1
|
Yuan Y, Bodke VV, Lin C, Gao S, Rehman J, Li J, Khetani SR. Long-term HBV infection of engineered cultures of induced pluripotent stem cell-derived hepatocytes. Hepatol Commun 2024; 8:e0506. [PMID: 39082962 DOI: 10.1097/hc9.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/08/2024] [Indexed: 10/03/2024] Open
Abstract
BACKGROUND HBV infects ~257 million people and can cause hepatocellular carcinoma. Since current drugs are not curative, novel therapies are needed. HBV infects chimpanzee and human livers. However, chimpanzee studies are severely restricted and cost-prohibitive, while transgenic/chimeric mouse models that circumvent the species barrier lack natural HBV infection and disease progression. Thus, in vitro human models of HBV infection are useful in addressing the above limitations. Induced pluripotent stem cell-derived hepatocyte-like cells mitigate the supply limitations of primary human hepatocytes and the abnormal proliferation/functions of hepatoma cell lines. However, variable infection across donors, deficient drug metabolism capacity, and/or low throughput limit iHep utility for drug development. METHODS We developed an optimal pipeline using combinations of small molecules, Janus kinase inhibitor, and 3',5'-cAMP to infect iHep-containing micropatterned co-cultures (iMPCC) with stromal fibroblasts within 96-well plates with serum-derived HBV and cell culture-derived HBV (cHBV). Polyethylene glycol was necessary for cell-derived HBV but not for serum-derived HBV infection. RESULTS Unlike iHep monocultures, iMPCCs created from 3 iHep donors could sustain HBV infection for 2+ weeks. Infected iMPCCs maintained high levels of differentiated functions, including drug metabolism capacity. HBV antigen secretion and gene expression patterns in infected iMPCCs in pathways such as fatty acid metabolism and cholesterol biosynthesis were comparable to primary human hepatocyte-MPCCs. Furthermore, iMPCCs could help elucidate the effects of interferons and direct-acting antiviral drugs on the HBV lifecycle and any hepatotoxicity; iMPCC response to compounds was similar to primary human hepatocyte-MPCCs. CONCLUSIONS The iMPCC platform can enable the development of safe and efficacious drugs against HBV and ultimately help elucidate genotype-phenotype relationships in HBV pathogenesis.
Collapse
Affiliation(s)
- Yang Yuan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Vedant V Bodke
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Christine Lin
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Shang Gao
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jalees Rehman
- Department of Biochemistry and Molecular Genetics, University of Illinois Chicago, Chicago, Illinois, USA
| | - Jisu Li
- Liver Research Center, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Salman R Khetani
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Won J, Kang HS, Kim NY, Dezhbord M, Marakkalage KG, Lee EH, Lee D, Park S, Kim DS, Kim KH. Tripartite motif-containing protein 21 is involved in IFN-γ-induced suppression of hepatitis B virus by regulating hepatocyte nuclear factors. J Virol 2024; 98:e0046824. [PMID: 38780244 PMCID: PMC11237615 DOI: 10.1128/jvi.00468-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/25/2024] Open
Abstract
The antiviral role of the tripartite motif-containing (TRIM) protein family , a member of the E3-ubiquitin ligase family, has recently been actively studied. Hepatitis B virus (HBV) infection is a major contributor to liver diseases; however, the host factors regulated by cytokine-inducible TRIM21 to suppress HBV remain unclear. In this study, we showed the antiviral efficacy of TRIM21 against HBV in hepatoma cell lines, primary human hepatocytes isolated from patient liver tissues, and mouse model. Using TRIM21 knock-out cells, we confirmed that the antiviral effects of interferon-gamma, which suppress HBV replication, are diminished when TRIM21 is deficient. Northern blot analysis confirmed a reduction of HBV RNA levels by TRIM21. Using Luciferase reporter assay, we also discovered that TRIM21 decreases the activity of HBV enhancers, which play a crucial role in covalently closed circular DNA transcription. The participation of the RING domain and PRY-SPRY domain in the anti-HBV effect of TRIM21 was demonstrated through experiments using deletion mutants. We identified a novel interaction between TRIM21 and hepatocyte nuclear factor 4α (HNF4α) through co-immunoprecipitation assay. More specifically, ubiquitination assay revealed that TRIM21 promotes ubiquitin-mediated proteasomal degradation of HNF4α. HNF1α transcription is down-regulated as a result of the degradation of HNF4α, an activator for the HNF1α promoter. Therefore, the reduction of key HBV enhancer activators, HNF4α and HNF1α, by TRIM21 resulted in a decline in HBV transcription, ultimately leading to the inhibition of HBV replication.IMPORTANCEDespite extensive research efforts, a definitive cure for chronic hepatitis B remains elusive, emphasizing the persistent importance of this viral infection as a substantial public health concern. Although the risks associated with hepatitis B virus (HBV) infection are well known, host factors capable of suppressing HBV are largely uncharacterized. This study elucidates that tripartite motif-containing protein 21 (TRIM21) suppresses HBV transcription and consequently inhibits HBV replication by downregulating the hepatocyte nuclear factors, which are host factors associated with the HBV enhancers. Our findings demonstrate a novel anti-HBV mechanism of TRIM21 in interferon-gamma-induced anti-HBV activity. These findings may contribute to new strategies to block HBV.
Collapse
Affiliation(s)
- Juhee Won
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology, Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Mehrangiz Dezhbord
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | | | - Eun-Hwi Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Donghyo Lee
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Soree Park
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Dong-Sik Kim
- Department of Surgery, Division of HBP Surgery and Liver Transplantation, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Tong Y, Zhang Z, Zheng R, Huang D, Yang J, Zong H, Tan F, Xie Y, Huang H, Zhang X. ViMIC: a database of human disease-related virus mutations, integration sites and cis-effects. Nucleic Acids Res 2022; 50:D918-D927. [PMID: 34500462 PMCID: PMC8728280 DOI: 10.1093/nar/gkab779] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/10/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Molecular mechanisms of virus-related diseases involve multiple factors, including viral mutation accumulation and integration of a viral genome into the host DNA. With increasing attention being paid to virus-mediated pathogenesis and the development of many useful technologies to identify virus mutations (VMs) and viral integration sites (VISs), much research on these topics is available in PubMed. However, knowledge of VMs and VISs is widely scattered in numerous published papers which lack standardization, integration and curation. To address these challenges, we built a pilot database of human disease-related Virus Mutations, Integration sites and Cis-effects (ViMIC), which specializes in three features: virus mutation sites, viral integration sites and target genes. In total, the ViMIC provides information on 31 712 VMs entries, 105 624 VISs, 16 310 viral target genes and 1 110 015 virus sequences of eight viruses in 77 human diseases obtained from the public domain. Furthermore, in ViMIC users are allowed to explore the cis-effects of virus-host interactions by surveying 78 histone modifications, binding of 1358 transcription regulators and chromatin accessibility on these VISs. We believe ViMIC will become a valuable resource for the virus research community. The database is available at http://bmtongji.cn/ViMIC/index.php.
Collapse
Affiliation(s)
- Ying Wang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
- Department of Laboratory Medicine, Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| | - Yuantao Tong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Zeyu Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rongbin Zheng
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Danqi Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Jinxuan Yang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hui Zong
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fanglin Tan
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yujia Xie
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Honglian Huang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaoyan Zhang
- Research Center for Translational Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
4
|
Jühling F, Saviano A, Ponsolles C, Heydmann L, Crouchet E, Durand SC, El Saghire H, Felli E, Lindner V, Pessaux P, Pochet N, Schuster C, Verrier ER, Baumert TF. Hepatitis B virus compartmentalization and single-cell differentiation in hepatocellular carcinoma. Life Sci Alliance 2021; 4:4/9/e202101036. [PMID: 34290079 PMCID: PMC8321681 DOI: 10.26508/lsa.202101036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023] Open
Abstract
Single-cell RNA-Seq unravels heterogeneity and compartmentalization of both hepatitis B virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. Chronic hepatitis B virus (HBV) infection is a major cause of hepatocellular carcinoma (HCC) world-wide. The molecular mechanisms of viral hepatocarcinogenesis are still partially understood. Here, we applied two complementary single-cell RNA-sequencing protocols to investigate HBV–HCC host cell interactions at the single cell level of patient-derived HCC. Computational analyses revealed a marked HCC heterogeneity with a robust and significant correlation between HBV reads and cancer cell differentiation. Viral reads significantly correlated with the expression of HBV-dependency factors such as HLF in different tumor compartments. Analyses of virus-induced host responses identified previously undiscovered pathways mediating viral carcinogenesis, such as E2F- and MYC targets as well as adipogenesis. Mapping of fused HBV–host cell transcripts allowed the characterization of integration sites in individual cancer cells. Collectively, single-cell RNA-Seq unravels heterogeneity and compartmentalization of both, virus and cancer identifying new candidate pathways for viral hepatocarcinogenesis. The perturbation of pro-carcinogenic gene expression even at low HBV levels highlights the need of HBV cure to eliminate HCC risk.
Collapse
Affiliation(s)
- Frank Jühling
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Antonio Saviano
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Clara Ponsolles
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Laura Heydmann
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Sarah C Durand
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Houssein El Saghire
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Emanuele Felli
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Véronique Lindner
- Hôpitaux Universitaires de Strasbourg, Département de Pathologie, Strasbourg, France
| | - Patrick Pessaux
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Nathalie Pochet
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Cell Circuits Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine Schuster
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| | - Eloi R Verrier
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur Les Maladies Virales et Hépatiques UMR_S1110, Strasbourg, France .,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France.,Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
5
|
Chong RHH, Khakpoor A, Tan TMC, Lim SG, Lee GH. Liver-Derived Cell Transfection Model Efficacy for HBV Genotype B Replication/Transcription Is Determined by Complex Host Transcription Factor Network. Viruses 2021; 13:v13030524. [PMID: 33810128 PMCID: PMC8005026 DOI: 10.3390/v13030524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Interaction between host transcription factors (TFs) and the viral genome is fundamental for hepatitis B virus (HBV) gene expression regulation. Additionally, the distinct interaction of the TFs’ network with the HBV genome determines the regulatory effect outcome. Hence, different HBV genotypes and their variants may display different viral replication/transcription regulation. Due to the lack of an efficient infection model suitable for all HBV genotypes, the hepatoma cell transfection model is primarily used in studies involving non-D HBV genotypes and variants. Methods: We explored the transcriptome profile of host TFs with a regulatory effect on HBV in eight liver-derived cell lines in comparison with primary human hepatocytes (PHH). We further analyzed the suitability of these models in supporting HBV genotype B replication/transcription. Results: Among studied models, HC-04, as a result of the close similarity of TFs transcriptome profile to PHH and the interaction of specific TFs including HNF4α and PPARα, showed the highest efficiency in regard to viral replication and antigen production. The absence of TFs expression in L02 transfection model resulted in its inefficiency in HBV replication/transcription. Conclusion: These observations help to better design studies on regulatory mechanisms involving non-D HBV genotypes and variants’ gene expression and the development of more efficient therapeutical approaches.
Collapse
Affiliation(s)
- Roxanne Hui-Heng Chong
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore; (R.H.-H.C.); (A.K.); (S.-G.L.)
| | - Atefeh Khakpoor
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore; (R.H.-H.C.); (A.K.); (S.-G.L.)
| | - Theresa May-Chin Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore;
| | - Seng-Gee Lim
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore; (R.H.-H.C.); (A.K.); (S.-G.L.)
| | - Guan-Huei Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117549, Singapore; (R.H.-H.C.); (A.K.); (S.-G.L.)
