonzalez D, Li S, Noriega S, Skotak M, Larsen G. Glucosamine/L-lactide copolymers as potential carriers for the development of a sustained rifampicin release system using Mycobacterium smegmatis as a tuberculosis model. Heliyon 2019; 5:e01539. [PMID: 31183418 PMCID: PMC6488545 DOI: 10.1016/j.heliyon.2019.e01539] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 01/09/2023] Open
Abstract
The present study aims at developing a new, ultrafine particle-based efficient antibiotic delivery system for the treatment of tuberculosis. The carrier material to make the rifampicin (RIF)-loaded particles is a low molecular weight star-shaped polymer produced from glucosamine (core building unit) and L-lactide (GluN-LLA). Particles were made via electrohydrodynamic atomization. Prolonged release (for up to 14 days) of RIF from these particles is reported. Drug release data fits the Korsmeyer-Peppas equation, which suggests the occurrence of a modified diffusion-controlled RIF release mechanism in vitro and is also supported by differential scanning calorimetry and drug leaching tests. Cytotoxicity tests on Mycobacterium smegmatis showed that antibiotic-free GluN-LLA and polylactides (PLA) particles (reference materials) did not show any significant anti-bacterial activity. The minimum inhibitory concentration and minimum bactericidal concentration values obtained for RIF-loaded particles showed 2- to 4-fold improvements in the anti-bacterial activity relative to the free drug. Cytotoxicity tests on macrophages indicated that cell death correlates with an increase of particle concentration but is not significantly affected by material type or particle size. Confocal microscopy was used to track internalization and localization of particles in the macrophages. The uptake of GluN-LLA particles is higher than those of their PLA counterparts. In addition, after phagocytosis, the GluN-LLA particles stayed in the cytoplasm and showed favorable long-term drug release behavior, which facilitated the killing of intracellular bacteria when compared to free RIF. The present studies suggest that these drug carrier materials are potentially very attractive candidates for the development of high-payload, sustained-release antibiotic/resorbable polymer particle systems for treating bacterial lung infections.
Collapse
Affiliation(s)
- Jorge Ragusa
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Daniela Gonzalez
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Sumin Li
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Sandra Noriega
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA
| | - Maciej Skotak
- Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| | - Gustavo Larsen
- LNK Chemsolutions LLC, 4701 Innovation Drive, Lincoln, NE, 68521, USA.,Department of Chemical and Biomolecular Engineering, University of Nebraska, Lincoln, NE, 68588-0643, USA
| |
Collapse
|
25
|
Nontuberculous Mycobacteria Persistence in a Cell Model Mimicking Alveolar Macrophages. Microorganisms 2019; 7:microorganisms7050113. [PMID: 31035520 PMCID: PMC6560506 DOI: 10.3390/microorganisms7050113] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
Nontuberculous Mycobacteria (NTM) respiratory infections have been gradually increasing. Here, THP-1 cells were used as a model to evaluate intracellular persistence of three NTM species (reference and clinical strains) in human alveolar macrophages. The contribution of phagosome acidification, nitric oxide (NO) production and cell dead on NTM intracellular fate was assessed. In addition, strains were characterized regarding their repertoire of virulence factors by whole-genome sequencing. NTM experienced different intracellular fates: M. smegmatis and M. fortuitum ATCC 6841 were cleared within 24h. In contrast, M. avium strains (reference/clinical) and M. fortuitum clinical strain were able to replicate. Despite this fact, unexpectedly high percentages of acidified phagosomes were found harbouring rab7, but not CD63. All NTM were able to survive in vitro at acidic pHs, with the exception of M. smegmatis. Our data further suggested a minor role for NO in intracellular persistence and that apoptosis mediated by caspase 8 and 3/7, but not necrosis, is triggered during NTM infection. Insights regarding the bacteria genomic backbone corroborated the virulence potential of M. avium and M. fortuitum. In conclusion, the phenotypic traits detected contrast with those described for M. tuberculosis, pointing out that NTM adopt distinct strategies to manipulate the host immune defense and persist intracellularly.
Collapse
|
26
|
Mubin N, Umar MS, Zubair S, Owais M. Selective Targeting of 4SO 4- N-Acetyl-Galactosamine Functionalized Mycobacterium tuberculosis Protein Loaded Chitosan Nanoparticle to Macrophages: Correlation With Activation of Immune System. Front Microbiol 2018; 9:2469. [PMID: 30515134 PMCID: PMC6255963 DOI: 10.3389/fmicb.2018.02469] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 09/26/2018] [Indexed: 12/30/2022] Open
Abstract
In the present study, we investigated potential of chitosan-based nanoparticles (CNPs) to deliver loaded therapeutic molecules to pathogen harboring macrophages. We fabricated stable CNPs employing ionic cross-linking method and evaluated their potential to target RAW 264.7 cells. The physicochemical characterization of as-synthesized CNPs was determined using electron microscopy, infrared microscopy and zeta potential measurement. Next, cellular uptake and intracellular localization studies of CNPs were followed in living RAW264.7 cells using confocal microscopy. We found that both Acr-1 loaded (CNP-A) and 4-SO4-GalNAc ligand harboring (CNP-L) chitosan nanoparticle experience increased cellular uptake by Mycobacterium smegmatis infected RAW cells. Following cellular digestion in model macrophage cell line (RAW), CNPs provide an increased immune response. Further, 4-SO4-GalNAc bearing CNP-L exhibits high binding affinity as well as antibacterial efficacy toward M. smegmatis. The data of the present study suggest that CNP-based nanoparticle offer a promising delivery strategy to target infected macrophages for prevention and eradication of intracellular pathogens such as M. smegmatis.
Collapse
Affiliation(s)
- Nida Mubin
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Mohd Saad Umar
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| | - Swaleha Zubair
- Department of Computer Science, Aligarh Muslim University, Aligarh, India
| | - Mohammad Owais
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
27
|
Structural and functional characterization of the transcriptional regulator Rv3488 of Mycobacterium tuberculosis H37Rv. Biochem J 2018; 475:3393-3416. [DOI: 10.1042/bcj20180356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 12/13/2022]
Abstract
Rv3488 of Mycobacterium tuberculosis H37Rv has been assigned to the phenolic acid decarboxylase repressor (PadR) family of transcriptional regulators that play key roles in multidrug resistance and virulence of prokaryotes. The binding of cadmium, zinc, and several other metals to Rv3488 was discovered and characterized by isothermal titration calorimetery to be an exothermic process. Crystal structures of apo-Rv3488 and Rv3488 in complex with cadmium or zinc ions were determined by X-ray crystallography. The structure of Rv3488 revealed a dimeric protein with N-terminal winged-helix-turn-helix DNA-binding domains composed of helices α1, α2, α3, and strands β1 and β2, with the dimerization interface being formed of helices α4 and α1. The overall fold of Rv3488 was similar to PadR-s2 and metal sensor transcriptional regulators. In the crystal structure of Rv3488–Cd complex, two octahedrally coordinated Cd2+ ions were present, one for each subunit. The same sites were occupied by zinc ions in the structure of Rv3488–Zn, with two additional zinc ions complexed in one monomer. EMSA studies showed specific binding of Rv3488 with its own 30-bp promoter DNA. The functional role of Rv3488 was characterized by expressing the rv3488 gene under the control of hsp60 promoter in Mycobacterium smegmatis. Expression of Rv3488 increased the intracellular survival of recombinant M. smegmatis in murine macrophage cell line J774A.1 and also augmented its tolerance to Cd2+ ions. Overall, the studies show that Rv3488 may have transcription regulation and metal-detoxifying functions and its expression in M. smegmatis increases intracellular survival, perhaps by counteracting toxic metal stress.
Collapse
|
28
|
Ghosh C, Sarkar A, Anuja K, Das MC, Chakraborty A, Jawed JJ, Gupta P, Majumdar S, Banerjee B, Bhattacharjee S. Free radical stress induces DNA damage response in RAW264.7 macrophages during Mycobacterium smegmatis infection. Arch Microbiol 2018; 201:487-498. [PMID: 30386884 DOI: 10.1007/s00203-018-1587-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/24/2022]
Abstract
Genomic instability resulting from oxidative stress responses may be traced to chromosomal aberration. Oxidative stress suggests an imbalance between the systemic manifestation of reactive free radicals and biological system's ability to repair resulting DNA damage and chromosomal aberration. Bacterial infection associated insult is considered as one of the major factors leading to such stress conditions. To study free radical responses by host cells, RAW 264.7 macrophages were infected with non-pathogenic M. smegmatis mc2155 at different time points. The infection process was followed up with an assessment of free radical stress, cytokine, toll-like receptors (TLRs) and the resulting DNA damage profiles. Results of CFU count showed that maximum infection in macrophages was achieved after 9 h of infection. Host responses to the infection across different time periods were validated from nitric oxide quantification and expression of iNOS and were plotted at regular intervals. IL-10 and TNF-α expression profile at protein and mRNA level showed a heightened pro-inflammatory response by host macrophages to combat M. smegmatis infection. The expression of TLR4, a receptor for recognition of mycobacteria, in infected macrophages reached the highest level at 9 h of infection. Furthermore, comet tail length, micronuclei and γ-H2AX foci recorded the highest level at 9 h of infection, pointing to the fact that breakage in DNA double strands in macrophage reaches its peak at 9 h of infection. In contrast, treatment with ROS inhibitor N-acetyl-L-cysteine (NAC) prevented host cell death through reduction in oxidative stress and DNA damage response during M. smegmatis infection. Therefore, it can be concluded that enhanced oxidative stress response in M. smegmatis infected macrophages might be correlated with DNA damage response.
Collapse
Affiliation(s)
- Chinmoy Ghosh
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.,Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Avik Sarkar
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Kumari Anuja
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Manash C Das
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Abhik Chakraborty
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India
| | - Junaid Jibran Jawed
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Priya Gupta
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India
| | - Subrata Majumdar
- Division of Molecular Medicine, Centenary Campus, Bose Institute, CIT Road, Kolkata, 700054, India
| | - Birendranath Banerjee
- Molecular stress and Stem Cell Biology Lab, School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha, 751024, India.
| | - Surajit Bhattacharjee
- Department of Molecular Biology and Bioinformatics, Tripura University, Suryamaninagar, Tripura, 799022, India.
| |
Collapse
|
29
|
Liu XX, Shen MJ, Liu WB, Ye BC. GlnR-Mediated Regulation of Short-Chain Fatty Acid Assimilation in Mycobacterium smegmatis. Front Microbiol 2018; 9:1311. [PMID: 29988377 PMCID: PMC6023979 DOI: 10.3389/fmicb.2018.01311] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/29/2018] [Indexed: 11/20/2022] Open
Abstract
Assimilation of short-chain fatty acids (SCFAs) plays an important role in the survival and lipid biosynthesis of Mycobacteria. However, regulation of this process has not been thoroughly described. In the present work, we demonstrate that GlnR as a well-known nitrogen-sensing regulator transcriptionally modulates the AMP-forming propionyl-CoA synthetase (MsPrpE), and acetyl-CoA synthetases (MsAcs) is associated with SCFAs assimilation in Mycobacterium smegmatis, a model Mycobacterium. GlnR can directly activate the expression of MsprpE and Msacs by binding to their promoter regions based upon sensed nitrogen starvation in the host. Moreover, GlnR can activate the expression of lysine acetyltransferase encoding Mspat, which significantly decreases the activity of MsPrpE and MsAcs through increased acylation. Next, growth curves and resazurin assay show that GlnR can further regulate the growth of M. smegmatis on different SCFAs to control the viability. These results demonstrate that GlnR-mediated regulation of SCFA assimilation in response to the change of nitrogen signal serves to control the survival of M. smegmatis. These findings provide insights into the survival and nutrient utilization mechanisms of Mycobacteria in their host, which may enable new strategies in drug discovery for the control of tuberculosis.