- Department of Medicine, National University Hospital, Singapore 119074, Singapore
- Correspondence: ; Tel.: +65-90181914
| |
Collapse
|
6
|
Zhuang X, Forde D, Tsukuda S, D'Arienzo V, Mailly L, Harris JM, Wing PAC, Borrmann H, Schilling M, Magri A, Rubio CO, Maidstone RJ, Iqbal M, Garzon M, Minisini R, Pirisi M, Butterworth S, Balfe P, Ray DW, Watashi K, Baumert TF, McKeating JA. Circadian control of hepatitis B virus replication. Nat Commun 2021; 12:1658. [PMID: 33712578 PMCID: PMC7955118 DOI: 10.1038/s41467-021-21821-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection is a major cause of liver disease and cancer worldwide for which there are no curative therapies. The major challenge in curing infection is eradicating or silencing the covalent closed circular DNA (cccDNA) form of the viral genome. The circadian factors BMAL1/CLOCK and REV-ERB are master regulators of the liver transcriptome and yet their role in HBV replication is unknown. We establish a circadian cycling liver cell-model and demonstrate that REV-ERB directly regulates NTCP-dependent hepatitis B and delta virus particle entry. Importantly, we show that pharmacological activation of REV-ERB inhibits HBV infection in vitro and in human liver chimeric mice. We uncover a role for BMAL1 to bind HBV genomes and increase viral promoter activity. Pharmacological inhibition of BMAL1 through REV-ERB ligands reduces pre-genomic RNA and de novo particle secretion. The presence of conserved E-box motifs among members of the Hepadnaviridae family highlight an evolutionarily conserved role for BMAL1 in regulating this family of small DNA viruses.
Collapse
Affiliation(s)
- Xiaodong Zhuang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Donall Forde
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Senko Tsukuda
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | | | - Laurent Mailly
- University of Strasbourg and Inserm, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
| | - James M Harris
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Peter A C Wing
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Helene Borrmann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mirjam Schilling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Magri
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Robert J Maidstone
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Mudassar Iqbal
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Miguel Garzon
- Division of Pharmacy and Optometry, School of Health Sciences and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Sam Butterworth
- Division of Pharmacy and Optometry, School of Health Sciences and Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Peter Balfe
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David W Ray
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
- RIKEN Cluster for Pioneering Research, Wako, Japan
- Department of Applied Biological Sciences, Tokyo University of Science Graduate School of Science and Technology, Japan and Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Thomas F Baumert
- University of Strasbourg and Inserm, UMR-S1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Pôle Hépato-Digestif, Institut Hopitalo-Universitaire (IHU), Hopitaux Universitaire de Strasbourg, Strasbourg and Institut Universitaire de France, Paris, France
| | - Jane A McKeating
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Jayal P, Behera P, Mullick R, Ramachandra SG, Das S, Kumar A, Karande A. Responsive polymer-assisted 3D cryogel supports Huh7.5 as in vitro hepatitis C virus model and ectopic human hepatic tissue in athymic mice. Biotechnol Bioeng 2020; 118:1286-1304. [PMID: 33295646 DOI: 10.1002/bit.27651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 11/07/2022]
Abstract
The three-dimensional (3D) cell culture models serve as the interface between conventional two-dimensional (2D) monolayer culture and animal models. 3D culture offers the best possible model system to understand the pathophysiology of human pathogens such as hepatitis C virus (HCV), which lacks a small animal model, due to narrow host tropism and non-permissiveness of murine hepatocytes. In this study, functionally robust spheroids of HCV permissive Huh7.5 cells were generated, assisted by the temperature or pH-responsive polymers PNIPAAm and Eudragit respectively, followed by the long-term growth of the multilayered 3D aggregates in poly(ethylene glycol) (PEG)-alginate-gelatin (PAG) cryogel. The human serum albumin (HSA), marker of hepatic viability was detected up to 600 ng/ml on 24th day of culture. The 3D spheroid culture exhibited a distinct morphology and transcript levels with the upregulation of hepato-specific transcripts, nuclear factor 4α (HNF4α), transthyretin (TTr), albumin (Alb), phase I and phase II drug-metabolizing genes. The two most important phase I enzymes CYP3A4 and CYP2D6, together responsible for 90% metabolism of drugs exhibited up to 9- and 12-fold increment, respectively in transcripts. The 3D culture was highly permissive to HCV infection and supported higher multiplicity of infection compared to monolayer Huh7.5 culture. Quantitation of high levels of HSA (500-200 ng/ml) in circulation in mice for 32 days asserted integration with host vasculature and in vivo establishment of 3D culture implants as an ectopic human hepatic tissue in mice. The study demonstrates the 3D spheroid Huh7.5 culture as a model for HCV studies and screening potential for anti-HCV drug candidates.
Collapse
Affiliation(s)
- Priyanka Jayal
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| | - Padmanava Behera
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ranajoy Mullick
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | | | - Saumitra Das
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjali Karande
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Lucifora J, Michelet M, Salvetti A, Durantel D. Fast Differentiation of HepaRG Cells Allowing Hepatitis B and Delta Virus Infections. Cells 2020; 9:cells9102288. [PMID: 33066405 PMCID: PMC7602217 DOI: 10.3390/cells9102288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
HepaRG cells are liver bipotent progenitors acquiring hepatocytes features when differentiated in the presence of dimethylsulfoxide (DMSO). Differentiated HepaRG (dHepaRG) are considered the best surrogate model to primary human hepatocytes (PHH) and are susceptible to several hepatotropic viruses, including Hepatitis B Virus (HBV) and Hepatitis Delta Virus (HDV) infection. Despite these advantages, HepaRG cells are not widely used for the study of these two viruses because of their long differentiation process and their rather low and variable infection rates. Here, we tested the use of a cocktail of five chemicals (5C) combined or not with DMSO to accelerate the cells’ differentiation process. We found that NTCP-mediated HDV entry and replication are similar in HepaRG cells cultivated for only 1 week with 5C and DMSO or differentiated with the regular 4-week protocol. However, even though the NTCP-mediated HBV entry process seemed similar, cccDNA and subsequent HBV replication markers were lower in HepaRG cells cultivated for 1 week with 5C and DMSO compared to the regular differentiation protocol. In conclusion, we set up a new procedure allowing fast differentiation and efficient HDV-infection of HepaRG cells and identified differential culture conditions that may allow to decipher the mechanism behind the establishment of the HBV minichromosome.
Collapse
|
9
|
Xia C, Tang W, Geng P, Zhu H, Zhou W, Huang H, Zhou P, Shi X. Baicalin down-regulating hepatitis B virus transcription depends on the liver-specific HNF4α-HNF1α axis. Toxicol Appl Pharmacol 2020; 403:115131. [PMID: 32687838 DOI: 10.1016/j.taap.2020.115131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 07/02/2020] [Indexed: 02/07/2023]
Abstract
Baicalin (BA) inhibits hepatitis B virus (HBV) RNAs production and reduces levels of the related hepatocyte nuclear factors (HNFs), although the underlying mechanism is unclear. In this study, we investigated the specific pathway by which BA regulates HBV transcription through the HBV-related HNFs. Following transfection of HepG2 cells with pHBV1.2, we observed that BA inhibited the production of HBV RNAs and viral proteins in a time- and dose-dependent manner. These effects were consistent with the downregulation of HNF1α, which was abolished by HNF1α-shRNA. The shRNA of HNF4α, the upstream gene of HNF1α, also remarkedly reduced HNF1α expression and impaired the anti-HBV efficacy of BA, indicating that this function of BA depended on HNF4α/HNF1α axis. Furthermore, chromatin immunoprecipitation assay showed that BA significantly reduced HNF4α-HNF1α transactivation activity. The similar effects of BA were observed in entecavir (ETV)-resistant HBVrtM204V/rtLl80M transfected HepG2 cells. Thus, we proposed a mechanism for the anti-HBV activity of BA in an HNF4α-HNF1α-dependent manner, which impaired HNF4α and HNF1α transactivation, and effectively inhibited HBV transcription and viral replication.
Collapse
Affiliation(s)
- Chengjie Xia
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wenyi Tang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Ping Geng
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Haiyan Zhu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433, PR China
| | - Hai Huang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Pei Zhou
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Xunlong Shi
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, PR China.
| |
Collapse
|
10
|
Abstract
With a yearly death toll of 880,000, hepatitis B virus (HBV) remains a major health problem worldwide, despite an effective prophylactic vaccine and well-tolerated, effective antivirals. HBV causes chronic hepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. The viral genome persists in infected hepatocytes even after long-term antiviral therapy, and its integration, though no longer able to support viral replication, destabilizes the host genome. HBV is a DNA virus that utilizes a virus-encoded reverse transcriptase to convert an RNA intermediate, termed pregenomic RNA, into the relaxed circular DNA genome, which is subsequently converted into a covalently closed circular DNA (cccDNA) in the host cell nucleus. cccDNA is maintained in the nucleus of the infected hepatocyte as a stable minichromosome and functions as the viral transcriptional template for the production of all viral gene products, and thus, it is the molecular basis of HBV persistence. The nuclear cccDNA pool can be replenished through recycling of newly synthesized, DNA-containing HBV capsids. Licensed antivirals target the HBV reverse transcriptase activity but fail to eliminate cccDNA, which would be required to cure HBV infection. Elimination of HBV cccDNA is so far only achieved by antiviral immune responses. Thus, this review will focus on possible curative strategies aimed at eliminating or crippling the viral cccDNA. Newer insights into the HBV life cycle and host immune response provide novel, potentially curative therapeutic opportunities and targets.