Collapse
Affiliation(s)
- Xin-Xin Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meng-Jia Shen
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Wei-Bing Liu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
30
|
Pattabiraman G, Murphy M, Agliano F, Karlinsey K, Medvedev AE. IRAK4 activity controls immune responses to intracellular bacteria Listeria monocytogenes and Mycobacterium smegmatis. J Leukoc Biol 2018; 104:811-820. [PMID: 29749650 DOI: 10.1002/jlb.2a1117-449r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/26/2018] [Accepted: 04/17/2018] [Indexed: 12/26/2022] Open
Abstract
IL-1 receptor-associated kinase (IRAK) 4 is a central enzyme of the TLR pathways. This study tested the hypothesis that IRAK4 kinase activity is prerequisite for regulating innate immunity during infections with intracellular bacteria. To this end, we analyzed responses of macrophages obtained from mice expressing wild-type (WT) IRAK4 or its kinase-inactive K213M mutant (IRAK4KI ) upon infection with intracellular bacteria Listeria monocytogenes or Mycobacterium smegmatis. In contrast to robust induction of cytokines by macrophages expressing kinase-sufficient IRAK4, IRAK4KI macrophages expressed decreased TNF-α, IL-6, IL-1β, and C-C motif chemokine ligand 5 upon infection with L. monocytogenes or M. smegmatis. Bacterial infection of IRAK4KI macrophages led to attenuated activation of IRAK1, MAPKs and NF-κB, impaired induction of inducible NO synthase mRNA and secretion of NO, but resulted in elevated microbial burdens. Compared with WT animals, systemic infection of IRAK4KI mice with M. smegmatis or L. monocytogenes resulted in decreased levels of serum IL-6 and CXCL-1 but increased bacterial burdens in the spleen and liver. Thus, a loss of IRAK4 kinase activity underlies deficient cytokine and microbicidal responses during infection with intracellular bacteria L. monocytogenes or M. smegmatis via impaired activation of IRAK1, MAPKs, and NF-κB but increases bacterial burdens, correlating with decreased induction of NO.
Collapse
Affiliation(s)
- Goutham Pattabiraman
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Michael Murphy
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Federica Agliano
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Keaton Karlinsey
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Andrei E Medvedev
- Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
31
|
Gough ME, Graviss EA, May EE. The dynamic immunomodulatory effects of vitamin D 3 during Mycobacterium infection. Innate Immun 2018; 23:506-523. [PMID: 28770668 DOI: 10.1177/1753425917719143] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mycobacterium tuberculosis ( Mtb), is a highly infectious airborne bacterium. Previous studies have found vitamin D3 to be a key factor in the defense against Mtb infection, through its regulation of the production of immune-related cytokines, chemokines and effector molecules. Mycobacterium smegmatis was used in our study as a surrogate of Mtb. We hypothesized that the continuous presence of vitamin D3, as well as the level of severity of infection would differentially modulate host cell immune response in comparison with control and the vehicle, ethanol. We found that vitamin D3 conditioning promotes increased bacterial clearance during low-level infection, intracellular containment during high-level infection, and minimizes host cytotoxicity. In the presence of vitamin D3 host cell production of cytokines and effector molecules was infection-level dependent, most notably IL-12, which increased during high-level infection and decreased during low-level infection, and NO, which had a rate of change positively correlated to IL-12. Our study provides evidence that vitamin D3 modulation is context-dependent and time-variant, as well as highly correlated to level of infection. This study furthers our mechanistic understanding of the dual role of vitamin D3 as a regulator of bactericidal molecules and protective agent against host cell damage.
Collapse
Affiliation(s)
- Maya E Gough
- 1 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Edward A Graviss
- 2 Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Elebeoba E May
- 1 Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| |
Collapse
|
32
|
Hetzel M, Mucci A, Blank P, Nguyen AHH, Schiller J, Halle O, Kühnel MP, Billig S, Meineke R, Brand D, Herder V, Baumgärtner W, Bange FC, Goethe R, Jonigk D, Förster R, Gentner B, Casanova JL, Bustamante J, Schambach A, Kalinke U, Lachmann N. Hematopoietic stem cell gene therapy for IFNγR1 deficiency protects mice from mycobacterial infections. Blood 2018; 131:533-545. [PMID: 29233822 DOI: 10.1182/blood-2017-10-812859] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/01/2017] [Indexed: 12/21/2022] Open
Abstract
Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 (IFNGR1 or IFNGR2) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1-/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1-/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients.
Collapse
Affiliation(s)
- Miriam Hetzel
- Institute of Experimental Hematology and
- Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Adele Mucci
- Institute of Experimental Hematology and
- Research Group Reprogramming and Gene Therapy, REBIRTH Cluster-of Excellence, Hannover Medical School, Hannover, Germany
| | - Patrick Blank
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Ariane Hai Ha Nguyen
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | - Jan Schiller
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | | | | | - Sandra Billig
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Robert Meineke
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| | | | | | | | - Franz-Christoph Bange
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Ralph Goethe
- Institute for Microbiology, Department of Infectious Diseases, University of Veterinary Medicine Hannover, Hannover, Germany
| | | | | | - Bernhard Gentner
- San Raffaele Telethon Institute for Gene Therapy, Scientific Institute Hospital San Raffaele, Milan, Italy
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Pediatric Hematology-Immunology Unit and
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Assistance Publique-Hôpitaux de Paris, Necker Hospital for Sick Children, Paris, France; and
| | - Axel Schambach
- Institute of Experimental Hematology and
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Nico Lachmann
- Institute of Experimental Hematology and
- Young Research Group Translational Hematology of Congenital Diseases, REBIRTH Cluster-of Excellence
| |
Collapse
|
33
|
Roux AL, Viljoen A, Bah A, Simeone R, Bernut A, Laencina L, Deramaudt T, Rottman M, Gaillard JL, Majlessi L, Brosch R, Girard-Misguich F, Vergne I, de Chastellier C, Kremer L, Herrmann JL. The distinct fate of smooth and rough Mycobacterium abscessus variants inside macrophages. Open Biol 2017; 6:rsob.160185. [PMID: 27906132 PMCID: PMC5133439 DOI: 10.1098/rsob.160185] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 10/31/2016] [Indexed: 02/07/2023] Open
Abstract
Mycobacterium abscessus is a pathogenic, rapidly growing mycobacterium responsible for pulmonary and cutaneous infections in immunocompetent patients and in patients with Mendelian disorders, such as cystic fibrosis (CF). Mycobacterium abscessus is known to transition from a smooth (S) morphotype with cell surface-associated glycopeptidolipids (GPL) to a rough (R) morphotype lacking GPL. Herein, we show that M. abscessus S and R variants are able to grow inside macrophages and are present in morphologically distinct phagosomes. The S forms are found mostly as single bacteria within phagosomes characterized by a tightly apposed phagosomal membrane and the presence of an electron translucent zone (ETZ) surrounding the bacilli. By contrast, infection with the R form leads to phagosomes often containing more than two bacilli, surrounded by a loose phagosomal membrane and lacking the ETZ. In contrast to the R variant, the S variant is capable of restricting intraphagosomal acidification and induces less apoptosis and autophagy. Importantly, the membrane of phagosomes enclosing the S forms showed signs of alteration, such as breaks or partial degradation. Although not frequently encountered, these events suggest that the S form is capable of provoking phagosome-cytosol communication. In conclusion, M. abscessus S exhibits traits inside macrophages that are reminiscent of slow-growing mycobacterial species.
Collapse
Affiliation(s)
- Anne-Laure Roux
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Albertus Viljoen
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France.,Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aïcha Bah
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Roxane Simeone
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Audrey Bernut
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France
| | - Laura Laencina
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Therese Deramaudt
- UMR1179, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Martin Rottman
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Jean-Louis Gaillard
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Laleh Majlessi
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Roland Brosch
- Unité de Pathogénomique mycobactérienne, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris Cedex 15, Paris, France
| | - Fabienne Girard-Misguich
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| | - Isabelle Vergne
- CNRS, Institut de Pharmacologie et de Biologie Structurale (IPBS), UMR 5089 CNRS/Université Paul Sabatier, 205 route de Narbonne, BP 64182, 31077 Toulouse Cedex 4, France
| | - Chantal de Chastellier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université UM 2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Laurent Kremer
- Centre National de la Recherche Scientifique FRE 3689, Centre d'études d'agents Pathogènes et Biotechnologies pour la Santé, Université de Montpellier, 1919, Route de Mende, 34293, Montpellier, France .,INSERM, CPBS, 34293 Montpellier, France
| | - Jean-Louis Herrmann
- UMR1173, Inserm and UFR Des Sciences de la Santé Simone Veil, Université de Versailles Saint Quentin, Montigny, France
| |
Collapse
|
34
|
Speth MT, Repnik U, Müller E, Spanier J, Kalinke U, Corthay A, Griffiths G. Poly(I:C)-Encapsulating Nanoparticles Enhance Innate Immune Responses to the Tuberculosis Vaccine Bacille Calmette-Guérin (BCG) via Synergistic Activation of Innate Immune Receptors. Mol Pharm 2017; 14:4098-4112. [PMID: 28974092 DOI: 10.1021/acs.molpharmaceut.7b00795] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The attenuated live vaccine strain bacille Calmette-Guérin (BCG) is currently the only available vaccine against tuberculosis (TB), but is largely ineffective against adult pulmonary TB, the most common disease form. This is in part due to BCG's ability to interfere with the host innate immune response, a feature that might be targeted to enhance the potency of this vaccine. Here, we investigated the ability of chitosan-based nanoparticles (pIC-NPs) containing polyinosinic-polycytidylic acid (poly(I:C)), an inducer of innate immunity via Toll-like receptor 3 (TLR3), to enhance the immunogenicity of BCG in mouse bone marrow derived macrophages (BMDM) in vitro. Incorporation of poly(I:C) into NPs protected it against degradation by ribonucleases and increased its uptake by mouse BMDM. Whereas soluble poly(I:C) was ineffective, pIC-NPs strongly enhanced the proinflammatory immune response of BCG-infected macrophages in a synergistic fashion, as evident by increased production of cytokines and induction of nitric oxide synthesis. Using macrophages from mice deficient in key signaling molecules involved in the pathogen recognition response, we identified combined activation of MyD88- and TRIF-dependent TLR signaling pathways to be essential for the synergistic effect between BCG and NP. Moreover, synergy was strongly dependent on the order of the two stimuli, with TLR activation by BCG functioning as the priming event for the subsequent pIC-NP stimulus, which acted through an auto-/paracrine type I interferon (IFN) feedback loop. Our results provide a foundation for a promising new approach to enhance BCG-vaccine immunogenicity by costimulation with NPs. They also contribute to a molecular understanding of the observed synergistic interaction between the pIC-NPs and BCG vaccine.
Collapse
Affiliation(s)
- Martin T Speth
- Department of Biosciences, University of Oslo , N-0371 Oslo, Norway
| | - Urska Repnik
- Department of Biosciences, University of Oslo , N-0371 Oslo, Norway
| | - Elisabeth Müller
- Department of Biosciences, University of Oslo , N-0371 Oslo, Norway.,Tumor Immunology lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo , N-0424 Oslo, Norway
| | - Julia Spanier
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School , D-30625 Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Center for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School , D-30625 Hannover, Germany
| | - Alexandre Corthay
- Tumor Immunology lab, Department of Pathology, Rikshospitalet, Oslo University Hospital and University of Oslo , N-0424 Oslo, Norway
| | - Gareth Griffiths
- Department of Biosciences, University of Oslo , N-0371 Oslo, Norway
| |
Collapse
|
35
|
Ribeiro GM, Matsumoto CK, Real F, Teixeira D, Duarte RS, Mortara RA, Leão SC, de Souza Carvalho-Wodarz C. Increased survival and proliferation of the epidemic strain Mycobacterium abscessus subsp. massiliense CRM0019 in alveolar epithelial cells. BMC Microbiol 2017; 17:195. [PMID: 28903728 PMCID: PMC5598063 DOI: 10.1186/s12866-017-1102-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Outbreaks of infections caused by rapidly growing mycobacteria have been reported worldwide generally associated with medical procedures. Mycobacterium abscessus subsp. massiliense CRM0019 was obtained during an epidemic of postsurgical infections and was characterized by increased persistence in vivo. To better understand the successful survival strategies of this microorganism, we evaluated its infectivity and proliferation in macrophages (RAW and BMDM) and alveolar epithelial cells (A549). For that, we assessed the following parameters, for both M. abscessus CRM0019 as well as the reference strain M. abscessus ATCC 19977: internalization, intracellular survival for up 3 days, competence to subvert lysosome fusion and the intracellular survival after cell reinfection. RESULTS CRM0019 and ATCC 19977 strains showed the same internalization rate (approximately 30% after 6 h infection), in both A549 and RAW cells. However, colony forming units data showed that CRM0019 survived better in A549 cells than the ATCC 19977 strain. Phagosomal characteristics of CRM0019 showed the bacteria inside tight phagosomes in A549 cells, contrasting to the loosely phagosomal membrane in macrophages. This observation holds for the ATCC 19977 strain in both cell types. The competence to subvert lysosome fusion was assessed by acidification and acquisition of lysosomal protein. For M. abscessus strains the phagosomes were acidified in all cell lines; nevertheless, the acquisition of lysosomal protein was reduced by CRM0019 compared to the ATCC 19977 strain, in A549 cells. Conversely, in macrophages, both M. abscessus strains were located in mature phagosomes, however without bacterial death. Once recovered from macrophages M. abscessus could establish a new intracellular infection. Nevertheless, only CRM0019 showed a higher growth rate in A549, increasing nearly 10-fold after 48 and 72 h. CONCLUSION M. abscessus CRM0019 creates a protective and replicative niche in alveolar epithelial cells mainly by avoiding phagosome maturation. Once recovered from infected macrophages, CRM0019 remains infective and displays greater intracellular growth in A549 cells compared to the ATCC 19977 strain. This evasion strategy in alveolar epithelial cells may contribute to the long survival of the CRM0019 strain in the host and thus to the inefficacy of in vivo treatment.