Collapse
|
11
|
Pan Y, Ke Z, Ye H, Sun L, Ding X, Shen Y, Zhang R, Yuan J. Saikosaponin C exerts anti-HBV effects by attenuating HNF1α and HNF4α expression to suppress HBV pgRNA synthesis. Inflamm Res 2019; 68:1025-1034. [PMID: 31531682 PMCID: PMC7079752 DOI: 10.1007/s00011-019-01284-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/06/2023] Open
Abstract
Objective Saikosaponin c (SSc), a compound purified from the traditional Chinese herb of Radix Bupleuri was previously identified to exhibit anti-HBV replication activity. However, the mechanism through which SSc acts against HBV remains unknown. In this study, we investigated the mechanism of SSc mediated anti-HBV activity. Methods HepG2.2.15 cells were cultured at 37 ℃ in the presence of 1–40 μg/mL of SSc or DMSO as a control. The expression profile of HBV markers, cytokines, HNF1α and HNF4α were investigated by real-time quantitative PCR, Elisa, Western blot and Dot blotting. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells was mediated by two small siRNAs specifically targeting HNF1α or HNF4α. Results We found that SSc stimulates IL-6 expression, leading to attenuated HNF1α and HNF4α expression, which further mediates suppression of HBV pgRNA synthesis. Knockdown of HNF1α or HNF4α in HepG2.2.15 cells by RNA interference abrogates SSc’s anti-HBV role. Moreover, SSc is effective to both wild-type and drug-resistant HBV mutants. Conclusion SSc inhibits pgRNA synthesis by targeting HNF1α and HNF4α. These results indicate that SSc acts as a promising compound for modulating pgRNA transcription in the therapeutic strategies against HBV infection. Electronic supplementary material The online version of this article (10.1007/s00011-019-01284-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanchao Pan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| | - Zhiyi Ke
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Hong Ye
- Anhui Academy of Medical Sciences, Hefei, 230061, China
| | - Lina Sun
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Xiaoyan Ding
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Yun Shen
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Runze Zhang
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China
| | - Jing Yuan
- Diagnosis and Treatment of Infectious Diseases Research Laboratory, Shenzhen Third People's Hospital, Shenzhen, 518112, China.
| |
Collapse
|
12
|
König A, Yang J, Jo E, Park KHP, Kim H, Than TT, Song X, Qi X, Dai X, Park S, Shum D, Ryu WS, Kim JH, Yoon SK, Park JY, Ahn SH, Han KH, Gerlich WH, Windisch MP. Efficient long-term amplification of hepatitis B virus isolates after infection of slow proliferating HepG2-NTCP cells. J Hepatol 2019; 71:289-300. [PMID: 31077792 DOI: 10.1016/j.jhep.2019.04.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS As hepatitis B virus (HBV) spreads through the infected liver it is simultaneously secreted into the blood. HBV-susceptible in vitro infection models do not efficiently amplify viral progeny or support cell-to-cell spread. We sought to establish a cell culture system for the amplification of infectious HBV from clinical specimens. METHODS An HBV-susceptible sodium-taurocholate cotransporting polypeptide-overexpressing HepG2 cell clone (HepG2-NTCPsec+) producing high titers of infectious progeny was selected. Secreted HBV progeny were characterized by native gel electrophoresis and electron microscopy. Comparative RNA-seq transcriptomics was performed to quantify the expression of host proviral and restriction factors. Viral spread routes were evaluated using HBV entry- or replication inhibitors, visualization of viral cell-to-cell spread in reporter cells, and nearest neighbor infection determination. Amplification kinetics of HBV genotypes B-D were analyzed. RESULTS Infected HepG2-NTCPsec+ secreted high levels of large HBV surface protein-enveloped infectious HBV progeny with typical appearance under electron microscopy. RNA-seq transcriptomics revealed that HBV does not induce significant gene expression changes in HepG2-NTCPsec+, however, transcription factors favoring HBV amplification were more strongly expressed than in less permissive HepG2-NTCPsec-. Upon inoculation with HBV-containing patient sera, rates of infected cells increased from 10% initially to 70% by viral spread to adjacent cells, and viral progeny and antigens were efficiently secreted. HepG2-NTCPsec+ supported up to 1,300-fold net amplification of HBV genomes depending on the source of virus. Viral spread and amplification were abolished by entry and replication inhibitors; viral rebound was observed after inhibitor discontinuation. CONCLUSIONS The novel HepG2-NTCPsec+ cells efficiently support the complete HBV life cycle, long-term viral spread and amplification of HBV derived from patients or cell culture, resembling relevant features of HBV-infected patients. LAY SUMMARY Currently available laboratory systems are unable to reproduce the dynamics of hepatitis B virus (HBV) spread through the infected liver and release into the blood. We developed a slowly dividing liver-derived cell line which multiplies infectious viral particles upon inoculation with patient- or cell culture-derived HBV. This new infection model can improve therapy by measuring, in advance, the sensitivity of a patient's HBV strain to specific antiviral drugs.
Collapse
Affiliation(s)
- Alexander König
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Jaewon Yang
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Eunji Jo
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Kyu Ho Paul Park
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Hyun Kim
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea
| | - Thoa Thi Than
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Xiyong Song
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiaoxuan Qi
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Soonju Park
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si, South Korea
| | - David Shum
- Screening Discovery Platform, Institut Pasteur Korea, Seongnam-si, South Korea
| | - Wang-Shick Ryu
- Department of Biochemistry, Yonsei University, Seoul, South Korea
| | - Jung-Hee Kim
- Catholic University Liver Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Seung Kew Yoon
- Catholic University Liver Research Center, The Catholic University of Korea, Seoul, South Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Kwang-Hyub Han
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Marc Peter Windisch
- Applied Molecular Virology Laboratory, Institut Pasteur Korea, Seongnam-si, South Korea; Division of Bio-Medical Science and Technology, University of Science and Technology, 217, Gajeong-ro, Yuseong-gu, Daejeon, South Korea.
| |
Collapse
|
13
|
Li CL, Li CY, Lin YY, Ho MC, Chen DS, Chen PJ, Yeh SH. Androgen Receptor Enhances Hepatic Telomerase Reverse Transcriptase Gene Transcription After Hepatitis B Virus Integration or Point Mutation in Promoter Region. Hepatology 2019; 69:498-512. [PMID: 30070724 DOI: 10.1002/hep.30201] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
The gender disparity of hepatocellular carcinoma (HCC) is most striking in hepatitis B virus (HBV)-related cases. The majority of such HCC cases contain integrated HBV, and some hotspot integrations, such as those in the telomerase reverse transcriptase gene (TERT) promoter, activate gene expression to drive carcinogenesis. As the HBV genome contains both androgen-responsive and estrogen-responsive motifs, we hypothesized that the integrated HBV DNA renders a similar regulation for downstream gene expression and thus contributes to male susceptibility to HCC. To test this hypothesis, the HBV integration sites and the common mutations in the TERT promoter and tumor protein P53 (TP53) coding region were analyzed in 101 HBV-related HCC cases using a capture-next-generation sequencing platform. The results showed that both HBV integration and -124G>A mutation in the TERT promoter region, occurring in a mutually exclusive manner, were more frequent in male than in female patients with HCC (integration: 22/58 male patients with HCC, 6/36 female patients with HCC, P = 0.0285; -124G>A: 17/62 male patients with HCC, 3/39 female patients with HCC, P = 0.0201; in combination, 39/62 male patients with HCC, 9/39 female patients with HCC, P < 0.0001). The effects of sex hormone pathways on the expression of TERT with both genetic changes were investigated using a reporter assay. HBV integration in the TERT promoter rendered the TERT transcription responsive to sex hormones, with enhancement by androgen receptor (AR) but suppression by estrogen receptor, both of which were dependent on hepatocyte nuclear factor 4 alpha. Besides, AR also increased TERT expression by targeting TERT promoter mutations in a GA binding protein transcription factor subunit alpha-dependent manner. Conclusion: TERT elevation by AR through integrated HBV and point mutation at the TERT promoter region was identified as a mechanism for the male dominance of HBV-related HCCs; telomerase and AR thus may be targets for intervention of HCC.
Collapse
Affiliation(s)
- Chiao-Ling Li
- Department of Microbiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Chen-Yu Li
- Department of Microbiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - You-Yu Lin
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ming-Chih Ho
- Department of Surgery, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Ding-Shinn Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Pei-Jer Chen
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Shiou-Hwei Yeh
- Department of Microbiology, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,National Taiwan University Center for Genomic Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan.,Department of Laboratory Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| |
Collapse
|
14
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
15
|
von Olshausen G, Quasdorff M, Bester R, Arzberger S, Ko C, van de Klundert M, Zhang K, Odenthal M, Ringelhan M, Niessen CM, Protzer U. Hepatitis B virus promotes β-catenin-signalling and disassembly of adherens junctions in a Src kinase dependent fashion. Oncotarget 2018; 9:33947-33960. [PMID: 30338037 PMCID: PMC6188061 DOI: 10.18632/oncotarget.26103] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022] Open
Abstract
Hepatitis B virus (HBV) infection is a prominent cause of hepatocellular carcinoma (HCC) but the underlying molecular mechanisms are complex and multiple pathways have been proposed such as the activation of the Wnt-/β-catenin-signalling and dysregulation of E-cadherin/β-catenin adherens junctions. This study aimed to identify mechanisms of how HBV infection and replication as well as HBV X protein (HBx) gene expression in the context of an HBV genome influence Wnt-/β-catenin-signalling and formation of adherens junctions and to which extent HBx contributes to this. Regulation of E-cadherin/β-catenin junctions and β-catenin-signalling as well as the role of HBx were investigated using constructs transiently or stably inducing replication of HBV+/-HBx in hepatoma cell lines. In addition, HCC and adjacent non-tumorous tissue samples from HBV-infected HCC patients and drug interference in HBV-infected cells were studied. Although HBV did not alter overall expression levels of E-cadherin or β-catenin, it diminished their cell surface localization resulting in nuclear translocation of β-catenin and activation of its target genes. In addition, HBV gene expression increased the amount of phosphorylated c-Src kinase. Treatment with Src kinase inhibitor Dasatinib reduced HBV replication, prevented adherens junction disassembly and reduced β-catenin-signalling, while Sorafenib only did so in cells with mutated β-catenin. Interestingly, none of the HBV induced alterations required HBx. Thus, HBV stimulated β-catenin-signalling and induced disassembly of adherens junctions independently of HBx through Src kinase activation. These pathways may contribute to hepatocellular carcinogenesis and seem to be more efficiently inhibited by Dasatinib than by Sorafenib.
Collapse
Affiliation(s)
- Gesa von Olshausen
- Department of Internal Medicine I, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Quasdorff
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Department of Gastroenterology and Hepatology, University Hospital Cologne, Cologne, Germany
| | - Romina Bester
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Silke Arzberger
- Molecular Infectiology, Institute for Medical Micro biology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany.,Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Maarten van de Klundert
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Ke Zhang
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Margarete Odenthal
- Institute of Pathology, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Marc Ringelhan
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,Department of Internal Medicine II, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Carien M Niessen
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany.,Department of Dermatology, University Hospital of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany.,German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
16
|
Kim DH, Park ES, Lee AR, Park S, Park YK, Ahn SH, Kang HS, Won JH, Ha YN, Jae B, Kim DS, Chung WC, Song MJ, Kim KH, Park SH, Kim SH, Kim KH. Intracellular interleukin-32γ mediates antiviral activity of cytokines against hepatitis B virus. Nat Commun 2018; 9:3284. [PMID: 30115930 PMCID: PMC6095909 DOI: 10.1038/s41467-018-05782-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/26/2018] [Indexed: 02/07/2023] Open
Abstract
Cytokines are involved in early host defense against pathogen infections. In particular, tumor necrosis factor (TNF) and interferon-gamma (IFN-γ) have critical functions in non-cytopathic elimination of hepatitis B virus (HBV) in hepatocytes. However, the molecular mechanisms and mediator molecules are largely unknown. Here we show that interleukin-32 (IL-32) is induced by TNF and IFN-γ in hepatocytes, and inhibits the replication of HBV by acting intracellularly to suppress HBV transcription and replication. The gamma isoform of IL-32 (IL-32γ) inhibits viral enhancer activities by downregulating liver-enriched transcription factors. Our data are validated in both an in vivo HBV mouse model and primary human hepatocytes. This study thus suggests that IL-32γ functions as intracellular effector in hepatocytes for suppressing HBV replication to implicate a possible mechanism of non-cytopathic viral clearance. Cytokines such as TNF and IFN-γ are important for immunity against hepatitis B virus (HBV). Here the authors show that interleukin-32 gamma (IL-32γ) acts downstream of TNF and IFN-γ as an intracellular effector, and that IL-32γ negatively regulates host factors contributing to HBV transcription to promote HBV clearance.
Collapse
Affiliation(s)
- Doo Hyun Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun-Sook Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ah Ram Lee
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soree Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong Kwang Park
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Sung Hyun Ahn
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong Seok Kang
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Ju Hee Won
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Na Ha
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - ByeongJune Jae
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Sik Kim
- Division of HBP Surgery and Liver Transplantation, Department of Surgery, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Woo-Chang Chung
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Moon Jung Song
- Virus-Host Interactions Laboratory, Division of Biotechnology, Department of Biosystems and Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Kee-Hwan Kim
- Department of Surgery, Uijeongbu St. Mary's Hospital, Catholic Central Laboratory of Surgery, College of Medicine, The Catholic University of Korea, Seoul 11765, Republic of Korea
| | - Seung Hwa Park
- Department of Anatomy, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea
| | - Soo-Hyun Kim
- Laboratory of Cytokine Immunology, Veterinary School, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyun-Hwan Kim
- Department of Pharmacology and Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University, Seoul 05029, Republic of Korea. .,KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
17
|
Multiple Functions of Cellular FLIP Are Essential for Replication of Hepatitis B Virus. J Virol 2018; 92:JVI.00339-18. [PMID: 29875248 DOI: 10.1128/jvi.00339-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/24/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis B virus (HBV) infection is a leading cause of liver diseases; however, the host factors which facilitate the replication and persistence of HBV are largely unidentified. Cellular FLICE inhibitory protein (c-FLIP) is a typical antiapoptotic protein. In many cases of liver diseases, the expression level of c-FLIP is altered, which affects the fate of hepatocytes. We previously found that c-FLIP and its cleaved form interact with HBV X protein (HBx), which is essential for HBV replication, and regulate diverse cellular signals. In this study, we investigated the role of endogenous c-FLIP in HBV replication and its underlying mechanisms. The knockdown of endogenous c-FLIP revealed that this protein regulates HBV replication through two different mechanisms. (i) c-FLIP interacts with HBx and protects it from ubiquitin-dependent degradation. The N-terminal DED1 domain of c-FLIP is required for HBx stabilization. (ii) c-FLIP regulates the expression or stability of hepatocyte nuclear factors (HNFs), which have critical roles in HBV transcription and maintenance of hepatocytes. c-FLIP regulates the stability of HNFs through physical interactions. We verified our findings in three HBV infection systems: HepG2-NTCP cells, differentiated HepaRG cells, and primary human hepatocytes. In conclusion, our results identify c-FLIP as an essential factor in HBV replication. c-FLIP regulates viral replication through its multiple effects on viral and host proteins that have critical roles in HBV replication.IMPORTANCE Although the chronic hepatitis B virus (HBV) infection still poses a major health concern, the host factors which are required for the replication of HBV are largely uncharacterized. Our studies identify cellular FLICE inhibitory protein (c-FLIP) as an essential factor in HBV replication. We found the dual roles of c-FLIP in regulation of HBV replication: c-FLIP interacts with HBx and enhances its stability and regulates the expression or stability of hepatocyte nuclear factors which are essential for transcription of HBV genome. Our findings may provide a new target for intervention in persistent HBV infection.
Collapse
|
18
|
Immune response involved in liver damage and the activation of hepatic progenitor cells during liver tumorigenesis. Cell Immunol 2018; 326:52-59. [PMID: 28860007 DOI: 10.1016/j.cellimm.2017.08.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 02/07/2023]
|
19
|
Mani SKK, Andrisani O. Hepatitis B Virus-Associated Hepatocellular Carcinoma and Hepatic Cancer Stem Cells. Genes (Basel) 2018; 9:genes9030137. [PMID: 29498629 PMCID: PMC5867858 DOI: 10.3390/genes9030137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic Hepatitis B Virus (HBV) infection is linked to hepatocellular carcinoma (HCC) pathogenesis. Despite the availability of a HBV vaccine, current treatments for HCC are inadequate. Globally, 257 million people are chronic HBV carriers, and children born from HBV-infected mothers become chronic carriers, destined to develop liver cancer. Thus, new therapeutic approaches are needed to target essential pathways involved in HCC pathogenesis. Accumulating evidence supports existence of hepatic cancer stem cells (hCSCs), which contribute to chemotherapy resistance and cancer recurrence after treatment or surgery. Understanding how hCSCs form will enable development of therapeutic strategies to prevent their formation. Recent studies have identified an epigenetic mechanism involving the downregulation of the chromatin modifying Polycomb Repressive Complex 2 (PRC2) during HBV infection, which results in re-expression of hCSC marker genes in infected hepatocytes and HBV-associated liver tumors. However, the genesis of hCSCs requires, in addition to the expression of hCSC markers cellular changes, rewiring of metabolism, cell survival, escape from programmed cell death, and immune evasion. How these changes occur in chronically HBV-infected hepatocytes is not yet understood. In this review, we will present the basics about HBV infection and hepatocarcinogenesis. Next, we will discuss studies describing the mutational landscape of liver cancers and how epigenetic mechanisms likely orchestrate cellular reprograming of hepatocytes to enable formation of hCSCs.
Collapse
Affiliation(s)
- Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| | - Ourania Andrisani
- Department of Basic Medical Sciences and Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
20
|
Ko HL, Lam TH, Ng H, Toh J, Wang LW, Ren EC. Identification of Slug and SOX7 as transcriptional repressors binding to the hepatitis B virus core promoter. J Hepatol 2017; 68:S0168-8278(17)32276-6. [PMID: 28887167 DOI: 10.1016/j.jhep.2017.08.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/03/2017] [Accepted: 08/21/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND & AIMS The Hepatitis B Virus (HBV) may gain entry into non-liver cells but does not actively replicate in them. We investigated the possibility that these cells possess mechanisms that block HBV core promoter (HBVCP) transcription, specifically absent in liver cells, which together with other liver-specific mechanisms, such as sodium-taurocholate cotransporting polypeptide-mediated entry, enable liver cells to effectively produce HBV. METHODS Liver and non-liver cell lines were screened for their capacity to activate the HBVCP and synthesize pre-genomic RNA (pgRNA). Transcription regulators differentially expressed between cells with active or inactive HBVCP were determined by human transcriptome array. Slug (SNAI2) and SRY-related HMG box 7 (SOX7) transcriptional repressors were identified and shown to bind specifically to the HBVCP by electrophoretic mobility shift assay. The resultant inhibitory effect on HBVCP transcription was validated using luciferase reporter and assays for pgRNA, HBcAg and cccDNA accumulation in cells with HBV replicon and HBV infection models. To further confirm their specific activity, short peptide mimetics generated from Slug zinc-finger domains and SOX7 HMG-box were generated. RESULTS The HBVCP was found to be active in liver and selected non-liver cells. These cells have low/negligible expression of Slug and SOX7, which inhibit HBVCP transcription specifically by binding at the pgRNA initiator site and competitively displacing hepatocyte nuclear factor 4α, respectively. Overexpression of Slug and/or SOX7 specifically reduced HBVCP transcription, significantly diminishing pgRNA synthesis, HBcAg and cccDNA accumulation in HBV-infected primary human hepatocytes. Similar results were obtained with Slug and SOX7 stapled peptides individually, which were even more potent in combination. CONCLUSIONS Slug and SOX7 are transcriptional repressors that bind specifically to the HBVCP. Their absence or weak expression in liver cells contribute to the favorable host environment for the active and efficient production of HBV. LAY SUMMARY Hepatitis B virus (HBV) replication occurs efficiently in human liver because of the specificity of viral uptake receptors and presence of numerous liver-enriched transcription activators. Herein, we show that the specific lack of transcriptional inhibitory mechanisms in liver cells also contribute to effective HBV production. HBV replication is kept low in non-liver cells as transcriptional repressors Slug and SRY-related HMG box 7 (SOX7) actively bind to the transcriptional initiator and displace transcription activators, respectively, within the HBV core promoter.
Collapse
Affiliation(s)
- Hui Ling Ko
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore
| | - Tze Hau Lam
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore
| | - Huijin Ng
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore; Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Headington OX3 7LE, United Kingdom
| | - Jiaying Toh
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore; Department of Microbiology & Immunology, Stanford University, 300, Palo Alto, CA 94304, United States
| | - Liang Wei Wang
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore; Division of Medical Sciences, Virology Program, Harvard Medical School, 260 Longwood Ave, Boston, MA 02115, United States
| | - Ee Chee Ren
- Singapore Immunology Network, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore; Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, Singapore 119260, Singapore.
| |
Collapse
|
21
|
Hepatitis B Virus Activates Signal Transducer and Activator of Transcription 3 Supporting Hepatocyte Survival and Virus Replication. Cell Mol Gastroenterol Hepatol 2017; 4:339-363. [PMID: 28884137 PMCID: PMC5581872 DOI: 10.1016/j.jcmgh.2017.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The human hepatitis B virus (HBV) is a major cause of chronic hepatitis and hepatocellular carcinoma, but molecular mechanisms driving liver disease and carcinogenesis are largely unknown. We therefore studied cellular pathways altered by HBV infection. METHODS We performed gene expression profiling of primary human hepatocytes infected with HBV and proved the results in HBV-replicating cell lines and human liver tissue using real-time polymerase chain reaction and Western blotting. Activation of signal transducer and activator of transcription (STAT3) was examined in HBV-replicating human hepatocytes, HBV-replicating mice, and liver tissue from HBV-infected individuals using Western blotting, STAT3-luciferase reporter assay, and immunohistochemistry. The consequences of STAT3 activation on HBV infection and cell survival were studied by chemical inhibition of STAT3 phosphorylation and small interfering RNA-mediated knockdown of STAT3. RESULTS Gene expression profiling of HBV-infected primary human hepatocytes detected no interferon response, while genes encoding for acute phase and antiapoptotic proteins were up-regulated. This gene regulation was confirmed in liver tissue samples of patients with chronic HBV infection and in HBV-related hepatocellular carcinoma. Pathway analysis revealed activation of STAT3 to be the major regulator. Interleukin-6-dependent and -independent activation of STAT3 was detected in HBV-replicating hepatocytes in cell culture and in vivo. Prevention of STAT3 activation by inhibition of Janus tyrosine kinases as well as small interfering RNA-mediated knockdown of STAT3-induced apoptosis and reduced HBV replication and gene expression. CONCLUSIONS HBV activates STAT3 signaling in hepatocytes to foster its own replication but also to prevent apoptosis of infected cells. This very likely supports HBV-related carcinogenesis.