Collapse
Affiliation(s)
- Giovanni Monteiro Ribeiro
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristianne Kayoko Matsumoto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Fernando Real
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.,Laboratoire Entrée muqueuse du VIH et Immunité muqueuse, Department Infection, Immunité et Inflammation, Institut Cochin, Paris, France
| | - Daniela Teixeira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Rafael Silva Duarte
- Laboratório de Micobactérias, Instituto de Microbiologia Professor Paulo de Góes, Cidade Universitária, Rio de Janeiro, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Sylvia Cardoso Leão
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Cristiane de Souza Carvalho-Wodarz
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil. .,Department of Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany.
| |
Collapse
|
36
|
Kissing S, Saftig P, Haas A. Vacuolar ATPase in phago(lyso)some biology. Int J Med Microbiol 2017; 308:58-67. [PMID: 28867521 DOI: 10.1016/j.ijmm.2017.08.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022] Open
Abstract
Many eukaryotic cells ingest extracellular particles in a process termed phagocytosis which entails the generation of a new intracellular compartment, the phagosome. Phagosomes change their composition over time and this maturation process culminates in their fusion with acidic, hydrolase-rich lysosomes. During the maturation process, degradation and, when applicable, killing of the cargo may ensue. Many of the events that are pathologically relevant depend on strong acidification of phagosomes by the 'vacuolar' ATPase (V-ATPase). This protein complex acidifies the lumen of some intracellular compartments at the expense of ATP hydrolysis. We discuss here the roles and importance of V-ATPase in intracellular trafficking, its distribution, inhibition and activities, its role in the defense against microorganisms and the counteractivities of pathogens.
Collapse
Affiliation(s)
- Sandra Kissing
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Olshausenstrasse 40, D-24098 Kiel, Germany.
| | - Albert Haas
- Institut für Zellbiologie, Friedrich-Wilhelms-Universität Bonn, Ulrich-Haberland-Str. 61A, D-53121 Bonn, Germany.
| |
Collapse
|
37
|
Abstract
Organic hydroperoxide reductase regulator (OhrR) in bacteria is a sensor for organic hydroperoxide stress and a transcriptional regulator for the enzyme organic hydroperoxide reductase (Ohr). In this study we investigated, using a GFP reporter system, whether Mycobacterium smegmatis OhrR has the ability to sense and respond to intracellular organic hydroperoxide stress. It was observed that M. smegmatis strains bearing the pohr-gfpuv fusion construct were able to express GFP only in the absence of an intact ohrR gene, but not in its presence. However, GFP expression in the strain bearing pohr-gfpuv with an intact ohrR gene could be induced by organic hydroperoxides in vitro and in the intracellular environment upon ingestion of the bacteria by macrophages; indicating that OhrR responds not only to in vitro but also to intracellular organic hydroperoxide stress. Further, the intracellular expression of pohr driven GFP in this strain could be abolished by replacing the intact ohrR gene with a mutant ohrR gene modified for N-terminal Cysteine (Cys) residue, suggesting that OhrR senses intracellular organic hydroperoxides through Cys residue. This is the first report demonstrating the ability of OhrR to sense intracellular organic hydroperoxides.
Collapse
|
38
|
Pattabiraman G, Panchal R, Medvedev AE. The R753Q polymorphism in Toll-like receptor 2 (TLR2) attenuates innate immune responses to mycobacteria and impairs MyD88 adapter recruitment to TLR2. J Biol Chem 2017; 292:10685-10695. [PMID: 28442574 DOI: 10.1074/jbc.m117.784470] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/15/2017] [Indexed: 12/28/2022] Open
Abstract
Toll-like receptor 2 (TLR2) plays a critical role in host defenses against mycobacterial infections. The R753Q TLR2 polymorphism has been associated with increased incidence of tuberculosis and infections with non-tuberculous mycobacteria in human populations, but the mechanisms by which this polymorphism affects TLR2 signaling are unclear. In this study, we determined the impact of the R753Q TLR2 polymorphism on macrophage sensing of Mycobacterium smegmatis Upon infection with M. smegmatis, macrophages from knock-in mice harboring R753Q TLR2 expressed lower levels of TNF-α, IL-1β, IL-6, and IL-10 compared with cells from WT mice, but both R753Q TLR2- and WT-derived macrophages exhibited comparable bacterial burdens. The decreased cytokine responses in R753Q TLR2-expressing macrophages were accompanied by impaired phosphorylation of IL-1R-associated kinase 1 (IRAK-1), p38, ERK1/2 MAPKs, and p65 NF-κB, suggesting that the R753Q TLR2 polymorphism alters the functions of the myeloid differentiation primary response protein 88 (MyD88)-IRAK-dependent signaling axis. Supporting this notion, HEK293 cells stably transfected with YFP-tagged R753Q TLR2 displayed reduced recruitment of MyD88 to TLR2, decreased NF-κB activation, and impaired IL-8 expression upon exposure to M. smegmatis Collectively, our results indicate that the R753Q polymorphism alters TLR2 signaling competence, leading to impaired MyD88-TLR2 assembly, reduced phosphorylation of IRAK-1, diminished activation of MAPKs and NF-κB, and deficient induction of cytokines in macrophages infected with M. smegmatis.