Collapse
Key Words
- APR, acute phase response
- Apoptosis
- CRP, C-reactive protein
- DMSO, dimethyl sulfoxide
- FCS, fetal calf serum
- HBV pg RNA, hepatitis B pregenomic RNA
- HBV, Hepatitis B virus
- HBVtg, hepatitis B transgenic
- HBeAg, hepatitis B early antigen
- HCC, hepatocellular carcinoma
- HNF, hepatocyte nuclear factor
- Hepatitis B Virus Infection
- Hepatocellular Carcinoma
- IFN, interferon
- IL-6, interleukin 6
- IRF3, interferon regulatory factor 3
- NAC, N-acetyl-L-cysteine
- PCR, polymerase chain reaction
- PHH, primary human hepatocyte
- ROS, reactive oxygen species
- RT, reverse transcription
- STAT3 Signaling
- STAT3, signal transducer and activator of transcription 3
- cDNA, complementary DNA
- cRNA, complementary RNA
- cccDNA, covalently closed circular DNA
- mRNA, messenger RNA
- p.i., postinfection
- pSTAT3, phosphorylated signal transducer and activator of transcription 3
- pgRNA, pregenomic RNA
- siRNA, small interfering RNA
Collapse
|
22
|
Human induced-pluripotent stem cell-derived hepatocyte-like cells as an in vitro model of human hepatitis B virus infection. Sci Rep 2017; 7:45698. [PMID: 28374759 PMCID: PMC5379564 DOI: 10.1038/srep45698] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 03/03/2017] [Indexed: 01/02/2023] Open
Abstract
In order to understand the life cycle of hepatitis B virus (HBV) and to develop efficient anti-HBV drugs, a useful in vitro cell culture system which allows HBV infection and recapitulates virus-host interactions is essential; however, pre-existing in vitro HBV infection models are often problematic. Here, we examined the potential of human induced-pluripotent stem (iPS) cell-derived hepatocyte-like cells (iPS-HLCs) as an in vitro HBV infection model. Expression levels of several genes involved in HBV infection, including the sodium taurocholate cotransporting polypeptide (NTCP) gene, were gradually elevated as the differentiation status of human iPS cells proceeded to iPS-HLCs. The mRNA levels of these genes were comparable between primary human hepatocytes (PHHs) and iPS-HLCs. Following inoculation with HBV, we found significant production of HBV proteins and viral RNAs in iPS-HLCs. The three major forms of the HBV genome were detected in iPS-HLCs by Southern blotting analysis. Anti-HBV agents entecavir and Myrcludex-B, which are a nucleoside analogue reverse transcriptase inhibitor and a synthetic pre-S1 peptide, respectively, significantly inhibited HBV infection in iPS-HLCs. These data demonstrate that iPS-HLCs can be used as a promising in vitro HBV infection model.
Collapse
|
23
|
Lin J, Gu C, Shen Z, Liu Y, Wang W, Tao S, Cui X, Liu J, Xie Y. Hepatocyte nuclear factor 1α downregulates HBV gene expression and replication by activating the NF-κB signaling pathway. PLoS One 2017; 12:e0174017. [PMID: 28319127 PMCID: PMC5358864 DOI: 10.1371/journal.pone.0174017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/01/2017] [Indexed: 01/01/2023] Open
Abstract
The role of hepatocyte nuclear factor 1α (HNF1α) in the regulation of gene expression and replication of hepatitis B virus (HBV) is not fully understood. Previous reports have documented the induction of the expression of viral large surface protein (LHBs) by HNF1α through activating viral Sp1 promoter. Large amount of LHBs can block the secretion of hepatitis B surface antigen (HBsAg). Here we found that HNF1α overexpression inhibited HBV gene expression and replication in Huh7 cells, resulting in marked decreases in HBsAg, hepatitis B e antigen (HBeAg) and virion productions. In contrast, knockdown of endogenous HNF1α expression enhanced viral gene expression and replication. This HNF1α-mediated inhibition did not depend on LHBs. Instead, HNF1α promoted the expression of NF-κB p65 and slowed p65 protein degradation, leading to nuclear accumulation of p65 and activation of the NF-κB signaling, which in turn inhibited HBV gene expression and replication. The inhibitor of the NF-κB signaling, IκBα-SR, could abrogate this HNF1α-mediated inhibition. While the dimerization domain of HNF1α was dispensable for the induction of LHBs expression, all the domains of HNF1α was required for the inhibition of HBV gene expression. Our findings identify a novel role of HNF1α in the regulation of HBV gene expression and replication.
Collapse
Affiliation(s)
- Junyu Lin
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenjian Gu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongliang Shen
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Shuai Tao
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaoxian Cui
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Liu
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (Ministry of Health and Ministry of Education), Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (YHX); (JL)
| |
Collapse
|
24
|
Mahan MJ, Heithoff DM, Barnes V L, Sinsheimer RL. Epigenetic Programming by Microbial Pathogens and Impacts on Acute and Chronic Disease. EPIGENETICS AND HUMAN HEALTH 2017:89-112. [DOI: 10.1007/978-3-319-55021-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
25
|
Mani SKK, Zhang H, Diab A, Pascuzzi PE, Lefrançois L, Fares N, Bancel B, Merle P, Andrisani O. EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. J Hepatol 2016; 65:888-898. [PMID: 27238755 PMCID: PMC5289705 DOI: 10.1016/j.jhep.2016.05.022] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/02/2016] [Accepted: 05/17/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Hepatocytes in which the hepatitis B virus (HBV) is replicating exhibit loss of the chromatin modifying polycomb repressive complex 2 (PRC2), resulting in re-expression of specific, cellular PRC2-repressed genes. Epithelial cell adhesion molecule (EpCAM) is a PRC2-repressed gene, normally expressed in hepatic progenitors, but re-expressed in hepatic cancer stem cells (hCSCs). Herein, we investigated the functional significance of EpCAM re-expression in HBV-mediated hepatocarcinogenesis. METHODS Employing molecular approaches (transfections, fluorescence-activated cell sorting, immunoblotting, qRT-PCR), we investigated the role of EpCAM-regulated intramembrane proteolysis (RIP) in HBV replicating cells in vitro, and in liver tumors from HBV X/c-myc mice and chronically HBV infected patients. RESULTS EpCAM undergoes RIP in HBV replicating cells, activating canonical Wnt signaling. Transfection of Wnt-responsive plasmid expressing green fluorescent protein (GFP) identified a GFP + population of HBV replicating cells. These GFP+/Wnt+ cells exhibited cisplatin- and sorafenib-resistant growth resembling hCSCs, and increased expression of pluripotency genes NANOG, OCT4, SOX2, and hCSC markers BAMBI, CD44 and CD133. These genes are referred as EpCAM RIP and Wnt-induced hCSC-like gene signature. Interestingly, this gene signature is also overexpressed in liver tumors of X/c-myc bitransgenic mice. Clinically, a group of HBV-associated hepatocellular carcinomas was identified, exhibiting elevated expression of the hCSC-like gene signature and associated with reduced overall survival post-surgical resection. CONCLUSIONS The hCSC-like gene signature offers promise as prognostic tool for classifying subtypes of HBV-induced HCCs. Since EpCAM RIP and Wnt signaling drive expression of this hCSC-like signature, inhibition of these pathways can be explored as therapeutic strategy for this subtype of HBV-associated HCCs. LAY SUMMARY In this study, we provide evidence for a molecular mechanism by which chronic infection by the hepatitis B virus results in the development of poor prognosis liver cancer. Based on this mechanism our results suggest possible therapeutic interventions.
Collapse
Affiliation(s)
- Saravana Kumar Kailasam Mani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Hao Zhang
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Ahmed Diab
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States
| | - Pete E Pascuzzi
- Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States; Purdue University Libraries, Purdue University, West Lafayette, IN 47907, United States
| | - Lydie Lefrançois
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052 - CNRS 5286, Lyon Cedex 03, France
| | - Nadim Fares
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052 - CNRS 5286, Lyon Cedex 03, France
| | - Brigitte Bancel
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052 - CNRS 5286, Lyon Cedex 03, France
| | - Philippe Merle
- Centre de Recherche en Cancérologie de Lyon, UMR INSERM 1052 - CNRS 5286, Lyon Cedex 03, France
| | - Ourania Andrisani
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN 47907, United States; Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
26
|
Hepatitis B Virus Protein X Induces Degradation of Talin-1. Viruses 2016; 8:v8100281. [PMID: 27775586 PMCID: PMC5086613 DOI: 10.3390/v8100281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/27/2022] Open
Abstract
In the infected human hepatocyte, expression of the hepatitis B virus (HBV) accessory protein X (HBx) is essential to maintain viral replication in vivo. HBx critically interacts with the host damaged DNA binding protein 1 (DDB1) and the associated ubiquitin ligase machinery, suggesting that HBx functions by inducing the degradation of host proteins. To identify such host proteins, we systematically analyzed the HBx interactome. One HBx interacting protein, talin-1 (TLN1), was proteasomally degraded upon HBx expression. Further analysis showed that TLN1 levels indeed modulate HBV transcriptional activity in an HBx-dependent manner. This indicates that HBx-mediated TLN1 degradation is essential and sufficient to stimulate HBV replication. Our data show that TLN1 can act as a viral restriction factor that suppresses HBV replication, and suggest that the HBx relieves this restriction by inducing TLN1 degradation.
Collapse
|
27
|
Kim DH, Kang HS, Kim KH. Roles of hepatocyte nuclear factors in hepatitis B virus infection. World J Gastroenterol 2016; 22:7017-7029. [PMID: 27610013 PMCID: PMC4988315 DOI: 10.3748/wjg.v22.i31.7017] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/02/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023] Open
Abstract
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus (HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA (cccDNA), a template for all HBV RNAs. Chronic hepatitis B (CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit cccDNA transcription and inhibit only a late stage in the HBV life cycle (the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating cccDNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors (HNFs) play the most important roles in cccDNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
Collapse
|
28
|
Lucifora J, Protzer U. Attacking hepatitis B virus cccDNA--The holy grail to hepatitis B cure. J Hepatol 2016; 64:S41-S48. [PMID: 27084036 DOI: 10.1016/j.jhep.2016.02.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/27/2016] [Accepted: 02/03/2016] [Indexed: 02/06/2023]
Abstract
HBV deposits a covalently closed circular DNA form, called cccDNA, in the nucleus of infected cells. As the central transcription template, the cccDNA minichromosome is a key intermediate in the HBV life cycle. Its location in the nucleus makes cccDNA a difficult target for antivirals and immune response, and therefore it is responsible for chronicity of HBV infection. While little is known about the mechanisms involved in cccDNA formation, current research is accumulating data on the mechanisms regulating transcription from cccDNA, and the first potential targeting approaches have been reported. This review will summarize our knowledge about cccDNA biology and the latest advances in cccDNA targeting strategies in order to finally achieve an HBV cure.
Collapse
Affiliation(s)
- Julie Lucifora
- Cancer Research Center of Lyon (CRCL), Lyon 69008, France; INSERM U1052, CNRS UMR-5286, Lyon 69008, France; University of Lyon, Université Claude-Bernard (UCBL), 69008 Lyon, France
| | - Ulrike Protzer
- Institute of Virology, Technische Universität München/Helmholtz Zentrum München, Trogerstrasse 30, 81675 Munich, Germany; German Center for Infection Research (DZIF), Munich Site, Germany.
| |
Collapse
|
29
|
Cleaved c-FLIP mediates the antiviral effect of TNF-α against hepatitis B virus by dysregulating hepatocyte nuclear factors. J Hepatol 2016; 64:268-277. [PMID: 26409214 DOI: 10.1016/j.jhep.2015.09.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 08/31/2015] [Accepted: 09/14/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Cytokines are key molecules implicated in the defense against virus infection. Tumor necrosis factor-alpha (TNF-α) is well known to block the replication of hepatitis B virus (HBV). However, the molecular mechanism and the downstream effector molecules remain largely unknown. METHODS In this study, we investigated the antiviral effect and mechanism of p22-FLIP (FLICE-inhibitory protein) by ectopic expression in vitro and in vivo. In addition, to provide the biological relevance of our study, we examined that the p22-FLIP is involved in TNF-α-mediated suppression of HBV in primary human hepatocytes. RESULTS We found that p22-FLIP, a newly discovered c-FLIP cleavage product, inhibited HBV replication at the transcriptional level in both hepatoma cells and primary human hepatocytes, and that c-FLIP conversion to p22-FLIP was stimulated by the TNF-α/NF-κB pathway. p22-FLIP inhibited HBV replication through the upregulation of HNF3β but downregulation of HNF4α, thus inhibiting both HBV enhancer elements. Finally, p22-FLIP potently inhibited HBV DNA replication in a mouse model of HBV replication. CONCLUSIONS Taken together, these findings suggest that the anti-apoptotic p22-FLIP serves a novel function of inhibiting HBV transcription, and mediates the antiviral effect of TNF-α against HBV replication.
Collapse
|
30
|
Wang H, Liu K, Fang BAM, Wu H, Li F, Xiang X, Tang W, Zhao G, Lin L, Bao S, Xie Q. Identification of acetyltransferase genes (HAT1 and KAT8) regulating HBV replication by RNAi screening. Cell Biosci 2015; 5:66. [PMID: 26640654 PMCID: PMC4669656 DOI: 10.1186/s13578-015-0059-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
Background The initiation of hepatitis B virus (HBV) replication involves the formation of covalently closed circular DNA (cccDNA) and its transcription into pregenomic RNA (pgRNA) in hepatocyte nuclei. The regulatory mechanism of HBV replication by acetyltransferase is thus far not well understood, but human acetyltransferase has been reported as being involved in the regulation of HBV replication. Results Depletion of KAT8 or HAT1 via RNA interference (RNAi) markedly down-regulated HBV-DNA and pgRNA levels in HepG2.2.15 cells, with KAT8 knockdown reducing both HBsAg and HBeAg more than HAT1 knockdown. Consistent with these observations, HBV replication regulators hepatocyte nuclear factor-4-α (HNF4α) and peroxisome proliferator-activated receptor gamma coactivator- (PPARGC-) 1-α were decreased following knockdown of HAT1 or KAT8. Conclusions These data suggest that KAT8 or HAT1 regulate HBV replication and may be potential drug targets of anti-HBV therapy. Electronic supplementary material The online version of this article (doi:10.1186/s13578-015-0059-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hui Wang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - KeHui Liu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bernard A M Fang
- Discipline of Pathology, School of Medical Sciences and The Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia.,Central Clinical School, Sydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia
| | - HaiQing Wu
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Cardiology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - FengDi Li
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - XiaoGang Xiang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - WeiLiang Tang
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - GangDe Zhao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - LanYi Lin
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shisan Bao
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Discipline of Pathology, School of Medical Sciences and The Bosch Institute, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006 Australia
| | - Qing Xie
- Department of Infectious Diseases, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
31
|
Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation. Proc Natl Acad Sci U S A 2015; 112:E5715-24. [PMID: 26438841 DOI: 10.1073/pnas.1518090112] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects 240 million people worldwide and is a major risk factor for liver failure and hepatocellular carcinoma. Current antiviral therapy inhibits cytoplasmic HBV genomic replication, but is not curative because it does not directly affect nuclear HBV closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence. Novel approaches that directly target cccDNA regulation would therefore be highly desirable. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications (PTMs). Here, using a new cccDNA ChIP-Seq approach, we report, to our knowledge, the first genome-wide maps of PTMs in cccDNA-containing chromatin from de novo infected HepG2 cells, primary human hepatocytes, and from HBV-infected liver tissue. We find high levels of PTMs associated with active transcription enriched at specific sites within the HBV genome and, surprisingly, very low levels of PTMs linked to transcriptional repression even at silent HBV promoters. We show that transcription and active PTMs in HBV chromatin are reduced by the activation of an innate immunity pathway, and that this effect can be recapitulated with a small molecule epigenetic modifying agent, opening the possibility that chromatin-based regulation of cccDNA transcription could be a new therapeutic approach to chronic HBV infection.
Collapse
|
32
|
Abstract
HBV persists by depositing covalently closed circular DNA (cccDNA) into the nucleus of infected host cells. HBV X protein (HBx) is a crucial determinant for regulating HBV activity, but the molecular details have not been fully understood. A new role for HBx in regulating cccDNA transcription has now been identified.
Collapse
Affiliation(s)
- Ulrike Protzer
- Institute of Virology, Technische Universität München and the Helmholtz Zentrum München, Trogerstrasse 30, D-81675 München, Germany
| |
Collapse
|
33
|
Oncogenic potential of hepatitis B virus encoded proteins. Curr Opin Virol 2015; 14:109-15. [PMID: 26426688 DOI: 10.1016/j.coviro.2015.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 08/27/2015] [Accepted: 08/28/2015] [Indexed: 12/20/2022]
Abstract
Due to the limited treatment options hepatocellular carcinoma (HCC) is one of the leading causes of cancer related death, and hepatitis B virus (HBV) infection is the major risk factor for development of HCC worldwide. HCC is typically preceded by chronic inflammation, but may also develop in the absence of liver disease on the basis of HBV infection and even when virus replication is controlled by antivirals. In this situation, HBV antigen expression persists and direct oncogenic effects of HBV are integration of the viral DNA into the host genome as well as direct effects of viral proteins. These factors have to be taken into account in order to personalize HCC surveillance in CHB and unravel novel therapeutic approaches.
Collapse
|
34
|
Oh IS, Park SH. Immune-mediated Liver Injury in Hepatitis B Virus Infection. Immune Netw 2015; 15:191-8. [PMID: 26330805 PMCID: PMC4553257 DOI: 10.4110/in.2015.15.4.191] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2015] [Revised: 07/26/2015] [Accepted: 08/02/2015] [Indexed: 12/29/2022] Open
Abstract
Hepatitis B virus (HBV) is responsible for approximately 350 million chronic infections worldwide and is a leading cause of broad-spectrum liver diseases such as hepatitis, cirrhosis and liver cancer. Although it has been well established that adaptive immunity plays a critical role in viral clearance, the pathogenetic mechanisms that cause liver damage during acute and chronic HBV infection remain largely known. This review describes our current knowledge of the immune-mediated pathogenesis of HBV infection and the role of immune cells in the liver injury during hepatitis B.
Collapse
Affiliation(s)
- In Soo Oh
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea. ; Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul 06973, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
35
|
Lamontagne J, Steel LF, Bouchard MJ. Hepatitis B virus and microRNAs: Complex interactions affecting hepatitis B virus replication and hepatitis B virus-associated diseases. World J Gastroenterol 2015; 21:7375-7399. [PMID: 26139985 PMCID: PMC4481434 DOI: 10.3748/wjg.v21.i24.7375] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/25/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic infection with the hepatitis B virus (HBV) is the leading risk factor for the development of hepatocellular carcinoma (HCC). With nearly 750000 deaths yearly, hepatocellular carcinoma is the second highest cause of cancer-related death in the world. Unfortunately, the molecular mechanisms that contribute to the development of HBV-associated HCC remain incompletely understood. Recently, microRNAs (miRNAs), a family of small non-coding RNAs that play a role primarily in post-transcriptional gene regulation, have been recognized as important regulators of cellular homeostasis, and altered regulation of miRNA expression has been suggested to play a significant role in virus-associated diseases and the development of many cancers. With this in mind, many groups have begun to investigate the relationship between miRNAs and HBV replication and HBV-associated disease. Multiple findings suggest that some miRNAs, such as miR-122, and miR-125 and miR-199 family members, are playing a role in HBV replication and HBV-associated disease, including the development of HBV-associated HCC. In this review, we discuss the current state of our understanding of the relationship between HBV and miRNAs, including how HBV affects cellular miRNAs, how these miRNAs impact HBV replication, and the relationship between HBV-mediated miRNA regulation and HCC development. We also address the impact of challenges in studying HBV, such as the lack of an effective model system for infectivity and a reliance on transformed cell lines, on our understanding of the relationship between HBV and miRNAs, and propose potential applications of miRNA-related techniques that could enhance our understanding of the role miRNAs play in HBV replication and HBV-associated disease, ultimately leading to new therapeutic options and improved patient outcomes.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/virology
- Cell Transformation, Viral
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Hepatitis B virus/genetics
- Hepatitis B virus/growth & development
- Hepatitis B virus/metabolism
- Hepatitis B, Chronic/complications
- Hepatitis B, Chronic/therapy
- Hepatitis B, Chronic/virology
- Host-Pathogen Interactions
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Liver Neoplasms/virology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Virus Replication
Collapse
|
36
|
Negative regulation of hepatitis B virus replication by forkhead box protein A in human hepatoma cells. FEBS Lett 2015; 589:1112-8. [DOI: 10.1016/j.febslet.2015.03.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 03/18/2015] [Accepted: 03/24/2015] [Indexed: 01/09/2023]
|
37
|
Kumar M, Sharma Y, Bandi S, Gupta S. Endogenous antiviral microRNAs determine permissiveness for hepatitis B virus replication in cultured human fetal and adult hepatocytes. J Med Virol 2015; 87:1168-83. [PMID: 25690916 DOI: 10.1002/jmv.24145] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2014] [Indexed: 12/13/2022]
Abstract
Superior cell culture models for hepatitis B virus (HBV) will help advance insights into host-virus interactions. To identify mechanisms regulating HBV replication, this study used cultured human HepG2 cells and adult or fetal hepatocytes transduced with adenoviral vector to express HBV upstream of green fluorescent protein. The vector efficiently transduced all cell types. In HepG2 cells, replicative viral intermediates, nucleocapsid-associated HBcAg, and HBsAg were expressed. However, in fetal or adult hepatocytes, pregenomic HBV RNA and viral RNAs were expressed, but nucleocapsid-associated HBcAg in cells or HBsAg in culture medium were absent, indicating interruptions in viral replication due to possible microRNA-related interference. MicroRNA profiling demonstrated that a large number of microRNAs with antiviral potential were differentially expressed in hepatocytes after culture. In transfection assays using HepG2 cells, candidate antiviral microRNAs, e.g., hsa-miR-24 or hsa-miR-638 decreased the levels of HBV transcripts or HBV gene products. Since candidate microRNAs could have targeted interferon response genes as an alternative explanation interferon signaling was examined. However, HBV replication in cultured hepatocytes was not restored despite successful inhibition of JAK1/2-STAT signaling by the inhibitor, ruxolitinib. Therefore, HBV was unable to complete replication in cultured hepatocytes due to expression of multiple antiviral microRNAs. This mechanism should help understand restrictions in HBV replication for developing HBV models in cultured cells while providing frameworks for pathophysiological studies of HBV replication in subsets of hepatocytes or stem/progenitor cells during hepatitis.