Collapse
Affiliation(s)
- Goutham Pattabiraman
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Rahul Panchal
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - Andrei E Medvedev
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030
| |
Collapse
|
39
|
Kugadas A, Lamont EA, Bannantine JP, Shoyama FM, Brenner E, Janagama HK, Sreevatsan S. A Mycobacterium avium subsp. paratuberculosis Predicted Serine Protease Is Associated with Acid Stress and Intraphagosomal Survival. Front Cell Infect Microbiol 2016; 6:85. [PMID: 27597934 PMCID: PMC4992679 DOI: 10.3389/fcimb.2016.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/05/2016] [Indexed: 11/22/2022] Open
Abstract
The ability to maintain intra-cellular pH is crucial for bacteria and other microbes to survive in diverse environments, particularly those that undergo fluctuations in pH. Mechanisms of acid resistance remain poorly understood in mycobacteria. Although, studies investigating acid stress in M. tuberculosis are gaining traction, few center on Mycobacterium avium subsp. paratuberculosis (MAP), the etiological agent of chronic enteritis in ruminants. We identified a MAP acid stress response network involved in macrophage infection. The central node of this network was MAP0403, a predicted serine protease that shared an 86% amino acid identity with MarP in M. tuberculosis. Previous studies confirmed MarP as a serine protease integral to maintaining intra-bacterial pH and survival in acid in vitro and in vivo. We show that MAP0403 is upregulated in infected macrophages and MAC-T cells that coincided with phagosome acidification. Treatment of mammalian cells with bafilomcyin A1, a potent inhibitor of phagosomal vATPases, diminished MAP0403 transcription. MAP0403 expression was also noted in acidic medium. A surrogate host, M. smegmatis mc(2) 155, was designed to express MAP0403 and when exposed to either macrophages or in vitro acid stress had increased bacterial cell viability, which corresponds to maintenance of intra-bacterial pH in acidic (pH = 5) conditions, compared to the parent strain. These data suggest that MAP0403 may be the equivalent of MarP in MAP. Future studies confirming MAP0403 as a serine protease and exploring its structure and possible substrates are warranted.
Collapse
Affiliation(s)
- Abirami Kugadas
- Division of Infectious Diseases, Brigham and Women's Hospital, University of MinnesotaBoston, MA, USA
| | - Elise A. Lamont
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
| | - John P. Bannantine
- United States Department of Agriculture, National Animal Disease Center, Agricultural Research ServiceAmes, IA, USA
| | - Fernanda M. Shoyama
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | - Evan Brenner
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| | | | - Srinand Sreevatsan
- Department of Veterinary and Biomedical Science, University of MinnesotaSaint Paul, MN, USA
- Department of Veterinary Population Medicine, University of MinnesotaSaint Paul, MN, USA
| |
Collapse
|
40
|
Yeruva VC, Kulkarni A, Khandelwal R, Sharma Y, Raghunand TR. The PE_PGRS Proteins of Mycobacterium tuberculosis Are Ca2+ Binding Mediators of Host–Pathogen Interaction. Biochemistry 2016; 55:4675-87. [DOI: 10.1021/acs.biochem.6b00289] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Veena C. Yeruva
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Apoorva Kulkarni
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
41
|
Repnik U, Česen MH, Turk B. Studying Lysosomal Membrane Permeabilization by Analyzing the Release of Preloaded BSA-Gold Particles into the Cytosol. Cold Spring Harb Protoc 2016; 2016:2016/6/pdb.prot087122. [PMID: 27250941 DOI: 10.1101/pdb.prot087122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In addition to techniques involving assaying the release of endogenous lysosomal molecules into the cytosol, the endocytic system can be preloaded with exogenous fluorescent or electron-dense tracers. These tracers will translocate into the cytosol upon lysosomal membrane permeabilization and have the advantage of being detectable directly without additional labeling. Another benefit is that the tracers can be made more abundant than most endogenous lysosomal molecules, which facilitates their detection. Tracers that can be analyzed with fluorescence microscopy include low-molecular-mass molecules such as sulforhodamine B and also fluorescent polymers of dextran that are available in a wide range of molecular masses. This protocol shows how, for electron-microscopic analysis, cells can be fed with colloidal gold or ferrofluid particles complexed to bovine serum albumin. Although electron microscopy entails a high-resolution analysis, which can be advantageous, we caution how it is important to note that particulate tracers are larger than many endogenous lysosomal molecules and might be released only upon extensive membrane permeabilization.
Collapse
Affiliation(s)
- Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia; Department of Biosciences, University of Oslo, NO-0371 Oslo, Norway
| | - Maruša Hafner Česen
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, J. Stefan Institute, SI-1000 Ljubljana, Slovenia; Center of Excellence CIPKEBIP, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
42
|
Mouton JM, Helaine S, Holden DW, Sampson SL. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. MICROBIOLOGY-SGM 2016; 162:966-978. [PMID: 27027532 PMCID: PMC5042079 DOI: 10.1099/mic.0.000288] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mycobacterium tuberculosis infections result in a spectrum of clinical outcomes, and frequently the infection persists in a latent, clinically asymptomatic state. The within-host bacterial population is likely to be heterogeneous, and it is thought that persistent mycobacteria arise from a small population of viable, but non-replicating (VBNR) cells. These are likely to be antibiotic tolerant and necessitate prolonged treatment. Little is known about these persistent mycobacteria, since they are very difficult to isolate. To address this, we have successfully developed a replication reporter system for use in M. tuberculosis. This approach, termed fluorescence dilution, exploits two fluorescent reporters; a constitutive reporter allows the tracking of bacteria, while an inducible reporter enables the measurement of bacterial replication. The application of fluorescence single-cell analysis to characterize intracellular M. tuberculosis identified a distinct subpopulation of non-growing mycobacteria in murine macrophages. The presence of VBNR and actively replicating mycobacteria was observed within the same macrophage after 48 h of infection. Furthermore, our results suggest that macrophage uptake resulted in enrichment of non- or slowly replicating bacteria (as revealed by d-cycloserine treatment); this population is likely to be highly enriched for persisters, based on its drug-tolerant phenotype. These results demonstrate the successful application of the novel dual fluorescence reporter system both in vitro and in macrophage infection models to provide a window into mycobacterial population heterogeneity.