Collapse
Affiliation(s)
- Mukesh Kumar
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Medicine, Albert Einstein College of Medicine, Bronx, New York
| | | | | | | |
Collapse
|
38
|
Ding CB, Zhao Y, Zhang JP, Peng ZG, Song DQ, Jiang JD. A zebrafish model for subgenomic hepatitis C virus replication. Int J Mol Med 2015; 35:791-7. [PMID: 25572289 DOI: 10.3892/ijmm.2015.2063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 12/15/2014] [Indexed: 12/19/2022] Open
Abstract
Persistent infection with hepatitis C virus (HCV) is a major risk factor in the development of hepatocellular carcinoma. The elucidation of the pathogenesis of HCV-associated liver disease is hampered by the absence of an appropriate small animal model. Zebrafish exhibits high genetic homology to mammals, and is easily manipulated experimentally. In this study, we describe the use of a zebrafish model for the analysis of HCV replication mechanisms. As the 5' untranslated region (UTR), the core protein, the non-structural protein 5B (NS5B) and the 3'UTR are essential for HCV replication, we constructed a HCV sub-replicon gene construct including the 4 gene sequences and the enhanced green fluorescent protein (EGFP) reporter gene; these genes were transcribed through the mouse hepatocyte nuclear factor 4 (mHNF4) promoter. By microinjection of the subgenomic replicon vector into zebrafish larvae, the virus was easily detected by observing EGFP fluorescence in the liver. The positive core and NS5B signals showed positive expression of the HCV gene construct in zebrafish by reverse transcription-polymerase chain reaction (RT-PCR) and western blot analysis. Importantly, the negative strand sequence of the HCV subgenomic RNA was detected by RT-PCR and hybridization in situ, demonstrating that the HCV sub-replicon has positive replication activity. Furthermore, the hybridization signal mainly appeared in the liver region of larvae, as detected by the sense probe of the core protein or NS5B, which confirmed that the sub-replicon amplification occurred in the zebrafish liver. The amplification of the sub-replicon caused alterations in the expression of certain genes, which is similar to HCV infection in human liver cells. To verify the use of this zebrafish model in drug evaluation, two drugs against HCV used in clinical practice, ribavirin and oxymatrine, were tested and these drugs showed significant inhibition of replication of the HCV sub-replicon in the larvae. In conclusion, this zebrafish model of HCV may prove to be a novel and simple in vivo model for the study of the mechanisms of HCV replication and may also prove useful in the disovery of new anti-HCV drugs.
Collapse
Affiliation(s)
- Cun-Bao Ding
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Ye Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jing-Pu Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Zong-Gen Peng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Dan-Qing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, P.R. China
| |
Collapse
|
39
|
Sharma S, Mishra R, Walker BL, Deshmukh S, Zampino M, Patel J, Anamalai M, Simpson D, Singh IS, Kaushal S, Kaushal S. Celastrol, an oral heat shock activator, ameliorates multiple animal disease models of cell death. Cell Stress Chaperones 2015; 20:185-201. [PMID: 25300203 PMCID: PMC4255245 DOI: 10.1007/s12192-014-0536-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/05/2014] [Accepted: 08/08/2014] [Indexed: 12/11/2022] Open
Abstract
Protein homeostatic regulators have been shown to ameliorate single, loss-of-function protein diseases but not to treat broader animal disease models that may involve cell death. Diseases often trigger protein homeostatic instability that disrupts the delicate balance of normal cellular viability. Furthermore, protein homeostatic regulators have been delivered invasively and not with simple oral administration. Here, we report the potent homeostatic abilities of celastrol to promote cell survival, decrease inflammation, and maintain cellular homeostasis in three different disease models of apoptosis and inflammation involving hepatocytes and cardiomyocytes. We show that celastrol significantly recovers the left ventricular function and myocardial remodeling following models of acute myocardial infarction and doxorubicin-induced cardiomyopathy by diminishing infarct size, apoptosis, and inflammation. Celastrol prevents acute liver dysfunction and promotes hepatocyte survival after toxic doses of thioacetamide. Finally, we show that heat shock response (HSR) is necessary and sufficient for the recovery abilities of celastrol. Our observations may have dramatic clinical implications to ameliorate entire disease processes even after cellular injury initiation by using an orally delivered HSR activator.
Collapse
Affiliation(s)
- Sudhish Sharma
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Rachana Mishra
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Brandon L. Walker
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Savitha Deshmukh
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Manuela Zampino
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Jay Patel
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Mani Anamalai
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - David Simpson
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Ishwar S. Singh
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| | - Shalesh Kaushal
- />Retina Specialty Institute, 6717 North 11th Place Suite C, Gainesville, FL 32605 USA
| | - Sunjay Kaushal
- />Division of Cardiac Surgery, University of Maryland Medical Center, 110 S. Paca Street, 7th Floor, Baltimore, MD 21201 USA
| |
Collapse
|
40
|
Ramanan V, Scull MA, Sheahan TP, Rice CM, Bhatia SN. New Methods in Tissue Engineering: Improved Models for Viral Infection. Annu Rev Virol 2014; 1:475-499. [PMID: 25893203 PMCID: PMC4398347 DOI: 10.1146/annurev-virology-031413-085437] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
New insights in the study of virus and host biology in the context of viral infection are made possible by the development of model systems that faithfully recapitulate the in vivo viral life cycle. Standard tissue culture models lack critical emergent properties driven by cellular organization and in vivo-like function, whereas animal models suffer from limited susceptibility to relevant human viruses and make it difficult to perform detailed molecular manipulation and analysis. Tissue engineering techniques may enable virologists to create infection models that combine the facile manipulation and readouts of tissue culture with the virus-relevant complexity of animal models. Here, we review the state of the art in tissue engineering and describe how tissue engineering techniques may alleviate some common shortcomings of existing models of viral infection, with a particular emphasis on hepatotropic viruses. We then discuss possible future applications of tissue engineering to virology, including current challenges and potential solutions.
Collapse
Affiliation(s)
- Vyas Ramanan
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
| | - Margaret A Scull
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Timothy P Sheahan
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Charles M Rice
- Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065
| | - Sangeeta N Bhatia
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Cambridge, Massachusetts 02139
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
- Division of Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115
| |
Collapse
|
41
|
Ducroux A, Benhenda S, Rivière L, Semmes OJ, Benkirane M, Neuveut C. The Tudor domain protein Spindlin1 is involved in intrinsic antiviral defense against incoming hepatitis B Virus and herpes simplex virus type 1. PLoS Pathog 2014; 10:e1004343. [PMID: 25211330 PMCID: PMC4161474 DOI: 10.1371/journal.ppat.1004343] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/15/2014] [Indexed: 12/12/2022] Open
Abstract
Hepatitis B virus infection (HBV) is a major risk factor for the development of hepatocellular carcinoma. HBV replicates from a covalently closed circular DNA (cccDNA) that remains as an episome within the nucleus of infected cells and serves as a template for the transcription of HBV RNAs. The regulatory protein HBx has been shown to be essential for cccDNA transcription in the context of infection. Here we identified Spindlin1, a cellular Tudor-domain protein, as an HBx interacting partner. We further demonstrated that Spindlin1 is recruited to the cccDNA and inhibits its transcription in the context of infection. Spindlin1 knockdown induced an increase in HBV transcription and in histone H4K4 trimethylation at the cccDNA, suggesting that Spindlin1 impacts on epigenetic regulation. Spindlin1-induced transcriptional inhibition was greater for the HBV virus deficient for the expression of HBx than for the HBV WT virus, suggesting that HBx counteracts Spindlin1 repression. Importantly, we showed that the repressive role of Spindlin1 is not limited to HBV transcription but also extends to other DNA virus that replicate within the nucleus such as Herpes Simplex Virus type 1 (HSV-1). Taken together our results identify Spindlin1 as a critical component of the intrinsic antiviral defense and shed new light on the function of HBx in HBV infection.
Collapse
Affiliation(s)
- Aurélie Ducroux
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, Paris, France
- UMR CNRS 3569, Paris, France
| | - Shirine Benhenda
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, Paris, France
- UMR CNRS 3569, Paris, France
| | - Lise Rivière
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, Paris, France
- UMR CNRS 3569, Paris, France
| | - O. John Semmes
- The Leroy T. Canoles Jr Cancer Research Center and Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia, United States of America
| | - Monsef Benkirane
- Institut de Génétique Humaine, CNRS UPR 1142, Laboratoire de Virologie Moléculaire, Montpellier, France
| | - Christine Neuveut
- Unité des Hépacivirus et Immunité Innée, Institut Pasteur, Paris, France
- UMR CNRS 3569, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Lucifora J, Xia Y, Reisinger F, Zhang K, Stadler D, Cheng X, Sprinzl MF, Koppensteiner H, Makowska Z, Volz T, Remouchamps C, Chou WM, Thasler WE, Hüser N, Durantel D, Liang TJ, Münk C, Heim MH, Browning JL, Dejardin E, Dandri M, Schindler M, Heikenwalder M, Protzer U. Specific and nonhepatotoxic degradation of nuclear hepatitis B virus cccDNA. Science 2014; 343:1221-8. [PMID: 24557838 DOI: 10.1126/science.1243462] [Citation(s) in RCA: 713] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Current antiviral agents can control but not eliminate hepatitis B virus (HBV), because HBV establishes a stable nuclear covalently closed circular DNA (cccDNA). Interferon-α treatment can clear HBV but is limited by systemic side effects. We describe how interferon-α can induce specific degradation of the nuclear viral DNA without hepatotoxicity and propose lymphotoxin-β receptor activation as a therapeutic alternative. Interferon-α and lymphotoxin-β receptor activation up-regulated APOBEC3A and APOBEC3B cytidine deaminases, respectively, in HBV-infected cells, primary hepatocytes, and human liver needle biopsies. HBV core protein mediated the interaction with nuclear cccDNA, resulting in cytidine deamination, apurinic/apyrimidinic site formation, and finally cccDNA degradation that prevented HBV reactivation. Genomic DNA was not affected. Thus, inducing nuclear deaminases-for example, by lymphotoxin-β receptor activation-allows the development of new therapeutics that, in combination with existing antivirals, may cure hepatitis B.
Collapse
Affiliation(s)
- Julie Lucifora
- Institute of Virology, Technische Universität München-Helmholtz Zentrum München, 81675 Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tian X, Zhao F, Sun W, Zhi X, Cheng Z, Zhou M, Hu K. CRTC2 enhances HBV transcription and replication by inducing PGC1α expression. Virol J 2014; 11:30. [PMID: 24529027 PMCID: PMC3940274 DOI: 10.1186/1743-422x-11-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/21/2014] [Indexed: 12/21/2022] Open
Abstract
Background Hepatitis B virus (HBV) transcription and replication are essentially restricted to hepatocytes. Based on the HBV enhancer and promoter complex that links hepatic glucose metabolism to its transcription and replication, HBV adopts a regulatory system that is unique to the hepatic gluconeogenic genes. CRTC2, the CREB-regulated transcription coactivator 2, is a critical switch modulating the gluconeogenic program in response to both hormonal and intracellular signals. However, the relationship between CRTC2 and HBV transcription and replication remains unclear. Methods To analyze the influence of CRTC2 on HBV transcription and replication, CRTC2 expression construct or siRNA was cotransfected with plasmids containing enhancer II/core promoter complex-controlled luciferase or 1.3× wtHBV genome in Huh-7 cells. Luciferase activity, HBV core protein expression, HBV transcripts, and DNA replication intermediates were measured by luciferase assays, western blots, real-time polymerase chain reaction (PCR), and Southern blots, respectively. Forskolin (FSK) or phosphorylation-defective CRTC2 mutants were further utilized to elucidate the potential mechanism. siRNA against peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) was also used to examine the mediator involved in CRTC2-regulated HBV biosynthesis in Huh-7 cells. Results CRTC2 overexpression increased HBV transcription and replication in Huh-7 cells, including levels of core protein expression, mRNA, and DNA replication intermediates. Correspondingly, CRTC2 knock down by siRNA reduced HBV biosynthesis. FSK treatment strongly enhanced the effect of CRTC2 through triggering the dephosphorylation and nuclear entry of CRTC2. The phosphorylation-defective mutant (S171A/S275A) of CRTC2 localized in the nucleus and was constitutively active, which dramatically promoted HBV transcription and replication similar to FSK-treated wild-type CRTC2. Knock down of PGC1α, whose expression was induced by CRTC2, greatly compromised the enhancing effect of CRTC2 on HBV transcription and replication. Conclusions Our results clearly indicate that non-phosphorylated CRTC2 strongly enhances HBV biosynthesis through inducing PGC1α expression. Further study of the mechanisms will elucidate the importance of metabolic signals on HBV transcription and replication, and offer insight into potential targets for developing anti-HBV agents.
Collapse
Affiliation(s)
| | - Fei Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Xiaohongshan Zhongqu 44, Wuhan 430071, China.
| | | | | | | | | | | |
Collapse
|
44
|
Quarleri J. Core promoter: A critical region where the hepatitis B virus makes decisions. World J Gastroenterol 2014; 20:425-435. [PMID: 24574711 PMCID: PMC3923017 DOI: 10.3748/wjg.v20.i2.425] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 09/17/2013] [Accepted: 10/22/2013] [Indexed: 02/06/2023] Open
Abstract
The core promoter (CP) of the viral genome plays an important role for hepatitis B virus (HBV) replication as it directs initiation of transcription for the synthesis of both the precore and pregenomic (pg) RNAs. The CP consists of the upper regulatory region and the basal core promoter (BCP). The CP overlaps with the 3’-end of the X open reading frames and the 5’-end of the precore region, and contains cis-acting elements that can independently direct transcription of the precore mRNA and pgRNA. Its transcription regulation is under strict control of viral and cellular factors. Even though this regulatory region exhibits high sequence conservation, when variations appear, they may contribute to the persistence of HBV within the host, leading to chronic infection and cirrhosis, and eventually, hepatocellular carcinoma. Among CP sequence variations, those occurring at BCP may dysregulate viral gene expression with emphasis in the hepatitis B e antigen, and contribute to disease progression. In this review these molecular aspects and pathologic topics of core promoter are deeply evaluated.
Collapse
|
45
|
Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and Liver Disease: from Chemistry to Medicine. Compr Rev Food Sci Food Saf 2013; 13:62-77. [DOI: 10.1111/1541-4337.12047] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/23/2013] [Indexed: 02/06/2023]
Affiliation(s)
- Seyed Fazel Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| | - Maria Daglia
- Dept. of Drug Sciences; Univ. of Pavia, Medicinal Chemistry and Pharmaceutical Technology Section; via Taramelli 12 27100 Pavia Italy
| | - Akbar Hajizadeh Moghaddam
- Amol Univ. of Special Modern Technologies; Amol Iran
- Dept. of Biology; Faculty of basic science; Univ. of Mazandaran; Babolsar Iran
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories; Medway School of Science, Univ. of Greenwich; Central Ave. Chatham-Maritime Kent ME4 4TB U.K
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center; Baqiyatallah Univ. of Medical Sciences; Tehran Iran
| |
Collapse
|
46
|
Deregulation of epigenetic mechanisms by the hepatitis B virus X protein in hepatocarcinogenesis. Viruses 2013; 5:858-72. [PMID: 23507839 PMCID: PMC3705300 DOI: 10.3390/v5030858] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/12/2013] [Accepted: 03/13/2013] [Indexed: 12/18/2022] Open
Abstract
This review focuses on the significance of deregulation of epigenetic mechanisms by the hepatitis B virus (HBV) X protein in hepatocarcinogenesis and HBV replication. Epigenetic mechanisms, DNA methylation, and specific histone modifications, e.g., trimethylation of H3 on lysine-27 or lysine-4, maintain ‘cellular memory’ by silencing expression of lineage-inducing factors in stem cells and conversely, of pluripotency factors in differentiated cells. The X protein has been reported to induce expression of DNA methyltransferases (DNMTs), likely promoting epigenetic changes during hepatocarcinogenesis. Furthermore, in cellular and animal models of X-mediated oncogenic transformation, protein levels of chromatin modifying proteins Suz12 and Znf198 are down-regulated. Suz12 is essential for the Polycomb Repressive Complex 2 (PRC2) mediating the repressive trimethylation of H3 on lysine-27 (H3K27me3). Znf198, stabilizes the LSD1-CoREST-HDAC complex that removes, via lysine demethylase1 (LSD1), the activating trimethylation of H3 on lysine-4 (H3K4me3). Down-regulation of Suz12 also occurs in liver tumors of woodchucks chronically infected by woodchuck hepatitis virus, an animal model recapitulating HBV-mediated hepatocarcinogenesis in humans. Significantly, subgroups of HBV-induced liver cancer re-express hepatoblast and fetal markers, and imprinted genes, suggesting hepatocyte reprogramming during oncogenic transformation. Lastly, down-regulation of Suz12 and Znf198 enhances HBV replication. Collectively, these observations suggest deregulation of epigenetic mechanisms by HBV X protein influences both the viral cycle and the host cell.
Collapse
|
47
|
Methyltransferase PRMT1 is a binding partner of HBx and a negative regulator of hepatitis B virus transcription. J Virol 2013; 87:4360-71. [PMID: 23388725 DOI: 10.1128/jvi.02574-12] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The hepatitis B virus X protein (HBx) is essential for virus replication and has been implicated in the development of liver cancer. HBx is recruited to viral and cellular promoters and activates transcription by interacting with transcription factors and coactivators. Here, we purified HBx-associated factors in nuclear extracts from HepG2 hepatoma cells and identified protein arginine methyltransferase 1 (PRMT1) as a novel HBx-interacting protein. We showed that PRMT1 overexpression reduced the transcription of hepatitis B virus (HBV), and this inhibition was dependent on the methyltransferase function of PRMT1. Conversely, depletion of PRMT1 correlated with increased HBV transcription. Using a quantitative chromatin immunoprecipitation assay, we found that PRMT1 is recruited to HBV DNA, suggesting a direct effect of PRMT1 on the regulation of HBV transcription. Finally, we showed that HBx expression inhibited PRMT1-mediated protein methylation. Downregulation of PRMT1 activity was further observed in HBV-replicating cells in an in vivo animal model. Altogether, our results support the notion that the binding of HBx to PRMT1 might benefit viral replication by relieving the inhibitory activity of PRMT1 on HBV transcription.
Collapse
|
48
|
Control of mitogenic and motogenic pathways by miR-198, diminishing hepatoma cell growth and migration. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1190-8. [PMID: 23391410 DOI: 10.1016/j.bbamcr.2013.01.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/09/2013] [Accepted: 01/22/2013] [Indexed: 12/15/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths, worldwide. MicroRNAs, inhibiting gene expression by targeting various transcripts, are involved in genomic dysregulation during hepatocellular tumorigenesis. In previous studies, microRNA-198 (miR-198) was shown to be significantly downregulated in HCV-positive hepatocellular carcinoma (HCC). Herein, the function of miR-198 in hepatocellular carcinoma cell growth and gene expression was studied. In hepatoma cell-types with low levels of liver-specific transcription factor HNF1α indicating a low differentiation grade, miR-198 expression was most downregulated. However, miR-198 treatment did not restore the expression of the liver-specific transcription factors HNF1α or HNF4α. Importantly, overexpression of miR-198 in Pop10 hepatoma cells markedly reduced cell growth. In agreement, comprehensive gene expression profiling by microarray hybridisation and real-time quantification revealed that central signal transducers of proliferation pathways were downregulated by miR-198. In contrast, genes mediating cellular adherence were highly upregulated by miR-198. Thus, the low expression of E-cadherin and claudin-1, involved in cell adhesion and cell-cell contacts, was abolished in hepatoma cells after miR-198 overexpression. This definite induction of both proteins by miR-198 was shown to be accompanied by a significantly impaired migration activity of hepatoma Pop10 cells. In conclusion, miR-198 acts as a tumor suppressor by repression of mitogenic and motogenic pathways diminishing cell growth and migration.
Collapse
|
49
|
Paganelli M, Dallmeier K, Nyabi O, Scheers I, Kabamba B, Neyts J, Goubau P, Najimi M, Sokal EM. Differentiated umbilical cord matrix stem cells as a new in vitro model to study early events during hepatitis B virus infection. Hepatology 2013; 57:59-69. [PMID: 22898823 DOI: 10.1002/hep.26006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 07/30/2012] [Indexed: 01/08/2023]
Abstract
UNLABELLED The role of cell differentiation state on hepatitis B virus (HBV) replication has been well demonstrated, whereas how it determines cell susceptibility to HBV entry is far less understood. We previously showed that umbilical cord matrix stem cells (UCMSC) can be differentiated towards hepatocyte-like cells in vitro. In this study we infected undifferentiated (UD-) and differentiated (D-) UCMSCs with HBV and studied the infection kinetics, comparing them to primary human hepatocytes (PHHs). UD-UCMSCs, although permissive to viral binding, had a very limited uptake capacity, whereas D-UCMSCs showed binding and uptake capabilities similar to PHHs. Likewise, asialoglycoprotein receptor (ASGPR) was up-regulated in UCMSCs upon differentiation. In D-UCMSCs, a dose-dependent inhibition of HBV binding and uptake was observed when ASGPR was saturated with known specific ligands. Subsequent viral replication was shown in D-UCMSCs but not in UD-UCMSCs. Susceptibility of UCMSCs to viral replication correlated with the degree of differentiation. Replication efficiency was low compared to PHHs, but was confirmed by (1) a dose-dependent inhibition by specific antiviral treatment using tenofovir; (2) the increase of viral RNAs along time; (3) de novo synthesis of viral proteins; and (4) secretion of infectious viral progeny. CONCLUSION UCMSCs become supportive of the entire HBV life cycle upon in vitro hepatic differentiation. Despite low replication efficiency, D-UCMSCs proved to be fully capable of HBV uptake. Overall, UCMSCs are a unique human, easily available, nontransformed, in vitro model of HBV infection that could prove useful to study early infection events and the role of the cell differentiation state on such events.
Collapse
Affiliation(s)
- Massimiliano Paganelli
- Pediatric Gastroenterology & Hepatology Unit, Université catholique de Louvain and Cliniques universitaires Saint-Luc, Brussels, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Krepstakies M, Lucifora J, Nagel CH, Zeisel MB, Holstermann B, Hohenberg H, Kowalski I, Gutsmann T, Baumert TF, Brandenburg K, Hauber J, Protzer U. A new class of synthetic peptide inhibitors blocks attachment and entry of human pathogenic viruses. J Infect Dis 2012; 205:1654-64. [PMID: 22457281 DOI: 10.1093/infdis/jis273] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many enveloped viruses, including herpes viruses, hepatitis B virus (HBV), and hepatitis C virus (HCV), and human immunodeficiency virus (HIV), are among the most important human pathogens and are often responsible for coinfections involving ≥2 types of viruses. However, therapies that are effective against multiple virus classes are rare. Here we present a new class of synthetic anti-lipopolysaccharide peptides (SALPs) that bind to heparan sulfate moieties on the cell surface and inhibit infection with a variety of enveloped viruses. We demonstrate that SALPs inhibit entry of human immunodeficiency virus type 1 (HIV-1), herpes simplex virus (HSV) 1 and 2, HBV, and HCV to their respective host cells. Despite their high antiviral efficiency, SALPs were well tolerated, and neither toxicity nor measurable inhibitor-induced adverse effects were observed. Since these broad-spectrum antiviral peptides target a host cell rather than a viral component, they may also be useful for suppression of viruses that are resistant to antiviral drugs.
Collapse
Affiliation(s)
- Marcel Krepstakies
- Heinrich Pette Institute-Leibniz Institute for Experimental Virology, Hamburg
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|