Collapse
Affiliation(s)
- Jacoba M Mouton
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Sophie Helaine
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - David W Holden
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Samantha L Sampson
- MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, UK.,DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
43
|
Inhibition of ceramide de novo synthesis by myriocin produces the double effect of reducing pathological inflammation and exerting antifungal activity against A. fumigatus airways infection. Biochim Biophys Acta Gen Subj 2016; 1860:1089-97. [PMID: 26922830 DOI: 10.1016/j.bbagen.2016.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/02/2016] [Accepted: 02/22/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Fungal infections develop in pulmonary chronic inflammatory diseases such as asthma, Chronic Obstructive Pulmonary Disease (COPD) and Cystic Fibrosis (CF). The available antifungal drugs may fail to eradicate fungal pathogens, that can invade the lungs and vessels and spread by systemic circulation taking advantage of defective lung immunity. An increased rate of sphingolipid de novo synthesis, leading to ceramide accumulation, was demonstrated in CF and COPD inflamed lungs. The inhibitor of sphingolipid synthesis myriocin reduces inflammation and ameliorates the response against bacterial airway infection in CF mice. Myriocin also inhibits sphingolipid synthesis in fungi and exerts a powerful fungistatic effect. METHODS We treated Aspergillus fumigatus infected airway epithelial cells with myriocin and we administered myriocin-loaded nanocarriers to A. fumigatus infected mice lung. RESULTS We demonstrate here that de novo synthesized ceramide mediates the inflammatory response induced by A. fumigatus infection in airway epithelia. CF epithelial cells are chronically inflamed and defective in killing internalized conidia. Myriocin treatment reduced ceramide increase and inflammatory mediator release whereas it upregulated HO1 and NOD2, allowing the recovery of a functional killing of conidia in these cells. Myriocin-loaded nanocarriers, intratracheally administered to mice, significantly reduced both the inflammatory response induced by A. fumigatus pulmonary challenge and fungal lung invasion. CONCLUSIONS We conclude that inhibition of sphingolipid synthesis can be envisaged as a dual anti-inflammatory and anti-fungal therapy in patients suffering from chronic lung inflammation with compromised immunity. GENERAL SIGNIFICANCE Myriocin represents a powerful agent for inflammatory diseases and fungal infection.
Collapse
|
44
|
Li Q, Fu T, Li C, Fan X, Xie J. Mycobacterial IclR family transcriptional factor Rv2989 is specifically involved in isoniazid tolerance by regulating the expression of catalase encoding gene katG. RSC Adv 2016. [DOI: 10.1039/c6ra07733a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional factors are essential for bacteria to adapt diverse environmental stresses, especially upon exposure to antibiotics.
Collapse
Affiliation(s)
- Qiming Li
- Institute of Modern Biopharmaceuticals
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region
- Ministry of Education
- School of Life Sciences
| | - Tiwei Fu
- Institute of Modern Biopharmaceuticals
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region
- Ministry of Education
- School of Life Sciences
| | - Chunyan Li
- Institute of Modern Biopharmaceuticals
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region
- Ministry of Education
- School of Life Sciences
| | - Xiangyu Fan
- Institute of Modern Biopharmaceuticals
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region
- Ministry of Education
- School of Life Sciences
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region
- Ministry of Education
- School of Life Sciences
| |
Collapse
|
45
|
Bettencourt P, Pires D, Anes E. Immunomodulating microRNAs of mycobacterial infections. Tuberculosis (Edinb) 2015; 97:1-7. [PMID: 26980489 DOI: 10.1016/j.tube.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines.
Collapse
Affiliation(s)
- Paulo Bettencourt
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - David Pires
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa Anes
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
46
|
George R, Cavalcante R, Jr CC, Marques E, Waugh JB, Unlap MT. Use of siRNA molecular beacons to detect and attenuate mycobacterial infection in macrophages. World J Exp Med 2015; 5:164-181. [PMID: 26309818 PMCID: PMC4543811 DOI: 10.5493/wjem.v5.i3.164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 05/05/2015] [Accepted: 06/11/2015] [Indexed: 02/06/2023] Open
Abstract
Tuberculosis is one of the leading infectious diseases plaguing mankind and is mediated by the facultative pathogen, Mycobacterium tuberculosis (MTB). Once the pathogen enters the body, it subverts the host immune defenses and thrives for extended periods of time within the host macrophages in the lung granulomas, a condition called latent tuberculosis (LTB). Persons with LTB are prone to reactivation of the disease when the body’s immunity is compromised. Currently there are no reliable and effective diagnosis and treatment options for LTB, which necessitates new research in this area. The mycobacterial proteins and genes mediating the adaptive responses inside the macrophage is largely yet to be determined. Recently, it has been shown that the mce operon genes are critical for host cell invasion by the mycobacterium and for establishing a persistent infection in both in vitro and in mouse models of tuberculosis. The YrbE and Mce proteins which are encoded by the MTB mce operons display high degrees of homology to the permeases and the surface binding protein of the ABC transports, respectively. Similarities in structure and cell surface location impute a role in cell invasion at cholesterol rich regions and immunomodulation. The mce4 operon is also thought to encode a cholesterol transport system that enables the mycobacterium to derive both energy and carbon from the host membrane lipids and possibly generating virulence mediating metabolites, thus enabling the bacteria in its long term survival within the granuloma. Various deletion mutation studies involving individual or whole mce operon genes have shown to be conferring varying degrees of attenuation of infectivity or at times hypervirulence to the host MTB, with the deletion of mce4A operon gene conferring the greatest degree of attenuation of virulence. Antisense technology using synthetic siRNAs has been used in knocking down genes in bacteria and over the years this has evolved into a powerful tool for elucidating the roles of various genes mediating infectivity and survival in mycobacteria. Molecular beacons are a newer class of antisense RNA tagged with a fluorophore/quencher pair and their use for in vivo detection and knockdown of mRNA is rapidly gaining popularity.
Collapse
|
47
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|
48
|
Julián E, Baelo A, Gavaldà J, Torrents E. Methyl-hydroxylamine as an efficacious antibacterial agent that targets the ribonucleotide reductase enzyme. PLoS One 2015; 10:e0122049. [PMID: 25782003 PMCID: PMC4363900 DOI: 10.1371/journal.pone.0122049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 02/06/2015] [Indexed: 01/17/2023] Open
Abstract
The emergence of multidrug-resistant bacteria has encouraged vigorous efforts to develop antimicrobial agents with new mechanisms of action. Ribonucleotide reductase (RNR) is a key enzyme in DNA replication that acts by converting ribonucleotides into the corresponding deoxyribonucleotides, which are the building blocks of DNA replication and repair. RNR has been extensively studied as an ideal target for DNA inhibition, and several drugs that are already available on the market are used for anticancer and antiviral activity. However, the high toxicity of these current drugs to eukaryotic cells does not permit their use as antibacterial agents. Here, we present a radical scavenger compound that inhibited bacterial RNR, and the compound's activity as an antibacterial agent together with its toxicity in eukaryotic cells were evaluated. First, the efficacy of N-methyl-hydroxylamine (M-HA) in inhibiting the growth of different Gram-positive and Gram-negative bacteria was demonstrated, and no effect on eukaryotic cells was observed. M-HA showed remarkable efficacy against Mycobacterium bovis BCG and Pseudomonas aeruginosa. Thus, given the M-HA activity against these two bacteria, our results showed that M-HA has intracellular antimycobacterial activity against BCG-infected macrophages, and it is efficacious in partially disassembling and inhibiting the further formation of P. aeruginosa biofilms. Furthermore, M-HA and ciprofloxacin showed a synergistic effect that caused a massive reduction in a P. aeruginosa biofilm. Overall, our results suggest the vast potential of M-HA as an antibacterial agent, which acts by specifically targeting a bacterial RNR enzyme.
Collapse
Affiliation(s)
- Esther Julián
- Departament de Genètica i de Microbiologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Aida Baelo
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
| | - Joan Gavaldà
- Infectious Diseases Research Laboratory, Infectious Diseases Department, Vall d’Hebron Research Institute, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Eduard Torrents
- Institute for Bioengineering of Catalonia (IBEC), Bacterial infections and antimicrobial therapies; Baldiri Reixac 15-21, Barcelona, Spain
- * E-mail:
| |
Collapse
|
49
|
Vergne I, Gilleron M, Nigou J. Manipulation of the endocytic pathway and phagocyte functions by Mycobacterium tuberculosis lipoarabinomannan. Front Cell Infect Microbiol 2015; 4:187. [PMID: 25629008 PMCID: PMC4290680 DOI: 10.3389/fcimb.2014.00187] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/15/2014] [Indexed: 12/11/2022] Open
Abstract
Lipoarabinomannan is a major immunomodulatory lipoglycan found in the cell envelope of Mycobacterium tuberculosis and related human pathogens. It reproduces several salient properties of M. tuberculosis in phagocytic cells, including inhibition of pro-inflammatory cytokine production, inhibition of phagolysosome biogenesis, and inhibition of apoptosis as well as autophagy. In this review, we present our current knowledge on lipoarabinomannan structure and ability to manipulate the endocytic pathway as well as phagocyte functions. A special focus is put on the molecular mechanisms employed and the signaling pathways hijacked. Available information is discussed in the context of M. tuberculosis pathogenesis.
Collapse
Affiliation(s)
- Isabelle Vergne
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| | - Jérôme Nigou
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique Toulouse, France ; Institut de Pharmacologie et de Biologie Structurale, Université Toulouse III - Paul Sabatier Toulouse, France
| |
Collapse
|
50
|
Atanaskovic I, Bencherif AC, Deyell M, Jaramillo-Riveri S, Benony M, Bernheim AG, Libis VK, Koutsoubelis N, Zegman Y, Löchner AC, Basier C, Aghoghogbe I, Marinkovic ZS, Zahra S, Toulouze M, Lindner AB, Wintermute EH. In situ characterization of mycobacterial growth inhibition by lytic enzymes expressed in vectorized E. coli. ACS Synth Biol 2014; 3:932-4. [PMID: 25408994 DOI: 10.1021/sb500039z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The emergence of extremely drug resistant Mycobacterium tuberculosis necessitates new strategies to combat the pathogen. Engineered bacteria may serve as vectors to deliver proteins to human cells, including mycobacteria-infected macrophages. In this work, we target Mycobacterium smegmatis, a nonpathogenic tuberculosis model, with E. coli modified to express trehalose dimycolate hydrolase (TDMH), a membrane-lysing serine esterase. We show that TDMH-expressing E. coli are capable of lysing mycobacteria in vitro and at low pH. Vectorized E. coli producing TDMH were found suppress the proliferation of mycobacteria in infected macrophages.
Collapse
Affiliation(s)
- Iva Atanaskovic
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Amel Camélia Bencherif
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Matthew Deyell
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Sebastián Jaramillo-Riveri
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Marguerite Benony
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Aude G. Bernheim
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Vincent K. Libis
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Nicolas Koutsoubelis
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Yonatan Zegman
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Anne C. Löchner
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Clovis Basier
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Idonnya Aghoghogbe
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Zoran S. Marinkovic
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Sarah Zahra
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Matthias Toulouze
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
| | - Ariel B. Lindner
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
- U1001 Institut
National de la Santé et de la Recherche Médicale, 75014 Paris, France
| | - Edwin H. Wintermute
- 2013
Paris Bettencourt iGEM team, Centre for Research and Interdisciplinarity, Paris Descartes University, 75014 Paris, France
- U1001 Institut
National de la Santé et de la Recherche Médicale, 75014 Paris, France
| |
Collapse
|